Infinitesimal paraholomorphically projective transformations on tangent bundles with diagonal lift connection

M. Iscan and A. Magden

Abstract. Let (M_n, g) be a Riemannian manifold and $T(M_n)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. We determine the infinitesimal paraholomorphically projective transformation on $T(M_n)$. Furthermore, if $T(M_n)$ admits a non-affine infinitesimal paraholomorphically projective transformation, then M_n and $T(M_n)$ are locally flat.

M.S.C. 2000: 53C20, 53C15.

Key words: infinitesimal paraholomorphically projective transformation, diagonal lift connection, adapted almost paracomplex structure.

1 Introduction

Let M_n be an *n*-dimensional manifold and $T(M_n)$ its tangent bundle. We denote by $\mathfrak{S}^p_q(M_n)$ the set of all tensor fields of type (p,q) on M_n . Similarly, we denote by $\mathfrak{S}^p_q(T(M_n))$ the corresponding set on $T(M_n)$.

Let ∇ be an affine connection on M_n . A vector field V on M_n is called an *infinitesimal projective transformation* if there exists a 1-form Ω on M_n such that

$$(L_V \nabla)(X, Y) = \Omega(X)Y + \Omega(Y)X$$

for any $X, Y \in \mathfrak{S}_0^1(M_n)$, where L_V is the Lie derivation with respect to V. In this case Ω is called the *associated 1-form* of V. Especially, if $\Omega = 0$, then V is called an *infinitesimal affine transformation*.

An almost paracomplex manifold is an almost product manifold (M_n, φ) , $\varphi^2 = I$, such that the two eigenbundles T^+M_n and T^-M_n associated to the two eigenvalues +1 and -1 of φ , respectively, have the same rank [1], [4]. An integrable almost product manifold is usually called a locally product manifold. Note that the dimension of an almost paracomplex manifold is necessarily even.

Next Let (M_n, φ) be an almost paracomplex manifold with affine connection ∇ . A vector field V on M_n is called an *infinitesimal paraholomorphically projective transformation* if there exists a 1-form Ω on M_n such that

Differential Geometry - Dynamical Systems, Vol.10, 2008, pp. 170-177.

[©] Balkan Society of Geometers, Geometry Balkan Press 2008.

$$(L_V\nabla)(X,Y) = \Omega(X)Y + \Omega(Y)X + \Omega(\varphi X)\varphi Y + \Omega(\varphi Y)\varphi X$$

for any $X, Y \in \mathfrak{S}_0^1(M_n)$. In this case Ω is also called the *associated 1-form* of V[2], [3]. Especially, if $\Omega = 0$, then V is the infinitesimal affine transformation.

It is well-known that there are several lift connections of ∇ on $T(M_n)[5]$, [6]. In this paper, we study the infinitesimal paraholomorphically projective transformation on $T(M_n)$ with diagonal lift connection.

2 Preliminaries

In this section we shall give some definitions and formulae on $T(M_n)$ for later use (for details, see [5], [6]). Let (M_n, g) be a Riemannian manifold, ∇ the Riemannian connection of g and Γ_{ji}^h the coefficients of ∇ , i.e., $\Gamma_{ji}^a \partial_a = \nabla_{\partial_j} \partial_i$, where $\partial_h = \frac{\partial}{\partial x^h}$ and (x^h) is the local coordinates of M_n .

2.1 Adapted frame of $T(M_n)$

We define a local frame $\{E_i, E_{\overline{i}}\}$ of $T(M_n)$ as follows:

 $E_i = \partial_i - y^b \Gamma^a_{ib} \partial_{\bar{a}}$ and $E_{\bar{i}} = \partial_{\bar{i}}$,

where (x^h, y^h) is the induced coordinates of $T(M_n)$ derived from the local coordinates (x^h) of M_n and $\partial_{\bar{i}} = \frac{\partial}{\partial y^i}$. This frame $\{E_i, E_{\bar{i}}\}$ is called the *adapted frame* of $T(M_n)$. Then $\{dx^h, \delta y^h\}$ is the dual frame of $\{E_i, E_{\bar{i}}\}$, where $\delta y^h = dy^h + y^b \Gamma^h_{ab} dx^a$. By the definition of the adapted frame, we have the following

Lemma 1. The Lie brackets of the adapted frame of $T(M_n)$ satisfy the following identities:

$$(2.1) [E_j, E_i] = y^b R^a_{ijb} E_{\bar{a}},$$

(2.2)
$$[E_j, E_{\bar{i}}] = \Gamma^a_{ji} E_{\bar{a}},$$

$$(2.3) [E_{\overline{i}}, E_{\overline{i}}] = 0.$$

2.2 Diagonal lift connection of ∇

A tensor field of type (0, q) on $T(M_n)$ completely determined by its action on all vector fields \tilde{X}_i , i = 1, 2, ..., q which are of the form ${}^{V}X$ (vertical lift) or ${}^{H}X$ (horizontal lift)[6, p.101]:

$${}^{V}X = X^{i}\frac{\partial}{\partial x^{\overline{i}}}, \ {}^{\mathrm{H}}X = X^{i}\frac{\partial}{\partial x^{i}} - y^{s}\Gamma^{i}_{sh}X^{h}\frac{\partial}{\partial x^{\overline{i}}}$$

Therefore, we define the Sasakian metric ${}^{D}g$ on $T(M_n)$ by

(2.4)
$$\begin{cases} {}^{D}g({}^{H}X,{}^{H}Y) = {}^{V}(g(X,Y)), \\ {}^{D}g({}^{V}X,{}^{V}Y) = {}^{V}(g(X,Y)), \\ {}^{D}g({}^{V}X,{}^{H}Y) = 0, \end{cases}$$

for any $X, Y \in \mathfrak{S}_0^1(M_n)$. ^Dg has local components

$${}^{D}g = \left(\begin{array}{cc} g_{ji} + g_{ts} y^{k} y^{l} \Gamma^{t}_{kj} \Gamma^{s}_{li} & y^{k} \Gamma^{s}_{kj} g_{si} \\ y^{k} \Gamma^{s}_{ki} g_{js} & g_{ji} \end{array} \right)$$

with respect to the induced coordinates (x^h, y^h) in $T(M_n)$, where Γ_{ij}^k are components of Levi-Civita connection ∇_g in M_n . The metric Dg has components

$$(2.5) Dg = \begin{pmatrix} g_{ji} & 0\\ 0 & g_{ji} \end{pmatrix}$$

with respect to the adapted frame in $T(M_n)$. Let ${}^{D}\nabla$ be a Levi-Civita connection of ${}^{D}g$, then

$${}^{D}\nabla_{E_{j}}E_{i} = \Gamma^{a}_{ji}E_{a} - \frac{1}{2}y^{b}R^{a}_{jib}E_{\bar{a}},$$
$${}^{D}\nabla_{E_{j}}E_{\bar{i}} = \frac{1}{2}y^{b}R^{a}_{bij}E_{a} + \Gamma^{a}_{ji}E_{\bar{a}},$$
$${}^{D}\nabla_{E_{\bar{j}}}E_{i} = \frac{1}{2}y^{b}R^{a}_{bji}E_{a}, \quad {}^{D}\nabla_{E_{\bar{j}}}E_{\bar{i}} = 0$$

Adapted almost paracomplex structure on $T(M_n)$ $\mathbf{2.3}$

The diagonal lift ${}^{D}\varphi$ in $T(M_n)$ is defined by

(2.6)
$$\begin{cases} {}^{D}\varphi^{H}X = {}^{H}(\varphi X), \\ {}^{D}\varphi^{V}X = -{}^{V}(\varphi X), \end{cases}$$

for any $X \in \mathfrak{S}_0^1(M_n)$ and $\varphi \in \mathfrak{S}_1^1(M_n)$. The diagonal lift ^DI of the identity tensor field $I \in \mathfrak{S}^1_1(M_n)$ has the components

$${}^{D}I = \left(\begin{array}{cc} \delta_{i}^{j} & 0\\ -2y^{t}\Gamma_{ti}^{j} & -\delta_{i}^{j} \end{array}\right)$$

with respect to the induced coordinates and satisfies ${}^{D}I^{V}X = -{}^{V}X$, ${}^{D}I^{H}X =$ ^HX and ${}^{(D}I)^2 = I_{T(M_n)}$ for any $X \in \mathfrak{S}_0^1(M_n)$, i.e., ${}^{D}IE_{\overline{i}} = -E_{\overline{i}}$ and ${}^{D}IE_i = E_i$. Therefore ${}^{D}I$ is an almost paracomplex structure on $T(M_n)$. ${}^{D}I$ has components

$${}^{D}I = \left(\begin{array}{cc} \delta_{i}^{j} & 0\\ 0 & -\delta_{i}^{j} \end{array}\right)$$

with respect to the adapted frame in $T(M_n)$. This almost paracomplex structure is called *adapted almost paracomplex structure*. Its know that ^{D}I is integrable if and only if M_n is locally flat.

Infinitesimal paraholomorphically projective transformations

3 Infinitesimal paraholomorphically projective transformation

Theorem 1. Let (M_n, g) be a Riemannian manifold and $T(M_n)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. A vector field \tilde{V} is an infinitesimal paraholomorphically projective transformation with associated 1form $\tilde{\Omega}$ on $T(M_n)$ if and only if there exist $\psi \in \mathfrak{S}_0^0(M_n)$, $B = (B^h)$, $D = (D^h) \in$ $\mathfrak{S}_0^1(M_n)$, $A = (A_i^h)$, $C = (C_i^h) \in \mathfrak{S}_1^1(M_n)$ satisfying

(3.1)
$$(\tilde{V}^h, \tilde{V}^{\bar{h}}) = (B^h + y^a A^h_a, \ D^h + y^a C^h_a + 4\psi y^h + 2y^h y^a \Phi_a)$$

(3.2)
$$\tilde{\Omega}_{\bar{i}} = \partial_{\bar{i}}\tilde{\varphi} = \Phi_i$$

(3.3)
$$\nabla_j \Phi_i = 0, \nabla_j (\partial_i \psi) = 0$$

(3.4)
$$\nabla_i A^a_j = -\frac{1}{2} D^h R^a_{hji}, \nabla_i C^a_j = -B^c R^a_{cij} - 4\partial_i \psi \delta^a_j$$

(3.5)
$$L_B \Gamma^a_{ji} = \nabla_j \nabla_i B^a + R^a_{hji} B^h = 2 \tilde{\Omega}_j \delta^a_i + 2 \tilde{\Omega}_i \delta^a_j$$

(3.6)
$$\nabla_j \nabla_i D^a = \frac{1}{2} R^a_{jih} D^h$$

(3.7)
$$\nabla_j \nabla_i A^a_b = -\frac{1}{2} A^a_h R^h_{jib}, \nabla_j \nabla_i C^a_b = -\frac{1}{2} C^a_h R^h_{jib}$$

(3.8)
$$A_b^h R_{hij}^a = 0, C_b^h R_{jih}^a = 0, C_b^h R_{hji}^a = -4\psi R_{bji}^a$$

(3.9)
$$\Phi_l R^h_{kji} = 0, R^a_{bcj} \partial_i \psi = 0$$

$$(3.10) B^h \nabla_h R^a_{bji} = R^h_{bji} \nabla_h B^a + R^a_{jbh} \nabla_i B^h, A^h_c \nabla_h R^a_{bji} = -R^a_{bjh} \nabla_i A^h_c$$

(3.13)
$$A_{c}^{h} \nabla_{j} R_{ihb}^{a} = -\frac{1}{2} A_{c}^{h} \nabla_{h} R_{jib}^{a} - \frac{1}{2} R_{jhb}^{a} \nabla_{i} A_{c}^{h} + \frac{1}{2} R_{hib}^{a} \nabla_{j} A_{c}^{h}$$

where $\tilde{V} = (\tilde{V}^h, \tilde{V}^{\bar{h}}) = \tilde{V}^a E_a + \tilde{V}^{\bar{a}} E_{\bar{a}}$ and $\tilde{\Omega} = (\tilde{\Omega}_i, \tilde{\Omega}_{\bar{i}}) = \tilde{\Omega}_a dx^a + \tilde{\Omega}_{\bar{a}} \delta y^a$. Proof. Here we prove only the necessary condition because it is easy to prove

Proof. Here we prove only the necessary condition because it is easy to prove the sufficient condition. Let \tilde{V} be an infinitesimal paraholomorphically projective transformation with the associated 1-form $\tilde{\Omega}$ on $T(M_n)$.

$$(3.14) \qquad (L_{\tilde{V}}\tilde{\nabla})(\tilde{X},\tilde{Y}) = \tilde{\Omega}(\tilde{X})\tilde{Y} + \tilde{\Omega}(\tilde{Y})\tilde{X} + \tilde{\Omega}(\varphi\tilde{X})\varphi\tilde{Y} + \tilde{\Omega}(\varphi\tilde{Y})\varphi\tilde{X}$$

for any \tilde{X} , $\tilde{Y} \in \mathfrak{S}_0^1(T(M_n))$. From $(L_{\tilde{V}}^D \nabla)(E_{\tilde{j}}, E_{\tilde{i}}) = 2\tilde{\Omega}_{\tilde{j}}E_{\tilde{i}} + 2\tilde{\Omega}_{\tilde{i}}E_{\tilde{j}}$, we obtain

(3.15)
$$\partial_{\bar{j}}\partial_{\bar{i}}\tilde{V}^h = 0$$

and

(3.16)
$$\partial_{\bar{j}}\partial_{\bar{i}}\tilde{V}^{\bar{h}} = 2\tilde{\Omega}_{\bar{j}}\delta^{h}_{i} + 2\tilde{\Omega}_{\bar{i}}\delta^{h}_{j}.$$

From (3.15), there exist $A = (A_i^h) \in \mathfrak{S}_1^1(M_n)$ and $B = (B^h) \in \mathfrak{S}_0^1(M_n)$ satisfying

(3.17)
$$\tilde{V}^h = B^h + y^a A^h_a$$

From (3.16), there exist $\psi \in \mathfrak{S}_0^0(M_n)$, $\Phi = (\Phi_i) \in \mathfrak{S}_1^0(M_n)$, $D = (D^h) \in \mathfrak{S}_0^1(M_n)$ and $C = (C_i^h) \in \mathfrak{S}_1^1(M_n)$ satisfying

(3.18)
$$\tilde{\varphi} = \psi + y^a \Phi_a,$$

(3.19)
$$\tilde{\Omega}_{\bar{i}} = \partial_{\bar{i}}\tilde{\varphi} = \Phi_i$$

and

(3.20)
$$\tilde{V}^{\bar{h}} = D^{h} + y^{a}C^{h}_{a} + 4\psi y^{h} + 2y^{h}y^{a}\Phi_{a},$$

where $\tilde{\varphi} = \frac{1}{2(n+1)} \partial_{\bar{a}} \tilde{V}^{\bar{a}}$. Next, from (3.14) we have

(3.21)
$$(L^D_{\tilde{V}}\nabla)(E_{\bar{j}}, E_i) = 0$$

or

$$(L^D_{\tilde{V}}\nabla)(E_j, E_{\bar{i}}) = 0$$

from which, we get

$$0 = \left\{ (\nabla_i A_j^a + \frac{1}{2} D^h R_{hji}^a) + y^b (\frac{1}{2} B^h \nabla_h R_{bji}^a + \frac{1}{2} C_b^h R_{hji}^a + 4\psi R_{bji}^a + \frac{1}{2} C_j^h R_{bhi}^a \right. \\ \left. - \frac{1}{2} R_{bji}^h \nabla_h B^a + \frac{1}{2} R_{bjh}^a \nabla_i B^h) + y^b y^c (\frac{1}{2} R_{bjh}^a \nabla_i A_c^h + \frac{1}{2} A_c^h \nabla_h R_{bji}^a + 2\Phi_c R_{bji}^a \right. \\ \left. + \Phi_j R_{bci}^a) \right\} E_a + \left\{ (\nabla_i C_j^a + 4\partial_i \psi \delta_j^a + B^h R_{hij}^a) + y^b (2\delta_b^a \nabla_i \Phi_j + 2\delta_j^a \nabla_i \Phi_b \right. \\ \left. + A_b^h R_{hij}^a + \frac{1}{2} A_j^h R_{hib}^a - \frac{1}{2} R_{bji}^h \nabla_h D^a) + y^b y^c y^h R_{jbi}^a \nabla_h \Phi_c \right\} E_{\bar{a}}.$$
From the above equation, we obtain

From the above equation, we obtain

(3.22)
$$\nabla_i A^a_j = -\frac{1}{2} D^h R^a_{hji}, \nabla_i C^a_j = -B^h R^a_{hij} - 4\partial_i \psi \delta^a_j,$$
$$B^h \nabla_h R^a_{bji} = R^h_{bji} \nabla_h B^a + R^a_{jbh} \nabla_i B^h, A^h_c \nabla_h R^a_{bji} = -R^a_{bjh} \nabla_i A^h_c,$$

$$\begin{split} C^h_b R^a_{hji} &= -4\psi R^a_{bji}, \Phi_l R^h_{kji} = 0, \nabla_i \Phi_j = 0, A^h_b R^a_{hij} = 0, R^h_{bji} \nabla_h D^a = 0. \end{split}$$
 Lastly, from $(L^D_{\tilde{V}} \nabla)(E_j, E_i) = 2(\tilde{\Omega}_j \delta^a_i + \tilde{\Omega}_i \delta^a_j) E_a$, we obtain

$$2(\tilde{\Omega}_j \delta^a_i + \tilde{\Omega}_i \delta^a_j) E_a$$
$$= \left\{ L_B \Gamma^a_{ji} + y^b (A^h_b R^a_{hji} + \nabla_j \nabla_i A^a_b + \frac{1}{2} A^a_h R^h_{jib} - \frac{1}{2} R^a_{bhj} \nabla_i D^h \right\}$$

$$-\frac{1}{2}R^{a}_{bhi}\nabla_{j}D^{h}) + y^{b}y^{c}(2R^{a}_{bcj}\partial_{i}\psi + 2R^{a}_{bci}\partial_{j}\psi) + y^{b}y^{c}y^{h}(R^{a}_{bhj}\nabla_{i}\Phi_{c} + R^{a}_{bhi}\nabla_{j}\Phi_{c})\}E_{a}$$
$$+\left\{(\nabla_{j}\nabla_{i}D^{a} - \frac{1}{2}D^{h}R^{a}_{jih}) + y^{b}(-\frac{1}{2}B^{h}\nabla_{h}R^{a}_{jib} + \frac{1}{2}R^{a}_{hib}\nabla_{j}B^{h} + \frac{1}{2}R^{a}_{hjb}\nabla_{i}B^{h} - \frac{1}{2}C^{h}_{b}R^{a}_{jih}\right\}$$

$$+\frac{1}{2}C_h^a R_{jib}^h + 4\delta_b^a \nabla_j(\partial_i \psi) + \nabla_j \nabla_i C_b^a) + y^b y^c (\Phi_c R_{jib}^a - \Phi_b R_{jic}^a + \Phi_h \delta_c^a R_{jib}^h)$$

$$+2\delta^a_b\nabla_j\nabla_i\Phi_c -\frac{1}{2}A^h_c\nabla_hR^a_{jib} +\frac{1}{2}R^a_{hib}\nabla_jA^h_c -\frac{1}{2}R^a_{jhb}\nabla_iA^h_c -A^h_c\nabla_jR^a_{ihb})\}E_{\bar{a}}$$

from which, we get the following important information:

(3.23)
$$L_B \Gamma^a_{ji} = \nabla_j \nabla_i B^a + R^a_{hji} B^h = 2 \tilde{\Omega}_j \delta^a_i + 2 \tilde{\Omega}_i \delta^a_j$$

(That is, B is infinitesimal projective transformation on M_n)

$$\nabla_j \nabla_i A^a_b = -\frac{1}{2} A^a_h R^h_{jib}, \nabla_j \nabla_i C^a_b = -\frac{1}{2} C^a_h R^h_{jib},$$

(3.24)
$$\nabla_j \nabla_i D^a = \frac{1}{2} R^a_{jih} D^h, C^h_b R^a_{jih} = 0, R^a_{bcj} \partial_i \psi = 0,$$

$$\begin{split} \nabla_j(\partial_i\psi) &= 0, B^h \nabla_h R^a_{jib} = R^a_{hib} \nabla_j B^h + R^a_{hjb} \nabla_i B^h, \\ A^h_c \nabla_j R^a_{ihb} &= -\frac{1}{2} A^h_c \nabla_h R^a_{jib} - \frac{1}{2} R^a_{jhb} \nabla_i A^h_c + \frac{1}{2} R^a_{hib} \nabla_j A^h_c. \end{split}$$

This completes the proof. \Box

Theorem 2. Let (M_n, g) be a Riemannian manifold and $T(M_n)$ its tangent bundle with diagonal lift connection and adapted almost paracomplex structure. If $T(M_n)$ admits non-affine infinitesimal paraholomorphically projective transformation, then M_n and $T(M_n)$ are locally flat.

Proof. Let \tilde{V} be non-affine infinitesimal paraholomorphically projective transformation on $T(M_n)$. Using (3.3) in Theorem 1, we have $\nabla_i \|\Phi\|^2 = \nabla_j \|\partial\psi\|^2 = 0$. Hence, $\|\Phi\|$ and $\|\partial\psi\|$ are constant on M_n . Suppose that M_n is not locally flat, then $\Phi = \partial\psi = 0$ by virtue of (3.9) in Theorem metricconverterProductID1. In1. In addition to this, using the equations (3.4) and (3.8) in Theorem 1, we have B = 0. that is, \tilde{V} is an infinitesimal affine transformation. This is a contradiction. Therefore, M_n is locally flat. In this case, $T(M_n)$ is locally flat.[5], [6]. \Box

Acknowledgement. This is paper suppoted by The Scientific and Technological Research Council of Turkey.

References

- V. Cruceanu, P.M. Gadea and J. Munoz Masque, Para-Hermitian and Para-Kahler Manifolds, Quaderni Inst. Math. Messina 2 (1995), 1-70.
- [2] F. Etayo and P. M. Gadea, Paraholomorphically projective vector field, An. St. Univ. "Al. I. Cuza" Iaşi Sect. a Mat. (N. S.) 38 (1992), 201-210.

- [3] M. Prvanovic, Holomorphically projective transformations in a locally product spaces, Math. Balkanika (N.S.) 1 (1971), 195-213.
- [4] A.A. Salimov, M. Iscan and F. Etayo, Paraholomorphic B-manifold and its properties, Topology and its Application, 154 (2007), 925-933.
- [5] K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I, II, III, J. Math. Soc. Japan 18 (1966), 194—210, 236—246, 19 (1967), 486—488.
- [6] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, 1973.

 $Authors'\ address:$

M. Iscan and A. Magden Ataturk University, Faculty of Arts and Sciences, Dept. of Mathematics, Erzurum, Turkey. E-mail: miscan@atauni.edu.tr, amagden@atauni.edu.tr