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Abstract 

This study inter-compares the most important retrieval methods that derive atmospheric turbidity from measured 

Direct Normal Irradiance. A number of parametric solar radiation models are used backward to estimate the 

atmospheric turbidity indices. To reduce error propagation, each turbidity index are derived using a specific set 

of models. Then, an inter-comparison between all the selected models are carried out to establish degree of 

agreement between the models. High-resolution solar radiation data, at one-minute intervals, taken from 

Plataforma Solar del Desierto de Atacama, is used in this investigation.  

Results shows that seven models (among 11 models) generally agree well, with a maximum difference of 0.004 

in the estimation of the Angstrom coefficient. Besides, Kasten’s pyrheliometric method performs as good as 

sophisticated solar radiation models such as METSTAT, MWLT1, MWLT2, REST and Yang. 
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1. Introduction 

The evaluation of atmospheric turbidity from measured solar radiation has been widely used as an alternative to 

complex and expensive instruments. Indeed, the convenient turbidity indices are Angstrom turbidity coefficient 

(β), Linke turbidity factor (TL), and Aerosols Optical Depth (AOD) (Yousef et al. 2012).  

To retrieve atmospheric turbidity from solar irradiance data, previous studies have frequently used Kasten’s and 

Louche’s methods to determine TL and β, respectively. Based on these retrieval methods, Chaâbane (2008) has 

investigated the daily and monthly variations of TL and β, at two different sites, in Tunisia. Dos Santos and 

Escobedo (2016) have estimated the hourly and monthly average values of TL over São Paulo, Brazil. 

Chaiwiwatworakul and Chirarattananon (2004) have used radiation measurements to evaluate the atmospheric 

turbidity at Bankok. Ellouz et al. (2013) have used Kasten’s pyrheliometric formula to derive TL over Sidi Bou 

Said, Tunisia. Marif et al. (2019) have used Kasten’s and Dogniaux’s methods to estimate the mean TL and β over 

Adrar, Algeria. Zakeya et al. (2004)  have used hourly measurements of Direct Normal Irradiance (DNI) at Aswan 

and Cairo, Egypt, to estimate AOD, TL, and β. 

Recently, Gueymard (2013) has investigated the potential of parametric solar radiation models to derive AOD 

from irradiance measurements. The performance of seven models, including REST2, CPCR2, MLWT1, MLWT2, 

REST, Louche and METSTAT have been examined, under the US climate.  

The objective of the present study is the inter-comparison of the most important retrieval methods that derive 

atmospheric turbidity indices from measured DNI to establish their degree of agreement and to examine the 

potential of Kasten’s pyrheliometric formula against high-performance radiation models. Various parametric solar 

radiation models, which evaluate solar irradiance as a function of atmospheric parameters, are used backward to 

derive turbidity indices including AOD, TL and β. As the first step, each turbidity index is derived using a specific 

set of models. After that, an inter-comparison between all the models is carried out. Northern Chile was selected 

to carry out this investigation. The next section highlights the methodology used to derive turbidity indices. 
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Section 3 describes the solar radiation data and the models’ inputs. The results are discussed in section 4 and the 

conclusions are summarized in the last section.        

2. Methodology 

Retrieval methods are an inverse technique that derive turbidity from measured solar irradiance. For each turbidity 

index, a set of radiation models is sued with the aim to reduce error propagation. The selection criteria are the 

model’s inputs. Some models require broadband turbidity information and thus they are more suitable to derive 

TL and AOD. However, other solar radiation models need spectral information, therefore, they are more 

appropriate to determine β.  

The approach used herein to get the atmospheric turbidity consists in the use of an iterative process to find the 

turbidity parameters that match the estimated and measured DNI values. The following sections highlight the 

selected models to derive turbidity. 

2.1. Derivation of the Linke turbidity factor 

Typical solar radiation model that predicts DNI as a function of TL has the following form: 

G𝑏 = 𝐸𝑒𝑥exp⁡(−𝑀𝛿𝑐𝑑𝑎𝑇𝐿)                (eq. 1) 

Where: Eex is the extraterrestrial radiation, δcad is the clean-dry atmosphere optical depth, M is the air mass and 

TL is the Linke turbidity factor. 

Three solar radiation models namely Ineichen (Ineichen and Perez, 2002), ESRA (Gueymard, 2012) and 

Molineaux (Molineaux et al., 1998) are used to determine TL. In addition to these models, Kasten’s pyrheliometric 

method (Kasten, 1980)  is also considered. 

2.2. Derivation of the aerosols optical depth and the Angstrom turbidity coefficient 

The most appropriate solar radiation models to derive AOD and β from measured DNI have the following form:  

G𝑏 = 𝐸𝑒𝑥∏ 𝜏𝑖
𝑛
𝑖=1          (eq. 2) 

Where: τi is the scattering -transmittances of the individual extinction processes (i).  

Indeed, solar radiation models use different approaches to estimate aerosols scattering -transmittance. The AOD 

could be derived from the models that estimate aerosols scattering-transmittance (τa) based on Bouguer-Lambert-

Beer’s law:  

𝜏𝑎 = exp⁡(−𝑀𝑎𝐴𝑂𝐷)         (eq. 3) 

Where: subscript “a” refers to aerosols.  

Two solar radiation models “METSTAT (Maxwell, 1998) and CEM (Atwater and Ball, 1978)” and the method 

proposed by Gueymard (Gueymard, 1998) are considered to estimate the AOD.  

To determine β, four high-performance parametric models that require spectral turbidity information are used: 

MWLT1 (Gueymard, 1998), MLWT2 (Gueymard, 2003), REST (Gueymard, 2003), and Yang (Yang et al., 2001). 

3. Solar radiation data and models’ inputs  

High resolution (one-minute intervals) radiometric and climate data have been taken from the radiometric station, 

Plataforma Solar del Desierto de Atacama (PSDA), which belongs to and is managed by the Centro de Desarrollo 

Energético Antofagasta (CDEA) of the University of Antofagasta (UA). It is located in the north of Chile 

(Latitude: 69,929 S, Longitude: 24,090 W, Elevation: 965 m). PSDA The measured data used in this study (from 

1 January to 31 March 2018) includes ambient temperature, relative humidity, atmospheric pressure, wind speed 

and DNI. Since some of the models’ inputs were not measured during the selected, the following data are used:   

- The ozone amount has been estimated using Van Heuklon’s model (Van Heuklon, 1997), 

- The amount of nitrogen dioxide have defaulted to 0.204 matm-cm, 

- Reanalysis data of Precipitable Water (PW) and Angstrom exponent (α) have been taken from NASA’s Modern-
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Era Retrospective analysis for Research and Applications (MERRA) (https://giovanni.gsfc.nasa.gov/giovanni/). 

The potential of MERRA’s  reanalysis data are already proven in previously published works (Gueymard, 2013, 

2014). MERRA provides gridded data at hourly intervals with a 0.67° x 0.5° spatial resolution. For this reason, 

time area-averaged interpolation are used to get one-minute interval data. For the case of measured DNI, 

Ineichen’s method (Ineichen, 2006) is applied to identify clear sky data to meet the requirements of retrieval 

methods (Gueymard, 2013). Aa a result, 12724 data are considered in the present investigation. Figure1 (left) 

illustrates the filtered clear sky DNI data while Figure 1 (right) shows the hourly MERRA’s PW data observed on 

January 21, 2018.  

  
Fig. 1: Clear-sky DNI data selection (left) and MERRA’s PW data (right) during January 21, 2018 

4. Results and discussion 

 
In this section, the derived turbidity indices from the above-cited models are discussed. In the first step, the models 

that belong to the same set are compared to each other to examine their potentials to derive specific turbidity 

index. Then, an inter-comparison between all the models is carried out to establish the degree of agreement 

between the models in the prediction of atmospheric turbidity and to examine the potential of Kasten’s formula.     

4.1. Aerosol Optical Depth   

Figure 2 shows the diurnal and the monthly variations of the derived ADO for a 3-months period in 2018, using 

Gueymard, METSTAT, and CEM models. METSTAT and Gueymard agree generally well with occasional minor 

differences at low aerosols turbidity (low values of AOD). CEM seems to overestimate AOD at a high 

atmosphere’s turbidity (compared with METSTAT and Gueymard’s method).  
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Fig. 2: Variations of the modeled AOD at PSDA, Chile, January-March 2018 using three different models. Diurnal variation (left) 

and monthly variation (right). 

Figure 3 illustrates an inter-comparison between the AOD-derived models. It is apparent that Gueymard model 

agrees well with METSTAT. Table 1 illustrates the statistics of each model. Overall, the CEM model provides 

the highest AOD values, whereas Gueymard’s AOD values are the lowest. Besides, METSTAT has the lowest 

standard deviation. 
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Fig. 3: Inter-comparison of AOD-derived models 

Tab. 1: Statistics of the derived turbidity information 

Turbidity index   Statistics Max Mean Std 

 

AOD 

Gueymard 0.0838 0.0411 0.0116 

METSTAT 0.0841 0.0430 0.0104 

CEM 0.1041 0.0526 0.0143 

 

 

TL 

Kasten 3.20 2.15 0.15 

Ineichen 3.84 2.39 0.13 

ESRA 3.33 2.23 0.17 

Molineaux 3.08 2.05 0.13 

 

 

β 

MWLT1 0.0520 0.0259 0.0070 

MWLT2 0.0518 0.0250 0.0074 

REST 0.0416 0.0227 0.0061 

Yang 0.0484 0.0231 0.0064 

 

4.2. Linke turbidity factor 

Figure 4 illustrates the diurnal and the monthly variations of the derived TL using four models: Kasten, Ineichen, 

ESRA, and Molineaux. There is a significant difference between the models. Indeed, the value of TL is strongly 

related to the expression used to estimate the optical thickness of the Clean-Dry-Atmosphere (δcda) [22]. The four 

considered models use different expressions to estimate δcda, which results in different values of TL. Interestingly, 

this results in a minor difference in the mean values of TL, as highlighted in Table 1.  
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Fig. 4: Derived TL at PSDA, Chile, January-March 2018 using four different models. Diurnal variation (left) and monthly 

variation (right) 

Figure 5 illustrates an inter-comparison between the TL-derived models. Kasten, ESRA, and Molineaux follow a 

similar temporal pattern. In fact, the definition of TL for these models depends on the air mass (Ineichen and 

Perez, 2002), which in its turn depends on solar elevation (see Figure 4, right). Ineichen’s model uses air-mass-

independent TL (Ineichen and Perez, 2002), thus, it provides different values compared to the three other models. 

Overall, Ineichen provides the highest values of TL (blue color in Figure 5), whereas Molineaux’s values 

(margarita color) are the lowest. 
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Fig. 5: Inter-comparison of Linke-derived models 

4.3. Angstrom turbidity coefficient  

Figure 6 shows diurnal and monthly variations of the derived β during a 3-months period. Four high-performance 

solar radiation models are used to derive β from measured data of DNI: MWLT1, MWLT2, REST, and Yang. 

Indeed, β is the most important turbidity index and it represents the amount of aerosols in the atmosphere 

(Jacovides, 1997). The results indicated that PSDA is a low-turbidity region, which shows that Chilean Atacama 

is very promising for solar energy applications (at least around PSDA). As illustrated in Table 1, the mean values 

of β ranges from 0.0227 to 0.0259, depending on the derived-model. The maximum value of β is 0.052, a value 

that is so much lower than those measured at the MENA region (Gueymard, 2012).   

    

Fig. 6: Variations of derived β at PSDA, Chile, during January-March 2018 using four different models. Diurnal variation (left) 

and monthly variation (right) 

Figure 7 illustrates an inter-comparison between the derived βs using four different models. It can be observed 

that MWLT1, MWL2, and Yang agree generally well, with a slight difference at low aerosols turbidity. REST 

seems to underestimate β (compared to the three other models). However, the four models provide almost the 

same mean β (see Table 1).  

 
O. Behar et. al. ISES SWC2019 / SHC2019 Conference Proceedings (2019)



 

Fig. 7: Inter-comparison of β-derived models 

5. Inter-comparison of the models to predict the Angstrom turbidity coefficient 

This section aims to assess the degree of agreement between the all considered models in this study. For the case 

of Linke-dependent models, β is extracted from TL using expression of Remund et al. (2003): 

𝛽 = [
𝑇𝐿

0.8662
− (1.8494 + 0.2425PW − 0.0203PW2)]      (eq. 4) 

Where: PW is the amount of precipitable water in the atmosphere.  

For the case of AOD-dependent models, Angstrom’s law is used to derived β from AOD:  

𝐴𝑂𝐷𝜆 = βλ−𝛼          (eq. 5) 

The results are highlighted in Table 2. It is apparent that the use of mathematical relations to derive turbidity 

parameters from each other is an efficient technique. A good agreement between seven models (among 11 models) 

has been observed. The maximum difference of less than 0.004 in the prediction of β is obtained between Mestat 

and REST. 

Tab. 2: Inter-comparison of 11 models to derive Angstrom turbidity coefficient 

Set of models  Statistics Max. Mean Std. 
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AOD-

dependent 

models 

Gueymard 0.0494 0.0253 0.0069 

METSTAT 0.0496 0.0265 0.0061 

CEM 0.0614 0.0324 0.0086 

 

TL-dependent 

models 

Kasten ajusted 0.0565 0.0254 0.0113 

Ineichen 0.0770 0.0435 0.0095 

ESRA 0.0928 0.0315 0.0123 

Molineaux 0.0933 0.0184 0.0098 

 

Β-dependent 

models 

MWLT1 0.0520 0.0259 0.0070 

MWLT2 0.0518 0.0250 0.0074 

REST 0.0416 0.0227 0.0061 

Yang 0.0484 0.0231 0.0064 

 

Interestingly, Kasten’s method has shown good agreement with high-performance solar radiation models, such as 

MLWT1, MWLT2, and Yang. The difference in the estimation of β between Kasten’s method and MLWTs is less 

than 0.0005, which is negligible. It also agrees well with AOD-dependent models, particularly METSTAT (a 

model developed by the US NREL).  

Figure 8 shows an inter-comparison between Kasten’s method, METSTAT, and four β-dependent models. Good 

agreement is obtained, particularly at moderate aerosols turbidity. Therefore, the use of Kasten’s method to derive 

TL and then extracte β and OAD from TL using mathematical expressions “eqs. 4 and 5” is an efficient 

methodology to estimate the atmospheric turbidity. The advantage of such a methodology is that does not need 

any atmospheric data except PW. Only two measured data are needed namely DNI and PW, which will not induce 

a significant error propagation in the estimation of the atmospheric turbidity. Nevertheless, this recommendation 

does not discount the potential of high-performance radiation models, which could be more accurate when detailed 

data about the atmosphere is available. 
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Fig. 8: Density plots of Kasten’s method and METSTAT model vs. high-performance solar radiation models 

6. Conclusion 

 
A comprehensive inter-comparison of the most important retrieval methods that derive atmospheric turbidity from 

measured DNI is presented in this paper. Eleven models are used to derive three turbidity indices namely: TL, β, 

and OAD. The study focused on the Chile’s Atacama, a region that is rarely considered in previously published 

studies. A number of parametric solar radiation models were used backward to derive atmospheric turbidity. To 

reduce error propagation, each turbidity index was derived using a specific models. For the case of the AOD, 

METSTAT, and CEM in addition to the method proposed by Gueymard are employed. METSTAT and Gueymard 

showed a good agreement, while CEM relatively overestimates the AOD. To determine TL, three solar radiation 

models namely Ineichen, ESRA, and Molineaux were used and particular attention has been given to Kasten’s 

method. A remarkable difference between TL-dependent models was observed. Indeed, Kasten, ESRA, and 

Molineaux are air-mass-dependent and thus they provide a similar temporal pattern. For the case of β, four high-

performance parametric models are used: MWLT1, MLWT, REST, and Yang.  These models agree generally 

well with a slight difference at low aerosols turbidity.  

To examine the degree of agreement between the 11 selected models in this study, β was extracted from from TL-

dependent and AOD-dependent models using simple expressions. The study concludes that the use of 

mathematical relations to derive turbidity parameters from each other is an efficient technique. Good agreement 

between seven models was observed with a maximum difference of less than 0.004 between Mestat and REST. 

Particular interest was given to Kasten’s method with the goal to select a simple-efficient methodology to 

determine turbidity from minimum measured parameters. Remarkably, the method has shown good agreement 

with high-performance solar radiations models such as MLWTs with a difference of less than 0.0005 in the 

estimation of β. Moreover, it performs similar or better than METSTAT.  

Some practical information was also obtained through the present analysis. Indeed, PSDA has shown low-

turbidity. Overall, β values are around 0.025, which is lower than the values measured in the MENA region.  
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