4. Primitive Recursiveness

Having described (in §3.4) two ways of systematically forming new functions from existing ones, we introduce the class of initial functions, and the concepts of primitive recursive (PR) closedness, and primitive recursive functions.

4.1 PR-closed classes

The three initial functions are

- the zero function $\boldsymbol{Z}=\lambda x \cdot 0$,
- the successor function $\boldsymbol{S}=\lambda x \cdot(x+1)$, and
- the projection functions $\boldsymbol{U}_{i}^{n}=\lambda x_{1}, \ldots, x_{n} \cdot x_{i}$ for $n \geq 1,1 \leq i \leq n$, of which the identity function $\boldsymbol{U}_{1}^{1}=\lambda x \cdot x$ is a special case.

A class \mathcal{C} of functions is $\boldsymbol{P R}$-closed iff
(i) \mathcal{C} contains the initial functions, and
(ii) \mathcal{C} is closed under composition and definition by primitive recursion, i.e., any function obtained from functions in \mathcal{C} by composition or primitive recursion is also in \mathcal{C}.

Example of a PR-closed class:

- FN (trivially).

Lemma 4.0. The intersection of two PR-closed classes is $P R$-closed.
Lemma 4.1. TFN is PR-closed.
Proof: By definition, the initial functions are total. From Lemmas 3.3, 3.6 and 3.8 , totality is preserved by composition and prim. rec.

Lemma 4.2. \mathcal{G}-COMP is PR-closed.

Proof: The \mathcal{G}-programs skip, | $Y \leftarrow X$ |
| :---: |
| $Y++$ | , and $Y \leftarrow X_{i}$ compute the zero, successor, and projection functions respectively. By Thms 3.4, 3.7 , and $3.9, \mathcal{G}$-COMP is closed under comp. and prim. rec.

Lemma 4.3. \mathcal{G}-TCOMP is $P R$-closed.
Proof: By Lemmas 4.1 and 4.2 , the classes TFN and \mathcal{G}-COMP are PRclosed. Hence their intersection \mathcal{G}-TCOMP is PR-closed.

4.2 Primitive recursive functions

A function f is primitive recursive (PR) iff it is obtained from the initial functions by a finite number of applications of composition and primitive recursion. In other words, f is primitive recursive iff there is a finite sequence of functions f_{1}, \ldots, f_{n} such that $f_{n}=f$, and for $i=1, \ldots, n$, either f_{i} is an initial function, or f_{i} is obtained from some f_{j} 's, for $j<i$, by composition or primitive recursion. Such a sequence is called a $\boldsymbol{P R}$-derivation of f, of length n.

More formally, a $\boldsymbol{P R}$-derivation of a function f is a sequence of labelled function symbols of the form:

$$
\begin{gathered}
f_{1} \leftarrow L_{1} \\
f_{2} \leftarrow L_{2} \\
\vdots \\
f=f_{n} \leftarrow L_{n}
\end{gathered}
$$

where for each $i=1, \ldots, n$ one of the following cases applies:

- Case 1: f_{i} is an initial function, and label L_{i} is (correspondingly) one of ' \boldsymbol{Z}, ' \boldsymbol{S}^{\prime} or ' \boldsymbol{U}_{j}^{n} '.
- Case 2: f_{i} is obtained from an ℓ-ary function f_{j}, and m-ary functions $f_{k_{1}}, \ldots, f_{k_{\ell}}$ by composition, for $j, k_{1}, \ldots, k_{\ell}<i$, and the label L_{i} is ${ }^{\prime} f_{j}, f_{k_{1}}, \ldots, f_{k_{\ell}}$ (compos: ℓ, m)'.
- Case $3 a$: f_{i} is obtained from f_{j} and f_{k}, for $j, k<i$, by recursion with m parameters $(m>0)$, and the label L_{i} is ' $f_{j}, f_{k}(\mathrm{rec}: m)$ '.
- Case $3 b$: f_{i} is obtained from f_{k}, for $k<i$ by recursion without parameters, and initial value c, and the label L_{i} is ' c, f_{k} (rec:0)'.
(We are not distinguishing here between functions and their symbols).
The class of primitive recursive functions, and the class of n-ary primitive recursive functions are denoted by PR and $\mathrm{PR}^{(n)}$ respectively.

Lemma 4.4. PR is PR -closed
Proof: from the definition.
Lemma 4.5. Let \mathcal{C} be any $P R$-closed class of functions. Then $\mathrm{PR} \subseteq \mathcal{C}$.
Proof: We can show that for all f,

$$
f \in \mathrm{PR} \Longrightarrow f \in \mathcal{C}
$$

by $\boldsymbol{C V}$ induction [or: by $\boldsymbol{L N P}$] on the length of a PR-derivation of f. There are three cases:

- Case 1: f is an initial function. Then $f \in \mathcal{C}$, since \mathcal{C} is PR-closed.
- Case 2: f is obtained from earlier functions g_{1}, \ldots, g_{k} in the derivation by composition. Then g_{1}, \ldots, g_{k} have shorter PR-derivations (i.e. the initial parts of the PR-derivation of f ending with them), and so by the induction hypothesis they are in \mathcal{C}. Hence again, since \mathcal{C} PR-closed, $f \in \mathcal{C}$.
- Case 3: f is obtained from earlier functions in the derivation by primitive recursion. This is similar to Case 2.

Theorem 4.6. PR is the smallest $P R$-closed class. In other words:
(i) PR is PR-closed; and
(ii) PR is contained in every PR-closed class.

Proof: By Lemmas 4.4 and 4.5.
Corollary 4.7. \quad PR \subseteq TFN.
Proof: By Lemma 4.1, TFN is PR-closed, and so by Theorem 4.6, PR \subseteq TFN.

Corollary 4.8. $\mathrm{PR} \subseteq \mathcal{G}$-COMP.
Proof: By Lemma 4.2, \mathcal{G}-COMP is PR-closed, and so by Theorem 4.6, $\mathrm{PR} \subseteq \mathcal{G}$-COMP .

Corollary 4.9. $\mathrm{PR} \subseteq \mathcal{G}$-TCOMP.
Proof: By Corollaries 4.7 and 4.8 , or since, by Lemma 4.3, \mathcal{G}-TCOMP is PR-closed.

So clearly (cf. p. 3-9):

Once again, the questions as to the properness of the various " \subseteq " inclusions still need to be answered.

Examples of PR functions:

- Sum function $f=\lambda x, y \cdot(x+y)$

This has the well-known recursive definition:

$$
\left\{\begin{aligned}
f(x, 0) & =x \\
f(x, y+1) & =f(x, y)+1
\end{aligned}\right.
$$

However, we must put it in the form required by (3) on p. 3-8:

$$
\left\{\begin{aligned}
f(x, 0) & =g(x) \\
f(x, y+1) & =h(x, y, f(x, y))
\end{aligned}\right.
$$

where $g, h \in \mathrm{PR}$ (with one parameter: x). So let us take $g(x)=x$, and $h(x, y, z)=z+1$. Putting $g(x)=\boldsymbol{U}_{1}^{1}(x)$ and $h(x, y, z)=\boldsymbol{S}\left(\boldsymbol{U}_{3}^{3}(x, y, z)\right)$, a PR-derivation for f is

$$
\begin{aligned}
& f_{1} \leftarrow \boldsymbol{U}_{1}^{1} \\
& f_{2} \leftarrow \boldsymbol{S} \\
& f_{3} \leftarrow \boldsymbol{U}_{3}^{3} \\
& f_{4} \leftarrow f_{2}, f_{3}(\text { compos : } 1,3) \\
& f= f_{5} \leftarrow f_{1}, f_{4}(\text { rec }: 1) .
\end{aligned}
$$

- Product function $f=\lambda x, y \cdot(x * y)$

Recursive definition:

$$
\left\{\begin{aligned}
f(x, 0) & =0 \\
f(x, y+1) & =f(x, y)+x
\end{aligned}\right.
$$

Required form:

$$
\left\{\begin{aligned}
f(x, 0) & =g(x) \\
f(x, y+1) & =h(x, y, f(x, y))
\end{aligned}\right.
$$

where $g, h \in \mathrm{PR}$ (with one parameter: x). Put $g(x)=\boldsymbol{Z}(x)$, and

$$
\begin{aligned}
h(x, y, z) & =z+x \\
& =\operatorname{sum}(z, x) \\
& =\operatorname{sum}\left(\boldsymbol{U}_{3}^{3}(x, y, z), \boldsymbol{U}_{1}^{3}(x, y, z)\right) .
\end{aligned}
$$

A PR-derivation for f is

$$
\begin{aligned}
\text { sum }=f_{5} & \leftarrow \cdots \\
f_{6} & \leftarrow Z \\
f_{7} & \leftarrow \boldsymbol{U}_{3}^{3} \\
f_{8} & \leftarrow \boldsymbol{U}_{1}^{3} \\
f_{9} & \leftarrow f_{5}, f_{7}, f_{8}(\text { compos : } 2,3) \\
f=f_{10} & \leftarrow f_{6}, f_{9}(\boldsymbol{r e c}: 1)
\end{aligned}
$$

- Factorial $f=\lambda x \cdot x$!

Recursive definition:

$$
\left\{\begin{aligned}
f(0) & =1 \\
f(x+1) & =f(x) *(x+1)
\end{aligned}\right.
$$

Required form:

$$
\left\{\begin{aligned}
f(0) & =k \\
f(x+1) & =h(x, f(x))
\end{aligned}\right.
$$

where $h \in \mathrm{PR}$ (with no parameters). Putting $k=1$ and

$$
\begin{aligned}
h(x, y) & =y *(x+1) \\
& =\boldsymbol{p r o d}(y, \boldsymbol{S}(x)) \\
& =\boldsymbol{p r o d}\left(\boldsymbol{U}_{2}^{2}(x, y), \boldsymbol{S}\left(\boldsymbol{U}_{1}^{2}(x, y)\right)\right),
\end{aligned}
$$

we can obtain an appropriate PR-derivation, as before.
Clearly, we need an easier way to show that functions are PR! We address this problem in $\S 5$.

4.3 Relative primitive recursiveness

Let $\vec{g}=g_{1}, \ldots, g_{n}$ be any functions. A function f is primitive recursive in \vec{g} iff f is obtained from the initial functions and/or g_{1}, \ldots, g_{n} by a finite number of applications of composition and primitive recursion. Equivalently, f is $\boldsymbol{P} \boldsymbol{R}$ in \vec{g} iff there is a finite sequence of functions f_{1}, \ldots, f_{n} such that $f_{n}=f$ and, for $i=1, \ldots, n$, either f_{i} is an initial function, or f_{i} is one of the g_{j} 's, or f_{i} is obtained from some f_{j} 's $(j<i)$ by composition or primitive recursion. Such a sequence is called a $\boldsymbol{P R}$-derivation of f from \vec{g}.
$\operatorname{PR}(\vec{g})$ is the class of functions PR in \vec{g}.

Lemma 4.10.

[cf. Lemma 3.1, p. 3-6]
(a) $\mathrm{PR} \subseteq \operatorname{PR}(\vec{g})$
(b) $\mathrm{PR}=\mathrm{PR}(\langle \rangle)$
(c) If $\vec{g} \subseteq \vec{h}$, then $\operatorname{PR}(\vec{g}) \subseteq \operatorname{PR}(\vec{h})$.

Proof: Clear from the definition.
Theorem 4.11 (Transitivity).
[cf. Thm 3.2, p. 3-6]
(a) If $f \in \operatorname{PR}(\vec{g})$ and $g_{1}, \ldots, g_{k} \in \mathrm{PR}$, then $f \in \mathrm{PR}$.

More generally:
(b) If $f \in \operatorname{PR}(\vec{g})$ and $g_{1}, \ldots, g_{k} \in \operatorname{PR}(\vec{h})$, then $f \in \operatorname{PR}(\vec{h})$.
(c) If $f \in \operatorname{PR}(\vec{g}, \vec{h})$ and $g_{1}, \ldots, g_{k} \in \operatorname{PR}(\vec{h})$, then $f \in \operatorname{PR}(\vec{h})$.

Proof:
(a) Prepend PR-derivations of g_{1}, \ldots, g_{k} to a PR-derivation of f from \vec{g}.
(b), (c) Similarly.

A class \mathcal{C} of functions is said to be $\operatorname{PR}(\vec{g})$-closed iff \mathcal{C} is PR-closed and contains \vec{g}; i.e.,
(i) \mathcal{C} contains the initial functions and \vec{g}, and
(ii) \mathcal{C} is closed under composition and definition by $\boldsymbol{P R}$.
Q. Is FN $\operatorname{PR}(\vec{g})$-closed? Is TFN?

Lemma 4.12 .
$\mathrm{PR}(\vec{g})$ is $\operatorname{PR}(\vec{g})$-closed.
Proof: from the definition.

Lemma 4.13. [cf. Lemma 4.5, p. 4-3]
Let \mathcal{C} be any $\mathrm{PR}(\vec{g})$-closed class of functions. Then $\operatorname{PR}(\vec{g}) \subseteq \mathcal{C}$.
Proof: We can show that

$$
f \in \operatorname{PR}(\vec{g}) \Longrightarrow \quad f \in \mathcal{C}
$$

by CV induction on the length of the PR-derivation of f from \vec{g}.
Theorem 4.14.
[cf. Theorem 4.6, p. 4-3]
$\operatorname{PR}(\vec{g})$ is the smallest $\mathrm{PR}(\vec{g})$-closed class. In other words,
(i) $\operatorname{PR}(\vec{g})$ is $\operatorname{PR}(\vec{g})$-closed; and
(ii) $\operatorname{PR}(\vec{g})$ is contained in every $\operatorname{PR}(\vec{g})$-closed class.

Proof: By Lemmas 4.12 and 4.13.
Corollary 4.15.
[cf. Cor. 4.9, p. 4-3]
$\operatorname{PR}(\vec{g}) \subseteq \mathcal{G}-\operatorname{COMP}(\vec{g})$
Proof: Since \mathcal{G} - $\operatorname{COMP}(\vec{g})$ contains \vec{g} and is PR-closed.
Note that $\operatorname{PR}(\vec{g})$ need not consist of total functions only, since the g_{i} might not be total! So if $\operatorname{TPR}(\vec{g})$ is the class of total functions PR in \vec{g}, then the relativised version of the diagram on page 4-4 is

As before, the questions as to the properness of the various " \subseteq " inclusions need to be answered.

