Formale Baumsprachen

Task 21 (pumping lemma for Rec)

Prove the following lemma.

Lemma. Let Σ be a ranked alphabet and $L \in \text{Rec}(\Sigma)$. Then there is a $p \in \mathbb{N}$ such that for every $\xi \in L$, the following implication holds:

If $\mathrm{height}(\xi) \geq p,$ then there are $u,v \in \mathcal{C}_{\varSigma,1}$ and $w \in \mathcal{T}_\varSigma$ such that

(i) $\xi = u[v[w]],$ (iii) height(v) ≥ 2 , and (ii) height(v[w]) $\le p,$ (iv) for every $n \in \mathbb{N}, u[v^n[w]] \in L.$

Task 22 (semirings)

Which of the following ring-like algebras are semirings?

 $\begin{array}{ll} (a) & ([0,1],\max,\cdot,0,1), \\ (b) & (\mathbb{N},\ominus,\cdot,0,1), \\ (c) & (\mathbb{Z},-,\cdot,0,1), \\ (d) & (\mathbb{Z},+,\cdot,0,1), \\ (e) & (\mathbb{Z},\cdot,+,1,0), \\ \end{array} \\ \begin{array}{ll} (f) & (\mathbb{Z}\cup\{\infty\},\min,+,\infty,0), \\ (g) & (\mathbb{R}_{\geq 0}\cup\{\infty\},\max,\min,0,\infty), \\ (g) & (\mathbb{R}_{\geq 0}\cup\{\infty\},\max,\min,0,\infty), \\ (h) & (\mathcal{P}(\varSigma^*),\cup,\cap,\emptyset,\varSigma^*), \\ (i) & (\mathcal{P}(\varSigma^*),\cap,\circ,\varSigma^*,\{\varepsilon\}), \text{ and} \\ (j) & (\mathcal{P}(\mathbf{T}_{\varSigma}),\cup,\cdot_{\alpha},\emptyset,\{\alpha\}) \\ \end{array}$

where $a \ominus b = |a-b|$ for every $a, b \in \mathbb{N}$, \circ is language concatenation, and \cdot_{α} is tree concatenation for every $\alpha \in \Sigma^{(0)}$.

Task 23 (isomorphism between $\mathcal{P}(A)$ and \mathbb{B}^A)

Show that the semirings $(\mathcal{P}(A), \cup, \cap, \emptyset, A)$ and $(\mathbb{B}^A, \tilde{\vee}, \tilde{\wedge}, \tilde{0}, \tilde{1})$ as isomorphic for every set A.

Task 24 (semiring homomorphisms)

A semiring $(S, +, \cdot, 0, 1)$ is called *zero-sum free* iff a + b = 0 implies a = 0 and b = 0 for every $a, b \in S$. S is called *zero-divisor free* iff $a \cdot b = 0$ implies a = 0 or b = 0 for every $a, b \in S$. Prove the following lemma.

Lemma. Let $(S, +, \cdot, 0, 1)$ be a semiring and $h: S \to \mathbb{B}$ be a mapping such that for every $a \in S$:

$$h(a) = \begin{cases} 0 & \text{if } a = 0\\ 1 & \text{otherwise.} \end{cases}$$

 \boldsymbol{h} is a semiring homomorphism iff \boldsymbol{S} is zero-sum free and zero-divisor free.