Zahlentheoretische Identitäten und die Eisensteinreihe vom Gewicht 2

Vortrag zum Seminar zur Funktionentheorie II, 13.12.2013

Lukas Schürhoff

Inhaltsverzeichnis

1	Wiederholung und Vorbereitung	2
2	Zahlentheoretische Identitäten als Anwendung der Dimensionsformel	4
3	Die Eisensteinreihe vom Gewicht 2	8
4	Literaturverzeichnis	18

 \Diamond

 \Diamond

Als Grundlage dieser Ausarbeitung dient das Buch The 1-2-3 of Modular Forms ([1]).

§1 Wiederholung und Vorbereitung

Zur Vorbereitung auf die nachfolgenden Kapitel wiederholen wir zunächst einige Begriffe und Aussagen. Sämtliche Definitionen und Aussagen entstammen der Vorlesung *Funktionentheorie II*, und lassen sich entsprechend mitsamt Beweis im zugehörigen Skript ([2]) wiederfinden. Im Folgenden wird daher auf einzelne Beweise verzichtet.

(1.1) Definition (Modulform)

Eine Funktion f heißt Modulform vom Gewicht k, wenn gilt:

- 1. f ist auf \mathbb{H} meromorph
- 2. $f|_k M = f$ für alle $M \in SL_2\mathbb{Z}$, das heisst es gilt für $z \in \mathbb{H}$

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z) \text{ für alle } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in \mathrm{SL}_2 \mathbb{Z}.$$

3. f hat bei ∞ höchstens einen Pol.

(1.2) Definition (Ganze Modulform)

Eine Modulform f vom Gewicht k heißt ganze Modulform vom Gewicht k, wenn f auf \mathbb{H} holomorph ist und bei ∞ keinen Pol hat.

Die Menge \mathbb{M}_k der ganzen Modulformen vom Gewicht k ist ein \mathbb{C} -Vektorraum.

(1.3) Bemerkung

Für $k, l \in \mathbb{Z}$ gilt

$$\mathbf{M}_k \cdot \mathbf{M}_l \subset \mathbf{M}_{k+l}.$$

(1.4) Satz (Dimensionsformel)

Für gerades $k \ge 0$ ist \mathbb{M}_k endlich-dimensional mit

$$\dim_{\mathbb{C}} \mathbb{M}_k = \begin{cases} \left\lceil \frac{k}{12} \right\rceil & \text{, } k \equiv 2 \mod 12 \\ \frac{k}{12} \right\rceil + 1 & \text{, } k \not\equiv 2 \mod 12. \end{cases}$$

 \Diamond

 \Diamond

 \Diamond

 \Diamond

(1.5) Lemma

Für $z \in \mathbb{H}$ und $\alpha \in \mathbb{R}$ konvergiert die Reihe

$$\sum_{m,n}'(mz+n)^{-\alpha}$$

genau dann absolut, wenn $\alpha > 2$ ist.

 $\sum_{m,n}'$ bedeutet dabei, dass über alle Paare $(0,0) \neq (m,n) \in \mathbb{Z} \times \mathbb{Z}$ summiert wird. \diamond

(1.6) Definition (Eisenstein-Reihe)

Für $z \in \mathbb{H}$ und $k \ge 3$ heißt G_k , definiert durch

$$G_k(z) := \sum_{m,n}' (mz+n)^{-k},$$

die Eisenstein-Reihe vom Gewicht k.

(1.7) Lemma

a) Für ungerades *k* ist

$$G_k(z) = 0, \qquad z \in \mathbb{H}.$$

b) Für $k \ge 3$ ist G_k eine ganze Modulform vom Gewicht k, d.h. $G_k \in \mathbb{M}_k$

(1.8) Satz

Für alle geraden $k \ge 4$ besitzt G_k die Fourier-Entwicklung

$$G_{k}(z) = 2\zeta(k) + 2\frac{(2\pi i)^{k}}{(k-1)!} \cdot \sum_{m=1}^{\infty} \sigma_{k-1}(m) \cdot e^{2\pi i m z}$$

$$= 2\frac{(2\pi i)^{k}}{(k-1)!} \cdot \left(-\frac{B_{k}}{2k} + \sum_{m=1}^{\infty} \sigma_{k-1}(m) \cdot e^{2\pi i m z}\right), \quad z \in \mathbb{H}.$$

Dabei ist

$$\zeta(s):=\sum_{m=1}^{\infty}m^{-s},\quad s>1,\quad ext{und}\quad \sigma_s(m):=\sum_{d\mid m}d^s,\quad s\in\mathbb{R},$$

und B_k sind die Bernoulli-Zahlen.

(1.9) Definition (Normierte Eisenstein-Reihe)

$$G_k^* := \frac{1}{2\zeta(k)} \cdot G_k$$

heißt die normierte Eisenstein-Reihe vom Gewicht k.

(1.10) Bemerkung

Entsprechend Satz (1.7) gilt für $z \in \mathbb{H}$ und gerades $k \ge 4$

$$G_k^*(z) = 1 - \frac{2k}{B_k} \cdot \sum_{m=1}^{\infty} \sigma_{k-1}(m) \cdot e^{2\pi i m z}.$$

§2 Zahlentheoretische Identitäten als Anwendung der Dimensionsformel

In diesem Abschnitt wollen wir mit funktionentheoretischen Mitteln einige Identitäten (zum Beispiel die sog. *Hurwitz-Identität*) der elementaren Zahlentheorie herleiten. Dazu gibt die folgende Tabelle eine Übersicht über die ersten geraden Bernoulli-Zahlen.

k	2	4	6	8	10	12
B_k	$\frac{1}{6}$	$-\frac{1}{30}$	$\frac{1}{42}$	$-\frac{1}{30}$	<u>5</u>	691 2730

Weiter sei im Folgenden stets $q:=e^{2\pi iz}$ mit $z\in\mathbb{H}$.

(2.1) Korollar (Hurwitz-Identität)

Für alle $n \in \mathbb{N}$ gilt

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_3(n-m) = \frac{\sigma_7(n) - \sigma_3(n)}{120}.$$

Beweis

Die Dimensionformel (1.4) liefert $\dim_{\mathbb{C}} \mathbb{M}_8 = 1$. Nach (1.7) ist $G_8^* \in \mathbb{M}_8$, und nach (1.3) ebenfalls $(G_4^*)^2 \in \mathbb{M}_8$. G_8^* und $(G_4^*)^2$ sind also linear abhängig. Setzen wir nun jeweils die Darstellung aus (1.8) ein, so erhalten wir $((G_4^*)^2 \text{ und } G_8^* \text{ sind normiert})$

$$(G_4^*)^2 = G_8^*$$

und weiter

$$1 + 480 \cdot \sum_{n=1}^{\infty} \sigma_7(n) \cdot q^n$$

$$= \left(1 + 240 \cdot \sum_{n=1}^{\infty} \sigma_3(n) \cdot q^n\right)^2$$

$$= 1 + \sum_{n=1}^{\infty} \left(240\sigma_3(n) + 240\sigma_3(n) + \sum_{m=1}^{n-1} 240^2\sigma_3(m)\sigma_3(n-m)\right) \cdot q^n$$

für alle $z \in \mathbb{H}$.

Durch Koeffizientenvergleich erhalten wir schließlich für $n \in \mathbb{N}$

$$480\sigma_7(n) = 480\sigma_3(n) + \sum_{m=1}^{n-1} 240^2 \sigma_3(m)\sigma_3(n-m)$$

bzw.

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_3(n-m) = \frac{\sigma_7(n) - \sigma_3(n)}{120}.$$

Ein weiteres Beispiel ist die folgende Identität.

(2.2) Korollar

Für alle $n \in \mathbb{N}$ gilt

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_9(n-m) = \frac{\sigma_{13}(n) - 11\sigma_9(n) + 10\sigma_3(n)}{2640}.$$

Beweis

Wir verfahren analog zu (2.1). Mit dim $\mathbb{C} \mathbb{M}_{14} = 1$ und G_{14}^* , $G_4^* \cdot G_{10}^* \in \mathbb{M}_{14}$ erhalten wir nach Einsetzen der Darstellung aus (1.8)

$$G_4^* \cdot G_{10}^* = G_{14}^*$$

Damit folgt nun weiter

$$\begin{aligned} &1 - 24 \cdot \sum_{n=1}^{\infty} \sigma_{13}(n) \cdot q^{n} \\ &= \left(1 + 240 \cdot \sum_{n=1}^{\infty} \sigma_{3}(n) \cdot q^{n} \right) \cdot \left(1 - 264 \cdot \sum_{n=1}^{\infty} \sigma_{9}(n) \cdot q^{n} \right) \\ &= 1 + \sum_{n=1}^{\infty} \left(-264\sigma_{9}(n) + 240\sigma_{3}(n) + \sum_{m=1}^{n-1} -240 \cdot 264\sigma_{3}(m)\sigma_{9}(n-m) \right) \cdot q^{n} \end{aligned}$$

für alle $z \in \mathbb{H}$.

Durch Koeffizientenvergleich erhalten wir für $n \in \mathbb{N}$

$$-24\sigma_{13}(n) = -264\sigma_{9}(n) + 240\sigma_{3}(n) + \sum_{m=1}^{n-1} -240 \cdot 264\sigma_{3}(m)\sigma_{9}(n-m)$$

bzw.

$$\sum_{m=1}^{n-1} \sigma_3(m)\sigma_9(n-m) = \frac{\sigma_{13}(n) - 11\sigma_9(n) + 10\sigma_3(n)}{2640}.$$

Für $k \ge 0$ mit dim $\mathbb{C} \mathbb{M}_k > 1$ lassen sich auf analoge Weise Identitäten extrahieren. Ein Beispiel dafür liefert die folgende Identität.

(2.3) Korollar

Für alle $n \in \mathbb{N}$ gilt

$$\sum_{m=1}^{n-1} 4\sigma_3(m)\sigma_7(n-m) + 5\sigma_5(m)\sigma_5(n-m) = \frac{13\sigma_{11}(n) - 42\sigma_7(n) + 50\sigma_5(n) - 21\sigma_3(n)}{2520}.$$

 \Diamond

Beweis

Zum Beweis betrachten wir $G_4^* \cdot G_8^*$, $(G_6^*)^2$, $G_{12}^* \in \mathbb{M}_{12}$. Nach (1.4) ist $\dim_{\mathbb{C}} \mathbb{M}_{12} = 2$, also sind $G_4^* \cdot G_8^*$, $(G_6^*)^2$ und G_{12}^* linear abhängig. Um $a, b \in \mathbb{C}$ mit

$$a \cdot G_4^* \cdot G_8^* + b \cdot (G_6^*)^2 = G_{12}^*$$

zu bestimmen, betrachten wir nach Einsetzen der Darstellungen aus (1.8) die Koeffizienten von q^0 und q^1 .

$$G_4^* \cdot G_8^* = (1 + 240q + \dots)(1 + 480q + \dots) = 1 + 720q + \dots$$
$$(G_6^*)^2 = (1 - 504q - \dots)(1 - 504q - \dots) = 1 - 1008q + \dots$$
$$G_{12}^* = 1 + \frac{2730 \cdot 24}{691}q + \dots$$

Das führt uns also auf das lineare Gleichungssystem

$$\begin{cases} a+b=1\\ 720a-1008b=\frac{2730\cdot 24}{691} \end{cases}$$

welches die eindeutige Lösung

$$a = \frac{441}{691}$$
, $b = \frac{250}{691}$

besitzt.

Damit haben wir also

$$441G_4^* \cdot G_8^* + 250(G_6^*)^2 = 691G_{12}^*$$

und es folgt

$$691 \cdot \left(1 + \frac{2730 \cdot 24}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) \cdot q^{n}\right)$$

$$= 441 \cdot \left(1 + 240 \sum_{n=1}^{\infty} \sigma_{3}(n) \cdot q^{n}\right) \left(1 + 480 \sum_{n=1}^{\infty} \sigma_{7}(n) \cdot q^{n}\right)$$

$$+ 250 \cdot \left(1 - 504 \sum_{n=1}^{\infty} \sigma_{5}(n) \cdot q^{n}\right) \left(1 - 504 \sum_{n=1}^{\infty} \sigma_{5}(n) \cdot q^{n}\right)$$

$$= 441 + 441 \sum_{n=1}^{\infty} \left(240\sigma_{3}(n) + 480\sigma_{7}(n) + \sum_{m=1}^{n-1} 240 \cdot 480\sigma_{3}(m)\sigma_{7}(n-m)\right) \cdot q^{n}$$

$$+ 250 + 250 \sum_{n=1}^{\infty} \left(-1008\sigma_{5}(n) + \sum_{m=1}^{n-1} 504^{2}\sigma_{5}(m)\sigma_{5}(n-m)\right) \cdot q^{n}$$

für alle $z \in \mathbb{H}$.

Durch Koeffizientenvergleich erhalten wir für $n \in \mathbb{N}$

$$2730 \cdot 24\sigma_{11}(n) = \sum_{m=1}^{n-1} 441 \cdot 240 \cdot 480\sigma_3(m)\sigma_7(n-m) + 250 \cdot 504^2\sigma_5(m)\sigma_5(n-m) + 441 \cdot 240\sigma_3(n) + 441 \cdot 480\sigma_7(n) - 250 \cdot 1008\sigma_5(n)$$

bzw.

$$\sum_{m=1}^{n-1} 4\sigma_3(m)\sigma_7(n-m) + 5\sigma_5(m)\sigma_5(n-m) = \frac{13\sigma_{11}(n) - 42\sigma_7(n) + 50\sigma_5(n) - 21\sigma_3(n)}{2520}.$$

§3 Die Eisensteinreihe vom Gewicht 2

In diesem Kapitel wollen wir zunächst die Eisenstein-Reihe vom Gewicht 2 definieren. Die Reihe $\sum_{m,n}'(mz+n)^{-2}, z\in\mathbb{H}$, konvergiert nicht absolut. Allerdings definiert

die Fourier-Reihe aus (1.8) auch für k=2 eine holomorphe Funktion auf \mathbb{H} . Wir definieren die Eisenstein-Reihe vom Gewicht 2 über diese Fourier-Reihe, und werden feststellen, dass dies der Definition der Eisenstein-Reihen von höherem Gewicht entspricht, mit der Einschränkung einer festgelegten Summationsreihenfolge. Anschließend werden wir die Eisenstein-Reihe vom Gewicht 2 auf Transformationseigenschaften überprüfen. Unter anderem wird sich herausstellen, dass die Eisenstein-Reihe vom Gewicht 2 keine Modulform vom Gewicht 2 ist.

(3.1) Proposition und Definition (Eisenstein-Reihe vom Gewicht 2) Durch

$$G_2(z) := -8\pi^2 \left(-rac{B_2}{4} + \sum_{m=1}^{\infty} \sigma_1(m) \cdot e^{2\pi i m z} \right), \quad z \in \mathbb{H}$$

wird eine holomorphe Funktion definiert. *G*² heisst *Eisenstein-Reihe vom Gewicht* 2. ⋄

Beweis

Sei $z \in \mathbb{H}$ und $q := e^{2\pi i z}$, dann gilt |q| < 1. Weiter gilt für $m \in \mathbb{N}$

$$\sigma_1(m) = \sum_{d|m} d \le \sum_{d|m} m \le m^2.$$

Damit erhalten wir

$$\sum_{m=1}^{\infty} \sigma_1(m) \cdot |q|^m \le \sum_{m=1}^{\infty} m^2 \cdot |q|^m = \sum_{m=1}^{\infty} m(m-1) \cdot |q|^m + \sum_{m=1}^{\infty} m \cdot |q|^m.$$

Die Reihen auf der rechten Seite konvergieren als Ableitungen einer geometrischen Reihe lokal gleichmäßig, die Reihe auf der linken Seite somit auch. Also konvergiert die Reihe

$$\sum_{m=1}^{\infty} \sigma_1(m) \cdot q^m$$

absolut und lokal gleichmäßig. Da die Partialsummen holomorphe Funktionen definieren, ist die Grenzfunktion, und damit auch G_2 , holomorph.

(3.2) Korollar

Für $z \in \mathbb{H}$ gilt

$$G_2(z) = \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^2} + \sum_{0 \neq m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(mz + n)^2}.$$

 \Diamond

Das bedeutet, die Eisensteinreihe vom Gewicht 2 ist analog zur Eisensteinreihe höheren Gewichtes definiert, wobei allerdings die Summationsreihefolge festgelegt ist. \diamond

Beweis

Der Beweis funktioniert analog zum Beweis von (1.8). Der einzige Unterschied ist, dass man dort für $k \geq 3$ und $z \in \mathbb{H}$

$$\sum_{m,n}' (mz+n)^{-k} = \sum_{0 \neq n \in \mathbb{Z}} \frac{1}{n^k} + \sum_{0 \neq m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \frac{1}{(mz+n)^k}$$

schreibt, und wir hier, im Fall k = 2, direkt von der rechten Seite ausgehen.

(3.3) Bemerkung

Wegen der fehlenden absoluten Konvergenz der Eisenstein-Reihe vom Gewicht 2 (vgl. (1.5)) erhalten wir die Tranformationseigenschaft $G_2(-\frac{1}{z}) = z^2G_2(z)$ nicht durch Umsortieren. Die Eigenschaft $G_2(z+1) = G_2(z)$ gilt aber natürlich weiterhin, da G_2 als Fourier-Reihe definiert ist (vgl. (3.1)).

(3.4) Satz

Durch

$$G_2^{**}(z) := G_2(z) - \frac{\pi}{y}, \quad z = x + iy \in \mathbb{H}$$

wird eine nicht-holomorphe Funktion definiert, die die Tranformationseigenschaft einer Modulform vom Gewicht 2 besitzt.

Bevor wir zum Beweis von Satz (3.4) kommen, zunächst etwas Vorbereitung.

(3.5) Lemma

Für
$$x > 0$$
 gilt $\zeta(1+x) = \frac{1}{x} + O(1), x \to 0.$

Beweis

Nach ([2], IX(4.2),(4.4)) ist die ζ -Funktion holomorph auf $\{z = x + iy \in \mathbb{C} \mid x > 0\}$ bis auf einen einfachen Pol in z = 1 mit Residuum 1. Das bedeutet für $z \in K_1(1) \setminus \{1\}$ gilt

$$\zeta(z) = \frac{1}{z - 1} + \sum_{n=0}^{\infty} a_n (z - 1)^n$$

mit geeigneten a_n , $n \in \mathbb{N}$. Daraus folgt die Behauptung.

(3.6) Lemma

Für $z \in \mathbb{H}$ konvergiert

$$\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \left[\frac{1}{(mz+n)^2 |mz+n|^{2\varepsilon}} - \int_{n}^{n+1} \frac{dt}{(mz+t)^2 |mz+t|^{2\varepsilon}} \right]$$

absolut und lokal gleichmäßig in $\varepsilon > -\frac{1}{2}$.

Beweis

Es sei $z=x+iy\in\mathbb{H}$, $m\in\mathbb{N}$ und $\varepsilon>-\frac{1}{2}$. Wir definieren $f:\mathbb{R}\to\mathbb{C}$ durch $f(t)=\frac{1}{(mz+t)^2|mz+t|^{2\varepsilon}}$. Wegen

$$|mz+t|^{2\varepsilon} = \left((mx+t)^2 + (my)^2\right)^{\varepsilon}$$

und $(my)^2 > 0$ und $mz + t \neq 0$ ist f dann differenzierbar. Es gilt für $t \in \mathbb{R}$:

$$f'(t) = -\frac{2(mx+t)|mz+t|^{2\varepsilon} + 2(mx+t)\varepsilon \left((mx+t)^2 + (my)^2\right)^{\varepsilon} (mz+t)^2}{(mz+t)^4|mz+t|^{4\varepsilon}}$$
$$= -2(mx+t)\frac{|mz+t|^{2\varepsilon} + \varepsilon |mz+t|^{2\varepsilon-2} (mz+t)^2}{(mz+t)^4|mz+t|^{4\varepsilon}}$$

Mit $|mx + t| = |\Re(mz + t)| \le |mz + t|$ folgt nun

$$|f'(t)| \le 2|mz + t| \left(|mz + t|^{-4-2\varepsilon} + \varepsilon |mz + t|^{-4-2\varepsilon} \right)$$

= $2(1+\varepsilon)|mz + t|^{-3-2\varepsilon}$

Damit können wir jetzt die einzelnen Summanden abschätzen:

$$\left| \frac{1}{(mz+n)^{2} |mz+n|^{2\varepsilon}} - \int_{n}^{n+1} \frac{dt}{(mz+t)^{2} |mz+t|^{2\varepsilon}} \right|$$

$$= \left| \int_{n}^{n+1} \frac{1}{(mz+n)^{2} |mz+n|^{2\varepsilon}} - \frac{1}{(mz+t)^{2} |mz+t|^{2\varepsilon}} dt \right|$$

$$= \left| \int_{n}^{n+1} f(n) - f(t) dt \right|$$

$$\leq \int_{n}^{n+1} |f(n) - f(t)| dt$$

$$\leq \max_{t \in [n,n+1]} |f'(t)|$$

$$\leq 2(1+\varepsilon) |mz+n|^{-3-2\varepsilon}$$

Wegen $3 + 2\varepsilon > 2$ folgt nun nach (1.5) die absolute Konvergenz von

$$\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \left[\frac{1}{(mz+n)^2 \left| mz+n \right|^{2\varepsilon}} - \int_{n}^{n+1} \frac{dt}{(mz+t)^2 \left| mz+t \right|^{2\varepsilon}} \right].$$

Die Monotonie von $\mathbb{R} \to \mathbb{R}$, $t \mapsto x^t$, für $x \in \mathbb{R}_+$ liefert dann auch die lokal gleichmäßige Konvergenz in ε .

(3.7) Lemma

Die Funktion

$$I:\left(-\frac{1}{2},\infty\right)\to\mathbb{C},\quad x\mapsto\int\limits_{-\infty}^{\infty}(t+i)^{-2}(t^2+1)^{-x}\ dt$$

ist in einer Umgebung von 0 stetig differenzierbar mit $I'(0) = -\pi$ und I(0) = 0. \diamond

Beweis

Es sei $f:\left(-\frac{1}{2},\infty\right)\times\mathbb{R}\to\mathbb{C}$, $f(x,t)=(t+i)^{-2}(t^2+1)^{-x}$. Für $x\in\left(-\frac{1}{2},\infty\right)$ und $t\in\mathbb{R}$ gilt dann

$$|f(x,t)| = \frac{1}{|t+i|^2(t^2+1)^x} = \frac{1}{(t^2+1)(t^2+1)^x} = \frac{1}{(t^2+1)^{1+x}}.$$

Für $x > -\frac{1}{2}$ existiert das Integral $\int_{1}^{\infty} \frac{dt}{t^{2+2x}}$. Mit

$$\lim_{t \to \infty} \frac{|f(x,t)|}{\frac{1}{t^{2+2x}}} = \lim_{t \to \infty} \left(\frac{t^2}{t^2 + 1}\right)^{1+x} = 1$$

folgt nun, dass auch

$$\int_{1}^{\infty} |f(x,t)| \ dt$$

existiert. Daraus folgt weiter, dass auch

$$\int_{-\infty}^{\infty} |f(x,t)| dt = 2 \int_{0}^{1} |f(x,t)| dt + 2 \int_{1}^{\infty} |f(x,t)| dt$$

existiert. Das heisst *I* ist wohldefiniert.

Wir zeigen jetzt, dass I auf $\left(-\frac{1}{4},\infty\right)$ stetig differenzierbar ist.

f ist stetig differenzierbar nach x mit

$$\frac{\partial}{\partial x}f(x,t) = -\log(t^2+1)(t+i)^{-2}(t^2+1)^{-x} = -\log(t^2+1)f(x,t).$$

Für $x > -\frac{1}{4}$ gilt

$$\left| \frac{\partial}{\partial x} f(x,t) \right| = \frac{\log(t^2 + 1)}{(t^2 + 1)^{1+x}} \le \frac{\log(t^2 + 1)}{(t^2 + 1)^{\frac{3}{4}}}.$$

Das Integral $\int_{1}^{\infty} \frac{dt}{t^{\frac{5}{4}}}$ existiert. Wegen

$$\lim_{t \to \infty} \frac{\frac{\log(t^2 + 1)}{(t^2 + 1)^{\frac{3}{4}}}}{\frac{1}{t^{\frac{5}{4}}}} = \lim_{t \to \infty} \frac{\log(t^2 + 1)}{t^{\frac{1}{4}}} \left(\frac{t^2}{t^2 + 1}\right)^{\frac{3}{4}} = 0$$

existiert dann auch

$$\int_{1}^{\infty} \frac{\log(t^2+1)}{(t^2+1)^{\frac{3}{4}}} dt,$$

und damit auch

$$\int_{-\infty}^{\infty} \frac{\log(t^2+1)}{(t^2+1)^{\frac{3}{4}}} dt = 2 \int_{0}^{1} \frac{\log(t^2+1)}{(t^2+1)^{\frac{3}{4}}} dt + 2 \int_{1}^{\infty} \frac{\log(t^2+1)}{(t^2+1)^{\frac{3}{4}}} dt.$$

Insgesamt folgt nun, dass das Parameterintegral I stetig differenzierbar auf $\left(-\frac{1}{4},\infty\right)$ ist mit

$$I'(x) = \int_{-\infty}^{\infty} \frac{\partial}{\partial x} f(x, t) dt.$$

Insbesondere erhalten wir

$$I'(0) = \int_{-\infty}^{\infty} -\log(t^2+1)(t+i)^{-2} dt.$$

Eine Stammfunktion des Integranden ist gegeben durch

$$t \mapsto \frac{1 + \log(t^2 + 1)}{t + i} - \arctan(t),$$

das heisst es ist

$$I'(0) = \frac{1 + \log(t^2 + 1)}{t + i} - \arctan(t)\Big|_{-\infty}^{\infty} = -\arctan(t)\Big|_{-\infty}^{\infty} = -\pi.$$

Als letztes berechnen wir noch I(0). Nach dem Vorherigen ist I insbesondere auch stetig ist 0, das heisst, wir können schreiben:

$$I(0) = \int_{-\infty}^{\infty} \frac{dt}{(t+i)^2} = 2\pi i \sum_{a \in \mathbb{H}} \operatorname{Res}_a \left(\frac{1}{(z+i)^2} \right) = 0$$

Damit können wir uns jetzt dem Beweis von Satz (3.4) widmen.

Beweis (3.4)

Zunächst ist G_2^{**} nicht holomorph, da $z \mapsto \Im(z)$ nicht holomorph auf \mathbb{H} ist, im Gegensatz zu G_2 und $z \mapsto \frac{1}{z}$.

Um nun das Transformationsverhalten von G_2^{**} zu untersuchen, definieren wir für $\varepsilon>0$

$$G_{2,\varepsilon}(z) = \sum_{m,n}' \frac{1}{(mz+n)^2 |mz+n|^{2\varepsilon'}}, \quad z \in \mathbb{H}.$$

Nach (1.5) ist $G_{2,\varepsilon}(z)$ absolut konvergent. Durch Umordnen gemäß $(m,n)\mapsto (m,n)\binom{a\ b}{c\ d}$ erhalten wir die Transformationseigenschaft

$$G_{2,\varepsilon}\left(\frac{az+b}{cz+d}\right)=(cz+d)^2|cz+d|^{2\varepsilon}G_{2,\varepsilon}(z),$$

 $\text{für }z\in \mathbb{H}\text{ und }\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\in \mathrm{SL}_2\mathbb{Z}.$

Wir wollen nun zeigen, dass für $z = x + iy \in \mathbb{H}$ gilt:

$$\lim_{\varepsilon \to 0} G_{2,\varepsilon}(z) = G_2(z) - \frac{\pi}{y}$$

Dazu definieren wir für $\varepsilon > -\frac{1}{2}$

$$I_{arepsilon}(z)=2\int\limits_{-\infty}^{\infty}rac{dt}{(z+t)^{2}\leftert z+t
ightert ^{2arepsilon}},\quad z\in\mathbb{H}.$$

Die Funktion I_{ε} ist dann wohldefiniert, da $\mathbb{R} \to \mathbb{R}$, $t \mapsto \frac{1}{|z+t|^{2+2\varepsilon}}$ mit $z \in \mathbb{H}$ und $2+2\varepsilon > 1$ integrierbar ist.

Sei jetzt also $z=x+iy\in\mathbb{H}.$ Für $\varepsilon>0$ ist $G_{2,\varepsilon}(z)$, und nach (3.6) auch

$$\sum_{m=1}^{\infty}\sum_{n=-\infty}^{\infty}\left[\frac{1}{(mz+n)^{2}\left|mz+n\right|^{2\varepsilon}}-\int_{n}^{n+1}\frac{dt}{(mz+t)^{2}\left|mz+t\right|^{2\varepsilon}}\right],$$

absolut konvergent. Wir können daher schreiben:

$$\begin{split} G_{2,\varepsilon}(z) - \sum_{m=1}^{\infty} I_{\varepsilon}(mz) &= \sum_{n=-\infty, \, n \neq 0}^{\infty} \frac{1}{n^{2+2\varepsilon}} + \sum_{m=-\infty, \, m \neq 0}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{2} |mz+n|^{2\varepsilon}} \\ &- 2 \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} \frac{dt}{(mz+t)^{2} |mz+t|^{2\varepsilon}} \\ &= 2 \sum_{n=1}^{\infty} \frac{1}{n^{2+2\varepsilon}} + 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^{2} |mz+n|^{2\varepsilon}} \\ &- 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \int_{n}^{n+1} \frac{dt}{(mz+t)^{2} |mz+t|^{2\varepsilon}} \\ &= 2 \sum_{n=1}^{\infty} \frac{1}{n^{2+2\varepsilon}} \\ &+ 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \left[\frac{1}{(mz+n)^{2} |mz+n|^{2\varepsilon}} - \int_{n}^{n+1} \frac{dt}{(mz+t)^{2} |mz+t|^{2\varepsilon}} \right] \end{split}$$

Da die ζ -Funktion stetig in 2 ist, und $\sum\limits_{m=1}^{\infty}\sum\limits_{n=-\infty}^{\infty}\left[\frac{1}{(mz+n)^2|mz+n|^{2\varepsilon}}-\int\limits_{n}^{n+1}\frac{dt}{(mz+t)^2|mz+t|^{2\varepsilon}}\right]$ nach (3.6) absolut und lokal gleichmäßig für $\varepsilon>-\frac{1}{2}$ konvergiert, also auch eine in 0 stetige Funktion definiert, erhalten wir:

$$\lim_{\varepsilon \to 0} G_{2,\varepsilon}(z) - \sum_{m=1}^{\infty} I_{\varepsilon}(mz) = 2 \sum_{n=1}^{\infty} \frac{1}{n^2} + 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \left[\frac{1}{(mz+n)^2} - \int_{n}^{n+1} \frac{dt}{(mz+t)^2} \right]$$

Für festes $m \in \mathbb{N}$ gilt

$$\int_{a}^{n+1} \frac{dt}{(mz+t)^2} = \frac{1}{mz+n} - \frac{1}{mz+n+1}.$$

Wegen $\frac{1}{mz+n} \to 0$, $n \to \infty$, folgt daraus (Teleskopsumme)

$$\sum_{n=-\infty}^{\infty} \int_{n}^{n+1} \frac{dt}{(mz+n)^2} = 0,$$

und somit

$$\lim_{\varepsilon \to 0} G_{2,\varepsilon}(z) - \sum_{m=1}^{\infty} I_{\varepsilon}(mz) = 2 \sum_{n=1}^{\infty} \frac{1}{n^2} + 2 \sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(mz+n)^2} = G_2(z).$$

Weiter ist für $\varepsilon > -\frac{1}{2}$

$$I_{\varepsilon}(z) = I_{\varepsilon}(x+iy) = 2\int_{-\infty}^{\infty} \frac{dt}{(x+t+iy)^2((x+t)^2+y^2)^{\varepsilon}}$$

$$= 2\int_{-\infty}^{\infty} \frac{dt}{(t+iy)^2(t^2+y^2)^{\varepsilon}}$$

$$= 2\int_{-\infty}^{\infty} \frac{1}{y^{2+2\varepsilon}} \left(\frac{t}{y}+i\right)^{-2} \left(\left(\frac{t}{y}\right)^2+1\right)^{-\varepsilon} dt$$

$$= \frac{2I(\varepsilon)}{y^{1+2\varepsilon}},$$

wobei
$$I(\varepsilon) := \int\limits_{-\infty}^{\infty} (t+i)^{-2} (t^2+1)^{-\varepsilon} dt$$
.

In obiger Rechnung wurde einmal x + t, und einmal $\frac{t}{y}$ (y > 0) substituiert.

Damit erhalten wir nun für $\varepsilon > 0$:

$$\sum_{m=1}^{\infty} I_{\varepsilon}(mz) = \sum_{m=1}^{\infty} \frac{2I(\varepsilon)}{(my)^{1+2\varepsilon}} = \frac{2I(\varepsilon)}{y^{1+2\varepsilon}} \sum_{m=1}^{\infty} m^{-(1+2\varepsilon)} = \frac{2I(\varepsilon)}{y^{1+2\varepsilon}} \zeta(1+2\varepsilon)$$

Nach (3.5) gilt $\zeta(1+2\varepsilon)=\frac{1}{2\varepsilon}+O(1)$, $\varepsilon\to 0$. Da mit (3.7) I stetig in 0 ist, mit I(0)=0, folgt wegen $\lim_{\varepsilon\to 0}\frac{I(\varepsilon)}{y^{1+2\varepsilon}}=0$ nun

$$\lim_{\varepsilon \to 0} \sum_{m=1}^{\infty} I_{\varepsilon}(mz) = \lim_{\varepsilon \to 0} \frac{2I(\varepsilon)}{y^{1+2\varepsilon}} \zeta(1+2\varepsilon) = \lim_{\varepsilon \to 0} \frac{2I(\varepsilon)}{2\varepsilon y^{1+2\varepsilon}} = \lim_{\varepsilon \to 0} \frac{I(\varepsilon)}{\varepsilon y^{1+2\varepsilon}}.$$

(3.7) liefert ausserdem noch, dass I differenzierbar in 0 ist mit $I'(0) = -\pi$. Damit folgt

$$\lim_{\varepsilon \to 0} \frac{I(\varepsilon)}{\varepsilon y^{1+2\varepsilon}} = \lim_{\varepsilon \to 0} \frac{1}{y^{1+2\varepsilon}} \frac{I(\varepsilon) - I(0)}{\varepsilon - 0} = \frac{1}{y} I'(0) = -\frac{\pi}{y}.$$

Insgesamt gilt also

$$\lim_{\varepsilon \to 0} G_{2,\varepsilon}(z) = G_2(z) - \frac{\pi}{\nu} = G_2^{**}(z).$$

Das Tranformationsverhalten von G_2^{**} erhalten wir entsprechend direkt aus dem Transformationsverhalten von $G_{2,\varepsilon}$. Es gilt nämlich für $z\in\mathbb{H}$ und $\left(\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right)\in\mathrm{SL}_2\mathbb{Z}$:

$$G_2^{**}\left(\frac{az+b}{cz+d}\right) = \lim_{\varepsilon \to 0} G_{2,\varepsilon}\left(\frac{az+b}{cz+d}\right)$$

$$= \lim_{\varepsilon \to 0} (cz+d)^2 |cz+d|^{2\varepsilon} G_{2,\varepsilon}(z)$$

$$= (cz+d)^2 \lim_{\varepsilon \to 0} G_{2,\varepsilon}(z)$$

$$= (cz+d)^2 G_2^{**}(z)$$

(3.8) Bemerkung

Entsprechend (3.4) definiert auch

$$G_2^*(z) - \frac{3}{2\pi y} = \frac{1}{2\zeta(2)} \left(G_2(z) - \frac{\pi}{y} \right), \quad z = x + iy \in \mathbb{H}$$

eine nicht-holomorphe Funktion mit dem Transformationsverhalten einer Modulform vom Gewicht 2.

(3.9) Korollar (Transformationseigenschaft von G_2)

Seien $z \in \mathbb{H}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2 \mathbb{Z}$, dann gilt

$$G_2\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 G_2(z) - 2\pi i c(cz+d).$$

Beweis

Seien $z = x + iy \in \mathbb{H}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2 \mathbb{Z}$. Dann ist

$$\Im\left(\frac{az+b}{cz+d}\right) = \frac{y}{(cz+d)(c\overline{z}+d)},$$

und mit (3.4) folgt

$$G_{2}\left(\frac{az+b}{cz+d}\right) = G_{2}^{**}\left(\frac{az+b}{cz+d}\right) + \frac{\pi(cz+d)(c\overline{z}+d)}{y}$$

$$= (cz+d)^{2}G_{2}^{**}(z) + \frac{\pi(cz+d)(c\overline{z}+d)}{y}$$

$$= (cz+d)^{2}\left(G_{2}(z) - \frac{\pi}{y}\right) + \frac{\pi(cz+d)(c\overline{z}+d)}{y}$$

$$= (cz+d)^{2}G_{2}(z) - \pi(cz+d)\left(\frac{cz+d-c\overline{z}-d}{y}\right)$$

$$= (cz+d)^{2}G_{2}(z) - \pi(cz+d)\left(\frac{2cyi}{y}\right)$$

$$= (cz+d)^{2}G_{2}(z) - 2\pi i c(cz+d).$$

(3.10) Bemerkung (Transformationseigenschaft von G_2^*)

Für $z \in \mathbb{H}$ und $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2 \mathbb{Z}$ gilt

$$G_2^* \left(\frac{az+b}{cz+d} \right) = \frac{1}{2\zeta(2)} G_2 \left(\frac{az+b}{cz+d} \right)$$

$$= \frac{3}{\pi^2} \left((cz+d)^2 G_2(z) - 2\pi i c(cz+d) \right)$$

$$= (cz+d)^2 G_2^*(z) - \frac{6}{\pi} i c(cz+d)$$

§4 Literaturverzeichnis

- [1] Bruinier, van der Geer, Harder, Zagier; The 1-2-3 of Modular Forms, Springer-Verlag, Berlin, Heidelberg, 2008
- [2] A. Krieg, Funktionentheorie II, 2013, Skript zur Vorlesung