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Omni-directional Robot ﬂ&a‘.
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Principles ﬂIH-
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® Requirements

® Model (Component-Connection-Behavior Model)

e Powertful Computer

® Benefits
® General Methodology
® Easy to maintain
® Easy adaptable to other problems

® Cost reduction




Definitions ﬁIH-
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1. Diagnosis System: A diagnosis system
(SD,COMP) consists of a system description SD,
i.e., a set of FOL sentences describing the
components behavior and the system structure,

and a set of diagnosis components COMP.
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Definitions I Im-
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2. Diagnosis: Let (SD,COMP) be a diagnosis system
and OBS a set of observations. A set ACCOMP is a
diagnosis iff
SDUOBSU{ab(C) | Ce COMP\A}U{ab(C) | CeA}
1s consistent.

EFxample: AND oat
B A =

OBS= {m](al) true/\in,(a,)=true/\in,(a,)=true Nout(a,)=false }

true 1, out 1'n1

true in, in, & out ﬁlse

@ a1 true
K a, /




Proposition ﬂ'ﬂ,.,.
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1. A diagnosis exists for (SD,COMP,0BS) itt
SDUOBS is consistent.,

Proof: If SDUOBS is inconsistent, then obviously it
is impossible for all AcCCOMP to fulfill the

diagnosis condition. So there exists no
1 . On t]ne nf]qpr ]/\r)nr:l 1F Cﬂl IHRS 1S

UlLliLlL1l 11AQ1l1i\l 11

consistent at least COMP is a dlagnosm n




Proposition ﬂ'ﬂ,.,.
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{} is a diagnosis for (SD,COMP,0BS) iff
SDUOBSU{7ab(C) | Ce COMP} is consistent.

. Everv superset of a diasnosis is a diasnosis.
y sup g g

. If Ais a diagnosis for (SD,COMP,0BS), then for

each C cA,
/7 7\ | /"‘ ravav Vs L 1 7 77— \
bUUUbbUi “ab(C) | CeCOM \A} Fab(C)




Proposition ﬂ'ﬂ,.,.
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Proof: If A={} the result is vacuously. Suppose then
that A={C,,...,C,} and that the proposition is
false. Then there exists a C, such that
SDUOBSU{7'ab(C) | C€ COMP\A} Fab(C). From
the definition of |= follows that there must be a
lomcal Model M, with the property

|= SDUOBSU {7ab(C) | CE COMP\A} — Fab(C).
Now we can conclude F 7ab(C)) which is in

contradiction with our initial assumption CIEA. u

/




Proposition ﬂIH-
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5. Ais a diagnosis for (SD,COMP,0BS) iff
SDUOBSU {7ab(C) | Ce COMP\A} is consistent.




Definition ﬁIH-
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3. A contlict set for (SD,COMP,0BS) is a set
COZCOMP such that SDUOBSU{ab(C) | CeCO}

is inconsistent. A conflict set is minimal if no

proper subset is a conflict set.

~




Proposition ﬂIH-
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6. A €COMP is a diagnosis for (SD,COMP,0BS) iff
A is a minimal set such that COMP/ A is not a

conflict set.




Definition ﬁIH.
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4. Suppose Cis a collection of sets. A hitting set
for Cis a set HCU,_ S such that HNS#0 tor
each S€C. A hitting set is minimal if no proper
subset is a hitting set.

~




Theorem

7. A cCOMPi

peETy
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is a (minimal) diagnosis for

(SD,COMP,0BS) iff A is a (minimal) hitting set

for the coll

Proof: (1) By

ection of conflicts set.

proposition 6 COMP\A is not a

contlict set for (SD COMP,0BS). Hence, every

is a hltting

set f the collection of conflict sets.

(2) We now show that COMP\A is no conflict. If

it is a conflict set A would not hit it,

contradicting the fact that Ais a hitting set.




Computing Hitting Sets Eéjg
F ... collection of contlicts

I. Let D represent a growing dag. Generate a node which will

be the root of the dag.

2. Process the nodes in D in breath-first order. To process a
node n:
a.  Detine H(n) to be the set of edge labels on the path in D from

root to node n.

b. Iffor all xeF, x(H(n)#0 then label n by v'. Otherwise, label n
by X where Y. is the first member of F which x(H(n)=0.

c. Ifnislabeled by a set X€F, for each €%, generate a new
downward arc labeled with o. This arc leads to a new node m
with H(m)=H(n)U{o}.The new node m will be processed after
all nodes in the same generation as n have been processed.

3. Return the resulting dag D.
(-

~




Pruning Rules N Im-
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® Reusing nodes: This algorithm will not generate a

new m as a descendant of node n. There are two

cases to consider:

1.

If there is a node n’in D such that H(n")=H(n) U{o},
then let the g-arc under n point to this exiting node
n’. Hence, n’ will have more than one parent.

the end of this

A LA

o-arc as described in the basic HS-DAG algorlthm.

nfhpr‘xncp oenerate a new nnAp m 2t
N/ U111 V¥ A LA 1 AALLU QU 11 U AWVAN § 4111 UL U1

Closing: If there is anode n’ in D which is
labeled by v and H(n’)CH(n) then close the
node n. A label is not computed for n nor any
successor nodes are generated.




Pruning Rules ﬂIH-
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® Pruning: If the set ¥ is to label a node n and it has
been used previously, then attempt to prune D as
described in the following:

1. If there is a node n” which has been labeled by the set §’
of F where ¥CS’, then relabel n” with ¥. For any ¢in
$’\%, the —edge under n’ is no longer allowed. The
node connected by this edge and all its descendants are
removed, except those nodes with another ancestor
which is not being removed. Note that this step may

eliminate the node which is Currently processed.

2. Interchange the sets S” and Y in the collection. Note

that this has the same effect as eliminating S’ from F.

~




Example HS-DAG ﬂIH.

* F={1a.b§, ibsc,{ascy, 1bydf, 1by

n2: {b},{a,c}




Drawback HS-DAG ﬂI.H.
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® Need to know or compute conflict sets in
advance

® [dea: Compute conflict set incrementally when
they are required by the HS-DAG algorithm

® Theorem Prover: TP(SD,CH,OBS) denotes a
theorem prover call returning a (not necessarily

minimal) contlict set if one exists, i.e.,
SDUOBSU{7ab(C) | Ce CH} is inconsistent, and 4
otherwise.

~




Computing Diagnoses ﬂIrmz-

Diagnose(SD,COMP,0BS)

1.
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Generate a pruned hs-dag D for the collection F
of contlict sets for (SD,COMP;0BS) as described
previously, except that whenever, in the process

of generating D a node n of D needs access to F

1t f“f\mY\111‘D 11-0 ]0]/\@] ]’)]’\D] 1-1«01- r:l

o
LU LUVl J.J.I_lu LLLLLLLL AU § 2

TP(SD,COMP\H(n),OBS).
Return {H(n)|n is a node of D labeld by v} .
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Example 1 Bit Full Adder ﬂIH.
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OBS: A=1 ) B:O’ Cm:] > §=1 > Cout:O




Example Diagnhose I Im-
0: 1) Graz Universty of Teohnology
n0: {},
TP(SD,COMP,0BS)
o il
X1 Al A2 0l
n4: {Ol},
nl: {XI}, @ TP(SD,coMP/{01},085) ]
TP(SD,COMP/ {X1},0BS) (X1,X2)
v X1 X2
112: {Al’}, n3: {AZ},
TP(SD,COMP/{A1},08S) () TP(sD,coMP/ {A2},085) ()
X1,X2} (X1,X2) n9: {01,XI}, @
] TP(SD,COMP/{01,X1},085) ()
X2 vi] x2\ * n10: {01,X2},
TP(SD,COMP/{01,X2},0BS
ns: {A1,X1}, @ o8 (2,120 mep, {01,X2},085)
TP(SD,COMP/ {A1,X1},08S) O Thisp.conp/ 142,208
X . . v ’ ’ ’
n6: {Al,X2}, n7: {A2,X1},
@ TP(SD,COMP/ {A1,X2},0BS) TP(SD,COMP/{A2,XI},0BS)
K (X1,42,01} % /
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Conflicts 1 Bit Full Adder “Im-
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Multiple Diag. Candidates Eé"g

® Problem: How to distinguish between several

diagnoses candidates (discrimination)?
® [dea: Use additional measurements?

e Additional measurements are i.e. costly. How to

select the most valuable additional measurement?

~




Measurement Selection ﬂIrmz-
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® Definition 5: A diagnosis A for (SD,COMP,0BS)
predicts I iff
SDUOBSU {ab(C) | CEA}YU{ab(C) | Ce COMP\A} ETI
i.e., on the assumption that the components of A are
all faulty, and the remaining components are all

functioning normally, the system behavior 11 must

hold.
® Proposition 8: A diagnosis A for (SD,COMP,0OBS)
predicts I iff
o SDUOBSU {—ab(C) | CE COMP\A} FTI
A, %
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Measurement Selection “IH-

Graz Unversty of Technology
® Theorern 9. Suppose €V€I'y diagnosis Of

(SD,COMP,0BS) predicts one of 11,711. Then:

1. Every diagnosis which predicts 11 is a diagnosis for
(SD,COMP,0BSU {H})

2. No diagnosis which predicts —I1is a diagnosis
for (SD,COMP,0BSU{11}).

3. Any diagnosis for (SD,COMP,0BSU {11} ) which is
not a diagnosis for (§D,COMP,0BS) is a strict
superset of some diagnosis for (§D,COMP,OBS)

which predicts —I1. Any new diagnosis resulting

from the new measurement I 1 will be a strict

@ superset of some old diagnosis which predicted —I1. Y,




Measurement Selection ﬂIrmz-
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® Corollary 10: Suppose that {} is not a diagnosis
for (SD,COMP,0BS). Then under the assumption
of theorem 9, any new diagnosis arising from the
new measurement IT will be a multiple fault
diagnosis.

o pnvn”av 1 1 thhnop 1‘]’\ jl 1
UPPOUST Uldt ¢ 1

[ ]
nnt n r*]
ulial 11Ut d U

for (SD,COMP,0BS). Then under the assumption

of theorem 9, the single fault diagnoses for

(SD,COMP,0BSU{I1}) are precisely those of
(SD,COMP,0BS) which predict I1.

o

wn
(
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Next Measurement Point ﬂ&a‘.
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® Given: diagnosis candidates (minimal diagnoses
and their superset), fault probabilities for each
component p(C), possible measurements x=v,,
where x, denotes the quantity and v,, a value.

® R, ... candidates which remain if x, is measured to be
Vik
* S, ... candidates which X, must be Vo,

® U ... candidates which do not predict a value for x.

e R,=S.UU and S,NU=0
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Next Measurement Point ﬂ&a‘.
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® The best measurement is one which minimizes
the expected entropy of candidate probabilities

resulting form measurement:

H.(x) =Y px, =v)  H(x, = v,)

k=1

where v,,,....,v, are possible values.




. U
Next Measurement Point Im-
p(x; = v, )= p(Sy) +£;.,0 <&, < p(U))

S e, = pU)pS) = Y p,A)pU) = S pa(A)

AeS;;, AeUy,

p, (M) =]]p(C)- []0-p(C)

CeA CeCOMP\A

Assume: Each v, is equal likely iff a candidate does not predict a

value x, i.e., £,=p(U)/m




Next Measurement Point ﬂI.H.
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p(x; =v, )= p(S;)+ plU,)/m
H,(x,)=H+AH (x;)

AH (x,) = "Zpu,- ) In(p(x, =v,)) +

n-p(U»m(p(Ul-)j

m m

+ p(U;)-In(p(U;)) —

n= ‘Sik‘
min, (AH (x;)) = min,(H ,(x,))




Example Measur. Select.

(M1)=p(M2)=p(M3)=p(A1)=p(A2

peETy
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U
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Diagnosis p(A) o ox o
M1 0.06561 | 4 6 6
M1,M2 0.00729 | 4 6 6
M1,M2,M3 0.00081 i i i
MI1,M2,M3,A1 0.00009 | - i i
MI1,M2,M3,A1,A2 0.00001 i i i
M1,M2,M3,A2 0.00009 | - i ]
MI1,M2,A1 0.00081 i 6 6
M1,M2,A1,A2 0.00009 | - i 6
M1,M2,A2 0.00081 i i 6
M1,M3 0.00729 | 4 6 6
M1,M3,A1 0.00081 i 6 6
M1,M3,A1,A2 0.00009 | - 6 i
M1,M3,A2 0.00081 | 4 6 i
MI1,A1 0.00729 | - 6 6
M1,A1,A2 0.00081 i 6 6
MI1,A2 0.00729 | 4 6 6




Diagnosis p(A) X, X, X5
Al 0.06561 6 6 6
A1,M2 0.00729 6 6 6
A1,M2,M3 0.00081 6 - -
A1, M2 M3, A2 0.00009 6 - -
A1,M2 A2 0.00081 6 : 6
A1,M3 0.00729 6 6 6
A1,M3,A2 0.00081 6 6 -
A1,A2 0.00729 6 6 6
M2,M3 0.00729 6 4 8
M2 ,M3 /A2 0.00081 6 4 -
M2, A2 0.00729 6 4 6




Line X p(X)
X, Si4 0.08829
Sir61 0.10539
U, 0.01171
X,=4 0.094145
X,=6 0.111245
X, Soag 0.01539
2161 0.18639
U, 0.00361
X,=4 0.017195
X,=6 0.188195
X, 3167 0.19368
3181 0.00729
U, 0.00442
X;=6 0.19589
X;=8 0.00950




Example Measur. Select. ﬂI.H.
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XI XZ X3
Entropy | -0.458637 -0.381701 -0.360562




Computing Measurements “IH-
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® Problem

® Previous algorithm fits not for large systems, use of

supersets

® Practical Solution

® Use only computed diagnose candidates, no subersets




Revised A

gorithm

Ty
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® D ... set of diagnoses for (SD,COMP,0BS)

plx;, =v,) = Zpd (A)

AeDncond (A)

where SDUOBS U{—ab(C)|C € COMP\ A}~ (x, = v, ) = cond(A)
v, € v, U undef |

H(x,) = Zp(xi =v, ) In(p(x; =v,))

® Search tor min, | H(x,) |

o




Example Measur. Select. ﬂI.H.
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Line X p(X)
X, X,=4 0.06561
X,=6 0.08019

X, X,=4 0.01458
X,=6 0.13122

X3 X;=6 0.13851
X,=8 0.06561

X, X, X,

Entropy -0.381071  -0.328138  -0.452532
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Who will replace faulty
components? E'}:jf,',

~ © NASA/JPL




U

razm
Graz Unhversty of Teohmology

The need for model-based .ﬁ
reasoning I

at runtime in robots are totally

® bad design, bad implementation, exogenous events, wear or
damage, uncertainty

® also military and commercial system fail frequently [Carlson &

Murphy 2005]

automatic detection, localization and repair desired for
systems with no or limited possible

general methods for a wide of systems needed
. properties of the systems (qualitative or quantitative)

. techniques fit perfectly




Qualitative Diagnosis ﬂ&a‘.
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* modeling and monitoring
® models and observations as [Reiter 1987]
o for efticiency reasons
® component-based modeling schema
* fault detection
o in the logical theory
* fault localization
® systematic of the inconsistencies (retract assumptions)
° properties
® needs models and observations

° reasoning possible

® usually more

~
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Example Robot Control
Software

MOTION
odometry

Drive

pose

lines SELF_LOC | PO |

—b
|::> VISION local_objects -

TRACKER

Ty
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global_objects -

Camera

control of our soccer and service robots

based on framework [Utz 2005]

independent software

communication via method calls or events (

diagnosis is based on the

based model [Friedrich 1999]

)

between modules




Software Model ﬂIH.
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MOTION
odometry
Drive pose
s SELF_LOC | 7" g lobal obi
S —
TRACKER |&lobalobjects
VISION local_objects
|

Camera

» TAB(MOTION)—ok(odometry)
» T AB(TRACKER)Aok(pose)/\ok(local_objects)—ok(global_objects)

<« ok(pose) — TAB(SELF_LOC)
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Monitoring, Diagnosis &
Repair

* Monitoring connections by

® periodic event production

® conditional event production

® periodic method call

® observer generate the observations
* Diagnosis

° triggered if a observer recognized a

o diagnosis (Reiter + LTUR [Minoux 1988])

. Repair

® planned of the effected modules (direct or indirect)

. Experiments

® successful automated from deadlocks and crashes

~

Ty
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Quantitative Diagnosis ﬂ&a‘.
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* modeling and monitoring

® probabilistic hybrid [Hotbaur 2005]
* fault detection and localization

® multi-hypotheses

® find the most operation mode (nominal or faulty)
° properties

° capable to deal with observations and uncertainty
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Symbolic Diagnose

'

Deliberative
Control

Movement Request

Path Planner/
Path Executor

Motion Constrains

Model-Based
Motion Controller

IPOJAl [eUOnRIdA() pARWTSH

A

Diagnosis

Engine

A

Meta
Motion—Model

—""'E Specialization

L

Concrete

<

Low-Level Control Signals

Motion—Model

Movement Observations

Robot Drive

Ty
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Framework

~




Fault Scenarios ﬂIH.
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1. transparent re—configuration

re-configuration retains full functionality (redundancy necessary)
2. controlled degrading of the functionality

reduction to a limited but known functionality

report of the new functionality to higher control layers
3. safe state

fault is too bad

report of that circumstance to higher control layers

~
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System Model ﬂIH.
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qualitative models too

describes and behaviors

handles and noise

probabilistic hybrid automata
A=<x,u,y, ELN>

® x .. continuous and discrete state variables (operation mode)

® u .. continuous and discrete input variables (control signals)
® y .. continuous and discrete output variables (observations)
® F .. equations of the systems dynamic in different mode

® T ..topology of the automata, mode transitions and probabilities

® N .. noise




Example - Differential Drive

/




: Quantitative Diagnosis

Process Graz Universt of Tohrelogy

 faults are modeled as

» fault detection & localization as

o problems are and noise

* inputs for diagnosis are input/output
* find the mode (ok or 70k)

- multi-hypotheses as a solution
o for continuous values
° for discrete states

* problem state

® pruning techniques
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Re-Configuration in Case “
TU

of a Fault N Graze

* by the controller

. the desired movements to low-level actuator commands

* on-line of the control laws (according the
detected faults)

. about the space of the possible movements

° gives up if needed

. higher layers

(path-planner,

mission planner)




Modeling of the
Kinematics

> uses rolling und sliding

* supports all of wheels
 castor wheels
« omni-wheels

« steered wheels

« standard wheels Ve
. of constraints of all ! /,,\[3(1*)
wheels models the kinematics Y Ol
* allows to determine the of fv
admissible and controllable - o
2 P -




Information in the Matrix D,

rank of the matrix 2 is equivalent to the DOFs of the robot

rank(%)=3 drive
mnk(Z) =2 position of the limited to a
rank(Z)=1 rotation around

mnk(Z) =0 movement possible

limitations of movements can be directly derived from the Matrix

ICR on the plane, a single line or a point




Example Omni-Drive ﬁ&;‘.
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Diagnosis Experiments
Omni-Drive

6000 6000 |+
5000 5000 |
4000+ 4000 +

= E E
£ 3000 £ 3000 E
B B =

2000 2000 |
1000 1000 |+

ok < < 0t

—3000 —-2000 —1000 0 —3000 —2000 —1000 0
x [mm] x [mm]
motor 1 fails

motor 2 fails

1000 -

0

6000 -

5000

4000

3000 -

2000

—-3000

—2000 —1000
X [mm]

motor 3 fails
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Conclusion I IH-
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« automated reaction to are desired for truly autonomous
systems
 model-based can help

® fault detection, localization and repair

® general method
- different modeling
® qualitative
® quantitative
* successful
® control software

® drive hardware

® robot belief (future research)




Thank You!
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