The new diploid, (10.7.4), occurred on seven of the ten crystals, and was identified by its angular position in the zone [210: 111]. The reflections were for the most part of good quality and the faces, tho narrow, were bright and well defined.

The measurements which served to identify the modifying forms are as follows:

Table 2. Angles of Pyrite from New York City

Yetter	Angle	Number of measurements	Measured	Calculated	Limits
$a: q$	100:211	23	$35^{\circ} 17^{\prime}$	$35^{\circ} 16^{\prime}$	$34^{\circ} 55^{\prime}-3542^{\prime}$
: n	: 322	3	4321	4319	$4315-4331$
- 13	. 766	16	4925	4924	$48 \quad 50-4957$
$0: \mathfrak{H}_{1}$	111:654	7	922	$916 \frac{1}{2}$	9 8-932
: x	: 543	7	11388	1132	11 14-1157
	: 753	5	18 17 17	18 51 ${ }^{\frac{1}{2}}$	$18 \quad 4-1837$
	: 10.7.4	21	19 1 ${ }^{\frac{1}{2}}$	$1917^{\text {a }}$	18 35-1936
: $8 .$.	: 321	32	$22.1{ }^{1}$	22 12 ${ }^{\frac{1}{2}}$	21 46-22 57

* New form.

CRYSTALLOGRAPHY OF SOME CANADIAN MINERALS: 8. AXINITE
 EUGENE POITEVIN
 Geological Survey of Canada ${ }^{1}$

The crystals here described were collected during the summer of 1908^{2} by Charles Camsell of the Canada Geological Survey, from the western slope of the Nickel Plate Mountain, Osoyoos Mining Division, British Columbia, where the mineral occurs in hair-brown crystals and crystalline masses associated with crystalline mispickel, opaline quartz, and calcite at the contact of a gabbro porphyry and sedimentary beds.

An analysis made by R. A. A. Johnston of the Geological Survey 3 from carefully selected crystal fragments gave the following results, which with the exception of the water content (which is too low) agree with the formula proposed by W. T. Schaller, ${ }^{4}$

$$
8 \mathrm{SiO}_{2} .2 \mathrm{Al}_{2} \mathrm{O}_{3} .1 \mathrm{~B}_{2} \mathrm{O}_{3} .2(\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}) \text { O. } 4 \mathrm{CaO} .1 \mathrm{H}_{2} \mathrm{O} .
$$

[^0]Table 4. Analysis and Ratios of Axinite, British Columbia

It was observed that the finest crystals were implanted upon the opaline quartz. The largest of these so far observed do not exceed 1 cm . in length, while the remainder were of smaller dimensions, some being almost of microscopic size. Owing to the firmness with which they were implanted upon the matrix it was found impossible to detach more than fragments of individuals for purposes of measurement.

Altho a large number of the crystals were examined, measurements were carried out on only nine of them; of the thirty-nine forms which were observed, nine are new. Three others are still uncertain. All symbols are given in Miller's orientation, as modified by Professor V. Goldschmidt.

The prisms $u(1 \overline{1} 0)$ and $c(010)$ are striated vertically. The domes, also, are usually striated parallel to their zonal intersections. Of forms hitherto rare on axinite, three were observed: $\gamma(120)$ was first described by Sjögren ${ }^{1}$ and later by Schaller;'2 on crystals from Nickel Plate Mountain it occurs as a very narrow face.
$N(2 \overline{9} 0)$ of Franck ${ }^{3}$ was observed as a face of vicinal character.
ω (203) was observed as a very small face, which gave poor reflections; this form was described by Gonnard, ${ }^{4}$ and tabulated with uncertain forms of axinite in Goldschmidt's Atlas der Krystallformen.
${ }^{1}$ Bull. Geol. Inst. Upsala, 1, 1, 1892.
${ }^{2}$ Work cited, 43, 1911.
${ }^{3}$ Bull. Acad. Belgique, 25, 17, 1893.
${ }^{4}$ Bull. soc. franc. min., 16, 95, 1893; Goldschmidt, Atlas d. Krystallformen, Text I, p. 129.

Table 5. Angle Table for Axinite from British Columbia

Letter	Symbol	Calculated		Measured A verage		No. of Readings
		¢	p	ϕ	ρ	
m.	001	$90^{\circ} 34^{\prime}$	$7^{\circ} 58^{\prime}$	$\overline{9} 0^{\circ} 22^{\prime}$	$8^{\circ} 21^{\prime}$	4
c.	010	0000	$90 \quad 00$	0000	$90 \quad 00$	10
γ	120	3614		3614	"	1
v	110	6016	"	$60 \quad 23$	"	1
M	100	10230	"	10234	"	8
u	$1 \overline{1} 0$	13524	"	13523	"	10
H	$2 \overline{3} 0$	14440	"	14356	4	10
l.	$12 \overline{2}$	15123	"	$\begin{array}{ll}151 & 57\end{array}$	"	1
N	$2 \overline{9} 0$	16518	\%	16600	"	1
ϵ.	011	$\overline{7} 58$	4516	$\overline{7} \quad 55$	$45 \quad 17$	4
z.	012	16424	2732	$\overline{164} 01$	$27 \quad 25$	10
r	011	$\overline{172} 02$	4521	17150	4515	11
g	103	10838	1630	10830	1638	11
	102	10603	2704	10653	$26 \quad 50$	3
ω	203	10500	3847	10531	$38 \quad 04$	1
a	101	10404	4910	10425	4916	6
b	101	$\overline{78} 46$	5502	$78 \quad 54$	$55 \quad 24$	3
$\mu \ldots .$.	$\overline{201}$	$\overline{78} 10$	6950	$\overline{78} 18$	$70 \quad 08$	1
0.	112	5349	3119	$53 \quad 57$	$\begin{array}{ll}31 & 12\end{array}$	7
δ.	112	T15 08	4026	$\overline{11500}$	$40 \quad 34$	3
y	111	$57 \quad 19$	5308	5736	5306	9
x	111	13848	5936	13854	5943	6
n	111	$\overline{117} 16$	$57 \quad 38$	$\overline{117} 07$	5741	3
σ.	121	3306	6403	3355	6421	1
W	$2 \overline{3} 2$	14748	6436	14828	6343	1
8.	$1 \overline{2} 1$	15349	$68 \quad 32$	15342	6830	5
	211	7933	6735	8005	$67 \quad 41$	2
${ }_{*} \sigma_{0}$	130	2455	$90 \quad 00$	2515	$90 \quad 00$	4
${ }^{*} \psi_{0}$	201	10315	67 48	10249	67	2
* F I	205	10716 11207	2055	10748	$20 \quad 43$	3
*	104	11207 4000	10 63	11227	1026	2
${ }^{\text {\% }}$ ¢	021	$\begin{array}{r}400 \\ \hline 16927\end{array}$	$\begin{array}{ll}63 & 30 \\ 37 & 26\end{array}$	317 -16909	6330	1
	735	8244	5838	169 83 83	3739	1
	312	8725	$\begin{array}{ll}58 \\ 60 & 30\end{array}$	83 87 13	$\begin{array}{ll}58 & 48 \\ 60 & 10\end{array}$	1
${ }^{2} 0$	$\overline{3} 22$	$\overline{105} 59$	6442	$\overline{105} 57$	6442	1
${ }^{\Omega} \Omega$ 。	180	$\overline{10} 03$	9000	$\overline{9} 30$	$90 \quad 00$	1
${ }^{\prime}{ }_{0}$.	$1 \overline{6} 0$	16900	"	16924	"	1
B0.....	$3 \overline{7} 0$	15414	"	15449	"	2

*New forms.

The new macro domes: $\psi_{0}(201)$, II (205), and $\Sigma(104)$, altho of small size, possess sufficient brilliancy to give good reflections. (See Figs. 6, 7 and 8.)
The brachy prism: σ (130) was observed four times as a long narrow face. (Fig. 8.)
The brachydomes: Δ (021) and $\varphi_{0}(0 \overline{3} 4)$ are among the new forms. They were observed in but single instances. (Fig. 8.)

The new macro pyramids: $p_{0}(735) ; \lambda_{0}(312) ; x_{0}(\overline{3} \overline{2} 2)$ were observed as faces of fair size and of brilliant luster. (Figs. 6 and 8.)

The brachy prisms: $\Omega(\overline{1} 80) ; \mathrm{A}_{0}(1 \overline{6} 0) ; \mathrm{B}_{0}(3 \overline{7} 0)$ are placed here as uncertain vicinal forms.

Fig. 6. Orthographic and clinographic projections of crystal showing the new forms II (205), $\psi_{0}(201), \lambda_{0}(312)$, and $p_{0}(735)$.

Fig. 7. Orthographic projection of a crystal showing the new form II (205).
Fig. 8. Orthographic and clinographic projections of crystal showing the new forms $\Sigma(104), \psi_{0}(201), \Delta(021), \sigma_{0}(130)$ and $x_{0}(\overline{3} \overline{2} 2)$.

The following table is arranged to show the combinations of forms on nine measured crystals:

Table 6. Combinations of Forms on Axinite Crystals

		1	2	3	4	5	6	7	8	9
m...	001	+	+	$+$	+	+	+			
c....	010	$+$	$+$	+	$+$	$+$	$+$	+	$+$	$+$
${ }^{\alpha}$	120	$+$								
${ }_{M} \ldots$	110 100	\pm	$+$	$+$	\pm	\pm	$+$		$+$	
u.....	110	$+$	$+$	+ +		$+$	$+$	+	$+$	
H.....	$2 \overline{3} 0$	+						+	+	+
l.	120					+	+		+	+
N.	$2 \overline{9} 0$	$+$		$+$						
	011	$+$		$+$		$+$		$+$		
z.	$0 \overline{12}$	$+$	+	+		$+$	+	+	+	+
$r \ldots \ldots$	0 O 1	$+$	$+$	+		$+$	+		+	+
g......	103	\pm	+	$+$	\pm	$+$		$+$		
ω	${ }_{203}^{102}$	\pm			+			$+$		
a	101	$+$	+	+	+	$+$		+	+	
b.	101	+	$+$				$+$			
$\mu \ldots \ldots$	201						$+$			
$0 . . .$.	112	$+$	+	$+$	+	$+$		$+$	+	$+$
ס......	1.12	$+$	$+$				$+$			
y......	111	$+$	$+$	$+$	+	$+$		+	$+$	
x.	111	$+$	+	+	+	+		$+$	$+$	+
n.	111	$+$	+				$+$			
σ.	121	+				$+$	-			
W.	232				+					
s......	${ }_{211}{ }^{12}$	+		\pm		+		$+$		$+$
$q_{\text {q. }}^{6} \ldots \ldots$	211 130	$+$	$\pm+$		+					
${ }^{*} \psi_{0} \ldots \ldots$	201	$+$								
${ }_{*}^{*}{ }^{\text {I }}$. \ldots.	205		$+$	+				$+$		
${ }_{*}^{*}$ * $\ldots \ldots$	104	\pm	+							
${ }_{*} \varphi_{0} \ldots \ldots$	034	\pm	+							
${ }^{*} p_{0} \ldots .$.	735									
${ }^{*} \lambda_{0} \ldots \ldots$	312		+					$+$		
${ }^{*} x_{0} \ldots$.	322	+								
* $\Omega . . .$.	180	$+$								
* $A_{0} \ldots .$.	$1 \overline{6} 0$			$+$	$+$					
${ }^{*} B_{0} \ldots$.	$3 \overline{7} 0$	+		$+$						

New forms marked *.

[^0]: ${ }^{1}$ Published by permission of the Director of the Geological Survey of Canada. Continued from page 25.
 ${ }^{2}$ Summary Rept. Geol. Survey, 1910, 259; Geol. Survey Memoir No. 2, 148; Efonomic Geology, Ries, Ed. 4, 686, 1916.
 ${ }^{3}$ Summary Rept. Geol. Survey, 1910, 259.
 ${ }^{4}$ Mineralogical Notes, Series I. U. S. Geol. Survey, Bull. 490, 39.

