
IFT 6085 - Lecture 10
Expressivity and Universal Approximation Theorems Part 1

This version of the notes has not yet been thoroughly checked. Please report any bugs to the scribes or instructor.

Scribes Instructor: Ioannis Mitliagkas
Winter 2020: Téo Orthlieb
Winter 2019: Moustafa Elarabi, Kun Ni

1 Summary
In this lecture we will discuss the expressivity of neural networks, that is what kind of functions a neural network
could approximate. We will see the limitations of wide neural networks and the expressive power of going deeper.

2 Introduction

2.1 Capacity of the Perceptron
What kind of function can a neural network represent ?

Let’s start with the simplest neural network, the Perceptron. It is effectively a NN with a single hidden layer having 1
hidden unit with an activation function σ. Both the input layer and the weights are a 1× n vector.

Figure 1: The Perceptron

The perceptron can model a function of this form: σ(
∑n
i wixi + b) = σ(w>x+ b). Typical σ can be:

sigmoid: 1
1+e−x tanh: e2x−1

e2x+1 ReLU: max(0, x) · · ·

1



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Notably, the Perceptron is a linear classifier, and as such it famously can’t model an XOR [7].

Figure 2: XOR is not linearly separable

2.2 Capacity of multiple neurons
By allowing ourselves more than 1 neuron in the hidden layer, we can model a XOR and in fact, we get the simplest
universal approximator.

Figure 3: A NN with 2 hidden units

3 Universal Approximation Theorem
The universal approximation theorem states that any continuous function f : [0, 1]n −→ [0, 1] can be approximated
arbitrarily well by a neural network with at least 1 hidden layer with a finite number of weights, which is what we are
going to illustrate in the next subsections.

3.1 Visual proof of Universal Approximation
In this section we will present a good intuition for the universal approximation theorem by making a summary of
this page http://neuralnetworksanddeeplearning.com/chap4.html. (All credit is due to Michael A. Nielsen for all the

2

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/


IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

pictures in this subsection)

Say we want to approximate a function with 1 input and 1 output like so:

Figure 4: A continuous function

We will first consider a simple NN with 2 hidden neurons that have a sigmoid activation function, and for now the
output neuron will just be linear.

Step 1 Make a step function with 1 of the neuron.

Figure 5: Making a step function with the top neuron

Let’s focus on the top hidden neuron first, by using a big weight on the top neuron we can approximate the step
function with a sigmoid arbitrarily well, and by adjusting the bias we can place it anywhere.
(Sidenote: the same argument can be made for the tanh activation, but not for ReLu)
In this toy example, we won’t be interested in changing the weights of the first layer, they just have to be high enough,
so we will just consider them to be constant.
Additionnaly, to make the plots clearer, we will display the position of the step instead of the bias, which is easily
computed with s = − b

w .
With these changes, the plot above becomes:

3



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Figure 6: Making a step function with the top neuron

Step 2 Make a ”bin” with an opposite step function.

Figure 7: Making a bin with 2 opposite step functions

As illustrated above, by using the other neuron to make a step function, and setting opposing weights in the second
layer, we can effectively approximate a bin and control its position, size and height.
Now you can probably see where this is going, to make things even clearer, we will just use 1 value for both w1 and
−w2, called h, representing the height of the ”bin”.

Figure 8: Making a bin with 2 opposite step functions

Step 3 Discretize the function.

4



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Figure 9: Approximating f with an histogram

In this final step, we combine several ”bins” to make an histogram approximating the function. Illustrated above is a
very rough approximation using only 5 bins (10 hidden units), but we can obviously make it sharper by simply adding
more bins.

→ Exercise for the reader: if we wanted to use this technique to approximate an L-Lipschitz function f : R → R
on the interval [0, 1] with an error at most ε at any point, how many bins would we need ?

what if i don’t want linear neurons in the output layer ? The above network’s output layer is linear, giving us the
histogram approximating f , if we add a sigmoid activation function on the output we just have to approximate σ−1 ◦f
instead of f , which we can do with the same method.

3.2 Cybenko Approximation by Superposition of Sigmoidal Function
In this subsection we will present the first proven result for Universal Approximation limited to sigmoidal functions,
by Cybenko [2].
We first define a sigmoidal function σ as:

σ(x)→

{
1 as x→ +∞
0 as x→ −∞

Note: while sigmoidal functions are usually assumed to be monotonic increasing, this assumption is not necessary for
this result.

Theorem 1. Let C([0, 1]n) denote the set of all continous function [0, 1]n → R, let σ be any sigmoidal activation
function then the finite sum of the form f(x) =

∑N
i=1 αiσ(wi

>x+ bi) is dense in C([0, 1]n)

5



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Informaly, this theorem is saying that for any g ⊂ C([0, 1]n) and any ε > 0, there exists f : x→
∑N
i=1 αiσ(wi

>x+b)
such that |f(x)− g(x)| < ε for all x ⊂ [0, 1]n.

−6 −4 −2 0 2 4 6

−1

−0.5

0

0.5

1

absolute difference between f(x) and g(x) is ε

x

y

f(x)

g(x)

A similar result was independently obtained by Hornik[4] and also by Funahashi[3] using different tools. Hornik’s
proof relies on the Stone-Weierstrass Theorem which states that every continuous function defined on a closed interval
[a, b] can be uniformly approximated as closely as desired by a polynomial function.

3.3 Kolmogorov-Arnold Representation theorem
The Kolmogorov-Arnold representation theorem (or superposition theorem) [5] states that every multivariate continu-
ous function can be represented as a superposition of continuous functions of one variable.
It solved a more general form of Hilbert’s thirteenth problem [1] which was questioning whether a solution to 7th

degree equations could be expressed by a finite sum of two-variable functions.

Theorem 2. Any continuous function f : [0, 1]n −→ R can be written as

f(x) = f(x1, .., .., xn) =

Zm∑
q=1

φq

(
m∑
q=1

Ψq(xq)

)

This implies, among other things, that if we could chose the non-linearity of each unit we can represent any continuous
function exactly with a NN with 1 hidden layer.

4 The expressive power of Deep neural networks

4.1 A view from the width (Lu et al. 2017)
In the previous sections, we focused on the setting of depth-bounded (e.g. depth-2) neural networks. With [6] we’re
going to see some interesting results for width-bounded neural networks instead !

Theorem 3. (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable
function f : Rn → R and any ε > 0, there exists a fully-connected ReLU network A with width dm ≤ n+ 4, such that
the function FA represented by this network satisfies∫

Rn

|f(x)− FA(x)|dx < ε

6



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

This theorem states that any continuous function f : Rn → R can be approximated by a deep ReLU network with
width ≤ n+ 4.

Theorem 4. Let n be the input dimension. For any integer k ≥ n + 4 there exists Fα : Rn → R represented by a
relu neural network α with width dm = 2k2 and depth h = 3 such that for any constant b > 0, there exists an ε > 0
and for any function Fβ : Rn → R represented by a ReLu neural network β whose parameters are bounded in [−b, b]
with width dm ≤ k

3
2 and depth h ≤ k + 2 the following inequality holds∫

R

|Fα − Fβ |dx ≥ ε

This theorem states that there are networks such that reducing width requires increasing in the size to compensate,
which is similar to that of depth qualitatively.

4.2 Representation benefits of deep NN (Telgarsky 2015)
In this section, we want to show interesting results from [8], that will allow us to compare the expressivity of wide
networks against deep and recurrent networks, on a specific classification problem defined below:

Let n-ap (n-alternating-points) be the set of n := 2k points uniformly spaced within [0, 1 − 2−k] with alternating
labels.

Figure 10: The 23-ap [8]

In the following theorems we will note N (σ, l,m) the set of function given by a feedforward neural network with
activation σ and l layers with at most m nodes. The ReLU activation will be noted σR and the classification errorRz .

Theorem 5. With m ≤ 2(k−3)/(l−1), for any positive integer k, ∃ a collection of n := 2k points S = (xi, yi)
n
i=1

where xi ∈ [0, 1], y ∈ {0, 1} such that

min
f∈N (σR,m,l)

Rz(f) =
1

6
and min

g∈N (σR,2,2k)
Rz(g) = 0

Notably, if we look at the case of 2 layered networks, this tells us that even with 2k−3 units in the hidden layer, the
wide network is going to missclassify 1

6 of the points, whereas a deep network with 2k hidden layers with 2 units each
can achieve 0 classification error.

Now we will refine this result, let R(σ, l,m, k) denote k iterations of a recurrent neural network, every f ∈ R(σ, l,m, k)
can be expressed as some fixed network g ∈ N (σ, l,m) applied k times:

f(x) = gk(x) = (g ◦ g · · · ◦ g)︸ ︷︷ ︸
k times

(x)

Consequently, R(σ, l,m, k) ⊆ N (σ, l,mk) but the former has O(ml) parameters whereas the latter has O(mlk)
parameters.
Lastly we define the following functions:

7



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

Definition 6 (Sawtooth). A function f : R −→ R is t-sawtooth if it is piece-wise linear with t-pieces

We can say for example that σR (ReLU) is a 2-sawtooth function, decision stumps used in boosting are also 2-sawtooth,
and decision trees with t-1 nodes are t-sawtooth.

Theorem 7. Let positive integer k, number of layers l, and number of nodes per layer m be given.
Given a t-sawtooth σ : R→ R and n := 2k points as specified by the n-ap, then

min
f∈N (σ,m,l)

Rz(f) ≥ n− 4(tm)l

3n
and min

g∈R(σR,2,2,k)
Rz(g) = 0

In summary, this means that on the 2k-ap, one needs exponentially (in k) many parameters with a wide network,
linearly many parameters with a deep network and constantly many parameters with a recurrent network.

4.2.1 Upper bound proof [WIP]

Lemma 1. If f is t-sawtooth, g is s-sawtooth, then we have
f + g is (s+t)-sawtooth f ◦ g is st-sawtooth

Lemma 2. If σ is t-sawtooth, then every f ∈ N (σ;m,l) is (tm)l-sawtooth

Let us define the ”mirror map” fkm : R→ R as figure shows:

Figure 11: fm, f2m and f3m [8]

Note that fkm ∈ R(σR; 2, 2, k) ⊆ N (σR; 2, 2k).

8



IFT 6085 - Theoretical principles for deep learning Lecture 2: January 10, 2019

References
[1] S. S. ABHYANKAR. Hilbert’s thirteenth problem. In Proc. of the Franco-Belgian Conference in Reims, Société

Mathématique de France, Séminaires et Congres, volume 2, page 1, 1997.

[2] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

[3] K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks. Neural networks, 2
(3):183–192, 1989.

[4] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989.

[5] A. N. Kolmogorov. On the representation of continuous functions of many variables by superposition of contin-
uous functions of one variable and addition. In Doklady Akademii Nauk, volume 114, pages 953–956. Russian
Academy of Sciences, 1957.

[6] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from the width. In
Advances in Neural Information Processing Systems, pages 6231–6239, 2017.

[7] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. 1969.

[8] M. Telgarsky. Representation benefits of deep feedforward networks. arXiv preprint arXiv:1509.08101, 2015.

9


	Summary
	Introduction
	Capacity of the Perceptron
	Capacity of multiple neurons

	Universal Approximation Theorem
	Visual proof of Universal Approximation
	Cybenko Approximation by Superposition of Sigmoidal Function
	Kolmogorov-Arnold Representation theorem

	The expressive power of Deep neural networks
	A view from the width (Lu et al. 2017)
	Representation benefits of deep NN (Telgarsky 2015)
	Upper bound proof [WIP]



