

ISSN 2322-0929

Vol.04, Issue.06,

June-2016,

Pages:0442-0448

 www.ijvdcs.org

Copyright @ 2016 IJVDCS. All rights reserved.

Design and Implementation of Wallace Tree Multiplier using Higher

Order Compressors
DHANYA M RAVI

Assistant Professor, Dept of ECE, Indo American Institutions Technical Campus, Anakapalli, AP, India,

 E-mail: dhanu037@gmail.com.

Abstract: The Wallace tree multiplier is considered as faster than a simple array multiplier and is an efficient implementation of a

digital circuit which is multiplies two integers. A Wallace tree multiplier is a parallel multiplier which uses the carry save addition

algorithm to reduce the latency. There are many researchers have been worked on the design of increasingly more efficient

multipliers. They aim at achieve higher speed and lower power consumption even while occupying reduced silicon area. The

Wallace tree basically multiplies two unsigned integers. The new architecture enhances the speed performance of the widely

acknowledged WTM. The synthesis is carried out by Xilinx ISE tool.

Keywords: WTM (Wallace Tree Multiplier), Xilinx ISE.

I. INTRODUCTION

 Multiplication is one of the most area consuming arithmetic

operations in high-performance circuits. As a consequence

many research works deal with low power design of high speed

multipliers. Multiplication involves two basic operations, the

generation of the partial products and their sum, performed

using two kinds of multiplication algorithms, serial and parallel.

Serial multiplication algorithms use sequential circuits with

feedbacks: inner products are sequentially produced and

computed. Parallel multiplication algorithms often use

combinational circuits and do not contain feedback structures.

Multiplication of two bits produces an output which is twice

that of the original bit. It is usually needed to truncate the partial

product bits to the required precision to reduce area cost. Fixed-

width multipliers, a subset of truncated multipliers, compute

only n most significant bits (MSBs) of the 2n-bit product for n ×

n multiplication and use extra correction/compensation circuits

to reduce truncation errors. In previous related papers, to reduce

the truncation error by adding error compensation circuits. So

that the output will be précised. In this approach jointly

considers the tree reduction, truncation, and rounding of the PP

bits during the design of fast parallel truncated multipliers so

that the final truncated product satisfies the precision

requirement. In our approach truncation error is not more than

1ulp (unit of least position), so there is no need of error

compensation circuits, and the final output will be précised. The

figure below shows how a Wallace Tree Multiplier can be

realized for the 8-bit i.e. an 8x8 multiplier.

Advantages:

 Compare to dada multiplication delay is very high in

wallace multiplication.

 Power consumption in the Wallace multiplier is high.

 Speed in Wallace multipier is normal compare to dada

multiplier i.e delay and power is inversely proposals to each

other. (delay is high).

Fig.1.Method of Reduction On 8x8 Multiplier.

Disadvantages:

 Memory occupation in wallace multiplier is high copare to

dada multiplier that is huge number of gates fabricated on a

chip.

 Compare to dada multiplier Wallace multiplier gives low

performance.i.e dada is modified version of the Wallace

multiplier.

DHANYA M RAVI

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

 The multiplier is one of the key hardware blocks in most of

the digital and high performance systems such as digital signal

processors and microprocessors. With the recent advances in

technology, many researchers have worked on the design of

increasingly more efficient multipliers as shown in Fig.1. They

aim at offering higher speed and lower power consumption even

while occupying reduced silicon area. This makes them

compatible for various complex and portable VLSI circuit

implementations. However, the fact remains that the area and

speed are two conflicting performance constraints. Hence,

innovating increased speed always results in larger area. In this

paper, we arrive at a better trade-off between the two, by

realizing a marginally decreased delay which proportionally

increases the speed performance through a small rise in the

number of transistors. The new architecture enhances the speed

performance of the widely acknowledged Wallace tree

multiplier. The structural optimization is performed on the

conventional Wallace multiplier, in such a way that the latency

of the total circuit reduces considerably.

II. INTRODUCTION TO DIFFERENT ADDERS

A. Binary Adder Notations and Operations

 As mentioned previously, adders in VLSI digital systems use

binary notation. In that case, add is done bit by bit using

Boolean equations.

Fig.1. 1-bit Half Adder.

 Consider a simple binary add with two n-bit inputs A;B and a

one-bit carry-in cin along with n-bit output S.

S = A + B + Cin

Where A = an-1, an-2……a0; B = bn-1, bn-2……b0.

 The + in the above equation is the regular add operation.

However, in the binary world, only Boolean algebra works. For

add related operations, AND, OR and Exclusive-OR (XOR) are

required. In the following documentation, a dot between two

variables (each with single bit), e.g. a _ b denotes 'a AND b'.

Similarly, a + b denotes 'a OR b' and a _ b denotes 'a XOR b'.

Considering the situation of adding two bits, the sum s and carry

c can be expressed using Boolean operations mentioned above.

Si =ai ^ bi

Ci + 1 =ai . bi

 The Equation of Ci+1 can be implemented as shown in Fig.2.

In the figure, there is a Half adder, which takes only 2 input bits.

The solid line highlights the critical path, which indicates the

longest path from the input to the output. Equation of ci+1 can

be extended to perform full add operation, where there is a carry

input.

Si =ai ^ bi ^ ci

Ci + 1 = ai . bi + ai . ci + bi . ci

Fig.2. 1-bit Full Adder.

 A Full adder can be built based on Equation above. The block

diagram of a 1-bit full adder is shown in Fig.2.2. The full adder

is composed of 2 half adders and an OR gate for computing

carry-out. Using Boolean algebra, the equivalence can be easily

proven. To help the computation of the carry for each bit, two

binary literals are introduced. They are called carry generate and

carry propagate, denoted by gi and pi. Another literal called

temporary sum ti is employed as well. There is relation between

the inputs and these literals.

Gi = ai .bi

Pi = ai + bi

Ti = ai^ bi

Where i is an integer and 0i < n.

With the help of the literals above, output carry and sum at each

bit can be written as:

Ci + 1 = gi + pi .ci

Si = ti ^ ci

 In some literatures, carry-propagate pi can be replaced with

temporary sum ti in order to save the number of logic gates.

Here these two terms are separated in order to clarify the

concepts. For example, for Ling adders, only pi is used as carry-

propagate. The single bit carry generate/propagate can be

extended to group version G and P. The following equations

show the inherent relations.

Gi : k = Gi : j + Pi : j . Gj – 1 : k

Pi : k = Pi : j . Pj-1: k

Where i : k denotes the group term from i through k.

 Using group carry generate/propagate, carry can be expressed

as expressed in the following equation.

Ci + 1 = Gi : j + Pi : j . Cj

B. Ripple Carry Adder

 Ripple carry adder is an n-bit adder built from full adders.

Fig.3 shows a 4-bit ripple carry adder. One full adder is

responsible for the addition of two binary digits at any stage of

the ripple carry. The carryout of one stage is fed directly to the

carry-in of the next stage. Even though this is a simple adder

Design and Implementation of Wallace Tree Multiplier Using Higher Order Compressors

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

and can be used to add unrestricted bit length numbers, it is

however not very efficient when large bit numbers are used.

Fig.3. 4-bRippleCarryAdder.

 One of the most serious drawbacks of this adder is that the

delay increases linearly with the bit length. The worst-case

delay of the RCA is when a carry signal transition ripples

through all stages of adder chain from the least significant bit to

the most significant bit, which is approximated by:

T = (n-1) tc + ts

Delay: The latency of a 4 bit ripplecarry adder can be derived

by considering the worst-case signal propagation path. We can

thus write the following expressions:

TRCA-4bit = TFA(A0,B0→Co)+T FA (Cin→C1)+TFA

(Cin→C2)+ TFA (Cin→S3)

And, it is easy to exten d to k-bit RCA:

TRCA-4bit = TFA(A0,B0→Co)+(K-2)* TFA (Cin→Ci)+ TFA

(Cin→Sk-1).

Drawbacks: Delay increases linearly with the bit length and

Not very efficient when large bit numbers are used.

C. Carry Look-Ahead Adder

 Lookahead carry algorithm speed up the operation to

perform addition, because in this algorithm carry for the next

stages is calculated in advance based on input signals. In CLA,

the carry propagation time is reduced to O(log2(Wd)) by using a

tree like circuit to compute the carry rapidly. Fig.4 shows the 4-

bit Carry Look-Ahead Adder.

Fig.4. 4-bit Carry Look Ahead Adder.

 The CLA exploits the fact that the carry generated by a bit-

position depends on the three inputs to that position. If „X‟ and

„Y„ are two inputs then if X=Y=1, a carry is generated

independently of the carry from the previous bit position and if

X=Y= 0, no carry is generated. Similarly if X ≠ Y, a carry is

generated if and only if the previous bit-position generates a

carry. „C‟ is initial carry, “S” and “Cout” are output sum and

carry respectively, then Boolean expression for calculating next

carry and addition is:

Pi = Xi xor Yi -- Carry Propagation

Gi = Xi and Yi -- Carry Generation

Ci + 1 =Gi or (Pi and Ci) -- Next Carry

Si = Xi xor Yi xor Ci -- Sum Generation

Thus, for 4-bit adder, we can extend the carry, as shown below:

C1 = G0 + P0 · C0

C2 = G1 + P1 · C1 = G1 + P1 · G0 + P1 · P0 · C0

C3 = G2 + P2 · G1 + P2 · P1 · G0 + P2 · P1 · P0 · C0

C4 = G3 + P3 · G2 + P3 · P2 · G1 + P3 · P2 · P1 · G0+ P3 · P2 · P1 ·

P0 · C0

 As with many design problems in digital logic, we can make

tradeoffs between area and performance(delay). In the case of

adders,wecancreatefaster(butlarger)designsthantheRCA.TheCarr

yLookaheadAdder(CLA)isoneofthese designs (there are others

too, but we will only look at the CLA).

Drawbacks: For long bit length, a carry look-ahead adder is not

practical, but a hierarchical structure one can improve much.

The disadvantage of CLA is that the carry logic block gets very

complicated for more than 4-bits. For that reason, CLA‟s are

usual implemented as 4-bit modules and are used in a

hierarchical structure to realize adders that have multiples of 4-

bits.

D. Carry Save Adder

 The carry-save adder reduces the addition of 3 numbers to

the addition of 2 numbers. The propagation delay is 3 gates

regardless of the number of bits. The carry-save unit consists of

n full adders, each of which computes a single sum and carries

bit based solely on the corresponding bits of the three input

numbers. The entire sum can then be computed by shifting the

carry sequence left by one place and appending a 0 to the front

(most significant bit) of the partial sum sequence and adding

this sequence with RCA produces the resulting n+1-bit value.

This process can be continued indefinitely, adding an input for

each stage of full adders, without any intermediate carry

propagation. These stages can be arranged in a binary tree

structure, with cumulative delay logarithmic in the number of

inputs to be added, and invariant of the number of bits per input.

The main application of carry save algorithm is, well known for

multiplier architecture is used for efficient CMOS

implementation of much wider variety of algorithms for high

speed digital signal processing .CSA applied in the partial

product line of array multipliers will speed up the carry

propagation in the array.

DHANYA M RAVI

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

Fig.5. 4-bit Carry Save Adder.

 Basically, carry save adder is used to compute sum of three

or more n-bit binary numbers. Carry save adder is same as a full

adder. As shown in the Fig.5, here we are computing sum of

two 4-bit binary numbers, so we take 4 full adders at first stage.

Carry save unit consists of 4 full adders, each of which

computes single sum and carry bit based only on the

corresponding bits of the two input numbers. Let X and Y are

two 4-bit numbers and produces partial sum and carry as S and

C as shown in the below :

Si = Xi xor Yi ; Ci = Xi and Yi

The final addition is then computed as:

 Shifting the carry sequence C left by one place.

 Placing a 0 to the front (MSB) of the partial sum

sequence S.

 Finally, a ripple carry adder is used to add these two

together and computing the resulting sum.

Carry Save Adder Computataion:

X: 1 0 0 1 1

Y: 1 1 0 0 1

Z: + 0 1 0 1 1

S: 0 0 0 0 1

C: + 1 1 0 1 1

SUM: 1 1 0 1 1 1

 In this design 126 bit carry save adder is used since the

output of the multiplier is 126 bits (2N). The carry save adder

minirnize the addition from 3numbers to 2 numbers. The

propagation delay is 3gates despite of the number of bits. The

carry save adder contains n full adders, computing a single sum

and carries bit based mainly on the respective bits of the three

input numbers. The entire sum can be calculated by shifting the

carry sequence left by one place and then appending a 0 to most

significant bit of the partial sum sequence. Now the partial sum

sequence is added with ripple carry unit resulting in n + 1 bit

value. The ripple carry unit refers to the process where the

carryout of one stage is fed directly to the carry in of the next

stage. This process is continued without adding any

intermediate carry propagation. Since the representation of 126

bit carry save adder is infeasible, hence a typical 6 bit carry save

adder is shown in the fig.6. Here we are computing the sum of

two 126 bit binary numbers, then 126 half adders at the first

stage instead of 126 full adder. Therefore , carry save unit

comprises of 126 half adders, each of which computes single

sum and carry bit based only on the corresponding bits of the

two input numbers.

Fig.6. bit carry save adder.

 If x and y are supposed to be two 126 bit numbers then it

produces the partial products and carry as S and C respectively.

 (1)

 (2)

 During the addition of two numbers using a half adder, two

ripple carry adder is used. This is due the fact that ripple carry

adder cannot compute a sum bit without waiting for the

previous carry bit to be produced, and hence the delay will be

equal to that of n full adders. However a carry-save adder

produces all the output values in parallel, resulting in the total

computation time less than ripple carry adders. So, Parallel In

Parallel Out (PIPO) is used as an accumulator in the final stage.

III. INTRODUCTION OF WALLACE MULTIPLIER

 Luigi WALLACE, the computer scientist has invented the

WALLACE hardware multiplier during 1965. WALLACE

multiplier is extracted form of parallel multiplier [5]. It is

slightly faster and requires fewer gates. Different types of

schemes are used in parallel multiplier. The WALLACE scheme

is one of the parallel multiplier schemes that essentially

minimize the number of adder stages required to perform the

summation of partial products. This is achieved by using full

and half adders to reduce the number of rows in the matrix

number of bits at each summation stage. Even though the

WALLACE multiplication has regular and less complex

structure, the process is slower in manner due to serial

multiplication process. Further, WALLACE multiplier is less

expensive compared to that of Wallace tree multiplier. Hence, in

this paper, WALLACE multiplier is designed and analysed by

considering different methods using full adders involving

different logic styles.

A. Implementation of Wallace Multiplier

 The algorithm of WALLACE multiplier is based on the below

matrix form shown in Fig.2. The partial product matrix is

Design and Implementation of Wallace Tree Multiplier Using Higher Order Compressors

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

formed in the first stage by AND stages which is illustrated in

Fig.7.

Fig.7.1-4x4 WALLACE Algorithm.

Steps involved in WALLACE TREE multipliers Algorithm:

 Multiply (that is - AND) each bit of one of the arguments,

by each bit of the other, yielding N results. Depending on

position of the multiplied bits, the wires carry different

weights.

 Reduce the number of partial products to two layers of full

adders as shown in Fig.8.

 Group the wires in two numbers, and add them with a

conventional adder.

Fig.8. Product terms generated by a collection of AND gates.

B. Wallace Tree Multiplier Using Ripple Carry Adder

 Ripple Carry Adder is the method used to add more number

of additions to be performed with the carry in sand carry outs

that is to be chained. Thus multiple adders are used in ripple

carry adder. It is possible to create a logical circuit using several

full adders to add multiple-bit numbers. Each full adder inputs a

Cin, which is the Cout of the previous adder. This kind of adder

is a ripple carry adder, since each carry bit "ripples" to the next

full adder. The proposed architecture of WALLACE multiplier

algorithm using RCA is shown in Figs.9 to 11 Take any 3

values with the same weights and gives them as input into a full

adder. The result will be an output wire of the same weight.

 Partial product obtained after multiplication is taken at the

first stage. The data‟s are taken with 3 wires and added

using adders and the carry of each stage is added with next

two data‟s in the same stage.

 Partial products reduced to two layers of full adders with

same procedure.

 At the final stage, same method of ripple carry adder

method is performed and thus product terms p1 to p8 is

obtained.

Fig.9.4x4 Wallace Multiplier Implementation.

Fig.10. Method 8x8 Wallace Multiplier.

DHANYA M RAVI

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

Fig.11. Column Compression scheme for 8x8 wallace

multiplier.

Advantages:

 Compare to normal multiplication dalay is very low in

Wallace multiplication.

 Power consumption in the Wallace multiplier is low.

 Speed is very fast i.e delay and power is inversely

proposals to each other.

Disadvantages: Memory occupation in Wallace tree multiplier

is high, that is huge number of gates are used. A Wallace tree is

an efficient implementation of a digital circuit that multiplies

two integers, devised by an Australian Computer Scientist. The

Wallace tree has three steps:

 Multiply (that is - AND) each bit of one of the

arguments, by each bit of the other, yielding results.

Depending on position of the multiplied bits, the wires

carry different weights, for example wire of bit

carrying result is 32.

 Reduce the number of partial products to two by layers

of full and half adders.

 Group the wires in two numbers, and add them with a

conventional adder.

 The second phase works as long as there are three or

more wires with the same weight add a following

layer:

 Take any three wires with the same weights and

input them into a full adder. The result will be an

output wire of the same weight and an output wire

with a higher weight for each three input wires.

 If there are two wires of the same weight left, input

them into a half adder.

 If there is just one wire left, connect it to the next

layer.

 The benefit of the Wallace tree is that there are only reduction

layers, and each layer has propagation delay. As making the

partial products is and the final addition is, the multiplication is

only, not much slower than addition (however, much more

expensive in the gate count). Naively adding partial products

with regular adders would require time. These computations

only consider gate delays and don't deal with wire delays, which

can also be very substantial. The Wallace tree can be also

represented by a tree of 3/2 or 4/2 adders. Generally it is

combined with Booth encoding.

IV. RESULTS

Results of this paper is as shown in bellow Figs.12 to 14.

Fig. 12. Schematics.

Fig.13. RTL Schematics.

Design and Implementation of Wallace Tree Multiplier Using Higher Order Compressors

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.06, June-2016, Pages: 0442-0448

Fig.14. Waveforms.

V. CONCLUSION

 The Design of high performance 32-bit Multiplier was

implemented in this paper. The total unit operates at a frequency

of 215MHz‟s with a total power dissipation of 155.532mW.

Since the delay of 32-bit Multiplication is less, this design

can be used in the system which requires high performance in

processors involving large number of bits of the operation. The

functionality of the Multiplication is verified using XILINX ISE

12.3i and synthesized using XILINX synthesizer.

VI. REFERENCES

[1] B. Cope, P. Cheung, W. Luk, and L. Howes, “Performance

Comparison of Graphics Processors to Reconfigurable Logic:

ACase Study,” IEEE Trans. Computers, vol. 57, no. 4, pp. 433-

446,Apr. 2010.

[2] S. Dikmese, A. Kavak, K. Kucuk, S. Sahin, A. Tangel, and

H.Dincer,“Digital Signal Processor against Field Programmable

Gate ArrayImplementations of Space-Code Correlator Beam

former for SmartAntennas,” IET Microwaves, Antennas

Propagation, vol. 4, no. 5,pp. 573-577, May 2010.

[3] S. Roy and P. Banerjee, “An Algorithm for Trading off

QuantizationError with Hardware Resources for MATLAB-

based FPGA Design,”IEEE Trans. Computers, vol. 54, no. 5,

pp. 666-676, July 2005.

[4] F. Schneider, A. Agarwal, Y.M. Yoo, T. Fukuoka, and Y.

Kim,“A Fully Programmable Computing Architecture for

MedicalUltrasound Machines,” IEEE Trans. Information

Technology inBiomedicine, vol. 14, no. 2, pp. 536-540, Mar.

2010.

[5] J. Hill, “The Soft-Core Discrete-Time Signal Processor

Peripheral[Applications Corner],” IEEE Signal Processing

Magazine, vol. 26,no. 2, pp. 112-115, Mar. 2007.

[6] J.S. Kim, L. Deng, P. Mangalagiri, K. Irick, K. Sobti, M.

Kandemir,V. Narayanan, C. Chakrabarti, N. Pitsianis, and X.

Sun, “AnAutomated Framework for Accelerating Numerical

Algorithmson Reconfigurable Platforms Using Algorithmic/

Architectural Optimization,” IEEE Trans. Computers, vol. 56,

no. 12, pp. 1654-1665, Dec. 2007.

[5] H. Lange and A. Koch, “Architectures and Execution

Modelsfor Hardware/Software Compilation and their System-

LevelRealization,” IEEE Trans. Computers, vol. 57, no. 10, pp.

1363-1355, Oct. 2010.

[6] L. Zhuo and V. Prasanna, “High-Performance Designs for

LinearAlgebra Operations on Reconfigurable Hardware,” IEEE

Trans.Computers, vol. 55, no. 6, pp. 1055-1051, Aug. 2006.

[7] C. Mancillas-Lopez, D. Chakraborty, and F.R. Henriquez,

“ReconfigurableHardware Implementations of Tweakable

EncipheringSchemes,” IEEE Trans. Computers,, vol. 57, no. 11,

pp. 1545-1561, Nov. 2010.

[10] T. Guneysu, T. Kasper, M. Novotny, C. Paar, and A.

Rupp,“Cryptanalysis with COPACOBANA,” IEEE Trans.

Computers,vol. 55, no. 11, pp. 1476-1513, Nov. 2006.

