12 1. Choosing from among (REC) recursive, (RE) re non-recursive, (coRE) co-re non-recursive, (NR) non-re/non-co-re, categorize each of the sets in a) through d). Justify your answer by showing some minimal quantification of some known recursive predicate.
a.) $\{f \mid$ whenever $x>y$ and $f(x) \downarrow$ and $f(y) \downarrow$ then $f(x)>f(y)\}$
coRE
Justification: $\forall x \forall y \forall t[(\operatorname{STP}(x, f, t) \& \operatorname{STP}(y, f, t) \&(x>y)) \Rightarrow(V A L U E(x, f, t)>\operatorname{VALUE}(y, f, t))]$
b.) $\{f \mid$ size of range (f) is at most 1$\}$ coRE
Justification: $\forall x \not \forall y \forall t[(\operatorname{STP}(x, f, t) \& \operatorname{STP}(y, f, t)) \Rightarrow(\operatorname{VALUE}(x, f, t)=\operatorname{VALUE}(y, f, t))]$ I allowed $\exists K \forall x \forall t[\operatorname{STP}(x, f, t) \Rightarrow(\operatorname{VALUE}(x, f, t)=K)]$, which is $N R$
c.) $\left\{\langle\mathbf{f}, \mathbf{x}\rangle \mid f(x)\right.$ converges in at most x^{2} steps $\}$

REC
Justification: $\operatorname{STP}\left(x, f, x^{2}\right)$
d.) $\{f \mid$ domain(f) contains the value 0$\}$

RE
Justification: $\operatorname{Ft} \operatorname{STP}(0, f, t)$
12 2. Let set \mathbf{A} be recursive, and both \mathbf{B} and \mathbf{C} be re non-recursive. Choosing from among (REC) recursive, (RE) re non-recursive, (NR) non-re, categorize the set \mathbf{D} in each of a) through d) by listing all possible categories. No justification is required. You may find it useful to know that, if \mathbf{E} is recursive (re, non-re) then so is $\mathbf{E}_{\text {even }}=\{\mathbf{2 x} \mid \mathbf{x} \in \mathbf{E}\}$ and $\mathbf{E}_{\text {odd }}=\{\mathbf{2 x}+\mathbf{1} \mid \mathbf{x} \in \mathbf{E}\}$.
a.) $\mathbf{D} \supseteq \mathbf{B}$
REC, RE, NR
b.) $\mathbf{D}=\sim \mathbf{A}$ REC
c.) $\mathbf{D}=\mathbf{B} \cup \mathbf{C}$ REC, RE

8 3. Let \mathbf{S} be an arbitrary non-empty re set. Furthermore, let \mathbf{S} be the range of some partial recursive function f_{s}. Show that \mathbf{S} is the range of some primitive recursive function, call it \mathbf{h}_{s}. Let $h_{s}(<x, t>)=a *\left(1-\operatorname{STP}\left(x, f_{s}, t\right)\right)+\operatorname{VALUE}\left(x, f_{s}, t\right) * \operatorname{STP}\left(x, f_{s}, t\right)$ where ' a ' is some arbitrary element of S. Such an ' a ' exists since S is non-empty. First, h_{s} is primitive since the constants C_{a} and $C_{1}, S T P, V A L U E,+,{ }^{*}$ and - are all primitive recursive and the primitive recursive functions are closed under composition.
Now, given any element y of S, there must exist some x such that $f_{s}(x)=y$. For such an x, there must exist a t such that $\operatorname{STP}\left(x, f_{s}, t\right)$ and $\operatorname{VALUE}\left(x, f_{s}, t\right)=y$. Of course, if such an $<x, t>$ exists, there are an infinite number of these ($<x, t^{\prime}>$ for $t^{\prime}>t$). Clearly, for each such $<x, t>, h_{s}(<x, t>)=y$. If, on the other hand, $\sim \operatorname{STP}\left(x, f_{s}, t\right)$, then $h_{s}(<x, t>)=a$. Thus, all and only the elements in S are enumerated by h_{s}, exactly what we need.
8 4. Prove that the Halting Problem (the set $\mathbf{H A L T}=\mathbf{K}_{\mathbf{0}}=\mathbf{L}_{\mathbf{u}}$) is not recursive (decidable) within any formal model of computation. (Hint: A diagonalization proof is required here.)
Look at notes.
8 5. Using reduction from the known undecidable set HasZero, $\mathbf{H Z}=\{\mathbf{f} \mid \exists \mathbf{x} \mathbf{f}(\mathbf{x})=\mathbf{0}\}$, show the nonrecursiveness (undecidability) of the problem to decide if an arbitrary partial recursive function is in the set Identity, ID $=\{\mathbf{f} \mid \forall \mathbf{x} \mathbf{f}(\mathbf{x})=\mathbf{x}\}$.
$H Z=\{f \mid \exists x \exists t \operatorname{STP}(x, f, t) \& \operatorname{VALUE}(x, f, t)==0]\}$
Let f be the index of an arbitrary effective procedure.
Define $g_{f}(y)=y^{*} \exists x \nexists[\operatorname{STP}(x, f, t) \& \operatorname{VALUE}(x, f, t)==0]$
If $\exists x f(x)=0$, we will find an x and a run-time t, and so we will return $y(y * 1)$
If $\forall x f(x) \neq 0$, then we will diverge in the search process and never return a value.
Thus, $f \in H Z$ iff $g_{f} \in I D$.
7 6. Assuming only the primitive recursiveness of $\mathbf{C}_{\mathbf{a}}\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)=\mathbf{a}$: constants; $\mathbf{I}_{\mathbf{i}}^{\mathbf{n}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{n}}\right)=\mathbf{x i}_{\mathbf{i}}$: projection; and $\mathbf{S}(\mathbf{x})=\mathbf{x + 1}$: increment; and that the prf's are closed under composition and primitive recursion (iteration), show the primitive recursiveness of the function $\operatorname{Max}(\mathbf{x}, \mathbf{y}, \mathbf{z})$.
$\operatorname{pred}(0)=0, \operatorname{pred}(y+1)=y ;-(x, 0)=x,-(x, y+1)=\operatorname{pred}(-(x, y)) ; \operatorname{signum}(0)=0, \operatorname{signum}(y+1)=1$; $>(x, y)=\operatorname{signum}(-(x, y)) ;+(x, 0)=x,+(x, y+1)=S(+(x, y)) ; \operatorname{Max} 2(x, y)=x^{*}>(x, y)+y *>(y, x)$

7 7. Demonstrate a Register Machine where the numbers \mathbf{x}, \mathbf{y} and \mathbf{z} are in registers $\mathbf{R} 2, \mathbf{R} 3$ and $\mathbf{R} 4$, respectively, all other registers being zero. $\operatorname{Max}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ ends up in register $\mathbf{R 1}$. The final contents of all registers except $\mathbf{R 1}$ are unimportant.

1. DEC2[2,5]
2. DEC3[3,3]
3. DEC4[4,4]
4. INC1[1]
5. DEC3[6,8]
6. DEC4[7,7]
7. INC1[5]
8. DEC4[9,10]
9. INC1[8]
10.
11. Present an ordered Factor Replacement System (ordered rules of form $\mathbf{a x} \rightarrow \mathbf{b x}$) that, when started on the number $\mathbf{3}^{\mathbf{x}} \mathbf{5 y}^{\mathbf{7} \mathbf{z}}$, terminates on the number $\mathbf{2}^{\operatorname{Max}(x, y, z)}$. When you end, no prime factor other than perhaps 2 should appear in the final number.
$357 x \rightarrow 2 x$
$35 x \rightarrow 2 x$
$37 x \rightarrow 2 x$
$57 x \rightarrow 2 x$
$3 x \rightarrow 2 x$
$5 x \rightarrow 2 x$
$7 x \rightarrow 2 x$
