
A Data-Driven Graph Generative Model for
Temporal Interaction Networks

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He

University of Illinois at Urbana-Champaign, Urbana, IL, USA

{dzhou21, lecheng4, hanj, jingrui}@illinois.edu

ABSTRACT

Deep graph generative models have recently received a surge of

attention due to its superiority of modeling realistic graphs in a

variety of domains, including biology, chemistry, and social science.

Despite the initial success, most, if not all, of the existing works are

designed for static networks. Nonetheless, many realistic networks

are intrinsically dynamic and presented as a collection of system

logs (i.e., timestamped interactions/edges between entities), which

pose a new research direction for us: how canwe synthesize realistic

dynamic networks by directly learning from the system logs? In

addition, how can we ensure the generated graphs preserve both

the structural and temporal characteristics of the real data?

To address these challenges, we propose an end-to-end deep

generative framework named TagGen. In particular, we start with a

novel sampling strategy for jointly extracting structural and tem-

poral context information from temporal networks. On top of that,

TagGen parameterizes a bi-level self-attention mechanism together

with a family of local operations to generate temporal random

walks. At last, a discriminator gradually selects generated temporal

random walks, that are plausible in the input data, and feeds them

to an assembling module for generating temporal networks. The

experimental results in seven real-world data sets across a variety of

metrics demonstrate that (1) TagGen outperforms all baselines in the

temporal interaction network generation problem, and (2) TagGen
significantly boosts the performance of the prediction models in

the tasks of anomaly detection and link prediction.

CCS CONCEPTS

• Networks → Topology analysis and generation; • Theory

of computation → Dynamic graph algorithms.

KEYWORDS

Graph Generative Model, Temporal Networks, Transformer Model

ACM Reference Format:

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A Data-

Driven Graph Generative Model for Temporal Interaction Networks. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery
and DataMining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA.ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3394486.3403082

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403082

User 1

User 5 User 4

User 3 User 2

(𝑎) Online Transaction Network (𝑏) Fine-grained Temporal Interactions

User 1 User 2;

𝑡1
𝑡 = 𝑡1 User 4 User 3;

𝑡1

User 3 User 2;

𝑡1

𝑡 = 𝑡2 User 1 User 3;

𝑡2

User 2 User 3;

𝑡2

User 4 User 2;

𝑡2

User 4 User 5;

𝑡2

𝑡 = 𝑡3 User 2 User 3;

𝑡3

User 5 User 3;

𝑡3

User 1 User 2;

𝑡2

𝑡1, 𝑡2, 𝑡3

𝑡2

Figure 1: An example of temporal interaction networks. (a)
An online transaction network with five users. (b) The

corresponding system logs presented in the form of time-

stamped edges between users.

1 INTRODUCTION

Graph presents a fundamental abstraction for modeling complex

systems in a variety of domains, ranging from chemistry [39], se-

curity [4, 16, 42], recommendation [25, 33], and social science [34].

Therefore, mimicking and generating realistic graphs have been

extensively studied in the past. The traditional graph generative

models are mostly designed to model a particular family of graphs

based on some specific structural assumptions, such as heavy-tailed

degree distribution [3], small diameter [10], local clustering [38], etc.

In addition to the traditional graph generative models, a surge of re-

search efforts on deep generative models [12, 17] have been recently

observed in the task of graph generation. These approaches [5, 40]

are trained directly from the input graphs without incorporating

prior structural assumptions and often achieve promising perfor-

mance in preserving diverse network properties of real networks.

Despite the initial success of deep generative models on graphs,

most of the existing techniques are designed for static networks.

Nonetheless, many real networks are intrinsically dynamic and

stored as a collection of system logs (i.e., timestamped edges be-

tween entities). For example, in Fig. 1, an online transaction network

can be intrinsically presented as a sequence of timestamped edges

(i.e., financial transactions) between users. When an online transac-

tion is completed, a system log file (i.e., a timestamped edge from

one account to another) will be automatically generated and stored

in the system. A conventional way of modeling such dynamic sys-

tems is to construct time-evolving graphs [36, 44] by aggregating

timestamps into a sequence of snapshots. One drawback comes

from the uncertainty of defining the proper resolution of the time-

evolving graphs. If the resolution is too fine, the massive number of

snapshots will bring intractable computational cost when training

deep generative models; if the resolution is too coarse, fine-grained

temporal context information (e.g., the addition/deletion of nodes

and edges) might be lost during the time aggregation.

https://doi.org/10.1145/3394486.3403082
https://doi.org/10.1145/3394486.3403082

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhou, Dawei, et al.

Figure 2: A two-dimensional conceptual space of graph gen-

erative models.

Fig. 2 compares various graph generators in a two-dimensional

conceptual space in order to demonstrate the limitation of existing

techniques as compared to ours. In this paper, for the first time,

we aim to address the following three open challenges: (Q.1) Can
we directly learn from the raw temporal networks (i.e., temporal

interaction network) represented as a collection of timestamped

edges (see Fig. 1 (b)) instead of constructing the time-evolving

graphs? (Q.2) Can we develop an end-to-end deep generative model

that can ensure the generated graphs preserve the structural and

temporal characteristics (e.g., the heavy tail of degree distribution,

and shrinking network diameter over time) of the original data?

To this end, we propose TagGen, a deep graph generative model

for temporal interaction networks to tackle all of the aforementioned

challenges. We first propose a random walk sampling strategy to

jointly extract the key structural and temporal context informa-

tion from the input graphs. On top of that, we develop a bi-level

self-attention mechanism which can be directly trained from the

extracted temporal random walks while preserving temporal in-

teraction network properties. Moreover, we designed a novel net-

work context generation scheme, which defines a family of local

operations to perform addition and deletion of nodes and edges,

thus mimicking the evolution of real dynamic systems. In partic-

ular, TagGen maintains the state of the graph and generates new

temporal edges by training from the extracted temporal random

walks [27]; the addition operation randomly chooses a node to be

connected with another one at a timestamp 𝑡 ; the deletion operation
randomly terminates the interaction between two nodes at times-

tamp 𝑡 ; all the proposed operations are either accepted or rejected

by a discriminator module in TagGen based on the current states

of the constructed graph. At last, the selected plausible temporal

random walks will be fed into an assembling module to generate

temporal networks.

The main contributions of this paper are summarized below.

• Problem.We formally define the problem of temporal interaction
network generation and identify its unique challenges arising from
real applications.

• Algorithm. We propose an end-to-end learning framework for

temporal interaction network generation, which can (1) directly

learn from a series of timestamped nodes and edges and (2) pre-

serve the structural and temporal characteristics of the input data.

• Evaluations. We perform extensive experiments and case stud-

ies on seven real data sets, showing that TagGen achieves superior
performances compared with the previous methods in the tasks

of temporal graph generation and data augmentation.

The rest of our paper is organized as follows. Problem definition

is introduced in Section 2, followed by the details of our proposed

framework TagGen in Section 3. Experimental results are reported

in Section 4. In Section 5, we review the existing literature before

we conclude the paper in Section 6.

2 PROBLEM DEFINITION

The main symbols used in this paper are summarized in Table 1

of Appendix A. We formalize the graph generation problem for

temporal interaction networks [21, 27, 29], and present our learning

problem with inputs and outputs. Different from conventional dy-

namic graphs that are defined as a sequence of discrete snapshots,

the temporal interaction network is represented as a collection

of temporal edges. Each node is associated with multiple times-

tamped edges at different timestamps, which results in the different

occurrences of node 𝑣 = {𝑣𝑡1 , . . . , 𝑣𝑇 }. For example, in Fig. 3, the

node 𝑣𝑎 is associated with three occurrences {𝑣𝑡1𝑎 , 𝑣𝑡2𝑎 , 𝑣𝑡3𝑎 } that ap-
pear at timestamps 𝑡1, 𝑡2 and 𝑡3. The formal definitions of temporal

occurrence and temporal interaction network are given as follows.

Definition 1 (Temporal Occurrence). In a temporal inter-
action network, a node 𝑣 is associated with a bag of temporal occur-
rences 𝑣 = {𝑣𝑡1 , 𝑣𝑡2 , . . .}, which instance the occurrences of node 𝑣 at
timestamps {𝑡1, 𝑡2, . . .} in the network.

Figure 3: An example of node 𝑣𝑎 and its temporal occur-

rences. (a) A miniature of a temporal interaction network.

(b) The occurrences of node 𝑣𝑎 that appear at 𝑡1, 𝑡2 and 𝑡3.

Definition 2 (Temporal Interaction Network). A tem-
poral interaction network 𝐺 = (𝑉 , 𝐸) is formed by a collection of
nodes 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a series of timestamped edges 𝐸 =

{𝑒𝑡𝑒1
1
, 𝑒
𝑡𝑒

2

2
, ..., 𝑒

𝑡𝑒𝑚
𝑚 }, where 𝑒𝑡𝑒𝑖

𝑖
= (𝑢𝑒𝑖 , 𝑣𝑒𝑖)𝑡𝑒𝑖 .

In the static setting, existing works [30] define the network

neighborhood N(𝑣) of node 𝑣 as a set of nodes that are generated
through some neighborhood sampling strategies. Here, we general-

ize the notion of network neighborhood to the temporal interaction

network setting as follows.

Definition 3 (TemporalNetworkNeighborhood). Given
a temporal occurrence 𝑣𝑡𝑣 at timestamp 𝑡𝑣 , the neighborhood of 𝑣𝑡𝑣 is
defined asN𝐹𝑇 (𝑣𝑡𝑣) = {𝑣𝑡𝑣𝑖

𝑖
|𝑓𝑠𝑝 (𝑣

𝑡𝑣𝑖
𝑖
, 𝑣𝑡𝑣) ≤ 𝑑N𝐹𝑇

, |𝑡𝑣−𝑡𝑣𝑖 | ≤ 𝑡N𝐹𝑇
},

where 𝑓𝑠𝑝 (·|·) denotes the shortest path between two nodes,𝑑N𝐹𝑇
is the

user-defined neighborhood range, and 𝑡N𝐹𝑇
refers to the user-defined

neighborhood time window.

In [27], the authors define the notion of Temporal Walk, which
is presented as a sequence of vertices following a time-order con-

straint. In this paper, we relax such a constraint by considering

A Data-Driven Graph Generative Model for
Temporal Interaction Networks KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

that all the nodes within a neighborhood time window [𝑡𝑣 − 𝑡N𝐹𝑇
+

1, 𝑡𝑣 + 𝑡N𝐹𝑇
] are the temporal neighbors of 𝑣𝑡𝑣 and can be accessed

from 𝑣 via a random walk. Here, we formally define the 𝑘-Length

Temporal Walk as follows.

Definition 4 (𝑘-Length Temporal Walk). Given a tempo-
ral interaction network𝐺 , a𝑘-length temporal walk𝑊 = {𝑤1, . . . ,𝑤𝑘 }
is defined as a sequence of incident temporal walks traversed one after
another, i.e.,𝑤𝑖 = (𝑢𝑤𝑖

, 𝑣𝑤𝑖
)𝑡𝑤𝑖 , 𝑖 = 1, . . . , 𝑘 , where 𝑢𝑤𝑖

and 𝑣𝑤𝑖
are

the source node and destination node of the 𝑖th temporal walk𝑤𝑖 in
𝑊 respectively.

With all the aforementioned notions, we are ready to formalize

the temporal interaction network generation problem as follows.

Problem 1. Temporal Interaction Network Generation

Input: a temporal interaction network𝐺 , which is presented as a col-
lection of timestamped edges {(𝑢𝑒1 , 𝑣𝑒1)𝑡𝑒1 , . . . , (𝑢𝑒𝑚 , 𝑣𝑒𝑚)𝑡𝑒𝑚 }.

Output: a synthetic temporal interaction network𝐺 ′ = (𝑉 ′, 𝐸 ′) that
accurately captures the structural and temporal properties of
the observed temporal network 𝐺 .

3 MODEL

In this section, we introduce TagGen, a graph generative model

for temporal interaction networks. The core idea of TagGen is to

train a bi-level self-attention mechanism together with a family

of local operations to model and generate temporal random walks

for assembling temporal interaction networks. In particular, we

first introduce the overall learning framework of TagGen. Then, we
discuss the technical details of TagGen regarding context sampling,

sequence generation, sample discrimination, and graph assembling

in temporal interaction networks. At last, we present an end-to-end

optimization algorithm for training TagGen.

3.1 A Generic Learning Framework

An overview of our proposed framework is presented in Fig. 4,

which consists of four major stages. Given a temporal interac-

tion network defined by a collection of temporal edges (i.e., time-

stamped interactions), we first extract network context information

of temporal interaction networks by sampling a set of temporal

random walks [27] via a novel sampling strategy. Second, we de-

velop a deep generative mechanism, which defines a set of simple

yet effective operations (i.e., addition and deletion over temporal

edges) to generate synthetic random walks. Third, a discriminator

is trained over the sampled temporal random walks to determine

whether the generated temporal walks follow the same distribu-

tions as the real ones. At last, we generate temporal interaction

network, by collecting the qualified synthetic temporal walks via

the discriminator. In the following subsections, we describe each

stage of TagGen in details.

Context sampling. Inspired by the advances of network embed-

ding approaches [30], we view the problem of temporal network

context sampling as a form of local exploration in network neigh-

borhoodN𝐹𝑇 via temporal random walks [27]. Specifically, given a

temporal occurrence 𝑣𝑡𝑣 , we aim to extract a set of sequences that

are capable of generating its neighborhood N𝐹𝑇 (𝑣𝑡𝑣). Notice that
in order to fairly and effectively sample neighborhood context, we

should select the most representative temporal occurrences to serve

as initial nodes from the entire data. Here we propose to estimate

the context importance via computing the conditional probability

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) of each temporal occurrence 𝑣𝑡𝑣 given its temporal

network neighborhood context N𝐹𝑇 (𝑣𝑡𝑣) as follows.
𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) = 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣)) (1)

whereN𝑇 (𝑣𝑡𝑣) andN𝑆 (𝑣𝑡𝑣) denote the temporal neighborhood and

structural neighborhood of 𝑣𝑡𝑣 respectively.

N𝑇 (𝑣𝑡𝑣) = {𝑣𝑡𝑣𝑖
𝑖

| |𝑡𝑣 − 𝑡𝑣𝑖 | ≤ 𝑡N𝐹𝑇
}

N𝑆 (𝑣𝑡𝑣) = {𝑣𝑡𝑣𝑖
𝑖

|𝑓𝑠𝑝 (𝑣
𝑡𝑣𝑖
𝑖
, 𝑣𝑡𝑣) ≤ 𝑑N𝐹𝑇

}
Intuitively, when 𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) is high, it turns out that 𝑣𝑡𝑣 is

a representative node in its neighborhood, which could be a good

initial point for random walks; when 𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) is low, it is
highly possible that 𝑝 (𝑣𝑡𝑣) is an outlier point, whose behaviors

deviate from its neighbors. A key challenge here is how to esti-

mate 𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)). If 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) and 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) are
independent to each other, it is easy to see

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) = 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) (2)

where 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) and 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) can be estimated via

some heuristic methods [27, 30]. However, in real networks, the

topology context and temporal context are correlated to some ex-

tend, which has been observed in [7]. For instance, the high-degree

nodes (i.e., 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) is high) have a high probability to be

active in a future timestamp (i.e., 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) is high) , and vice

versa. These observations allow us to state a weak dependence [1]

between the topology neighborhood distribution and temporal

neighborhood distribution.

Definition 5 (Weak Dependence). For any 𝑣𝑡𝑣 ∈ 𝑉 , the
corresponding temporal neighborhood distribution 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))
and topology neighborhood distribution 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) are weakly
dependent on each other, such that, for 𝛿 > 0,

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) ≥ 𝛿 [𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))] .

Based on Def. 5, here we establish the relationship between

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) and 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)), 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)).

Lemma 1. For any 𝑣𝑡𝑣 ∈ 𝑉 , if the temporal neighborhood dis-
tribution 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) and topology neighborhood distribution
𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) are weakly dependent on each other, then the fol-
lowing inequality holds:

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) (3)

≥ 𝛼 𝑝 (𝑣
𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (N𝑆 (𝑣𝑡𝑣))𝑝 (N𝑇 (𝑣𝑡𝑣))

𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

where 𝛼 = 𝛿
𝑝 (𝑣𝑡𝑣) .

The proof of this Lemma can be found in Appendix B. Follow-

ing [30], we assume 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) and 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) follow a

uniform distribution, where all the temporal entities in a local

region are equally important. Then, by computing 𝑝 (N𝑆 (𝑣𝑡𝑣)),
𝑝 (N𝑇 (𝑣𝑡𝑣)) and 𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣)) (e.g., via kernel density es-

timation approaches [35]), we can infer the context importance
𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) based on Eq. 3 for selecting initial nodes.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhou, Dawei, et al.

Figure 4: The proposed TagGen framework.

After selecting the initial temporal occurrence, we use the biased

temporal randomwalk [27] to extract a collection of temporal walks

for training TagGen. The key reasons for using random walk based

sampling approaches are their flexibility of controlling sequence

length and the capability of jointly capturing structural and tempo-

ral neighborhood context information, as shown in [15, 27, 30].

Sequence generation. To generate the synthetic temporal random

walks, a straightforward solution is to train a sequence model by

learning from the extracted random walks [5]. However, in the

temporal network setting, it is unclear how to mimic the network

evolution and produce temporal interaction networks. Therefore,

in this paper, we design a family of local operations, i.e., Action =

{𝑎𝑑𝑑, 𝑑𝑒𝑙𝑒𝑡𝑒}, to perform addition and deletion of temporal entities

and mimic the evolution of real dynamic networks. In particular,

given a 𝑘-length temporal random walk𝑊 (𝑖) = {𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑘

},
we first sample a candidate temporal walk segment 𝑤

(𝑖)
𝑗

∈ 𝑊 (𝑖)

following a user-defined prior distribution 𝑝 (𝑊 (𝑖)). In this paper,

we assume 𝑝 (𝑊 (𝑖)) follows a uniform distribution, although the

proposed techniques can be naturally extended to other types of

prior distribution. Then, we randomly perform one of the following

operations with probability 𝑝𝑎𝑐𝑡𝑖𝑜𝑛 = {𝑝𝑎𝑑𝑑 , 𝑝𝑑𝑒𝑙𝑒𝑡𝑒 }.

• 𝑎𝑑𝑑 : The 𝑎𝑑𝑑 operation is done in a two-step fashion. First, we

insert a place holder token in the candidate temporal walk seg-

ment𝑤
(𝑖)
𝑗

= (𝑢
𝑤

(𝑖)
𝑗

, 𝑣
𝑤

(𝑖)
𝑗

)
𝑡
�̃�
(𝑖)
𝑗
, and then replace a new temporal

entity 𝑣∗𝑡𝑣∗ with the place holder token such that𝑤
(𝑖)
𝑗

is broken

into {(𝑢
𝑤

(𝑖)
𝑗

, 𝑣∗)𝑡𝑣∗ , (𝑣∗, 𝑣
𝑤

(𝑖)
𝑗

)
𝑡
�̃�
(𝑖)
𝑗 }. The length of the modified

temporal random walk sequence𝑊
(𝑖)
𝑎𝑑𝑑

would be 𝑘 + 1.

• 𝑑𝑒𝑙𝑒𝑡𝑒 : The 𝑑𝑒𝑙𝑒𝑡𝑒 operation removes the candidate temporal

walk segment 𝑤
(𝑖)
𝑗

from𝑊 (𝑖) = {𝑤 (𝑖)
1
, . . . ,𝑤

(𝑖)
𝑗
, . . . ,𝑤

(𝑖)
𝑘

}, such
that the length of the modified temporal random walk𝑊

(𝑖)
𝑑𝑒𝑙𝑒𝑡𝑒

would be 𝑘 − 1.

Sample discrimination. To ensure the generated graph con-

text follows the similar global structure distribution as the in-

put, TagGen is equipped with a discriminator model 𝑓\ (·), which

Figure 5: Bi-level self-attention.

aims to distinguish whether the generated temporal networks fol-

low the same distribution as the original graphs. For each gen-

erated temporal random walk𝑊
(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

after a certain operation

𝑎𝑐𝑡𝑖𝑜𝑛 = {𝑎𝑑𝑑, 𝑑𝑒𝑙𝑒𝑡𝑒}, TagGen computes the conditional probabil-

ity 𝑝 (𝑊 (𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

|𝑊 (1∼𝑙)) given the extracted real temporal random

walks𝑊 (1∼𝑙) = {𝑊 (1) , . . . ,𝑊 (𝑙) } as follows.

𝑝 (𝑊 (𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

|𝑊 (1∼𝑙)) ∝ 𝑝𝑎𝑐𝑡𝑖𝑜𝑛 (𝑎𝑐𝑡𝑖𝑜𝑛) 𝑓\ (𝑊
(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

) (4)

where 𝑓\ (·) computes the likelihood of observing𝑊
(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

given the

training data𝑊 (1∼𝑙) = {𝑊 (1) , . . . ,𝑊 (𝑙) }; 𝑝𝑎𝑐𝑡𝑖𝑜𝑛 (𝑎𝑐𝑡𝑖𝑜𝑛) weights
the proposed operation over𝑊

(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

.

Some recent graph generative frameworks (e.g., [5, 40]) model

the extracted graph sequences via recurrent neural networks (RNNs)

or long short-term memory (LSTM) architectures. However, such

sequential nature inherently prevents parallelism and results in in-

tractable running time for long sequence length [37]. For instance,

GraphRNN [40] requires to map the 𝑛-node graph into length-𝑛

sequences for training purposes. Inspired by the recent advances

of Transformer models in nature language processing [37], we

propose to employ self-attention mechanisms to impose global

dependencies among temporal entities (i.e., nodes and temporal

occurrences) and reduce the overall sequential computation load.

However, direct implementation with standard Transformer pa-

rameterization may fail to capture such bi-level dependencies (i.e.,

A Data-Driven Graph Generative Model for
Temporal Interaction Networks KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

node-level dependencies and occurrence-level dependencies). Here,

we propose a bi-level self-attention mechanism illustrated in Fig. 5.

In particular, given a 𝑘-length temporal random walk �̃� (𝑖)
, we

first obtain the 𝑑-dimensional representation 𝒁 ∈ R𝑛×𝑑 for each

𝑣𝑡 (i.e., node 𝑣 at timestamp 𝑡) via temporal network embedding

approaches, e.g., [27]. As each node 𝑣 is naturally represented as

a bag of temporal occurrences 𝑣 = {𝑣𝑡1, 𝑣𝑡2, . . . , 𝑣𝑇 }, the bi-level
self-attention mechanism is designed to jointly learn (1) the depen-

dencies among nodes in �̃� and (2) the dependencies among different

temporal occurrences. Following the notations in [37], we define

the occurrence-level attention 𝑨𝒐𝒄𝒄𝒖 ∈ R𝑛𝑟×𝑛𝑟 and node-level

attention 𝑨𝒏𝒐𝒅𝒆 ∈ R𝑛𝑟×𝑛𝑟 as follows.

𝑨𝒐𝒄𝒄𝒖 (𝑣𝑡1
𝑖
, 𝑣

𝑡2
𝑗
) =

(𝒛𝒕1𝒊 𝑾
𝒐𝒄𝒄𝒖
𝑸) ⊙ (𝒛𝒕2𝒋 𝑾𝒐𝒄𝒄𝒖

𝑲)√
𝑑𝑘

(5)

𝑨𝒏𝒐𝒅𝒆 (𝑣𝑡1
𝑖
, 𝑣

𝑡2
𝑗
) =

(𝑓𝑎𝑔𝑔 (𝒛𝒕1𝒊)𝑾
𝒏𝒐𝒅𝒆
𝑸) ⊙ (𝑓𝑎𝑔𝑔 (𝒛𝒕2𝒋)𝑾𝒏𝒐𝒅𝒆

𝑲)√
𝑑𝑘

(6)

where 𝑧
𝑡1
𝑖
(𝑧𝑡2
𝑖
) ∈ R1×𝑑 is the 𝑑-dimensional embedding of node

𝑣
𝑡1
𝑖
(𝑣𝑡2
𝑖
);𝑾𝒐𝒄𝒄𝒖

𝑸 ∈ R𝑑×𝑑𝑘 and𝑾𝒐𝒄𝒄𝒖
𝑲 ∈ R𝑑×𝑑𝑘 are the occurrence-

level query weight matrix and key weight matrix, respectively;

similarly,𝑾𝒏𝒐𝒅𝒆
𝑸 ∈ R𝑑×𝑑𝑘 and𝑾𝒏𝒐𝒅𝒆

𝑲 ∈ R𝑑×𝑑𝑘 are the node-level

query weight matrix and key weight matrix, respectively; 𝑑𝑘 is a

scaling factor; 𝑓𝑎𝑔𝑔 (·) is an aggregation function that summarizes all

the occurrence-level information for each node. For implementation

purposes, we define 𝑓𝑎𝑔𝑔 (𝑣𝑡𝑖) =
∑

𝑣𝑡
𝑖
∈𝑣𝑖 𝒛

𝒕
𝒊 , such that 𝑓𝑎𝑔𝑔 (𝑣𝑡1𝑖) =

𝑓𝑎𝑔𝑔 (𝑣𝑡2𝑖) when 𝑡1 ≠ 𝑡2. In this way, the entries (i.e., rows) in 𝑨𝒐𝒄𝒄𝒖

and𝑨𝒏𝒐𝒅𝒆
are exactly aligned. Moreover, we introduce a coefficient

_ ∈ [0, 1] to balance the occurrence-level attention and node-level

attention and obtain the final bi-level self-attention 𝒁𝒔 as follows.

𝒁𝒔 = [_ × softmax(𝑨𝒏𝒐𝒅𝒆) + (1 − _) × softmax(𝑨𝒐𝒄𝒄𝒖)]𝑽 (7)

where 𝑽 =𝑾𝑽𝒁 and𝑾𝑽 denotes the value weight matrix.

With the single head attention described in Fig. 5, we employ

ℎ = 4 parallel attention layers (i.e., heads) in discriminator 𝑓\ (·)
for selecting the qualified synthetic random walks𝑊

(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

. The

update rule of the hidden representations in 𝑓\ (·) is the same as

the standard Transformer model defined in [37]. At the end of the

stage 3, all of the selected synthetic temporal random walks via the

𝑓\ (·) will be fed to the beginning of Stage 2 (see Fig. 4) to gradually
modify these sequences until the user-defined stopping criteria are

met and the sequences are ready for assembling (Stage 4).

Graph assembling. In the previous stage, we generate synthetic

temporal random walks by gradually performing local operations

on the extracted real temporal random walks. In this stage, we as-

semble all the generated temporal random walks and generate the

temporal interaction networks. In particular, we first compute the

frequency counts 𝑠 (𝑒𝑡𝑒) of each temporal edge 𝑒𝑡𝑒 = (𝑢, 𝑣)𝑡𝑒 in the

generated temporal random walks. To ensure the frequency counts

are reliable, we use a larger number of the extract temporal random

walks from the original graphs to avoid the case where some unrep-

resented temporal occurrences (i.e., with a small degree) are not sam-

pled. In order to transform these frequency counts to discrete tempo-

ral edges, we use the following strategies: (1) we firstly generate at

Algorithm 1 The TagGen Learning Framework.

Input:

Temporal interaction network 𝐺 and parameters including

neighborhood range 𝑑N𝐹𝑇
, neighborhood time window 𝑡N𝐹𝑇

,

number of initial node 𝑙 , walks per initial temporal occurrences

𝛾 , walk length 𝑘 and constants 𝑐1 and b ∈ (0.5, 1).
Output:

Synthetic temporal interaction network 𝐺 ′
;

1: Sample 𝑙 initial temporal occurrences based on Eq. 3.

2: Sample 𝛾 temporal random walks starting from each initial

temporal occurrence with neighborhood range𝑑N𝐹𝑇
and neigh-

borhood time window 𝑡N𝐹𝑇
, and store them in S.

3: Train discriminator 𝑓\ based on S.
4: Let S′ = {}.
5: for 𝑖 = 1 : 𝛾 × 𝑙 do
6: Initialize𝑊 (𝑖)

with the first entry in𝑊 (𝑖)
, i.e.,𝑊 (𝑖) = {𝑤 (𝑖)

1
}.

7: for 𝑐 = 1 : 𝑐1 do

8: Sample a candidate temporal walk segment 𝑤
(𝑖)
𝑗

from

𝑊 (𝑖)
.

9: Draw a number 𝑟𝑎𝑛𝑑𝑜𝑚 ∼ 𝑈𝑛𝑖 𝑓 (0, 1).
10: If 𝑟𝑎𝑛𝑑𝑜𝑚 < b , perform 𝑎𝑑𝑑 operation on 𝑤

(𝑖)
𝑗
; if

𝑟𝑎𝑛𝑑𝑜𝑚 ≤ b , perform 𝑑𝑒𝑙𝑒𝑡𝑒 operation on𝑤
(𝑖)
𝑗

.

11: If discriminator 𝑓\ approves the proposal𝑊
(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

, replace

𝑊 (𝑖)
with𝑊

(𝑖)
𝑎𝑐𝑡𝑖𝑜𝑛

; if not, continue.

12: end for

13: Add𝑊 (𝑖)
into S′

.

14: end for

15: Construct 𝐺 ′
based on S′

by ensuring all the temporal occur-

rences and timestamps are included in 𝐺 ′
.

least one temporal edge starting from each temporal occurrence 𝑣𝑡𝑣

with probability 𝑝 (𝑣𝑡𝑣 , 𝑣∗ ∈ N𝑆 (𝑣𝑡𝑣)) =
𝑠 (𝑒𝑡𝑒 =(𝑣,𝑣∗)𝑡𝑣)∑

𝑣∗∈N𝑆 (𝑣𝑡𝑣) 𝑠 (𝑒𝑡𝑒 =(𝑣,𝑣∗)𝑡𝑣)

to ensure all the observed temporal occurrences in 𝐺 are included;

(2) then we generate at least one temporal edge at each timestamp

with probability 𝑝 (𝑒𝑡𝑒) = 𝑠 (𝑒𝑡𝑒)∑
𝑒𝑖
𝑡𝑒𝑖

𝑠 (𝑒𝑖 𝑡𝑒𝑖)
; (3) we generate the tempo-

ral edges with the largest counts until the generated graph has the

same edge density as the original one.

3.2 Optimization Algorithm

To optimize TagGen, we use stochastic gradient descent [6] (SGD)
to learn the hidden parameters of TagGen. The optimization algo-

rithm is described in Alg. 1. The given inputs include the Temporal

interaction network 𝐺 , neighborhood range 𝑑N𝐹𝑇
, neighborhood

time window 𝑡N𝐹𝑇
, number of initial nodes 𝑙 , walks per initial nodes

𝛾 , walk length 𝑘 , the number of operations per sequence 𝑐1, and

constant parameters b ∈ (0.5, 1). With b > 0.5, we enforce the

number of add operation to be larger than the number of delete
operation. In this way, we can avoid the case of generating zero-

entry temporal random walk sequences. From Step 1 to Step 3, we

sample a set of temporal random walks S from the input data and

train the discriminator 𝑓\ (·). Step 4 to Step 14 is the main body of

TagGen, which generates the exactly sample number of temporal

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhou, Dawei, et al.

(Cut Off) (Cut Off) (Cut Off)

(a) Mean Degree (b) Claw Count (c) Wedge Count

(Cut Off) (Cut Off) (Cut Off)

(d) LCC (e) PLE (f) N-Component

Figure 6: Average score 𝑓𝑎𝑣𝑔 (·) comparison with six metrics across seven temporal networks. Best viewed in color. We cut off

high values for better visibility. (Smaller metric values indicate better performance)

random walks as in S. We firstly initial each synthetic walk𝑊 (𝑖)

with first entry in𝑊 (𝑖)
, i.e.,𝑊 (𝑖) = {𝑤 (𝑖)

1
}. From Step 7 to Step 12,

we perform 𝑐1 times operations (i.e., add and delete) to generate

context for each synthetic walk𝑊 (𝑖)
and use discriminator 𝑓\ (·)

to select the qualified temporal random walks to be stored in S′
.

In the end, Step 15 constructs the 𝐺 ′
based on S′

by ensuring all

the temporal occurrences and timestamps are included in 𝐺 ′
as

discussed in the previous subsection regarding Stage 4.

4 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our proposed

TagGen framework across seven real temporal networks in graph

generation and data augmentation. Additional results regarding

scalability analysis are reported in Appendix E.

4.1 Experiment Setup

Data Sets: We evaluate TagGen on seven real temporal networks,

including DBLP [43], SO [43], MO [29], WIKI [23], EMAIL [29],

MSG [28] and BITCOIN [20]. The statistics of data sets are summa-

rized in Appendix C.

Comparison Methods: We compare TagGen with two traditional

graph generative models (i.e., Erdös-Rényi (ER) [9] and Barabási-

Albert (BA) [3]), two deep graph generative models (GAE [18],

NetGAN [5]), and two dynamic graph generators based on tempo-

ral network embedding approaches (HTNE [45], DAE [13]). Note

that HTNE and GAE are not designed for graph generation. To gen-

erate temporal networks, we utilize the learned temporal network

embedding to construct the adjacency matrix at each timestamp.

Evaluation Metrics: We consider six widely-used network prop-

erties (i.e., Mean Degree, Claw Count, Wedge Count, PLE, LCC,

N-Component) for evaluation, which are elaborated in Appendix

D. As all of these metrics are designed for static graphs, here we

generalize the aforementioned metrics to the dynamic setting in the

form of mean value and median value. In particular, given the real

network 𝐺 , the synthetic one 𝐺 ′
and a user-specific metric 𝑓𝑚 (·),

we first construct a sequence of snapshots 𝑆𝑡 (𝑆 ′
𝑡
), 𝑡 = 1, . . . ,𝑇 , of

𝐺 (𝐺 ′
) by aggregating from the initial timestamp to the current

timestamp 𝑡 . Then, we measure the averaged/median discrepancy

(in percentage) between the original graph and the generated graph

in terms of the given metric 𝑓𝑚 (·) as follows.

𝑓𝑎𝑣𝑔 (𝐺,𝐺 ′, 𝑓𝑚) = 𝑀𝑒𝑎𝑛𝑡=1:𝑇 (|
𝑓𝑚 (𝑆𝑡) − 𝑓𝑚 (𝑆 ′𝑡)

𝑓𝑚 (𝑆𝑡)
|)

𝑓𝑚𝑒𝑑 (𝐺,𝐺 ′, 𝑓𝑚) = 𝑀𝑒𝑑𝑖𝑎𝑛𝑡=1:𝑇 (|
𝑓𝑚 (𝑆𝑡) − 𝑓𝑚 (𝑆 ′𝑡)

𝑓𝑚 (𝑆𝑡)
|)

4.2 Quantitative Results for Graph Generation

We compare TagGen with six baseline methods across seven dy-

namic networks regarding six network property metrics in the form

of 𝑓𝑎𝑣𝑔 (·) and 𝑓𝑚𝑒𝑑 (·) are shown in Fig. 6 and Fig.7. For the static

methods, we apply them on the constructed graph snapshots at

each timestamp and then report the results. In all of these figures,

the performance is the smaller metric values, the better. For the

sake of better visualization, the values of the scores are set to be

one if any value is greater than 1. We draw several interesting ob-

servations from these results. (1) TagGen outperforms the baseline

methods across the six evaluation metrics and seven data sets in

most of the cases. (2) The random graph algorithms (i.e., ER and

BA) perform well (i.e., close to TagGen and better than NetGAN

and GAE) with Mean Degree (shown in Fig. 6 (a) and Fig. 7 (a)), but

perform worse than the competitors with most of the other metrics.

This is because such random graph algorithms are often designed

to model a certain structural distribution (e.g., degree distribution)

A Data-Driven Graph Generative Model for
Temporal Interaction Networks KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

(Cut Off) (Cut Off) (Cut Off)

(a) Mean Degree (b) Claw Count (c) Wedge Count

(Cut Off) (Cut Off) (Cut Off)

(d) LCC (e) PLE (f) N-Component

Figure 7: Median score 𝑓𝑚𝑒𝑑 (·) comparison on six metrics across seven temporal networks. Best viewed in color. We cut off

high values for better visibility. (Smaller metric values indicate better performance)

(a) Mean Degree (b) Claw Count (c) Wedge Count

(d) LCC (e) PLE (f) N-Component

Figure 8: The comparison results on the six evaluation metrics across 117 timestamps in BITCOIN data set. Best viewed in

color. The algorithm better fitting the curve of the original graph (colored in blue) is better.

while falling short of capturing many other network properties

(e.g., LCC and wedge count).

To further demonstrate the performance of TagGen, we experi-
ment with the BITCOIN data set and evaluate the performance of

all algorithms in terms of six different metrics in each timestamp.

By doing this, we want to explore how the performances of the

different methods change over 117 timestamps in the BITCOIN data

set. The experimental results are shown in Fig. 8, where the X-axis

represents timestamp, and the Y-axis represents the value of a met-

ric (labeled under each figure). In general, we observe (1) all the

methods perform similarly well on Mean Degree metric; (2) TagGen
consistently performs better than the baseline methods across six

metrics and 117 timestamps as TagGen (colored in red) better fits

the curves of the original graph (colored in blue). A simple guess

here is that TagGen is the only dynamic graph generative model

that can better track the trend of network evolution.

4.3 Case Studies in Data Augmentation

Anomaly Node Detection: In real-world networks, the perfor-

mance of anomaly detection algorithms is often degraded due to

data sparsity. Here, we conduct a case study of boosting the per-

formance of anomaly node detection in SO data set via data aug-

mentation. In particular, we select the labeled network SO as our

evaluation data and consider a minority class (8%) in SO as the

anomalies. In particular, we conduct 10-fold cross-validation and

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhou, Dawei, et al.

(a) Anomaly detection

(b) Link prediction

Figure 9: Data Augmentation in SO

employ Recall@𝐾 as the evaluation metric, where 𝐾 is the total

number of anomaly nodes in the test set. To assess the performance

of anomaly node detection with data augmentation, we use the

generative models to synthesize temporal edges and inject them

into the original graph. Then, we encode the augmented temporal

network into a node-wised representations [27], which is fed into

the logistic regression model as inputs for classifying the malicious

nodes. The experimental results are shown in Fig. 9 (a), where

No Augmentation (red dotted line) shows the result (Recall@𝐾 =

44.8%) of logistic regression directly trained on the embedding of

the original graph without augmentation. The height of the bars in-

dicates the average value of Recall@𝐾 , and the error bars represent

the standard deviation in 10 runs. We observe that our proposed

method boosts Recall@𝐾 to 67.6% (22.8% improvement over the

base model No Augmentation), while our best competitor NetGAN

only achieves 54.3% (9.5% improvement over No Augmentation).

Link Prediction: In this experiment, we randomly select 50% of

edges as the training data and the rest as the test data. Then, we

compute the node embedding of both the original graph and the

generated graph via CTDNE [27]. At last, we concatenate the two

sets of node embedding and feed them into a logistic regression

model to perform link prediction on the test data. In Fig. 9 (b), the

height of the bars indicates the average value of accuracy, and the

error bars represent the standard deviation in 10 runs. It can be

seen that NetGAN and GAE barely improve the performance of link

prediction, while our proposed method TagGen increases the ac-

curacy rate by 2.7% over the base model without data augmentation.

5 RELATEDWORK

In this section, we briefly review the related works regarding dy-

namic network mining and graph generative model.

Dynamic Network Mining. Recently, significant research in-

terests have been observed in developing deep models for dynamic

networks. Most existing work models the dynamic networks as

time-evolving graphs, which aggregate temporal information into

a sequence of snapshots. For instance, [24] proposes a network

embedding approach for modeling the linkage evolution in the

dynamic network; [26] proposes a graph attention neural mech-

anism to learn from the spatial-temporal context information of

the time-evolving graphs; [41] proposes Spatio-Temporal Graph

Convolutional Networks with complete convolutional structures,

enabling faster training speed while tackling the issue of the high

non-linearity and complexity of traffic flow. However, these ap-

proaches may not be able to fully capture the rich temporal context

information in the data due to the aggregation over time. For this

reason, the authors of [27] proposed to learn network embedding for

temporal interaction networks by developing a family of temporally

increasing random walks to extract network context information.

In this paper, we propose a generic framework to further model

and generate the temporal interaction networks by mimicking the

network evolution process in real dynamic systems. To the best of

our knowledge, TagGen is the first deep graph generative model

designed for temporal networks.

Graph Generative Model. Early studies of graph generative

models include the explicit probabilistic models [8, 9], stochastic

block models [11], preferential attachment models [2, 3, 19], ex-

ponential random graph models [32], the small-world model [14],

and Kronecker graphs [22]. In addition to the static models, some

attempts have also been made for generating dynamic graphs. For

instances, [10] proposes a dynamic graph generation framework

that is able to control the network diameter for a long-time hori-

zon; [31] develops a graph generator that models the temporal

motif distribution. However, all of the aforementioned approaches

basically generate graphs relying on some prior structural assump-

tions. Hence, such methods are often hand-engineered and cannot

directly learn from the data without prior knowledge or assump-

tions. The recent progress in deep generative models (e.g., [12, 17])

has attracted a surge of attention to model the graph-structured

data. For example, in [5], the authors aim to capture the topology

of a graph by learning a distribution over the random walks in an

adversarial setting; in [40], the authors propose a framework named

Graph-RNN to decompose graph generation into two processes:

one is to generate a sequence of nodes, and the other is to generate

a sequence of edges for each newly added node. This paper pro-

poses a deep generative framework to model dynamic systems and

generate the temporal interaction networks via a family of local

operations to perform the addition and deletion of nodes and edges.

6 CONCLUSION

In this paper, we propose TagGen - the first attempt to generate

temporal networks by directly learning from a collection of times-

tamped edges. TagGen is able to generate graphs that capture impor-

tant structural and temporal properties of the input data via a novel

context sampling strategy together with a bi-level self-attention

mechanism. We present comprehensive evaluations of TagGen by

conducting the quantitative evaluation in temporal graph genera-

tion and two case studies of data augmentation in the context of

anomaly detection and link prediction. We observe that: (1) TagGen
consistently outperforms the baseline methods in seven data sets

with six metrics; (2) TagGen boosts the performance of anomaly

detection and link prediction approaches via data augmentation.

However, key challenges remain in this space. One possible future

direction is to develop generative models that can jointly model

A Data-Driven Graph Generative Model for
Temporal Interaction Networks KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

the evolving network structures and node attributes in order to

generate attributed networks in the dynamic setting.

ACKNOWLEDGMENTS

This work is supported by National Science Foundation under

Grant No. IIS-1618481, IIS-1704532, IIS-1741317, IIS-1947203, and

IIS-2002540 the U.S. Department of Homeland Security under Grant

Award Number 17STQAC00001-03-03 and Ordering Agreement

Number HSHQDC-16-A-B0001, US DARPA KAIROS Program No.

FA8750-19-2-1004, SocialSim Program No. W911NF-17-C-0099, a

Baidu gift, and IBM-ILLINOIS Center for Cognitive Computing

Systems Research (C3SR) - a research collaboration as part of the

IBM AI Horizons Network. The views and conclusions are those

of the authors and should not be interpreted as representing the

official policies of the funding agencies or the government.

REFERENCES

[1] Steven P. Abney. 2002. Bootstrapping. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics.

[2] Leman Akoglu and Christos Faloutsos. 2009. RTG: a recursive realistic graph

generator using random typing. Data Min. Knowl. Discov.
[3] Réka Albert and Albert-László Barabási. 2001. Statistical mechanics of complex

networks. CoRR cond-mat/0106096 (2001).

[4] Yikun Ban, Xin Liu, Ling Huang, Yitao Duan, Xue Liu, and Wei Xu. 2019. No

Place to Hide: Catching Fraudulent Entities in Tensors. In The World Wide Web
Conference.

[5] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Günne-

mann. 2018. NetGAN: Generating Graphs via Random Walks. In Proceedings of
the 35th International Conference on Machine Learning.

[6] Léon Bottou. 2010. Large-Scale Machine Learning with Stochastic Gradient

Descent. In 19th International Conference on Computational Statistics, COMPSTAT.
[7] Dean V Buonomano and Michael M Merzenich. 1995. Temporal Information

Transformed into a Spatial Code by a Neural Network with Realistic Properties.

Science (1995).
[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

RecursiveModel for GraphMining. In Proceedings of the Fourth SIAM International
Conference on Data Mining.

[9] Paul Erdös and Alfréd Rényi. 1959. On random graphs, I. Publicationes Mathe-
maticae (Debrecen) (1959).

[10] Frank Fischer and Christoph Helmberg. 2014. Dynamic graph generation for the

shortest path problem in time expanded networks. Math. Program. (2014).
[11] Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, and Edoardo M. Airoldi.

2009. A Survey of Statistical Network Models. Foundations and Trends in Machine
Learning (2009).

[12] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative

Adversarial Nets. In Advances in Neural Information Processing Systems.
[13] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:

Capturing network dynamics using dynamic graph representation learning.

[14] Carsten Grabow, Stefan Grosskinsky, Jürgen Kurths, and Marc Timme. 2015.

Collective Relaxation Dynamics of Small-World Networks. CoRR abs/1507.04624

(2015). arXiv:1507.04624

[15] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[16] Jian Kang and Hanghang Tong. 2019. N2N: Network Derivative Mining. In Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge
Management.

[17] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.

(2014).

[18] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. CoRR
abs/1611.07308 (2016). arXiv:1611.07308

[19] JonM. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-

drew Tomkins. 1999. The Web as a Graph: Measurements, Models, and Methods.

In 5th Annual International Conference of Computing and Combinatorics.
[20] Srijan Kumar, Francesca Spezzano, V. S. Subrahmanian, and Christos Falout-

sos. 2016. Edge Weight Prediction in Weighted Signed Networks. In IEEE 16th
International Conference on Data Mining.

[21] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Em-

bedding Trajectory in Temporal Interaction Networks. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[22] Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos,

and Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling

Networks. J. Mach. Learn. Res. (2010).
[23] Jure Leskovec and Andrej Krevl. 2015. {SNAP Datasets}:{Stanford} Large

Network Dataset Collection. (2015).

[24] Taisong Li, Jiawei Zhang, Philip S. Yu, Yan Zhang, and Yonghong Yan. 2018. Deep

Dynamic Network Embedding for Link Prediction. IEEE Access (2018).
[25] Xu Liu, Jingrui He, Sam Duddy, and Liz O’Sullivan. 2019. Convolution-Consistent

Collective Matrix Completion. In International Conference on Information and
Knowledge Management.

[26] Zhining Liu, Dawei Zhou, and Jingrui He. 2019. Towards Explainable Represen-

tation of Time-Evolving Graphs via Spatial-Temporal Graph Attention Networks.

In Proceedings of the 28th ACM International Conference on Information and Knowl-
edge Management.

[27] Giang Hoang Nguyen, John Boaz Lee, Ryan A. Rossi, Nesreen K. Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-Time Dynamic Network Embeddings.

In Companion of the The Web Conference 2018 on The Web Conference 2018.
[28] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. 2009. Patterns and

dynamics of users’ behavior and interaction: Network analysis of an online

community. J. Assoc. Inf. Sci. Technol. (2009).
[29] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal

Networks. In Proceedings of the Tenth ACM International Conference onWeb Search
and Data Mining.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[31] Sumit Purohit, Lawrence B Holder, and George Chin. 2018. Temporal Graph

Generation Based on a Distribution of Temporal Motifs. In Proceedings of the
14th International Workshop on Mining and Learning with Graphs.

[32] Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. 2007. An introduction

to exponential random graph (p
*
) models for social networks. Soc. Networks

(2007).

[33] Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang, Aston Zhang, Shuochao

Yao, Shengzhong Liu, Tianshi Wang, Chao Zhang, and Tarek F. Abdelzaher. 2020.

paper2repo: GitHub Repository Recommendation for Academic Papers. In The
Web Conference.

[34] Huajie Shao, Shuochao Yao, Yiran Zhao, Chao Zhang, Jinda Han, Lance M. Ka-

plan, Lu Su, and Tarek F. Abdelzaher. 2018. A Constrained Maximum Likelihood

Estimator for Unguided Social Sensing. In IEEE Conference on Computer Commu-
nications.

[35] George R Terrell and David W Scott. 1992. Variable Kernel Density Estimation.

The Annals of Statistics (1992).
[36] Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos. 2008.

Proximity Tracking on Time-Evolving Bipartite Graphs. In Proceedings of the
SIAM International Conference on Data Mining.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems.
[38] Bernard M. Waxman. 1988. Routing of multipoint connections. IEEE J. Sel. Areas

Commun. (1988).
[39] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, and Jure Leskovec. 2018.

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Gener-

ation. In Advances in Neural Information Processing Systems.
[40] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. 2018.

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models. In

Proceedings of the 35th International Conference on Machine Learning.
[41] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convo-

lutional Networks: A Deep Learning Framework for Traffic Forecasting. (2018).

[42] Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan

Davulcu, and Hanghang Tong. 2017. HiDDen: Hierarchical Dense Subgraph

Detection with Application to Financial Fraud Detection. In Proceedings of the
2017 SIAM International Conference on Data Mining.

[43] Dawei Zhou, Jingrui He, Hongxia Yang, and Wei Fan. 2018. SPARC: Self-Paced

Network Representation for Few-Shot Rare Category Characterization. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

[44] Dawei Zhou, Kangyang Wang, Nan Cao, and Jingrui He. 2015. Rare Category

Detection on Time-Evolving Graphs. In IEEE International Conference on Data
Mining.

[45] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.

Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining.

https://arxiv.org/abs/1507.04624
https://arxiv.org/abs/1611.07308

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA Zhou, Dawei, et al.

A NOTATIONS

Symbol Description

𝐺 = (𝑉 , 𝐸) temporal interaction network

𝑉 = {𝑣1, . . . , 𝑣𝑛 } the set of nodes in𝐺

𝐸 = {𝑒𝑡𝑒1
1

, ..., 𝑒
𝑡𝑒𝑚
𝑚 } the set of temporal edges in𝐺

𝑣 = {𝑣𝑡1 , . . . , 𝑣𝑡𝑇 } node 𝑣 with its occurrences at {𝑡1, . . . , 𝑡𝑇 }
𝑒𝑡 = (𝑢, 𝑣)𝑡 temporal edge between 𝑢 and 𝑣 at timestamp 𝑡

𝑊 = {𝑤1, . . . , 𝑤𝑘 } the 𝑘-length temporal walk

𝑊 = {𝑤1, . . . , 𝑤𝑘 } the synthetic 𝑘-length temporal walk

N𝐹𝑇 (·) the neighborhood function

𝑛 the total number of nodes

𝑛𝑟 the total number of temporal occurrences

𝑚 the total number of temporal edges

𝑇 the total number of timestamps in𝐺

⊙ Hadamard product

Table 1: Symbols

B ALGORITHM ANALYSIS

Lemma 1. For any 𝑣𝑡𝑣 ∈ 𝑉 , if the temporal neighborhood dis-
tribution 𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) and topology neighborhood distribution
𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣)) are weakly dependent on each other, then the fol-
lowing inequality holds:

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) (8)

≥ 𝛼 𝑝 (𝑣
𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (N𝑆 (𝑣𝑡𝑣))𝑝 (N𝑇 (𝑣𝑡𝑣))

𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

where 𝛼 = 𝛿
𝑝 (𝑣𝑡𝑣) .

Proof. For any 𝑣𝑡𝑣 ∈ 𝐺 , the context importance 𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣))
can estimated as

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣)) = 𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

=
𝑝 (𝑣𝑡𝑣 ,N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))
𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

(9)

Since the corresponding temporal neighborhood distribution

𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣)) and topology neighborhood distribution𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))
satisfy a weak dependence, we can easily have

𝑝 (𝑣𝑡𝑣 |N𝐹𝑇 (𝑣𝑡𝑣))

≥ 𝛿 𝑝 (𝑣
𝑡𝑣)𝑝 (N𝑆 (𝑣𝑡𝑣) |𝑣𝑡𝑣)𝑝 (N𝑇 (𝑣𝑡𝑣) |𝑣𝑡𝑣)

𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

= 𝛿
𝑝 (𝑣𝑡𝑣) 𝑝 (𝑣

𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))𝑝 (N𝑆 (𝑣𝑡𝑣))
𝑝 (𝑣𝑡𝑣)

𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (N𝑇 (𝑣𝑡𝑣))
𝑝 (𝑣𝑡𝑣)

𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))

= 𝛼
𝑝 (𝑣𝑡𝑣 |N𝑆 (𝑣𝑡𝑣))𝑝 (𝑣𝑡𝑣 |N𝑇 (𝑣𝑡𝑣))𝑝 (N𝑆 (𝑣𝑡𝑣))𝑝 (N𝑇 (𝑣𝑡𝑣))

𝑝 (N𝑆 (𝑣𝑡𝑣),N𝑇 (𝑣𝑡𝑣))
(10)

□

C DATA STATISTICS

We evaluate TagGen on seven real temporal networks. Specifically,

DBLP [43] is a citation network that contains bibliographic informa-

tion of the publications in IEEE Visualization Conference from 1990

to 2015; SO [43] and MO [29] are two collaboration networks where

each node represents a user, and the edge represents one user’s

comments on another user; WIKI [23] is a voting network, where

each edge exists if the contributors vote to elect the administra-

tors; EMAIL [29] and MSG [28] are two communication networks,

where an edge exists if one person sends at least one email/message

to another person at a certain timestamp; BITCOIN [20] is a who-

trusts-whom network where people trade with bitcoins on a Bitcoin

Alpha platform.

Network Nodes Temporal Edges Timestamps

EMAIL 986 332,334 26

DBLP 1,909 8,237 15

WIKI 7,118 95,333 6

MSG 1,899 20,296 28

BITCOIN 3,783 24,186 117

SO 3,262 13,077 36

MO 13,840 195,330 20

Table 2: Statistics of the network data sets.

D IMPLEMENTATION DETAILS

In the experiments, we set the batch size to be 128, the number

of epochs to be 30, the representation size of the node embedding

to be 80, the number of head to be 4, the initial learning rate to

be 0.003, the bi-level self-attention parameter _ = 0.5, 𝑑N𝐹𝑇
= 1,

𝑡N𝐹𝑇
= 1, the number of initial nodes 𝑙 to be the number of the

total nodes, walks per initial nodes 𝛾 = 3, walk length 𝑘 = 20, and

constants 𝑐1 = 20 and b = 0.6. Besides, we outline the computation

formula and description regarding the six evaluation metrics used

in our experiments in Table 3. All the code and data are publicly

available at an anonymous Github repository
∗
. The experiments are

performed on a Windows machine with eight 3.8GHz Intel Cores

and a single 16GB RTX 5000 GPU.

E ADDITIONAL RESULTS

We analyze the scalability of TagGen, by recording the running time

(i.e., the sum of the training time and the time for graph generation)

of TagGen on a series of synthetic graphs with increasing size. To be
specific, we generate the synthetic graphs via ER algorithm [9], by

which we can easily control the number of nodes and the number

of edges in a graph. In the experiments, we set the batch size to

be 128, the length of the random walk to be 20, the number of

epochs to be 30, i.e., the same parameter settings as in the previous

subsection. In Fig. 10 (a), we fix the edge density to be 0.005, set the

initial number of nodes to be 500, and increase the number of nodes

by 500 each time. In Fig. 10 (b), we fix the number of nodes to be

5,000 and increase the edge density from 0.005 to 0.05. Based on the

∗
https://github.com/davidchouzdw/TagGen

A Data-Driven Graph Generative Model for
Temporal Interaction Networks KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

results in Fig. 10, we observe that the complexity of the proposed

method is almost linear to the number of nodes. Besides, when we

fix the number of nodes and increase the edge density, the running

time also increases linearly.

Metric name Computation Description

Mean Degree E[𝑑 (𝑣)] Mean degree of nodes in

the graph.

Claw Count

∑
𝑣∈𝑉

(𝑑 (𝑣)
3

) Number of the claw of the

graph.

Wedge Count

∑
𝑣∈𝑉

(𝑑 (𝑣)
2

) Number of wedges of the

graph.

LCC max𝑓 ∈𝐹 ∥𝑓 ∥

Size of the largest connected

component of the graph,

where 𝐹 is the set of all

connected components in

the graph.

PLE 1 + 𝑛 (∑𝑢∈𝑉 log(𝑑 (𝑢)
𝑑𝑚𝑖𝑛

))−1 Exponent of the power-law

distribution of the graph.

N-Component |𝐹 |

Number of connected

components, where 𝐹 is the

set of all connected

components in the graph.

Table 3: Graph statistics for measuring network properties.

(a) Running time vs. # of nodes

(b) Running time vs. edge density

Figure 10: Scalability Analysis

	Abstract
	1 Introduction
	2 Problem Definition
	3 Model
	3.1 A Generic Learning Framework
	3.2 Optimization Algorithm

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Quantitative Results for Graph Generation
	4.3 Case Studies in Data Augmentation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Notations
	B Algorithm Analysis
	C Data Statistics
	D Implementation Details
	E Additional Results

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 46.86, 716.08 Width 522.04 Height 25.31 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 46.8616 716.0842 522.0386 25.3052

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 10
 11
 10
 11

 1

 HistoryList_V1
 qi2base

