Rapid Bacterial Testing: Verax Platelet PGD® Test*

Jeff Hall, Verax Biomedical Inc.

Bacterial Contamination Background

The source of the problem.....

- skin flora source for bacteria at collection
- auto-sterilization in unit is very common
- interaction of bacterial strain and nutritive effects of the blood component

Bacteria pose a unique testing target...

Too few to reliably sample at start of storage

Numerous species implicated

Replicate during storage and at widely differing rates

Understanding the Gap in Detection

Analytical sensitivity

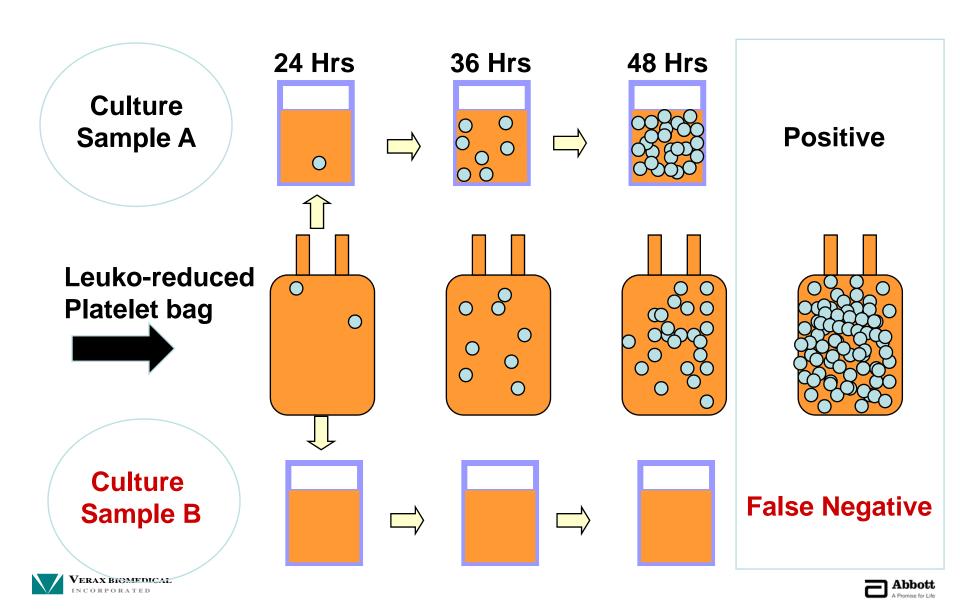
At what concentration are contaminating organisms detected when present in a sample?

Vs.

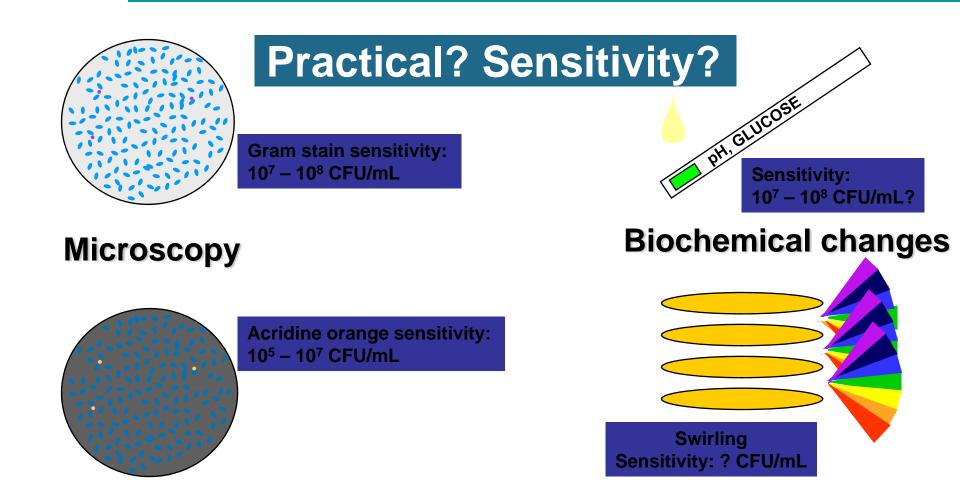
Clinical sensitivity

Are contaminated bags detected reliably?

Culture detection rates indicate that they are not:


True contamination rate: ~ 1:2,000

Detected contamination rate: ~ 1:5,000 by culture



Challenge for culture – bacteria in lag phase

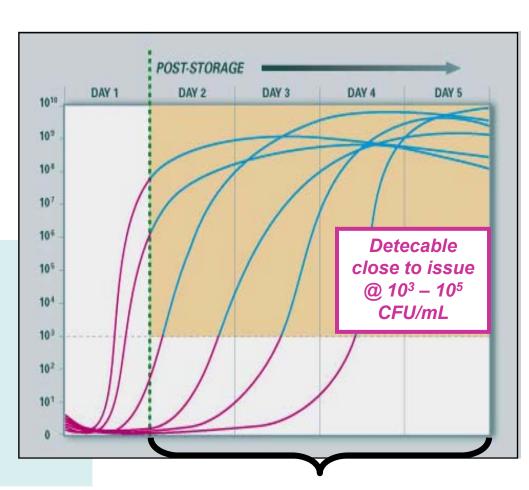
Performance limits of tests for whole blood-derived platelets

Wagner S et al. Transfusion 1996;36:989-93.

Leach MF et al. Vox Sang 1998;74(suppl 1):1180.

A fundamentally different approach

Post-Storage Testing

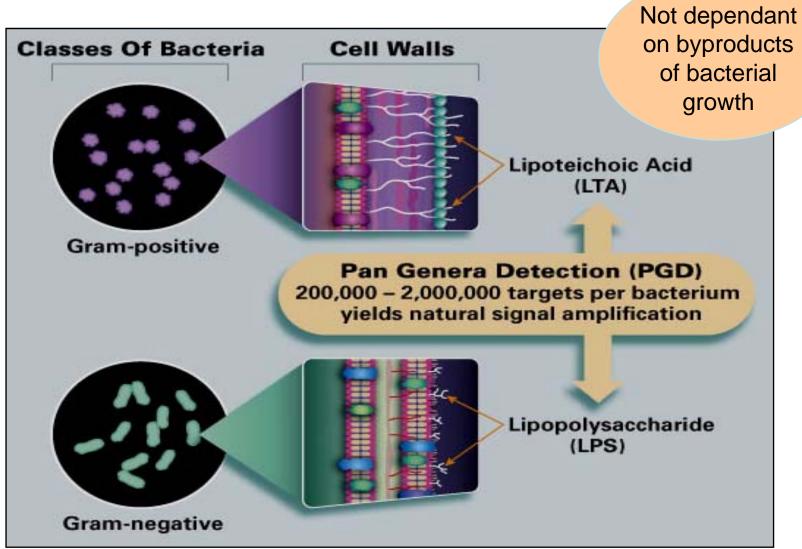

Sampling close to time of issue Maximizes Clinical Sensitivity

Eliminate false negatives

Avoid quarantines

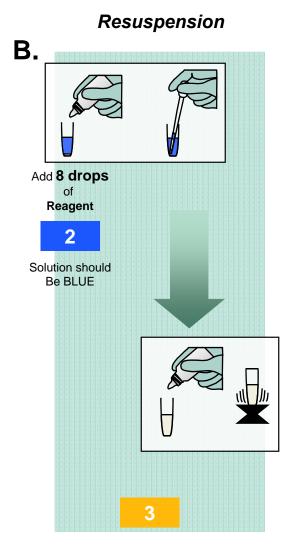
Eliminate call-backs

Simplify inventory management



Run rapid test at time of issue

Patented Pan Genera Detection (PGD®) Technology


PGD* Immunoassay Format: Two Tests Run in Parallel

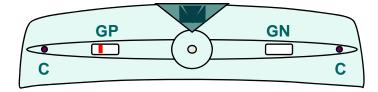
Gram positive Gram negative Sandwich Immunoassay Sandwich Immunoassay LPS capture LTA capture antibodies antibodies **GN** bacterial capture **GP** bacterial capture Labeling by LPS Labeling by LTA conjugate conjugate antibodies antibodies

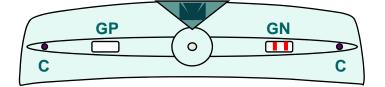
Platelet PGD®* Test Procedure

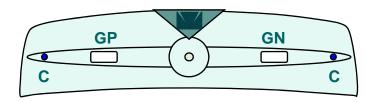
Centrifugation Α. Add 500 uL platelet sample to and 8 drops of Reagent Spin for 5 minutes Decant @ 13,400 RPM supernatant

Reading

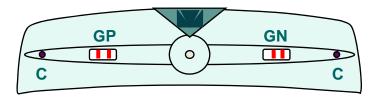
Fill well and Incubate at room temperature until procedural controls

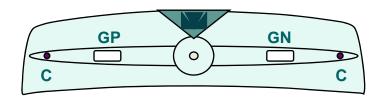

change color (~ 20 min)





Examples of PGD* Test Results




Reactive results

Non-Reactive result

Positive Control result

Negative Control result

Platelet PGD Test: Clinical Performance (LRAP)

Specific

99.7% specificity (N=610 apheresis units) confirmed with plate culture

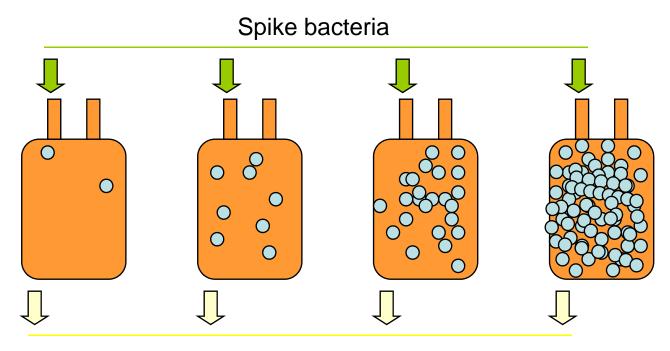
No prozone

No false negative test results with bacteria >1E09 CFU/ml

Reproducible

98.8% concordance of expected results on low-titer panel at 3 clinical sites

Minimal Interferents


Specificity and sensitivity not affected by common plasma interferents (e.g. HAMA, hyperlipemia, etc)

Analytical Sensitivity (LRAP)

METHODS:

Sample for PGD Test and dilution plate count

Criteria for Limit of Detection: 10/10 replicates detected by PGD Test

Analytical Sensitivity (LRAP)

Table 9.1.1.4-1: Platelet PGD Limits of Detection

Organism	Source	LoD
Bacillus cereus	Isolate*	1.2e4
Clostridium perfringens	ATCC 13124	8.9e4
Enterobacter aerogenes	Isolate*	1.0e4
Escherichia coli	Isolate*	2.8e4
Klebsiella pneumoniae	Isolate*	2.0e4
Pseudomonas aeruginosa	Isolate*	8.2e3
Serratia marcescens	ATCC 8100	8.6e5
Staphylococcus aureus	Isolate*	8.2e3
Staphylococcus epidermidis	Isolate*	9.2e3
Streptococcus agalactiae	Isolate*	5.5e4

^{*}blood culture Isolate

Low Titer Inoculation Growth Study in Fresh LRAP Platelets

CULTURE EQUIVALENCY STUDY: A GROWTH MODEL SYSTEM FOR EVALUATION BACTERIA DETECTION TESTS IN PLATELETS

DAY POST-COLLECTION>>>>	0	1	2	3	4	5	
Pt UNIT ACTIVITIES	COLLECT	HOLD OR SHIP	SHIP, HOLD OR TRANSFUSE		TRANSFUSE	TRANSFUSE	
DAY OF CE STUDY>>>>	TUDY>>>> 0		2	3	4	5	
	INOCULATE	TEST by BacT/ALERT	PGD TEST	PGD TEST	PGD TEST	PGD TEST	

BACTERIA USED IN SUDY	INOCULATION AVE. CFU/ml	POS BacT/ALERT hr post-inoculation	PGD Test at 48hr	PGD Test at 72hr
Klebsiella pneumoniae	6.3	32.0	POS (2/3)	POS (1/3)
E coli	8.8	30.5	POS	
Pseudomonas spp	4.3	34.3	POS	
Serratia marcescens	5.6	31.3	POS	
Enterobacter spp	6.6	33.3	POS	
S. aureus	6.7	31.6	POS	
Bacillus spp	1.6	28.0	POS	
Streptococcus spp	3.4	31.0	POS	
S. epidermidis	10.7	34.6	NEG	POS

^{**}STUDY PERFORMED AT THREE CLINICAL SITES

Ultra-Low Titer Inoculation Growth Study in Plasma from Platelets

ULTRA-LOW INOCULATION STUDY: A GROWTH MODEL SYSTEM FOR DEMONSTRATION OF ADDED VALUE OF POST-STORAGE BACTERIAL DETECTION TESTS IN PLATELETS

			SAMPLES TESTED POST-INOCULATION							TERMINAL CULTURE	
Bacteria	INOCULATION CFU/bag*	NUMBER OF TIME 0 CULTURES = POS^^	PGD 24hr	PGD 36hr	PGD 48hr	PGD 60hr	PGD 72hr	PGD 84hr	PGD 96hr	SAMPLE TIME (hr)	RESULT
Klebsiella pneumoniae	174	9 of 10	NR	NR	NR	NR	NR	NR	NR	96	Neg
THEODYCHA PHEMIOIDAE	17	0 of 10	R	R	1414	1414	1414	1414	1414	24	Pos
			•	•	+						
Serratia marcescens	9	1 of 10	NR	R	R					36	Pos
	1	0 of 10	NR	R	R					36	Pos
					-						
Enterobacter spp	43	8 of 10	R	R						24	Pos
	8	2 of 10	NR	R	R					36	Pos
Pseudomonas spp	65	9 of 10	NR	NR	R	R				48	Pos
	8	2 of 10	NR	NR	R	R				48	Pos

^{*}Based on number of observed colonies from ten 8ml samples at Time 0 plating after inoculation into 250-300ml unit.

^{**}Based on 1 or more colonies counted per 8ml sample applied to culture.

Ultra-Low Titer Inoculation Growth Study in Plasma from Platelets

ULTRA-LOW INOCULATION STUDY: A GROWTH MODEL SYSTEM FOR DEMONSTRATION OF ADDED VALUE OF POST-STORAGE BACTERIAL DETECTION TESTS IN PLATELETS

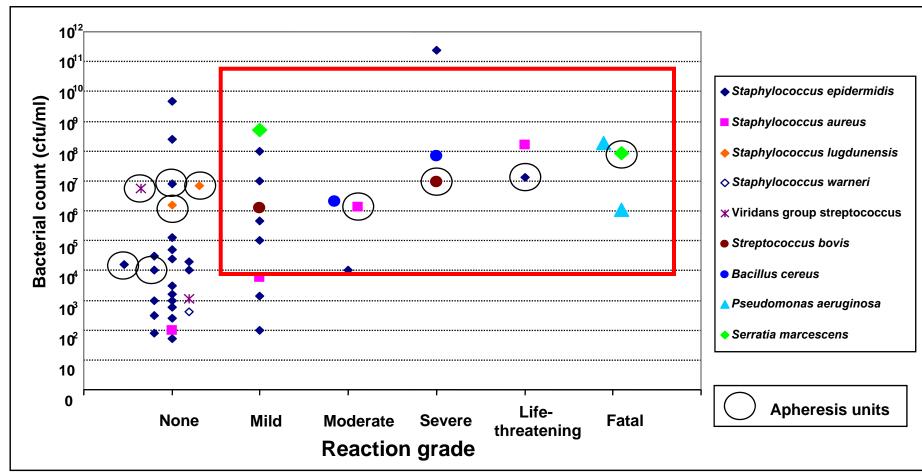
			SAMPLES TESTED POST-INOCULATION							TERMINAL CULTURE		
Bacteria	INOCULATION CFU/bag*	NUMBER OF TIME 0 CULTURES = POS**	PGD 24hr	PGD 36hr	PGD 48hr	PGD 60hr	PGD 72hr	PGD 84hr	PGD 96hr	SAMPLE TIME (hr)	RESULT	
Bacillus spp	45	5 of 10	NR	R	R					36	Pos	
	5	0 of 10	NR	R	R					36	Pos	
	1	0 of 10	NR	R	R					36	Pos	
S. epidermidis	26	5 of 10	NT	NT	NR	NR	R	R		72	Pos	
[a	1 485	0 (10				7						
Streptococcus spp	100	9 of 10	NR	R	R					36	Pos	
	10	3 of 10	NR	R	R					36	Pos	
S. aureus	60	8 of 10	NR	NR	R	R				48	Pos	
	6	2 of 10	NR	NR	R	R	-			48	Pos	

^{*}Based on number of observed colonies from ten 8ml samples at Time 0 plating after inoculation into 250-300ml unit.

NT = not sampled/tested

^{**}Based on 1 or more colonies counted per 8ml sample applied to culture

Preclinical data indicates that testing near issue will work...


Clinical detection rate ≥ 1:2,000 4 true positives identified 4,918 untested for (PGD+ / Culture+) bacteria prior to No PGD false negatives shipment to Verax **Study Population** 7,889 plt units tested 1:1,972 incidence for all units 607 apheresis • 7,282 WBP 2,971 pretested by 1:1,639 incidence for units not collection site using tested by culture before culture or Pall BDS shipment to Verax

Platelet PGD Results:

Bacteria Titer Correlated with Transfusion Reactions....

Jacobs, M. R., C. E. Good, H. M. Lazarus, R. A. Yomtovian. 2008. Relationship between bacterial load, species virulence and transfusion reaction with transfusion of bacterially contaminated platelets. Clin Infect Dis in press.

The Bottom Line.....

Yomtovian / Jacobs: BPAC Meeting, 2006

An at issue detection system with a sensitivity of:

- ~10⁵ CFU/ml would have prevented:
 - •all fatal reactions
 - •91% of serious reactions
 - •79% of all reactions
- ~10³ CFU/ml would have prevented:
 - •all fatal and serious reactions
 - •95% of all reactions

Now focused on.....

Extension of PGD Test to additional sample types:

- Buffy coat platelets
- Leukoreduced whole blood-derived platelet pools
- Non-leukoreduced whole blood-derived platelet pools

Post-storage testing for bacteria in LRAP....a different approach

