The new diploid, (10.7.4), occurred on seven of the ten crystals, and was identified by its angular position in the zone [210: 111]. The reflections were for the most part of good quality and the faces, the narrow, were bright and well defined.

The measurements which served to identify the modifying forms are as follows:

Letter	Angle	Number of measure- ments	Measured	Calculated	Limits
$a:q$ $n:n$ $0:\mathfrak{B}_1,$ $x:q$	100 : 211 : 322 : 766 1111 : 654 : 543 : 753 : 10.7.4	23 3 16 7 7 5 21 32	$35^{\circ} 17'$ $43 21$ $49 25$ $9 22$ $11 38\frac{1}{2}$ $18 17\frac{1}{2}$ $19 1\frac{1}{2}$	$35^{\circ} 16'$ $43 19$ $49 24$ $9 16\frac{1}{2}$ $11 32$ $18 5\frac{1}{2}$ $19 17$ $22 12\frac{1}{2}$	34° 55′-35 42 43 15-43 31 48 50-49 57 9 8-9 32 11 14-11 57 18 4-18 37 18 35-19 36 21 46-22 57

Table 2. Angles of Pyrite from New York City

CRYSTALLOGRAPHY OF SOME CANADIAN MINERALS: 8. AXINITE

EUGENE POITEVIN

Geological Survey of Canada 1

The crystals here described were collected during the summer of 1908² by Charles Camsell of the Canada Geological Survey, from the western slope of the Nickel Plate Mountain, Osoyoos Mining Division, British Columbia, where the mineral occurs in hair-brown crystals and crystalline masses associated with crystalline mispickel, opaline quartz, and calcite at the contact of a gabbro porphyry and sedimentary beds.

An analysis made by R. A. A. Johnston of the Geological Survey³ from carefully selected crystal fragments gave the following results, which with the exception of the water content (which is too low) agree with the formula proposed by W. T. Schaller,⁴

^{*} New form.

¹ Published by permission of the Director of the Geological Survey of Canada. Continued from page 25.

² Summary Rept. Geol. Survey, 1910, 259; Geol. Survey Memoir No. 2, 148; Economic Geology, Ries, Ed. 4, 686, 1916.

³ Summary Rept. Geol. Survey, 1910, 259.

⁴ Mineralogical Notes, Series I. U. S. Geol. Survey, Bull. 490, 39.

TABLE 4.	ANALYSIS A	AND	RATIOS	OF	AXINITE,	British	COLUMBIA
----------	------------	-----	--------	----	----------	---------	----------

			Ratios		
SiO ₂ B ₂ O ₃	42.18 5.22	SiO ₂ B ₂ O ₃	Gi Gi	.6995 .0884	8.000 1.011
Al ₂ O ₃ Fe ₂ O ₃	$\frac{18,12}{0.98}$	Al_2O_3 Fe_2O_3	.1773 } .0061 } .1002 }	.1834	2.097
FeOZnO	7.20 3.89 0.09	FeO	.0584	.1951	2.190
MgO CaO H ₂ O	1.43 19.91 0.35	MgO CaO H ₂ O	.0354 J	.3549 .1093	4.058 0.022
Sum	99.37				

It was observed that the finest crystals were implanted upon the opaline quartz. The largest of these so far observed do not exceed 1 cm. in length, while the remainder were of smaller dimensions, some being almost of microscopic size. Owing to the firmness with which they were implanted upon the matrix it was found impossible to detach more than fragments of individuals for purposes of measurement.

Altho a large number of the crystals were examined, measurements were carried out on only nine of them; of the thirty-nine forms which were observed, nine are new. Three others are still uncertain. All symbols are given in Miller's orientation, as modified by Professor V. Goldschmidt.

The prisms $u(1\overline{1}0)$ and c(010) are striated vertically. The domes, also, are usually striated parallel to their zonal intersections. Of forms hitherto rare on axinite, three were observed:

 γ (120) was first described by Sjögren¹ and later by Schaller;² on crystals from Nickel Plate Mountain it occurs as a very narrow face.

N (290) of Franck³ was observed as a face of vicinal character.

 ω (203) was observed as a very small face, which gave poor reflections; this form was described by Gonnard,⁴ and tabulated with uncertain forms of axinite in Goldschmidt's Atlas der Krystallformen.

¹ Bull. Geol. Inst. Upsala, 1, 1, 1892.

² Work cited, 43, 1911.

³ Bull. Acad. Belgique, **25**, 17, 1893.

⁴ Bull. soc. franc. min., 16, 95, 1893; Goldschmidt, Atlas d. Krystallformen, Text I, p. 129.

Table 5. Angle Table for Axinite from British Columbia

Letter	Symbol	Cale	culated	Measured	No. of	
	зущий	φ	P	ф	ρ	Read- ings
m	001	90° 34′	7° 58′	90° 22′	8° 21′	4
	010	00 00	90 00	00 00	90 00	10
γ	120	36 14	"	36 14	30, 00	10
U	110	60 16	66	60 23	66	8
M	100	102 30	"	102 34		8
ł	$1\bar{1}0$	135 24	166	135 23	11	10
I	$2\bar{3}0$	144 40	66	143 56	4.6	1
	$1\bar{2}0$	151 23	"	151 57	**	1
V	$2\overline{9}0$	165 18	"	166 00	46	2
	011	7 58	45 16	7 55	45 17	4
ADDRESS NAMES	$0\overline{1}2$	164 24	27 32	164 01	27 25	10
	$0\overline{1}1$	$\bar{1}72 02$	45 21	171 50	45 15	11
	103	108 38	16 30	108 30	16 38	6
* * * * * * *	102	106 03	27 04	106 53	26 50	3
necessaria.	203	105 00	38 47	105 31	38 04	1
	101	104 04	49 10	104 25	49 16	6
	101	$\overline{78}$ 46	55 02	78 54	55 24	3
****	201	78 10	69 50	78 18	70 08	1
	112	_53 49	31 19	53 57	31 12	7
	112	115 08	40 26	115 00	40 34	3
1111111111	111	57 19	53 08	57 36	53 06	9
24444	111	138 48	59 36	138 54	59 43	6
1111111	111	117 16	57 38	117 07	57 41	3
)	121	33 06	64 03	33 55	64 21	1
12.500.000	232	147 48	64 36	148 28	63 43	1
	121	153 49	68 32	153 42	68 30	5
70	211 130	79 33	67 35	80 05	67 41	2
Pa	201	$\begin{array}{ccc} 24 & 55 \\ 103 & 15 \end{array}$	90 00	25 15	90 00	4
ΙΙ	205		67 48	102 49	67 55	2
C	104		20 55	107 48	20 43	3
2	021	$\begin{array}{ccc} 112 & 07 \\ 4 & 00 \end{array}$	10 44 63 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 26	2
bo	034	169 27	37 26	-	63 30	1
20	735	82 44	58 38		37 39	1
0	312	87 25	60 20	83 33 87 13	58 48 60 10	$\frac{1}{1}$
0	$\bar{3}\bar{2}2$	105 59	64 42	105 57	64 42	1
2	180	10 03	90 00	9 30	90 00	1
40	160	169 00	"	169 24	90 00	1
Во	370	154 14	"	154 49	66	$\frac{1}{2}$

^{*} New forms.

The new macro domes: ψ_0 (201), Π (205), and Σ (104), altho of small size, possess sufficient brilliancy to give good reflections. (See Figs. 6, 7 and 8.)

The brachy prism: σ (130) was observed four times as a long

narrow face. (Fig. 8.)

The brachydomes: Δ (021) and φ_0 (034) are among the new forms. They were observed in but single instances. (Fig. 8.)

The new macro pyramids: p_0 (735); λ_0 (312); x_0 ($\overline{322}$) were observed as faces of fair size and of brilliant luster. (Figs. 6 and 8.)

The brachy prisms: Ω ($\overline{1}80$); A_0 ($\overline{160}$); B_0 ($\overline{370}$) are placed

here as uncertain vicinal forms.

AXINITE, NICKEL PLATE MOUNTAIN

Fig. 6. Orthographic and clinographic projections of crystal showing the new forms II (205), $\psi_0(201)$, $\lambda_0(312)$, and $p_0(735)$.

Fig. 7. Orthographic projection of a crystal showing the new form II (205). Fig. 8. Orthographic and clinographic projections of crystal showing the

new forms $\Sigma(104)$, $\psi_0(201)$, $\Delta(021)$, $\sigma_0(130)$ and $x_0(\overline{32}2)$.

The following table is arranged to show the combinations of forms on nine measured crystals:

Table 6. Combinations of Forms on Axinite Crystals

		1	2	3	4	5	6	7	8	9
m	001	+	++	+	+	+	+		+	+
c	010 120	++++++	+	++	++	++	++	+	++	++
α	110	I		1 1	1	-1-	,			
$\stackrel{w}{M}$	100	+	1	1	++	+	++		II	
и	110	+	+ + +	+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++	+	+	+++++++++++++++++++++++++++++++++++++++	+
Н	$2\bar{3}0$	+						- 1		
V	$1\bar{2}0$					+	+		+	+
V	290	+++++++++		+						
una es g	011	+		+++++		+ + + +		++		
42000	$0\overline{1}2 \\ 0\overline{1}1$	-	+	+		+	++	+	++	+ +
	103	I	++	±		+	+		+	+
	103 102 203	+		Т.	++	T		++		
0	203	+		1						
	101	+	++	-+-	+	+		+	+	
	$\overline{1}01$ $\overline{2}01$	+	+				+			
	112	-1		+	+		\$\frac{+}{+}			
	112	+++++	+ + + + +	T		+	+	+	+	+
	111	+	+	+	+	+	T	+	+ 1	+
	111	+	+	++	+++++++++++++++++++++++++++++++++++++++	++		+ ;	+ +	++
	$\bar{1}\bar{1}1$ 121	+	+			1	+			77
	121	+				+				
V	$2\overline{3}2$ $1\overline{2}1$	100			+					
	121	+	74.	+	,	+		+		+
σ_0	211 130	‡	++		+					
¥0	201	+						+		
σ_{6} ψ_{0} Π Σ Δ	205 104		++	+				+		
Δ	021	+	+							
100	034	- EFE	+					1		
$p_0 \dots p_0 \dots$	$0\overline{3}4 \\ 735$		T							
λ ₀	312	- 1	+					++		
x_0	$\bar{3}\bar{2}2$	++						•		
ΩΩ	180	+					1		1	
A 0	$1\bar{6}0$			++	+					
B_0	370	+		+						

New forms marked *.