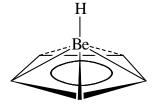
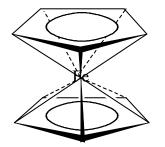

Organometallic Chemistry

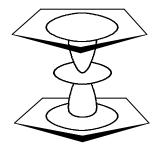
- Organometallic compounds combine an organic moiety with a metal in a molecule that has direct metal-carbon bonds.
- Ferrocene, first prepared in 1951, ushered in the modern era of organometallic chemistry.¹
 - Originally called "dicyclopentadienyliron."
 - Subsequent x-ray analysis proved that ferrocene consisted of an iron(II) ion sandwiched between two parallel pentadienyl rings.



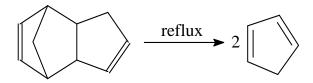
• Eclipsed and staggered configurations exist in the solid, and the barrier to rotation is low (<20 kJ/mol).


¹P. L. Paulson and T. J. Kealy, *Nature*, **1951**, *168*, 1039.

Nomenclature


- Today, in organometallic chemistry the Greek-letter prefix η (eta) with an integer superscript is used to indicate the number of carbon atoms directly bonded to the metal, called the *hapticity*.
 - For example, $(\eta^5 Cp)$ BeH has the following structure:

 Ferrocene is systematically named bis(η⁵-cyclopentadienyl)iron(II) implying the following bonding scheme:


• Carbon-metal bonding in sandwich compounds is less rigid than this model implies and is more nearly a less directed d- π interaction.

Cyclopentdienyl Ion (Cp⁻), C₅H₅⁻

Cyclopentadiene, C₅H₆ (b.p. 42.5 °C), is produced by cracking dicyclopentadiene, C₁₀H₁₂ (b.p. 170 °C):

 $C_{10}H_{12} \xrightarrow{\text{reflux}} 2C_5H_6 \text{ (b.p. 42.5 °C)}$

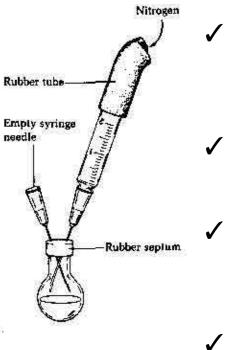
- Cyclopentadiene slowly dimerizes back to dicyclopentadiene at room temperature.
- The burgundy-red cyclopentadienyl ion, C₅H₅⁻, can be produced by reaction of cyclopentadiene with KOH in solvent 1,2-dimethoxyethane (ethylene glycol dimethyl ether):

 $C_5H_6 + KOH \longrightarrow C_5H_5^- + K^+ + H_2O$

Synthesis of Ferrocene

• A solution of FeCl₂ in DMSO is slowly added to the solution containing C₅H₅⁻ ions, resulting in yellow-orange ferrocene:

 $2C_5H_5^{-}+Fe^{2+}\rightarrow(\eta^5\text{-}C_5H_5)_2Fe$

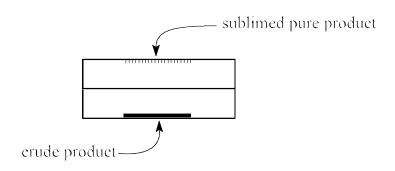

- An inert atmosphere (N₂) is necessary to avoid airoxidation of Fe²⁺ to Fe³⁺, which cannot effectively form ferrocene.
- The FeCl₂ solution is prepared by dissolving FeCl₂·4H₂O in DMSO.
 - An open bottle of FeCl₂·4H₂O (pale green) oxidizes over time to form brown Fe(III).

Do not use any crystals that are brown.

- The solution must be prepared and held under an inert atmosphere (N_2) to avoid oxidation.
- $FeCl_2 \cdot 4H_2O$ dissolves slowly.
 - Start preparing the solution early and use *mild* heating (hot water bath) to speed up the process.

Micro-scale Synthesis of Ferrocene

 Our synthetic procedure uses very small volumes in a 5-mL round bottom flask.



An inert atmosphere is maintained by N_2 flow through a pair of hypodermic needles.

- First, a KOH/dimethoxymethane solution is prepared in the flask.
- A FeCl₂/DMSO solution is prepared in a test tube, also under N_2 , for later addition.
- ✓ Cyclopendadiene is injected into the r.b. flask with the KOH solution, causing $C_5H_5^-$ ion (purple) to form.
- ✓ Injecting the FeCl₂/DMSO solution into the $C_5H_5^-$ solution in the r.b. flask causes ferrocene to form.
- ✓ To isolate the crude ferrocene, pour the dark slurry into a mixture of 4.5 mL of 6 *M* HCl solution and 5 g of ice in a 30-mL beaker.
- ✓ Collect the crude product by filtration on a Hirsh funnel.

Purifying Ferrocene

- The crude ferrocene prepared in this synthesis is a dull yellow-orange powder.
- Pure ferrocene can be obtained by sublimation at atmospheric pressure.
- The easiest way to carry out the sublimation is with two small same-sized Petri dish halves, placed on top of each other, and *mildly* heated on a warm hot plate.

- Overheating will scorch the crude product without sublimation, resulting in poor yield.
- Sublimed ferrocene has shiny, orange, crystalline flakes.
- Use the purified ferrocene to obtain an ATR-FTIR spectrum in the organic lab.