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Coordinates, matrix elements and changes of basis

1. Coordinates of vectors and matrix elements of linear operators

Let V be an n-dimensional real (or complex) vector space. Vectors that live
in V are usually represented by a single column of n real (or complex) numbers.
A linear transformation (also called a linear operator) acting on V is a “machine”
that acts on a vector and and produces another vector. Linear operators are
represented by square n × n real (or complex) matrices.∗

If it is not specified, the representations of vectors and matrices described
above implicitly assume that the standard basis has been chosen. That is, all
vectors in V can be expressed as linear combinations of basis vectors:†

Bs =
{
x̂1 , x̂2 , x̂3 , . . . , x̂n

}

=
{
(1, 0, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , (0, 0, 1, . . . , 0)T , . . . , (0, 0, 0, . . . , 1)T

}
.

The subscript s indicates that this is the standard basis. The superscript T turns
the row vectors into column vectors. Thus,

~v =




v1

v2

v3

...
vn




= v1




1
0
0
...
0




+ v2




0
1
0
...
vn




+ v3




0
0
1
...
0




+ · · ·+ vn




0
0
0
...
1




.

The vi are called the coordinates of ~v with respect to the standard basis.
Consider a linear operator A. The corresponding matrix representation is

given by A = [aij]. For example, if ~w = A~v, then

wi =
n∑

j=1

aijvj , (1)

where vi and wi are the coordinates of ~v and ~w with respect to the standard basis
and aij are the matrix elements of A with respect to the standard basis. If we

∗We can generalize this slightly by viewing a linear operator as a function whose input is
taken from vectors that live in V and whose output is a vector that lives in another vector space
W . If V is n-dimensional and W is m-dimensional, then a linear operator is represented by an
m×n real (or complex) matrix. In these notes, we will simplify the discussion by always taking
W = V .

†If V = R
3 (i.e., three-dimensional Euclidean space), then it is traditional to designate

x̂1 = î, x̂2 = ĵ and x̂3 = k̂.
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express ~v and ~w as linear combinations of basis vectors, then

~v =
n∑

j=1

vjx̂j , ~w =
n∑

i=1

wix̂i ,

then ~w = A~v implies that

n∑

i=1

n∑

j=1

aijvjx̂i = A

n∑

j=1

vjx̂j ,

where we have used eq. (1) to substitute for wi. It follows that:

n∑

j=1

(
Ax̂j −

n∑

i=1

aijx̂i

)
vj = 0 . (2)

Eq. (2) must be true for any vector ~v ∈ V ; that is, for any choice of components vj.
Thus, the coefficient inside the parentheses in eq. (2) must vanish. We conclude
that:

Ax̂j =

n∑

i=1

aijx̂i . (3)

Eq. (3) can be used as the definition of the matrix elements aij with respect to
the standard basis of a linear operator A.

There is nothing sacrosanct about the choice of the standard basis. One can
expand a vector as a linear combination of any set of n linearly independent
vectors. Thus, we generalize the above discussion by introducing a basis

B =
{
~b1 , ~b2 , ~b3 , . . . , ~bn

}
.

For any vector ~v ∈ V , we can find a unique set of coefficients vi such that

~v =

n∑

j=1

vj
~bj . (4)

The vi are the coordinates of ~v with respect to the basis B. Likewise, for any
linear operator A,

A~bj =

n∑

i=1

aij
~bi (5)

defines the matrix elements of the linear operator A with respect to the basis B.
Clearly, these more general definitions reduce to the previous ones given in the
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case of the standard basis. Moreover, we can easily compute A~v ≡ ~w using the
results of eqs. (4) and (5):

A~v =
n∑

i=1

n∑

j=1

aijvj
~bi =

n∑

i=1

(
n∑

j=1

aijvj

)
~bi =

n∑

i=1

wi
~bi = ~w ,

which implies that the coordinates of the vector ~w = A~v with respect to the basis
B are given by:

wi =

n∑

j=1

aijvj .

Thus, the relation between the coordinates of ~v and ~w with respect to the basis
B is the same as the relation obtained with respect to the standard basis [see
eq. (1)]. One must simply be consistent and always employ the same basis for
defining the vector components and the matrix elements of a linear operator.

2. Change of basis and its effects on coordinates and matrix elements

The choice of basis is arbitrary. The existence of vectors and linear operators
does not depend on ones choice of basis. However, a choice of basis is very
convenient since it permits explicit calculations involving vectors and matrices.
Suppose we start with some basis choice B and then later decide to employ a
different basis choice C:

C =
{
~c1 , ~c2 , ~c3 , . . . , ~cn

}
.

In particular, suppose B = Bs is the standard basis. Then to change from Bs to
C is geometrically equivalent to starting with a definition of the x, y and z axis,
and then defining a new set of axes. Note that we have not yet introduced the
concept of an inner product or norm, so there is no concept of orthogonality or
unit vectors. The new set of axes may be quite skewed (although such a concept
also requires an inner product).

Thus, we pose the following question. If the components of a vector ~v and
the matrix elements of a linear operator A are known with respect to a basis B

(which need not be the standard basis), what are the components of the vector
~v and the matrix elements of a linear operator A with respect to a basis C? To
answer this question, we must describe the relation between B and C. We do this
as follows. The basis vectors of C can be expressed as linear combinations of the
basis vectors ~bi, since the latter span the vector space V . We shall denote these
coefficients as follows:

~cj =

n∑

i=1

Pij
~bi , j = 1, 2, 3, . . . , n . (6)

Note that eq. (6) is a shorthand for n separate equations, and provides the co-
efficients Pi1, Pi2, . . ., Pin needed to expand ~c1, ~c2, . . ., ~cn, respectively, as linear
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combinations of the ~bi. We can assemble the Pij into a matrix. A crucial ob-
servation is that this matrix P is invertible. This must be true, since one can
reverse the process and express the basis vectors of B as linear combinations of
the basis vectors ~ci (which again follows from the fact that the latter span the
vector space V ). Explicitly,

~bk =

n∑

j=1

(P−1)jk~cj , k = 1, 2, 3, . . . , n . (7)

We are now in the position to determine the components of a vector ~v and the
matrix elements of a linear operator A with respect to a basis C. Assume that the
components of ~v with respect to B are given by vi and the matrix elements of A

with respect to B are given by aij. With respect to C, we shall denote the vector
components by v′

i and the matrix elements by a′
ij. Then, using the definition of

vector components [eq. (4)] and matrix elements [eq. (5)],

~v =

n∑

j=1

v′
j~cj =

n∑

j=1

v′
j

n∑

i=1

Pij
~bi =

n∑

i=1

(
n∑

j=1

Pijv
′
j

)
~bi =

n∑

i=1

vi
~bi , (8)

where we have used eq. (6) to express the ~cj in terms of the ~bi. The last step in
eq. (8) can be rewritten as:

n∑

i=1

(
vi −

n∑

j=1

Pijv
′
j

)
~bi = 0 . (9)

Since the ~bi are linearly independent, the coefficient inside the parentheses in
eq. (9) must vanish. Hence,

vi =

n∑

j=1

Pijv
′
j , or equivalently [~v]B = P [~v]C . (10)

Here we have introduced the notation [~v]B to indicate the vector ~v represented in
terms of its components with respect to the basis B. Inverting this result yields:

v′
j =

n∑

k=1

(P−1)jkvk , or equivalently [~v]C = P−1[~v]B . (11)

Thus, we have determined the relation between the components of ~v with respect
to the bases B and C.

A similar computation can determine the relation between the matrix elements
of A with respect to the basis B, which we denote by aij [see eq. (5)], and the
matrix elements of A with respect to the basis C, which we denote by a′

ij:

A~cj =

n∑

i=1

a′
ij~ci . (12)
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The desired relation can be obtained by evaluating A~b`:

A~b` = A

n∑

j=1

(P−1)j`cj =

n∑

j=1

(P−1)j` Acj =

n∑

j=1

(P−1)j`

n∑

i=1

a′
ij~ci

=
n∑

j=1

(P−1)j`

n∑

i=1

a′
ij

n∑

k=1

Pki
~bk =

n∑

k=1

(
n∑

i=1

n∑

j=1

Pkia
′
ij(P

−1)j`

)
~bk ,

where we have used eqs. (6) and (7) and the definition of the matrix elements of
A with respect to the basis C [eq. (12)]. Comparing this result with eq. (5), it
follows that

n∑

k=1

(
ak` −

n∑

i=1

n∑

j=1

Pkia
′
ij(P

−1)j`

)
~bk = 0 .

Since the ~bk are linearly independent, we conclude that

ak` =

n∑

i=1

n∑

j=1

Pkia
′
ij(P

−1)j` .

The double sum above corresponds to the matrix multiplication of three matrices,
so it is convenient to write this result symbolically as:

[A]B = P [A]CP
−1 . (13)

The meaning of this equation is that the matrix formed by the matrix elements
of A with respect to the basis B is related to the matrix formed by the matrix
elements of A with respect to the basis C by the similarity transformation given
by eq. (13). We can invert eq. (13) to obtain:

[A]C = P−1[A]BP . (14)

In fact, there is a much faster method to derive eqs. (13) and (14). Consider
the equation ~w = A~v evaluated with respect to bases B and C, respectively:

[~w]B = [A]B[~v]B , [~w]C = [A]C[~v]C .

Using eq. (10), [~w]B = [A]B[~v]B can be rewritten as:

P [~w]C = [A]BP [~v]C .

Hence,
[~w]C = [A]C[~v]C = P−1[A]BP [~v]C .

It then follows that

{
[A]C − P−1[A]BP

}
[~v]C = 0 . (15)

5



Since this equation must be true for all ~v ∈ V (and thus for any choice of [~v]C),
it follows that the quantity inside the parentheses in eq. (15) must vanish. This
yields eq. (14).

The significance of eq. (14) is as follows. If two matrices are related by a simi-
larity transformation, then these matrices may represent the same linear operator
with respect to two different choices of basis. These two choices are related by
eq. (6). However, it would not be correct to conclude that two matrices that are
related by a similarity transformation cannot represent different linear operators.
In fact, one could also interpret these two matrices as representing (with respect
to the same basis) two different linear operators that are related by a similarity
transformation. That is, given two linear operators A and B and an invertible lin-
ear operator P , it is clear that if B = P−1AP then the matrix elements of A and
B with respect to a fixed basis are related by the same similarity transformation.

Example: Let B be the standard basis and let C =
{
(1, 0, 0) , (1, 1, 0) , (1, 1, 1)

}
.

Given a linear operator A whose matrix elements with respect to the basis B are:

[A]B =




1 2 −1
0 −1 0
1 0 7


 ,

we shall determine [A]C. First, we need to work out P . Noting that:

~c1 = ~b1 , ~c2 = ~b1 + ~b2 , ~c3 = ~b1 + ~b2 + ~b3 ,

it follows from eq. (6) that

P =




1 1 1
0 1 1
0 0 1


 .

Inverting, ~b1 = ~c1 , ~b2 = ~c2 − ~c1 , and ~b3 = ~c3 − ~c2, so that eq. (7) yields:

P−1 =




1 −1 0
0 1 −1
0 0 1


 .

Thus, using eq. (15), we obtain:

[A]C =




1 −1 0
0 1 −1
0 0 1






1 2 −1
0 −1 0
1 0 7






1 1 1
0 1 1
0 0 1


 =




1 4 3
−1 −2 −9

1 1 8


 .
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3. Application to matrix diagonalization

Consider the eigenvalue problem for a matrix A:

A~vj = λj~vj , ~vj 6= 0 for j = 1, 2, . . . , n . (16)

The λi are the roots of the characteristic equation det (A − λI) = 0. This is an
nth order polynomial equation which has n (possibly complex) roots, although
some of the roots could be degenerate. If the roots are non-degenerate, then A is
called simple. In this case, the n eigenvectors are linearly independent and span
the vector space V .‡ If some of the roots are degenerate, then the corresponding
n eigenvectors may or may not be linearly independent. In general, if A possesses
n linearly independent eigenvectors, then A is called semi-simple.§ If some of
the eigenvalues of A are degenerate and its eigenvectors do not span the vector
space V , then we say that A is defective. A is diagonalizable if and only if it is
semi-simple.

Since the eigenvectors of a semi-simple matrix A span the vector space V , we
may choose the eigenvectors of A as a basis. Suppose we are given the matrix
elements of A with respect to the standard basis Bs =

{
x̂1 , x̂2 , x̂3 , . . . , x̂n

}
.

We shall then compute the matrix elements of A with respect to a new basis
C =

{
~v1 , ~v2 , ~v3 , . . . , ~vn

}
, where the ~vi are the eigenvectors of A. To determine

[A]C, we use eq. (12):

A~vj =
n∑

i=1

a′
ij~vi .

But, eq. (16) implies that a′
ij = λjδij. That is,

[A]C =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 .

Finally, we shall determine the matrix P that governs the relation between
Bs and C [eq. (6)]. Consider the coordinates of ~vj with respect to the standard
basis Bs:

~vj =

n∑

i=1

(~vj)i x̂i =

n∑

i=1

Pijx̂i , (17)

where (~vj)i is the ith coordinate of the jth eigenvector. Using eq. (17), we identify
Pij = (~vj)i. In matrix form,

P =




(v1)1 (v2)1 · · · (vn)1

(v1)2 (v2)2 · · · (vn)2

...
...

. . .
...

(v1)n (v2)n · · · (vn)n


 .

‡This result is proved in Homework set #9 [see McQuarrie, problem 10.2–8].
§Note that if A is semi-simple, then A is also simple only if the eigenvalues of A are distinct.
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Finally, we use eq. (14) to conclude that [A]C = P−1AP . If we denote the diago-
nalized matrix by D ≡ [A]C, then

P−1AP = D , (18)

where P is the matrix whose columns are the eigenvectors of A and D is the
diagonal matrix whose diagonal elements are the eigenvalues of A. Thus, we have
succeeded in diagonalizing an arbitrary semi-simple matrix.

If the eigenvectors of A do not span the vector space V (i.e., A is defective),
then A is not diagonalizable. That is, there does not exist a matrix P and a
diagonal matrix D such that eq. (18) is satisfied.

4. Implications of the inner product

Nothing in sections 1–3 requires the existence of an inner product. However,
if an inner product is defined, then the vector space V is promoted to an inner
product space. In this case, we can define the concepts of orthogonality and
orthonormality. In particular, given an arbitrary basis B, we can use the Gram-
Schmidt process to construct an orthonormal basis. Thus, when considering inner
product spaces, it is convenient to always choose an orthonormal basis.

Even with the restriction of an orthonormal basis, one can examine the effect
of changing basis from one orthonormal basis to another. All the considerations
of section 2 apply, with the constraint that the matrix P is now a unitary matrix.¶

Namely, the transformation between any two orthonormal bases is always unitary.
This naturally leads to the following question—what matrices have the prop-

erty that their eigenvectors comprise an orthonormal basis that spans the inner
product space V ? This question was answered in class, where I proved that the
eigenvectors of normal matrices (these are matrices that satisfy AA† = A†A) can
always be chosen to be an orthonormal basis for V . Then, following the arguments
of section 3, it follows that for any normal matrix A,

U †AU = D ,

where U is the unitary matrix (U † = U−1) whose columns are the orthonormal
eigenvectors of A and D is the diagonal matrix whose diagonal elements are the
eigenvalues of A.

¶In a real inner product space, a unitary transformation is real and hence an orthogonal
transformation.
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