
Graph Based Modeling and Implementation
with EER/GRAL

J. Ebert, A. Winter, P. Dahm, A. Franzke, R. S�uttenbach

University of Koblenz, Institute for Software Technology, Rheinau 1,

D-56075 Koblenz, email: ebert@informatik.uni-koblenz.de

Abstract. This paper gives a cohesive approach to modeling and im-

plementation with graphs. This approach uses extended entity relation-

ship (EER) diagrams supplemented with the Z-like constraint language

GRAL. Due to the foundation of EER/GRAL on Z a common formal

basis exists. EER/GRAL descriptions give conceptual models which can

be implemented in a seamless manner by e�cient data structures using

the GraLab graph library.

Descriptions of four medium size EER/GRAL-applications conclude the

paper to demonstrate the usefulness of the approach in practice.

1 Introduction

Using graphs as a means for discussing problems, as a medium for formal rea-

soning, or as a paradigm for data structures in software is folklore in today's

computer science literature. But most of the di�erent approaches that use graphs

are not used in a coherent way.

There are di�erent models in use based on undirected or directed graphs,

with or without multiple edges or loops. Sometimes graph elements are typed

or attributed, sometimes they are not. Mathematical graph theory usually deals

only with graph structure [Har72], whereas computer science usually uses graphs

where vertices are distinguishable [Meh84]. In applications, graphs are often used

without a formal basis. This leads to problems when assertions about the models

have to be proved. Furthermore, graphs are frequently implemented using non-

graph-based repositories that do not match the conceptual graph model exactly.

In this paper, we present a coherent and consistent approach to using graphs

in a seamless manner

{ as conceptual models,

{ as formal mathematical structures, and

{ as e�cient data structures

without any discontinuity between these three aspects.

The approach, which is called the EER/GRAL approach throughout this pa-

per, is based on extended entity relationship descriptions (EER diagrams, sec-

tion 3.1) which are annotated by formal integrity conditions (GRAL assertions,

section 3.2) in order to speci�y graphs, which are e�ciently implementable by

an appropriate C++ library (GraLab, section 4). A very general class of graphs

is used (TGraphs, section 2) as basis.

As opposed to [EF95], where the theoretical basis is explained, the aim of

this paper is to give an introduction into the approach with emphasis on its

practical applicability.

Each of the applications sketched in section 5 has been described by technical

reports which are publically available1.

2 TGraphs

To make the approach as useful as possible a rather general kind of graphs has

to be treated. TGraphs are used as the basic class of graphs. TGraphs are

{ directed, i.e. for each edge one has a start vertex and an end vertex,

{ typed, i.e. vertices and edges are grouped into several distinct classes,

{ attributed, i.e. vertices and edges may have associated attribute-value pairs to

describe additional information (where the attributes depend on the type),

and

{ ordered, i.e. the edges incident with a particular vertex have a persistent

ordering.

All these properties are, of course, only optional. If a certain application only

needs undirected graphs without any type, attribute or ordering, the respective

properties may also be ignored.

2.1 Formal De�nition

TGraphs as mathematical objects are speci�ed using the Z-notation [Spi92].

The basic elements of TGraphs are vertices and edges. With respect to a

vertex an edge may have a direction, i.e. it may occur as an out-edge or as an

in-edge. Graph elements may have a type and they may have attribute-value

pairs associated.

ELEMENT ::= vertexhhNii j edgehhNii

VERTEX == ran vertex

EDGE == ran edge

DIR ::= in j out

[ID ;VALUE]

typeID == ID

attrID == ID

attributeInstanceSet == attrID 7 7! VALUE

Using these basic de�nitions the structure of a TGraph consists of its vertex

set, its edge set and an incidence function, which associates to each vertex v the

sequence of its incident edges together with their direction.

1 Most of them can also be found via http://www.uni-koblenz.de/�ist.

TGraph

V : F VERTEX

E : F EDGE

� : VERTEX 7! seq(EDGE �DIR)

type : ELEMENT 7! typeID

value : ELEMENT 7! attributeInstanceSet

� 2 V ! iseq(E �DIR)

8 e : E � 9
1
v ;w : V � (e; in) 2 ran(�(v)) ^ (e; out) 2 ran(�(w))

dom type = V [E

dom value = V [E

This class of graphs is very general and allows object-based modeling of

application domains in an unrestricted manner.

The formal de�nition of TGraphs by a Z-text admits an equally formal

de�nition of all concepts described in this paper (e.g. the semantics of EER

diagrams and GRAL) and gives the opportunity for reasoning about all kinds of

properties of graphs in a common and powerful calculus.

2.2 Modeling using TGraphs

TGraphs can be used as formal models in all application areas that are subject

to object-based modeling.

It is useful to adopt a generalmodeling philosophy for TGraph-based software

development in order to exploit the full power of the approach. We propose to

use the following rules ([EF95])

{ every identi�able and relevant object is represented by exactly one vertex,

{ every relationship between objects is represented by exactly one edge,

{ similar objects and relationships are assigned a common type,

{ informations on objects and relationships are stored in attribute instances

that are assigned to the corresponding vertices and edges, and

{ an ordering of relationships is expressed by edge order.

Of course, these rules require some modeling decisions (e.g. to decide what

can be viewed as \relevant"). They help to achieve an appropriate formal graph

model in the modeling process. Some examples will be shown later in this paper.

3 Graph Classes

The set of possible TGraph models for a given application is usually a subset

of the set of all TGraphs, at least if the application domain has some sensible

structure. This leads to the task of de�ning classes of TGraphs in a formal

manner.

Here we propose to use extended entity relationship descriptions (EER di-

agrams) for this purpose. These diagrams may be annotated by additional re-

strictions (GRAL assertions).

3.1 EER Diagrams

EER diagrams are able to denote information about graph classes in a straight-

forward manner:

{ entity types denote vertex types,

{ relationship types denote edge types,

{ generalizations describe a vertex type hierarchy,

{ incidences between relationship types and entity types describe restrictions

on the incidence structure,

{ attributes describe the attribute structure of vertices and edges, depending

on their type, and

{ higher-level modeling constructs like aggregation and grouping add addi-

tional structural information.

Example:

Fig. 1 shows the de�nition of a graph class DFD which gives the conceptual

model of data
ow diagrams, i.e. it contains the metamodel for a data
ow lan-

guage. The data
ow metamodel is used to generate an editor for data
ow dia-

grams [Dr�u96] with the KOGGE-Generator, described in section 5.2.

Point Of
Contact

Elementary
Process

Complex
Process

Process

Terminator

Passive
Datastore

Datastore

Object Dataflow

hasAsSource

hasAsSink

correspondsTo

isDescribedBy

isDescribedBy

isCompOf isBodyOf isSeqOf

Elementary
Data

Alternative
Data

Sequence
Data

Iteration
Data

Data

DFItem

refines

name

Fig. 1. EER diagram for data
ow diagrams

Data
ow diagrams describe procedural aspects through the main concepts

Process , Datastore and Data
ow . These concepts are modeled as vertex types,

which may be specialized. E.g. the concept Process is subdivided into Complex

Processes , which are re�ned by further data
ow diagrams, and Elementary

Processes . (Note, that specialization is depicted by inclusion of the respective

rectangles of the vertex types, like in Venn diagrams.)

The relationships between these concepts are modeled using edge types. Each

Data
ow connects exactly two Objects , its source and its sink. Data stored in

PassiveDatastores or transported by Data
ows is described as regular structures

in a datadictionary.

The re�nement of ComplexProcesses by further DFItems is modeled using

re�nes-edges. PointOfContact-vertices are used as surrogates for data
ows in a

re�nement. �

[CEW96] describes a complete formal semantics of EER diagrams in terms of the

TGraph class which is speci�ed by a given diagram. This is done by de�ning an

appropriate TGraph for the EER diagram itself. The set SchemaGraph of those

TGraphs which describe EER diagrams is the domain of the semantic function

graphSpecOf : SchemaGraph ! GraphSpec

which assigns a graph class speci�cation to every instance of SchemaGraph.

(This function is formally de�ned using Z .)
For a given TGraph g 2 SchemaGraph the result graphSpecOf (g) is a speci-

�cation of the set of instance TGraphs of the EER diagram described by g . The

TGraph class corresponding to graphSpecTo(g) is the set of all graphs h, which

ful�ll the speci�cation. E.g., the TGraph class SchemaGraph is itself the set of

TGraphs corresponding to that graph speci�cation which is the picture of (the

graph of) some meta EER diagram under graphSpecOf .

Since EER diagrams in practical applications are used to model the concepts

of the application domain, they are also called concept diagrams in the following.

3.2 GRAL Assertions

EER diagrams only allow to describe the local structure of TGraphs, i.e. the

types and attributes and their incidences together with only a few additional

properties, like e.g. degree restrictions. In applications one has often more knowl-

edge about the models. This knowledge can be formalized as an extension of the

corresponding EER diagram.

We propose to use the Z-like assertion language GRAL (GRAph speci�cation

Language), which allows to formulate further restrictions on the graph class

speci�ed by a diagram. GRAL is described in detail in [Fra96a].

GRAL assertions refer to the formal Z-de�nition of TGraphs given in sec-

tion 2. A GRAL assertion corresponding to an EER diagram D has the format

forG inD assert

pred1; : : : ; predk

Here, the predicates pred1; : : : ; predk may be all kinds of Z-predicates re-
stricted only in such a way, that GRAL predicates are e�ciently testable on

those TGraphs which suit to the corresponding EER diagram. This e�ciency is

achieved

{ by restricting all quanti�ers to �nite domains and

{ by using a library of basic predicates and functions which can be computed

e�ciently.

A feature of GRAL which extends Z in the direction of TGraphs is the

use of path expressions. Path expressions are regular expressions of edge/vertex

symbols, which allow the description of paths in graphs. They are used to derive

sets of vertices and to formulate reachability restrictions.

Path expressions are

{ either simple, consisting of an edge symbol (*;(;
), optionally annotated

with an edge type (like in *writes) and followed by a � symbol which may

itself be annotated with a vertex type (like in *reviews�author)
{ or composite: given two path expressions p1; p2

� the sequence p1p2,

� the iteration p�1 or p+
1
, and

� the alternative (p1 j p2)
are regular path expressions.

Given a path expression p and two vertices v ;w ,

{ v p denotes the set of vertices reachable from v along paths structured ac-

cording to p

{ p v denotes the set of vertices from which v is reachable along paths struc-

tured according to p

{ v p w denotes the predicate that w is reachable from v along a path struc-

tured according to p

The semantics of path expressions and their application to vertices is de-

scribed formally using Z in [Fra96b]. Since GRAL is embedded in Z , GRAL
assertions also have a Z-compatible semantics.

Example:

The graph class DFD de�ned in �g. 1 has further properties which are shown as

a GRAL assertion in �g. 2:

forG inDFD assert

(1) isDag(re�nes);

(2) fs1; s2 : Datastore j s1 (hasAsSink*hasAsSource s2g = ?;

(3) 8 p : ComplexProcess �

p((hasAsSource j(hasAsSink) = p (re�nes�PointOfContact*correspondsTo

(4) 8 c : PointOfContact �

c *correspondsTo*isDescribedBy ((IsCompOf j(isBodyOf j(isSeqOf)
�

(isDescribedBy (*hasAsSink j*hasAsSource)c

(5) 8 d : Data
ow �

d(*hasAsSource j*hasAsSink) �PassiveDatastore*isDescribedBy

((IsCompOf j(isBodyOf j(isSeqOf)
�

(isDescribedBy d :

Fig. 2. GRAL Assertion for Data
ow Diagrams

Re�nement of processes by further data
ow diagrams has to be cyclefree

(1) and data
ows are not allowed between datastores (2). Re�nement has to be

structurally balanced, i.e. it has to be assured that data
ows being incident to a

re�ned process �nd their correspondence in the re�nement (3) as a point of con-

tact. If a data
ow is described by a regular data description, the corresponding

point of contact has to have a conformant description (4). Accordingly, the reg-

ular descriptions of a data
ow incident with a datastore, has to be conformant

with the description of the datastore (5).

Balanced data
ow diagrams, an accompanying data dictionary entry and

their TGraph-representation according to the graph class de�nition given in

�g. 1 and 2 are shown in �g. 3.

correspondsTo

T2

IS

D
1 D

3

D
2

T1
P

1

= |D
1

D
11

D
12

D
2

D
3

D
4

D
11

P
12

P
11

T
1

P
1

D
3

D
2

S

T
2

hasAsSource

hasAsSinkhasAsSource

hasAsSource

hasAsSink

hasAsSink

D
1

D
11

P
11

D
4

D
3

D
2

P
12

hasAsSource hasAsSink

hasAs
Sink

hasAsSource

hasAs
Source

hasAsSink

hasAsSink

D
1

D
2

D
3

D
4

D
12

D
11

correspondsTo

isCompOf
isCompOf

isDescribedBy
isDescribedBy

isDescribedBy

isDescribedBy

correspondsTo

hasAsSource

isDescribedBy

isDescribedBy

isDescribedBy

Legend:
Data

Dataflow

ComplexProcessElementary Process

TerminatorPassive Datastore

Point Of Contact

Fig. 3. Data
ow Diagram and its TGraph Representation

The emphasized arcs in the TGraph representation illustrate constraint 4

according to data
ow D1. The other path expressions used in the integrity con-

straints could be followed analogeously. �

Experience shows that regular path expressions are a powerful means for de-

scribing TGraph properties in practical applications. Some examples will be

given below.

3.3 Modeling using Graph Classes

The description languages given by EER diagrams and GRAL-assertions are

two aspects of a common integrated approach to specifying graph classes. Due

to the common semantic basis given by their Z-description one may use both

formalisms in a seamless manner. It is up to the user to decide which formal-

ism to choose in expressing knowledge about the TGraphs. EER diagrams are

very well suited for formalizing local (\context-free") properties, whereas GRAL-

assertions have the power to formalize even global (\context-sensitive") aspects.

But there are properties (e.g. degree restrictions), which may be formulated in

either way.

The EER/GRAL modeling approach is suited for a modular modeling process:

At �rst one de�nes EER/GRAL speci�cations for several (smaller) graph classes.

Then, these speci�cations are integrated

{ by melting vertex types which represent the same information,

{ by generalizing vertex types which represent similar information, and

{ by connecting vertex types in di�erent graph classes with additional edge

types.

The GRAL assertions of the submodels are conjugated (after renaming), and

additional global information may be added by further GRAL predicates.

4 Implementation

All modeling concepts described upto here have to be implemented by concrete

graph software, if seamlessness of the approach shall be achieved: The GraLab

(GRAph LABoratory) software package ([DEL94]) makes a set of C++ classes

available to implement TGraphs directly and exactly as speci�ed by EER dia-

grams. It allows to transform graph class de�nitions into vertex and edge types

and into C++ classes which implement the attributes.

GraLab provides an interface to e�ciently use and manipulate graph struc-

tures, as well as the types and attributes assigned to vertices and edges. Inside

GraLab TGraphs are represented as internal data structures by symmetrically

stored forward and backward adjacency lists [Ebe87].

The structure can be accessed and manipulated via a simple interface which

includes methods to

{ create and delete vertices and edges,

{ traverse graphs,

{ retrieve start and end vertices of edges,

{ relink edges,

{ change order of incidences,

{ count vertices and edges, and

{ retrieve edges between vertices.

This interface includes control structures for graph traversal (in the form of

C++ macros) which allow a high-level programming of graph algorithms, which

is very near to pseudocode used for describing graph algorithms.

The type and attribute part of TGraphs is implementable as a type sys-

tem using GraLab. The type system contains the connection between each ver-

tex/edge type and its (application dependent) attribute class. Each attribute

class is a C++ class whose instances contain all attribute values assigned to a

graph element (vertex or edge) of the type given. Furthermore, the type system

implements the type hierarchy.

Attribute values can be accessed and modi�ed via pointers to the speci�c

attribute object. Type casts on the pointers returned are necessary to access

single attribute values.

Due to the internal datastructure most of these operations requires linear

a�ord. Creating, deleting, relinking and �nding (the next) incident edge or ad-

jacent vertex can be done in O(1) and the traversal of graphs depends linearly

on the number of edges resp. vertices ([Ebe87]). In the projects described below

graphs with more than 100 000 graph elements were handled without e�ciency

problems.

The GraLab software package gives the necessary completion of the EER/

GRAL modeling approach with respect to implementation. Thus, all EER/GRAL

models may be directly implemented by graph structures in a seamless manner.

5 Applications

The approach described in the previous chapters was developed in strong con-

junction to software engineering projects and has been successfully applied in

several di�erent application areas. In the following, four projects will be sketched

shortly. Each of them is described in more detail in the references given.

The examples are chosen in such a way that the following aspects of the

approach are expressed: EER diagrams and GRAL assertions are used for mod-

eling, partial models are integrated into a larger common model, and algorithmic

graph theory on models is used to get e�cient software.

5.1 Application: Method Modeling

Software analysis and design methods (like e.g. the Object Modeling Technique

(OMT) of [RBP+91]) usually contain lots of di�erent pictures with some intu-

itively given semantics to describe models of software systems.

An OMT model consists of three logical parts describing di�erent views of

the system to be analyzed; the object model describes the structure of objects,

the dynamic model is concerned with execution aspects, and the functional model

shows the transformation of values in the system.

The visual languages used for these pictures usually lack a formal basis. But

since visual documents may be abstracted in graphs, it is possible to de�ne the

abstract syntax of these languages by TGraph classes. Then, the EER/GRAL

description of these classes permits an integration and comparison of di�erent

visual languages as well as a formal reasoning about them.

In [BES96] an EER/GRAL formalization for OMT is given. This formal-

ization is an OMT metamodel, since its instances are OMT models. There, the

elements of OMT descriptions are modeled by three di�erent graph classes, one

for each model. Furthermore, these three EER/GRAL descriptions are integrated

into one overall abstract model for the whole OMT-approach by merging ver-

tex types in di�erent (sub)models and by introducing additional edge types.

The resulting OMT-model consists of an EER-Diagram with about 50 strongly

connected vertextypes and more than 20 GRAL consistency constraints. The

inconsistencies and incompleteness of OMT were solved by decisions of the au-

thors. Since the descriptions allow a deliberate and formally based discussion of

alternatives, it is possible to discuss these decisions on a common basis.

5.2 Application: Tool Building

Describing real systems with visual languages without the support of tools is

practically infeasable because of the complexity of the systems and the methods

available for description. Such a tool must help the developer with regard to

{ the underlying concepts, i.e. the abstract syntax,

{ the notation used, and

{ general functions to develop a description conformant to a method.

The metaCASE system KOGGE (KOblenz Generator for Graphical Design

Environments)2 was developed to generate graphical editors for visual languages

on the basis of EER/GRAL descriptions of their abstract syntax ([EC94]).

A tool for a given language, which is generated by KOGGE, is called a

KOGGE tool. There are several KOGGE tools in use, including one for data
ow

diagrams (cf. section 3) and one for the object-oriented software development

method BON [NW95]. The BON-KOGGE (BONSAI) [KU96] is used in Soft-

ware Engineering education at University of Dortmund.

A KOGGE tool consists of the two physical parts { a tool description and

the KOGGE base system.

The base system interprets the tool description at runtime in order to provide

the user interface and to control its functions.

All KOGGE tools use the same base system, whereas the tool description is

uniquely developed for any visual language. A tool description consists of three

logical parts:

{ an abstract syntax of the supported language,

{ a set of statecharts, one for each tool operation, and

{ a number of menu charts.

Since the abstract syntax inside KOGGE tools is described by EER diagrams,

a KOGGE EER editor is used to specify and edit these diagrams. Analogously,

a KOGGE statechart editor and a KOGGE menu editor are used to build the

other parts of a tool description.

Inside KOGGE TGraphs are used for storing the tool speci�cation and for

representing the abstract syntax of the concrete documents, which are edited by

the KOGGE tool. Both graphs are implemented using GraLab. One describes

the tool itself according to the KOGGE meta EER speci�cation, the other one

represents the actual data according to the EER speci�cation, which supplies

the conceptual model of the language being edited.

An advantage of the KOGGE approach is that the abstract syntax of visual

languages is given as an EER model. This allows to use the representation of an

EER document inside the KOGGE EER editor as the tool speci�cation graph

of another KOGGE tool. Thus, one can develop KOGGE tools using KOGGE.

2 The KOGGE Project was funded by the Stiftung Rheinland{Pfalz f�ur Innovation,

No. 8036-386261/112.

5.3 Application: Tour Planning

Schools for the handicapped have to organize a transportation service for their

pupils who often are not able to reach the school by using e.g. public transport.

The aim of the MOTOS (MOdular TOur Planning System) project3 is to

develop a software component that supports tour planning for these schools.

During the planning process, quite a lot of restrictions have to be considered

that make tour planning a di�cult task. Given geographical information and

information on which pupils are waiting at which bus stop, MOTOS is meant to

compute a set of tours that gets all pupils to their destinations while respecting

all relevant constraints [GK96].

As in the other projects a TGraph class was de�ned in MOTOS. It is used

as the (global) internal data structure for the tour planning algorithm, and

represents the geographical data, the personal data, and the computed tours

simultaneously.

Since MOTOS is part of a larger tour planning system, the interfaces to

and from MOTOS had to be speci�ed precisely. Basically, the MOTOS system

consists of three modules:

{ the front end that generates a MOTOS graph from the input data,

{ the planning component that computes a suitable tour system, and

{ the back end that hands the results over to the embedding system.

For the planning component di�erent GRAL assertions are used: one for the

initial state of the MOTOS graph, and one for the �nal outcome of the algorithm.

The MOTOS planning component uses well known graph algorithms like

Dijkstra's shortest path algorithm, a traveling salesman algorithm for subgraphs,

reachability algorithms etc. being confronted with speci�c aspects of the com-

plex problem to be solved. The graph theoretical approach followed in MOTOS

encouraged a kind of compositional algorithm design and enabled a quick solu-

tion quite fast. Thus, it was easy to experiment with di�erent graph algorithms

to �nd a good heuristic.

For MOTOS the EER/GRAL approach provided an adequate conceptual

framework during the design phase. By using the GraLab, the designed data

model could be implemented without much e�ort. Furthermore, graph theoreti-

cal concepts helped in �nding a solution to the application problem which could

be implemented without changing the view on the MOTOS data structure.

5.4 Application: Program Understanding

Maintenance and reuse of software requires a thorough understanding of soft-

ware modules and their interdependence. It is impossible to predict all questions

or classes of questions a reengineer might ask during the process of program un-

derstanding. Hence, a powerful program analysis facility is wanted which allows

to answer any questions on user de�ned levels of granularity about programs

written in di�erent languages.

3 The MOTOS project is a joint project of AED S�ud, Meckenheim, Germany.

The GUPRO approach (Generic Understanding of PROgrams)4 [EGW96],

[EKW96] to program understanding is based on repositories which contain pro-

gram information in graph data structures. The graph data structures can be

consulted by a programming language independent analyzing mechanism.

The de�nition of the repository follows the modeling techniques described in

this paper, namely EER/GRAL descriptions of TGraph classes are implemented

by GraLab software. Thus, GUPRO is a generic approach, since EER/GRAL

speci�cations can be used to adapt the system to di�erent languages.

In the �rst part of the project an EER/GRAL speci�cation of a heteroge-

neous software environment consisting of sources written in COBOL, CSP, PL/1,

JCL, MFS, IMS-DBD and PSB was de�ned on a coarse grained level of gran-

ularity in tight cooperation with reengineers at Volksf�ursorge [DFG+95]. The

resulting model shows the main concepts of the di�erent source languages and

their interdependence which are used for supporting source code stocktaking.

Here, GRAL assertions are used to specify additional edge types extending the

abstract syntax, in order to simplify analysis.

In a �rst step, isolated schemes were de�ned representing the concepts of

each single programming language on a �ne grained level. In a second step, these

single schemes were integrated into a common scheme by melting vertex types

representing the same information, by generalization of vertex types representing

similar information and by connecting vertex types with edge types.

The GUPRO toolset will consist of a parsing component and an analyzing

component. It is implemented using GraLab functions.

The parsing component translates source codes into graph data structures

matching the conceptual model in the EER diagram. It is generated from the

programming language grammars, the user de�ned EER diagramms and their de-

pendencies. The generated parser uses the GraLab library for creating instances

of the conceptual model in the graph based repository [Dah95].

The analyzing component for language independent program analysis is also

triggered by the conceptual model. An important part of the analyzing com-

ponent is the query component, which allows any questions about the software

stored in the repository according to the conceptual model. Retrieval of infor-

mation from the repository uses a graph query language [Fra96b] suited to the

graph based modeling approach described here.

Hence, GUPRO follows a closed approach of declarative conceptual program

modeling using EER diagrams, storing program information in a repository using

GraLab, and analyzing this repository using a query language in a consistent

graph based manner.

4 GUPRO is performed together with the IBM Scienti�c Center, Heidelberg, and the

Volksf�ursorge Unternehmensgruppe AG, (a german insurance company), Hamburg.

GUPRO is supported by the Bundesminister f�ur Bildung, Wissenschaft, Forschung

und Technologie, national initiative on software technology, No. 01 IS 504.

6 Related Work

The main advantage of the EER/GRAL approach to graph based modeling is

the coherent and consistent integration of several aspects, namely

{ use of an EER dialect for declarative graph class speci�cation,

{ use of the GRAL extension of Z for specifying integrity constraints, and

{ the e�cient implementation of graphs using GraLab.

Formal semantics of ER-dialects have been de�ned by several authors. [Che76]

already sketches a formal semantics of the basic entity relationship approach.

Other sources are [NP80] and [Lie80]. An overview to the main concepts to EER

Modeling including global considerations concerning derived schema components

and (static) integrity constraints is given in [HK87]. [HG89] gives the semantics

of a very general EER-dialect, which even allows entities to be attribute values.

[TCGB91] discuss semantics for generalizations and specializations.

Older work on integrity constraints was done by [TN83]. [Len85] includes in

his \semantic" entity relationship approach (SERM) integrity constraints into

modells as rules. Constraints in �rst order logic are introduced by [S�ud86] and

[BT94]. Cardinality constraints are discussed by [Tha92].

Theoretical foundations for constructive graph class descriptions are laid by

[Cou96], who uses monadic second order logic. Graph classes for concrete ap-

plications can also be speci�ed by graph grammars (see [EK95]). PROGRES

[Sch91], [SWZ95] is a language for specifying graph replacement systems, which

can be used for this purpose. PROGRES also includes ER diagrams for specifying

simple schemata. Thus, it includes also some declarative description elements,

though they are weaker than those described here.

For the implementation of discrete structures as internal structures there ex-

ist e�cient libraries like LEDA ([MN96]), though they are not directly adapted

to such general graph types like TGraph e.g. directed an undirected graphs

are stored di�erently, vertices are not typed, and the attribute structure is uni-

form for all vertices. For storing graphs persistently as external structures GRAS

[KSW95] or PCTE [LW93] may be used. But then again TGraphs are not di-

rectly supported. Furthermore external storage leads to a tradeo� between the

size of the graphs and the e�ciency of graph traversals.

7 Conclusion

An overview on the EER/GRAL approach on graph based modeling was given.

In order to de�ne graph classes EER diagrams are used, which are extended by

GRAL predicates. In conjunction with the GraLab C++-library this supplies a

seamless way for modeling and implementation.

The modeling approach is formally based on Z-speci�cations for the EER-

and GRAL-de�nitions of TGraph classes. The approach has been successfully

applied in various projects in di�erent areas of information modeling.

Acknowledgement: The authors express their thanks for some help in com-

piling this paper to Ingar Uhe, Manfred Kamp, Bernt Kullbach, and Martin

H�ummerich.

References

[BES96] F. Bohlmann, J. Ebert, and R. S�uttenbach. An OMT Metamodel. Pro-

jektbericht 1/96, Universit�at Koblenz-Landau, Institut f�ur Softwaretechnik,

Koblenz, 1996.

[BT94] J. B. Behm and T. J. Teorey. Relative Constraints in ER Data Models.

R. A. Elmasri, V. Kouramajian, B. Thalheim (Eds.): Entity-Relationship

Approach - ER'93, 12th International Conference on the Entity-Relationship

Approach, Arlington, Texas, USA, December 15-17, 1993, pages 46{59, 1994.

[CEW96] M. Carstensen, J. Ebert, and A. Winter. Entity-Relationship-Diagramme

und Graphenklassen. to appear as Fachbericht Informatik, 1996, Institut

f�ur Softwaretechnik, Universit�at Koblenz-Landau, 1996.

[Che76] P. P.-X. Chen. The Entity{Relationship Model | Toward a Uni�ed View

of Data. ACM Transactions on Database Systems, 1(1):9{36, March 1976.

[Cou96] B. Courcelle. Graph structure de�nition using monadic second-order lan-

guages. In: Proceedings of the Workshop on Finite Models and Descrip-

tive Complexity, Princeton, New Jersey, January 14-17, 1996, to appear in:

AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, 1996.

[Dah95] P. Dahm. PDL: Eine Sprache zur Beschreibung grapherzeugender Parser.

Diplomarbeit D-305, Universit�at Koblenz-Landau, Fachbereich Informatik,

Koblenz, Oktober 1995.

[DEL94] P. Dahm, J. Ebert, and C. Litauer. Das EMS-Graphenlabor 3.0. Projekt-

bericht 3/94, Universit�at Koblenz-Landau, Institut f�ur Softwaretechnik,

Koblenz, 1994.

[DFG+95] P. Dahm, J. Fricke, R. Gimnich, M. Kamp, H. Stasch, E. Tewes, and

A. Winter. Anwendungslandschaft der Volksf�ursorge. Projektbericht 5/95,

Universit�at Koblenz-Landau, Institut f�ur Softwaretechnik, Koblenz, 1995.

[Dr�u96] M. Dr�uke. Dokumentation f�ur den Daten
u�diagramm-Editor. Studienar-

beit S 429, Universit�at Koblenz-Landau, Fachbereich Informatik, Koblenz,

Mai 1996.

[Ebe87] J. Ebert. A Versatile Data Structure For Edge-Oriented Graph Algorithms.

Communications ACM, 30(6):513{519, June 1987.

[EC94] J. Ebert and M. Carstensen. Ansatz und Architekur von KOGGE. Pro-

jektbericht 2/94, Universit�at Koblenz-Landau, Institut f�ur Softwaretechnik,

Koblenz, 1994.

[EF95] J. Ebert and A. Franzke. A Declarative Approach to Graph Based Model-

ing. in: E. Mayr, G. Schmidt, G. Tinhofer (Eds.) Graphtheoretic Concepts

in Computer Science Springer, Berlin, Lecture Notes in Computer Science,

LNCS 903, pages 38{50, 1995.

[EGW96] J. Ebert, R. Gimnich, and A. Winter. Wartungsunterst�utzung in heteroge-

nen Sprachumgebungen, Ein �Uberblick zum Projekt GUPRO. in F. Lehner

(Hrsg.): Softwarewartung und Reengineering - Erfahrungen und Entwicklun-

gen, Wiesbaden, pages 263{275, 1996.

[EK95] H. Ehrig and M. Kor�. Computing with Algebraic Graph Transformations

- An Overview of Recent Results. G. Valiente Feruglio and F. Rosello Llom-

part (eds): Proc. Colloquium on Graph Transformation and its Application

in Computer Science. Universitat de les Illes Balears, 1995, pages 17{23,

1995.

[EKW96] J. Ebert, M. Kamp, and A. Winter. Generic Support for Understanding

Heterogeneous Software. Fachbericht Informatik 3/96, Universit�at Koblenz-

Landau, Fachbereich Informatik, Koblenz, 1996.

[Fra96a] A. Franzke. GRAL : A Reference Manual. to appear as Fachbericht Infor-

matik, Universit�at Koblenz-Landau, Fachbereich Informatik, Koblenz, 1996.

[Fra96b] A. Franzke. Querying Graph Structures with G2QL. Fachbericht Informatik

10/96, Universit�at Koblenz-Landau, Fachbereich Informatik, Koblenz, 1996.

[GK96] S. Gossens and L. Kirchner. Projekt MOTOS Modellierung, Frontend und

Backend. Studienarbeit S 410, Universit�at Koblenz-Landau, Fachbereich

Informatik, Koblenz, Januar 1996.

[Har72] F. Harary. Graph theory. Addison-Wesley, Reading, Mass., 3 edition, 1972.

[HG89] U. Hohenstein and M. Gogolla. A Calculus for an Extended Entity-

Relationship Model Incorporating Arbitrary Data Operations and Aggre-

gate Functions. C. Batini (Ed.): Entity-Relationship Approach: A Bridge

to the User, Proceedings of the Seventh International Conference on Entity-

Relationship Approach, pages 129{148, 1989.

[HK87] R. Hull and R. King. Semantic Database Modelling: Survey, Applications,

and Research Issues. ACM Computing Surveys, 19(3):201{260, September

1987.

[KSW95] N. Kiesel, A. Sch�urr, and B. Westfechtel. A Graph-Oriented (Software) En-

gineering Database System. Information Systems, vol. 20, no. 1, pages 21{

52, 1995.

[KU96] A. K�olzer and I. Uhe. Benutzerhandbuch f�ur die KOGGE-Tool BONsai,

Version 2.0. Projektbericht 4/96, Universit�at Koblenz-Landau, Institut f�ur

Softwaretechnik, Koblenz, 1996.

[Len85] M. Lenzerini. SERM: Semantic Entity-Relationship Model. P. P. Chen

(ed.): Entity-Relationship Approach: The Use of ER Concept in Knowl-

edge Representation, Proceedings of the Fourth International Conference on

Entity-Relationship Approach, Chicago, Illinois, USA, 29-30 October 1985,

pages 270{278, 1985.

[Lie80] Y. E. Lien. On the Semantics of the Entity-Relationship Data Model. P. P.

Chen (Ed): Entity-Relationship Approach to Systems Analysis and Design.

Proc. 1st International Conference on the Entity-Relationship Approach,

pages 155{168, 1980.

[LW93] J. Jowett L. Wakeman. PCTE, The Standard for Open Repositories. Pren-

tice Hall, New York, 1993.

[Meh84] K. Mehlhorn. Data structures and algorithms, volume 2. Graph algorithms

and NP-completeness. Springer, Berlin, 1984.

[MN96] K. Mehlhorn and S. N�aher. LEDA. A Platform for Combinatorial and Ge-

ometric Computing. Technical report, Max-Planck-Institut f�ur Informatik,

1996.

[NP80] P. A. Ng and J. F. Paul. A Formal De�nition of Entity-Relationship Mod-

els. P. P. Chen (Ed): Entity-Relationship Approach to Systems Analysis

and Design. Proc. 1st International Conference on the Entity-Relationship

Approach, pages 211{230, 1980.

[NW95] J.-M. Nerson and K. Wald�en. Seamless Object-Oriented Software Architec-

ture. Analysis and Design of Reliable Systems. Prentice Hall, Englewood

Cli�s, 1995.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.

Object-Oriented Modeling and Design. Prentice Hall, Englewood Cli�s,

1991.

[Sch91] A. Sch�urr. Operationales Spezi�zieren mit Graph Ersetzungssystemen,

Formale De�nitionen, Anwendungsbeispiele und Werkzeugunterst�utzung.

Deutscher Universitaetsverlag, Wiesbaden, 1991.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. International Series in

Computer Science. Prentice Hall, Hemel Hempstead, Hertfordshire, UK, 2

edition, 1992.

[S�ud86] N. S�udkamp. Enforcement of Integrity Constraints in an Entity Relation-

ship Data Model. Bericht 8607, Institut f�ur Informatik und Praktische

Mathematik, Christian Albrechts Universit�at, Kiel, September 1986.

[SWZ95] A. Sch�urr, A.J. Winter, and A. Z�undorf. Graph Grammar Engineering with

PROGRES. W. Sch�afer (Ed.): ESEC '95, 5th European Software Engineer-

ing Conference, pages 219{234, 1995.

[TCGB91] L. Tucherman, M. A. Casanova, P. M. Gualandi, and A. P. Braga. A Pro-

posal for Formalizing and Extending the Generalization and Subset Ab-

stractions in the Enity-Relationship Model. F. H. Lochovsky (Ed.): Entity-

Relationship Approach to Database Design and Querying, Proceedings of the

Eight International Conference on Entity-Relationship Approach, Toronto,

Canada, 18-20 October, 1989, pages 27{41, 1991.

[Tha92] B. Thalheim. Fundamentals of Cardinality Constraints. G. Pernul, A. M.

Tjoa (Eds.): Entity-Relationship Approach - ER'92, 11th International Con-

ference on the Entity-Relationship Approach, Karlsruhe, Germany, October

7-9, 1992, pages 7{23, 1992.

[TN83] Y. Tabourier and D. Nanci. The Occurrence Structure Concept: An Ap-

proach to Structural Integrity Constraints in the Entity-Relationship Model.

P. P. Chen (Ed.): Proc. 2nd Int. Conf. on the Entity-Relationship Approach

(ER'81), pages 73{108, 1983.

