Infinitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection

M. Iscan and A. Magden

Abstract

Let $\left(M_{n}, g\right)$ be a Riemannian manifold and $T\left(M_{n}\right)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. We determine the infinitesimal paraholomorphically projective transformation on $T\left(M_{n}\right)$. Furthermore, if $T\left(M_{n}\right)$ admits a non-affine infinitesimal paraholomorphically projective transformation, then M_{n} and $T\left(M_{n}\right)$ are locally flat.

M.S.C. 2000: 53C20, 53C15.

Key words: infinitesimal paraholomorphically projective transformation, diagonal lift connection, adapted almost paracomplex structure.

1 Introduction

Let M_{n} be an n-dimensional manifold and $T\left(M_{n}\right)$ its tangent bundle. We denote by $\Im_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of type (p, q) on M_{n}. Similarly, we denote by $\Im_{q}^{p}\left(T\left(M_{n}\right)\right)$ the corresponding set on $T\left(M_{n}\right)$.

Let ∇ be an affine connection on M_{n}. A vector field V on M_{n} is called an infinitesimal projective transformation if there exists a 1-form Ω on M_{n} such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{n}\right)$, where L_{V} is the Lie derivation with respect to V. In this case Ω is called the associated 1-form of V. Especially, if $\Omega=0$, then V is called an infinitesimal affine transformation.

An almost paracomplex manifold is an almost product manifold $\left(M_{n}, \varphi\right), \varphi^{2}=I$, such that the two eigenbundles $T^{+} M_{n}$ and $T^{-} M_{n}$ associated to the two eigenvalues +1 and -1 of φ, respectively, have the same rank [1], [4]. An integrable almost product manifold is usually called a locally product manifold. Note that the dimension of an almost paracomplex manifold is necessarily even.

Next Let $\left(M_{n}, \varphi\right)$ be an almost paracomplex manifold with affine connection ∇. A vector field V on M_{n} is called an infinitesimal paraholomorphically projective transformation if there exists a 1 -form Ω on M_{n} such that

$$
\left(L_{V} \nabla\right)(X, Y)=\Omega(X) Y+\Omega(Y) X+\Omega(\varphi X) \varphi Y+\Omega(\varphi Y) \varphi X
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{n}\right)$. In this case Ω is also called the associated 1-form of $V[2]$, [3]. Especially, if $\Omega=0$, then V is the infinitesimal affine transformation.

It is well-known that there are several lift connections of ∇ on $T\left(M_{n}\right)$ [5], [6]. In this paper, we study the infinitesimal paraholomorphically projective transformation on $T\left(M_{n}\right)$ with diagonal lift connection.

2 Preliminaries

In this section we shall give some definitions and formulae on $T\left(M_{n}\right)$ for later use (for details, see [5], [6]). Let $\left(M_{n}, g\right)$ be a Riemannian manifold, ∇ the Riemannian connection of g and $\Gamma_{j i}^{h}$ the coefficients of ∇, i.e., $\Gamma_{j i}^{a} \partial_{a}=\nabla_{\partial_{j}} \partial_{i}$, where $\partial_{h}=\frac{\partial}{\partial x^{h}}$ and $\left(x^{h}\right)$ is the local coordinates of M_{n}.

2.1 Adapted frame of $T\left(M_{n}\right)$

We define a local frame $\left\{E_{i}, E_{\bar{i}}\right\}$ of $T\left(M_{n}\right)$ as follows:
$E_{i}=\partial_{i}-y^{b} \Gamma_{i b}^{a} \partial_{\bar{a}}$ and $E_{\bar{i}}=\partial_{\bar{i}}$,
where $\left(x^{h}, y^{h}\right)$ is the induced coordinates of $T\left(M_{n}\right)$ derived from the local coordinates $\left(x^{h}\right)$ of M_{n} and $\partial_{\bar{i}}=\frac{\partial}{\partial y^{i}}$. This frame $\left\{E_{i}, E_{\bar{i}}\right\}$ is called the adapted frame of $T\left(M_{n}\right)$. Then $\left\{d x^{h}, \delta y^{h}\right\}$ is the dual frame of $\left\{E_{i}, E_{\bar{i}}\right\}$, where $\delta y^{h}=d y^{h}+y^{b} \Gamma_{a b}^{h} d x^{a}$.

By the definition of the adapted frame, we have the following
Lemma 1. The Lie brackets of the adapted frame of $T\left(M_{n}\right)$ satisfy the following identities:

$$
\begin{equation*}
\left[E_{j}, E_{i}\right]=y^{b} R_{i j b}^{a} E_{\bar{a}} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\left[E_{\bar{j}}, E_{\bar{i}}\right]=0 \tag{2.3}
\end{equation*}
$$

2.2 Diagonal lift connection of ∇

A tensor field of type $(0, q)$ on $T\left(M_{n}\right)$ completely determined by its action on all vector fields $\tilde{X}_{i}, i=1,2, \ldots, q$ which are of the form ${ }^{V} X$ (vertical lift) or ${ }^{\mathrm{H}} X$ (horizontal lift) $[6$, p.101]:

$$
{ }^{V} X=X^{i} \frac{\partial}{\partial x^{\bar{i}}},{ }^{\mathrm{H}} X=X^{i} \frac{\partial}{\partial x^{i}}-y^{s} \Gamma_{s h}^{i} X^{h} \frac{\partial}{\partial x^{\bar{i}}}
$$

Therefore, we define the Sasakian metric ${ }^{D} g$ on $T\left(M_{n}\right)$ by

$$
\left\{\begin{array}{l}
{ }^{D} g\left({ }^{H} X,{ }^{H} Y\right)={ }^{V}(g(X, Y)), \tag{2.4}\\
{ }^{D} g\left({ }^{V} X,{ }^{V} Y\right)={ }^{V}(g(X, Y)), \\
{ }^{D} g\left({ }^{V} X,{ }^{H} Y\right)=0
\end{array}\right.
$$

for any $X, Y \in \Im_{0}^{1}\left(M_{n}\right)$. ${ }^{D} g$ has local components

$$
{ }^{D} g=\left(\begin{array}{cc}
g_{j i}+g_{t s} y^{k} y^{l} \Gamma_{k j}^{t} \Gamma_{l i}^{s} & y^{k} \Gamma_{k j}^{s} g_{s i} \\
y^{k} \Gamma_{k i}^{s} g_{j s} & g_{j i}
\end{array}\right)
$$

with respect to the induced coordinates $\left(x^{h}, y^{h}\right)$ in $T\left(M_{n}\right)$, where $\Gamma_{i j}^{k}$ are components of Levi-Civita connection ∇_{g} in M_{n}. The metric ${ }^{D} g$ has components

$$
{ }^{D} g=\left(\begin{array}{cc}
g_{j i} & 0 \tag{2.5}\\
0 & g_{j i}
\end{array}\right)
$$

with respect to the adapted frame in $T\left(M_{n}\right)$.
Let ${ }^{D} \nabla$ be a Levi-Civita connection of ${ }^{D} g$, then

$$
\begin{gathered}
{ }^{D} \nabla_{E_{j}} E_{i}=\Gamma_{j i}^{a} E_{a}-\frac{1}{2} y^{b} R_{j i b}^{a} E_{\bar{a}}, \\
{ }^{D} \nabla_{E_{j}} E_{\bar{i}}=\frac{1}{2} y^{b} R_{b i j}^{a} E_{a}+\Gamma_{j i}^{a} E_{\bar{a}}, \\
{ }^{D} \nabla_{E_{\bar{j}}} E_{i}=\frac{1}{2} y^{b} R_{b j i}^{a} E_{a},{ }^{D} \nabla_{E_{\bar{j}}} E_{\bar{i}}=0 .
\end{gathered}
$$

2.3 Adapted almost paracomplex structure on $T\left(M_{n}\right)$

The diagonal lift ${ }^{D} \varphi$ in $T\left(M_{n}\right)$ is defined by

$$
\left\{\begin{array}{l}
{ }^{D} \varphi^{H} X={ }^{H}(\varphi X), \tag{2.6}\\
{ }^{D} \varphi^{V} X=-{ }^{V}(\varphi X),
\end{array}\right.
$$

for any $X \in \Im_{0}^{1}\left(M_{n}\right)$ and $\varphi \in \Im_{1}^{1}\left(M_{n}\right)$. The diagonal lift ${ }^{D} I$ of the identity tensor field $I \in \Im_{1}^{1}\left(M_{n}\right)$ has the components

$$
{ }^{D} I=\left(\begin{array}{cc}
\delta_{i}^{j} & 0 \\
-2 y^{t} \Gamma_{t i}^{j} & -\delta_{i}^{j}
\end{array}\right)
$$

with respect to the induced coordinates and satisfies ${ }^{D} I^{V} X=-{ }^{V} X,{ }^{D} I^{H} X=$ ${ }^{H} X$ and $\left({ }^{D} I\right)^{2}=I_{T\left(M_{n}\right)}$ for any $X \in \Im_{0}^{1}\left(M_{n}\right)$, i.e.,
${ }^{D} I E_{\bar{i}}=-E_{\bar{i}}$ and ${ }^{D} I E_{i}=E_{i}$.
Therefore ${ }^{D} I$ is an almost paracomplex structure on $T\left(M_{n}\right) .{ }^{D} I$ has components

$$
{ }^{D} I=\left(\begin{array}{cc}
\delta_{i}^{j} & 0 \\
0 & -\delta_{i}^{j}
\end{array}\right)
$$

with respect to the adapted frame in $T\left(M_{n}\right)$. This almost paracomplex structure is called adapted almost paracomplex structure. Its know that ${ }^{D} I$ is integrable if and only if M_{n} is locally flat.

3 Infinitesimal paraholomorphically projective transformation

Theorem 1. Let $\left(M_{n}, g\right)$ be a Riemannian manifold and $T\left(M_{n}\right)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. A vector field \tilde{V} is an infinitesimal paraholomorphically projective transformation with associated 1form $\tilde{\Omega}$ on $T\left(M_{n}\right)$ if and only if there exist $\psi \in \Im_{0}^{0}\left(M_{n}\right), B=\left(B^{h}\right), D=\left(D^{h}\right) \in$ $\Im_{0}^{1}\left(M_{n}\right), A=\left(A_{i}^{h}\right), C=\left(C_{i}^{h}\right) \in \Im_{1}^{1}\left(M_{n}\right)$ satisfying

$$
\begin{equation*}
B^{h} \nabla_{h} R_{b j i}^{a}=R_{b j i}^{h} \nabla_{h} B^{a}+R_{j b h}^{a} \nabla_{i} B^{h}, A_{c}^{h} \nabla_{h} R_{b j i}^{a}=-R_{b j h}^{a} \nabla_{i} A_{c}^{h} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
R_{b j i}^{h} \nabla_{h} D^{a}=0 \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
B^{h} \nabla_{h} R_{j i b}^{a}=R_{h i b}^{a} \nabla_{j} B^{h}+R_{h j b}^{a} \nabla_{i} B^{h} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
A_{c}^{h} \nabla_{j} R_{i h b}^{a}=-\frac{1}{2} A_{c}^{h} \nabla_{h} R_{j i b}^{a}-\frac{1}{2} R_{j h b}^{a} \nabla_{i} A_{c}^{h}+\frac{1}{2} R_{h i b}^{a} \nabla_{j} A_{c}^{h} \tag{3.13}
\end{equation*}
$$

where $\tilde{V}=\left(\tilde{V}^{h}, \tilde{V}^{\bar{h}}\right)=\tilde{V}^{a} E_{a}+\tilde{V}^{\bar{a}} E_{\bar{a}}$ and $\tilde{\Omega}=\left(\tilde{\Omega}_{i}, \tilde{\Omega}_{\bar{i}}\right)=\tilde{\Omega}_{a} d x^{a}+\tilde{\Omega}_{\bar{a}} \delta y^{a}$.
Proof. Here we prove only the necessary condition because it is easy to prove the sufficient condition. Let \tilde{V} be an infinitesimal paraholomorphically projective transformation with the associated 1-form $\tilde{\Omega}$ on $T\left(M_{n}\right)$.

$$
\begin{equation*}
\left(L_{\tilde{V}} \tilde{\nabla}\right)(\tilde{X}, \tilde{Y})=\tilde{\Omega}(\tilde{X}) \tilde{Y}+\tilde{\Omega}(\tilde{Y}) \tilde{X}+\tilde{\Omega}(\varphi \tilde{X}) \varphi \tilde{Y}+\tilde{\Omega}(\varphi \tilde{Y}) \varphi \tilde{X} \tag{3.14}
\end{equation*}
$$

for any $\tilde{X}, \tilde{Y} \in \Im_{0}^{1}\left(T\left(M_{n}\right)\right)$.
From $\left(L_{\tilde{V}}^{D} \nabla\right)\left(E_{\bar{j}}, E_{\bar{i}}\right)=2 \tilde{\Omega}_{\bar{j}} E_{\bar{i}}+2 \tilde{\Omega}_{\bar{i}} E_{\bar{j}}$, we obtain

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{h}=0 \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{\bar{j}} \partial_{\bar{i}} \tilde{V}^{\bar{h}}=2 \tilde{\Omega}_{\bar{j}} \delta_{i}^{h}+2 \tilde{\Omega}_{\bar{i}} \delta_{j}^{h} . \tag{3.16}
\end{equation*}
$$

From (3.15), there exist $A=\left(A_{i}^{h}\right) \in \Im_{1}^{1}\left(M_{n}\right)$ and $B=\left(B^{h}\right) \in \Im_{0}^{1}\left(M_{n}\right)$ satisfying

$$
\begin{equation*}
\tilde{V}^{h}=B^{h}+y^{a} A_{a}^{h} . \tag{3.17}
\end{equation*}
$$

From (3.16), there exist $\psi \in \Im_{0}^{0}\left(M_{n}\right), \Phi=\left(\Phi_{i}\right) \in \Im_{1}^{0}\left(M_{n}\right), D=\left(D^{h}\right) \in \Im_{0}^{1}\left(M_{n}\right)$ and $C=\left(C_{i}^{h}\right) \in \Im_{1}^{1}\left(M_{n}\right)$ satisfying

$$
\begin{align*}
& \tilde{\varphi}=\psi+y^{a} \Phi_{a}, \tag{3.18}\\
& \tilde{\Omega}_{\bar{i}}=\partial_{i} \tilde{\varphi}=\Phi_{i}
\end{align*}
$$

and

$$
\begin{equation*}
\tilde{V}^{\bar{h}}=D^{h}+y^{a} C_{a}^{h}+4 \psi y^{h}+2 y^{h} y^{a} \Phi_{a}, \tag{3.20}
\end{equation*}
$$

where $\tilde{\varphi}=\frac{1}{2(n+1)} \partial_{\bar{a}} \tilde{V}^{\bar{a}}$.
Next, from (3.14) we have

$$
\begin{equation*}
\left(L_{\widetilde{V}}^{D} \nabla\right)\left(E_{\bar{j}}, E_{i}\right)=0 \tag{3.21}
\end{equation*}
$$

or

$$
\left(L_{\widetilde{V}}^{D} \nabla\right)\left(E_{j}, E_{\bar{i}}\right)=0
$$

from which, we get

$$
\begin{aligned}
0= & \left\{\left(\nabla_{i} A_{j}^{a}+\frac{1}{2} D^{h} R_{h j i}^{a}\right)+y^{b}\left(\frac{1}{2} B^{h} \nabla_{h} R_{b j i}^{a}+\frac{1}{2} C_{b}^{h} R_{h j i}^{a}+4 \psi R_{b j i}^{a}+\frac{1}{2} C_{j}^{h} R_{b h i}^{a}\right.\right. \\
- & \left.\frac{1}{2} R_{b j i}^{h} \nabla_{h} B^{a}+\frac{1}{2} R_{b j h}^{a} \nabla_{i} B^{h}\right)+y^{b} y^{c}\left(\frac{1}{2} R_{b j h}^{a} \nabla_{i} A_{c}^{h}+\frac{1}{2} A_{c}^{h} \nabla_{h} R_{b j i}^{a}+2 \Phi_{c} R_{b j i}^{a}\right. \\
+ & \left.\left.\Phi_{j} R_{b c i}^{a}\right)\right\} E_{a}+\left\{\left(\nabla_{i} C_{j}^{a}+4 \partial_{i} \psi \delta_{j}^{a}+B^{h} R_{h i j}^{a}\right)+y^{b}\left(2 \delta_{b}^{a} \nabla_{i} \Phi_{j}+2 \delta_{j}^{a} \nabla_{i} \Phi_{b}\right.\right. \\
& \left.\left.+A_{b}^{h} R_{h i j}^{a}+\frac{1}{2} A_{j}^{h} R_{h i b}^{a}-\frac{1}{2} R_{b j i}^{h} \nabla_{h} D^{a}\right)+y^{b} y^{c} y^{h} R_{j b i}^{a} \nabla_{h} \Phi_{c}\right\} E_{\bar{a}} .
\end{aligned}
$$

From the above equation, we obtain

$$
\nabla_{i} A_{j}^{a}=-\frac{1}{2} D^{h} R_{h j i}^{a}, \nabla_{i} C_{j}^{a}=-B^{h} R_{h i j}^{a}-4 \partial_{i} \psi \delta_{j}^{a}
$$

$$
\begin{gather*}
B^{h} \nabla_{h} R_{b j i}^{a}=R_{b j i}^{h} \nabla_{h} B^{a}+R_{j b h}^{a} \nabla_{i} B^{h}, A_{c}^{h} \nabla_{h} R_{b j i}^{a}=-R_{b j h}^{a} \nabla_{i} A_{c}^{h} \tag{3.22}\\
C_{b}^{h} R_{h j i}^{a}=-4 \psi R_{b j i}^{a}, \Phi_{l} R_{k j i}^{h}=0, \nabla_{i} \Phi_{j}=0, A_{b}^{h} R_{h i j}^{a}=0, R_{b j i}^{h} \nabla_{h} D^{a}=0
\end{gather*}
$$

Lastly, from $\left(L_{\tilde{V}}^{D} \nabla\right)\left(E_{j}, E_{i}\right)=2\left(\tilde{\Omega}_{j} \delta_{i}^{a}+\tilde{\Omega}_{i} \delta_{j}^{a}\right) E_{a}$, we obtain

$$
2\left(\tilde{\Omega}_{j} \delta_{i}^{a}+\tilde{\Omega}_{i} \delta_{j}^{a}\right) E_{a}
$$

$$
=\left\{L_{B} \Gamma_{j i}^{a}+y^{b}\left(A_{b}^{h} R_{h j i}^{a}+\nabla_{j} \nabla_{i} A_{b}^{a}+\frac{1}{2} A_{h}^{a} R_{j i b}^{h}-\frac{1}{2} R_{b h j}^{a} \nabla_{i} D^{h}\right.\right.
$$

$$
\left.\left.-\frac{1}{2} R_{b h i}^{a} \nabla_{j} D^{h}\right)+y^{b} y^{c}\left(2 R_{b c j}^{a} \partial_{i} \psi+2 R_{b c i}^{a} \partial_{j} \psi\right)+y^{b} y^{c} y^{h}\left(R_{b h j}^{a} \nabla_{i} \Phi_{c}+R_{b h i}^{a} \nabla_{j} \Phi_{c}\right)\right\} E_{a}
$$

$$
+\left\{\left(\nabla_{j} \nabla_{i} D^{a}-\frac{1}{2} D^{h} R_{j i h}^{a}\right)+y^{b}\left(-\frac{1}{2} B^{h} \nabla_{h} R_{j i b}^{a}+\frac{1}{2} R_{h i b}^{a} \nabla_{j} B^{h}+\frac{1}{2} R_{h j b}^{a} \nabla_{i} B^{h}-\frac{1}{2} C_{b}^{h} R_{j i h}^{a}\right.\right.
$$

$$
\begin{aligned}
& \left.+\frac{1}{2} C_{h}^{a} R_{j i b}^{h}+4 \delta_{b}^{a} \nabla_{j}\left(\partial_{i} \psi\right)+\nabla_{j} \nabla_{i} C_{b}^{a}\right)+y^{b} y^{c}\left(\Phi_{c} R_{j i b}^{a}-\Phi_{b} R_{j i c}^{a}+\Phi_{h} \delta_{c}^{a} R_{j i b}^{h}\right. \\
& \left.\left.+2 \delta_{b}^{a} \nabla_{j} \nabla_{i} \Phi_{c}-\frac{1}{2} A_{c}^{h} \nabla_{h} R_{j i b}^{a}+\frac{1}{2} R_{h i b}^{a} \nabla_{j} A_{c}^{h}-\frac{1}{2} R_{j h b}^{a} \nabla_{i} A_{c}^{h}-A_{c}^{h} \nabla_{j} R_{i h b}^{a}\right)\right\} E_{\bar{a}}
\end{aligned}
$$

from which, we get the following important information:

$$
\begin{equation*}
L_{B} \Gamma_{j i}^{a}=\nabla_{j} \nabla_{i} B^{a}+R_{h j i}^{a} B^{h}=2 \tilde{\Omega}_{j} \delta_{i}^{a}+2 \tilde{\Omega}_{i} \delta_{j}^{a} \tag{3.23}
\end{equation*}
$$

(That is, B is infinitesimal projective transformation on M_{n})

$$
\begin{gather*}
\nabla_{j} \nabla_{i} A_{b}^{a}=-\frac{1}{2} A_{h}^{a} R_{j i b}^{h}, \nabla_{j} \nabla_{i} C_{b}^{a}=-\frac{1}{2} C_{h}^{a} R_{j i b}^{h}, \\
\nabla_{j} \nabla_{i} D^{a}=\frac{1}{2} R_{j i h}^{a} D^{h}, C_{b}^{h} R_{j i h}^{a}=0, R_{b c j}^{a} \partial_{i} \psi=0, \tag{3.24}\\
\nabla_{j}\left(\partial_{i} \psi\right)=0, B^{h} \nabla_{h} R_{j i b}^{a}=R_{h i b}^{a} \nabla_{j} B^{h}+R_{h j b}^{a} \nabla_{i} B^{h}, \\
A_{c}^{h} \nabla_{j} R_{i h b}^{a}=-\frac{1}{2} A_{c}^{h} \nabla_{h} R_{j i b}^{a}-\frac{1}{2} R_{j h b}^{a} \nabla_{i} A_{c}^{h}+\frac{1}{2} R_{h i b}^{a} \nabla_{j} A_{c}^{h} .
\end{gather*}
$$

This completes the proof.
Theorem 2. Let $\left(M_{n}, g\right)$ be a Riemannian manifold and $T\left(M_{n}\right)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. If $T\left(M_{n}\right)$ admits non-affine infinitesimal paraholomorphically projective transformation, then M_{n} and $T\left(M_{n}\right)$ are locally flat.

Proof. Let \tilde{V} be non-affine infinitesimal paraholomorphically projective transformation on $T\left(M_{n}\right)$. Using (3.3) in Theorem 1, we have $\nabla_{i}\|\Phi\|^{2}=\nabla_{j}\|\partial \psi\|^{2}=0$. Hence, $\|\Phi\|$ and $\|\partial \psi\|$ are constant on M_{n}. Suppose that M_{n} is not locally flat, then $\Phi=\partial \psi=0$ by virtue of (3.9) in Theorem metricconverterProductID1. In1. In addition to this, using the equations (3.4) and (3.8) in Theorem 1 , we have $B=0$. that is, \tilde{V} is an infinitesimal affine transformation. This is a contradiction. Therefore, M_{n} is locally flat. In this case, $T\left(M_{n}\right)$ is locally flat.[5], [6].

Acknowledgement. This is paper suppoted by The Scientific and Technological Research Council of Turkey.

References

[1] V. Cruceanu, P.M. Gadea and J. Munoz Masque, Para-Hermitian and ParaKahler Manifolds, Quaderni Inst. Math. Messina 2 (1995), 1-70.
[2] F. Etayo and P. M. Gadea, Paraholomorphically projective vector field, An. St. Univ. "Al. I. Cuza" Iaşi Sect. a Mat. (N. S.) 38 (1992), 201-210.
[3] M. Prvanovic, Holomorphically projective transformations in a locally product spaces, Math. Balkanika (N.S.) 1 (1971), 195-213.
[4] A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology and its Application, 154 (2007), 925-933.
[5] K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I, II, III, J. Math. Soc. Japan 18 (1966), 194—210, 236-246, 19 (1967), 486-488.
[6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.
Authors' address:
M. Iscan and A. Magden

Ataturk University, Faculty of Arts and Sciences,
Dept. of Mathematics, Erzurum, Turkey.
E-mail: miscan@atauni.edu.tr, amagden@atauni.edu.tr

