

 If a typical ionizer for atmospheric chemistry CIMS is 50 cm³ and with a residence time of 100 ms and a reagent ion mole fraction of 100 ppb, what pressure should it be operated at?

- A. 0.1-1 atm
- B. 1-100 mbar
- C. 0.01-mbar
- D. 0.001 mbar
- E. I don't know

CI Reagents and Products							
TABLE 13-8 Reactions Used in Cl				From Lambert			
Reaction	Reagent*	Reagent lon*	Product	Thermochemical Property			
Proton transfer Charge exchange Electron capture CI⁻ attachment Adduct formation Cluster ion formation	i-C₄H ₁₀ Ar CH₄ CHCI₃/CH₄ Biacetyl Py	$\begin{array}{c} C_4 H_g^+ \\ Ar^+ \\ e^- \\ Cl^- \\ CH_3 CO^+ \\ Py H^+ \end{array}$	$(M+H)^+$ M^+ . M^- . $(M+CI)^-$ $(M+CH_3CO)^+$ $(M+Py+H)^+$	Proton affinity Ionization energy Electron affinity CI⁻ affinity Acetyl affinity Molecular pair affinity			
 * Examples given are typical car Many different chi A CU ANYL stude CH₃-COO⁻ + proton ai Veres, P Gouw, D (NI-PT-C) Spectror http://dx. Used by 	ses; many other choice emistries used of nt developed a R -COOH \rightarrow CH bstraction by aceta , J.M. Roberts, C. evelopment of Ner IMS) for the Meas n., 274, 48-55, doi doi.org/10.1016/j.ij multiple groups no	Is can be made. Is can be made. Is conditional of what of the second second second Is conditional of the second Warneke, D. Welsh-It gative-lon Proton-Trai urement of Gas-Phase :10.1016/j.ijms.2008.0 jms.2008.04.032 ow, including ours	one wants bart of his PhD: - Bon, M. Zahniser, S. H nsfer Chemical-Ionizat se Organic Acids in the 04.032, 2008.	erndon, R. Fall, and J. de ion Mass Spectrometry Atmosphere, Int. J. Mass			

Proton	Table Volatil with H the vol	Table 1 Volatile substances, their chemical formulae and molecular (atomic) masses; column 5 shows the product ion masses detected after reactions with H ₂ O*; collumn 6 shows the proton affinities, and the two last columns show the measured and calculated rate coefficients for reactions of the volatile substances with H ₂ O* ions							
Affinities	S No.	Substance	Formula	Mass	Detected ionic products (mass)	Proton affinity ³ / kcal mol ⁻¹	Measured thermal rate constant ^b / 10 ⁻⁹ cm ³ s ⁻¹	Calculated thermal rate constant/ 10 ⁻⁹ cm ³ s ⁻¹	
27	1	Helium	He	4	-	42.5	-	-	
55	2	Neon	Ne	20	-	48.6	-	-	
0	₩ 3	Argon	Ar	40	-	88.2	-	-	
2	<u>]</u> 4	Oxygen	O2	32	-	100.6	-	-	
66	5	Hydrogen	H_2	2	-	100.9	-	-	
92	<u>8</u> 6	Krypton	Kr	84	-	101.5	-	-	
2	6 7	Nitrogen	N ₂	28	-	118.0			
è ŵ	£ 8	Xenon	Xe	132	-	118.6	-	-	
9 0	9	Carbon dioxide	CO ₂	44	-	129.2	-	-	
pe 0	§ 10	Carbon monoxide	CO	28	-	141.7	-	-	
ø T	- 2 <u>6</u> - 11	Water	H ₂ O	18	-	165.2			
ii ta	l 12	Hydrogen sulphide	H_2S	34	35	168.5	1.4	1.9	
d' eb	6 13	Formaldehyde	CH ₂ O	30	31	170.4	3.0	3.3	
	'g 14	Formic acid	CH ₂ O ₂	46	47	177.3	2.7	2.2	
Y tic	B 15	Benzene	C ₆ H ₆	78	79	179.3	2.1	1.9	
ar jit	16 E	Propene	C ₃ H ₆	42	43	179.6	1.5	1.7	
fii e/	5 17	Methanol	CH₄O	32	33	180.3	2.2	2.7	
jar a g	Q 18	Acetaldehyde	C ₂ H ₄ O	44	45	183.8	3.6	3.7	
ちちこ	\$ 19	Ethanol	C ₂ H ₆ O	46	47	185.6	2.8	2.7	
5,50	S 20	Acetonitrile	C_2H_3N	41	42	186.2	4.7	5.1	
es es	2 21	Toluene	C ₇ H ₈	92	93	187.4	2.1	2.2	
E ≔ L	22	Propanal	C ₃ H ₆ O	58	59	187.6	-	3.6	
affin viki/l	23	Propan-1-ol	C ₃ H ₈ O	60	43(80%) 61(20%)	188.2	2.3	2.7	
irec rg/v	puoji 24	Butanal	C4H8O	72	73(65%) 55(35%)	189.5		3.8	
pg -: o.	25	Xylene	C ₈ H ₁₀	106	107	190.0	-	2.2	
e.co e.co edia	26 //	Propan-2-ol	C_3H_8O	60	43(90%) 61(10%)	190.1	2.8	2.8	
ž ž ž	12 27	Acetic acid	CH4O2	60	61	190.2	3.0	2.7	
w.sc wiki wiki	28	1,4-Dioxane	$C_4H_8O_2$	88	89(80%) 45(20%)	190.7	-	1.9	
3 3 2	pu 29	Acetone	C ₁ H ₆ O	58	59	194.1	3.9	3.9	
j≥ j≥ jē	2 30	Phenol	C ₆ H ₆ O	94	95	195.0	-	2.7	
555	[™] 31	Dimethyl sulphide	C ₂ H ₆ S	62	63	198.6	2.1	2.6	
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	32	Isoprene	C ₅ H ₈	68	69	198.9	1.3	2.0	
モモモ	33	Ammonia	NH ₁	17	18	204.1	2.2	2.6	

	Predominant	Proton affinity ^a	Hydride affinity	
Reagent gas	reactant ions	(kcal/mol)	(kcal/mol)	
He/H ₂	HeH+	42		
H ₂	H ³⁺	101.2	300	
CH₄	CH ₅ +	131.6	269	
	$C_2H_5^+$	159	271	
H ₂ O	H₃O⁺	166.5	_	
CH ₃ CH ₂ CH ₃	$C_{3}H_{7}^{+}$	182	270	
CH₃OH	CH ₃ OH ₂ +	182 ^b	_	
(CH ₃)₃CH (isobutane)	$C_4H_{9^+}$	196°	266	
NH ₃	NH4, (NH3)2H+, (NH3)33H+	204.0		
(CH ₃) ₂ NH	(CH ₃) ₂ NH ₂ , (CH ₃) ₂ H ⁺ , C ₃ H ₈ N ⁺	220.6	—	
(CH ₃) ₃ N	(CH ₃) ₃ NH ⁺	225.1		

From Watson

Fig. 1. Solution of the chemical ionization source and role stage (31–34) anternate younged interface complete in the oriented ionization for the high pressure interface consists of: (i) ion-molecule reaction (IMR) chamber (S1, 85 mbar), (ii) collisional dissociation chamber (CDC) (S2, 2 mbar), (iii) stage 3 that houses a second RF-only segmented quadrupole (S3, 1.5×10^{-2} mbar), and (iv) stage 4 that houses a series of DC optics that focus and accelerate the primary beam into the TOFMS (S4, 3.5×10^{-5} mbar). DC voltages applied to the focusing electrodes under two different declustering conditions, are shown in the inset figure, as a function of the distance from the entrance aperture.

Bertram, T. H., Kimmel, J. R., Crisp, T. A., Ryder, O. S., Yatavelli, R. L. N., Thornton, J. A., Cubison, M. J., Gonin, M., and Worsnop, D. R.: A fielddeployable, chemical ionization time-of-flight mass spectrometer, Atmos. Meas. Tech., 4, 1471-1479, doi:10.5194/amt-4-1471-2011, 2011

