
The expressions (8) and (17) are not very different. If the generator of ICT is considered
to be the Hamiltonian, G ≡ H, then by comparison we find

δ qi = ε {qi, H} = ε q̇i

δ pi = ε {pi, H} = ε ṗi (21)

So the new point is phase space (q̄, p̄) is the point to which (q, p) would move in an infinites-
imal time interval ε = dt. In order to move over to finite transformation, we can consider
sum of an infinite succession of infinitesimal canonical transformations. Take equation (17)
expressing the change of variable ω varying continuously in parameter ε,

δ ω = ε {ω, G} ⇒ dω

dε
= {ω, G} (22)

starting from the initial state ε = 0. We can get ω(ε) by integrating the above differential
equation. A solution may be obtained by expanding ω(ε) in a Taylor series about the initial
condition:

ω(ε) = ω0 + ε
dω

dε

∣∣∣∣
0

+
ε2

2!

d2ω

dε2

∣∣∣∣
0

+
ε3

3!

d3ω

dε3

∣∣∣∣
0

+ · · · (23)

According to equation (22),
dω

dε

∣∣∣∣
0

= {ω, G}0 ,

where zero subscript implies Poisson bracket evaluated at initial point ε = 0. By repeated
application of (22) we can have,

d2ω

dε2
= {{ω, G} , G} , d3ω

dε3
= {{{ω, G} , G} , G} etc. (24)

Therefore, the Taylor series for ω(ε) leads to the series solution,

ω(ε) = ω0 + ε {ω, G}0 +
ε2

2!
{{ω, G} , G}0 +

ε3

3!
{{{ω, G} , G} , G}0 + · · · (25)

The series expansion shows directly that ICT can generate finite canonical transformation,
depending on a parameter, and thus lead to solution to the equation of motion if G =
H. The nest of Poisson brackets in the n-th term can be considered as the nth repeated
application of the operator Ĝ = { , G} from the right i.e. the n-th power of the operator.
Hence, the equation (25) can symbolically be written as,

ω(ε) = ω0 e
Ĝε
∣∣∣
0
. (26)

In this notation, the solution for finite translation, rotation and time evolution can be
written as,

x+ ε = x ep̂ ε, p = linear momentum

~r′ = ~r e
~̂J ·n̂ θ, ~J = angular momentum

u(t) = u(0) eĤt, H = Hamiltonian (27)

Much of the above discussion on symmetries in classical mechanics are carried over to
quantum mechanics. To draw a parallel, in an informal manner, let us use the association
of Poisson bracket of classical mechanics with commutator bracket of quantum mechanics,

{· · · } −→ 1

i~
[· · · ] (28)
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and the correspondence of canonical transformation with the unitary transformation in
terms of the generator of the transformation,

G −→ i

~
Ĝ, Ĝ = q.m. hermitian operator. (29)

Then the equation of motion (8) for any arbitrary variable (observables in quantum mech-
anis) translates to,

ω̇ = {ω, H} −→ ω̇ =
1

i~
[ω̂, H] (30)

which is essentially the Heisenberg equation of motion. The generators of translation,
rotation and time-evolution are the same linear and angular momentum (operators) and
Hamiltonian operator,

x+ ε = x ep̂ ε −→ |x + dx〉 = e−ip·x/~ |x〉

~r′ = ~r e
~̂J ·n̂ θ −→ |α〉R = e−iJ·n̂θ/~ |α〉

u(t) = u(0) eĤt −→ |ψ(t)〉 = e−iHt/~ |ψ(0)〉 (31)

And finally, the statement on generator of ICT being constant of motion corresponds to
constant of motion are generators of unitary transformation that preserves Hamiltonian,

U = e−iGε/~ → U †H U = H ⇒ [G, H] = 0 ⇒ dG

dt
= 0. (32)

Translational and rotational symmetries in quantum mechanics

Here we address the symmetries in quantum mechanics somewhat more formally. Let
us consider the translation first. Suppose a state is localized around x and a translation
operator, T (ε) changes this state into another which is localized around x + ε, where ε is
infinitesimally small displacement,

T (ε) |x〉 = |x+ ε〉. (33)

The kets |x〉 are postulated to form a complete set. Once the action of T (ε) on such a
complete basis is known, the action on any arbitrary ket |ψ〉 can be known as,

|ψε〉 = T (ε) |ψ〉 = T (ε)

∫ +∞

−∞
dx |x〉〈x|ψ〉

=

∫ +∞

−∞
dx |x+ ε〉〈x|ψ〉 =

∫ +∞

−∞
dx′ |x′〉〈x′ − ε|ψ〉

〈x|ψε〉 = 〈x|T (ε)|ψ〉 = ψ(x− ε) (34)

The properties we like to have of T (ε) are:

1. To preserve the norm of the states, both initial and translated, T should be unitary:

〈x|x〉 = 〈x+ ε|x+ ε〉 = 〈x|T †(ε)T (ε)|x〉 ⇒ T †T = 1. (35)

2. Successive translations by, say, ε1 followed by ε2 should be the same as single transla-
tion given by the vector sum ε1 + ε2,

T (ε1) T (ε2) = T (ε1 + ε2) (36)
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3. The translation in reverse direction −ε is expected to be same as the inverse of original
translation,

T (−ε) = T −1(ε) (37)

4. As ε→ 0, the translation operation reduces to the identity operation,

lim
ε→0
T (ε) = I (38)

This last requirement (38) suggests that T may be expanded in Taylor series to order ε as,

T = 1− i ε

~
G, (39)

where G is known as generator of translation and is Hermitian. It is trivial to see how
properties 3 and 4 are satisfied. The properties 1 and 2 are satisfied as well,

T †T = (1 + iεG/~) (1− iεG/~) = 1− iε (G−G)/~ +O(ε2) ' 1

T (ε1) T (ε2) = (1− iε1G/~) (1− iε2G/~) ' 1− i (ε1 + ε2)G/~ = T (ε1 + ε2).

To figure out what the explicit form of the operator G is, we turn to the equation (34) and
try Taylor expansion of ψ(x− ε),

〈x|T (ε)|ψ〉 = ψ(x− ε) → 〈x|1|ψ〉 − i ε

~
〈x|G|ψ〉 = ψ(x)− ε dψ

dx

⇒ 〈x|G|ψ〉 = −i~ dψ
dx

⇒ G ≡ p̂

T (ε) = 1− i ε

~
p̂. (40)

What would be the operator T (a) corresponding to the finite translation a? If the whole
of translation is divided into N parts of size ε = a/N each, then as N → ∞ a/N becomes
infinitesimal and T in (40) can be written as,

T (a/N) = 1− i

~
a

N
p̂.

Since a translation by a equals N translations (from property 2) by a/N ,

T (a) = lim
N→∞

[T (a/N)]N = lim
N→∞

(
1− i ε

~
p̂

)N
= e−i a p̂/~ (41)

Another way to arrive at this is from (25), and using the Poisson bracket and commutator
correspondence (28) and subsequently BCH formula.

It is now obvious that if the Hamiltonian remains invariant under translation,

e−i a p̂/~H ei a p̂/~ = H ⇒ [p̂, H] = 0 (42)

then linear momentum, being generator of translation, is constant of motion.
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