2. Lösung einer nichtlinearen Gleichung

- 1 2.1. Problemstellung
 - 2 2.2. Bisektionsverfahren
- 3 2.3. Newton-artige Verfahren
- 2.4. Fixpunkt-Iteration
- 5 2.5. Konvergenzordnung von Iterationsverfahren

2.1. Problemstellung

Definition (2.1. Nullstellen-Problem)

gegeben : skalare Funtion $f:[a,b] o \mathbb{R}$ auf Intervall [a,b]

 $\mbox{gesucht: eine (bzw. alle) Nullstelle(n) von } f(x) \ \ \mbox{in } [a,b] \ \mbox{, d.h.}$

Finde $x^* \in [a,b]$ so dass $f(x^*) = 0$

Überführung auf Nullstellen-Problem:

Bsp. : nichtlineare Gleichung $x = -e^x$

 \Leftrightarrow Nullstellen-Problem $f(x) = x + e^x = 0$

Lösbarkeit : für stetige Funktionen über den Zwischenwert-Satz ...

Der Zwischenwert-Satz

Theorem (2.2 Zwischenwert-Satz)

- Vor.: f(x) ist stetig auf [a,b]
 - es existieren x_1, x_2 mit $a \le x_1 < x_2 \le b$ und

$$f(x_1)f(x_2) < 0$$
 (Vorzeichenwechsel)

Beh.: es existiert mindestens eine Nullstelle x^* mit

$$x_1 < x^* < x_2$$
 und $f(x^*) = 0$

Bestimmung von x_1, x_2 :

- systematisches Probieren mit Wertetabelle
- plot Funktion von Matlab \Rightarrow Ablesen von x_1, x_2

2.2. Bisektionsverfahren

Bisektionsverfahren (Toleranz TOL)

Start:

finde Startintervall $[a_0,b_0]\subset [a,b]$ so dass $f(a_0)f(b_0)<0$

Iterationsschritt : $[a_k, b_k] \rightarrow [a_{k+1}, b_{k+1}]$

- berechne $x_k = \frac{1}{2}(a_k + b_k)$ und $y_k = f(x_k)$
- falls $|y_k| < \mathsf{TOL}$, so $x^* = x_k$ und **STOP**!

$$[a_{k+1},b_{k+1}]:=\left\{\begin{array}{ll} [a_k,x_k] & \text{falls} & f(a_k)y_k<0\\ \\ [x_k,b_k] & \text{sonst} \end{array}\right.$$

Fehlerabschätzung zum Bisektionsverfahren

aus $x^* \in [a_k, b_k]$ und $x_k = \frac{1}{2}(a_k + b_k)$ folgt:

$$\boxed{|x_k - x^*| \le \frac{1}{2}(b_k - a_k)}$$

induktiv ergibt sich:

$$b_k - a_k = \frac{1}{2}(b_{k-1} - a_{k-1}) = \frac{1}{2^2}(b_{k-2} - a_{k-2}) = \dots = \frac{1}{2^k}(b_0 - a_0)$$

woraus wir insgesamt erhalten:

$$|x_k - x^*| \le \frac{1}{2^{k+1}} (b_0 - a_0)$$
 $\forall k = 0, 1, \dots$

$$\Rightarrow$$
 Konvergenz des Bisekt.-Verfahrens : $\lim_{k\to\infty}|x_k-x^*|=0$

2.3. Newton-artige Verfahren

Prinzip: iterative Verbesserung einer Startnäherung x_0 :

$$x_0 \to x_1 \to x_2 \to \cdots \to x_n \to x_{n+1} \to \cdots$$

einstufige Verfahren : $x_{n+1} := \phi(x_n)$ n = 0, 1, ...

zweistufige Verfahren : $\boxed{x_{n+1} := \phi(x_n, x_{n-1})}$ $n=1,2,\ldots$

die Funktion ϕ heißt "Iterationsfunktion"

Idee: lokale Linearisierung von f(x):

1. ersetze f(x) in Umgebung von x_n durch eine lineare Funktion $L_n(x)$, d.h.

$$f(x) \approx L_n(x) \qquad \forall \ x \in U(x_n)$$

2. bestimme x_{n+1} aus: $L_n(x_{n+1}) = 0$

Wahl von L_n

Bedingungen an $L_n(x)$:

- 1. Gerade $L_n(x)$ geht durch den Punkt $(x_n, f(x_n))$
- 2. Gerade $L_n(x)$ hat den **Anstieg** $\left| \mu_n \approx f'(x_n) \right|$

$$\Rightarrow$$
 $L_n(x) = f(x_n) + \mu_n(x - x_n)$

Bestimmung von x_{n+1} :

die lineare Gleichung $|L_n(x_{n+1}) = 0|$ hat die Lösung :

$$x_{n+1} = x_n - \mu_n^{-1} f(x_n)$$

$x_{n+1} = x_n - \mu_n^{-1} f(x_n)$ Newton-artiges Verfahren

"klassisches Newton-Verfahren":

Wahl
$$\mu_n := f'(x_n) \Rightarrow \boxed{x_{n+1} = x_n - \left(f'(x_n)\right)^{-1} f(x_n)}$$

Sekanten-Verfahren

Aufwand beim klassischen Newton-Verfahren : pro Schritt ist zu tun :

- berechne Funktionswert $f(x_n)$
- berechne **Ableitung** $f'(x_n)$

Sekanten-Verfahren:

• verwende den Differenzenquotient:

$$\mu_n := \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} \approx f'(x_n)$$

• es ergibt sich das ableitungs-freie Sekanten-Verfahren :

$$\boxed{ x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n) } \quad \text{mit 2 Startwerten } x_0, x_1$$

• Aufwand pro Schritt: berechne Funktionswert $f(x_n)$

2.4. Fixpunkt-Iteration

Fixpunkt-Iteration

- Start: wähle Startwert $x_0 \in [a, b]$
- Iterationsschritt: berechne $|x_{n+1} = \phi(x_n)|$
- x^* heißt **Fixpunkt** von ϕ , wenn $|x^* = \phi(x^*)|$

$$m^* = \phi(m^*)$$

Konvergenz der Fixpunkt-Iteration liegt vor wenn:

$$\exists \ g \in \mathbb{R} \quad ext{so dass}: \quad g = \lim_{n o \infty} x_n$$

Beispiel: Newton-Verf.
$$x_{n+1} = \phi(x_n) := x_n - (f'(x_n))^{-1} f(x_n)$$

beachte: Sekanten-Verfahren ist keine Fixpunkt-Iteration:

$$\frac{\mathbf{x}_{n+1}}{\mathbf{x}_n} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n) = \phi(x_n, x_{n-1}) \quad \text{zweistufiges Verf.}$$

Der Banach' sche Fixpunkt-Satz

Theorem (2.3. Banach' scher Fixpunkt-Satz)

Vor. : $\phi: D \to \mathbb{R}$ *sei* **Selbstabbildung** *auf* [a,b] : $\phi(x) \in [a,b] \quad \forall x \in [a,b]$

• ϕ sei kontraktiv auf [a,b] mit Kontraktions-Konst. q<1: $|\phi(x_1)-\phi(x_2)|< q\,|x_1-x_2|\quad\forall\,x_1,x_2\in[a,b]$

- Beh.: es gibt genau einen Fixpunkt $x^* = \phi(x^*)$ in [a, b]
 - die Folge $x_{n+1} = \phi(x_n)$ konvergiert gegen x^* für jeden Startwert $x_0 \in [a,b]$
 - a priori Absch. : $|x_n x^*| \le \frac{q^n}{1-q}|x_1 x_0|$
 - a posteriori Absch. : $|x_n x^*| \le \frac{q}{1-q}|x_n x_{n-1}|$

Bestimmung der Kontraktionskonstanten

Lemma (2.4. Bestimmung der Kontraktionskonstanten)

 $\emph{Vor.}: \phi \ \emph{sei} \ \emph{stetig} \ \emph{differenzierbar} \ \emph{auf} \ [a,b]$

Beh.: die kleinste Kontraktionskonstante q mit

$$|\phi(x_1) - \phi(x_2)| \le q |x_1 - x_2| \quad \forall x_1, x_2 \in [a, b]$$

ist die Zahl

$$q = M := \max_{x \in [a,b]} |\phi'(x)|.$$

Bew' idee: nach dem Mittelwertsatz gilt

$$|\phi(x_1) - \phi(x_2)| = |\phi'(\xi)(x_1 - x_2)| \le M |x_1 - x_2|$$

wobei ξ ein Punkt zwischen $x_1, x_2 \in [a, b]$ ist

Prüfen der Vor. des Banach' schen Fixpunkt-Satzes

2.5. Prüfen auf "kontraktiv"

- falls $M:=\max_{x\in[a,b]}|\phi'(x)|\geq 1$, so ist ϕ nicht kontraktiv auf [a,b]
- falls $M:=\max_{x\in[a,b]}|\phi'(x)|$, so ist ϕ kontraktiv auf [a,b] mit q=M

2.6. Prüfen auf "Selbstabbildung"

- wenn $\phi(a), \phi(b) \in [a,b]$ u. $\phi'(x) \ge 0$ oder $\phi'(x) \le 0 \ \forall x \in [a,b]$, dann ist ϕ auf [a,b] Selbstabbildung
- ϕ ist auf [a,b] Selbstabbildung, genau dann wenn

$$a \le \min_{x \in [a,b]} \phi(x) \le \max_{x \in [a,b]} \phi(x) \le b.$$

anziehender und abstoßender Fixpunkt

Definition (2.7.)

- x^* heißt **abstoßender Fixpunkt** von ϕ , wenn $|\phi'(x^*)| > 1$
- ullet x^* heißt **anziehender Fixpunkt** von ϕ , wenn $|\phi'(x^*)| < 1$
- abstoßender Fixpunkt : $|\phi'(x^*)| > 1$, sei ϕ' stetig

$$\Rightarrow \exists U_r(x^*) := [x^* - r, x^* + r] \quad \text{mit} \quad |\phi'(\xi)| \ge F > 1 \quad \forall \ \xi \in U_r(x^*)$$

 \Rightarrow sobald $x_n \in U_r(\mathbf{x}^*)$, findet **Fehlervergrößerung** statt :

$$\underbrace{\left|x_{n+1}-x^{*}\right|}_{\text{neuer Fehler}} = \left|\phi(x_{n})-\phi(x^{*})\right| = \left|\phi'(\xi)\left(x_{n}-x^{*}\right)\right| \geq F}_{\text{alter Fehler}} \underbrace{\left|x_{n}-x^{*}\right|}_{\text{alter Fehler}}$$

• anziehender Fixpunkt : $|\phi'(x^*)| < 1$, sei ϕ' stetig

$$\Rightarrow \exists U_r(\mathbf{x}^*) := [x^* - r, x^* + r] \quad \text{mit} \quad |\phi'(\xi)| \le q < 1 \quad \forall \ \xi \in U_r(\mathbf{x}^*)$$

 \Rightarrow Banach' scher Fixpunkt-Satz gilt mit $[a,b] = U_r(x^*)$

Anwendung auf das "klassische Newton-Verfahren"

Newton:
$$x_{n+1} = \phi(x_n)$$
 mit $\phi(x) = x - (f'(x))^{-1} f(x)$

$$\Rightarrow \phi'(x) = 1 + (f'(x))^{-2} f''(x) f(x) - \underbrace{(f'(x))^{-1} f'(x)}_{-1} = (f'(x))^{-2} f''(x) f(x)$$

jede Lösung x^* mit $f(x^*)=0$ ist **Fixpunkt**, denn $\phi(x^*)=x^*$ und es gilt :

$$\begin{array}{lll} \text{wenn} & f(x^*)=0, \ f'(x^*)\neq 0, & \text{dann} & \left\lfloor |\phi'(x^*)|=0 \right\rfloor \\ \\ \text{wenn} & f(x^*)=f'(x^*)=0, \ f''(x^*)\neq 0, & \text{dann} & |\phi'(x^*)|=1/2 \\ \\ \text{wenn} & x^* \text{ ist } m\text{-fache Nullstelle von } f, & \text{dann} & |\phi'(x^*)|=1-1/m \end{array}$$

modifiz. Newton:
$$x_{n+1} = \tilde{\phi}(x_n)$$
 mit $\left[\tilde{\phi}(x) = x - m (f'(x))^{-1} f(x)\right]$ dann gilt: $|\tilde{\phi}'(x^*)| = 0$

2.5. Konvergenzordnung von Iterationsverfahren

Definition (2.8. "Konvergenzordnung")

• eine konvergente Näherungsfolge $(x_n)_{n=0}^{\infty}$ mit $x^* = \lim_{n \to \infty} x_n$ hat die **Konvergenzordnung** p, wenn gilt

$$|x_{n+1} - \mathbf{x}^*| \le q |x_n - \mathbf{x}^*|^p \qquad \forall n = 0, 1, \dots$$

wobei die Konstante q den Konvergenzfaktor bezeichnet

- im Fall p=1 (lineare Konvergenz) fordert man q<1
- im Fall p=2 spricht man von quadratischer Konvergenz

Fehlerabschätzung bei linearer Konvergenz (p=1):

$$|x_n - x^*| \le q|x_{n-1} - x^*| \le q^2|x_{n-2} - x^*| \le q^n|x_0 - x^*| \le q^n(b-a)$$

Konvergenz bei (p>1):

$$x_n \to x^*$$
 für $n \to \infty$, falls x_0 nahe genug an x^*

Praktische Bedeutung der Konvergenzordnung

Fall p=1:

• pro Schritt wird der absolute Fehler um einen festen Faktor q < 1 gedämpft :

$$|x_n - x^*| \le q |x_{n-1} - x^*|$$

ullet z.B.: für q=0.1 gewinnt man etwa 1 Dezimalstelle pro Schritt

Fall p>1:

pro Schritt ver-p-facht man in etwa die Zahl der richtigen
 Stellen :

$$\underbrace{|x_n - x^*| \le 10^{-s}}_{s \text{ Stellen genau}} \Rightarrow \underbrace{|x_{n+1} - x^*| \le q \cdot 10^{-ps}}_{ps \text{ Stellen genau}}$$

• z.B. : **Newton-Verf.** : p = 2 \Rightarrow in etwa Verdopplung der gültigen Stellenzahl pro Schritt

quadratische Konvergenz der Fixpunkt-Iteration

Theorem (2.9. quadratische Konvergenz)

- Vor. : $\phi(x)$ sei zweimal stetig differenzierbar in Umgebung des Fixpunktes x^*
 - $\bullet \quad \phi'(\mathbf{x}^*) = 0$

Beh. : Fixpunkt-Iteration $x_{n+1} = \phi(x_n)$ hat eine Konvergenzordnung $p \ge 2$, sofern der Startwert x_0 hinreichend nahe bei x^* liegt

Anwendung: klassisches Newton-Verfahren (Vor.: $f'(x^*) \neq 0$)

$$\phi(x) = x - (f'(x))^{-1} f(x) \quad \Rightarrow \quad \phi'(x^*) = (f'(x^*))^{-2} f''(x^*) f(x^*) = 0$$

 \Rightarrow Konvergenzordnung $p \ge 2$

Bemerkungen zum Newton-Verfahren

• ist x^* eine m - fache Nullstelle von f(x) mit $m \geq 2$, so konvergiert Newton **nur linear**, denn $\phi'(x^*) = 1 - 1/m \neq 0$; aber das **modifizierte Newton-Verf.**

$$x_{n+1} = \tilde{\phi}(x_n) = x_n - m(f'(x_n))^{-1}f(x_n)$$

konvergiert quadratisch, d.h. p=2 (denn $\tilde{\phi}^{\,\prime}({\color{black} x^*})=0$)

- liegt die Startnäherung x_0 nicht nahe genug an x^* , so kann das Newton-Verf. versagen (s. Skizzen)
- bei Konvergenz-Problemen führt oft das gedämpfte Newton-Verf.

$$x_{n+1} = x_n - \omega (f'(x_n))^{-1} f(x_n)$$
 mit $\omega \in (0, 1)$

zum Erfolg

• Kopplung Newton-Verf. mit Bisektions-Verf. : liegt x_{n+1} nicht im Einschließungsintervall $[a_k,b_k]$, so mache einige Bisektions-Schritte u. starte Newton neu

Bemerkungen zum Sekanten-Verfahren

• falls x^* einfache Nullstelle ist (d.h. $f'(x^*) \neq 0$), so kann man die Konvergenzordnung

$$p = \frac{1+\sqrt{5}}{2} \approx 1.618$$

zeigen, sofern $x_0, x_1 \in [x^* - r, x^* + r]$ mit hinreichend kleinem r

• das **Doppelschritt-Sekanten-Verf.** $x_n \to x_{n+2}$ kostet nur zwei Funktionsauswertungen ($f(x_n), f(x_{n+1})$) und hat die Konvergenzordnung $p_2 = p^2 \approx 2.618$, denn :

$$|x_{n+2} - x^*| \le q|x_{n+1} - x^*|^p \le q(q|x_n - x^*|^p)^p = q^{1+p}|x_n - x^*|^{p^2}$$

- ⇒ besser als das klassische Newton-Verf.
- aber : das Sekanten-Verfahren ist oft anfällig für Rundungsfehler (Auslöschung bei $f(x_n) f(x_{n-1})$)