4. Primitive Recursiveness

Having described (in $\S3.4$) two ways of systematically forming new functions from existing ones, we introduce the class of *initial functions*, and the concepts of *primitive recursive (PR) closedness*, and *primitive recursive functions*.

4.1 PR-closed classes

The three *initial functions* are

- the *zero function* $\boldsymbol{Z} = \lambda \boldsymbol{x} \cdot \boldsymbol{0}$,
- the successor function $S = \lambda x \cdot (x+1)$, and
- the *projection functions* $U_i^n = \lambda x_1, \ldots, x_n \cdot x_i$ for $n \ge 1, 1 \le i \le n$, of which the *identity function* $U_1^1 = \lambda x \cdot x$ is a special case.

A class C of functions is *PR-closed* iff

(i) C contains the *initial functions*, and

(ii) C is *closed* under *composition* and *definition by primitive recursion*, i.e., any function obtained from functions in C by *composition* or *primitive recursion* is also in C.

Example of a PR-closed class:

• FN (trivially).

Lemma 4.0. The *intersection* of two PR-closed classes is PR-closed.

Lemma 4.1. TFN is PR-closed.

Proof: By definition, the initial functions are total. From Lemmas 3.3, 3.6 and 3.8, totality is preserved by composition and prim. rec. \Box

Lemma 4.2. *G*-COMP is PR-closed.

Proof: The \mathcal{G} -programs [skip], $[Y \leftarrow X]_{Y++}$, and $[Y \leftarrow X_i]$ compute the *zero*, *successor*, and *projection* functions respectively. By Thms 3.4, 3.7, and 3.9, \mathcal{G} -COMP is closed under comp. and prim. rec. \Box

Lemma 4.3. *G*-TCOMP is PR-closed.

Proof: By Lemmas 4.1 and 4.2, the classes TFN and \mathcal{G} -COMP are PR-closed. Hence their intersection \mathcal{G} -TCOMP is PR-closed. \Box

4.2 Primitive recursive functions

A function f is **primitive recursive** (PR) iff it is obtained from the *initial functions* by a finite number of applications of *composition* and *primitive recursion*. In other words, f is primitive recursive iff there is a *finite sequence* of functions f_1, \ldots, f_n such that $f_n = f$, and for $i = 1, \ldots, n$, either f_i is an *initial function*, or f_i is obtained from some f_j 's, for j < i, by *composition* or *primitive recursion*. Such a sequence is called a **PR-derivation** of f, of length n.

More formally, a *PR-derivation* of a function f is a sequence of labelled function symbols of the form:

$$f_1 \leftarrow L_1 \\ f_2 \leftarrow L_2 \\ \vdots \\ f = f_n \leftarrow L_n$$

where for each i = 1, ..., n one of the following cases applies:

- Case 1: f_i is an *initial function*, and label L_i is (correspondingly) one of 'Z', 'S' or 'U_iⁿ'.
- Case 2: f_i is obtained from an ℓ -ary function f_j , and m-ary functions $f_{k_1}, \ldots, f_{k_\ell}$ by **composition**, for $j, k_1, \ldots, k_\ell < i$, and the label L_i is $f_j, f_{k_1}, \ldots, f_{k_\ell}$ (compos: ℓ, m)'.
- Case 3*a*: f_i is obtained from f_j and f_k , for j, k < i, by *recursion* with m parameters (m > 0), and the label L_i is ' f_j, f_k (rec : m)'.
- Case 3b: f_i is obtained from f_k , for k < i by recursion without parameters, and initial value c, and the label L_i is 'c, f_k (rec : 0)'.

(We are not distinguishing here between functions and their symbols). The class of primitive recursive functions, and the class of *n*-ary primitive recursive functions are denoted by PR and $PR^{(n)}$ respectively.

Lemma 4.4. PR is PR-closed

Proof: from the definition. \Box

Lemma 4.5. Let C be any PR-closed class of functions. Then $PR \subseteq C$.

Proof: We can show that for all f,

$$f \in \mathrm{PR} \implies f \in \mathcal{C}$$

by CV induction [or: by LNP] on the length of a PR-derivation of f. There are three cases:

- Case 1: f is an *initial function*. Then $f \in C$, since C is PR-closed.
- Case 2: f is obtained from earlier functions g_1, \ldots, g_k in the derivation by *composition*. Then g_1, \ldots, g_k have *shorter* PR-derivations (i.e. the initial parts of the PR-derivation of f ending with them), and so by the *induction hypothesis* they are in C. Hence again, since C PR-closed, $f \in C$.
- Case 3: *f* is obtained from earlier functions in the derivation by *primitive recursion*. This is similar to Case 2. □

Theorem 4.6. PR is the smallest PR-closed class. In other words: (i) PR is PR-closed; and (ii) PR is contained in every PR-closed class.

Proof: By Lemmas 4.4 and 4.5. \Box

Corollary 4.7. $PR \subseteq TFN$.

Proof: By Lemma 4.1, TFN is PR-closed, and so by Theorem 4.6, PR \subseteq TFN. \Box

Corollary 4.8. $PR \subseteq \mathcal{G}$ -COMP.

Proof: By Lemma 4.2, \mathcal{G} -COMP is PR-closed, and so by Theorem 4.6, $PR \subseteq \mathcal{G}$ -COMP. \Box

Corollary 4.9. $PR \subseteq \mathcal{G}$ -TCOMP.

Proof: By Corollaries 4.7 and 4.8, or since, by Lemma 4.3, \mathcal{G} -TCOMP is PR-closed. \Box

So clearly (cf. p. 3-9):

$$\begin{array}{cccc} \mathcal{G}\text{-}\mathrm{COMP} & \subseteq & \mathrm{EFF} & \subseteq & \mathrm{FN} \\ & & & & \\ & & & & \\ \mathrm{PR} & \subseteq & \mathcal{G}\text{-}\mathrm{TCOMP} & \subseteq & \mathrm{TEFF} & \subseteq & \mathrm{TFN} \end{array}$$

Once again, the questions as to the properness of the various " \subseteq " inclusions still need to be answered.

Examples of PR functions:

• Sum function $f = \lambda x, y \cdot (x+y)$

This has the well-known recursive definition:

$$\begin{cases} f(x,0) = x\\ f(x,y+1) = f(x,y) + 1 \end{cases}$$

However, we must put it in the form required by (3) on p. 3-8:

$$\begin{cases} f(x,0) &= g(x) \\ f(x,y+1) &= h(x,y,f(x,y)) \end{cases}$$

where $g, h \in \text{PR}$ (with one parameter: x). So let us take g(x) = x, and h(x, y, z) = z + 1. Putting $g(x) = U_1^1(x)$ and $h(x, y, z) = S(U_3^3(x, y, z))$, a PR-derivation for f is

$$f_1 \leftarrow U_1^1$$

$$f_2 \leftarrow S$$

$$f_3 \leftarrow U_3^3$$

$$f_4 \leftarrow f_2, f_3 \text{ (compos : 1, 3)}$$

$$f = f_5 \leftarrow f_1, f_4 \text{ (rec : 1)}.$$

• **Product function** $f = \lambda x, y \cdot (x * y)$

Recursive definition:

$$\begin{cases} f(x,0) = 0\\ f(x,y+1) = f(x,y) + x \end{cases}$$

Required form:

$$\left\{\begin{array}{rrr} f(x,0) &=& g(x)\\ f(x,y+1) &=& h(x,y,f(x,y)) \end{array}\right.$$

where $g, h \in \text{PR}$ (with one parameter: x). Put $g(x) = \mathbf{Z}(x)$, and

$$\begin{split} h(x,y,z) &= z + x \\ &= sum(z,x) \\ &= sum(U_3^3(x,y,z), \, U_1^3(x,y,z)). \end{split}$$

A PR-derivation for f is

$$\begin{array}{l} \vdots \\ sum = \ f_5 \ \leftarrow \cdots \\ f_6 \ \leftarrow Z \\ f_7 \ \leftarrow U_3^3 \\ f_8 \ \leftarrow U_1^3 \\ f_9 \ \leftarrow f_5, f_7, f_8 \ (\text{compos}: 2, 3) \\ f = f_{10} \ \leftarrow f_6, f_9 \ (\textit{rec}: 1). \end{array}$$

• Factorial $f = \lambda x \cdot x!$

Recursive definition:

$$\begin{cases} f(0) = 1\\ f(x+1) = f(x) * (x+1) \end{cases}$$

Required form:

$$\begin{cases} f(0) = k\\ f(x+1) = h(x, f(x)) \end{cases}$$

where $h \in PR$ (with no parameters). Putting k = 1 and

$$\begin{split} h(x,y) &= y * (x+1) \\ &= \textit{prod} \, (y, \textit{S}(x)) \\ &= \textit{prod} \, (\textit{U}_2^2(x,y), \textit{S}(\textit{U}_1^2(x,y))), \end{split}$$

we can obtain an appropriate PR-derivation, as before.

Clearly, we need an easier way to show that functions are PR! We address this problem in $\S5$.

4.3 Relative primitive recursiveness

Let $\vec{g} = g_1, \ldots, g_n$ be any functions. A function f is primitive recursive in \vec{g} iff f is obtained from the *initial functions* and/or g_1, \ldots, g_n by a finite number of applications of composition and primitive recursion. Equivalently, f is **PR** in \vec{g} iff there is a finite sequence of functions f_1, \ldots, f_n such that $f_n = f$ and, for $i = 1, \ldots, n$, either f_i is an initial function, or f_i is one of the g_j 's, or f_i is obtained from some f_j 's (j < i) by composition or primitive recursion. Such a sequence is called a **PR-derivation** of f from \vec{g} .

 $PR(\vec{g})$ is the class of functions PR in \vec{g} .

Lemma 4.10.

[cf. Lemma 3.1, p. 3-6]

- (a) $\operatorname{PR} \subseteq \operatorname{PR}(\vec{g})$
- (b) $PR = PR(\langle \rangle)$
- (c) If $\vec{g} \subseteq \vec{h}$, then $\operatorname{PR}(\vec{g}) \subseteq \operatorname{PR}(\vec{h})$.

Proof: Clear from the definition. \Box

Theorem 4.11 (Transitivity).

[cf. Thm 3.2, p. 3-6]

- (a) If $f \in PR(\vec{g})$ and $g_1, \ldots, g_k \in PR$, then $f \in PR$. More generally:
- (b) If $f \in PR(\vec{g})$ and $g_1, \ldots, g_k \in PR(\vec{h})$, then $f \in PR(\vec{h})$.
- (c) If $f \in \text{PR}(\vec{g}, \vec{h})$ and $g_1, \ldots, g_k \in \text{PR}(\vec{h})$, then $f \in \text{PR}(\vec{h})$.

Proof:

(a) Prepend PR-derivations of g_1, \ldots, g_k to a PR-derivation of f from \vec{g} . (b), (c) Similarly. \Box

A class C of functions is said to be $PR(\vec{g})$ -closed iff C is PR-closed and contains \vec{g} ; i.e.,

(i) C contains the *initial functions and* \vec{g} , and

(ii) C is *closed* under *composition* and *definition by* PR.

Q. Is FN $PR(\vec{q})$ -closed? Is TFN?

Lemma 4.12. $PR(\vec{g})$ is $PR(\vec{g})$ -closed.

Proof: from the definition. \Box

Lemma 4.13. [cf. Lemma 4.5, p. 4-3] Let C be any $PR(\vec{g})$ -closed class of functions. Then $PR(\vec{g}) \subseteq C$.

Proof: We can show that

 $f \in \operatorname{PR}(\vec{g}) \implies f \in \mathcal{C}$

by CV induction on the length of the PR-derivation of f from \vec{g} . \Box

Theorem 4.14.

[cf. Theorem 4.6, p. 4-3]

 $PR(\vec{g})$ is the smallest $PR(\vec{g})$ -closed class. In other words, (i) $PR(\vec{g})$ is $PR(\vec{g})$ -closed; and (ii) $PR(\vec{g})$ is contained in every $PR(\vec{g})$ -closed class.

Proof: By Lemmas 4.12 and 4.13. \Box

Corollary 4.15. $PR(\vec{g}) \subseteq \mathcal{G}\text{-}COMP(\vec{g})$

Proof: Since \mathcal{G} -COMP (\vec{g}) contains \vec{g} and is PR-closed.

Note that $PR(\vec{g})$ need not consist of total functions only, since the g_i might not be total! So if $TPR(\vec{g})$ is the class of *total* functions PR in \vec{g} , then the *relativised* version of the diagram on page 4-4 is

As before, the questions as to the properness of the various " \subseteq " inclusions need to be answered.

[cf. Lemma 4.4, p. 4-3]

[cf. Cor. 4.9, p. 4-3]