

EUROPEAN REGIONAL DEVELOPMENT FUND

Effect of Thermal & Chemical Hydrolysis on Sludge Dewatering, Drying and Incineration

Prof. Dr.-Ing. Peter Hartwig aqua & waste international GmbH Hannover, Germany

Estonia, 08.02.2017

Content

- Basics of hydrolysis
- Thermal hydrolysis for sewage sludge disintegration
- Impacts of hydrolysis on treatment plants operation
- Large scale systems
- Application examples

Hydrolysis

What is hydrolysis?

- Decomposition of long-chain, organic molecules into monomeric building blocks by addition of water
- Physical (temperature / pressure), chemical (acid / Base), biochemical by enzymes (aerobic / anaerobic)

Hydrolysis

Biochemical hydrolysis

- High significance in aerobic and anaerobic biodegradation of organic matter
- Enzymatically catalyzed (substrate specific)
- Speed-determining step in the conversion process
- Often limits acidification and methanation in the digester

Hydrolysis

Limitations of biochemical hydrolysis

- Substrates for which no enzymatic matrix is present are not hydrolyzed
- Hydrogels and extracellular polymeric substances (EPS) are either non or hardly degradable
- Consist mainly of polysaccharides and proteins
- Substances have high hydrophilic capacity (high consumption of polymers, poor dewaterability)

Overview (I)

- Disintegration of non or hard degradable substances by application of elevated temperatures and pressures.
- Increasing the degree of degradation of the treated sludge
- Not substrate specific
- Differentiation between processes with T<100 °C and normal pressure as well as T>100 °C and overpressure
- Substrates:
 - excess sludge (ES)
 - primary sludge (PS)
 - raw sludge (RS = ES + PS)
 - co-substrates (CS)

Overview (II)

- Thickening of the sludge before disintegration up to a DS of 6 % to 25% is reached for saving thermal energy
- Sludge heating:
 - **Indirectly** by means of heating medium (for example hot water, thermal oil)
 - **directly** by injection of superheated steam
- For uniform heat supply, processes are usually operated continuously or Semi-continuously

Polymerisation/Depolymerisation

Polimerisation Level

Advantages

- Higher biological availability of the substrates (increase in technical digestibility degree)
- Higher gas production (up to 50%)
- Reduction in viscosity (pumpable at comparatively high TS concentrations
- Better dewaterability (Less sludge amount and disposal costs)
- Hygienization of the sludge in case of raw sludge treatment
- Reduction of foaming in the digester by destroying the filamentous bacteria
- Capacity expansion (digested hydrolyzed sludge 12 to 15 days)
- Possibility of high load digestion at TS up to 12%
- Increasing the phosphorus recovery potential as MAP

Influence on gas production

Influence of energy input on sludge characteristics

Disadvantages

- Return load of sludge water (inert COD, ammonium, inert organic Nitrogen, Phosphorus) to the biological treatment stage of the WWTP
- Separate sludge water treatment may be required / useful
 could be returned into an advantage by N/P-recycling
- Increase COD in the effluent of the WWTP
- Increased operational costs (operation, maintenance)

Process steps for the hydrolysis application

Available Hydrolysis Technologies (not complete)

Overview

- CAMBI process (CAMBI GROUP AS)
- SolidStream process (CAMBI GROUP AS)
- PONDUS process (PONDUS Verfahrenstechnik GmbH)
- HCHS process (Harsleev company)
- LysoTherm (ELIQUO STULZ GmbH)
- BIOTHELYS / EXELYS (Veolia Water Technologies)
- TURBOTEC method (Sustec)
- ZERO SLUDGE (NewLisi S.p.A.)

Short description

- Temperature range 60 to 70 ° C
- Heat supply indirectly via e.g. hot water
- Pressure-free operation of the reactors
- Addition of lye (for example 50% sodium hydroxide solution) for a short-term increase in the pH to 10 to 11 (about 1.5 l/m³ of sludge)
- Reaction time of around 2 hours
- Cell membrane destruction by a combination of lye and heat
- Lye is neutralized by excess organic acids
- COD digestibility> 40% possible

Process Schema

Application example- WWTP Uelzen

- 83,000 PE, sludge digestion (two-stage, mesophilic), co-fermentation, gas utilization by CHP
- Excess sludge disintegration (2.7 m³/h Excess sludge)
- Reduction of sludge load from 5,147 to 4,820 kg ODM/d
- Increase in methane production (+ 22% absolute, +31% specific)
- Reduction of ignition loss in digested sludge by 9%
- Dewaterability almost unchanged at 22% TS
- Reduction of polymer dosage by 3 kg WS/t Dry solid content
- Investment costs 400,000 €

Application example- WWTP Uelzen

Short description

- Thickening of the sludge to TS 10 to 15%
- Temperature about 150 to 165 °C. Direct heat supply via superheated steam (about 150 kg steam/m³ of sludge)
- Pressure: 5 to 6 bar, duration 20 to 30 minutes
- Sudden pressure release
- Hydrolysis Systems: ES or RS (PS + ES)
- Cooling to digestion temperature or mixture of hydrolyzed ES with cold PS
- Digester can be operated after total sludge hydrolysis with a TS content of up to 12% and volume loading rate up to 7 kg ODM / (m³.d)

Process schema

Application example

WWTP Athen

WWTP Fredericia

Short description

- Temperature 150 to 175 °C
- Heat input and recovery via **multi-stage heat exchanger system**
- Thickening of the sludge to up to 6% TS (comparable high sludge volume to be treated)
- Duration: 30 to 60 min
- Preheating, plug-flow reactor, disintegration reactor, cooling stage
- Primary disintegration: sewage sludge disintegration
- Secondary disintegration: digested sludge conditioning

Process schema

Application example- WWTP Lingen

- Design capacity 195,000 PE
- Thermal disintegration of excess sludge
- Capacity of 3,500 kg TS/d
- Phosphorus recovery (MAP precipitation)
- Sludge dewatering
- Period 2012 2016

HCHS – Verfahren (Haarslev)

Short description

- Temperature 150 to 170 ° C
- Pressure about 6 bar
- Direct heating by means of steam
- TS content Inlet 17 to 22% TS
- Duration: 30 minutes
- Preheat the sludge by means of steam
- Cooling of the treated sludge in the cooler

WWTP Grevesmühlen Themal Hydrolysis

HCHS – Verfahren (Haarslev)

Processscheme

Sludge Drying

Anaerobic Sludge Digestion

- + primary sludge storgae
- + thermal hydrolysis
- + Co-Fermentation
- = energetic autark operation

- more biogas
- less sludge mass to be dried
- better efficiency of the dewatering

(Guarantee value ≥ 32 % DS)

Energy balances on the basis of the COD

- COD-balances are the basis for all simulations
- COD-balances can be used for the operation control (Examples: control of a gas flow measurement and analysis)
- Basis of the comparison:
 - 120 g COD/ PE·day \rightarrow 140 kWh/ PE · year(320 I CH₄ per kg COD, 10 kWh per m³ CH₄)
- For each separate treatment step a COD-balance is possible

Energy balance on a wastewater treatment plant (Basis:COD)

Effect of Thermal Hydrolysis on Sludge balance³²

<u>Sludge/ Energy Balance (Example 100,000 PE):</u>

- 6,000 kg BOD₅/day inflow
- Primary sedimentation, 2h retention time, 45 g DS/PE/d PS
- Primary sludge production: 4,500 kg DS/d
- Sludge age 15 days, spec. SS-Production 0,71 gg DS/ kg BOD₅,
- Surplus Sludge production: 2,840 kg DS/d
- Total sludge production: 7,340 kg DS/d with 65 % VSS/SS

Without Hydrolysis

- Removal in the digester: 50 % of the VSS \approx 2,385 kg DS/d.
- Sludge mass after the digestion: <u>4.955 kg DS/d</u>.

With Hydrolysis

- Removal in the digester: <u>67,5 % of the VSS ≈ 3,220 kg DS/d</u>.
- Sludge mass after the digestion: <u>4.120 kg DS/d</u>.

Effect of Thermal Hydrolysis on Sludge drying

• The Sludge Drying throughput (kg DS/d) is reduced down to:

4,120 /4,955 = **83 %**

• The dewaterability of the sludge is increased, rough estimation:

+ 3 % DS until + 5 %DS

- Example 100,000 PE, DS-increase from 27 % up to 32 % DS:
 - 4.955 kg DS/d / 270 kg TS/m³ = 18,3 m³/d without Hydrolysis
 - 4.120 kg DS/d / 320 kg TS/m³ = 12,8 m³/d with Hydrolysis
- Reduction of the required water evaporation of about 5.5 t/d
- Specific energy demand: 2,26 MJ/kg water evaporation ≈ 0,63 kWh/kg
- Reduction of the energy demand (heat) of **144 kW for 100,000 PE**

Effect of Thermal Hydrolysis on Sludge incineration

<u>Sludge/ Energy Balance (Example 100,000 PE without hydrolysis)</u>:

- 6,000 kg BOD₅/day inflow
- Primary sedimentation, 2h retention time, 45 g DS/PE/d PS
- Primary sludge production: 4,500 kg DS/d
- Sludge age 15 days, spec. SS-Production 0,71 gg DS/ kg BOD₅,
- Surplus Sludge production: 2,840 kg DS/d
- Total sludge production: 7,340 kg DS/d with 65 % VSS/SS
- Removal in the digester: 50 % of the VSS ≈ 2,385 kg DS/d.
- Sludge mass after the digestion: 4,955 kg DS/d.
- Energy content in the sludge after the digestion:
 42,5 kWh/PE/a ≈11,644 kWh/d für 100,000 PE. 1 kWh ≈ 3,6 MJ/kg.
- Energy production per day in the sludge: 41,900 MJ/d
- Caloric value of the sludge: <u>8.5 MJ/ kg DS (without hydrolysis)</u>

Effect of Thermal Hydrolysis on Sludge incineration

<u>Sludge/Energy Balance (Example 100,000 PE with hydolysis):</u>

- 6,000 kg BOD₅/day inflow
- Primary sedimentation, 2h retention time, 45 g DS/PE/d PS
- Primary sludge production: 4,500 kg DS/d
- Sludge age 15 days, spec. SS-Production 0,71 gg DS/ kg BOD₅,
- Surplus Sludge production: 2,840 kg DS/d
- Total sludge production: 7,340 kg DS/d with 65 % VSS/SS
- Removal in the digester: <u>67,5 % of the VSS ≈ 3,220 kg DS/d</u>.
- Sludge mass after the digestion: 4,120 kg DS/d.
- Energy content in the sludge after the digestion (1 Kg SS = 1,2 kg CSB)
 28,4 kWh/PE/a ≈7,780 kWh/d für 100,000 PE. 1 kWh ≈ 3,6 MJ/kg.
- Energy production per day in the sludge: 28,008 MJ/d
- Caloric value of the sludge: <u>6.8 MJ/ kg DS (with hydrolysis)</u>

8.5 MJ/ kg DS (without hydrolysis)

Simulation Model of Thermal Hydrolysis

Background

- Cooperation with the Zweckverband Grevesmühlen
- Development of a simulation-based decision-making tool
- Pre-treatment, biological treatment, thermal hydrolysis, digestion, co-fermentation, deammonification (Plant Wide Modeling)
- Energetic and material optimization of KA Grevesmühlen

36

Simulation Model of Thermal Hydrolysis

Project phases

- Development of a simplified simulation model (inventory, operational data analysis, on-site inspection, etc.)
- Detailed modeling of individual components (calibration / validation, thermal hydrolysis, deammonification)
- Creation of a complete model consisting of the individual components
- Application of the complete model for the energetic and mass flow optimization of the sewage treatment plant Grevesmühlen
- Application in plant operation / training of operating personnel/ Application for other IWAMA partners (and outside also)

37

Zulauf

Belebung

Rechen

Sandfang

Bio-P Vorklärung Nachklärung

Schlammbehandlung

Thermische Hydrolyse

Faulung

Nach-Gärer

Gasspeicher

Deammonifikation

Simulation Model of Thermal Hydrolysis Building the model based on literature research

Simulation Model of Thermal Hydrolysis 40

Intermediate results - gas production

Simulation Model of Thermal Hydrolysis ⁴¹ Intermediate results – Inert COD

Simulation Model of Thermal Hydrolysis Batch tests in autoclave for calibration

Conclusion

- Thermal Hydrolysis is useful for energetic optimization of the sludge treatment
- Backloading to be considered, but also as a potential for nutrient recovery

Baltic Sea Region

EUROPEAN UNION

EUROPEAN REGIONAL DEVELOPMENT FUND

IWYWY

Prof. Dr.-Ing. Peter Hartwig aqua & waste international GmbH Phone: + 49-511-96251-0 Email: <u>Hartwig@aquawaste.de</u> <u>www.aquawaste.de</u>

Additional Slides for Discussion

EUROPEAN UNION

EUROPEAN REGIONAL DEVELOPMENT FUND

IWYWY

Cell structure transformation

Effect of Thermal Hydrolysis on Incineration

- Once treated, sewage sludge becomes a valuable source of nutrients, known as biosolids, which is used in a number of outlets.
- Biosolids are typically used in various energy recovery systems to take advantage of their inherent energy content, which for dried biosolids, is equivalent to lignite.
- Energy recovery systems may include: incineration; co-firing; gasification; pyrolysis or super- and sub-critical wet air oxidation
- Although raw sludge is considered better for incineration due to higher calorific value, a study in Davyhulme, England showed that more energy would be recovered in the overall system when combined with the energy generated from biogas in the digestion facility.

Application example- WWTP Wolfsburg

Application example- WWTP Gifhorn

Raw sludge (RS = PS + ES) - hydrolysis

Excess sludge(ES) - hydrolysis

Application example- WWTP Amersfoort

- Sludge amount of 12,225 ton TS /year
- Energy surplus of 2,000,000 kWh/year
- PEARL plant (900 ton/year MAP fertilizer)
- DEMON system for nitrogen elimination
- Heat utilization of CHPs
- Project start November 2014, commissioning in March 2016

Carbon Footprint

- Provides great carbon footprint savings regardless of endpoint of sludge
- Increased production of renewable energy
- Better volatile solids destruction resulting in less biosolids downstream for transport and further processing
- Better dewatering \rightarrow reduces biosolids for downstream processing.
- Significant reduction in fossil fuel requirements for downstream drying
- Higher dewaterability → increases energy content in cake → greater energy recovery benefit in downstream incineration, whilst improved volatile solids destruction reduces the quantity of material which needs to be incinerated

Carbon Footprint

Effect of Thermal Hydrolysis on Drying

Influence on thermal systems

54

Simulation Model of Thermal Hydrolysis 55 Procedures for assessment of the efficiency of thermal hydrolysis

- Determination of optimal operating parameters of thermal disintegration (substrate, temp.)
- Investigation of the influence of disintegration on anaerobic sludge stabilization (degree of degradation, gas production etc.)
- Investigation of the dewaterability behavior of the sludge after anaerobic digestion
- Laboratory scale (130 and 150 °C), large scale (130, 148 and 160 °C)
- Analytic and anaerobic batch tests
- Dewaterability degree assessment by laboratory centrifuge

Basis for calibration of the existing model

Simulation Model of Thermal Hydrolysis Pilot plant

- Pressure increase, pressure maintenance and pressure drop
- simulate different temperature and pressure profiles
- Expander
- 2 liter reaction vessel
- Investigation of different material flows and material flow mixtures

56

Process steps for the hydrolysis application

A) Bevor the digester

- digester retention time can be reduced from 20 to 12 days
- more biogas, better dewaterability
- **B)** Inbetween two digesters (operated in serie)
- In first digester easily degrable organics are already removed (hydrolysis for lower carbon content ≈ less inert COD-production)
- C) After the digester and after pre-dewatering
- After final dewatering > 40 % DS possible, good for direct incineration
- sludge water returned to the digester (biogas production)

