
72

Design, Simulation, Synthesis and Implementation of Wallace Tree

Multiplier

By

Taye Girma

Lecturer, SMUC

Abstract

This paper deals with design, synthesis, simulation and implementation of 8x8 Wallace Tree
Multiplier. Multipliers form the heart of any DSP operation and determine the performance of
general-purpose microprocessors. Wallace tree is an efficient hardware implementation of a
circuit that multiplies two integers. It consists of three stages. In the first stage, the partial
product matrix is formed or generated. This is to mean multiplying (ANDing) each bit of one of
the arguments called multiplier, by each bit of the other arguments called multiplicand.
Depending on position of the multiplied bits, the wires carry different weights. Reduce the
number of partial products to two by layers of full and half adders. Group the wires in two
numbers, and add them with a conventional adder. In the second stage, this partial product
matrix is reduced to a height of two through taking any three wires with the same weights and
input them into a full adder. In the final stage, these two rows are combined using a carry look
ahead adder. Here, if there are two wires of the same weight left, input them into a half adder or
if there is just one wire left, connect it to the next layer. The work results in reduction of number
of gates that would be used in the design which in turn results in reduction of cost and delay.

Keywords: Wallace tree multiplier, carry lookahead adders, and multiplier delay

1. Introduction

Digital circuit design has evolved rapidly over the last 25 years. The earliest digital

circuits were designed with vacuum tubes and transistors. Integrated circuits were then

invented where logic gates were placed on a single chip. The first Integrated circuit (IC)

chips were SSI (small scale Integration) chips where the gate count was very small. As

technologies became sophisticated, designers were able to place circuits with hundreds of

gates on a chip. These chips were called MSI (Medium Scale Integration) chips. With the

advent of LSI (Large Scale Integration), designers could put thousands of gates on a

single chip. At that point, design processes started getting very complicated, and

designers felt the need to automate these processes. Electronic Design Automation (EDA)

techniques began to evolve. Chip designers began to use circuit and logic simulation

techniques to verify the functionality of building blocks of the order of about 100

transistors. The circuits were still tested on the breadboard, and the layout was done on

73

paper or by hand on a graphic computer terminal. With the advent of VLSI (Very Large

Scale Integration) technology, designers could design single chips with more than

100,000 transistors. Because of the complexity of these circuits, it was not possible to

verify these circuits on a breadboard. Computer aided techniques become critical for

verification and design of VLSI digital circuits. Computer programs to do automatic

placement and routing of circuit layouts also became popular. The designers were now

building gate-level digital circuits manually on graphics terminals. They would build

small building blocks and derive higher level blocks from them. This process would

continue until they had built the top-level block. Logic simulators came into existence to

verify the functionality of these circuits before they were fabricated on chip.

As design requirement become larger and more complex, logic simulation assumed an

important role in the design process. Designers could iron out functional bugs in the

architecture before the chip was designed further.

2. Review of Related Literature

There are a number of fast multipliers which have already been developed and

implemented. Some of the fast multipliers are array multiplier, Dadda multiplier and

Wallace tree multiplier.

Array multiplier: Checking the bits of the multiplier one at a time and forming partial

products is a sequential operation that requires a sequence of add and shift micro

operations. The multiplication of two binary numbers can be done with one micro-

operation by means of a combinational circuit that forms the product bits all at once. This

is a fast way of multiplying two numbers since all it takes is the time for the signals to

propagate through the gates that forms the multiplication array. However, an array

multiplier requires a large number of gates, and for this reasons it was not commercial.

[7]

74

To see how an array multiplier can be implemented with a combinational circuit, consider

the multiplication of two 2-bit numbers as shown in figure 2.1. The multiplicand bits are

b1 and b0, the multiplier bits are a0 and a1, and the product is c3c2c1c0. The first partial

product is formed by multiplying a0 by b1b0. The multiplication of two bits such as a0 and

b0 produces 1 if both bits are 1; otherwise, it produces a 0. This is identical to an AND

operation and can be implemented with an AND gate. As shown in the diagram, the first

partial product is formed by means of two AND gates. The second partial product is

formed by multiplying al by b1b0 and is shifted one position to the left. The two partial

products are added with two half-adder (HA) circuits. Usually, there are more bits in the

partial products and it will be necessary to use full-adders to produce the sum. Note that

the least significant bit of the product does not have to go through an adder since it is

formed by the output of the first AND gate.

A combinational circuit binary multiplier with more bits can be constructed in a similar

fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as many

levels as there are bits in the multiplier. The binary output in each level of AND gates are

added in parallel with the partial product of the previous level to form a new partial

product. The last level produces the product. For j multiplier bits and k multiplicand bits,

we need j x k AND gates and (j – 1) k-bit adders to produce a product of j + k bits. [7]

AND

 HA HA

AND

AND AND

 c3 c2 c1 c0

 a0
 b0

b1

b1

b0
a1

75

Figure 2.1: 2-bit by 2-bit array multiplier [7]

As a second example, consider a multiplier circuit that multiplies a four bit binary

number by four bit binary number.

 A3 A2 A1 A0

 B3 B2 B1 B0

 --

 S30 S20 S10 S00

 S31 S21 S11 S01

 S32 S22 S12 S02

 S33 S23 S13 S03

 P7 P6 P5 P4 P3 P2 P1 P0

Having the above partial products now the design for 4 bit * 4 bit array multiplier will

look like the following:

76

HA HAHA HA

FAFA FA FA

FAFA FA FA

S33

S22 S03 S12 S02 S11 S01 S10 S00

P6 P5P7 P3 P2P4 P1 P0

S32 S31 S21 S20

S30

S23

y

X

C

S

Z

yX

C

S

Z

yX

C

S

Z

yX

C

S

Z

yX

C

yX

C

S

Z

y

X

C

S

Z

yX

C

S

Z

S13

yX

C

yX

C

yX

C

yX

C

S

Z

SSS S

 Figure 2.2: 4-bits by 4-bits array multiplier

But Wallace tree and Dadda multipliers are the two well-known fast multipliers [6]. Both

consist of three stages. In the first stage, the partial product matrix is formed. In the

second stage, this partial product matrix is reduced to a height of two. In the final stage,

these two rows are combined. In the Wallace method, the partial products are reduced as

soon as possible. In contrast, Dadda's method does the minimum reduction necessary at

each level [6]. The Wallace multiplier uses slightly smaller adders than Dadda multiplier

[6]. Therefore, even if the Dadda multiplier is also fast multiplier Wallace tree multiplier

is selected because it reduces the number of operands, actual partial products, at the

earlier stages. However, there a number of algorithms have been implemented for

Wallace tree multiplier. For example, figure 2.2 is the algorithm implemented at one of

the university in the USA. However, there are four levels in this algorithm which results

in significant delay in the addition of the partial products. But, someone improved the

algorithm so that the level will be reduced by one, see figure 2.4. [6] [18]

Assuming that there are six partial products y0, y1, y2, y3, y4, and y5 and let us see how

these two different algorithms perform the additions of the six partial products. If you

look at figure 2.3 there are four levels and there are three levels for figure 2.4. In general,

the idea behind this work is to reduce the number of levels/stages so as to reduce the

propagation delay.

77

Figure 2.4: Modified diagram of Figure 2.3

y3

 y0 y1 y2

Ci

 FA

 FA
Ci-1

Ci

Ci

C

S

Ci-1

 FA

 FA

y4

y5

Figure 2.3: Diagram to add six Partial

Ci

Ci

Ci

Ci-1

Ci-1

Ci-1

 y0 y1 y2 y3 y4 y5

 FA

 FA

 FA FA

Ci

 S

78

Still there is a problem with this algorithm because it takes larger number of adders

which results in delay. Let us see how the proposed algorithm is different from the

algorithm implemented in figure 2.3.

Figure: 2.5: 4-bits*4-bits Wallace tree multiplier expanding algorithm in figure 2.4

According to the figure above, the Wallace tree only need 18 adders (15 Full-adders and

3 Half-adders). However, for the proposed algorithm there will be 12 adders (8 full

adders and 4 half adders), see figure 5.2.

Proposed Wallace tree Algorithm

79

Before designing the proposed algorithm of 8-bits *8-bits Wallace tree multiplier, the

design and verilog code of 4-bits*4-bits is given below. A 4bit * 4bits Wallace tree

multiplier is implemented in verilog to demonstrate the proposed multiplier. The figure

below shows the design of a 4bit * 4bits Wallace tree multiplier.

 A3 A2 A1 A0

 *B3 B2 B1 B0

 S30 S20 S10 S00

 S31 S21 S11 S01

 S32 S22 S12 S02

 S33 S23 S13 S03

 P7 P6 P5 P4 P3 P2 P1 P0

80

FA

X

C S

Y Z

FA

X

C S

Y Z

FA

X

C S

Y Z

HA

X

C S

Y

FA

X

C S

Y Z

FA

X

C S

Y

Z

FA

X

C S

Y Z

FA

X

C S

Y Z

FA

X

C S

Y Z

HA

X

C S

Y

HA

X

C S

Y

P7 P6 P5 P4 P3 P2 P0P1

S33

S3
2

S2
3

S3
1

S2
2

S3
0

S2
1

S1
3

S03

S2
0

S1
1

S1
2

S0
2

S1
0

S0
1

S0
0

HA

X

C S

Y

Figure 2.6: 4bits * 4bits Wallace tree multiplier.

According to the figure above, the Wallace tree only need 12 adders (8 Full-adders and 4

Half-adders). Now we precede to the design of 8 bits* 8 bits Wallace tree multiplier. The

high level diagram of the proposed algorithm will look like the following:

81

 A7 A6 A5 A4 A3 A2 A1A0

 *B7 B6 B5 B4 B3 B2 B1B0

 s70 s60 s50 s40 s30 s20 s10 s00

 s71 s61 s51 s41 s31 s21 s11 s01

 s72 s62 s52 s42 s32 s22 s12 s02

 s73 s63 s53 s43 s33 s23 s13 s03

 s74 s64 s54 s44 s34 s24 s14 s04

 s75 s65 s55 s45 s35 s25 s15 s05

 s76 s66 s56 s46 s36 s26 s16 s06

s77 s67 s57 s47 s37 s27 s17 s07

p15 p14 p13 p12 p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Discussion

The result of the study made on the delay of Dadda and Wallace tree multiplier by

“Computer Engineering Research Center”, the University of Texas at Austin is given in

the following table 8.1. All values displayed in nanoseconds (ns)

82

Table 1: Delay for multipliers with RCAs

Table 2: Delay for multipliers with CLAs

Table 3: Delay for Proposed Algorithm of Wallace tree multiplier

MuMultiplier size Logic gate delay Route delay Net delay

8 by 8 12.330(44.7%) 15.239(55.3%) 27.569 (100%)

As we can see at table 3, the proposed algorithm of Wallace tree multiplier has less net

delay than those in table 1 and table 2. The total hardware used to implement this

algorithm is 105 Adders of which 57 are 1-bit adder carry out and 48 are 2-bit adder.

Multiplier size Dadda Delay Wallace Delay

4 by 4 19(100%) 21(111%)

8 by 8 37(100%) 42(114%)

16 by 16 69(100%) 77(112%)

32 by 32 133(100%) 145(109%)

Multiplier size Dadda Delay Wallace Delay

4 by 4 15(100%) 18(120%)

8 by 8 29(100%) 31(107%)

16 by 16 43(100%) 45(105%)

32 by 32 54(100%) 56(104%)

1

Schematic diagram

The schematic diagram of the result is given in the following diagram.

Figure xx: Schematic diagram of the proposed algorithm for 8 bit by 8 bit

3. Conclusion

As shown above this project tried to present three of the most available fast multipliers:

Array multiplier, Wallace tree multiplier and Dadda multiplier. Besides, the thesis stated

the work result that compares the net delay of Wallace tree and Dadda multipliers at

Texas University. After designing, simulating and synthesizing the proposed algorithm of

Wallace tree multiplier, it is possible to conclude that the proposed algorithm result has

81

less net delay than that of work result obtained at Texas University. In general, as

multiplier size grows the Wallace tree multiplier requires slightly less hardware (in terms

of adders or gates) than the Dadda multiplier.

Future work

In this paper designed, simulated, synthesized and implemented an 8-bit by 8-bit Wallace

tree multiplier with improved algorithm only for the unsigned integers. However, the

same concept can be used to realize multiplication of signed integers, signed real

numbers and FPGU (Floating Point Arithmetic Unit). Further, the proposed algorithm

can be applied for higher sizes of multiplier (16 by 16, 32 by 32 and more).

Reference

Brown, Richard, “A Microprocessor Design Project in an Introductory VLSI Course”,

IEEE Transactions on Education, Vol. 43, No. 3, August 2000.

Hamblen, James and Furman, Michael, Rapid Prototyping of Digital Systems, 2nd

edition, Boston: Kluwer Academic Publishers, 2001.

Hamacher, Vranesic, and Zaky. Computer Organization, 5th edition, New York:

McGraw-Hill Companies, 2002.

Liao, and Roberts, “A High-Performance and Low-Power 32-bit Multiply- Accumulate

Unit With Single-Instruction-Multiple-Data (SIMD) Feature”, IEEE Journal of

Solid-State Circuits, Vol. 37, No. 7, July 2002.

C.S. Wallace, “A Suggestion for a Fast Multiplier," IEEE Trans. Computers, vol. 13, no.

2, pp. 14-17, Feb. 1964.

Whitney J. Townsend, Earl E. Swartzlander, Jr., and Jacob A. Abraham], “SPIE

Advanced Signal Processing Algorithms, Architectures, and Implementations

XIII,” pp. 552-560, San Diego, CA, August 6-8, 2003

M. Morris Mano, “Computer system architecture”, Third edition, California State

University, Los Angeles.1993 by prentice-Hall, inc., New Jersey 07458, USA.

82

L. Dadda, "Some Schemes for Parallel Multipliers," Alta Frequenza, vol. 34, pp. 349-

356, Mar. 1965.

B.D. Lee and V.G. Oklobdzija,"Delay Optimization of Carry-Lookahead Adder

Structure," J. VLSI Signal Processing, vol. 3, no. 4, Nov. 1991.

Vojin G. Oklobdzija, David Villeger, Simon S. Liu, “Method for Speed Optimized Partial

Product Reduction and Generation of Fast Parallel Multipliers Using an

Algorithmic Approach,” March 1996(vol. 45, No.3) pp. 294-306

Verilog HDL: A Guid to Digital Design and Synthesis, Second Edition, published by

Pearson Education (Singapore),2003

C.S Wallace, “A suggestion for fast multiplier,”IEEE Trans.on computers,” Vol.13,

pp14-17, 1964.

L.Dadda,”Some schemes for parallel multipliers,” Alta Frequenza, vol.34, pp.349-356,

1965.

B.Parhami, Computer Arithmetic Algorithms and Hardware designs, New York: Oxford

University press, 2000.

E.E. Swartzlander Jr.,”Merged arithmetic,”Vol.29, pp.946-950, 1980.

K.A.C.Bickerstaff, M.Schutle, and E.E. Swartzlander Jr., “Reduced area multipliers,”

Intl.Conf. on Application-Specific Array Processors, pp.478-489, 1993

E.E. Swartzlander Jr. and G.Goto,”Computer arithmetic,” The computer Engineering

Handbook, V.G. Oklobdzija, ed., Boca Raton, FL: CRC press, 2002

A.Habib and P.A.Wintz,”Fast multipliers,” IEEE Trans.on Computers, vol.19, pp.153-

157, 1970

