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Abstract: The Wallace tree multiplier is considered as faster than a simple array multiplier and is an efficient implementation of a 

digital circuit which is multiplies two integers. A Wallace tree multiplier is a parallel multiplier which uses the carry save addition 

algorithm to reduce the latency. There are many researchers have been worked on the design of increasingly more efficient 

multipliers. They aim at achieve higher speed and lower power consumption even while occupying reduced silicon area. The 

Wallace tree basically multiplies two unsigned integers. The new architecture enhances the speed performance of the widely 

acknowledged WTM. The synthesis is carried out by Xilinx ISE tool. 

Keywords: WTM (Wallace Tree Multiplier), Xilinx ISE. 

I. INTRODUCTION 

   Multiplication is one of the most area consuming arithmetic 

operations in high-performance circuits. As a consequence 

many research works deal with low power design of high speed 

multipliers. Multiplication involves two basic operations, the 

generation of the partial products and their sum, performed 

using two kinds of multiplication algorithms, serial and parallel.  

Serial multiplication algorithms use sequential circuits with 

feedbacks: inner products are sequentially produced and 

computed. Parallel multiplication algorithms often use 

combinational circuits and do not contain feedback structures. 

Multiplication of two bits produces an output which is twice 

that of the original bit. It is usually needed to truncate the partial 

product bits to the required precision to reduce area cost. Fixed-

width multipliers, a subset of truncated multipliers, compute 

only n most significant bits (MSBs) of the 2n-bit product for n × 

n multiplication and use extra correction/compensation circuits 

to reduce truncation errors. In previous related papers, to reduce 

the truncation error by adding error compensation circuits. So 

that the output will be précised. In this approach jointly 

considers the tree reduction, truncation, and rounding of the PP 

bits during the design of fast parallel truncated multipliers so 

that the final truncated product satisfies the precision 

requirement. In our approach truncation error is not more than 

1ulp (unit of least position), so there is no need of error 

compensation circuits, and the final output will be précised. The 

figure below shows how a Wallace Tree Multiplier can be 

realized for the 8-bit i.e. an 8x8 multiplier. 

Advantages: 

 Compare to dada multiplication delay is very high in 

wallace multiplication. 

  Power consumption in the Wallace multiplier is high.   

 Speed in Wallace multipier is normal compare to dada 

multiplier i.e delay and power is inversely proposals to each 

other. (delay is high).  

 
Fig.1.Method of Reduction On 8x8 Multiplier. 

Disadvantages: 

 Memory occupation in wallace multiplier is high copare to 

dada multiplier that is huge number of gates fabricated on a 

chip. 

 Compare to dada multiplier Wallace multiplier gives low 

performance.i.e dada is modified version of the Wallace 

multiplier. 
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   The multiplier is one of the key hardware blocks in most of 

the digital and high performance systems such as digital signal 

processors and microprocessors. With the recent advances in 

technology, many researchers have worked on the design of 

increasingly more efficient multipliers as shown in Fig.1. They 

aim at offering higher speed and lower power consumption even 

while occupying reduced silicon area. This makes them 

compatible for various complex and portable VLSI circuit 

implementations. However, the fact remains that the area and 

speed are two conflicting performance constraints. Hence, 

innovating increased speed always results in larger area. In this 

paper, we arrive at a better trade-off between the two, by 

realizing a marginally decreased delay which proportionally 

increases the speed performance through a small rise in the 

number of transistors. The new architecture enhances the speed 

performance of the widely acknowledged Wallace tree 

multiplier. The structural optimization is performed on the 

conventional Wallace multiplier, in such a way that the latency 

of the total circuit reduces considerably.  

II. INTRODUCTION TO DIFFERENT ADDERS 

A. Binary Adder Notations and Operations 

   As mentioned previously, adders in VLSI digital systems use 

binary notation. In that case, add is done bit by bit using 

Boolean equations.  

 
Fig.1. 1-bit Half Adder. 

   Consider a simple binary add with two n-bit inputs A;B and a 

one-bit carry-in cin along with n-bit output S. 

S = A + B  +  Cin 

Where  A = an-1, an-2……a0; B = bn-1, bn-2……b0. 

 

   The + in the above equation is the regular add operation. 

However, in the binary world, only Boolean algebra works. For 

add related operations, AND, OR and Exclusive-OR (XOR) are 

required. In the following documentation, a dot between two 

variables (each with single bit), e.g. a _ b denotes 'a AND b'. 

Similarly, a + b denotes 'a OR b' and a _ b denotes 'a XOR b'. 

Considering the situation of adding two bits, the sum s and carry 

c can be expressed using Boolean operations mentioned above. 

Si =ai ^ bi 

Ci + 1 =ai . bi 

 

    The Equation of Ci+1 can be implemented as shown in Fig.2. 

In the figure, there is a Half adder, which takes only 2 input bits. 

The solid line highlights the critical path, which indicates the 

longest path from the input to the output. Equation of ci+1 can 

be extended to perform full add operation, where there is a carry 

input. 

Si  =ai ^ bi ^ ci 

Ci + 1 =  ai . bi + ai . ci + bi . ci 

 

 
Fig.2. 1-bit Full Adder. 

   A Full adder can be built based on Equation above. The block 

diagram of a 1-bit full adder is shown in Fig.2.2. The full adder 

is composed of 2 half adders and an OR gate for computing 

carry-out. Using Boolean algebra, the equivalence can be easily 

proven. To help the computation of the carry for each bit, two 

binary literals are introduced. They are called carry generate and 

carry propagate, denoted by gi and pi. Another literal called 

temporary sum ti is employed as well. There is relation between 

the inputs and these literals. 

Gi = ai .bi 

Pi = ai + bi 

Ti = ai^  bi 

Where i is an integer and 0i < n. 

With the help of the literals above, output carry and sum at each 

bit can be written as: 

Ci + 1 = gi + pi .ci 

Si = ti ^ ci 

     In some literatures, carry-propagate pi can be replaced with 

temporary sum ti in order to save the number of logic gates. 

Here these two terms are separated in order to clarify the 

concepts. For example, for Ling adders, only pi is used as carry-

propagate. The single bit carry generate/propagate can be 

extended to group version G and P. The following equations 

show the inherent relations. 

Gi : k = Gi : j  +  Pi : j . Gj – 1 : k 

Pi : k = Pi : j .  Pj-1: k 

Where i : k denotes the group term from i through k. 

 

   Using group carry generate/propagate, carry can be expressed 

as expressed in the following equation. 

Ci + 1 = Gi : j  +  Pi : j . Cj 

 

B. Ripple Carry Adder 

    Ripple carry adder is an n-bit adder built from full adders. 

Fig.3 shows a 4-bit ripple carry adder. One full adder is 

responsible for the addition of two binary digits at any stage of 

the ripple carry.  The carryout of one stage is fed directly to the 

carry-in of the next stage.  Even though this is a simple adder 
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and can be used to add unrestricted bit length numbers, it is 

however not very efficient when large bit numbers are used. 

 
Fig.3. 4-bRippleCarryAdder. 

      One of the most serious drawbacks of this adder is that the 

delay increases linearly with the bit length. The  worst-case  

delay  of  the  RCA  is  when  a   carry  signal  transition  ripples  

through all stages of adder chain from the least significant bit to 

the most significant bit, which is approximated by:  

   

T = (n-1) tc + ts 

Delay: The latency of a 4 bit ripplecarry adder can be derived 

by considering the worst-case signal propagation path. We can 

thus write the following expressions: 

TRCA-4bit = TFA(A0,B0→Co)+T FA (Cin→C1)+TFA 

(Cin→C2)+ TFA (Cin→S3) 

And, it is easy to exten d to k-bit RCA: 

TRCA-4bit = TFA(A0,B0→Co)+(K-2)* TFA (Cin→Ci)+ TFA 

(Cin→Sk-1). 

Drawbacks: Delay increases linearly with the bit length and 

Not very efficient when large bit numbers are used. 

C. Carry Look-Ahead Adder 

     Lookahead carry algorithm speed up the operation to 

perform addition, because in this algorithm carry for the next 

stages is calculated in advance based on input signals. In CLA, 

the carry propagation time is reduced to O(log2(Wd)) by using a 

tree like circuit to compute the carry rapidly. Fig.4 shows the 4-

bit Carry Look-Ahead Adder. 

 
Fig.4. 4-bit Carry Look Ahead Adder. 

   The CLA exploits the fact that the carry generated by a bit-

position depends on the three inputs to that position. If „X‟ and 

„Y„ are two inputs then if X=Y=1, a carry is generated 

independently of the carry from the previous bit position and if 

X=Y= 0, no carry is generated. Similarly if X ≠ Y, a carry is 

generated if and only if the previous bit-position generates a 

carry. „C‟ is initial carry, “S” and “Cout” are output sum and 

carry respectively, then Boolean expression for calculating next 

carry and addition is: 

Pi  =  Xi  xor  Yi -- Carry Propagation  

Gi  =  Xi  and  Yi -- Carry Generation  

Ci + 1  =Gi  or  (Pi  and  Ci) -- Next Carry 

Si  =  Xi  xor  Yi  xor Ci -- Sum Generation 

 

Thus, for 4-bit adder, we can extend the carry, as shown below: 

C1 = G0 + P0 · C0  

C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0  

C3 = G2 + P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0  

C4 = G3 + P3 · G2 + P3 · P2 · G1 + P3 · P2 · P1 · G0+ P3 · P2 · P1 · 

P0 · C0    

 

   As with many design problems in digital logic, we can make 

tradeoffs between area and performance(delay). In the case of 

adders,wecancreatefaster(butlarger)designsthantheRCA.TheCarr

yLookaheadAdder(CLA)isoneofthese designs (there are others 

too, but we will only look at the CLA). 

Drawbacks: For long bit length, a carry look-ahead adder is not 

practical, but a hierarchical structure one can improve much. 

The disadvantage of CLA is that the carry logic block gets very 

complicated for more than 4-bits. For that reason, CLA‟s are 

usual implemented as 4-bit modules and are used in a 

hierarchical structure to realize adders that have multiples of 4-

bits. 

D. Carry Save Adder 

       The carry-save adder reduces the addition of 3 numbers to 

the addition of 2 numbers. The propagation delay is 3 gates 

regardless of the number of bits. The carry-save unit consists of 

n full adders, each of which computes a single sum and carries 

bit based solely on the corresponding bits of the three input 

numbers. The entire sum can then be computed by shifting the 

carry sequence left by one place and appending a 0 to the front 

(most significant bit) of the partial sum sequence and adding 

this sequence with RCA produces the resulting n+1-bit value. 

This process can be continued indefinitely, adding an input for 

each stage of full adders, without any intermediate carry 

propagation. These stages can be arranged in a binary tree 

structure, with cumulative delay logarithmic in the number of 

inputs to be added, and invariant of the number of bits per input. 

The main application of carry save algorithm is, well known for 

multiplier architecture is used for efficient CMOS 

implementation of much wider variety of algorithms for high 

speed digital signal processing .CSA applied in the partial 

product line of array multipliers will speed up the carry 

propagation in the array. 



DHANYA M RAVI 

International Journal of VLSI System Design and Communication Systems 

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448 

 
Fig.5. 4-bit Carry Save Adder. 

      Basically, carry save adder is used to compute sum of three 

or more n-bit binary numbers. Carry save adder is same as a full 

adder. As shown in the Fig.5, here we are computing sum of 

two 4-bit binary numbers, so we take 4 full adders at first stage. 

Carry save unit consists of 4 full adders, each of which 

computes single sum and carry bit based only on the 

corresponding bits of the two input numbers. Let X and Y are 

two 4-bit numbers and produces partial sum and carry as S and 

C as shown in the below : 

Si =  Xi  xor  Yi  ; Ci  =  Xi  and  Yi  

The final addition is then computed as: 

 Shifting the carry sequence C left by one place. 

 Placing a 0 to the front (MSB) of the partial sum 

sequence S. 

 Finally, a ripple carry adder is used to add these two 

together and computing the resulting sum. 

Carry Save Adder Computataion: 

X:  1 0 0 1 1 

Y:  1 1 0 0 1 

Z:    +  0 1 0 1 1 

S:  0 0 0 0 1 

C:    +  1 1 0 1 1 

SUM:  1 1 0 1 1 1 

 

      In this design 126 bit carry save adder  is used since the 

output of the multiplier is 126 bits (2N). The carry save adder 

minirnize the addition from 3numbers to 2 numbers. The 

propagation delay is 3gates despite of the number of bits. The 

carry save adder contains n full adders, computing a single sum 

and carries bit based mainly on the respective bits of the three 

input numbers. The entire sum can be calculated by shifting the 

carry sequence left by one place and then appending a 0 to most 

significant bit of the partial sum sequence.  Now the partial sum 

sequence is added with ripple carry unit resulting in n + 1 bit 

value. The ripple carry unit refers to the process where the 

carryout of one stage is fed directly to the carry in of the next 

stage. This process is continued without adding any 

intermediate carry propagation. Since the representation of 126 

bit carry save adder is infeasible, hence a typical 6 bit carry save 

adder is shown in the fig.6. Here we are computing the sum of 

two 126 bit binary numbers, then 126 half adders at the first 

stage instead of 126 full adder. Therefore , carry save unit 

comprises of 126 half adders, each of which computes single 

sum and carry bit based only on the corresponding bits of the 

two input numbers.  

 
Fig.6. bit carry save adder. 

    If x and y are supposed to be two 126 bit numbers then it 

produces the partial products and carry as S and C respectively. 

                                                                          (1) 

                                                                             (2) 

   During the addition of two numbers using a half adder, two 

ripple carry adder is used. This is due the fact that ripple carry 

adder cannot compute a sum bit without waiting for the 

previous carry bit to be produced, and hence the delay will be 

equal to that of n full adders. However a carry-save adder 

produces all the output values in parallel, resulting in the total 

computation time less than ripple carry adders. So, Parallel In 

Parallel Out (PIPO) is used as an accumulator in the final stage. 

 

III. INTRODUCTION OF WALLACE MULTIPLIER 

      Luigi WALLACE, the computer scientist has invented the 

WALLACE hardware multiplier during 1965. WALLACE 

multiplier is extracted form of parallel multiplier [5]. It is 

slightly faster and requires fewer gates. Different types of 

schemes are used in parallel multiplier. The WALLACE scheme 

is one of the parallel multiplier schemes that essentially 

minimize the number of adder stages required to perform the 

summation of partial products. This is achieved by using full 

and half adders to reduce the number of rows in the matrix 

number of bits at each summation stage. Even though the 

WALLACE multiplication has regular and less complex 

structure, the process is slower in manner due to serial 

multiplication process. Further, WALLACE multiplier is less 

expensive compared to that of Wallace tree multiplier. Hence, in 

this paper, WALLACE multiplier is designed and analysed by 

considering different methods using full adders involving 

different logic styles. 

A.  Implementation of Wallace Multiplier 

   The algorithm of WALLACE multiplier is based on the below 

matrix form shown in Fig.2. The partial product matrix is 
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formed in the first stage by AND stages which is illustrated in 

Fig.7. 

 
Fig.7.1-4x4 WALLACE Algorithm. 

Steps involved in WALLACE TREE multipliers Algorithm:  

 Multiply (that is - AND) each bit of one of the arguments, 

by each bit of the other, yielding N results. Depending on 

position of the multiplied bits, the wires carry different 

weights. 

  Reduce the number of partial products to two layers of full 

adders as shown in Fig.8.  

  Group the wires in two numbers, and add them with a 

conventional adder.  

 
Fig.8. Product terms generated by a collection of AND gates. 

B. Wallace Tree Multiplier Using Ripple Carry Adder  

      Ripple Carry Adder is the method used to add more number 

of additions to be performed with the carry in sand carry outs 

that is to be chained. Thus multiple adders are used in ripple 

carry adder. It is possible to create a logical circuit using several 

full adders to add multiple-bit numbers. Each full adder inputs a 

Cin, which is the Cout of the previous adder. This kind of adder 

is a ripple carry adder, since each carry bit "ripples" to the next 

full adder. The proposed architecture of WALLACE multiplier 

algorithm using RCA is shown in Figs.9 to 11 Take any 3 

values with the same weights and gives them as input into a full 

adder. The result will be an output wire of the same weight.  

 Partial product obtained after multiplication is taken at the 

first stage. The data‟s are taken with 3 wires and added 

using adders and the carry of each stage is added with next 

two data‟s in the same stage. 

  Partial products reduced to two layers of full adders with 

same procedure.  

 At the final stage, same method of ripple carry adder 

method is performed and thus product terms p1 to p8 is 

obtained.   

 
Fig.9.4x4  Wallace Multiplier Implementation. 

 
Fig.10. Method 8x8 Wallace Multiplier. 
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Fig.11. Column Compression scheme for 8x8 wallace 

multiplier. 

Advantages: 

 Compare to normal multiplication dalay is very low in 

Wallace multiplication. 

  Power consumption in the Wallace multiplier is low.   

 Speed is very fast i.e delay and power is inversely 

proposals to each other.     

Disadvantages: Memory occupation in Wallace tree multiplier 

is high, that is huge number of gates are used.  A Wallace tree is 

an efficient implementation of a digital circuit that multiplies 

two integers, devised by an Australian Computer Scientist. The 

Wallace tree has three steps: 

 Multiply (that is - AND) each bit of one of the 

arguments, by each bit of the other, yielding results. 

Depending on position of the multiplied bits, the wires 

carry different weights, for example wire of bit 

carrying result is 32. 

 Reduce the number of partial products to two by layers 

of full and half adders. 

 Group the wires in two numbers, and add them with a 

conventional adder. 

 The second phase works as long as there are three or 

more wires with the same weight add a following 

layer: 

 Take any three wires with the same weights and 

input them into a full adder. The result will be an 

output wire of the same weight and an output wire 

with a higher weight for each three input wires. 

 If there are two wires of the same weight left, input 

them into a half adder. 

 If there is just one wire left, connect it to the next 

layer. 

 

   The benefit of the Wallace tree is that there are only reduction 

layers, and each layer has propagation delay. As making the 

partial products is and the final addition is, the multiplication is 

only, not much slower than addition (however, much more 

expensive in the gate count). Naively adding partial products 

with regular adders would require time. These computations 

only consider gate delays and don't deal with wire delays, which 

can also be very substantial. The Wallace tree can be also 

represented by a tree of 3/2 or 4/2 adders. Generally it is 

combined with Booth encoding. 

IV. RESULTS 

Results of this paper is as shown in bellow Figs.12 to 14. 

 

 
Fig. 12. Schematics. 

 
Fig.13. RTL Schematics. 
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Fig.14. Waveforms. 

V. CONCLUSION 

   The Design of high performance 32-bit Multiplier was 

implemented in this paper. The total unit operates at a frequency 

of 215MHz‟s with a total power dissipation of 155.532mW.  

Since  the  delay  of  32-bit Multiplication is  less,  this  design  

can be used in the system which  requires  high  performance  in  

processors involving large number of bits of the operation. The 

functionality of the Multiplication is verified using XILINX ISE 

12.3i and synthesized using XILINX synthesizer. 
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