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Is Prompt-Based Finetuning Always Better than Vanilla Finetuning?
Insights from Cross-Lingual Language Understanding
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Abstract

Multilingual pretrained language models
(MPLMs) have demonstrated substantial perfor-
mance improvements in zero-shot cross-lingual
transfer across various natural language under-
standing tasks by finetuning MPLMs on task-
specific labelled data of a source language (e.g.
English) and evaluating on a wide range of
target languages. Recent studies show that
prompt-based finetuning surpasses regular fine-
tuning in few-shot scenarios. However, the
exploration of prompt-based learning in mul-
tilingual tasks remains limited. In this study,
we propose the PROFIT pipeline to investi-
gate the cross-lingual capabilities of Prompt-
based Finetuning. We conduct comprehensive
experiments on diverse cross-lingual language
understanding tasks (sentiment classification,
paraphrase identification, and natural language
inference) and empirically analyze the varia-
tion trends of prompt-based finetuning perfor-
mance in cross-lingual transfer across different
few-shot and full-data settings. Our results re-
veal the effectiveness and versatility of prompt-
based finetuning in cross-lingual language un-
derstanding. Our findings indicate that prompt-
based finetuning outperforms vanilla finetuning
in full-data scenarios and exhibits greater ad-
vantages in few-shot scenarios, with different
performance patterns dependent on task types.
Additionally, we analyze underlying factors
such as language similarity and pretraining data
size that impact the cross-lingual performance
of prompt-based finetuning. Overall, our work
provides valuable insights into the cross-lingual
prowess of prompt-based finetuning.

1 Introduction

Pretrained language models (PLMs) (Devlin et al.,
2019; Yang et al., 2019b; Radford et al., 2019),
trained on massive amounts of unlabelled data
in a self-supervised manner, have shown strong

⋆ Equal Contribution.

performance after finetuning on task-specific la-
belled data for a given downstream task, such
as sentence classification (Zhuang et al., 2021),
text summarization (Zhang et al., 2020), or di-
alogue generation (Liu et al., 2023c). Prompt-
based learning (Brown et al., 2020; Schick and
Schütze, 2021a,b,c) has recently emerged as a no-
table advancement, surpassing regular finetuning
approaches in few-shot scenarios (Liu et al., 2023a).
In prompt-based learning, downstream tasks are re-
formulated to resemble the types of problems tack-
led during the PLM’s original pretraining by using
a textual prompt. For example, in Figure 1(b), an
input sentence of the binary sentiment analysis task
“Works as stated!” can be reformulated with a
prompt pattern P (X) = X◦ “It was [MASK].” as
“Works as stated! It was [MASK].” where
◦ is the string concatenation operator. We use a
verbalizer which maps the class label to a label
word. In this example, the class labels POSITIVE

and NEGATIVE can be verbalized as “great” and
“bad”. By comparing the probabilities of the label
words “great” and “bad” as fillers of the [MASK]
token, we can predict the correct class label. In the
example above, a natural language understanding
(NLU) task is transformed into a masked language
modeling (MLM) problem, which is the same as
the PLM’s pretraining objective.

The reformulated input can be used for finetun-
ing, i.e. prompt-based finetuning. Figure 1 shows
the difference between prompt-based finetuning
and vanilla finetuning. Vanilla finetuning solely
relies on the hidden embedding of the [CLS] token.
In contrast, prompt-based finetuning makes use of
both the semantic information from the task labels
and the prior knowledge encoded in the pretraining
phase. Recent empirical studies of few-shot learn-
ing showed advantages of prompt-based finetuning
over vanilla finetuning (Gao et al., 2021; Li and
Liang, 2021).

When applied to multilingual pretrained lan-
1
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Figure 1: The comparion of vanilla finetuning and prompt-based finetuning. [CLS], [SEP], [MASK], [PAD] are
special tokens in the encoder vocabulary. The verbalizer is a function mapping from the task label set to a subset of
the encoder vocabulary. Input tokens in blue represent the prompt pattern.

guage models (MPLMs), prompt-based finetun-
ing also enables zero-shot1 cross-lingual transfer.
MPLMs such as mBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2020) are pretrained on
huge multilingual corpora and show strong multi-
linguality (Pires et al., 2019; Dufter and Schütze,
2020; Liang et al., 2021). They have become
the dominant paradigm for zero-shot cross-lingual
transfer, where annotated training data is available
for some source language (e.g. English) but not
for the target language (Wu and Dredze, 2019; Hu
et al., 2020a). Zhao and Schütze (2021) proposed
prompt-based finetuning for cross-lingual transfer.
Their work focused on few-shot finetuning. Their
experimental results for the natural language in-
ference task showed that prompt-based finetuning
performed better in few-shot cross-lingual trans-
fer than vanilla finetuning. However, prior studies
failed to examine whether prompt-based learning is
also advantageous when training data is not scarce.
Therefore, we conduct a comprehensive investiga-
tion on diverse cross-lingual language understand-
ing tasks in both full-data and few-shot settings
in order to shed more light on the cross-lingual
capabilities of prompt-based finetuning.

In contrast to most previous research on prompt-
ing, our work is not restricted to monolingual or
few-shot scenarios. Instead we explore a wide
range of few-shot settings. We adopt a multilin-
gual perspective and aim to uncover the nuances

1In this paper, “zero-shot” in “zero-shot cross-lingual tran-
fer” refers to the number of target language training data,
i.e., no target language data is provided, while “few-shot” in
“few-shot finetuning” refers to the source language used for
finetuning, i.e., a few source language data is provided for
the finetuning of the MPLM. The finetuned model is then
zero-shot transferred to target language.

of performance variations associated with prompt-
based finetuning. To this end, we implement the
PROFIT pipeline and carry out an extensive set
of experiments encompassing three representative
cross-lingual language understanding tasks: senti-
ment analysis (Amazon Reviews), paragraph identi-
fication (PAWS-X), and natural language inference
(XNLI). Our task selection covers single-sentence
classification, sentence pair classification and infer-
ence task, considering both binary and multi-fold
classifications. Our work provides insights into
the effectiveness and versatility of prompt-based
finetuning in cross-lingual language understanding.

Research Questions and Contributions. In this
work, we analyze how the performance of prompt-
based finetuning varies with the size of the labelled
source language data for zero-shot cross-lingual
transfer tasks. We examine a wide range of fac-
tors which could have an impact on cross-lingual
transfer performance. We attempt to address the
following pivotal research questions:

RQ1 Does prompt-based finetuning outper-
form vanilla finetuning in the full-data scenario
in different NLU tasks?

We propose the PROFIT pipeline for systemati-
cally conducting the cross-lingual transfer experi-
ments. We carry out zero-shot cross-lingual trans-
fer experiments on three different NLU tasks using
all the available English training data. By compar-
ing the results of vanilla finetuning and PROFIT
for different MPLMs, we find that in the full-data
scenario, PROFIT still achieves better cross-lingual
performance than vanilla finetuning.

RQ2 Is prompt-based finetuning always better
than vanilla finetuning?

2



We investigate how the cross-lingual perfor-
mance depends on the size of the English training
data. Our findings substantiate that the PROFIT
exhibits greater advantages in few-shot scenarios
compared to full-data scenarios. The specific pat-
terns of performance change are contingent upon
the task types.

RQ3 What underlying factors could affect the
cross-lingual performance of PROFIT?

We extensively analyze the factors that could
influence the cross-lingual performance of PROFIT,
encompassing language similarity, pretraining data
size of target languages, etc.

2 Related Work

Prompt-Based Learning GPT-3 (Brown et al.,
2020) has sparked research in prompt-based meth-
ods. Recent advances include automatic generation
of prompt verbalizers and patterns (Schick et al.,
2020; Shin et al., 2020), soft prompting (Qin and
Eisner, 2021), prefix tuning (Li and Liang, 2021), P-
tuning (Liu et al., 2022a), and retrieval-augmented
prompting (Liu et al., 2022b). Most of these meth-
ods focus on monolingual scenarios, leaving the
cross-lingual capabilities of prompt-based methods
largely unexplored.

MPLMs and Zero-Shot Cross-Lingual Trans-
fer The advances of MPLMs have positioned
them as the standard approach for cross-lingual
transfer. MPLMs usually adopt the architecture
of some monolingual Transformer-based language
model (Vaswani et al., 2017) and are jointly pre-
trained on large unlabelled multilingual data. For
instance, mBERT (Devlin et al., 2019) is based
on BERT; XLM-R (Zhuang et al., 2021) and
Glot500-m (ImaniGooghari et al., 2023) are based
on RoBERTa (Conneau et al., 2020). A multi-
tude of studies have validated the robust multilin-
guality exhibited by MPLMs, either through prob-
ing the MPLMs themselves (Pires et al., 2019)
or by identifying the key factors that contribute
to their impressive multilinguality (Dufter and
Schütze, 2020). Recent empirical studies have
further demonstrated the remarkable cross-lingual
capabilities of MPLMs by finetuning MPLMs on
English training sets and then predicting on test sets
of other languages (Karthikeyan et al., 2020; Turc
et al., 2021). Several benchmarks have been pro-
posed to evaluate the performance of multilingual
encoders, including XTREME (Hu et al., 2020b),

XTREME-R (Ruder et al., 2021), Taxi1500 (Ma
et al., 2023) and XGLUE (Liang et al., 2020).

Multilingual Prompt Learning While prompt-
ing has proven successful in English, the applica-
tion of prompting techniques in multilingual tasks
has yet to be thoroughly explored and extensively
studied. Zhao and Schütze (2021) first investigated
prompt-based methods for cross-lingual transfer
with different prompt forms and verbalizers. Re-
cent follow-up studies introduced mask token aug-
mentation (Zhou et al., 2022) and unified multi-
lingual prompts (Huang et al., 2022) for zero-shot
cross-lingual transfer. Despite the growing atten-
tion garnered by these methods in the context of
few-shot scenarios across various NLP tasks, there
remains a dearth of comprehensive investigations
into the variations of prompt-based learning meth-
ods across different few-shot settings and full-data
settings. Tu et al. (2022) focused on an alternative
prompting approach for cross-lingual transfer in
full-data scenarios. In contrast to prompt-based
finetuning, they introduced additional prompt pa-
rameters to PLMs and exclusively updated these pa-
rameters during the finetuning process. A more re-
cent work (Shi and Lipani, 2023) combined prompt-
based finetuning and continued pretraining, but it
was limited to monolingual scenarios.

In contrast to the aforementioned previous stud-
ies, our work provides a comprehensive investiga-
tion of prompt-based finetuning for cross-lingual
transfer in both few-shot and full-data scenarios.
Furthermore, we empirically analyze the variation
of prompt-based finetuning performance across dif-
ferent few-shot settings.

3 Methodology

The purpose of this study is to improve the cross-
lingual transfer performance of vanilla finetuning.
In vanilla settings of zero-shot cross-lingual trans-
fer, the MPLM is directly finetuned with training
data in a source language (English). The finetuned
model is then applied to predict the test data in
target languages.

In prompt-based learning, we need a pattern-
verbalizer pair (PVP) (Schick and Schütze, 2021a)
consisting of (i) a prompt pattern which converts
the input text into a cloze-style question with a
mask token, and (ii) a representative word (called
verbalizer) for each possible class. In our PROFIT
approach, a PVP is combined with training data
in English during finetuning. As the training
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Figure 2: PROFIT pipeline of training and cross-lingual transfer with examples. X is an input sentence and P (X)
denotes the prompt pattern which reformulates the input into a prompt. v(y) is the verbalizer which maps each class
label y onto a word from the source language vocabulary.

block in Figure 2 shows, a prompt pattern such
as P (X) = X◦ “In summary, the product
was [MASK].” is filled with an input example X
“This was a gift for my son. He loved it.”
A verbalizer such as {0 → “terrible”, 1 → “great”}
is used to map the original labels {0,1} onto words.
The MPLM takes the filled pattern “This was a
gift for my son. He loved it. In summary,
the product was [MASK].”, as input and returns
for each of the two verbalizers “terrible” and “great”
its probability of being the masked token. Thus, it
uses the PVP to reformulate the sentence classifica-
tion task of vanilla finetuning into a masked token
prediction task.

More formally, let D={(X1, y1), ..., (Xn, yn)}
denote the set of training examples in the source
language, where X1, ..., Xn are text samples and
y1, ..., yn are class labels from a label set Y . The
prompt pattern P (.) transforms an input sentence
X into a cloze-style question with a masked token.
The pretrained language model M with trainable
parameters θ performs masked token prediction
and returns the probabilities p = M(P (X), θ) of
all candidate words for the masked token in P (X).
The verbalizer v(.) is a bijective mapping from the
set of class labels Y to a set of verbalised words
V from the source language vocabulary. We pre-
dict the class ŷ whose verbalizer v(ŷ) received the
highest probability from model M :

ŷ = argmax
y∈Y

p(v(y)) (1)

We finetune the parameters θ of model M by mini-

mizing the cross-entropy loss function ℓ on D:

θ̂ = argmax
θ

∑

(X,y)∈D
ℓ(v(y),M(P (X), θ)) (2)

The model with the finetuned parameters θ̂ is used
to predict the class labels of the target language ex-
amples D′ = {X ′

1, ..., X
′
n} using the same prompt

pattern and verbalizer as during finetuning (see in-
ference block in Figure 2). The best label y′i for
each example X ′

i is predicted according to Eq. 1.
In contrast to vanilla finetuning, prompt-based

methods such as PROFIT only transform the train-
ing data with the prompt pattern P and the verbal-
izer v, but leave the model architecture unchanged.
thus not hindering the efficiency of Vanilla much
(Shi and Lipani, 2023). No extra parameters have
to be trained from scratch. By reformulating the
sentence classification task into a masked token
prediction (MTP) task, we can better take advan-
tage of the knowledge that the model has acquired
during MTP pretraining.

In the cross-lingual setting, we simply apply the
same functions P and v to the target language ex-
amples without further modifications.

4 Experimental Setups

4.1 Datasets
In order to investigate the performance on diverse
NLU tasks, three representative different classifi-
cation tasks on NLU are selected for evaluation in
this work: sentiment analysis on Amazon product
reviews (Keung et al., 2020), paraphrase identifi-
cation on PAWS-X (Yang et al., 2019a), and nat-
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ural language inference on XNLI (Conneau et al.,
2018).

Amazon Reviews Dataset (Keung et al., 2020)
contains product reviews with 5 star ratings from 1
to 5. The multilingual version of this dataset con-
sists of test data in English and 5 other languages.
We use the following prompt pattern P (X) and
verbalizer v(y) for each review example (X, y):

• P (X) = X◦ “All in all, it was [MASK].”

• v(1) = “terrible”, v(2) = “bad”,
v(3) = “ok”, v(4) =“good”, v(5) = “great”

PAWS-X is a multilingual version of PAWS
(Zhang et al., 2019), which consists of challenging
paraphrase identification pairs from Wikipedia and
Quora. Each data item comprises two sentences.
The task is to predict whether the two sentences
are paraphrases. The labels are binary: 1 for para-
phrase, 0 for non-paraphrase. PAWS-X consists
of datasets in English and 6 other languages. For
a given sentence pair X1 and X2, we design the
pattern and verbalizer as:

• P (X1, X2) = X1◦“? [MASK], ” ◦X2

• v(0) = “Wrong”, v(1) = “Right”

XNLI is a multilingual version of the MultiNLI
dataset (Williams et al., 2018). The text in each
data item consists of two sentences. Sentence A
is the premise and sentence B is the hypothesis.
The task is to predict the type of inference between
the given premise and hypothesis among the three
types: “entailment” (0), “neutral” (1), and “con-
tradiction” (2). It is a kind of multi-class natural
language inference task. XNLI consists of datasets
in English and 14 other languages. For a given
sentence pair X1 and X2, we design the pattern
and verbalizer as:

• P (X1, X2) = X1◦ “? [MASK], ” ◦X2

• v(0) = “Yes”, v(1) = “Maybe”, v(2) = “No”

4.2 Baseline

The following baselines are considered and com-
pared to our PROFIT approach:

MAJ The majority baseline. It always assigns
the majority class from the training data.

Direct The pattern filled with the input sample
is directly fed to the MPLM for prediction, without
finetuning. This is the zero-shot scenario.

Vanilla The standard finetuning method which
predicts the class from the hidden embedding of the
[CLS] token without using a prompt pattern. We
use the cross-entropy loss as the objective function
for finetuning and AdamW for optimization with
a learning rate of 1e-5 and 5 training epochs. The
finetuned models are then used to predict the test
data.

4.3 Multilingual Models
In order to solve the classification tasks with
cross-lingual transfer, we use the pretrained
multilingual BERT model (Devlin et al., 2019)
“bert-base-multilingual-cased” (M) and
the XLM-R model (Conneau et al., 2020)
“xlm-roberta-base” (X) from the Huggingface
Transformers library (Wolf et al., 2020). Both
models are evaluated with the methods Vanilla and
PROFIT. We repeat all our experiments 5 times
with different random seeds. The details about
model training and hyperparameter settings can be
found in Appendix §A.1.

5 Results

5.1 Main Results

Amazon PAWS-X XNLI Avg.

MAJ 20 55.81 33.33 36.17

Direct-mBERT 20.21 45.05 35.05 33.44
Vanilla-mBERT 42.97 80.24 65.05 62.75
PROFIT-mBERT 43.98 82.16 65.79 63.98

Direct-XLM-R 21.98 51.10 35.68 36.25
Vanilla-XLM-R 54.56 82.51 73.61 70.22
PROFIT-XLM-R 54.66 82.73 73.82 70.40

Table 1: Overview of results

Table 1 gives an overview of the experimental
results. PROFIT outperforms the MAJ baseline
with both mBERT and XLM-R for all three classi-
fication tasks. PROFIT also outperforms the Direct
and Vanilla baselines in both mBERT and XLM-
R settings: When trained with mBERT, the per-
formance is improved by 23.77%, 37.11% and
30.74% compared to Direct on Amazon, PAWS-X
and XNLI respectively, and by 1.01%, 1.92% and
0.74% compared to Vanilla. When trained with
XLM-R, the performance is improved by 32.68%,
31.63% and 38.14% compared to Direct, and by
0.10%, 0.22% and 0.21% compared to Vanilla
respectively.
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Task Model en ar bg de el es fr hi ja ko ru sw th tr ur vi zh avg.

Amazon

Vanilla-M 58.92 - - 45.69 - 48.02 47.45 - 35.07 - - - - - - - 38.63 42.97
PROFIT-M 59.05 - - 46.66 - 49.30 48.38 - 37.31 - - - - - - - 38.26 43.98

Vanilla-X 59.61 - - 60.14 - 55.24 55.66 - 51.93 - - - - - - - 49.82 54.56
PROFIT-X 60.06 - - 59.60 - 55.72 55.89 - 52.34 - - - - - - - 49.75 54.66

PAWS-X

Vanilla-M 93.85 - - 84.94 - 87.11 86.55 - 73.39 72.44 - - - - - - 77.01 80.24
PROFIT-M 94.21 - - 86.06 - 88.17 87.91 - 75.79 75.82 - - - - - - 79.22 82.16

Vanilla-X 94.33 - - 86.92 - 88.55 89.04 - 76.07 74.71 - - - - - - 79.75 82.51
PROFIT-X 94.90 - - 87.06 - 88.87 88.86 - 75.53 75.40 - - - - - - 80.63 82.73

XNLI

Vanilla-M 82.57 65.12 68.97 71.40 66.30 74.22 73.68 60.02 - - 68.95 50.24 53.15 62.02 57.96 69.80 68.91 65.05
PROFIT-M 82.57 65.55 69.47 71.57 67.43 75.10 74.57 60.57 - - 69.55 51.13 54.58 62.64 58.04 70.74 70.08 65.79

Vanilla-X 84.91 71.86 77.78 76.86 75.96 79.25 78.21 69.92 - - 75.79 65.21 72.02 73.12 66.07 74.71 73.72 73.61
PROFIT-X 84.97 71.81 77.92 77.35 76.11 79.31 78.75 70.10 - - 75.43 65.13 72.39 73.23 66.95 75.05 73.92 73.82

Table 2: Detailed cross-lingual performance results on three classification tasks. When calculating the average
(avg.), due to the aim of zero-shot cross-lingual transfer, the performance results of the source language English are
not taken into account. Model M stands for mBERT, and X for XLM-R.

While PROFIT outperforms all baselines on
all three tasks, the degree of improvement dif-
fers. The improvements of PROFIT over Vanilla
when trained with mBERT (+1.23%) are larger
than the improvements when trained with XLM-R
(+0.18%).

We further conducted T-tests for results of
Vanilla and PROFIT with different random seeds
(see §A.1 for the seeds). Table 3 shows the T-test
results with p values for each task with mBERT and
XLM-R models. We can see that the p values of
all three tasks with mBERT model are under 0.05,
indicating that the performance gain of PROFIT
is significant with mBERT, while the p values of
all three tasks with XLM-R model are bigger than
0.05, showing no significant performance differ-
ence.

Model Amazon PAWS-X XNLI

mBERT 0.005 0.003 0.005
XLM-R 0.40∗ 0.46∗ 0.44∗

Table 3: T-Test results (p) for results of Vanilla and
PROFIT with different random seeds. Insignificant re-
sults with a p value > 0.05 are marked with ∗.

One reason for the performance difference of the
two models could be that the XLM-R model was
pretrained on far more data than mBERT and is
also much bigger, so that the Vanilla performance
with XLM-R finetuning is much better than with
mBERT in cross-lingual context (Conneau et al.,
2020; Lauscher et al., 2020), leaving less space for
improvement.

A detailed overview of the cross-lingual perfor-

mance of PROFIT compared to Vanilla for each
target language is presented in Table 2. Although
the overall performance of PROFIT is better than
Vanilla for all three tasks in both mBERT and XLM-
R settings, individual differences between lan-
guages can be noticed. On Amazon, with mBERT,
the improvement in Japanese (ja) (+2.24%) is far
greater than on average, whereas Chinese (zh)
shows no improvement (-0.37%); with XLM-R,
PROFIT performs slightly worse than Vanilla on
both Chinese with -0.07% and German (de) with
-0.54%. On PAWS-X, Korean (ko) shows a larger
improvement (+3.38%) than average with mBERT,
and with XLM-R, whereas French (fr) (-0.18%)
and Japanese (-0.54%) show a slightly worse per-
formance than Vanilla. On XNLI, we find im-
provements for all languages with mBERT, and
with XLM-R, Arabic (ar) (-0.06%), Russian (ru)
(-0.36%), and Swahili (sw) (-0.08%) show slightly
worse performance than Vanilla.

We conclude that the performance gain of
PROFIT over Vanilla depends on the models and
languages. In §6, we will further investigate how
linguistic factors influence cross-lingual transfer
performance.

5.2 Few-shot Ablations
Previous studies show that the prompt frame-
work is more effective than finetuning when train-
ing data is scarce (Zhao and Schütze, 2021; Qi
et al., 2022). We investigated how the perfor-
mance changes as the number of training samples
K increases in few-shot settings. The training
and validation data are randomly sampled with
K ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}
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Figure 3: Performance difference between PROFIT and
Vanilla in different few-shot settings and full training
setting on three NLU tasks with both mBERT and XLM-
R models.

shots per class from the English training data.
The detailed results of few-shot ablations can

be found in Table 9, Table 10 and Table 11 in
Appendix §A.4. Figure 3 shows the performance
changes on all three tasks with both mBERT and
XLM-R models. On the Amazon task, the perfor-
mance improvement for smaller numbers of shots
is greater than for full training. As the number of
shots increases, the improvement decreases accord-
ingly. This implies that on the sentiment analysis
task, PROFIT is most valuable with small training
data. On XNLI, the improvement of PROFIT over
Vanilla is first small with in small shots. It then gets
greater, as K increases, and drops again, as bigger
K towards full data size shows up. We conclude
that on NLI tasks such as XNLI, PROFIT is most
effective in few-shot settings with a certain number
of K. On PAWS-X, no obvious difference in few-
shot settings can be found with mBERT in small
shots, but in bigger shots there is greater improve-
ment with K ∈ {256, 512, 1024}; however, with
XLM-R, PROFIT shows almost no performance
improvement over Vanilla.

Overall, sentiment analysis exhibits a clearer
performance improvement for smaller numbers of

shots, whereas the language inference and para-
phrase tasks show greater performance enhance-
ments in few-shot scenarios with larger K. This
might be due to difficulties with pairwise inputs in
these tasks, where we aim to identify the relation-
ship between a pair of sentences. When it comes to
transferring knowledge of sentence relationships,
more examples are needed for successful learning
than in sentiment analysis tasks where semantic in-
formation from comparable cross-lingual sentences
can be directly transferred.

6 Cross-Lingual Analysis

In previous empirical studies of cross-lingual trans-
fer learning (Lauscher et al., 2020; Nie et al., 2023),
several key factors were identified to exert great
effect on the cross-lingual performance, including
(1) the size of the pretraining corpus for the target
language and (2) the similarity between the source
and target languages. We analyze how these two
factors influence PROFIT’s effectiveness for the
languages on three tasks.

The pretraining corpus size of the target lan-
guages can be simply measured by the log2 of the
number of articles in Wikipedia2.

For measuring the similarity between languages,
we employ methods from recent studies of lan-
guage representations. In these studies, languages
are encoded as vectors according to their various
linguistic and typological features. With these lan-
guage vectors, a range of distance metrics, such
as Euclidean distance and cosine similarity, can be
used to measure the similarity between languages.
Littell et al. (2017) proposed LANG2VEC which en-
codes languages using 5 vectors, with each vector
representing a specific language feature. Östling
and Kurfalı (2023) measured the lexical similar-
ity by calculating language vectors based on the
ASJP word list database (Wichmann et al., 2022).
Liu et al. (2023b) recently proposed a novel lan-
guage similarity metric from the perspective of
conceptualization across multiple languages. In
our work, we compute two similarity metrics: (i)
a comprehensive linguistic similarity metric based
on LANG2VEC (Littell et al., 2017) and (ii) a lexi-
cal similarity metric based on the ASJP word list
database (Östling and Kurfalı, 2023).

The LANG2VEC approach provides information-
rich vector representations of languages from dif-

2https://meta.wikimedia.org/wiki/List_of_
Wikipedias
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lang
Typological & Phylogenetic Sim. Lexical Sim.

Size
Task Performance

SYN PHO INV FAM GEO Sim1 UMAP SVD Sim2 amazon-M amazon-X pawsx-M pawsx-X xnli-M xnli-X

ar 65.47 70.06 75.88 0.00 97.04 61.69 -1.90 4.87 1.49 20.20 - - - - 65.55 71.81

bg 78.78 90.45 70.02 13.61 99.01 70.38 8.65 33.21 20.93 18.15 - - - - 69.47 77.92

de 79.05 83.62 77.62 54.43 99.76 78.90 83.42 76.83 80.13 21.42 46.66 59.60 86.06 87.06 71.57 77.35

el 73.19 95.35 64.75 14.91 98.95 69.43 1.24 24.81 13.03 17.76 - - - - 67.43 76.11

es 84.97 85.81 64.99 9.62 99.59 69.00 1.61 28.30 14.96 20.83 49.30 55.72 88.17 88.87 75.10 79.31

fr 76.83 75.26 73.64 9.62 99.93 67.06 1.34 31.76 16.55 21.27 48.38 55.89 87.91 88.86 74.57 78.75

hi 58.79 85.81 76.53 12.60 91.10 64.97 1.20 21.11 11.16 17.26 - - - - 60.57 70.10

ja 49.63 64.44 65.92 0.00 85.65 53.13 - - - 20.39 37.31 52.34 75.79 75.53 - -

ko 55.66 74.62 71.04 0.00 86.93 57.65 -0.22 12.42 6.10 19.28 - - 75.82 75.40 - -

ru 75.74 90.45 63.17 16.67 95.81 68.37 8.63 32.60 20.62 20.87 - - - - 69.55 75.43

sw 42.26 90.91 76.16 0.00 91.50 60.17 -9.05 -7.18 -8.12 16.23 - - - - 51.13 65.13

th 65.20 81.82 78.88 0.00 85.25 62.23 -0.21 3.82 1.81 17.25 - - - - 54.58 72.39

tr 43.36 85.81 68.49 0.00 98.25 59.18 -7.80 -1.56 -4.68 19.00 - - - - 62.64 73.23

ur 50.01 0.00 71.56 12.60 92.54 45.34 1.35 24.92 13.14 17.54 - - - - 58.04 66.95

vi 64.92 78.33 74.76 0.00 85.25 60.65 0.86 -18.50 -8.82 20.29 - - - - 70.74 75.05

zh 73.49 78.33 74.91 0.00 88.42 63.03 - - - 20.37 38.26 49.75 79.22 80.63 70.08 73.92

Table 4: Overview of language features and task performances with PROFIT for correlation analysis. Language
features include typological & phylogenetic similarities (Sim1), lexical similarities (Sim2), and target language size
(Size). Task performance contains the PROFIT results on the three datasets with both mBERT and XLM-R models.

ferent linguistic and ethnological perspectives. We
adopt five linguistic categories: syntax (SYN),
phonology (PHO), phonological inventory (INV),
language family (FAM), and geography (GEO).
SYN, PHO and INV are typological categories,
and FAM and GEO are phylogenetic categories.
Given these vectors, we calculate 5 different cosine
similarity metrics between English and each target
language.

The lexical similarity metric is based on a mean
normalized pairwise Levenshtein distance matrix
from ASJP. The language vectors used for calcu-
lating the lexical similarity are reduced in dimen-
sionality. Two dimensionality reduction methods
are employed for calculating the lexical similarity:
Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) and Singular Value
Decomposition (SVD) (Stewart, 1993).

The final typological and phylogenetic similarity
score Sim1 for each language pair is calculated by
averaging the 5 similarities of LANG2VEC. Simi-
larly, the lexical similarity score Sim2 is calculated
by averaging the similarities of the UMAP and SVD
vectors. More formally, as Eq. 3 shows, let f de-
note a feature from the feature set Fn for metric n,
and let vf denote the corresponding feature vector.
The sim1 and sim2 scores for the source language
English (e) and some target language j are then
calculated by:

simn(e, j) =
1

|Fn|
∑

f∈Fn

vf (e) · vf (j)
∥vf (e)∥2 ∥vf (j)∥2

(3)

Table 4 shows a list of language features (typo-
logical & phylogenetic similarities, lexical simi-
larities, and target language size) and task perfor-
mances with PROFIT for the following correlation
analysis. The language similarities, namely the ty-
pological & phylogenetic similarities (Sim1) and
lexical similarities (Sim2) refer to the similarity
between each language and English, based on the
above introduced language vectors. Sim1 and Sim2

are calculated by Eq. 3. ja and zh are not included
in Östling and Kurfalı (2023)’s original language
sets, thus these two values are missing for the lexi-
cal similarities. The target language size (Size) is
calculated by the log2 of the number of articles in
Wikipedia.

Based on the obtained language features and
experimental results of task performance with
PROFIT, we did a correlation analysis. Table 5
shows the results of the two correlation tests on
each task.

According to the results of Pearson and Spear-
man tests and the p values, the two factors, namely,
both the size of pretraining data for the target lan-
guage and the similarity of typological and phy-
logenetic features of languages (sim1) have a sig-
nificant positive correlation with the improvement
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Task Model Stat.
sim1 sim2 Size

corr. p corr. p corr. p

Amazon

PROFIT-M
P 0.73 0.16∗ -0.95 0.21∗ 0.81 0.09∗

S 0.70 0.19∗ -1.00 0.00 0.50 0.39∗

PROFIT-X
P 0.80 0.10∗ 1.00 0.01 0.92 0.03

S 0.80 0.10∗ 1.00 0.00 1.00 1e-24

PAWS-X

PROFIT-M
P 0.82 0.05 0.31 0.69∗ 0.82 0.04

S 0.83 0.04 0.20 0.80∗ 0.60 0.21∗

PROFIT-X
P 0.83 0.04 0.34 0.66∗ 0.84 0.04

S 0.77 0.07∗ 0.20 0.80∗ 0.71 0.11∗

XNLI

PROFIT-M
P 0.57 0.03 0.43 0.14∗ 0.86 9e-05

S 0.59 0.03 0.53 0.06∗ 0.90 1e-05

PROFIT-X
P 0.72 4e-03 0.43 0.14∗ 0.70 5e-03

S 0.77 1e-03 0.63 0.02 0.72 4e-03

Table 5: Correlations between task performance and
language similarities (sim1 & sim2) and target language
size. P stands for Pearson test and S for Spearman test.
Insignificant results with a p value > 0.05 are marked
with ∗.

of cross-lingual performance especially on XNLI,
with both PROFIT-M and PROFIT-X models. Only
the correlations calculated with the similarity of lex-
ical features (sim2) show some insignificant results.
Furthermore, on XNLI, the correlation with lan-
guage similarity is stronger with PROFIT-X, while
the correlation with target data size is stronger with
PROFIT-M. We argue that the XLM-R model is
bigger than mBERT, so that the linguistic features
have more effect on the performance, while for the
smaller model mBERT the data size plays a greater
role, which further reveals our findings in §5.1 that
the applied pretrained model for finetuning has an
impact on the PROFIT performance.

On PAWS-X and Amazon, we find weak correla-
tions with the proposed factors, which could result
from the limitation of languages in test data: XNLI
comprises 15 different languages, whereas PAWS-
X and Amazon only contain 7 and 6 languages in
the test set, respectively. Thus weaker correlations
have been found.

To sum up, language similarity and size are two
factors that impact the cross-lingual performance in
our study, and we find significant correlations when
the test set contains a larger amount of languages.

7 Conclusion

In our work, we introduce PROFIT for zero-shot
cross-lingual transfer, a pipeline which reformu-

lates input examples into cloze-style prompts and
applies the input examples with the prompts and its
verbalizers as masked token to finetuning, changing
the sentence classification task of vanilla finetun-
ing into a masked token prediction task. We fine-
tune the multilingual pretrained language model
(MPLM) on source language prompts and apply it
to target language data. We use PROFIT with the
two MPLMs mBERT and XML-R, and evaluate
its efficacy on three different types of multilingual
classification tasks in natural language understand-
ing – multi-class sentiment classification, binary
paraphrase identification, and multi-class natural
language inference. Our experiments show that
PROFIT outperforms vanilla finetuning with both
mBERT and XML-R on all three tasks. We fur-
ther discovered that the performance improvement
of PROFIT is generally more obvious in few-shot
scenarios. Additionally, we demonstrate that the
similarity of the source and target language and
the size of the target language pretraining data sig-
nificantly correlate with the cross-lingual transfer
performance of PROFIT, especially on a big dataset
with a variety of test languages.

Limitations

This study presents the PROFIT pipeline, which
aims to enhance zero-shot cross-lingual transfer
performance. Our approach was evaluated on vari-
ous multilingual datasets and showed improved per-
formance. However, due to the limitations of the
datasets, only a few languages could be evaluated,
thus making it difficult to draw a typological con-
clusion for all languages. Besides, our exploration
in using the prompt-based learning method for
cross-lingual language understanding is restricted
to single-sentence and sentence pair classifications.
As future work, our investigation should be ex-
tended to more types of language understanding
tasks, such as sequence labelling tasks, e.g. slot
detection, named entity recognition, etc.
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A Appendix

A.1 Training Details

During training, we used the same hyperparameters
for Vanilla and PROFIT to keep the variables con-
sistent for comparison. The chosen hyperparame-
ters for both full-shot training and few-shot training
are documented in Table 6. To avoid random ef-
fects on training, we trained each experiment with
5 different random seeds {10, 42, 421, 510, 1218}
and take the average results.

Hyperparameter Full Few-shot

EPOCHS 5 50
LEARNING_RATE 1e-5 1e-5
BATCH_SIZE 8 1
GRADIENT_ACCUMULATION_STEPS 4 2
MAX_SEQ_LENGTH 128 128
EARLY_STOPPING_PATIENCE - 3

Table 6: Hyperparameters

A.2 Dataset Statistics

In Table 7 we show a basic statistic view of the
Amazon Review (Keung et al., 2020) , PAWS-X
(Zhang et al., 2019) and XNLI (Williams et al.,
2018) datasets. We use the original train-dev-test
split from the datasets. For training and validation
we use the English train and dev dataset, and for
test we use the test sets of all languages. The test
data size for each target language is the same in all
tasks.

Task
Size

#Labels

| Train | | Dev | | Test |

Amazon 200 000 5 000 5 000 5

PAWS-X 49 401 2 000 2 000 2

XNLI 392 702 2 490 5 010 3

Table 7: Overview of the three datasets. Train and dev
data size refers to the number of samples for English.
Test data size refers to the number of samples for each
target language.

A.3 Reproducibility

The code for data processing and model training
is available at the following Github repository:
https://github.com/boleima/ProFiT.

A.4 Detailed Results
We present the detailed results of few-shot train-
ing performance of Vanilla and PROFIT for all
three tasks in Table 9 (Amazon Review), Table 10
(PAWS-X) and Table 11 (XNLI), as well as the
T-test results for all tasks in few-shot conditions in
Table 8.

Shot
Amazon PAWS-X XNLI

M X M X M X

1 0.001 0.001 0.50 0.56∗ 0.01 0.12∗

2 0.10 0.01 0.22∗ 0.08∗ 0.89∗ 0.18∗

4 0.09∗ 0.02 0.80∗ 0.10∗ 0.05 0.07∗

8 0.23∗ 0.04 0.83∗ 0.04 0.86∗ 0.14∗

16 0.78∗ 0.11∗ 0.30∗ 0.05 0.27∗ 0.03

32 0.06∗ 0.16∗ 1.00∗ 0.58∗ 0.11∗ 0.01

64 0.03 0.18∗ 0.02 0.80∗ 0.09∗ 0.002

128 0.07∗ 0.11∗ 0.15∗ 0.82∗ 0.34∗ 0.01

256 0.73∗ 0.21∗ 0.12∗ 0.78∗ 0.07∗ 0.02

512 0.86∗ 0.01 0.04 0.90∗ 0.61∗ 0.004

1028 0.003 0.31∗ 0.03 0.55∗ 0.74∗ 0.03

full 0.005 0.40∗ 0.003 0.46∗ 0.005 0.44∗

Table 8: T-Test results (p) for results of Vanilla and
PROFIT in different few-shot conditions. M stands for
mBERT and X stands for XLM-R. Insignificant results
with a p value > 0.05 are marked with ∗.
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Shot Model en de es fr ja zh avg.

1

Vanilla-M 22.30 20.66 19.82 20.02 20.14 20.08 20.14
PROFIT-M 28.52 26.05 26.98 26.18 25.96 25.01 26.04

Vanilla-X 21.98 22.15 21.69 21.79 21.42 21.52 21.71
PROFIT-X 37.09 29.86 35.06 36.10 33.13 34.00 33.63

2

Vanilla-M 24.37 23.14 23.00 22.70 21.27 21.36 22.29
PROFIT-M 27.63 25.78 26.04 25.05 23.24 23.73 24.77

Vanilla-X 21.31 21.08 21.52 20.67 20.76 21.41 21.09
PROFIT-X 35.63 31.82 33.46 34.40 33.35 32.70 33.14

4

Vanilla-M 27.04 24.94 23.95 23.93 23.86 22.20 23.78
PROFIT-M 30.63 26.87 27.67 26.34 25.44 26.05 26.47

Vanilla-X 29.74 29.96 29.67 30.87 26.12 28.89 29.10
PROFIT-X 40.23 37.91 38.60 38.75 38.84 37.11 38.24

8

Vanilla-M 29.95 26.82 26.75 26.91 24.18 25.70 26.07
PROFIT-M 32.67 29.07 30.20 29.38 26.24 27.12 28.40

Vanilla-X 32.02 32.84 33.02 32.60 28.84 31.51 31.76
PROFIT-X 42.23 35.63 40.55 39.79 39.65 38.33 38.79

16

Vanilla-M 33.92 30.87 32.01 30.29 28.94 28.36 30.09
PROFIT-M 35.27 31.66 32.10 31.37 29.70 28.58 30.68

Vanilla-X 38.97 39.42 38.70 38.84 34.61 35.72 37.45
PROFIT-X 44.78 44.40 43.89 43.55 42.57 41.26 43.13

32

Vanilla-M 36.73 31.26 31.64 31.69 28.94 29.08 30.52
PROFIT-M 37.90 33.44 34.68 33.72 31.18 30.77 32.76

Vanilla-X 44.92 45.42 44.45 44.78 42.16 41.85 43.73
PROFIT-X 47.51 47.12 46.67 45.78 44.24 42.70 45.30

64

Vanilla-M 39.85 33.76 35.20 34.65 30.98 29.90 32.90
PROFIT-M 41.62 36.25 37.84 36.15 32.97 32.56 35.15

Vanilla-X 48.06 48.48 46.77 47.34 44.01 42.05 45.73
PROFIT-X 49.42 48.16 47.99 46.93 45.58 44.00 46.53

128

Vanilla-M 43.29 35.52 37.50 36.38 32.36 31.51 34.65
PROFIT-M 44.19 38.39 39.84 38.74 34.62 33.71 37.06

Vanilla-X 50.40 50.75 48.37 48.12 46.26 44.80 47.66
PROFIT-X 50.75 51.24 49.75 49.22 47.39 45.35 48.59

256

Vanilla-M 45.64 37.15 39.23 38.20 33.54 32.86 36.20
PROFIT-M 45.39 37.71 39.99 40.31 32.55 32.82 36.68

Vanilla-X 51.21 50.92 47.15 47.85 46.01 44.23 47.23
PROFIT-X 51.40 52.18 50.22 49.81 47.65 45.60 49.09

512

Vanilla-M 47.66 37.57 39.90 39.16 33.82 33.64 36.82
PROFIT-M 47.64 37.48 40.63 40.99 32.76 33.40 37.05

Vanilla-X 51.90 51.69 49.21 49.67 46.23 43.96 48.15
PROFIT-X 52.94 52.79 50.21 50.06 48.16 45.82 49.41

1024

Vanilla-M 49.26 38.47 41.24 39.88 33.52 33.79 37.38
PROFIT-M 49.63 41.47 43.54 41.97 36.52 34.54 39.61

Vanilla-X 51.33 48.55 45.06 44.91 42.85 41.79 44.63
PROFIT-X 54.55 53.15 51.98 51.18 47.98 46.08 50.07

full

Vanilla-M 58.92 45.69 48.02 47.45 35.07 38.63 42.97
PROFIT-M 59.05 46.66 49.30 48.38 37.31 38.26 43.98

Vanilla-X 59.61 60.14 55.24 55.66 51.93 49.82 54.56
PROFIT-X 60.06 59.60 55.72 55.89 52.34 49.75 54.66

Table 9: Few-shot performance on Amazon
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Shot Model en de es fr ja ko zh avg.

1

Vanilla-M 54.38 53.29 54.22 54.25 53.37 54.01 53.20 53.72
PROFIT-M 53.21 54.18 54.44 54.34 55.31 54.35 53.80 54.40

Vanilla-X 51.95 51.75 51.57 51.62 51.95 51.73 51.80 51.74
PROFIT-X 50.19 48.53 50.68 46.83 50.80 44.55 49.91 48.55

2

Vanilla-M 53.54 53.60 53.81 54.18 54.43 54.54 53.77 54.06
PROFIT-M 52.38 53.04 53.34 53.13 54.35 53.90 51.82 53.26

Vanilla-X 54.95 54.73 54.30 54.57 54.25 54.05 54.32 54.37
PROFIT-X 51.59 50.25 51.65 48.86 51.31 46.30 50.70 49.85

4

Vanilla-M 53.93 53.11 53.38 53.94 53.85 54.28 53.71 53.71
PROFIT-M 52.40 53.07 53.64 53.41 54.79 53.53 51.20 53.27

Vanilla-X 53.15 54.45 53.99 53.90 53.81 53.79 53.64 53.93
PROFIT-X 53.54 51.25 53.00 49.05 53.46 45.29 51.83 50.65

8

Vanilla-M 54.30 53.50 53.51 54.02 54.03 53.94 54.15 53.86
PROFIT-M 52.81 54.12 53.42 53.31 53.98 53.51 51.93 53.38

Vanilla-X 54.60 55.13 54.68 54.80 55.46 55.10 55.14 55.05
PROFIT-X 53.18 52.65 53.03 51.22 52.48 48.83 52.21 51.74

16

Vanilla-M 54.08 50.86 52.04 52.66 51.77 52.27 51.23 51.81
PROFIT-M 52.81 53.08 53.80 53.20 53.51 53.95 52.09 53.27

Vanilla-X 54.45 54.84 54.45 54.54 54.96 54.56 54.78 54.69
PROFIT-X 53.73 51.58 53.24 49.95 53.21 48.28 52.31 51.43

32

Vanilla-M 54.03 52.94 53.48 53.65 53.13 53.58 53.08 53.31
PROFIT-M 52.99 52.97 53.75 53.14 53.57 54.16 51.42 53.17

Vanilla-X 52.44 53.95 52.96 53.21 53.46 54.05 53.94 53.60
PROFIT-X 53.63 51.96 53.44 50.51 53.61 49.84 52.73 52.01

64

Vanilla-M 55.44 55.42 55.46 55.97 54.80 55.92 56.41 55.66
PROFIT-M 53.95 54.59 54.05 54.48 54.51 54.95 52.61 54.20

Vanilla-X 55.20 55.35 54.69 54.95 55.84 55.09 55.39 55.22
PROFIT-X 56.60 54.95 55.90 54.59 55.63 51.51 55.29 54.64

128

Vanilla-M 56.63 56.29 56.69 56.43 55.31 55.70 55.75 56.03
PROFIT-M 55.54 55.76 55.28 55.26 55.88 55.75 55.61 55.59

Vanilla-X 54.61 54.99 54.44 54.80 55.24 55.14 54.98 54.93
PROFIT-X 58.66 56.28 57.95 54.91 56.09 52.39 57.35 55.83

256

Vanilla-M 58.66 56.00 56.38 56.93 55.36 55.77 55.65 56.02
PROFIT-M 61.84 60.51 60.65 60.90 58.56 58.70 59.70 59.84

Vanilla-X 59.30 58.23 58.79 58.54 57.18 57.54 57.70 57.99
PROFIT-X 59.94 57.75 59.58 57.86 57.28 54.31 57.35 57.35

512

Vanilla-M 64.23 59.38 60.00 60.15 56.90 56.84 56.79 58.34
PROFIT-M 73.47 69.74 70.23 70.20 63.84 64.56 66.97 67.59

Vanilla-X 77.03 71.28 72.09 72.46 63.43 63.79 66.53 68.26
PROFIT-X 76.94 71.01 72.29 71.24 63.19 63.28 66.61 67.94

1024

Vanilla-M 74.43 68.44 69.47 70.01 61.95 61.13 64.69 65.95
PROFIT-M 81.06 74.58 76.08 76.15 66.05 66.76 70.64 71.71

Vanilla-X 86.33 79.23 80.86 80.74 69.25 68.18 73.26 75.25
PROFIT-X 87.84 78.94 81.53 80.58 67.68 68.01 71.85 74.76

full

Vanilla-M 93.85 84.94 87.11 86.55 73.39 72.44 77.01 80.24
PROFIT-M 94.21 86.06 88.17 87.91 75.79 75.82 79.22 82.16

Vanilla-X 94.33 86.92 88.55 89.04 76.07 74.71 79.75 82.51
PROFIT-X 94.90 87.06 88.87 88.86 75.53 75.40 80.63 82.73

Table 10: Few-shot performance on PAWS-X
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Shot Model en ar bg de el es fr hi ru sw th tr ur vi zh avg.

1

Vanilla-M 33.58 32.97 32.97 33.46 32.70 33.33 33.43 32.44 32.93 32.85 33.12 33.05 32.96 33.00 32.99 33.02
PROFIT-M 37.58 34.93 33.56 35.95 35.02 34.25 36.38 33.93 36.76 34.62 33.83 34.07 34.22 36.43 37.41 35.10

Vanilla-X 33.73 33.07 32.86 33.51 32.66 33.40 33.54 32.50 33.04 33.15 33.18 33.14 33.00 33.08 33.04 33.08
PROFIT-X 39.26 34.61 34.85 36.28 36.88 33.59 34.92 39.76 34.47 36.53 36.33 36.56 37.03 37.40 36.61 36.13

2

Vanilla-M 34.67 34.98 36.21 36.15 35.46 36.91 36.42 34.34 35.42 34.67 34.20 35.40 34.04 36.18 35.61 35.43
PROFIT-M 38.38 34.85 34.02 35.07 35.20 33.44 35.70 35.63 35.65 34.50 33.78 34.35 34.67 36.57 37.12 35.04

Vanilla-X 34.84 34.33 35.51 35.62 34.99 36.25 35.86 34.14 35.09 34.39 33.95 34.87 33.76 35.55 35.02 34.95
PROFIT-X 39.22 36.54 36.73 38.48 37.83 34.21 37.91 38.87 35.56 37.16 38.42 38.01 37.75 38.25 36.98 37.34

4

Vanilla-M 37.91 35.47 36.12 36.20 35.03 36.22 36.09 34.60 35.60 35.01 34.35 35.49 34.49 36.28 35.74 35.48
PROFIT-M 38.04 35.43 34.64 36.67 36.50 33.66 36.63 36.07 36.83 34.87 33.42 35.41 34.44 37.06 37.07 35.62

Vanilla-X 37.55 34.31 35.08 35.11 34.09 35.06 34.85 33.74 34.53 34.09 33.58 34.39 33.71 35.09 34.56 34.44
PROFIT-X 38.79 36.03 35.23 37.49 37.36 33.50 36.54 38.79 34.21 37.11 37.79 36.47 37.58 37.96 36.22 36.59

8

Vanilla-M 40.83 37.39 38.56 38.69 37.77 39.25 39.06 36.38 37.72 37.54 36.46 38.07 36.28 38.22 37.76 37.80
PROFIT-M 38.71 36.59 35.73 37.20 37.33 34.88 38.05 38.22 38.32 35.37 35.40 36.48 35.99 38.20 38.93 36.91

Vanilla-X 40.84 36.52 37.57 37.97 36.85 38.50 38.35 35.70 37.00 36.77 35.57 37.33 35.57 37.56 36.95 37.01
PROFIT-X 41.58 37.81 37.61 39.74 39.06 35.07 37.65 39.78 37.26 38.64 40.32 38.79 38.65 40.33 38.54 38.52

16

Vanilla-M 42.42 39.56 40.71 40.36 39.63 41.49 41.14 37.86 39.60 38.27 37.35 38.77 37.44 40.76 40.25 39.51
PROFIT-M 44.52 42.10 41.96 40.85 42.18 40.63 43.98 41.17 43.10 36.50 38.83 41.71 38.95 43.40 43.14 41.32

Vanilla-X 42.65 39.37 40.33 40.09 39.15 41.12 40.73 37.72 39.44 38.02 37.34 38.63 37.19 40.73 40.01 39.28
PROFIT-X 49.72 42.15 43.51 47.38 46.22 40.19 44.09 45.59 43.14 44.81 46.16 45.39 44.43 47.35 45.69 44.72

32

Vanilla-M 46.18 40.39 41.17 41.25 40.39 42.65 41.88 38.69 40.77 38.29 38.47 39.62 38.82 41.18 40.89 40.32
PROFIT-M 49.02 45.64 46.01 44.64 47.57 45.00 48.32 45.06 46.37 38.28 43.39 43.68 43.88 47.18 47.78 45.20

Vanilla-X 46.11 39.69 40.44 40.57 39.81 42.05 41.28 38.30 40.25 37.71 37.99 39.05 38.17 40.27 40.00 39.68
PROFIT-X 52.27 46.87 48.41 49.79 49.12 45.55 48.85 48.42 48.10 45.90 49.20 47.88 46.58 49.84 48.55 48.08

64

Vanilla-M 52.10 45.26 46.64 48.10 46.32 49.44 48.57 42.71 45.45 39.13 40.24 42.19 42.41 47.23 46.91 45.04
PROFIT-M 55.04 50.28 51.76 52.60 52.90 50.46 53.85 49.57 51.68 42.26 46.38 49.01 48.85 52.89 52.57 50.36

Vanilla-X 51.86 44.99 46.39 47.86 45.84 48.92 48.47 42.99 45.25 39.04 40.35 42.43 42.51 47.08 46.70 44.92
PROFIT-X 59.35 50.75 53.38 55.47 55.32 50.92 55.71 53.11 52.67 51.31 53.99 52.95 51.30 55.51 54.41 53.34

128

Vanilla-M 58.61 51.91 54.23 54.89 54.32 56.27 55.30 49.05 52.87 43.18 46.02 49.56 48.28 54.02 54.06 51.71
PROFIT-M 59.12 53.87 55.09 56.44 55.33 55.00 56.09 52.36 54.71 45.25 49.41 52.44 51.35 55.62 55.98 53.50

Vanilla-X 58.27 51.41 53.86 54.61 53.85 55.90 54.89 48.68 52.21 42.87 46.23 49.26 47.89 53.55 53.90 51.36
PROFIT-X 64.78 56.50 60.23 60.77 60.55 59.51 61.20 57.41 59.13 55.12 58.44 58.15 55.36 60.24 59.68 58.73

256

Vanilla-M 61.88 53.54 56.61 57.25 56.20 58.77 57.91 51.31 55.45 44.97 46.97 52.75 50.07 56.51 56.76 53.94
PROFIT-M 62.30 54.82 56.96 57.92 56.48 58.69 58.39 53.58 57.09 45.55 49.06 53.64 52.41 57.81 58.06 55.03

Vanilla-X 61.68 53.30 56.19 57.01 55.91 58.47 57.74 51.13 55.22 44.86 46.68 52.77 49.79 56.24 56.33 53.69
PROFIT-X 66.55 58.08 62.26 62.24 61.23 62.88 63.44 58.56 60.42 54.77 59.95 59.95 56.59 62.28 61.18 60.27

512

Vanilla-M 64.94 56.75 59.66 60.73 58.53 61.99 60.89 53.69 58.94 46.24 48.58 55.50 52.56 59.71 59.89 56.69
PROFIT-M 65.39 57.36 60.18 61.03 58.95 61.59 61.04 55.07 59.52 47.23 50.48 55.98 54.08 60.25 60.41 57.37

Vanilla-X 64.92 56.33 59.53 60.47 58.11 61.92 60.59 53.36 58.53 45.92 47.99 55.25 52.15 59.32 59.49 56.35
PROFIT-X 70.13 61.99 66.33 65.47 64.91 67.43 66.72 60.53 64.80 57.27 63.16 63.35 58.78 65.31 64.74 63.63

1024

Vanilla-M 65.90 56.85 59.73 61.10 58.40 62.73 62.07 54.57 59.38 46.46 48.46 56.19 54.21 60.32 60.51 57.21
PROFIT-M 66.77 57.83 59.94 61.53 59.42 62.05 61.99 55.37 59.54 47.44 49.10 56.40 53.91 60.48 60.62 57.54

Vanilla-X 65.67 56.88 59.61 60.95 57.99 62.47 61.93 54.48 59.30 46.36 48.21 56.01 54.29 60.15 60.25 57.06
PROFIT-X 71.51 63.04 67.62 66.26 66.27 68.64 67.72 62.02 65.86 58.12 64.33 64.41 60.46 66.36 65.50 64.76

full

Vanilla-M 82.57 65.12 68.97 71.40 66.30 74.22 73.68 60.02 68.95 50.24 53.15 62.02 57.96 69.80 68.91 65.05
PROFIT-M 82.57 65.55 69.47 71.57 67.43 75.10 74.57 60.57 69.55 51.13 54.58 62.64 58.04 70.74 70.08 65.79

Vanilla-X 84.91 71.86 77.78 76.86 75.96 79.25 78.21 69.92 75.79 65.21 72.02 73.12 66.07 74.71 73.72 73.61
PROFIT-X 84.97 71.81 77.92 77.35 76.11 79.31 78.75 70.10 75.43 65.13 72.39 73.23 66.95 75.05 73.92 73.82

Table 11: Few-shot performance on XNLI
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Abstract

Despite the widespread use of pre-trained mod-
els in NLP, well-performing pre-trained models
for low-resource languages are scarce. To ad-
dress this issue, we propose two novel BERT
models for the Luxembourgish language that
improve on the state of the art. We also present
an empirical study on both the performance and
robustness of the investigated BERT models.
We compare the models on a set of downstream
NLP tasks and evaluate their robustness against
different types of data perturbations. Addi-
tionally, we provide novel datasets to evaluate
the performance of Luxembourgish language
models. Our findings reveal that pre-training a
pre-loaded model has a positive effect on both
the performance and robustness of fine-tuned
models and that using the German GottBERT
model yields a higher performance while the
multilingual mBERT results in a more robust
model. This study provides valuable insights
for researchers and practitioners working with
low-resource languages and highlights the im-
portance of considering pre-training strategies
when building language models.

Keywords: Low-resource languages, Luxem-
bourgish, LuxemBERT, Downstream NLP tasks,
Language models, Pre-training, GottBERT, BERT

1 Introduction

The introduction of BERT models in 2018 (De-
vlin et al., 2019) was a crucial milestone for the

NLP community. The ability to fine-tune an al-
ready pre-trained BERT model mitigated the need
for specialised model architectures for given tasks.
Despite the emergence of better-performing archi-
tectures in recent years, fine-tuning BERT models
continues to be a popular approach for numerous
NLP tasks in industrial settings.

While highly performing pre-trained BERT
models are readily available for widely spoken
languages, they are comparably scarce for low-
resource languages due to the amount of data nec-
essary to pre-train adequate models. In fact, we
determined that the number of languages for which
a pre-trained BERT model is available on Hug-
gingface1 is less than 150, with many of them sup-
ported only through multilingual models such as
multilingual BERT (mBERT) (Devlin et al., 2019)
and XLM-RoBERTa (Conneau et al., 2019). These
multilingual models provide a viable alternative,
but monolingual models can outperform them if
sufficient pre-training data is available, as shown
by Wu and Dredze (2020).

Several factors can influence the quality of a
language model (LM), such as the size of the pre-
training corpus, which can be increased through
data augmentation techniques (Hedderich et al.,
2020). The configuration of the model architec-
ture can also be varied to improve performance, as
highlighted by Wu and Dredze (2020). Another ap-

1https://huggingface.co/models
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proach to enhance the performance of a language
model is to choose whether to pre-train the LM
from scratch or to pre-load the weights from an
existing model and continue the pre-training us-
ing data from the target language, as discussed in
(Muller et al., 2021). These considerations are im-
portant when working with low-resource languages
as they can greatly impact the quality of the pre-
trained models.

In this study, we focus on Luxembourgish, a
low-resource language spoken primarily in Luxem-
bourg by nearly 600 000 people worldwide. We
investigate the impact of pre-training a pre-loaded
LM versus using pre-training from scratch, as well
as the impact of pre-loading a monolingual versus
a multilingual pre-trained model.

The contributions of this study are threefold: (a)
We propose two novel BERT models for the Lux-
embourgish language that improve on the state of
the art. These models are trained on a large corpus
of Luxembourgish text and are able to capture the
unique characteristics of the language. (b) We also
present an empirical study on both the performance
and robustness of the investigated BERT models.
This study compares the models on a set of down-
stream NLP tasks and evaluates their robustness
against different types of data perturbations. (c)
Additionally, we provide novel datasets to evaluate
the performance of Luxembourgish language mod-
els. These datasets are specifically designed for the
Luxembourgish language and are not available in
previous studies, which will be useful for future
research in this field.

2 Approach

In this section, we describe the creation of the two
novel BERT models that we pre-trained for this
study: Lb_mBERT and Lb_GottBERT. 2

2.1 Pre-loaded Models

As mentioned in Section 1, we set out to com-
pare pre-loading a multilingual and a monolingual
BERT model. Our models of choice are the multi-
lingual mBERT and the German GottBERT model
which we pre-train on a corpus of 12 million sen-
tences.

2Our final models are available at https://huggingface.
co/lothritz/Lb_mBERT and https://huggingface.co/
lothritz/Lb_GottBERT

2.1.1 mBERT
Created by Devlin et al. (2019), mBERT is a
multilingual BERT model trained on 104 lan-
guages. Specifically, the model was pre-trained
on Wikipedia articles, including the Luxembour-
gish Wikipedia, which contained 59 000 articles.
mBERT contains 12 transformer blocks, 768 hid-
den layers, 12 self-attention blocks, and 110 mil-
lion trainable parameters, as well as a vocab size
of 105 879 WordPiece tokens, 100 of which are
unused. Our first model uses mBERT as its starting
point and is appropriately named Lb_mBERT. We
adapt the vocab file by replacing the unused tokens
with the 100 most common ones in our pre-training
corpus. We then train the model for 10 epochs on
the Masked-Language-Modeling task (MLM) with
a masking probability of 15%.

2.1.2 GottBERT
Luxembourgish is a West Germanic language orig-
inating from a Moselle Franconian dialect (Gilles,
2022). As such, Luxembourgish and German are
closely related. Indeed, both languages are similar
in terms of vocabulary and structure (Lothritz et al.,
2022). Due to these similarities, we choose the
German GottBERT model (Scheible et al., 2020)
as a pre-loaded model to create Lb_GottBERT. Got-
tBERT was pre-trained on the German part of the
OSCAR corpus (Ortiz Suárez et al., 2020) consist-
ing of nearly 459 million sentences. Its vocab file
consists of 52 009 WordPiece tokens. As none of
these tokens are unused, we cannot modify the vo-
cab file. Similarly to the training of Lb_mBERT,
we pre-train the model for 10 epochs on the MLM
task with a masking probability of 15% using the
same pre-training corpus.

2.2 Pre-training Corpus
In order to pre-train our models, we use the cor-
pus built by (Lothritz et al., 2022) which consists
of 12 million sentences, 6 million of which are
written in Luxembourgish. The used corpus in-
cludes data from the Luxembourgish Wikipedia,
the Luxembourgish news site rtl.lu, and the Leipzig
Wortschatz corpus (Goldhahn et al., 2012). The re-
maining 6 million consist of augmented data result-
ing from a novel data augmentation scheme based
on partial translation. As Luxembourgish is very
closely related to the German language in terms of
structure and vocabulary, the authors used a Ger-
man dataset made up of Wikipedia articles that they
partially translate to Luxembourgish. Specifically,
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they used a predetermined set of non-ambiguous
and common words to translate a significant portion
of their supplementary German data to Luxembour-
gish.

3 Experimental Setup

In this section, we list our research questions for
this study and describe the setup of experiments
we perform to answer these questions. For our ex-
periments, we consider six pre-trained language
models finetuned on eight NLP tasks: Part-of-
Speech (POS) tagging, Named Entity Recognition
(NER), Intent Classification (IC), News Classifica-
tion (NC), Winograd Natural Language Inference
(WNLI), Sentence Negation (SN), Sentiment Anal-
ysis (SA), and Recognizing Textual Entailment
(RTE). Furthermore, when applicable, we apply
four perturbation techniques to our test sets: nega-
tion, name replacement, location replacement, and
synonym replacement.

3.1 Research Questions

We address the following research questions:
RQ1. Which model yields the highest per-

formance on downstream NLP tasks? In this
research question, we aim to evaluate and compare
the performance of different language models on a
set of downstream tasks such as news classification,
named entity recognition, part-of-speech tagging,
etc. The goal is to identify the model that performs
the best across all tasks or a specific set of tasks.
RQ2. How robust are the models against data
perturbation? In this research question, we aim
to evaluate the robustness of the models against
different types of data perturbations, namely: nega-
tion, name replacement, location replacement, and
synonym replacement. The goal is to understand
how well the models can handle these variations in
input data and identify the model that is the most
robust.

3.2 Baseline Models

In this section, we present the various BERT mod-
els we investigated for this study. Most of the mod-
els were pre-trained on Luxembourgish data. Ta-
ble 1 shows an overview of the differences between
each model.

3.2.1 mBERT & GottBERT
We use the original versions of both mBERT and
GottBERT without additional pre-training as two

of our baseline models. This allows us to deter-
mine the impact of our pre-training corpus on each
respective model. While mBERT was partially
trained on Luxembourgish Wikipedia articles, Got-
tBERT was trained exclusively on German data.
As such, we expect mBERT to yield better perfor-
mances on the downstream tasks.

3.2.2 LuxemBERT
(Lothritz et al., 2022) published a Luxembourgish
BERT model made from scratch trained on the 12
million sentences described in Section2.2. Its archi-
tecture is made up of 12 transformer blocks, 768
hidden layers, 12 self-attention blocks, and 110
million trainable parameters, as well as a vocab
size of 30 000 WordPiece tokens. It was trained
on the MLM task for 10 epochs with a masking
probability of 15%. They found that LuxemBERT
improved upon mBERT’s performance for numer-
ous tasks. Following that, we expect it to outper-
form both mBERT and GottBERT in most of our
experiments.

3.2.3 DA BERT
DA BERT was created by Olariu et al. (2023) and
was trained on the same 6 million Luxembourgish
sentences as LuxemBERT. Similarly to Luxem-
BERT, it was pre-trained from scratch, and has
a similar architecture to LuxemBERT: 12 trans-
former blocks, 768 hidden layers, 12 self-attention
blocks, and 110 million trainable parameters. The
vocab size is also identical with 30 000 tokens.
However, contrary to LuxemBERT, the 6 million
remaining sentences were not translated from a
different language. Instead, they employed classi-
cal data augmentation techniques to create more
data. Specifically, they replaced words in the origi-
nal dataset while preserving the original meaning
of the original sentences. The word replacements
consisted of synonym replacements, named entity
replacements, and modal verb replacements. They
found that the performance of their new model is
similar to that of LuxemBERT. As such, we also
expect its performance in our experiments to be
comparable to that of LuxemBERT.

3.3 Downstream Tasks

For this study, we consider eight downstream tasks.
In addition to the five tasks introduced in Lothritz
et al. (2022) (POS-tagging, Named Entity Recogni-
tion, Intent Classification, News Classification, and
WNLI), we also investigate Sentence Negation, the
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mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
Pre-training NAP NAP from scratch from scratch from mBERT from GottBERT

Authentic Lb Data No No Yes Yes Yes Yes
Translated De Data No No Yes No Yes Yes
Augmented Lb Data No No No Yes No No

Table 1: Differences in pre-training scheme and data for each investigated model. (NAP = no additional pre-training)

Recognizing Textual Entailment task, and Senti-
ment Analysis, which we describe in the following
section.3

3.3.1 Part-of-Speech Tagging
Part-of-Speech (POS) tagging task is a classical
sequence-to-sequence task. The objective is to cate-
gorise each word in a sentence into its correct gram-
matical class such as noun or verb. This dataset
is made up of nearly 5500 sentences from Luxem-
bourgish news articles and words are categorised
into 15 different classes (Lothritz et al., 2022).

3.3.2 Named Entity Recognition
Similarly to POS-tagging, Named Entity Recog-
nition (NER) is a common sequence-to-sequence
task aimed to detect proper names in text. The
raw dataset for this task is the same as the one for
POS-tagging, and covers the labels person, geopo-
litical entity, (natural) location, organisation, and
miscellaneous (Lothritz et al., 2022).

3.3.3 Intent Classification
Intent Classification (IC) is a crucial task for digital
assistants and chatbot, concerned with detecting
the underlying intent of a user’s message. For this
study, we use the Banking Client Support dataset
introduced in Lothritz et al. (2021). The dataset
contains nearly 1000 samples divided into 28 in-
tents for the banking domain.

3.3.4 News Classification
News Classification (NC) is a popular text clas-
sification task in NLP. As the name implies, the
objective is to categorise news articles into given
types of news. This set consists of nearly 10 000
news articles divided into eight labels. (Lothritz
et al., 2022)

3.3.5 Winograd Natural Language Inference
Being part of the GLUE benchmark collec-
tion (Wang et al., 2018), the Winograd Natural
Language Inference (WNLI, Levesque et al., 2012).

3Our datasets are available at https://github.com/
Trustworthy-Software/LuxemBERT

Given a sentence pair A and B, where A contains at
least one pronoun and B replaces the pronoun, the
task consists of determining whether or not A en-
tails B. For this study, we use a translated version
of the dataset (Lothritz et al., 2022), containing
nearly 800 sentence pairs.

3.3.6 Sentence Negation
The Sentence Negation task consists of changing
the polarity of a given sentence. Specifically, the
objective is to correctly place the word "net"4 in
order to turn the sentence negative. For this task,
we only consider sentences that are fewer than 15
words long. The dataset consists of a subset of
the Luxembourgish portion of the Leipzig Corpora
Collection (Goldhahn et al., 2012)5, which was not
used to pre-train either of our models. We extract
all the sentences containing the word "net" and turn
them into a labelled dataset accordingly. The result-
ing training, validation, and test sets contain 33975,
2171, and 10095 sentences, respectively. The word
"net" is at position 3 in most sentences (14.52% of
the dataset), while it is at position 13 in the fewest
cases (0.5%). It is to note, that there are multiple
ways to negate sentences in the Luxembourgish
language, with slightly different meanings depend-
ing on the position of the word "net". As such, a
model’s prediction may be considered false in our
experiments despite producing a correctly negated
sentence.

3.3.7 Recognizing Textual Entailment
The Recognizing Textual Entailment (RTE) task
was introduced by Haim et al. (2006) and was
added to the GLUE benchmark collection (Wang
et al., 2018) for evaluating the performance of lan-
guage models. Given a sentence pair A and B,
the objective is to determine whether or not B is
entailed by A. As there is currently no Luxembour-
gish version for this task, we translated the original
version to Luxembourgish using the googletrans
API.6 The final dataset contains translation errors,

4The Luxembourgish word for "not"
5https://wortschatz.uni-leipzig.de/en/download/Luxembourgish
6https://pypi.org/project/googletrans/
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but it is serviceable for our experiments as the data
is the same for each of our models. However, we
would not advise to use this dataset for commercial
use without revising the text. The training, vali-
dation, and test sets contain 2490, 277, and 801
sentences, respectively. 51% of the sentence pairs
are examples for textual entailment while 49% are
not.

3.3.8 Sentiment Analysis
Sentiment Analysis is a classic NLP problem con-
sisting of determining whether a given sentence is
positive, negative, or neutral. For this study, we
use two different datasets: SA1 and SA2. SA1 is a
dataset of Luxembourgish user comments collected
from the news website RTL7 that was manually
annotated with the labels positive, negative, and
neutral. The training, validation and test sets con-
tain 1293, 188, and 367 samples, respectively. 12%
of the samples are labelled positive, 34% negative,
and 54% are neutral.8 SA2 is a subset of the SST-2
dataset (Socher et al., 2013) which we automati-
cally translated to Luxembourgish using Google
Translate.

Unlike the SA1 dataset, it has binary labels: pos-
itive and negative. SA2’s training, validation, and
test sets contain 9646, 872, and 2360 samples, re-
spectively. 55% of the samples are labelled positive
and 45% negative.

3.4 Finetuning Parameters
Devlin et al. (2019) recommends choosing hyper-
parameters for batch size, learning rate, and num-
ber of training epochs from the following ranges:
rangebatch size={16,32}, rangelearning rate={2e-
5, 3e-5, 5e-5}, and rangeepochs={1,2,3,4,5}. For
the POS, NER, IC, NC, and WNLI tasks, we reuse
the same parameters from Lothritz et al. (2022),
for the remaining tasks, we perform a grid search
using the original LuxemBERT model to find the
best-performing configuration of parameters. Ta-
ble 2 shows the chosen hyperparameters for each
task. We finetune each of our models on the same
sets of hyperparameters.

3.5 Perturbation Techniques
In order to evaluate the robustness of our models,
we investigate three perturbation techniques, some
of which are described by Ribeiro et al. (2020): sen-
tence negation, entity replacement, and synonym

7www.rtl.lu
8We make the dataset available on request

replacement. For this study, we conduct our exper-
iments as follows: we train our models on unper-
turbed training and validation sets, and then test
them on both the unperturbed and the perturbed
test sets, allowing us to determine the robustness
of our models to each perturbation technique. Due
to the nature of our tasks, we cannot apply each
perturbation technique to every test set. Table 3
shows an overview of the techniques we use.

3.5.1 Negation

As described in Section 3.3.6, the aim of sentence
negation is to turn a given sentence into a negative.
By applying sentence negation to the sentiment
analysis, we can change the polarity of sentences,
turning positive sentences into negative ones and
vice versa. Furthermore, we can apply the tech-
nique to RTE by negating one sentence of each en-
tailment pair in the test set. This approach will turn
an entailment sentence pair into a not_entailment
pair.

3.5.2 Entity Replacement

Entity Replacement describes replacing proper
names such as person’s or location names in the
datasets. Intuitively, changing names should not
alter the meaning of sentences in our datasets, so
the predictions of the models should remain the
same regardless of the test set we use. For this
study, we focus on replacing first names as well
as location names as they are the most common
types of names in our datasets. Specifically, we
replace names in each sentence in our test sets by
a randomly chosen one from the same list of first
names that was used to augment the pre-training
data for DA BERT (Olariu et al., 2023). In order
to maintain consistency, we ensure that identical
names in the datasets are all mapped to the same
names during the replacement.

3.5.3 Synonym Replacement

As the name implies, for the synonym replacement
perturbation, we replace words in the test set by a
randomly selected synonym. Specifically, we re-
place 0 or 1 synonym in each sentence in each of
our test sets. Similarly to entity replacement, this
kind of perturbation technique should not change
the meaning of a given sentence and thus not mod-
ify the prediction of a model. For this, we use the
same synonym dictionary that was used to augment
the pre-training corpus for DA BERT.
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Task POS NER IC NC WNLI SN RTE SA1 SA2
batch size 16 16 16 16 16 16 16 16 16
learning rate 5e-5 5e-5 5e-5 2e-5 5e-5 5e-5 5e-5 3e-5 5e-5
# epochs 3 3 5 2 5 4 4 2 2

Table 2: Fine-tuning hyperparameters for each investigated task

PT POS NER IC NC WNLI SN RTE SA1 SA2
Negation ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Name replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Location replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗

Synonym replacement ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

Table 3: Applicability of the perturbation techniques

4 Experimental Results

In this section, we will present the detailed results
from our experiments. Table 4 shows the aver-
age performance of each model on each task us-
ing the original test sets in terms of F1 score. Ta-
ble 5 displays the performances on original and
perturbed test sets of each model fine-tuned on Sen-
tence Negation, RTE, and Sentiment Analysis.

4.1 RQ1: Which model yields the highest
performance on downstream NLP tasks?

In order to answer this question, we refer to the re-
sults shown in both Table 4 and Figure 1. Both
the simple mBERT and GottBERT models per-
form poorly compared to the remaining models,
which is to be expected. In addition, the Got-
tBERT models fine-tuned for WNLI, SN, and
RTE are all naive classifiers that consistently pre-
dict not_entailment for the WNLI task, position 3
for the SN task, and not_entailment for the RTE
task. However, GottBERT does outperform each
model in the POS-tagging task, and mBERT out-
performs every model except for LB_GottBERT
in the WNLI task. On the other hand, both the
Lb_mBERT and Lb_GottBERT models almost con-
sistently outperform each remaining model, with
Lb_GottBERT performing best in four out of nine
tasks, and Lb_mBERT performing best in two tasks
and second-best in four tasks. The two models that
were pre-trained from scratch usually achieve in-
termediate performances. However, one notable
exception is the SA1 task where both outperform
Lb_mBERT and Lb_GottBERT with DA BERT
significantly outperforming every other model.

4.2 RQ2: How robust are models against data
perturbation?

In order to answer this question, we applied the
perturbation techniques as described in Section 3.5
to the test sets from three of the investigated tasks:
Sentence Negation, RTE, and Sentiment Analysis.
For each perturbation technique, we only consider
the samples that were affected, omitting the sam-
ples that were unchanged during the perturbation
process. We then test each fine-tuned model on
both the original and the perturbed test sets we gen-
erated. We report the differences in performance of
each model between the unperturbed and perturbed
test sets for SN, RTE, and SA in Table 5.

Overall, we notice that both negation and syn-
onym replacement perturbations have a moderate
to high impact on the performance of the models,
while name and location replacements have a rela-
tively low impact (cf. Fig. 2, 3, 4, 5)

For the SN task, we notice that both entity pertur-
bation techniques, name replacement and location
replacement, generally have a very low impact on
the performance of the chosen models. One no-
ticeable outlier is the original LuxemBERT model
with an average difference of 1.8 percentage points
for name replacement, and 3.7 percentage points
for location replacement, showing that fine-tuned
LuxemBERT models are somewhat susceptible to
this kind of data perturbation. Another outlier is the
GottBERT model as there is no difference in perfor-
mance between the perturbed and unperturbed test
sets, but as already mentioned, this particular model
always predicts 3. As such, this score is not mean-
ingful. While the differences are very low for entity
replacements, we notice significant differences for
synonym replacement, most of which are close to
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Task mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
POS 0.886 0.902 0.890 0.887 0.889 0.900
NER 0.689 0.661 0.700 0.708 0.717 0.726
IC 0.460 0.574 0.725 0.717 0.760 0.762
NC 0.900 0.871 0.918 0.900 0.906 0.900

WNLI 0.640 0.780* 0.596 0.544 0.560 0.650
SN 0.804 0.248* 0.859 0.858 0.867 0.883

RTE 0.488 0.512* 0.528 0.551 0.563 0.489
SA1 0.612 0.636 0.666 0.687 0.664 0.651
SA2 0.737 0.697 0.859 0.861 0.868 0.864

Table 4: Results for each task on the original test sets. * denotes naive classifier that always predicts the same class

Perturbation #samples mBERT GottBERT LuxemBERT DA BERT Lb_mBERT Lb_GottBERT
Sentence Negation

NR 356 0.1 0.0 1.8 0.6 0.2 0.5
LR 527 0.9 0.0 3.7 1.7 1.1 1.6
SR 6597 13.0 0 14.2 6.9 12.7 13.8

Recognizing Textual Entailment
Neg 373 100 100 38.2 41.1 2.5 41.6
NR 243 0 0 2.3 2.4 2.4 3.4
LR 363 0 0 2.0 3.4 0.3 5.7
SR 682 0 0 0.2 0.6 0.6 5.1

Sentiment Analysis 1
Neg 45 8.7 5.1 22.1 32.3 20 19.5
NR 11 4.3 0 1.5 4.3 0 2
LR 24 2.8 2.2 6.3 4 3.1 3.6
SR 276 0.5 0.6 0.9 0.6 1.1 1.2

Sentiment Analysis 2
Neg 1587 19.6 24.2 27.5 33.1 36.0 33.6
NR 148 0.9 1.0 1.0 1.8 0.8 1.4
SR 1508 1.1 5.3 0.9 2.6 2.2 2.0

Table 5: Difference (in percentage points) of performances between original test sets and perturbed sets (Neg:
Negated test set / NR: Test set with name replacement/ LR: Test Set with location replacement/ SR: Test set with
synonym replacement)
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Figure 1: Fine-tuning results of the models on each investigated task
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Figure 2: Impact of negation on each model’s perfor-
mance.
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Figure 3: Impact of name replacements on each model’s
performance.
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Figure 4: Impact of location replacements on each
model’s performance.
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Figure 5: Impact of synonym replacements on each
model’s performance.

10 percentage points. Once again, the LuxemBERT
model shows the highest difference with 14.2 per-
centage points. DA BERT, which was partially
trained on data that was augmented with synonym
replacements, shows to be more robust against this
kind of data perturbation compared to the remain-
ing models with a difference of only 6.9 percentage
points. For the RTE task, we observe that most
models with the exception of Lb_GottBERT are
fairly robust against the replacement perturbation
techniques. On the other hand, they are very sus-
ceptible to negation, as only Lb_mBERT’s perfor-
mance is almost unchanged when tested on per-
turbed data; each remaining model’s performance
is nearly 40 percentage points lower. We notice a
similar trend on the SA2 task, where replacement
techniques have only a slight impact on the model
performance while negation has a high impact, the
difference in performance ranging from nearly 20-
35 percentage points depending on the model. Re-
garding the SA1 task, we observe low, yet mixed
results for both entity replacement techniques, but
this might be due to the very small sample size
of the respective datasets. On the other hand, the
impact of sentence negation and synonym replace-
ment is noticeably smaller compared to the SA2
task across all models.

5 Discussion

We show that it is possible to achieve higher perfor-
mance with the same amount of pre-training data
and training time as pre-training from scratch, mak-
ing our approach both more data- and time-efficient.
Overall, both Lb_mBERT and Lb_GottBERT out-
perform LuxemBERT and DA BERT in almost all
tasks. (cf. Table 4) However, while Lb_mBERT is
also shown to be highly resistant to data perturba-
tion, it appears that the impact of perturbation on
Lb_GottBERT’s performance varies depending on
the task. On the other hand, both models trained
from scratch display worse resistance to data per-
turbation than Lb_mBERT. As such, we conclude
that it is preferable to continue pre-training a pre-
existing model on textual data in the target lan-
guage. According to our experiments, it appears
that there is a trade-off between performance and
robustness depending on the choice of pre-trained
language model. A multilingual model should be
chosen if robustness is preferred, while a model for
a language that is close to the target language is
preferable if the objective is high performance, at
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least judging by the results from our experiments.

6 Related Works

Wu and Dredze (2020) proposed pairing related
languages to train a low-resource language model
can result in a performance improvement over a
monolingual model. In particular, they combined
Latvian and Lithuanian text to create a Latvian
BERT model as well as Afrikaans and Dutch text
to create an Afrikaans BERT model. Similarly,
the Luxembourgish LuxemBERT model (Lothritz
et al., 2022) was also trained on bilingual data join-
ing Luxembourgish and German text. However,
while those language models are jointly pre-trained
on data written in different languages from scratch,
for our approach, we pre-train already existing lan-
guage models on new language data.

Similar to our approach, Muller et al. (2021) con-
tinued to pre-train mBERT to various unseen low-
resource languages written in different non-Latin
scripts and evaluate the performance on three com-
mon NLP tasks. Similar to our own experiments,
they found that this approach typically leads to
models that outperform both the original mBERT
and models that were trained from scratch. Our
study, however, focuses on a single language that
is featured in mBERT. Furthermore, we do not
only apply this approach to mBERT, but also to
GottBERT to evaluate the performance gain of pre-
training a pre-loaded model for a language that is
close to the target language.

Ribeiro et al. (2020) introduced CheckList, a
tool to semi-automatically create a large number of
test cases to determine the robustness of NLP mod-
els. Similarly to our study, they consider various
types of simple data perturbations to create new test
samples. However, their tool is more versatile as it
also allows the creation of templates to generate a
large number of simple sentences as well as simple
additions of phrases that do not change the label of
a sample.

7 Threats to Validity

Similar to most experimental studies, there are fac-
tors that might threaten the validity of this work
when scrutinised.

The first threat is related to the choice of the pre-
loaded models, namely mBERT and GottBERT.
Both of these models were pre-trained with hy-
perparameters that slightly differ from the Luxem-
BERT and DA BERT models, so the improved

performance might have been due to confounding
variables that we did not control. In particular,
the alphabet size and vocabulary size differ sig-
nificantly as mentioned in Section 2.1. However,
we deemed GottBERT and mBERT as appropriate
baselines for our study as they are the closest to
LuxemBERT and DA BERT in terms of architec-
ture.

Another possible threat concerns some of the
downstream tasks we chose to evaluate our mod-
els. Specifically, the RTE and SA1 tasks are prob-
lematic as they were automatically translated with-
out manually correcting the result. As such, there
are numerous translation mistakes present in these
datasets which might have influenced the results of
our experiments.

8 Conclusion

In this study, we investigated the effects of
pre-training pre-loaded language models vs pre-
training language models from scratch for building
Luxembourgish language models. We evaluated
our models in two dimensions: performance and
robustness. We conducted our experiments on nine
downstream NLP tasks of varying difficulty, and in-
vesitgated the robustness of our models with three
perturbation techniques. We found that pre-training
a pre-loaded model does indeed have a positive ef-
fect on both the performance and robustness of
fine-tuned models. In particular, the results from
our experiments suggest that using the German Got-
tBERT model yields a higher performance, while
the multilingual mBERT results in a more robust
model.
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10 Limitations

The approach presented in this work was only
tested on the Luxembourgish language and using
German as an auxiliary language. The approach
should be generalisable to other languages, but this
might be limited by how similar the auxiliary lan-
guage is to the target language in terms of structure
and vocabulary. We are confident that the approach
for continued pre-training is applicable if the tar-
get language is either a dialect of or part of the
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same language family as the language of the pre-
loaded language model. However, the applicability
of this approach is unclear for languages that differ
significantly from each other.

11 Ethical Considerations

This study involved a pre-training corpus that par-
tially consists of user comments from a news web-
site and chatlogs from a defunct chatroom, both
of which originally included usernames (Lothritz
et al., 2022). However, this data was anonymised
before model training. While we do publish our
models that were trained with the same data, we do
not publish the pre-training corpus in question. The
remaining datasets that we publish are all based on
either publicly available textual data dumps or al-
ready existing datasets from the GLUE collection,
and as such do not violate GDPR guidelines to the
best of our knowledge.
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Abstract
In this paper, we motivate, describe, and evalu-
ate LLpro1, a novel NLP pipeline for German
with the goal of laying the foundation for com-
putational analysis of literary fiction. Our work
is strongly inspired by BookNLP2, which has a
similar goal for English texts and has already
shown its relevance through application in var-
ious research (e.g. Milli and Bamman, 2016).
The pipeline consists of fundamental NLP tasks
(tokenization, POS tagging, etc.) and literary
tasks more tailored to narrative texts (e.g. scene
segmentation, character recognition, detection
of speech, thought, and writing representation,
etc.). Building on the work of Ortmann et al.
(2019) we present an updated evaluation of the
fundamental NLP tasks and combine the most
appropriate approaches with partially improved
models for the literary tasks to create a rich
representation of narrative fiction.

1 Introduction

‘Distant Reading’ (Moretti), the computational anal-
ysis of large collections of literary texts, has made
progress in recent years, but is yet the province
of the happy few who have literary expertise and
sufficient knowledge about natural language pro-
cessing and do know how to explore and analyze
quantitative data. Especially the NLP part proves
to be challenging, because the fast moving research
in this field uses very modern techniques which
are often hard to apply for someone not close to
the rapid developments. At the same time, recent
years saw a series of proposals how to extract spe-
cific features from literary texts, not only character
references but events, scenes, speech renditions
and more. The automatic detection of features like
these is not part of generic pipelines like spaCy or
Stanza. Our goal was to provide a pipeline which
covers linguistic tasks like POS tagging, and tasks
specific for narrative texts, like scene annotation.

1https://github.com/cophi-wue/LLpro
2https://github.com/booknlp/booknlp

We choose to build this on the basis of spaCy’s
pipeline framework and to use a Docker image to
reduce the complexity of installing the components.
The application covers fundamental NLP tasks: to-
kenization, lemmatization normalization, POS tag-
ging morphological analysis and dependency pars-
ing. For performance reasons we decided not to
rely on spaCy even for these basic NLP tasks but
integrate the best and the fastest solutions available
for German texts.

Additionally, we integrate NLP applications that
we specifically intend to use for literary analysis,
performing the following linguistic tasks: named
entity recognition, character mentions detection,
coreference resolution, event classification, classi-
fication of speech, thought and writing representa-
tion, and scene segmentation. In the course of this
paper, we will refer to these linguistic tasks as lit-
erary tasks to contrast them with the usually more
simple and more widespread fundamental tasks.
Concerning the literary tasks, we either incorpo-
rated published solutions, or improved on them by
providing a LLM which has been adapted to the
literary domain, or by re-implementing them.

2 Related Work

The NLP pipeline framework spaCy3 (Honnibal
et al., 2023) can be considered the de-facto de-
fault Python NLP processing pipeline for Ger-
man text, also being one of the first to provide
an integrated pipeline to process German text at
all. The spaCy models were continuously im-
proved, incorporating Transformer-based pipelines
since 2021, and thus making state-of-the-art accu-
racies available in a simple and accessible inter-
face. In the course of this paper, we will refer to
version v3.5.2 (April 12, 2023) of spaCy, and to
the German models de core news lg-3.5.0
based on word embeddings and focusing on speed,

3https://spacy.io
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and de dep news trf-3.5.0, based on Trans-
formers.

SpaCy’s default Transformer-based implementa-
tion for German de dep news trf-3.5.0 im-
plements precisely the tasks we denote in this pa-
per as fundamental NLP tasks, and hence we will
particularly discuss LLpro’s performance on these
tasks with spaCy and other pipelines. Architecture-
wise, the de dep news trf pipeline, like all
Transformer-based spaCy pipelines, consists of a
single Transformer model to embed each token of
the document into a contextualized vector repre-
sentation, which has been fine-tuned to perform
multiple tasks, implementing a multi-task learning.

As already sketched, we built upon spaCy’s
broad and tested APIs for components, pipeline
architecture, and data structures, to implement LL-
pro, profiting from spaCy’s easy and flexible exten-
sibility.

While the alternative Python NLP processing
toolkit Stanza4 (Qi et al., 2020) is also designed
to perform the fundamental NLP tasks, we found
Stanza hard to extend to our purposes. First, ex-
tensions to Stanza are nontrivial to implement, and
secondly, Stanza, by design, focuses on a language-
agnostic modeling, building upon the Universal
Dependencies formalism. This formalism distin-
guishes Stanza from other German NLP tools (usu-
ally following a German-specific grammar, not
UD), which would have caused further difficulties
in adapting tools.

The best-known example of the combination of
fundamental NLP tasks with components specif-
ically targeted at literary texts in one pipeline is
BookNLP.5 Besides the fundamental NLP tasks,
BookNLP provides NER, coreference resolution,
speaker identification, supersense tagging, event
tagging and referential gender inference.6 LL-
pro covers most of the functionality of BookNLP,
only supersense7 and speaker detection are missing,

4https://stanfordnlp.github.io/stanza/.
We refer to version v1.5.0, March 14, 2023.

5https://github.com/booknlp/booknlp; we
refer to version v1.0.7, commit 2b42ccdk, December 4, 2021.

6Gender inference is a postprocessing step, which maps
the usage of pronouns to coreference clusters. Certainly useful,
we decided, partly due to a lack of evaluation data, to leave
this postprocessing to users

7The supersense detection component builds upon Word-
Net (Fellbaum, 2005; https://wordnet.princeton.
edu/). While GermaNet (Hamp and Feldweg, 1997; https:
//uni-tuebingen.de/en/142806) mirrors WordNet
for German, it is still much smaller and differs in its super-
sense ontology. After a review, we conclude that the direct

but also introduces new tasks (scene segmentation,
classification of speech, thought and writing repre-
sentation).

In its current state, BookNLP can only process
English language; a further development to a mul-
tilingual tool, including support for German, is
planned, but not yet available. BookNLP, like LL-
pro, is built on spaCy infrastructure, so transfer-
ring or exchanging modules between pipelines will
be facilitated once a German BookNLP version is
available.

Finally, the Python NLP pipeline MONAPipe8

(Dönicke et al., 2022) also extend spaCy to more
specialized tasks in the analysis of German literary
texts.

While both the MONAPipe and the presented
LLpro are intended for the literary texts, the choice
of literary tasks the respective pipelines perform,
are different. As MONAPipe particularly focuses
on modes of narration and attribution, it performs
a dictionary-based semantic analysis of phrases to
enrich a feature set intended to identify the narra-
tive mode ‘comment’ (in contrast to the narrative
modes ‘description’, ‘report’ and ‘speech’). From
the same set of features, MONAPipe attributes each
clause to one of ‘character’, ‘author’, and/or ‘narra-
tor’. (Cf. Weimer et al., 2022; Dönicke et al., 2022)
Like Stanza, MONAPipe decided to build upon
Universal Dependencies (and in particular trained
a new UD-based spaCy parser), since some of its
downstream modules require UD parses.

In contrast, LLpro’s exclusive components fo-
cus around literary characters, and in particular in-
cludes a coreference resolution model with state-of-
the-art performance, much stronger and more scal-
able than the one included in MONAPipe, and is
the only one of the discussed pipelines that can per-
form a segmentation into scenes, and can recognize
references to literary characters. Furthermore, con-
cerning the fundamental NLP tasks, MONAPipe
relies on the provided spaCy models, unlike LL-
pro which provides wrappers for other NLP tools
performing fundamental tasks. Finally, since MON-
APipe is based on spaCy v2.3, it is unable to use the
more accurate Transformer-based spaCy models,
and can only run the less accurate word-embedding-
based models for the fundamental tasks.

benefit of the supersenses present in GermaNet, without fur-
ther refinement, for the analysis of literary texts has yet to be
tested more thoroughly.

8https://gitlab.gwdg.de/mona/
pipy-public. We will refer to version v3.2.
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Finally, we want to remark that locally exe-
cuted pipelines (such as spaCy, LLpro, Stanza,
or BookNLP) are not the only option to design
NLP pipelines. For instance, WebLicht9 (Hinrichs
et al., 2010) follows a service-oriented architecture,
chaining together multiple distributed and indepen-
det web services, each performing an individual
fundamental NLP task. These services are hosted
online by different providers and not locally, en-
abling pipeline composition and execution through
a browser-based interface. This makes usage far
more accessible.

However, in light of the increasing computa-
tional effort associated with some tasks (in par-
ticular the literary tasks), such architecture also
has limitations. Extending, e.g., WebLicht’s func-
tionality requires independent and reliable hosting
of additional services. Moreover, scaling to larger
corpora may be challenging as it relies on exter-
nal providers’ compute power, which could have
limitations or usage restrictions.

3 Architecture and Pipeline Components

As already outlined, LLpro is built on top of the
open-source spaCy (v3.5.2) API using Python.
SpaCy provides a programming interface and
trained models to individually compose a language
processing pipeline for one’s use case, building
on top of their provided data structures that man-
ages the document, the tokens and the annotations
on these objects. Invoked on an input document,
spaCy first calls the specified tokenizer that seg-
ments the input text into tokens, converting the text
to a document object, consisting of all the token ob-
jects. Then, in the subsequent steps, the document
object is processed by the specified components of
the pipeline, each enriching the document object
with information that is annotated on the individual
token objects, on spans of tokens, or on the entire
document.

Now, LLpro’s key contribution consists of imple-
mentations of pipeline components for the spaCy
API, providing wrappers of already existing NLP
tools designed to process German text. In partic-
ular, LLpro, for one, provides alternative compo-
nents for the previously mentioned fundamental
tasks that spaCy (and Stanza) can already do, but
with higher accuracy and/or speed. We primarily

9https://weblicht.sfs.uni-tuebingen.
de/. We want to thank the anonymous reviewer to bring
WebLicht to our attention.

grounded our choice of tools in the previously men-
tioned study by Ortmann et al. (2019), selecting
the most promising ones.

Secondly, LLpro contributes by implementing
new pipeline components that provide access to
novel NLP tools that perform specific NLP tasks
useful in the field of literary analysis. Table 1 pro-
vides an overview of the implemented components,
which are discussed below.

Notice, moreover, that while the default pipeline
implemented by LLpro can perform all of its tasks
without any of spaCy’s models or components, the
modular structure of spaCy’s API allows all compo-
nents to be replaced or omitted in a custom pipeline,
if desired. For instance, instead of the probabilistic
parser presented here, it is possible, in a correspond-
ingly custom-programmed pipeline, to switch back
to the Transformer-based parser trained by spaCy.

In the remainder of this section, we briefly de-
scribe each component LLpro implements.

3.1 Preprocessing and Basic Components
With the SoMaJoTokenizer we wrapped the rule-
based tokenizer / sentence splitter SoMaJo10 (Proisl
and Uhrig, 2016) as component for spaCy. Addi-
tionally, we implemented a simple normalization
to correct for historic characters, which otherwise
would cause wrong inferences in the successive
components. We replace the historic notation of
umlauted vowels (superscript E) with contempo-
rary notation (with diaeresis), followed by NFKC
Unicode normalization. This has also the effect
that long S characters get converted to short S char-
acters. Note that this simple form of normalization
does not address for orthographic differences, for
instance selbstthätig, seyn (vs. selbsttätig, sein).

The SoMeWeTaTagger invokes the part-of-
speech tagger SoMeWeTa11 (Proisl, 2018). For
LLpro, we use the ‘newspaper’ model based on the
TIGER corpus.12 Next to the predicted tags (as
defined by the TIGER variant of the German STTS
tagset, cf. Smith, 2003), the component also pro-
vides an automatic table-based conversion13 to the
Universal Dependencies v2 POS tagset (de Marn-
effe et al., 2021).14

10https://github.com/tsproisl/SoMaJo
11https://github.com/tsproisl/SoMeWeTa
12https://corpora.linguistik.

uni-erlangen.de/someweta/german_
newspaper_2020-05-28.model

13https://universaldependencies.org/
tagset-conversion/de-stts-uposf.html

14See also https://universaldependencies.
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Component Task, Tagset if applicable Reference(s) Version
Fundamental Tasks

• SoMaJoTokenizer Tokenization, Normalization, Sentence Splitting Proisl and Uhrig, 2016 2.2.3
• SoMeWeTaTagger Part-of-speech tagging;

TIGER variant of the STTS tagset
Proisl, 2018 1.8.1; model

May 28, 2020
• RNNTagger Morphological analysis;

Universal features inventory
Schmid, 2019 1.3

• RNNLemmatizer Lemmatization Schmid, 2019 1.3
• ParZuParser Dependency Parsing; HDT tagset Sennrich et al., 2009 Feb 11, 2022

Literary Tasks
FLERTNERTagger Named entity recognition;

PER, ORG, MISC, LOC
Schweter and Akbik, 2021 0.12.2

CorefTagger Coreference Resolution Schröder et al., 2021 Aug 31, 2021
EventClassifier Annotates event types to verbal phrases;

differentiates between non-event, stative event,
process event, and change of state event

Vauth et al., 2021 0.2

∗ RedewiedergabeTagger Tagging of German speech, thought and writing
representation (STWR); recognizes direct,
indirect, reported and free indirect speech
cf. Brunner et al., 2020

Schweter and Akbik, 2021 —

∗ CharacterRecognizer Recognizes references to literary characters
cf. Krug et al., 2017

Schweter and Akbik, 2021 —

∗ SceneSegmenter Segmentation of literary text into scenes and
non-scenes, cf. Zehe et al. (2021a,b)

Kurfalı and Wirén, 2021 —

Table 1: Overview of LLpro’s components. Each component marked with • provides a replacement for a spaCy
component performing the same task. Each component marked with ∗ has been (re-)implemented and (re-)trained
from scratch.

The RNNTagger and RNNLemmatizer pro-
vide a wrapper for the RNNTagger15 tool (Schmid,
2019) to perform a morphological analysis and lem-
matize the tokens. To be consistent with spaCy’s
API, we convert the output of the tagger into an
equivalent form consisting of Universal Dependen-
cies v2 features (de Marneffe et al., 2021).16

The ParZuParser is a wrapper for the Prolog-
based probabilistic dependency parser ParZu17

(Sennrich et al., 2009; Sennrich and Kunz, 2014).
For each token, the component predicts the head
token and the respective relation as specified by the
grammar of the Hamburg Dependency Treebank
(Foth, 2014). Note that this labeling scheme of re-
lations differs from the one used by spaCy’s default
models, which is trained on a (semi-automatically
derived) dataset based on the TIGER corpus/tagset
(Smith, 2003). SpaCy’s API and subsequent com-
ponents that build on top of relation labels have

org/u/pos/all.html
15https://www.cis.uni-muenchen.de/

˜schmid/tools/RNNTagger/
16See also https://universaldependencies.

org/u/feat/all.html
17https://github.com/rsennrich/ParZu

been configured accordingly to match the changed
labeling scheme.

3.2 Components for Literary Analysis

The following subsection discusses the remainder
of LLpro’s components, i.e. the literary NLP tasks,
which particularly perform tasks intended for liter-
ary analysis. Since many of the the tasks resp. an-
notations are not represented in spaCy’s data struc-
tures, we use the provided “extension attributes” to
store the components’ results. A full specification
of the exposed extension attributes is provided in
LLpro’s documentation.

In some instances, we (re-)implemented and
(re-)trained models to adapt them to our do-
main. For this, we have domain-adapted
the deepset/gbert-large BERT model
(Chan et al., 2020) with literary texts to ob-
tain fiction-gbert-large, which we make
available. Details are presented in Sec. A.1 in the
Appendix.

The FLERTNERTagger invokes the NER
tagger FLERT from the Flair18 framework,

18https://github.com/flairNLP/flair

31



which builds upon a BERT-based sequence tag-
ging (Schweter and Akbik, 2021). For LL-
pro, we use the publicly available Flair model
ner-german-large.19 Note that while some
models of spaCy include a NER tagger, spaCy
misses a Transformer-based one like FLERT. The
tagger annotates non-overlapping named entity
spans as one of the four CoNLL-03 classes (PER,
LOC, ORG, MISC; cf. Tjong Kim Sang and
De Meulder, 2003). While the tagger has issues
in recognizing characters in literary texts (see be-
low), we keep the FLERTNERTagger primarily to
recognize locations and organizations.

The CharacterRecognizer attempts to resolve
a conceptional issue arising with determining men-
tions of characters in literary texts. In literary texts,
character references to an entity appear not only as
(1) proper nouns (e.g., Alice, Effi Briest), but also
as (2) nominal phrases, e.g. gardener, mother, Earl,
Lieutenant, idiot, beauty, ....

While the mention of type (1) are theoretically
named entities in the sense of an NER tagger, men-
tions of type (2) are not, therefore not recognized
by the FLERTNERTagger. Furthermore, the NER
tagger was primarily trained on newspaper arti-
cles, implying another domain gap (cf. Krug et al.,
2017).

To resolve this, we trained a tagger that rec-
ognizes character mention spans of both type
(1) and (2), using the DROC corpus (Krug
et al., 2017) which annotated character refer-
ences in German novels, employing the same
Transformer-Linear architecture as used in the
FLERTNERTagger, fine-tuning our custom BERT
model fiction-gbert-large. The tagger
makes no distinctions between these two types,
thus recognizes combined variants such as Ritter-
schaftsrätin von Padden (knighthood councilor von
Padden).

The CorefTagger provides coreference reso-
lution by invoking the neural tagger developed
by Schröder et al. (2021).20 Most importantly,
the tool implements an incremental entity-based
approach that scales to very long documents
such as the literary works we want to process.
Also, the model is adapted to our literary do-
main, as it is fine-tuned and tested on the liter-
ary DROC (Krug et al., 2017) dataset. For LL-

19https://huggingface.co/flair/
ner-german-large

20https://github.com/uhh-lt/
neural-coref

pro, we use the publicly available model droc
incremental no segment distance.21

The EventClassifier invokes a neural sequence
classifier developed by Vauth et al. (2021).22 The
authors model the event structure of literary texts
using narratological event concepts, and their clas-
sifier automatically recognizes these events. In par-
ticular, they opt to model events as only occurring
in verbal phrases. Their model then categorizes
each of the phrases as either ‘changes of state’,
‘process event’, ‘stative event’ or ‘non-event’.

To automatically recognize these event types,
their proposed classifier automatically extracts
verbal phrases from the text using the syntac-
tic structure inferred by a parser (in their case:
spaCy’s parser), and then classifies phrases using a
Transformer-based architecture. For LLpro, we use
their publicly available model.23 We incorporate
this tagger by instead re-using the syntactic struc-
ture predicted by the previously mentioned ParZu-
Parser, and then invoking the Transformer model
for classification on the extracted verbal phrases.

The RedewiedergabeTagger is a re-impl-
ementation of four taggers proposed by Brunner
et al. (2021) that use neural representations to rec-
ognize four different types of speech, thought and
writing representation (STWR) for German texts.
The four types of STWR are ‘direct’, ‘indirect’,
‘free indirect’, and ‘reported’. They approach this
kind of classification by developing four different
sequence taggers for each STWR type, each effec-
tively performing a binary classification for each
token in the sequence, building on a BiLSTM-CRF
architecture on top of a chosen language embed-
ding derived from Transformer models.

For LLpro, we re-implemented these mod-
els, and specifically fine-tuned the aforemen-
tioned fiction-gbert-large on the respec-
tive tasks using the same REDEWIEDERGABE
corpus. (Brunner et al., 2020) As proposed by
Schweter and Akbik (2021), we omit the additional
LSTM/CRF and predict the respective STWR type
from the token encoding in the final Transformer
layer alone, following the Transformer-Linear vari-
ant that is also used in the NER tagging of above
FLERTNERTagger.

21https://github.com/uhh-lt/
neural-coref/releases/tag/konvens

22https://github.com/uhh-lt/
event-classification

23https://github.com/uhh-lt/
event-classification/releases/tag/v0.2
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Pipeline Tokens Sents POS UPOS Lemmas Morph Deps
spaCy, de core news lg-3.5 0.9953 0.9091 0.9465 0.9270 0.9062 0.9149 0.6942
spaCy, de dep news trf-3.5 0.9953 0.8936 0.9635 0.9320 0.9181 0.9508 0.7573
Stanza 1.5 0.9975 0.9784 0.9433 0.9144 0.8778 0.9045 0.7578
LLpro 1.0000 1.0000 0.9458 0.9610 0.9188 0.9372 0.7425

Table 2: Evaluation of different NLP pipelines on the fundamental NLP tasks using the adapted evaluation system
by Ortmann et al. (2019) against the gold annotations of the novelette text. For columns Tokens and Sents, metric is
F1, comparing the output from raw text input with the gold tokenization/sentencization. In all other columns, metric
is accuracy, comparing the output from (gold) pre-tokenized input. Evaluation only run on the novelette text. The
column UPOS refers to the universal dependencies POS tags, which are predicted alongside the fine-grained POS
tagging in each pipeline.

The SceneSegmenter is a re-implementation of
a tool by Kurfalı and Wirén (2021) that recognizes
contiguous and non-overlapping scenes resp. non-
scenes. In short, a scene is “a segment of a text
where the story time and the discourse time are
more or less equal, the narration focuses on one ac-
tion and space and character constellations stay the
same” (Zehe et al., 2021a), whereas a non-scene
refers to a non-scenic bridge between scenes like
reflections of the narrator or accelerated speed of
narration. See the shared task description resp. for-
mal definition (Zehe et al., 2021b,a) for details on
scene segmentation task. The model by Kurfalı
and Wirén showed best performance in the shared
task Track 1 that evaluated on gold annotations in
dime novels. The tool adapted the sequential sen-
tence classification system proposed by Cohan et al.
(2019) to the scene segmentation task. Similar to
the previously mentioned RedewiedergabeTagger,
we re-trained the model on our domain-adapted
custom BERT model.

We will discuss the results of this re-
implementation and re-training of the three pre-
ceding components in Section 4.2. Details on the
training of each of the models is provided in the
Appendix, as well as links to the model weights.

4 Evaluation

Concerning the fundamental tasks, we focus on
a comparative discussion of LLpro’s components
with the equivalent components of spaCy and
Stanza. For this, firstly, we compare the annota-
tion accuracies using human-labeled data provided
by Ortmann et al. (2019), and secondly, measure
and compare the runtimes of these components to
estimate their (computational) efficiency.

Concerning the literary tasks, we are unable
to compare their accuracies with respect to other
NLP pipelines, since, in most cases, they are

not implemented in any pipeline system. There-
fore, we restrict ourselves to a qualitative anal-
ysis, discussing the performance of the underly-
ing NLP systems that LLpro’s components wrap
around. Besides this, we provide quantitative
results on the effect of our re-implementing/re-
training on the CharacterRecognizer, Redewieder-
gabeTagger, SceneSegmenter building on the
fiction-gbert-large model.

4.1 Accuracy on Fundamental Tasks

In order to compare the accuracies of the respec-
tive components, we opted to follow the evaluation
system developed by Ortmann et al. (2019) that
was specifically designed to compare NLP tools
performing the NLP tasks tokenization, POS tag-
ging, lemmatization, morphological analysis, and
dependency parsing.

The evaluation system consists, in the first part,
of five human-labeled documents from different
registers. In the second part, the evaluation system
consists of a comparison procedure that evaluates a
tool’s output with the gold label, and in particular,
accounts for different naming/annotation schemes
between different NLP tools.

For our evaluation, we take over this compari-
son procedure, but will primarily focus on the one
human-labeled novelette document (1588 tokens),
which was chosen by Ortmann et al. as representa-
tive for the literary register. Note that in the original
evaluation, pipelines like spaCy were not evaluated
as a whole, but only the individual components.
For instance, the spaCy dependency parser was
provided with (gold) POS annotations as input in
the evaluation.

We deviate from this and want to compare the
different pipelines in a way that imitates an end-
to-end use. To this end, we performed two exper-
iments: first, to compare the different tokenizers,
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we compare the tokenizers’ outputs from raw text
with the gold tokenization. Second, to compare
all the other downstream components of the com-
ponents, but controlling for potentially incorrect
tokenization, we compare the pipelines’ outputs de-
rived from (gold) pre-tokenized input with the gold
labels. This means that, e.g., we evaluate how LL-
pro’s parser performs even when given inaccurate
POS tagged text from LLpro’s POS tagger.

Table 2 gives the evaluation results on the LL-
pro, spaCy and Stanza pipelines on the novelette
text. Columns Tokens, Sents refer to the accuracy
on the first experiments; the subsequent columns
refer to the second experiment. (See Table 6 in
the Appendix for the aggregated results on all five
texts.)

Concerning the accuracy of LLpro, we ob-
serve that LLpro is competitive with contemporary
Stanza and Transformer-based spaCy models, and
even slightly outperforming these pipelines in some
tasks.

4.2 Accuracy on Literary Tasks

LLpro’s components perform the literary NLP
tasks, either by wrapping around previously de-
veloped systems, all of which can be generally
considered state of the art in their respective fields,
or by running our custom fine-tuned models for the
tasks.

Concerning NER tagging, the model used in LL-
pro’s component FLERTNERTagger is published
with a reported CoNLL-F1 of 0.92 on the CoNLL-
03 German revisited test set. With this high accu-
racy, we do not expect significant improvements by
fine-tuning from our domain-adapted BERT model,
and consider the task practically solved for our use-
case with this NER tagger. As a comparison, the
alternative NER tagger provided by Stanza showed
worse performance than Flair’s tagger (CoNLL-F1
81.9).

Coreference resolution, as it is done by the Coref-
Tagger by invoking a model by Schröder et al.
(2021), is known to be a notoriously hard task.
With this background, the (not very impressive-
looking) performance of their model on the literary
DROC dataset (CoNLL-F1 0.65) can be consid-
ered extremely strong. See also the survey and
experiments by Dönicke et al. (2022) concerning
coreference resolution in German.

The remaining literary NLP tasks – event clas-
sification, tagging of STWR, tagging of character

Model Direct Ind. Rep. Fr. Ind.
Brunner et al. (2021) 0.84 0.76 0.58 0.57
RedewiedergabeTagger 0.91 0.79 0.70 0.58

Table 3: Scores on STWR recognition on the held-out
test set of the REDEWIEDERGABE corpus. F1 in all
cases.

Model Prec. Rec. F1
Track 1

Kurfalı and Wirén (2021) 0.29 0.51 0.37
SceneSegmenter 0.37 0.44 0.40

Track 2
Kurfalı and Wirén (2021) 0.14 0.22 0.17
SceneSegmenter 0.32 0.40 0.35

Table 4: Scores on the Shared Task on Scene Segmen-
tation (not publicly released) test set, Tracks 1 (dime
novels) and Track 2 (out-of-domain high-brow litera-
ture). Results for Kurfalı and Wirén (2021) cited from
the task report (Zehe et al., 2021b). Results for our
model are reported by the task organizers.

references, and segmentation into scenes – were in-
troduced only very recently, and in all cases, almost
no other models appear to approach the respective
tasks, making a comparative analysis impossible in
most cases. Concerning the component for the first
task (EventClassifier), we remark that the classifier
designed by Vauth et al. (2021), which LLpro in-
vokes for event classification, should explicitly only
be understood as a qualitative indicator: in particu-
lar, the tests performed by Vauth et al. to evaluate
their model with respect to unseen documents was
primarily visual, comparing the resulting “narra-
tivity graphs” between predicted event spans and
gold-annotated event spans. These graphs can be
understood as smoothed time series of “narrativity”
assigned to each type of event. In total, the authors
observe a sufficient match between the predicted
and the gold-derived narrativity graphs, and con-
clude applicability of their model in corpus analy-
sis.

Concerning the other tasks, we have opted
to re-implement and re-train models for each
task on our domain-adapted BERT model
fiction-gbert-large.

For the character recognition (CharacterRecog-
nizer), our simple Transformer-based model re-
sulted in an F1-score of 0.91 on a held-out test
dataset from the DROC corpus. With this accuracy,
we find this model sufficient for our use-case. Ad-
ditionally, no other model that performs such tasks
is known to us.

34



Cores
Pipeline 4 8 16 32
spaCy, de dep news trf-3.5 62.59 57.18 48.43 36.55
Stanza 1.5 156.4 109.7 55.91 23.04
LLpro, fundamental tasks only 151.3 73.00 48.54 20.27
LLpro, all tasks 5.025 3.152 2.959 1.540

Table 5: Number of tokens processed per core in one second, under different intra-op parallelizations.

For the STWR recognition (RedewiedergabeTag-
ger), our fine-tuning was able to increase the mod-
els’ accuracies on the STWR task, except for the
free indirect STWR type. See Table 3 for an
overview and a comparison to the models by Brun-
ner et al. (2021). Note that the increase is most
likely explained by the different model architecture
and fine-tuning procedure, which is missing in the
original models.

Concerning the scene segmentation, note again
that we based our SceneSegmenter on a re-
implementation of a sequential sequence classifi-
cation model by Kurfalı and Wirén (2021), which
was the best-performing contribution in the scene
segmentation shared task. Our re-implementation
directly takes over this architecture and ports it
to the contemporary Pytorch/Transformers API
(Wolf et al., 2020) with minimal modifications. To
evaluate our model, the organizers of the Shared
Task on Scene Segmentation (Zehe et al., 2021b)
evaluated our model on the test datasets, on both
Track 1 (dime novels) and Track 2 (out-of-domain
high-brow novels). The fine-tuning was able to
increase the model’s F1 score by few percentage
points in Track 1, with respect to the original model
published by Kurfalı and Wirén. See Table 4 for
an overview. Also, our model appears to gener-
alize much better to the out-of-domain Track 2.
Note that both our model and the one by Kurfalı
and Wirén build upon the ‘large’ variant of the
BERT model, hence the difference in performance
can be attributed to the domain-adaption of our
fiction-gbert-large model.

4.3 Computational Efficiency

As we intend to process a large corpus of liter-
ary texts with LLpro, we are also interested in
their computational efficiency, next to accuracy.
In our CPU-only setup with many cores, it is im-
mediately clear that the computational effort re-
quired by LLpro will be dominated by the slow
Transformer-based components, performing the lit-

erary NLP tasks. Even with this in consideration,
we will briefly discuss our experiments concerning
the computational efficiency of our pipeline. In our
case, we are particularly interested in throughput
– the number of tokens we can process per sec-
ond and per core. This delimits our investigation
to previous studies, like already mentioned one by
Ortmann et al. (2019), that were focused on latency,
keeping the computational setup fixed.

Table 5 shows the measured throughput of the
different pipelines, all restricted to performing
the fundamental tasks only. In the case of LL-
pro, we additionally provide the throughput of the
full pipeline, including the (computationally much
more expensive) literary tasks. Measurements were
performed by repeated trial runs on Intel Xeon
Gold 6148 cores, varying number of cores, and
varying length of input documents.

While the results confirm what we already as-
sumed – LLpro with all components is slow in
CPU-only setups – we can take away two things
from these measurements: first, we see that the
tools we use for the fundamental NLP pipelines are
in some setups much more efficient overall than
those (Transformer-based) models of spaCy, while
performing equally well accuracy-wise. Second,
the experiment indicates that for maximum effi-
ciency of Transformer-based pipelines like LLpro
(running all tasks), the appropriate parallelization
and partitioning of the available CPU cores still re-
mains an important ingredient, potentially increas-
ing throughput a factor of 3.

5 Conclusion and Future Work

In this report, we present LLpro, a custom spaCy
pipeline that provides components for the linguis-
tic and literary analysis of German texts. On the
side of linguistic analysis, LLpro provides wrap-
pers to alternative NLP tools that perform tokeniza-
tion, part-of-speech tagging, morphological analy-
sis, lemmatization, and dependency parsing (fun-
damental NLP tasks). On the side of literary anal-
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ysis (literary NLP tasks), LLpro implements sev-
eral components that perform novel tasks currently
not found in spaCy or other comparable pipelines:
coreference resolution, named entity recognition,
event classification, tagging of speech, thought and
writing representation types, character reference
recognition, and segmentation into scenes.

For the first part of components, the fundamental
NLP tasks, our evaluation shows that our alternative
models are, accuracy-wise, competitive with cur-
rent spaCy, and in some setups, perform their tasks
more efficient, particularly when bulk processing
many texts. This comparative analysis also contin-
ues a research direction started by Ortmann et al.
(2019) who evaluated many off-the-shelf NLP tools
performing the fundamental NLP tasks, effectively
giving an update of their evaluation with respect
to the contemporary Transformer-based German
spaCy model. While spaCy made significant im-
provement since the last evaluation by Ortmann
et al. in 2019, our experiments showed that spaCy
(and Stanza) still do not significantly outperform
some specialized NLP tools. Furthermore, our anal-
ysis broadens the analysis of these NLP tools in
terms of their computational efficiency. In total, our
evaluation points out that for many simple linguis-
tic NLP tasks, more lightweight models might be
a suitable alternative to larger Transformer-based
models, being more efficient without sacrificing
accuracy.

For the literary NLP tasks, LLpro provides an
accessible pipeline to perform automatic literary
analysis by incorporating specialized Transformer-
based models, reaching accuracies that make LLpro
a novel basis for quantitative literary analysis on
many texts. We can conceive that the outputs of
the pipeline can be combined to investigate specific
questions, for instance combining the scene seg-
mentation and the character recognizer to carry out
a fine-grained variant of a character network analy-
sis. Or, use the coreference resolution, combined
with the character recognizer and the parse trees,
to collect attributes and adjectives that describe a
particular character, or character’s actions. LLPro
thus provides a a robust basis for the automatic
analysis of collections of German fiction.

Limitations

The most obvious limitation of LLpro is the restric-
tion to German language. But since one motiva-
tion for this work is the limitation of BookNLP

to English, we already consider LLpro as a step
towards multilinguality in the analysis of literary
texts. This is further highlighted by the plans to
extend BookNLP to other languages and the spaCy
architecture as the backbone of both systems.

The second restriction refers to the domain for
which LLpro can be applied. We focus on narrative
texts (novels, short stories, etc.) and thus exclude
other literary genres (e.g. plays, poems). Since
we offer only a very basal orthographic normaliza-
tion, a drastic performance loss is to be expected
when processing older texts. However, the anal-
ysis of large corpora over long periods of time is
a central concern of Computational Literary Stud-
ies. Therefore normalization is a requirement we
need to address in future work. Especially in light
of the short novelette text used in our reported ex-
periments, a larger evaluation corpus for all tasks
would be mandatory for accurate in-domain evalua-
tion, as well as further experimentation to improve
the components.

Thirdly it is plausible that improvements in
spaCy’s Transformer-based pipeline could signif-
icantly outperform our fundamental NLP compo-
nents in the near future, due to its capability to
exploit multi-task learning, while relying on a sin-
gle Transformer model. This Transformer model
is fine-tuned to a multitude of NLP tasks, allowing,
for one, faster inference as the embedding needs
to be computed only once. For another, as soon as
better Transformer models for German are released,
instant performance gains are to be expected. To
address these developments while mitigating the
dependence on GPU resources for fast inference,
we plan to make LLpro Adapter-based (Pfeiffer
et al., 2021; Hu et al., 2021). This should at least
drastically reduce the computational effort for the
literary NLP tasks, ensure SOTA competing per-
formance on fundamental tasks and enable more
lightweight domain adaptation. Still however, like
all NLP pipelines, LLpro faces the challenge of
potential tool obsolescence and the need for sus-
tainable maintenance and ongoing development, in
order to maintain long-term viability and competi-
tiveness.

Ethics Statement

We do not see any conflict of our work with the
principles set out in the ACL Ethics Policy24. The

24https://www.aclweb.org/portal/
content/acl-code-ethics
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purpose of LLpro is to create a rich representation
of literary texts. These texts may contain structural
discrimination, which is therefore also present in
the output of LLpro. That is not a problem, but an
opportunity to systematically uncover and investi-
gate them.

However, such a research perspective requires
that the components of the pipeline operate without
bias. We are not aware of any anecdotal evidence of
biased behavior, but since this has not been system-
atically investigated for any of the modules, there
is at least a possibility that e.g. coreference clusters
of female characters are resolved less accurate.
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Pipeline Tokens Sents POS UPOS Lemmas Morph Deps
spaCy, de core news lg-3.5 0.9960 0.9220 0.9407 0.9263 0.9321 0.9084 0.6977
spaCy, de dep news trf-3.5 0.9960 0.9378 0.9563 0.9343 0.9409 0.9436 0.7591
Stanza 1.5 0.9920 0.8998 0.9390 0.9058 0.9075 0.9050 0.7489
LLpro 0.9971 0.8996 0.9406 0.9563 0.9409 0.9251 0.7444

Table 6: Evaluation of different NLP pipelines on the fundamental NLP tasks using the adapted evaluation system
by Ortmann et al. (2019) against the gold annotations of the entire evaluation corpus (wikipedia, novelette, sermon,
TED, movie). For columns Tokens and Sents, metric is F1, comparing the output from raw text input with the gold
tokenization/sentencization. In all other columns, metric is accuracy, comparing the output from (gold) pre-tokenized
input. Evaluation only run on the novelette text. The column UPOS refers to the universal dependencies POS tags,
which are predicted alongside the fine-grained POS tagging in each pipeline.

Puppe, Nils Reiter, and Annekea Schreiber. 2021b.
Shared task on scene segmentation @ KONVENS
2021. In Proceedings of the Shared Task on Scene
Segmentation, volume 3001 of CEUR Workshop Pro-
ceedings, pages 1–21, Düsseldorf, Germany.

A Appendix

A.1 Model fiction-gbert-large
The foundation of our domain adaptation attempt
is the RoBERTa-style (Liu et al., 2019) model
deepset/gbert-large published by Chan
et al. (2020). It is the best performing Ger-
man model of its size, only competing with
deepset/glectra-large, introduced in the
same paper. Following Gururangan et al. (2020)
we gathered a collection of in-domain texts and
continued the models pre-training task with it. The
training is performed over 10 epochs on 2.3 GB of
narrative fiction with a learning rate of 1 × 10−4

(linear decrease) and a batch size of 512. The
model is available at https://huggingface.
co/lkonle/fiction-gbert-large.

A.2 Model droc-character-
recognizer

We use the DROC corpus (August 11, 2022) for
training. Since the DROC dataset does not de-
fine a train/val/test split on its own, we split the
documents ourselves, approximating a 80/10/10
split. From the annotated DROC corpus we derive
labeled sequences (in BIO format). The precise
split and derivation algorithm is provided in the
training code included in LLpro. Each input se-
quence is a concatenation of sentences, maximally
filling BERT’s input window. Following Flair’s
training procedure, training of the sequence tag-
ger is performed over 30 epochs with an initial
learning rate of 5 × 10−6, a batch size of 4, an-
nealing the leaning rate by factor 0.5 when micro-
F1 on the evaluation set does not increase for

three epochs. We take the best overall model
with respect to the validation set, and report the
results on the held-out test set. The model is avail-
able at https://huggingface.co/aehrm/
droc-character-recognizer.

A.3 Model redewiedergabe-direct,
-indirect, -reported,
-freeindirect

We use the identical REDEWIEDERGABE
train/val/test split as used for the publication of
the original taggers by Brunner et al. (2021).25

Each binary sequence tagger (one for every STWR
type) is identically trained, selected, and evaluated,
following the same training procedure as for the
droc-character-recognizer. The mod-
els are available at https://huggingface.
co/aehrm/redewiedergabe-direct, resp.
-indirect, -reported, -freeindirect.

A.4 Model stss-scene-segmenter
We use the annotated training data provided by the
Shared Task organizers.26 A single document is
held out for validation. We follow the same training
procedure as the original model. For the input se-
quences, we set a threshold of at most 25 sentences
per input sequence, and each sentence is truncated
to at most 100 tokens. The training is performed
over 20 epochs with a learning rate of 5 × 10−6

(linear decrease) and batch size of 4. We take
the best overall model with respect to the Shared
Task evaluation score on the validation document,
and report the results on the held-out test set. The
model is available at https://huggingface.
co/aehrm/stss-scene-segmenter.

25https://github.com/redewiedergabe/
corpus/blob/master/resources/docs/data_
konvens-paper-2020.md

26http://lsx-events.informatik.
uni-wuerzburg.de/stss-2021/task.html
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Abstract

We investigate the diachronic evolution of the
frequency and productivity of English noun
compounds and their constituents relative to
their degree of compositionality. We focus on
185 compounds with human compositionality
ratings and a range of quantitative information
from a large diachronic corpus. We cast our
task as binary classification, and show that both
diachronic frequency and productivity are use-
ful in determining the present-day degree of
compositionality of English noun compounds.

1 Introduction

Multiword expressions such as noun compounds
(e.g. flea market) are semantically idiosyncratic to
some degree, i.e. the meaning of the full expression
is not entirely (or even not at all) predictable from
the meanings of its constituents (Sag et al., 2002;
Baldwin and Kim, 2010). While noun compounds
have been extensively explored across research dis-
ciplines from synchronic perspectives, this paper
provides a novel diachronic approach to predict
their present-day compositionality.

More specifically, we investigate the diachronic
evolution of the frequency and productivity of En-
glish noun compounds and their constituents rela-
tive to their degree of compositionality. Our anal-
ysis relies on an established gold standard dataset
with human compositionality ratings, and a di-
achronic corpus of English covering approximately
two centuries. We hypothesize that distinct fre-
quency and productivity patterns of diachronic evo-
lution can be observed for compounds whose de-
gree of compositionality is high (such as maple
tree, prison guard, climate change) vs. low (such
as flea market, night owl, melting pot). We cast
our task as a binary classification problem, and
show that both diachronic frequency and productiv-
ity provide useful information in determining the
present-day degree of compositionality of English
noun compounds.

2 Related work

Existing computational studies have examined
noun compounds from a range of perspectives.
Common approaches include predicting the mean-
ing of the whole compound (Mitchell and Lapata,
2008; Dima et al., 2019), the semantic relations
between a compound’s constituents (Girju et al.,
2005; Ó Séaghdha, 2007; Dima et al., 2014), and
the compound’s degree of compositionality, usually
framed as an unsupervised ranking task relying on
static (Reddy et al., 2011; Schulte im Walde et al.,
2013, 2016; Salehi et al., 2014, 2015; Cordeiro
et al., 2019; Alipoor and Schulte im Walde, 2020)
or contextualized word embeddings (Garcia et al.,
2021a,b; Miletic and Schulte im Walde, 2023). A
small subset of previous work has also taken into
account the distinct linguistic roles and empirical
characteristics of compound constituents, show-
ing that compositionality prediction is affected by
properties such as frequency, productivity, and
ambiguity (Schulte im Walde et al., 2013, 2016;
Alipoor and Schulte im Walde, 2020; Miletic and
Schulte im Walde, 2023; Schulte im Walde, 2023).
However, all of the cited studies adopt a synchronic
perspective. As to our knowledge, only two pre-
vious approaches applied a diachronic perspec-
tive: Dhar et al. (2019) and Dhar and van der Plas
(2019) exploited the Google n-gram corpus and
information-theoretic as well as cosine distance
measures to predict the compositionality of the
compounds in Reddy et al. (2011), and to detect
novel compounds, respectively.

In this paper, we provide a novel diachronic ap-
proach motivated from a linguistic perspective: we
expect the present-day degree of compositional-
ity to differ for high- vs. low-frequent compounds
and for compounds with high- vs. low-frequent
constituents (Lee, 1990; Hamilton et al., 2016,
i.a.), as well as for compounds with high- vs.
low-productive constituents (Jurafsky et al., 2001;
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Hilpert, 2015, i.a.). We further compare the di-
achronic features against the use of present-day
linguistic properties so as to assess the scope of
compositionality information recovered through
our diachronic approach.

3 Data

3.1 Gold standard of noun compounds
We use the collection of English noun compounds
introduced by Cordeiro et al. (2019). It includes an
initial set of 90 compounds created by Reddy et al.
(2011)1 and a further 190 compounds annotated
by Cordeiro and colleagues using the same rating
procedure.2 Of these, we retain a total of 210 com-
pounds for which both constituents are tagged as
nouns in the dataset.

Human annotators were asked to provide com-
positionality ratings in terms of literality, on a scale
from 0 (not at all literal) to 5 (very literal). They
provided scores for the interpretation of the whole
compound (e.g. crash course), as well as for the
use of the modifier (crash) and the head (course)
within it. Sample compounds and their ratings are
shown in Table 1.

Compositionality rating
Compound Modifier Head Compound
guinea pig 0.47 ± 0.72 0.47 ± 0.72 0.24 ± 0.56

flea market 0.38 ± 0.81 4.71 ± 0.84 1.52 ± 1.13

pain killer 4.71 ± 0.64 1.33 ± 1.11 2.05 ± 1.36

health insurance 4.53 ± 0.88 4.83 ± 0.58 4.40 ± 1.17

Table 1: Sample gold standard compounds with compo-
sitionality ratings (mean and standard deviation).

3.2 Corpus
As diachronic corpus data for the modeled noun
compounds, we rely on the clean version of the
Corpus of Historical American English (CCOHA)
(Davies, 2012; Alatrash et al., 2020). It contains
>400 million words, and ranges from 1810 to 2010.
For present-day data, we use ENCOW (Schäfer
and Bildhauer, 2012; Schäfer, 2015), a large web
corpus that contains ≈9.5 billion tokens. Both
corpora are lemmatized, tagged and parsed.

3.3 Empirical diachronic properties
We retrieve the following empirical diachronic
properties per decade for our target compounds

1http://www.dianamccarthy.co.uk/downloads.html
2https://pageperso.lis-lab.fr/carlos.ramisch/

?page=downloads/compounds

and their constituents:

• The frequencies of the gold standard com-
pounds and their constituents.

• The productivities of the constituents of the
gold standard compounds, i.e. the number of
compounds a constituent appears in: morpho-
logical family size (de Jong et al., 2002).

For the latter, we consider a construction to be a
relevant (candidate) compound if it is tagged as a
sequence of two nouns, neither preceded nor fol-
lowed by a noun.

4 Experimental setup

To assess whether highly compositional com-
pounds and their constituents exhibit distinct pat-
terns of diachronic evolution of productivity and
frequency, we divide the 185 compounds that occur
in at least one timeslice in CCOHA into different
classes of compositionality. We do that for three
types of compositionality ratings: on the level of
the whole compound, the modifier, and the head.
We cast our task as binary classification of the ex-
tremes with maximally different targets regarding
their levels of compositionality, thus enforcing a
clear picture of distinctiveness.

More specifically, we obtain balanced classes of
the 62 least and most compositional compounds,
modifiers, and heads (13 of the targets within each
class, leaving out 61 mid-scale items). The compo-
sitionality ranges for the sets of least/most composi-
tional compounds are [0.18, 1.61] and [4.20, 5.00],
respectively. For the least/most compositional mod-
ifiers, the compositionality ranges are [0.14, 1.76]
and [4.56, 5.00]. For the least/most compositional
heads, they are [0.00, 2.79] and [4.50, 5.00].

We conduct experiments for two levels of gran-
ularity of timeslices, in order to assess whether
temporally finer-grained patterns provide more in-
formation related to present-day compositionality,
with the potential trade-off of increasing sparsity.
In the setup with finer-grained timeslices, we con-
sider decades from the 1830s to the 2000s; in the
coarser-grained setup, we combine these decades
into 30-year timeslices. Since the sub-corpora of
the two earliest decades, the 1810s and 1820s, are
considerably smaller than the subsequent ones, we
disregard those. Table 2 provides a summary of the
sizes of our timeslices in millions of tokens.
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Figure 1: Development of the properties over time per class for the compound compositionality experiment.
Timeslices: I: 1830s-1850s, II: 1860s-1880s, III: 1890s-1910s, IV: 1920s-1940s, V: 1950s-1970s, VI: 1980s-2000s.

Timeslice 1830s 1840s 1850s 1860s 1870s 1880s
Totalfine 16.7 19.4 20.0 20.6 22.6 24.4
Totalcoarse 56.1 67.6
Timeslice 1890s 1900s 1910s 1920s 1930s 1940s
Totalfine 24.6 26.7 27.7 31.2 30.1 29.9
Totalcoarse 79.0 91.2
Timeslice 1950s 1960s 1970s 1980s 1990s 2000s
Totalfine 30.3 29.6 29.4 31.3 34.6 36.5
Totalcoarse 89.3 100.4

Table 2: Timeslice sizes for the fine- and coarse-grained
timeslices in million tokens.

We assess whether the two compositionality
classes for the compounds and for the modifier
and head constituents, respectively, have distinct
patterns of diachronic evolution in terms of five
empirical properties: the compound frequency FC ;
the frequency FM and productivity PM of the mod-
ifier; and the frequency FH and productivity PH of
the head. For each of the properties, we construct
feature vectors V = [v1, v2, . . . , vn] containing the
retrieved values of the respective property across
n timeslices. To account for differences in the cor-
pus sizes of the timeslices, each retrieved property
value is normalized by the total number of tokens
in the respective timeslice. In configurations where
we use multiple properties, their feature vectors are
concatenated.

Figure 1 outlines the development of each of the
empirical properties over the coarse timeslices, for
the respective two classes defined for compound-
level compositionality; see Appendix C for proper-
ties across constituent classes. Appendix E shows
to which degree the properties correlate with each
other across timeslices. We report Spearman’s rank-
order correlation coefficient ρ. In most cases the
properties do not correlate at all, or just moder-
ately. We find strong correlations only between the
frequency and productivity of a constituent within
the same timeslice, with an average ρ = 0.77 for

modifiers and 0.88 for heads.
We conduct experiments using each of the prop-

erties individually, using the combination of the
frequency of both constituents and the productivity
of both constituents (FMH and PMH ), the combi-
nation of all frequency measures FCMH , and the
combination of all features FCMHPMH . Other
permutations in the following are denoted by com-
binations of the contained properties (e.g. PMFH ).

In all experimental settings, we use a support
vector machine (SVM) as the classifier. To account
for data sparsity and overfitting in our results, we
evaluate with repeated k-fold cross-validation, us-
ing 8 repetitions with different permutations of the
compound data and 4 folds per repetition.

Even though our focus is on diachronic evo-
lution, we also compare our approach against a
standard static approach, using only synchronic in-
formation from (i) the last CCOHA timeslice of
either granularity and (ii) present-day information
retrieved from ENCOW. For each of the five empir-
ical properties, we order the targets in descending
order by that property and assign the positive label3

to the first N compounds. More specifically, we
collect results for all potential class splits, moving
from N = 0, i.e. no compound is assigned to the
positive class, to N = 124, i.e. all compounds are
assigned to the positive class.

5 Results

The results of our classification experiments are
shown in Table 3, which focuses on individual
properties as features, as well as combinations of
frequency measures, productivity measures, and
all five collected properties as features. It further

3We refer to the class of highly compositional compounds
as the positive class.
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Accuracy
Compound Modifier Head

Features coarse fine coarse fine coarse fine
Random 0.500 0.500 0.500 0.500 0.500 0.500
Best last 0.694 0.702 0.710 0.702 0.669 0.637
Best ENCOW 0.782 0.831 0.669
FC 0.663 0.665 0.595 0.600 0.631 0.633
FM 0.585 0.597 0.649 0.629 0.457 0.455
FH 0.649 0.647 0.519 0.523 0.627 0.617
FMH 0.637 0.643 0.605 0.624 0.592 0.595
FCMH 0.654 0.644 0.594 0.620 0.570 0.576
PM 0.629 0.626 0.632 0.606 0.457 0.448
PH 0.571 0.564 0.502 0.472 0.554 0.550
PMH 0.612 0.597 0.610 0.607 0.538 0.518
FCMHPMH 0.619 0.634 0.590 0.608 0.568 0.574

Table 3: Classification results for the three experiments
per property used as features. We report accuracy for
coarse- and fine-grained time slices, as well as the best
last coarse- and fine-grained timeslices and the best
ENCOW setting. Bold values are the best overall, and
bold italic values are the best diachronic settings.

reports the best results for each static synchronic
setting. In the coming discussion, we also refer-
ence additional combinations of features that are
relevant for specific setups. We provide the full re-
sults of all permutations of features for each of the
experiments in Appendix D. Regarding the static
synchronic approach, the effect of positive class
size on the compound compositionality experiment
is shown in Appendix B.

Overall, we find that all diachronic properties are
informative for compound compositionality and
that the properties of a given constituent are infor-
mative for the compositionality of that constituent
(e.g. PH for head compositionality). The results
for combinations of properties indicate that they are
informative if they include an informative property.
In most cases, however, results for combinations
are below those for included properties.

Across the target properties, the best settings of
all static synchronic approaches outperform our di-
achronic setup. This is not especially surprising:
our aim is to predict the present-day degree of com-
positionality, and (near-)present-day data is likely
better suited to this task. Moreover, the best syn-
chronic results are systematically obtained using
ENCOW data, which is ≈100 times larger than the
last coarse CCOHA slice; this suggests that the
diachronic approach is hindered by data sparsity.
Nevertheless, its performance is well above chance,
which confirms that diachronic developments cap-
ture distinct patterns with respect to present-day
compositionality. Since this issue is the main focus
of our work, we limit the remaining discussion of
results to our diachronic experiments.

Compound compositionality. All configura-
tions of properties from both granularities of times-
lices significantly outperform the random choice
baseline (p < 0.001).4 Amongst the individual
properties and main combinations summarized in
Table 3, FC performs best, followed by FCMH ;
this applies both to the fine-grained and the coarse-
grained setup. Combinations of properties tend to
perform similarly to the most informative property
in them. A noteworthy exception is FCPM , which
obtains the best overall result with an accuracy of
0.675 for the coarse-grained and 0.702 for the fine-
grained timeslice setup. We hypothesize that this
is due to the information of both properties being
complementary, as indicated by a weak correlation
(average ρ = 0.30 per timeslice). Regarding mod-
ifier properties, PM is more informative than FM .
This is flipped for head properties FH and PH .

The results do not differ significantly between
timeslice granularities, changing in the range of
±1.5%. This indicates that the diachronic develop-
ment of properties retrieved from coarse-grained
timeslices is as informative as their counterparts
from finer-grained timeslices. We hypothesize that
this may be due to two potential reasons. (i) We
observe in our data that considerable change in the
properties either happens fairly quickly or slowly
over time (cf. Section 6). Both are captured to
a similar extent in both timeslice granularities.
(ii) Despite providing more detailed information,
the fine-grained developments may be more sus-
ceptible to sparsity and ultimately may not be more
informative than the coarse-grained timeslices.

Modifier compositionality. In contrast to the
compound compositionality experiment, FM ap-
pears to be most informative for the composition-
ality of the modifier, followed by PM . Similarly
to the first experiment, combinations of properties
are fairly informative, but less so than the most
informative property in them. With their results
not differing significantly from the random base-
line, both FH and PH appear to be uninformative
for predicting the modifier compositionality class.
As expected, we observe that the properties of the
modifier are relevant for modifier compositionality,
while the properties of the head are not. Similarly
to the compound compositionality experiment, re-
sults generally do not differ significantly between
timeslice granularities for settings with results well
above the random baseline. There is a significant

4All significance tests were done using the chi-square test.
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Figure 2: Diachronic development of the productivity of
the modifier and of the head for sample compounds. For
each example, the compositionality class is indicated
in parentheses. Dashed lines indicate the means for the
two classes.

difference for the settings PM and FCMH , but the
trends point in opposite directions without an im-
mediately apparent explanation.

Head compositionality. Similarly to the com-
pound compositionality experiment, FC is the most
informative feature. This is in line with the domi-
nant linguistic role of the head in compound struc-
ture. The remaining results are overall comparable
to the modifier compositionality experiment but
flipped: FH is more informative than PH , and the
results of FM and PM are worse than the random
baseline. Results do not differ significantly be-
tween timeslice granularities.

6 Qualitative analysis

To further assess when the patterns of diachronic
development are informative for the classifica-
tion of present-day compositionality, we inspect
where the models fail. We find that, over
all the runs, across features and experiments,
low-compositionality compounds are misclassified

more often than highly compositional ones.
We look more closely into examples from both

classes that are misclassified in over 80% of runs in
the compound compositionality experiment. Some
misclassified compounds of either class exhibit a di-
achronic evolution profile that clearly differs from
the mean trend for their class. For instance, the
trend in PH for fall guy (low compositionality) is
more similar to the overall trend of the high com-
positionality class, with a steep increase in later
timeslices, while we observe the inverse for speed
trap (high compositionality), see Figure 2. This,
however, does not appear to be the only issue at
stake, since profiles of misclassified instances also
differ within a class, e.g. for fall guy and gold mine.

On a more general level, frequently misclassi-
fied compounds from both classes exhibit similar
patterns in similar ranges for most properties, for
instance speed trap and gold mine (cf. Figure 2 for
productivity and Appendix A for frequency evolu-
tion). Since the means of both classes are similar
to one another across properties, we hypothesize
that patterns close to the means or below may be
too similar across classes to be informative.

7 Conclusion

We presented experiments aimed at classifying En-
glish noun compounds in terms of their present-day
degree of compositionality. We proposed a novel
diachronic approach, relying on the evolution of
frequency and productivity patterns for compounds
and their constituents. Both types of features are
informative, with our single best diachronic classi-
fier combining the strongest individual variants of
frequency and productivity features. The highest
performance overall is obtained by a synchronic
method based on a much larger present-day corpus,
but our diachronic approach is still indicative of
distinct compound development profiles relative
to their degree of compositionality. This overall
demonstrates the relevance of diachronic data in
modeling noun compounds, thereby confirming the
potential of this under-researched area.
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Limitations

Our experiments were limited to two quantitative
properties – frequency and productivity – used
to analyze noun compounds in a single language,
English. This has potential implications for the
generalizability of our results. From a linguis-
tic standpoint, compound properties vary widely
across languages. For instance, where English has
productive patterns combining two nouns, often
in an open (space-separated) compound, German
has closed compounds; Romance languages widely
rely on N-Prep-N patterns; the structure in many
Slavic languages involves patterns of nominal de-
clension; and so forth. The most useful diachronic
information for compositionality prediction may
vary across these cases. Future work may also
investigate the diachronic evolution of other com-
pound properties, such as the degree of ambiguity
of the constituents or the semantic relations be-
tween them.

Ethical considerations

We do not believe that the research presented in
this paper raises ethical concerns. We analyzed the
diachronic evolution of a specific type of linguistic
structure in English, based on standard aggregate
estimates of word usage derived from a large cor-
pus. No personally identifiable or otherwise sen-
sitive information was targeted by our modeling
approach. Previously created datasets were used in
line with their intended use and licenses.

We acknowledge the fact that the corpus we used
contains documents written in American English
over the last two centuries. It therefore likely cap-
tures biases mirroring the societal inequalities typi-
cal of the time in which those texts were produced.
However, we do not expect general quantitative
properties of a small subset of the vocabulary – on
which we relied – to be significantly affected by
any potential biases.
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A Frequency for target examples over
time
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Figure 3: Frequency over time for examples. The class
of an example is indicated in parentheses.

B Effect of varying set size in synchronic
experiments
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Figure 4: Static compound experiment results per posi-
tive class size with ENCOW data.
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Figure 5: Static compound experiment results per posi-
tive class size with the last coarse timeslice.
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C Development of properties over time
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Figure 7: (a) Development of the properties over time per class for the modifier compositionality experiment.
(b) Development of the properties over time per class for the head compositionality experiment.
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D Full results

Accuracy
Compound Modifier Head

Features coarse fine coarse fine coarse fine
FC 0.663 0.665 0.595 0.600 0.631 0.633
FM 0.585 0.597 0.649 0.629 0.457 0.455
FH 0.649 0.647 0.519 0.523 0.627 0.617
FMH 0.637 0.643 0.605 0.624 0.592 0.595
FCMH 0.629 0.635 0.594 0.620 0.570 0.576
PM 0.629 0.626 0.632 0.606 0.457 0.448
PH 0.571 0.564 0.502 0.472 0.555 0.550
PMH 0.612 0.597 0.610 0.607 0.538 0.518
FMPM 0.579 0.590 0.638 0.634 0.461 0.457
FMPH 0.579 0.589 0.639 0.635 0.459 0.456
FMPMH 0.578 0.589 0.637 0.635 0.458 0.455
FCPM 0.675 0.702 0.651 0.652 0.554 0.558
FCPH 0.630 0.626 0.575 0.579 0.614 0.615
FCPMH 0.662 0.650 0.614 0.621 0.588 0.590
FHPM 0.654 0.644 0.500 0.509 0.620 0.613
FHPH 0.654 0.644 0.504 0.510 0.620 0.614
FHPMH 0.654 0.639 0.497 0.510 0.620 0.612
FMHPM 0.629 0.636 0.595 0.618 0.572 0.577
FMHPH 0.630 0.635 0.594 0.618 0.573 0.577
FMHPMH 0.624 0.636 0.588 0.614 0.569 0.570
FCM 0.579 0.590 0.637 0.635 0.458 0.457
FCMPM 0.578 0.590 0.637 0.634 0.458 0.455
FCMPH 0.577 0.589 0.638 0.635 0.457 0.456
FCMPMH 0.580 0.590 0.638 0.634 0.457 0.452
FCH 0.651 0.644 0.504 0.509 0.620 0.613
FCHPM 0.654 0.638 0.494 0.510 0.619 0.612
FCHPH 0.655 0.638 0.500 0.509 0.620 0.612
FCHPMH 0.654 0.641 0.499 0.501 0.619 0.610
FCMHPM 0.622 0.636 0.589 0.614 0.567 0.570
FCMHPH 0.623 0.637 0.588 0.614 0.568 0.571
FCMHPMH 0.619 0.634 0.590 0.608 0.568 0.574

Table 4: Full classification results for the three experiments per property used as features. We report accuracy for
properties retrieved from coarse- and fine-grained time slices.

Accuracy
Compound Modifier Head

Features coarse fine c. last f. last ENC. coarse fine c. last f. last ENC. coarse fine c. last f. last ENC.
FC 0.663 0.665 0.686 0.662 0.734 0.595 0.600 0.629 0.637 0.702 0.631 0.633 0.669 0.637 0.669
FM 0.585 0.597 0.694 0.702 0.782 0.649 0.629 0.710 0.702 0.831 0.457 0.455 0.548 0.573 0.605
FH 0.649 0.647 0.613 0.589 0.669 0.519 0.523 0.565 0.573 0.605 0.627 0.617 0.645 0.621 0.661
PM 0.629 0.626 0.653 0.685 0.710 0.632 0.606 0.653 0.661 0.710 0.457 0.448 0.540 0.556 0.573
PH 0.571 0.564 0.629 0.653 0.669 0.502 0.472 0.556 0.629 0.613 0.554 0.550 0.637 0.637 0.637

Table 5: Results per feature including synchronic/last timeslices results. For the experiment using the last times-
lices/synchronic data, we report the best result across positive class sizes. Best result per feature and compositionality
setting is bolded. Abbreviations: c. last = last coarse timeslice, f. last = last fine timeslice, ENC. = ENCOW.
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E Correlations between properties over time

Timeslice PM -PH PM -FM PM -FH PM -FC PH -FM PH -FH PH -FC FM -FH FM -FC FH -FC

1830s-1850s -0.06 0.79 -0.11 0.34 -0.03 0.89 0.35 0.32 0.18 0.32
1860s-1880s -0.06 0.78 -0.11 0.44 -0.07 0.90 0.32 0.29 0.31 0.29
1890s-1910s -0.12 0.79 -0.11 0.41 -0.05 0.90 0.33 0.28 0.36 0.28
1920s-1940s -0.14 0.80 -0.14 0.37 -0.06 0.90 0.26 0.26 0.30 0.26
1950s-1970s -0.12 0.78 -0.14 0.27 -0.01 0.89 0.28 0.26 0.26 0.26
1980s-2000s -0.06 0.79 -0.13 0.19 0.04 0.87 0.26 0.21 0.26 0.21

Table 6: Correlations between properties per coarse-grained timeslice.

Timeslice PM -PH PM -FM PM -FH PM -FC PH -FM PH -FH PH -FC FM -FH FM -FC FH -FC

1830s -0.03 0.76 -0.09 0.35 -0.03 0.87 0.31 0.27 0.16 0.27
1840s -0.02 0.75 -0.09 0.33 -0.04 0.87 0.33 0.27 0.18 0.27
1850s -0.06 0.76 -0.12 0.31 -0.03 0.88 0.29 0.24 0.15 0.24
1860s -0.02 0.77 -0.10 0.36 -0.05 0.88 0.28 0.24 0.21 0.24
1870s -0.09 0.77 -0.13 0.36 -0.06 0.89 0.35 0.28 0.24 0.28
1880s -0.03 0.77 -0.08 0.40 -0.04 0.88 0.35 0.30 0.25 0.30
1890s -0.08 0.77 -0.09 0.41 -0.03 0.90 0.33 0.28 0.29 0.28
1900s -0.10 0.77 -0.11 0.30 -0.03 0.90 0.32 0.27 0.26 0.27
1910s -0.13 0.78 -0.12 0.41 -0.05 0.87 0.31 0.24 0.33 0.24
1920s -0.13 0.77 -0.14 0.36 -0.06 0.90 0.28 0.21 0.28 0.21
1930s -0.13 0.81 -0.13 0.39 -0.05 0.89 0.31 0.29 0.31 0.29
1940s -0.12 0.78 -0.12 0.33 -0.02 0.89 0.27 0.26 0.26 0.26
1950s -0.13 0.77 -0.14 0.27 -0.04 0.89 0.29 0.26 0.22 0.26
1960s -0.10 0.77 -0.12 0.29 -0.01 0.88 0.24 0.23 0.27 0.23
1970s -0.10 0.77 -0.13 0.26 0.00 0.88 0.26 0.25 0.24 0.25
1980s -0.07 0.77 -0.13 0.21 0.02 0.87 0.31 0.27 0.24 0.27
1990s -0.06 0.78 -0.11 0.26 0.04 0.87 0.28 0.23 0.29 0.23
2000s -0.07 0.79 -0.12 0.17 0.02 0.87 0.20 0.16 0.24 0.16

Table 7: Correlations between properties per fine-grained timeslice.
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Abstract

In today’s digital era, massive amounts of data
are ubiquitous including discourses in natural
language, such as news articles, social media
posts or forum threads. The digital humanities
aim to qualitatively and quantitatively analyze
such data. For interpretive research, it is dif-
ficult to benefit from large data. An example
is grounded theory, an interpretative method to
deal with larger datasets by annotating or cod-
ing. However, such approaches are too time-
consuming to bridge the gap from qualitative to
quantitative analyses. In this work, we propose
assistive methods to semi-automatically scale
a small number of manual annotations to large
corpora. Our approach uses contextualized em-
beddings of annotated data to find similar occur-
rences. By interactively providing suggestions
learned automatically from user interactions,
our method provides a convenient and fast way
to annotate large corpora with minimal man-
ual effort. The method finally produces a clas-
sifier able to annotate the entire dataset. We
performed experiments on multiple tasks and
datasets to evaluate our methods demonstrat-
ing strong performance. Further, we designed
a software for researchers who want to scale
their annotation-based research, bridging the
gap from qualitative to quantitative results.

1 Introduction

There is a growing interest in the Digital Human-
ities (DH) to apply Natural Language Processing
(NLP) methods to explore textual data and scale
textual data analysis. The reason for this is twofold.
First, due to the advancing digitization of human-
ities and cultural studies data, both through retro-
digitization and the increase in born digital data,
large quantities of data are available that are often
infeasible for a single person or team to study. Sec-
ond, the groundbreaking success of NLP in various
disciplines makes it attractive to adapt methods to
the DH domain. This is a great opportunity for qual-
itative DH researchers to benefit from large datasets

where in-depth qualitative analysis and annotations
cannot be extended to large-scale corpora.

The Digital Humanities often rely on qualita-
tive methodology like grounded theory. Hermeneu-
tic circular processes and theoretical sampling ap-
proaches include iterative search, selection, col-
lection, analysis, and interpretation of research
data. Grounded theory can be understood as an
interactive process where researchers, participants
and data construct research together in interaction
repeatedly, producing a category system that ef-
fectively captures the research problem. It is of
great interest to apply the category system to larger
datasets for quantitative analysis, but infeasible to
do so manually.

Currently, data scientists would need to train
a Machine Learning (ML) model requiring large
amounts of training data that have to be created by
qualified annotators using to-be-developed anno-
tation guidelines. This is time-consuming, costly,
requires ML expertise, and is consequently rarely
done in the context of DH projects. Thus, new
methods combining human and computer actions
are needed to enable research on larger datasets
and foster further research in the digital humanities
as typical ML approaches are no good fit for most
projects. Recent studies (Ostheimer et al., 2021;
Koch et al., 2022) in the field of human-computer-
interaction have shown fruitful incorporation of
human decision-making in ML processes and that
human-in-the-loop methods can significantly im-
prove ML models. ML-supported annotation needs
the human supervision and refinement to offer use-
ful and accurate alternatives in qualitative data anal-
ysis. Strengthening the synergy between humans
and machines is a promising direction where both
sides are profiting: ML-based annotation is im-
proved by human refinements, whereas automation
aids iterative processes of human meaning-making
and interpretive research by scaling annotations to
enable the analysis of vast materials.
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This work targets qualitative researchers who an-
notate textual data to analyse it in-depth and want
to increase their efficiency and/or want to leverage
large datasets as quantitative grounding for their
hypothesises. We propose an ML-based assistive
system leveraging current NLP to ease the annota-
tion task and semi-automatically scale annotations
from few manual annotations to a fully-annotated
corpus. After the user has annotated a few text
spans with their categories, representatives for each
category are utilised for semantic similarity search
to suggest relevant text spans with their context.
While the user accepts or discard these suggestions,
the system adapts to feedback by updating the cat-
egory representatives instantly after each verified
suggestion. Since verifying suggestions is a much
faster task than reading and annotating, users can
efficiently annotate their documents. The system
automatically fine-tunes models to predict higher-
quality suggestions and to apply the learned cat-
egories to a large document collection with high
accuracy, thereby scaling the annotations.

In this paper, we make several contributions to-
wards a system supporting researchers during and
after their qualitative analysis and aids them in
scaling their annotations to large corpora: (1) A
two-stage method usable without programming or
NLP know-how to semi-automatically scale anno-
tations to large-scale corpora by interactively pro-
viding adaptive suggestions and employing adapter
(Houlsby et al., 2019) technology to automatically
annotate large corpora. (2) A user interface for
quick batch validation of suggestions while still dis-
playing the most relevant contextual information.
(3) An evaluation of our method with a simulated
annotation process on multiple large datasets for
sentence-level and word-level annotations demon-
strating strong scaling capabilities.

2 Related work

Qualitative analyses can be powerfully supported
with digital solutions and ML methods addressing
annotation, analysis, and interpretation. MAXQDA
and ATLAS.ti are two commonly used closed-
source, paid solutions for qualitative analysis trying
to offer all-in-one-solutions, but include no ML as-
sistance. Prodigy is an annotation software where
the workflow is dictated by the active learning (AL)
model. Label studio is an annotation platform that
offers AL functionalities requiring set-up by con-
necting external models, thereby making it unsuit-

able for domain experts. Existing open-source soft-
ware that offers (semi-)automatic annotation aid in
various variations are outlined in the following.

WebAnno (Yimam et al., 2014; Eckart de
Castilho et al., 2016) is a web-based tool for fine-
grained NLP annotations and includes an auto-
matic method where the system learns from user-
provided annotations. However, it requires expert
ML knowledge to perform feature engineering and
training. The successor INCEpALTION (Klie et al.,
2018) can suggest possible labels and includes an
AL mode to guide annotators to improve the system
by labeling examples providing valuable informa-
tion to the classifier. Neither WebAnno nor IN-
CEpTION are designed to work on a content-level
or on large-scale corpora. CodeAnno (Schneider
et al., 2023b) is another WebAnno successor focus-
ing on document-level coding and supports training
ML classifiers for this. LabelSleuth (Shnarch et al.,
2022) is a software to build binary classifiers by
labeling text data using active learning suggestions
targeted at domain experts. While it is probably the
closest to our application, it only supports binary
classification of sentences, unsuitable for multi-
class word-level annotations.

Active learning (AL) is a technique to obtain
a classifier by soliciting feedback from the user
on the most informative sample identified using
e.g. uncertainty sampling (Lewis and Gale, 1994)
which requires a classifier to output certainty scores.
AL is often associated with the Human-in-the-loop
(Holzinger, 2016) paradigm where human feedback
is integrated in the loop of machine learning devel-
opment. We see our work as AI-in-the-loop where
ML systems assist the workflow of humans who
stay in control all the time. Our system assists the
user by providing sensible suggestions, but neither
disrupts nor dictates their workflow.

Few-shot classification of named entities is a task
relevant to our annotation scaling scenario where
a classifier is trained to generalize to new classes
after observing only a small number of examples.
This task was tackled (Fritzler et al., 2019) by us-
ing prototypical networks (Snell et al., 2017) which
learn a prototype for unseen classes by averaging
the representations of the support samples for that
class. However, this approach is not made for incre-
mentally increasing samples and it does not scale
well with increasing numbers of examples. Our
approach utilizes a few-shot classification system
based on adapters (Houlsby et al., 2019) to provide
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a high-quality classifier from few training samples.
Previous work (Remus et al., 2022) evaluated dif-

ferent strategies to find related items in an informa-
tion retrieval scenario demonstrating that contextu-
alized word embeddings of pre-trained models are
suitable to retrieve word-level items such as named
entities. They showed a small speedup of man-
ual annotations when annotating similar instead of
random items. We build upon these findings and
devised a method to scale manual annotations to
datasets orders of magnitude larger.

3 Application

In this work, we describe a software for qualitative
annotation of text documents that assists users dur-
ing their annotation process with ML functionality
requiring neither programming nor ML knowledge.
The assistance comes in two forms: Providing sug-
gestions for semi-automatic annotation and fully
automatic annotation to analyse large text collec-
tions. Our methods apply to sentence-level (e.g.
headlines, arbitrary sentences) and token-level (e.g.
named entities) annotations. Document-level anno-
tations are not in the scope of this work. Further,
our methods are not intended for a MATTER anno-
tation process (see Pustejovsky and Stubbs (2012))
but for use in hermeneutic contexts where users
move back-and-forth between understanding parts
of a text and the whole (the so-called ’hermeneutic
circle’), continuously build and modify their tagset
resp. labels along the way (see Horstmann (2019)).

3.1 Requirements

Throughout our close collaboration between Dig-
ital Humanities and Computational Linguistics
groups, we identified four essential requirements
for our system (method and user interface) to pro-
vide the most benefit to the users: (1) Usable with-
out machine learning knowledge. This enables all
researchers to benefit from the method. (2) Applica-
ble from small to large-scale document collections
containing thousands of documents. This allows to
use the method for a wide range of research ques-
tions and datasets. (3) Instantaneous responses &
quick adaptation to the users feedback. This greatly
improves the user experience. (4) Correction of
mistakes. Users must be able to correct system
errors and preventing similar mistakes to achieve
their desired outcome which has been found highly
important for interactive systems like new/s/leak
(Wiedemann et al., 2018).

3.2 Workflow
Imagine Alice, a DH researcher working on a cli-
mate project, who needs to identify, categorise
and quantify different actors and stakeholders in-
volved in the parliamentary discussions about cli-
mate change to answer one of her research ques-
tions. She downloaded a large collection of all
plenary minutes and printed matter of the German
Bundestag which is available as open data. Alice
creates a new project in the software and adds the
crawled documents.

Early guidance She works with the software as
always: Finding relevant documents by using the
built-in search and filtering methods, reading docu-
ments, making spontaneous annotations (possibly
creating new classes as necessary in this hermeneu-
tic process) while reading and selecting some doc-
uments to annotate in detail. During close read-
ing, the system already suggests and highlights
text passages in the current document based on
the annotated material if she enabled the feature
(see Figure 1, left). Her annotations are quite di-
verse: Some annotations are named entities coded
as actor or stakeholder, possibly hierarchically with
fine-grained classes (politician, scientist, activist
etc.) while others refer to different entities or entire
sentences like public statements. After annotat-
ing a handful of documents, she has seen enough
different cases of actors and stakeholders.

Semi-automatic annotation scaling She enables
the suggestion panel (see Figure 1, right) to explore
annotation suggestions in the text collection. The
system provides a list of suggestions showing the
context of each annotation, i.e. sentence(s) and the
document title with a link to the full document in
case it’s needed for verification. Alice can accept or
discard suggestions which are then automatically
persisted as annotations in her project.

Fully-automatic annotation for quantitative
analysis The system indicates to Alice that
enough examples have been labeled and a reliable
model is trained to apply her established category
system to all documents. She double checks a ran-
dom selection of these automatic annotations and
decides that the quality is high enough for further
quantitative analyses. In case she identifies erro-
neous annotations, she can easily update or remove
such cases. The system adapts automatically and
potentially fixes similar errors. Alice can iterate
and correct the system as often as necessary. To
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Annotator: Flüchtlingsgipfel 2023 SearchSearch

Faeser will "gemeinsame Kraftanstrengung"
Stand: 16.02.2023 10:06 Uhr

Vor dem [Arena] Flüchtlingsgipfel hat Innenministerin Faeser im ARD-Morgenmagazin für
Zusammenarbeit geworben. Der Bund wolle mit Grundstücken zur Unterbringung helfen. Der
Städte- und Gemeindebund fordert "ein echtes Maßnahmenpaket" und mehr Geld.Beim
Flüchtlingsgipfel wollen Bund, Länder und Kommunen heute über die Unterbringung und
Versorgung von Asylbewerbern und Flüchtlingen reden. Es gelte jetzt, diese "humanitäre
Kraftanstrengung gemeinsam zu bewältigen", sagte Bundesinnenministerin Nancy Faeser im
ARD-Morgenmagazin.Vor Erwartungen von Ländern und Kommunen an zusätzliche
finanzielle Unterstützung durch den Bund warnte sie: "Allein im Jahr 2022 hat der Bund die
Länder und Kommunen finanziell mit 3,5 Milliarden Euro unterstützt", sagte Faeser. Für
dieses Jahr seien noch einmal 2,75 Milliarden Euro vereinbart. Über weitere finanzielle Hilfe
rede [Politician] Bundeskanzler Olaf Scholz rund um Ostern wieder mit den Chefinnen und
Chefs der Länder.
"Auch das Bauministerium ist heute vertreten", Nancy Faeser, SPD, Innenministerin, zu
Flüchtlingsgipfel.

Choose code:

Scientist

Politician

Arena

Influencer

Minister

VIP

Suggested annotations by Confidence DESC

Apply (accept 4, discard 2 suggestions)

75%✔ X ... Verteilung, sagte [Minister] Faeser "Einige
können nicht mehr, andere Kommunen ... 95%

75%✔ X ... das könne das [Minister] Bauministerium  
anbieten. Auch die Mängel bei Integration ...

90%

75%✔ X ... 16.2.2023 im [Arena] ARD-Mogenmagazin
sagte sie, beim Gipfel solle aber konkret ... 87%

75%✔ X ... einen Überblick geben. [Minister] Faeser  
hat zu dem Treffen auch die Innenminister ... 82%

72%✔ X ... Bundesregierung [Minister] Reem Alabali-
Radovan, und Vertreter des Bundesbau- ...

✔ X ... Bundesministerin [Minister] Nancy Faeser
im ARD-Morgenmagazin. Vor Erwartungen ... 75%91%

...

Figure 1: Annotation interface. Left: Document with automatic suggestions enabled. Highlighted texts prefixed with
[code] are manually created annotations, other highlights are system suggestions. Right: Batch approving/discarding
suggestions to semi-automatically scale annotations.

improve the quality, multiple users can annotate the
same documents so Alice can curate annotations.
Finally, she retrieves the statistics on the whole cor-
pus (see Figure 2) such as frequency of politicians,
scientists etc. or a list of ministers sorted by their
frequency in the corpus. By exporting her manual
and automatically generated annotations, she can
use her favorite analysis and visualization tools to
draw further conclusions about her material.

4 Methodology

In this section, we explain our approach to scale
few manual annotations with minimal effort to
large datasets. First, we perform a one-time pro-
cess to generate contextualized embeddings for the
document collection. Second, we provide interac-
tive suggestions based on contextual embeddings
of manual annotations and customized similarity
computations. Third, when enough annotations
are collected, a classifier is created and applied to
the entire dataset. Optionally, the user refines the
classifier by correcting aggregated results.

Pre-processing All documents added to the sys-
tem run through an initial, one-time pre-processing
phase: Apache Tika extracts plain text from any
document. Sentence-splitting and entity recogni-
tion are performed by spaCy (Honnibal et al., 2020).
Contextualized embeddings are computed using
SBERT (Reimers and Gurevych, 2019) models for
sentences, T-NER (Ushio and Camacho-Collados,
2021) for named entities and RoBERTa (Liu et al.,
2019) for other structures (see Section 4.1). Multi-
lingual models (e.g. LaBSE (Feng et al., 2022)

for sentences, XLM-RoBERTa (Conneau et al.,
2020) for tokens) can be used to apply our ap-
proach to different languages. The embeddings of
each structure are stored in an approximate nearest
neighbor (ANN) index like HNSW (Malkov and
Yashunin, 2018) or FAISS (Johnson et al., 2021)
to enable fast retrieval of similar embeddings for
large datasets. The pre-processing is executed au-
tomatically in the background before interactive
use, satisfying requirements 1–3 (4 is not applica-
ble). Pre-computing contextualized embeddings of
sentences and tokens for the document collection
enables instantaneous suggestions.

4.1 Interactive, semi-automatic annotation
scaling

The system performs the following steps to produce
k suggestions for a class c.

Structure selection The system automatically
detects which structure fits annotations of class c
best by computing and comparing the overlap of an-
notations with all known structures computed dur-
ing pre-processing (e.g. sentences, named-entities,
noun chunks, single tokens or n-grams). This is a
fast database operation (< 10 milliseconds) as only
offsets for a few manual annotations need to be
compared. The structure s with the highest overlap
on average is chosen for the next step.

Candidate retrieval The embeddings of the
structures matching each annotation (positive sup-
port set, size n) are used to search for the most
similar embeddings using cosine similarity in the
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Corpus statistics Occurrences of by Frequency DESCMinister

Scientist

Politician

Arena

Influencer

Minister

Text | Count

Nancy Faeser 10

Faeser 5

Hubertus Heil

Heil

Bettina Stark-Watzinger

...

Figure 2: Quantitative analysis interface. Left: Estimation of the frequency of annotated categories in the entire
corpus. Right: List of all annotations of a selected category.

ANN index. To do so efficiently, a batch query is
performed on the index to retrieve a set of candi-
dates. In total, N > n similar embeddings and
their corresponding text spans are retrieved from
the ANN index.

Candidate filtering Any already annotated can-
didates are excluded. The remaining candidates are
further filtered by removing a candidate if it is near-
est to another sample having a class different than
c (negative support set). This advanced approach
often results in large quality improvements (see
Section 5.2 for a comparison). The naive approach
does not filter using a negative support set. A batch
query returning only the most similar item is used
to to so efficiently. The remaining candidates are
re-ranked by their maximum similarity to any anno-
tated sample of class c. Finally, the top candidates
are returned to the user as suggestions.

Reviewing suggestions The user can ac-
cept/discard the automatic suggestions batch-wise
and accept/discard/edit individual ones. Accepted
and edited suggestions are stored as annotations in
the database. Rejected suggestions are assigned a
hidden ’not-c’ class and also stored in the database.
The suggestions iteratively improve with every use
as more samples of the class c become available as
positive support and more samples of other classes
become available as negative support.

Requirement check Our method fulfills all re-
quirements (see Section 3.1): Requirement (1) is
achieved since no configuration is required. Re-
quirement (2) and (3) are fulfilled as the search in
the ANN index scales to billions of embeddings
and returns results in a few milliseconds regardless
of the collection size. In accordance with require-
ment (4), users can edit/discard suggestions which
automatically affects future suggestions.

4.2 Fully-automatic annotation scaling for
quantitative analysis

While the interactive mode allows to quickly an-
notate hundreds of examples, a real classifier
is needed to obtain quantitative results on large
datasets. To build a classifier, enough negative sam-
ples are required beside the positive samples. If
there are fewer negative samples, negative candi-
dates are randomly sampled from all unannotated
items (the number of positive samples is usually
small compared to all samples). To guard against
accidentally choosing a positive sample, candidates
are removed if their nearest embedding neighbor
is belonging to a positive class. This strategy is
more beneficial than selecting negative samples by
taking the nearest neighbors of known items as it
would not produce a diverse negative support set.

A k-nearest neighbor (KNN) classifier is con-
structed from the positive and negative support set.
To annotate the entire dataset with this classifier,
each unannotated structure s is compared to the
support set containing all positive and negative
samples. This is efficiently done by computing
a single matrix multiplication (for cosine similar-
ity) between the support set and all unannotated
items. We considered four different strategies to
make the final prediction: (1) Nearest: The class of
the nearest neighbor is chosen as the prediction. (2)
Centroid: The positive and negative support set are
each averaged to centroid embedding. The class
of whichever centroid is closer is chosen. This
approach is similar to prototypical networks and
computationally highly efficient, but often lacks
quality. (3) Majority voting: The most frequent
class within the k nearest neighbors is chosen as
the prediction. (4) Weighted majority voting: The
similarities of each class of the nearest k neighbors
are added and the highest is chosen.

56



This classification is a fast and quickly adapt-
able approach since no training is required. Ap-
plying the classifier on the corpus allows to count
how many annotations of a specific class are in the
document collection. A list of all potentially an-
notated text spans can be produced, merged by the
same surface text (e.g. all politicians with the same
name), and sorted by their frequency. The user can
correct the output by assigning a different label
to each aggregated group of annotations, thereby
immediately improving the KNN classifier to re-
turn updated results in less than a second. While
a KNN classifier is fast and and adapts quickly, it
leaves room for higher-quality predictions. Thus,
we experiment with training a stronger classifier in
Section 5.3 with few annotated samples.

5 Evaluation

To evaluate our proposed methods, we apply them
on fully annotated datasets. This allows us to com-
pare our methods outputs with the correct (as in
human created) annotations. We perform three eval-
uations: (1) We simulate how a user would use the
system interactively and evaluate the quality of the
automatic suggestions. In this setting, the goal is to
find as many annotations of the desired class with
the same manual effort (i.e. number of verified sug-
gestions). For named-entity datasets, we directly
use the given entity span offsets (instead of first
applying an entity detection model). We use the
total number of successfully annotated samples as
metric. (2) We evaluate the performance of the final
KNN-based classifier created after the simulation
with the macro F1 score (harmonic mean of preci-
sion and recall). (3) We evaluate how many anno-
tated samples are needed to train an even stronger
classifier. In these experiments, we train a neural
end-to-end classifier with increasing amounts of
training data and report the F1 scores.

5.1 Datasets

In this section, we introduce the datasets and data
generation processes used in our experiments. An
overview of the datasets is provided in Table 1.

OntoNotes5.0 (Weischedel et al., 2013) (ON5)
is a well-known named-entity recognition (NER)
dataset of 76,714 samples split into 59,924 train,
8,262 test and 8,528 validation samples. Each sam-
ple is a sentence in which each word is labeled as
one of 18 classes or the other class O. We created a
custom version of ON5 with the same number of

samples and splits as the original dataset but only
12 of the 18 classes. Precisely, we removed DATE,
TIME, GPE, ORG, ORDINAL, and WORK_OF_ART from
ON5 by replacing the respective tags with the O
tag. Following (Ding et al., 2021), we merged IOB
tags (Ramshaw and Marcus, 1999) into a single tag
to ease the few-shot episode data generation.

The MIT Movie Trivia (MITMT) and MIT
Restaurant (MITR) datasets1 are named-entity
recognition datasets containing 6,816 train, 1,953
test, and 1,000 validation samples and 6,900 train,
1,521 test, and 760 validation samples. They con-
tain domain-specific named entity classes like Ac-
tor and Genre or Cuisine and Dish. We created
custom versions of the datasets with merged IOB
tags, same splits and number of samples contain-
ing only classes of at least 1,000 samples. In the
custom MITMT, we removed the classes Award,
Quote, Soundtrack, Relationship, Origin, Opinion
and Character and in the custom MITR, we re-
moved Rating, Hours, and Price.

Yahoo! Answers (YA) (Zhang et al., 2015) is a
topic classification dataset that includes 4.5 million
questions and answers from 10 different categories.
We divide the original test set (60,000 items) in
half to obtain a validation/test split from which we
use the title and its category for our experiments.

5.2 Semi-automatic annotation scaling

We simulate the usage of the system on our custom
ON5 and YA dataset with the following strategy.
For each of the unseen classes, we randomly se-
lect 20 samples (manual annotation) as the initial
positive support set from the validation split and
iteratively retrieve ten times 20 suggestions that
are accepted/rejected with the human-annotated
labels from the dataset. Finally, we build a multi-
class KNN classifier from the collected samples
and classify the test split. We compare the two
approaches explained in Section 4.1 to provide
suggestions: Naive and advanced (using a nega-
tive support set). For the KNN classifier, we com-
pare four variants nearest neighbor, majority voting
(k = 5), weighted majority voting (k = 5) and cen-
troids. For ON5, we use our named-entity model
trained only on 12 out of 18 classes (see Section
5.3 for details) to produce entity embeddings (first
token of each entity). To obtain sentence embed-
dings for YA, we use the pre-trained SBERT model
all-MiniLM-L12-v2.

1see https://groups.csail.mit.edu/sls/downloads
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Dataset Type Size Classes

OntoNotes 5.0 NER 76,714 CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY,
NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY,
TIME, WORK_OF_ART

MIT Movie Trivia NER 9,769 Actor, Award, Character, Director, Genre, Opinion, Origin, Plot,
Quote, Relationship, Soundtrack, Year

MIT Restaurants NER 9,181 Amenity, Cuisine, Dish, Hours, Location, Price, Rating, Restau-
rant_Name

Yahoo! Answers SC 60,000 Society & Culture, Food & Drink, Cars & Transportation, Edu-
cation & Reference, Science Mathematics, Business & Finance,
News & Events, Computers & Internet, Pets, Politics & Gov-
ernment

Table 1: Overview of the datasets used in the experiments. In the Type column, SC is short for sentence classification.

(macro) F1 score

Class Approach Samples nearest majority weighted centroid

OntoNotes5.0

DATE naive 161 0.92 0.93 0.93 0.77
DATE advanced 190 0.89 0.91 0.90 0.67
WORK_OF_ART naive 45 0.56 0.61 0.61 0.43
WORK_OF_ART advanced 89 0.65 0.71 0.71 0.42
ORDINAL naive 69 0.91 0.90 0.89 0.43
ORDINAL advanced 148 0.88 0.88 0.88 0.37
GPE naive 200 0.93 0.94 0.94 0.89
GPE advanced 200 0.93 0.94 0.95 0.89
TIME naive 27 0.60 0.62 0.62 0.36
TIME advanced 99 0.60 0.63 0.62 0.33
ORG naive 178 0.86 0.87 0.87 0.87
ORG advanced 197 0.89 0.89 0.89 0.89
all six unseen classes naive 680 0.83 0.83 0.83 0.65
all six unseen classes advanced 923 0.83 0.85 0.85 0.62

Yahoo! Answers

all ten classes naive 662 0.50 0.51 0.52 0.53
all ten classes advanced 1,497 0.56 0.59 0.59 0.58

Table 2: Annotation simulation & KNN classification results. Samples are the number of correct suggestions.

The results of the experiments are shown in Ta-
ble 2. While both approaches are able to provide
mostly correct suggestions for DATE, GPE and ORG
in OntoNotes, the naive approach has a high error
rate for the remaining three classes. The advanced
approach provides more than twice the samples
for the difficult classes (which are rarer and more
overlapping, see Figure 3) and reaches an aver-
age suggestion precision of 76.9%. On Yahoo!
Answers, the advanced approach provides more
than twice the number of correct suggestions of the
naive approach resulting in an average hit ratio of
75%.

On OntoNotes, the KNN classifier produces very
strong F1 scores (≈ 0.9) except for the TIME and
WORK_OF_ART classes having the fewest samples.
While there is only a small performance difference
between nearest and (weighted) majority voting
KNN variants, the centroid performs worse by a
noticeable margin. The performance on Yahoo!
Answers reach scores of 0.59 with the advanced
approach widely outperforming a random baseline
of 0.1. We attribute this comparatively lower level
to fact that the category in the dataset is not only
dependent on the title but also the question text
which we did not leverage in our experiments.
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Figure 3: t-SNE Entity embeddings generated on the
ON5 test split using our custom trained T-NER model.

We further analyzed the reasons for the behavior
of the suggestions and KNN classifier with a visual-
ization of the entity embeddings in Figure 3. Most
instances of a class are visually clustered together,
even for the the six unseen classes. However, DATE
and TIME are mixed together and explain the lower
scores for TIME as it is the rarer occurring class.
Overall, the visualization shows that the use of
embedding similarity metrics for suggestions and
classification can work well and should also be
able to distinguish between sub-classes as many
of the clusters consist of smaller clusters. We also
measured the run-time efficiency of our approach:
Generating all suggestions and classifying every
entity in the test splits for all experiments took only
0.7 seconds in total.

5.3 Few-Shot Transformer Adapter Classifier
With this experiment, we evaluate how many sam-
ples are necessary to train a classifier with superior
performance to the KNN classifier. The user can in-
struct the system to (re-)train such a classifier when-
ever it makes sense, e.g. after annotating a bunch of
samples of a new class. A straightforward approach
to creating a NER or sentence classifier is to fine-
tune a pre-trained large language model (LLM).
Due to its numbers of parameters, it would require
lots of training samples and be computationally ex-
pensive. Since labeled data is scarce in our scenario
and a KNN classifier does not need to be trained at
all, we train a classifier with as little training data
and computational effort as possible. One approach
successfully applied in various tasks is training a
transformer adapter (Houlsby et al., 2019) using the
convenient AdapterHub framework (Pfeiffer et al.,
2020). Transformer adapters are a computation-
and sample-efficient alternative to full fine-tuning.

During training, the LLM’s original parameters
are frozen, and only the adapter layers are opti-
mized. While different configurations or variants of
adapters exist, the parallel configuration (He et al.,
2022) outperformed others by a large margin in
our preliminary experiments. A new classification
head with output dimension equal to the number of
classes is trained jointly with the adapter layers.

We used the two setups and the three NER
datasets described in Section 5.1 to evaluate how
many training samples are required to train an
adapter classifier. In the first setup, the ON5
dataset is utilized as follows: We fine-tuned a
roberta-base model on the train split of the cus-
tom ON5 that contains 12 of 18 classes. Next,
we injected adapters in the fine-tuned model and
trained on episodes containing all 18 classes of
ON5. An episode is a set of training samples where
every class has between K and 2K instances. An
episode for K = 1 consists of N training samples
so that each class is represented at least once and
at most twice in all N sentences. In the second
setup, we fine-tuned a roberta-base model on
the train split of the original ON5. Then, we in-
jected adapters and trained on episodes from the
customized versions of the MIT Movie Trivia and
MIT Restaurant datasets.

In both setups, we trained the adapters with sam-
ples of the training split for 5 epochs on episodes
for K ∈ {3, 5, 10, 30, 50, 100, 300, 500, 1000}
and evaluated on all samples in the test splits. We
used the default training hyperparameters from the
AdapterHub framework.

As can be observed from the results reported
in Figure 4, adapter classifiers demonstrate strong
performance (> 0.8 F1) already for small episodes
with only 30 to 100 training instances per class.
Our adapter models perform similar regardless of
the dataset. This further endorses the choice of
adapters for robust few-shot NER classifiers. Visi-
ble in the left plot in Figure 4 is that adapters are
suitable when an existing NER model is extended.
The model remembers classes learned in the fine-
tuning phase and quickly adapts to new classes.

6 Conclusion

In this work, we proposed and evaluated methods to
semi-automatically scale few annotations to large
corpora by providing interactive suggestions from
adaptable classifiers and developed user interfaces
to make our methods usable for domain experts
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Figure 4: Few-Shot NER performance of transformer adapter classifiers with increasing training data

without programming or NLP skills. Our evalua-
tion on existing datasets shows that these methods
can quickly scale annotations with minimal manual
effort to large corpora to both obtain quantitative re-
sults and aggregated lists enabling a verification of
the automated processing. Thus, we see our meth-
ods aiding qualitative researchers to bridge the gap
to quantitative results and providing quantitative
grounding for their hypothesises.

In the future, we want to integrate the developed
methods and user interfaces in production-grade
code quality into our D-WISE Tool Suite (Schnei-
der et al., 2023a), an open-source web application
for digital qualitative discourse analysis in the Dig-
ital Humanities. In doing so, we make our devel-
oped methods easily accessible to other researchers
and plan to further improve the methods by incor-
porating more feedback. As our methods are also
applicable to image or video annotations via object
detection, we might explore to adapt them for a
good user experience.

Limitations & Ethics Statement

Our work makes NLP models and methods accessi-
ble to researchers that could previously not benefit
from these advances. Our work targets Digital Hu-
manities researchers and is intended to assist with
qualitative discourse analysis. As with any ML-
based method, though, it could somehow be mis-
used for other, possibly inappropriate, work. We
strongly believe that including and enabling more
researchers to benefit from modern ML technology
outweighs the potential for misuse.

When using ML models, it is important to un-
derstand their limitations and critically reflect on
their predictions. ML models often include certain

biases that can manifest in various types and forms
and are certainly not without error.

Especially the proposed fully-automatic annota-
tion scaling has to be used critically. We developed
this method for researchers to easily obtain quanti-
tative insights on the whole dataset, however, the
results are most likely not comparable to a care-
ful, manual or semi-automatic analysis of the full
material. Instead, they should be understood as
an estimation and help to quantitatively verify hy-
potheses that emerged from the qualitative analysis.
We try to mitigate the issues of the fully-automatic
annotation scaling by providing confidence scores
where applicable, showing aggregated classifica-
tion results and allowing the user to correct system
mistakes. To evaluate the quality of the automatic
annotations, a user can manually annotate a ran-
dom subset and compare this with the automatic
results.

We also possibly introduce a bias with our
method design and envisioned workflow. While
we tried our best to give the user the freedom when
and how to use the automated components, we
might still restrict a user in their workflow by our
design decisions. It is important to note that the
workflow was described in a way to best highlight
the contributions of this paper. This not the only
way to use the described methods. Instead, the pro-
posed methods are intended to be used in addition
to established qualitative methods or to augment
them, but not to replace them entirely.
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Abstract

This paper examines the current state-of-the-
art of German text simplification, focusing on
parallel and monolingual German corpora. It
reviews neural language models for simplify-
ing German texts and assesses their suitability
for legal texts and accessibility requirements.
Our findings highlight the need for additional
training data and more appropriate approaches
that consider the specific linguistic character-
istics of German, as well as the importance
of the needs and preferences of target groups
with cognitive or language impairments. The
authors launched the interdisciplinary OPEN-
LS 1 project in April 2023 to address these
research gaps. The project aims to develop
a framework for text formats tailored to indi-
viduals with low literacy levels, integrate legal
texts, and enhance comprehensibility for those
with linguistic or cognitive impairments. It will
also explore cost-effective ways to enhance the
data with audience-specific illustrations using
image-generating AI.

1 Introduction

In German-speaking countries, the majority of
the population uses everyday language (Allt-
agssprache) in their daily affairs, with slight re-
gional variations. However, in written texts, a more
standardized vocabulary but with similar complex-
ity (Bredel and Maaß, 2016) is typically preferred.
In contrast, 12% of the German population faces
challenges in comprehending and utilizing stan-
dard language due to reduced literacy (Grotlüschen
and Buddeberg, 2020). For more accessible and
inclusive communication, this group depends on
comprehensibility-enhanced language. Currently,
specialized human translators convert standard lan-
guage texts into simplified versions including easy
language, with legal texts posing a particular chal-
lenge due to their technical nature and normative

1For more and up-to-date information, please visit our
project homepage https://open-ls.entavis.com

subject matter. Technical language texts represent
one end of the complexity spectrum and easy lan-
guage texts the other. This is further amplified
by the fact that both text forms are linguistic ex-
pressions of constructed languages. To categorize
training data effectively, we differentiate between
"easy language" (Leichte Sprache) and "simple lan-
guage" (einfache Sprache). "Easy language" refers
to a highly comprehensible and rule-based form
of German, whereby "simple language" is used to
describe a variety of simplified language versions
in the gray area between standard language and
easy language (Maaß, 2020). Easy language is
roughly equivalent with level A2 of the Common
European Framework of Reference for Languages
(CEFR). Since public entities in Germany are re-
quired by law to translate information and commu-
nication texts into an accessible language version
(BGG, 2022) the costs of this task burden the public
budget. Automated approaches based on machine
learning techniques promise to solve many of the
challenges of text simplification, including the diffi-
culties caused by technical language. A tool to sim-
plify documents from different domains to a degree
that facilitates these texts’ comprehensibility for
people with language or cognitive disabilities does
not only improve understanding of these texts. It is
also a key to inclusion and social participation (UN,
2008). This holds especially for domain-specific
legal texts that are the starting point for the intra-
lingual translation. In the course of our project we
aim to build on existing simplification approaches
using NLMs and adjust them with respect to the
demands of the application domain. To achieve this
objective, two specific aspects must be considered:
First, the identification and systematic categoriza-
tion of training data from the legal domain to build
a quality-assured dataset to train a large language
model for the domain specific simplification tasks
in German. Second, the fine-tuning of an NLM
under consideration of target-audience related com-
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prehensibility requirements. After a brief review of
related work on German datasets and approaches
(Section 2), this paper delivers a systematic assess-
ment of published German datasets and approaches
against the backdrop of the requirements of partic-
ipatory communication of legal texts (Section 3).
Finally, we outline the ongoing research project,
"OPEN-LS: Open Data for Easy Language", which
adopts a more target-group oriented approaches.
We also identify and address several gaps in the
existing research (Section 4).

2 Related Work

Text simplification can be described as a machine
translation task, converting one version of a lan-
guage to another (Standard → Simple). However,
compared to other machine translation tasks, au-
tomatic text simplification is a relatively new task.
It started with a rule based statistical approach in
2010 (Specia, 2010) on a small parallel Portuguese
corpus (roughly 4,500 parallel sentences). The first
German simplification corpus was introduced in
2012 (Hancke et al., 2012) and consisted of arti-
cles from GEO (similar to National Geographic)
and GEOlino (GEO’s edition for children). In the
initial paper, the corpus was only used for the train-
ing of statistical classifiers to predict the reading
level of German texts. Their corpus was later im-
proved and enlarged (Weiß and Meurers, 2018).
In 2016 the first rule-based automatic text simpli-
fication system for German was released (Suter
et al., 2016). In 2020 the first parallel corpus for
data-driven automatic text simplification for Ger-
man was published (Säuberli et al., 2020) and a
first investigation of the use of a neural machine
translation system for this problem in German was
conducted. They concluded that the Austrian Press
Agency corpus was not large enough to sufficiently
train a neural machine translation system that pro-
duces both adequate and fluent text simplifications.
In a later study, the same neural machine trans-
lation architecture was use and further evaluated
concerning the levels of simplification which were
generated by these models (Spring et al., 2021). In
2021 (Rios et al., 2021) adapted mBART (Liu et al.,
2020) with Longformer Attention (Beltagy et al.,
2020) and applied it to the task of document-level
text simplification. It has been further explored
on different domains, recently (Schomacker et al.,
2023; Stodden et al., 2023). Furthermore, the first
Decoder-only approach for German text simplifica-

tion has been released (Anschütz et al., 2023).
Automatic simplification of legal documents has

only recently, in 2022, emerged (Collantes et al.,
2015; Cemri et al., 2022; Manor and Li, 2019; Gal-
legos and George, 2022; Gille et al., 2023; Kopp
et al., 2023). All of these works had to rely on
monolingual datasets and state, that the task is still
underinvestigated. To this day, there is no dataset
with parallel legal documents (standard → simple
language). In section 5.1 we will further discuss
features and constraints of legal texts.

3 Systematic and accessibility-oriented
assessment of dataset landscape

3.1 Parallel Datasets

To find all aligned German text simplification
datasets, we focused our Google Scholar search on
papers which prioritize German by including the
word “German” in the title. Further, we wanted
to find textual datasets, so used its synonyms:
"dataset", "corpus", "data" or "texts". The task
of text simplification can be covered by datasets
with "simple" language or which investigate "read-
ability" or text "complexity". So, we concluded
on this query: allintitle: German corpus
OR dataset OR data OR texts "Simple"
OR "simplification" OR "readability" OR
"complexity". This resulted in an identification
of 14 parallel German datasets or sub-datasets as
listed in Table 1. By reading the dataset descrip-
tions in their corresponding publication and check-
ing the underlying data sources, we identified in-
ductively text genres and domains in the dataset.
We categorized them in three exclusive genres: 1)
Encyclopedic (ENC) texts are summaries of knowl-
edge either general or special to a particular field; 2)
Articles (ART), are published nonfiction texts; and
3) Unknown (UNK), are texts, of which its author
did not provide sufficient information to be clearly
categorized. In addition to the genre, we tagged the
datasets with seven domains: 1) Medical, which
covers all aspects of human health; 2) Disability,
which covers all aspects of the life and interests of
people with disabilities; 3) News, are texts about
current events without defining a field of interest;
4) Politics, discussing topics about politically view-
points or activities such as electoral programs of
political parties; 5) Government, any information,
that is published by public authorities and/or con-
taining administrative and non-partisan legal infor-
mation; 6) Encyclopedic, collection of texts that
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could form a reference work without any specific
field of interest; 7) Unknown, are texts, of which
its author did not provide sufficient information to
be clearly categorized. Aligned datasets themati-
cally focused on legal aspects were not identified.
We provide an overview of the datasets in Figure
1 by the number of documents. With a percent-
age of 73% of the documents, News is the largest
domain. The more practical and life-oriented cat-
egories Government, Disability and Medical are
forming together less than 10% of the available
data. A significant proportion of 20% of the avail-
able simple data is targeted to children. Training
machine learning models with children-oriented
simple language could lead to a bias. So, this type
of data should be used with caution.

3.2 Monolingual Datasets and Sources

To gain a more complete picture of the datasets,
we further investigated collections of German easy
language, that have no standard language equiva-
lent. Many newspapers or lexicons target children,
e.g., ”Dein Spiegel” from ”Der Spiegel”. We de-
cided to only include resources that use simple or
easy language and did not research any children-
targeted content because children-targeted content
does not necessarily mean that it is accessible for
the target we defined for simple and easy language.
Furthermore, we focused on resources that cover
different genres to show the variety of genre cur-
rently used in easy language. Many text genres
have no published parallel dataset despite the fact,
that there are monolingual resources (e.g., narrative
texts, legal texts). Similar to the parallel datasets,
the majority of texts are news and encyclopedic
articles. A comparatively large number of monolin-
gual datasets address the interests of people with
disabilities, not least because public authorities in
Germany are obliged to communicate in simple
and understandable language.

3.3 (Non-)Consideration of Accessibility and
Participation in Existing Datasets

For the reasons outlined in Section 1 we focus on
two particularly critical dimensions when consider-
ing accessibility and participation aspects for the
evaluation of existing datasets and approaches: Le-
gal texts and the concrete needs of the addressees.

Legal Texts: Legal language comprises many dif-
ferent types of text such as laws and regulations,
court judgements, witness statements, complaints,

legal opinions etc. In addition, a large (and in-
creasing) number of legal sub-domains, e.g., con-
stitutional law, criminal law, AI law, exist. All of
these different types of texts in the different (sub-
)domains share similar linguistic traits, such as the
use of legal jargon (’legalese’), formalization, long
and complex sentences, a very high degree of in-
tertextuality, mixed authorship (at least to some de-
gree), a wide range of addressees and a unique ten-
sion between accuracy and vagueness (Baumann,
2020). In addition, many legal texts are designed to
be legally binding and establish rights and obliga-
tions. In establishing and organizing legal relation-
ships these texts are fundamentally different from
statements of fact that are subject of most intralin-
gual and monolingual corpora. Thus, texts with
legal content differ in many respects from texts in
standard language. Furthermore, Legal texts ful-
fill certain text functions (DIN-Normenausschuss
Ergonomie, 2023). This text function, e.g. a legal
binding, can deviate in the translation into plain lan-
guage. These deviations should be consciously han-
dled. For these reasons alone, the training of neural
language programs for the legal domain must be
based on suitable German-language training mate-
rials.

Specialized format: We pursue a participatory
approach and collaborate with a large service
provider and stakeholder of easy language recip-
ients. The largest proportion of people with low
literacy are disabled in some form. Most of them
have difficulties to read texts, that exceed a half
DIN A4 page, even if the text is written in easy
language. Translating legal texts to a version that
both maintains its meaning and is comprehensible
to people with cognitive or language impairments,
we need to define a specialized format. We propose
the following four-level complexity hierarchy:

1. A summary in easy language of the underly-
ing standard language /legal document, which
has a pre-defined maximum length. This text
version should be easy to read and understand
for people who need low barrier text forms. It
also helps the reader to appreciate the central
meaning of the underlying document.

2. A longer version in easy language with jump
markers that refer the reader to a glossary.
This version is especially meant to be digi-
tal, so that the reader can access the glossary
by a one-click action, that does not disturb the
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Doc. Simplicity
Name Pairs Versions Genre Domain Published URL

20 Minuten 18305 STD, SIM ART News (Rios et al., 2021) 2021 -
KLEXIKON 2899 CH, AD ENC Encyclopedic (Aumiller and Gertz, 2022) 2022 (Aumiller, 2023)
APA 2472 A2, B1 ART News (Säuberli et al., 2020) 2021 -
(apo) 2311 STD, SIM ART Medical (Toborek and Busch, 2023) 2022 (Toborek et al., 2022)
Geo-Geolino 1627 CH, AD ART Science (Hancke et al., 2012) 2022 -
Lexica 1090 CH, AD ENC Encyclopedic (Hewett and Stede, 2021) 2021 (Hewett, 2022)
capito 752 A1, A2, B1 UNK Unknown (Rios et al., 2021) 2021 -
Tagesschau / Logo 415 CH, AD SUB News (Weiß and Meurers, 2018) 2018 -

378 STD, SIM ART Unknown (Battisti et al., 2020) 2020 -
(bra), (mdr), (taz) 377 STD, SIM ART News (Toborek et al., 2022) 2022 (Toborek et al., 2022)

256 CH, AD ART Disability (Klaper et al., 2013) 2013 -
(koe) 82 STD, SIM ART Government (Toborek et al., 2022) 2022 (Toborek et al., 2022)
(beb), (lmt) 66 STD, SIM ART Disability (Toborek et al., 2022) 2022 (Toborek et al., 2022)
TextComplexityDE 23 STD, SIM ENC Encyclopedic (Seiffe et al., 2022) 2019 (Naderi, 2023)
(soz) 15 STD, SIM ART Politics (Toborek et al., 2022) 2022 (Toborek et al., 2022)

Table 1: All available German parallel text simplification datasets and sub- datasets according to the Google Scholar
results by using the query in section 1. For more details about the categorization, please refer to section 3.1.
Simplicity Version are Standard Language (STD), any form of simple language (SIM), children-targeted (CH),
adult-targeted-language (AD), and A1, A2, B1 are language level from the CEFR.

reading flow.

3. A complete version in easy language that
should only reduce the linguistic complexity
and not the complexity of content. It aims at
conveying most of the (legal) statements of
the original document. We assume that this
version may be longer than the original text
on which it is based.

4. The original text in standard language.

4 Research gaps and planned
contributions

We identified and categorized existing resources for
simplifying German texts with the aim of a prepara-
tory assessment for the development of an NLM-
based approach that supports accessible commu-
nication through participation-relevant texts. Our
assessment of these intralingual-aligned and mono-
lingual datasets as well as the existing approaches
revealed the research gaps. Moreover, we observed
that all monolingual datasets use illustrations to
improve readability and intelligibility, while none
of the parallel datasets do so. All identified datasets
have a linear structure without any interactive ele-
ments, that could improve the readability. Based
on our investigation and analyses in relation to the
target group, we identify future areas of research:

1. Identification and investigation of existing
texts, which are tailored to the needs of the tar-
get group and improve the readability of texts
both in monolingual and parallel datasets.

2. Extension of parallel datasets by adding top-
ics, domains and sub-domains, that are rele-

vant for the everyday life of the target group.

3. Addition of any form of illustration to the
parallel datasets. By including visual ele-
ments, such as images, diagrams, or charts,
the dataset becomes more inclusive and acces-
sible to a wider range of users.

4. The transferability of the model to domains
and sub-domains (e.g., legal sub-domains) for
which it has not been trained.

5. The methodological development of evalua-
tion methods that allow for an assessment that
is in line with the objectives and purpose of
accessibility, inclusion and participation by in-
corporating appropriate quantitative and qual-
itative methods. These evaluation methods
may consider factors like readability scores,
user feedback, comprehension tests, and other
relevant metrics to measure the effectiveness
of the model in promoting accessibility, inclu-
sion, and participation.

We want to tackle all five research gaps in the
future, so that researchers and developers can en-
hance the quality and applicability of language
models for the target group, making information
more accessible and engaging for a broader au-
dience. Our current focus is to make legal texts
more accessible in German easy language. Docu-
ments from this domain are often pivotal to a self-
empowered life. Based on texts in this domain, we
aim at designing specialized accessibility-enhanced
formats.
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Limitations

In this work, we examined the current state-of-the-
art of German text simplification. It reviews neural
language models for simplifying German texts and
assesses their suitability for legal texts and acces-
sibility requirements. The general methodology
of this paper is applicable for any domain or lan-
guage, but only works for the task of text simpli-
fication. Furthermore, the review only focuses on
German, so no definitive conclusions about the sit-
uation for other languages can be made based on
this work alone. Additionally, this paper relied on
the current draft version of the DIN standard (DIN-
Normenausschuss Ergonomie, 2023), the final ver-
sion and its implications could deviate. More-
over, the DIN standard (DIN-Normenausschuss
Ergonomie, 2023) is based on assumptions about
its addressees, which we have not questioned fur-
ther but simply adopted. These assumptions, e.g.
include a homogeneity bias. Another limitation
would be the limited use for pure information texts
or transfers into information texts, i.e. that the tar-
get text function (in the sense of DIN) is always an
informative one.
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Abstract

Text classification is an area of NLP in
which major improvements have been ob-
served in recent years, primarily via pre-
training and fine-tuning of large language
models (LLMs). However, low-resource
languages still face major challenges. We
explore how to address this problem us-
ing different text classification tasks across
two low-resource languages. Our focus
is on adopting multilingual LLMs using
data expansion techniques (with and with-
out machine translation). Results indi-
cate that pre-trained, fine-tuned models of
the resource-poor language appear more
promising than multilingual models, we
also find that translating into a resource-
poor language is not beneficial in our ex-
perimental settings.

1 Introduction

Few languages can be considered resource-rich,
the vast majority are not despite a possibly very
large pool of speakers. For example, 83 million
people speak Marathi (only outnumbered in India
by Hindi and Bengali). Malayalam is another In-
dian language with a sizeable population of speak-
ers (37 million). However, in the context of NLP
both languages are considered resource-poor, and
more research has been done on more prominent
Indian languages like Hindi (Joshi et al., 2016) or
Bengali (Patra et al., 2018). In general, resource-
poor languages lack annotated training data be-
cause there are often no trained linguistic anno-
tators for these languages, and the markets may
be too small or premature to invest in such train-
ing (Ruder et al., 2019). But many people speak
such languages and the amount of textual content
on online platforms such as Twitter keeps grow-

ing. We adopt both languages as exemplars for
other low-resource languages. We look at three
different classification tasks (sentiment analysis,
hate speech detection and claim detection) com-
paring language-specific fine-tuning with multi-
lingual LLMs. We also look at data expansion
by adding training data available from a high-
resource language (either with or without first
translating into our language of interest). This
approach has some similarity with (but is dif-
ferent from) data augmentation that focuses on
adding synthetic data such as via generating new
data samples using autoregressive models (Wul-
lach et al., 2021; Whitfield, 2021). We see our
contribution as exploratory work into the prob-
lem which offers some interesting insights that can
serve as a starting point for more work. To support
reproducibility we also make all code available.1

2 Related Work

LLMs like BERT (Devlin et al., 2019) have es-
tablished a new state of the art for text classifica-
tion tasks, e.g. (Chouikhi et al., 2021; Chan et al.,
2020) outperforming traditional ML approaches
using Naive Bayes or Support Vector Machines
(SVM) (Schmidt et al., 2022; Geetha and Karthika
Renuka, 2021). Among a wide range of text classi-
fication tasks, sentiment analysis, hate speech de-
tection and claim detection can be seen as typi-
cal classification problems (Medhat et al., 2014;
Schmidt and Wiegand, 2017; Levy et al., 2014;
Konstantinovskiy et al., 2021). However, research
is lacking for resource-poor languages. Neverthe-
less, numerous test collections have been created
for low-resource language, e.g. for sentiment anal-
ysis (Kulkarni et al., 2021), hate speech detection
(Pitenis et al., 2020; Çöltekin, 2020; Mandl et al.,

1https://github.com/MaxiWeissenbacher/
exploratory_bert_v2/tree/main
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2021), and claim detection (Kazemi et al., 2021).
Snæbjarnarson et al. 2023 demonstrated that the
transfer learning performance of low-resource lan-
guages (Faroese in their case) could substantially
improve by exploiting data and models of closely-
related high-resource languages (other Scandina-
vian languages). That is a direction we consider
promising and we explore how incorporating ad-
ditional datasets will affect a transformer model.
This is an important research topic to establish
generalizability and transferability (Mandl et al.,
2021; Fortuna et al., 2021).

3 Methodology

We explore five different approaches. The first
approach focuses on whether fine-tuned models
of a resource-poor language can perform better
than multilingual models like mBERT and XLM-
RoBERTa. The second, third, and fourth approach
investigate whether it is beneficial if additional
data gets translated into the resource-poor lan-
guage and added for training. The fifth approach
takes the inverse view: the dataset of the resource-
poor language gets translated into a resource-
rich language (English). After the translation pro-
cess, fine-tuned English models are used to see if
performance increases can be observed.

3.1 Datasets
As the availability of (even high-resource) lan-
guage resources varies from one task to another
we tap into different languages, such as German,
Hindi, and English, in addition to the baseline
datasets in this work.

Sentiment Analysis. We consider the L3-
Cube-MahaSent dataset as our baseline dataset for
the sentiment analysis domain, as it is one of the
best-known resources in Marathi language. It con-
tains tweets classified as positive, negative, and
neutral. It has 12,114 train, 2,250 test, and 1,500
validation examples (Kulkarni et al., 2021). For
approaches with data expansion, four additional
datasets with the same labels but different annota-
tion guidelines were used (see Appendix A.1) and
added:

• GFES Dataset (DE), (Schmidt et al., 2022)

• SB10k Dataset (DE), (Cieliebak et al., 2017)

• Kaggle Covid Dataset (EN), (Miglani, 2020)

• Sentiment Analysis Dataset (HI)

Hate Speech Detection. For this task, the
datasets of HASOC2021 Sub-task 1A were used,
consisting of datasets in three different languages.
The task is a binary classification in which partici-
pating systems are required to classify tweets into
two classes, namely: Hate or Offensive (HOF) vs.
Non-Hate and Non-Offensive (NOT). The Marathi
dataset contains 1,874 tweets, the English dataset
3,843 tweets, and the Hindi dataset 4,594 tweets.
The annotation quality of this dataset is considered
to be reliable (Modha et al., 2021).

Claim Detection. The dataset from Kazemi
et al. 2021 was used here. It contains content in
high-resource (English, Hindi) and lower-resource
(Bengali, Malayalam, Tamil) languages. We used
Malayalam as our low-resource baseline language,
added texts from the remaining languages and
only used texts which were labeled as ”Claim” and
”No Claim”. Therefore a binary classification task
was conducted. With this, 4,017 texts remain in
the dataset, with 730 texts in Malayalam. Three
different annotators worked on this dataset, and
the annotation quality is also considered reliable
(Kazemi et al., 2021).

3.2 Experimental Setup and Implementation

We use Huggingface for all models and their li-
brary ”Simpletransformers” (Wolf et al., 2020).
We used an “NVIDIA Tesla K80” GPU server
to train the different text classification models.
All notebooks run on the freely available ver-
sion of Google Colaboratory (all codebooks in our
GitHub repository).

For translating the datasets to Marathi or trans-
lating the Marathi datasets to English, the Python
library ”Googletrans”2 was used.

The project also investigates how preprocessing
the data influences the performance of transformer
models. For this, preprocessing steps like re-
moving links, square brackets, punctuation, words
containing numbers, and lowercasing the text were
used (we also tried over- and undersampling with
inconclusive results, so they were not considered
further).

We computed Accuracy and weighted F1 if the
distribution of the labels is not balanced.

Each model is fine-tuned for three epochs, a
train and evaluation batch size of 32, the learn-
ing rate of 2e-5, the default epsilon of 1e-8 to find
a better minimum for the loss function and Adam

2https://pypi.org/project/googletrans/
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Figure 1: Sentiment Analysis Results (F1 scores)

Figure 2: Hate Speech Detection Results (F1 scores)

Figure 3: Claim Detection Results (F1 scores)

optimizer for stochastic gradient descent (Tato and
Nkambou, 2018).

The models are trained and evaluated in a 5x5
cross-evaluation setting, and the average score
over five runs gets reported. For evaluation, we
compare against baseline approaches using two-
tailed t-tests (with p < 0.05).

3.3 Model Selection

In this work we focus on both multilingual and
monolingual BERT models, as they count as
strong baselines for text classification tasks. The
following multilingual models are used (details in
Appendix A.2): mBERT-Cased, XLM-RoBERTa.
And following monolingual models are used:
IndicBERT, MahaBERT, MahaAlBERT, Ma-
haRoBERTa, BERTweet, TimeLMs (Cardiff
RoBERTa).

4 Results

4.1 Fine-tuning on resource-poor language

The first approach compares fine-tuned models of
a resource-poor language with multilingual mod-
els like mBERT and XLM-RoBERTa. It focuses
on sentiment analysis and hate speech detection
datasets in Marathi. The models are trained on
baseline Marathi datasets when no additional data
is available. The results (Figures 1 and 2) show
that all fine-tuned Marathi models perform bet-
ter than mBERT and XLM-RoBERTa in senti-
ment analysis. The best model, MahaRoBERTa,
achieves a statistically significant improvement
over the best multilingual model. Other Marathi
models also exhibit an upward trend in perfor-
mance, although not statistically significant. Ma-
haRoBERTa with the hyperparameters we have
used outperforms the baseline results and results
from related studies (Kulkarni et al., 2021; Ve-
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lankar et al., 2022). For hate speech detection
the pattern is slightly different. Here IndicBERT
and MahaAlBERT had lower F1 scores. How-
ever, the best performing models are still Marathi
fine-tuned MahaBERT and MahaRoBERTa, sig-
nificantly better than the best multilingual model,
mBERT. The MahaBERT model would have
ranked 6th place for task 1A at the HASOC Sub-
track at FIRE 2021 (Mandl et al., 2021).

4.2 Adding translated data
The second approach examines the impact of
translating texts into a resource-poor language and
adding them for training across three text clas-
sification domains. Results show that translat-
ing datasets to Marathi slightly decreases F1 for
multilingual models in sentiment analysis (see
Figure 1 - ’+Translation to MR’). However, a
slight increase is observed for IndicBERT com-
bined with the translated GFES dataset. In hate
speech detection (Figure 2), adding translated En-
glish and Hindi datasets benefits both multilingual
and Marathi models, except for MahaBERT. The
translated Hindi dataset contributes more to F1
improvement. In claim detection (Figure 3) for
Malayalam, adding translated English data signif-
icantly improves results compared to the baseline
model. The approach occasionally helps improve
weighted F1-score for datasets in Hindi, Tamil,
and Bengali, but not consistently.

4.3 Adding non-translated data
This third approach compares whether it is worth
translating the data to a resource-poor language
or if the multilingual models perform better if the
data is added in its original form. Figure 1 shows
the results (”+Non-TRANSLATED DATA”). The
Sentiment Analysis approach shows that adding
the non-translated data performs slightly better
than adding translated data for training. The same
pattern can be observed for hate speech detec-
tion and the claim detection. However, there is
no statistical significance between the translation-
and non-translation approaches. This approach
has only been done for the multilingual models
mBERT and XLM-R, because less accurate results
are expected if English or German data is added to
fine-tuned-, monolingual Marathi models.

4.4 Adding all datasets combined
For this fourth approach, it was tested to apply
all available datasets combined, translated and not

Figure 4: Sentiment Analysis (F1 scores)

Figure 5: Hate speech Detection (F1 scores)

Figure 6: Claim Detection results (F1 scores)

translated, for training and if this contributes pos-
itively to the model performance. For all three
classification domains, the same pattern can be
observed. Appending all the non-translated data
achieves better results than appending all trans-
lated datasets. Compared to the baseline approach
of the multilingual models we see significant im-
provements for hate speech and claim detection
classification but not for sentiment analysis.

4.5 Translating to English

The fifth and final approach involved translat-
ing resource-poor language datasets into English.
This allowed the use of fine-tuned English clas-
sification models like BERTweet and TimeLMs
(Cardiff Roberta). Results (Figure 4, 5 and 6)
show that TimeLMs performed best across all
tasks, with statistical significance in sentiment
analysis and hate speech detection. Notably,
the approach without preprocessing the data per-
formed better than preprocessing before training.
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5 Discussion

The first approach (fine-tuning baseline) showed
that if fine-tuned models of the resource-poor lan-
guage are available, it makes sense to use them,
as they showed improved results on multilingual
models. This is in line with Velankar et al. 2022
who compared mono vs multilingual models for
text classification.

For the second approach (where we expanded
the dataset by adding translated data), we saw no
improvements for the L3-Cube-MahaSent dataset.
The dataset is already quite big with more than
12,000 train texts and a balanced distribution of
the labels. Adding more data makes the model
noisy, as the label distribution is less balanced than
the baseline model. For hate speech detection it
was beneficial to add translated data. This could
be because the HASOC2021 dataset is quite small
with 1,874 tweets and more data helps the model
make better decisions. Therefore, if researchers
only have small datasets available, it might be use-
ful to search for additional datasets, which can be
from a different language, and translate them into
the target language. This is not guaranteed though,
as the claim detection task is in a similar situation
with a small amount of data, and adding transla-
tions of different datasets did not help.

In general, the third and fourth approaches
(expanding by adding non-translated data and
expanding by combining all data, respectively)
showed the pattern that, for multilingual models,
it is better just to append the non-translated data.
Reasons for this can be that there is some noise
when translating the texts, which sometimes leads
to worse model decisions (in line with Ponti et al.
2021). They argued the main limitation of the
translation process is that sentences that are pos-
sibly not faithful to the original in the target lan-
guage and/or not grammatical in the source lan-
guage are fed to the classifier, which degrades its
performance (Ponti et al., 2021). The resources for
the translation process can therefore be saved.

The fifth and final approach (translating into En-
glish to tap into resource-rich resources for fine-
tuning) was chosen because it is challenging to
preprocess tweets in Marathi or Malayalam due
to the different alphabet and there are not many
open-source tools available to do so. The idea
was to bring those texts to English and use the
well-established English preprocessing methods.
Clearer results with the preprocessing were ex-

pected, but the opposite was the case: The mod-
els performed better without preprocessing. This
could be because some important information for
the model gets removed here. For example, a
high volume of punctuation could hint at a bad
sentiment, but this information gets lost with pre-
processing. Still, the results show the benefit
of first translating data to English and then us-
ing fine-tuned English models like BERTweet or
TimeLMs. For future research this appears to be
a promising directions. Overall, the results show
that the best performance was achieved by us-
ing fine-tuned language-specific models like Ma-
haRoBERTa or MahaBERT.

6 Conclusion

We explored different approaches to enhance the
performance of multilingual classification models
for low-resource languages, specifically Marathi
and Malayalam. Our findings suggest that append-
ing additional datasets in their original form to
multilingual models is more effective than trans-
lating them to the resource-poor language. Adding
extra data is particularly beneficial for small base-
line datasets. When the baseline dataset was trans-
lated to English without preprocessing, fine-tuned
English models outperformed multilingual mod-
els. However, the best results were obtained by
using fine-tuned models of the resource-poor lan-
guage. In conclusion, researchers can consider us-
ing translation approaches to improve multilingual
language models, but if fine-tuned models for the
resource-poor language already exist, they tend to
yield the best results.

7 Ethical Considerations

Whenever social media data is being processed
ethical concerns naturally arise. This is particu-
larly true if the data contains some personal in-
formation. We use existing test collections in our
work to minimize such problems. In addition to
that we operate within the strict framework im-
posed on any research within our organisation.

Wider issues emerge from the actual classifica-
tion tasks. The balance between free speech and
censorship in hate speech detection is an issue of
ongoing debate that also has ethical questions at
its heart (Zimmerman et al., 2018). Claim detec-
tion also gives rise to such issues (less so sentiment
analysis).
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8 Limitations

This work also has a number of limitations. First
of all, the L3-Cube-MahaSent dataset from Kulka-
rni et al. 2021 is limited to tweets from political
personalities and activists, which may not be rep-
resentative of the entire Marathi-speaking popula-
tion. The datasets for the hate speech and claim
detection task are relatively small, making it more
challenging to ensure that the training data is di-
verse and representative. It is important to be
aware of these limitations and to make efforts to
mitigate biases in the model’s training and eval-
uation. Also, low-resource languages often have
limited digital footprints, making it difficult to col-
lect sufficient data for training text classification
models. Another difficulty that comes with the
datasets, especially with the open-source Kaggle
datasets, is that it is unclear how the labeling pro-
cess looked like and what the annotator agree-
ment was. This is indeed important information,
as the data quality can have a huge impact on the
model performance. One last limitation of this
work is that different languages for different NLP-
tasks have been chosen as low-resource languages
(Marathi and Malayalam), making it hard to gen-
eralize the findings. At first, we wanted to use a
Marathi dataset for claim detection as well. But
to the best of our knowledge, we did not find one
and therefore used the Malayalam dataset to see
similarities with another language.
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A Appendices

A.1 Sentiment Analysis Datasets

- German Federal Election Sentiment Dataset
(GFES):
Schmidt et al. provided a German dataset of 2000
annotated tweets of German politicians during the
federal election in 2021 (Schmidt et al., 2022).
The annotation of the data has been done by stu-
dents and employees of the University of Regens-
burg, and the annotation quality counts as reliable.
- SB10k Dataset:
Cieliebak et al. provided a big dataset of 10.000
annotated German tweets for Sentiment Analysis
(Cieliebak et al., 2017). Researchers have done
annotation, so the annotation quality counts as re-
liable.
- Kaggle Coronavirus Dataset:
This dataset from Kaggle3 with 41.000 labeled En-
glish tweets was used to see if big, open-source
datasets can be used to improve the accuracy of
language models. Tweets with the label ”Ex-
tremely Positive” or ”Extremely Negative” were
re-labeled as ”Positive” and ”Negative”. There are
no insights on how the data was annotated, so the
annotation quality counts as questionable.
- Hindi Sentiment Analysis Dataset:
Also, one dataset with an Indian language, Hindi,
was used for this project. The dataset consists of
9077 manually labeled tweets in Hindi. Unfortu-
nately, the Kaggle link is no longer available, but
as the experiments with this dataset have already
been done, the dataset is still included in this work.

A.2 Models used in this work

A.) Multilingual-BERT-Cased (mBERT-
Cased)4:
mBERT is a transformer-based model, pre-trained
on a large corpus of multilingual data (104
languages) in a self-supervised fashion. The
mBERT-Cased model is case-sensitive, so it
makes a difference, for example, for ”Hello
World” and ”hello world” (Devlin et al., 2019).

B.) XLM-RoBERTa (XLM-R)5:
XLM-R is a multilingual version of RoBERTa,
pre-trained on 100 languages. Conneau et al.
found that this model performs exceptionally well
on low-resource languages (Conneau et al., 2019).

3https://www.kaggle.com/datasets/datatattle/covid-19-
nlp-text-classification?select=Corona NLP train.csv

4https://huggingface.co/bert-base-multilingual-cased
5https://huggingface.co/xlm-roberta-base

C.) IndicBERT6:
A multilingual ALBERT model released by
Ai4Bharat trained on large-scale corpora. The
training languages include 12 major Indian lan-
guages. The model has been proven to work better
for tasks in Indic language (Kakwani et al., 2020).

D.) MahaBERT7:
A multilingual BERT (bert-base-multilingual-
cased) model fine-tuned on L3Cube-MahaCorpus
and other publicly available Marathi monolingual
datasets (Joshi, 2022).

E.) MahaAlBERT8:
A monolingual AlBERT model, trained on
L3Cube-MahaCorpus and other publicly available
Marathi monolingual datasets (Joshi, 2022).

F.) MahaRoBERTa9:
A multilingual RoBERTa (xlm-roberta-base)
model fine-tuned on L3Cube-MahaCorpus and
other publicly available Marathi monolingual
datasets (Joshi, 2022).

G.) BERTweet10:
A RoBERTa based model pre-trained on 850M
English tweets. (Nguyen et al., 2020).

H.) TimeLMs11:
A RoBERTa based model pre-trained on English
tweets and finetuned for sentiment analysis with
the TweetEval benchmark (Loureiro et al., 2022).

6https://huggingface.co/ai4bharat/indic-bert
7https://huggingface.co/l3cube-pune/marathi-bert
8https://huggingface.co/l3cube-pune/marathi-albert-v2
9https://huggingface.co/l3cube-pune/marathi-roberta

10https://huggingface.co/vinai/bertweet-base
11https://huggingface.co/cardiffnlp/twitter-roberta-base-

sentiment-latest
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Abstract

We report on experiments to align discourse
connectives from two language-specific con-
nective lexicons (German and French) by their
relation sense. In this case study, we focus
on concessive connectives, and align them us-
ing a parallel corpus. The ultimate goal is to
arrive at bi- (or multi-)lingual connective lexi-
cons, that at the same time provide insights on
the “semantic space” that connectives cover in
different languages.

1 Introduction

A typical way to establish coherence in a text is
through the use of discourse connectives. Such
markers (single words or – potentially discontinu-
ous – phrases) convey a specific relation; contrast
(e.g., “but”), contingency (e.g., “if...then”) or cause
(e.g., “therefore”) that links propositions in the text.
They can be ambiguous in two ways, and can either
signal a discourse relation between two proposi-
tions (1) or sentential reading (2).

(1) It would have made a dreadfully ugly child,
but it makes rather a handsome pig. (Carroll,
1893)

(2) “I beg your pardon?” said the Mouse, frown-
ing, but very politely. (Carroll, 1893)

In addition, certain connectives can express multi-
ple senses. In (3), once signals a temporal relation,
whereas in (4), it signals a conditional relation.

(3) Once it gets there, a company can do with
it what it wishes. (wsj_0989 (Marcus et al.,
1993))

(4) Normally, once the underlying investment is
suspended from trading, the options on those
investments also don’t trade. (wsj_1962 (Mar-
cus et al., 1993))

Discourse relations can also be realized implic-
itly and expressed, for example, by syntactic par-
allelism, layout, but explicit discourse markers are
considered important indicators of coherence rela-
tions as explored in various frameworks like Rhetor-
ical Structure Theory (RST) (Mann and Thomp-
son, 1988) and Segmented Discourse Representa-
tion Theory (SDRT) (Asher and Lascarides, 2005).
After attempts to exhaustively list such markers
(Knott and Dale, 1994), specific discourse connec-
tive or discourse marker lexicons started to emerge,
with the first documented lexicon being for German
(Stede and Umbach, 1998), and following ones for
French (Roze et al., 2012), Italian (Feltracco et al.,
2016), Czech (Mírovský et al., 2016) and several
other languages.

Once language-specific lexicons are created and
augmented with semantic information, parallels
can be drawn based on the distribution of relation
senses1 across languages. In addition, since con-
nectives can pose challenges to translators and (L2)
language learners, having a layer over language-
specific lexicons that aligns entries across lan-
guages can be a useful resource. Earlier work in
this direction has been carried out by Bourgonje
et al. (2017). We use a similar approach, but work
on French and German, and base our work on Lex-
Conn (Roze et al., 2012), DiMLex (Stede and Um-
bach, 1998) and a parallel corpus. The main con-
tribution of this paper is to present the results of
a case study on aligning French and German con-
nectives that can signal a concessive relation. Our
code is made publicly available2.

In Section 2 we summarize related work on con-
nective lexicons. Section 3 explains the corpus and
alignment procedure. Section 4 presents the results,
and Section 5 sums up our main findings.

1Inventories of relation senses for a specific paradigm or
theory are, presumably, language-independent.

2https://github.com/SophiaRauh/fr_de_
connectives_alignment
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2 Related Work

Several language-specific lexicons are available
online. In addition to the ones mentioned in Sec-
tion 1, lexicons exist for English (Das et al., 2018),
Dutch (Bourgonje et al., 2018), Bangla (Das et al.,
2020), Portuguese (Mendes and Lejeune, 2016),
Nigerian Pidgin (Marchal et al., 2021) and Turk-
ish (Zeyrek and Başıbüyük, 2019). These lexicons
are conveniently bundled on the online platform
Connective-Lex3 (Stede et al., 2019). While this
platform already allows multi-lingual comparison
of connective groups (grouping by part-of-speech
tag or relation sense), with our contribution we aim
to expand this multi-lingual aspect to individual
connectives.

The lexicons differ slightly with regard to their
take on connectives (for example, what syntactic
classes to include, and how to encode morpholog-
ical variation). A comprehensive discussion is of-
fered by (Danlos et al., 2018). We like to note that
it is exactly the kind of cross-lingual investigation
of connectives we are reporting on in this paper that
allows subtle differences to surface, and enables
refinement of the understanding and definition of
connectives.

3 Method & Data

3.1 Lexicons and Parallel Corpus
Our starting point is the list of entries from DiM-
Lex and LexConn, both of which are available
online4. We follow Bourgonje et al. (2017) by
focussing on concessive connectives for this case
study. While the discourse senses of the German
connective lexicon are based on the Penn Discourse
Treebank (PDTB) (Webber et al., 2019) senses,
the French discourse relations are an extended ver-
sion of SDRT. Both include the relation conces-
sion, though interestingly, German concessive con-
nectives frequently align with violation in French,
which is equivalent to the PDTB sense exception.

We used the Europarl parallel corpus (Koehn,
2005), as the translations are curated, which avoids
the risk of including automatically created low-
quality translations. The French part of the corpus
consists of 63.2 million tokens and the German
part consists of 54.6 million tokens. For the word

3http://connective-lex.info/ (URLs were all
last accessed on 2023-05-06.)

4http://www.linguist.
univ-paris-diderot.fr/~croze/,
https://github.com/discourse-lab/dimlex

alignment, our data was tokenized and converted
to lower case.

3.2 (Semi-) Automated Word Alignment
Procedure

For the word alignment we used eflomal5, which is
based on efmaral (Östling and Tiedemann, 2016).
The alignments are saved in “Pharaoh” format, i.e.
for the (pre-tokenized) input
schwarzes Haus || maison noire
the representation “0-1 1-0” is returned, indicat-
ing that the first (0-indexed) token in the source is
aligned to the second token in the target, and the
second token in the source is aligned to the first to-
ken in the target. NULL alignments are not present
in the output.

Once these alignments were calculated for the
entire corpus, we used both the German DiMLex
connectives and the French LexConn connectives
as seed lists to extract the probability that a certain
connective is aligned to a word or phrase in the tar-
get language.6 This process is straightforward for
single-word connectives. For multi-word (phrasal)
connectives, the alignment probabilities are ob-
tained by concatenating the single-word alignments
that constitute the phrase. The results were stored
in a JSON file and are further processed in a semi-
automated way:

1) If contractions of prepositions and articles oc-
cur at the end of a phrase, they are replaced with
the preposition only, since the articles are not part
of the connective. For example, the contracted Ger-
man word zur (“to the”) is replaced by zu (“to”) and
the French contraction aux (“in the”) is substituted
with à (“in”).

2) Since connectives are frequently (sub-)clause
initial, hence alignments may include punctuation,
punctuation is removed, i.e., “, weil” (“, because”)
becomes “weil”.

3) If tokens were NULL-aligned, we included
an empty string as alignment, as this influences
alignment probabilities. Words that were aligned to
punctuation marks were aggregated with the empty
string placeholder.

5https://github.com/robertostling/
eflomal

6Since the values are extracted from the entire corpus, they
are not probabilities, but actual counts converted into floating
point values by dividing by the total frequency. We use the
term probability throughout the rest of this paper, though,
since we interpret this number as the probability that a certain
word or phrase in the source language is aligned to a certain
word or phrase in the target language.
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This slightly modified version of the extracted
word alignments was stored in a dictionary, in
which we then proceeded to look up connectives
from source to target language.

3.3 (Semi-) Manual Filtering
Looking up connectives in our dictionary resulted
in several incorrect or irrelevant target words or
phrases. Many of these could be discarded in a
semi-automated way.

First, for some instances, the alignment probabil-
ities to reasonable candidates were very low. For
example, after the above mentioned adjustments,
dabei (“thereby/at that”) aligned to an empty string
in 34% of cases, and to en, il, à and ce in 7, 5, 3
and 2% of cases, respectively. This might be due
to eflomal alignment errors, or could be related to
the frequency of sentential instances (e.g., example
(2) in Section 1) far outweighing the frequency of
discourse reading instances (e.g., example (1) in
Section 1) for some connectives.

In (5), for example, dabei does not have a con-
nective reading and it is translated with dans ce
processus (“in this process”).

(5) Inwieweit wird das Europäische Parlament
dabei eine Rolle spielen können?
Dans quelle mesure le Parlement européen
pourra-t-il jouer un rôle dans ce processus?
To what extent will the European Parliament
be able to play a role in this (process)?

Using the adjusted alignment probabilities, we
filter out all words and phrases below a certain
threshold. Due to the concatenation process to ar-
rive at phrase alignment probabilities, we found
that working with two different threshold values
(one for single word connectives, one for phrasal
connectives) worked best. In addition, we use a
combination of relative and absolute thresholds.
First, all single word connectives with a probabil-
ity below 2.1%, and all phrasal connectives with a
probability below 1.4%, were discarded. Because
some very low-frequent connectives can have a rel-
atively high probability, we furthermore discarded
connectives below an absolute count in our corpus
(20 for single words, 10 for phrases).

Second, results for phrasal connectives were of-
ten only partially relevant. For example, for the
French connective alors même que (“even though”),
the German phrase obwohl die (“although the”)
was among the candidates, whereas the relevant

German connective would be only obwohl (“al-
though”). These only partially relevant alignments
could often be filtered out on syntactic grounds,
by looking for prepositions, articles and pronouns.
In addition, phrasal connectives led to incomplete
target phrases. For the French connective c’est
pourquoi (“that is why”), we found c’. . . pourquoi
among the alignments. If we found the com-
plete phrase among the alignment results as well,
these incomplete alignments were removed from
the list of candidates. Some phrasal connectives
truly are discontinuous (e.g., entweder. . . oder (“ei-
ther. . . or”)), while for others, the connective was
not discontinuous but the correct/relevant align-
ment was just not in the set of results. One example
is the 4-token connective soit dit en passant (“by
the way/incidentally”), for which only soit dit . . .
passant was among our results. This processing of
phrasal connectives therefore had to be done in a
manual way.

3.4 Augmentation
The combination of semi-automated filtering and
manual curation of the results described above
mainly deleted irrelevant candidates, and com-
pleted some partially correct ones. Since word
alignments are extracted from parallel sentences
(hence do not go beyond sentence boundary), we
constructed sentence tri-grams and also extracted
word alignments from those. This procedure lead
to further completion of candidates.

Furthermore, this manual augmentation step
involved weeding out non-connective, or non-
concessive candidates. For example, the concessive
connective entgegen (“contrary to”) was aligned to
contre (“against”). Looking at the sentences re-
vealed that entgegen does not have a connective
reading when aligned to contre, which is also not a
connective.

(6) Das Volk hat das Recht, innerhalb der Grenzen
des Gesetzes zu demonstrieren, wenn es das
Gefühl hat, dass die Regierung entgegen ihrer
Interessen handelt.
La population est autorisée à manifester dans
les limites de la législation lorsqu’elle estime
que le gouvernement agit contre ses intérêts.
The population has the right to demonstrate
within the limits of the law when it feels that
the government is acting against its interests.

Some candidates were excluded on these
grounds. Finally, other candidates were deleted,
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modified or completed (for missing particles) based
on intuition. After this final curation of the candi-
dates, we arrived at a list of aligned French con-
nectives for the German seed list, and vice versa.
We projected the final list of the target language
connectives back onto the source once more, to see
if we would get any additional results. In principle,
this procedure could be repeated until no more new
instances are found. Due to the amount of manual
labour involved in the process though, we stopped
after 3 “turns” (from French to German, back to
French, and then back to German again).

4 Results & Discussion

Recall that we start with all connectives that
have concession as their second-level sense in the
PDTB3 Sense Hierarchy. The final alignments are
included in Appendix A, Tables 1 and 2, where
“-” indicates an empty alignment. The parentheses
in the left column contain the absolute occurrence
of the connectives in the corpus, whereas those in
the right column indicate the relative occurrence
of the aligned connectives. To get an overview of
the distribution and the degree of ambiguity (i.e.,
different senses that groups of connectives can ex-
press), we include Figures 2 and 3 in Appendix
A. The diagrams show which discourse relations
align with which based on the connectives of the
final alignment. For comparison, the SDRT senses
of the French connectives are mapped to PDTB3
senses using the mapping included in Figure 1 in
Appendix A.

Since many connectives can express multiple
senses, Figures 2 and 3 also include second-level
senses other than just concessive; we group all con-
nectives by the set of senses they can express. Gen-
erally, Figure 3 looks much more straightforward;
the set of connectives that can (only) signal conces-
sion map to a set in German that also exclusively
signals concession, and the ambiguous sets map
to each other relatively neatly. Figure 2 is much
less straightforward. The set that exclusively sig-
nals concession in German maps to a much wider
range of senses in French. A case in point is “den-
noch”, which can only signal concession, which
is aligned to “néanmoins” and “cependant” (ex-
ception), “pourtant” (exception or concession) and
“mais” (contrast or exception). It is interesting to
further look into whether particular corpus exam-
ples of “dennoch” also carry some aspect of the dif-
ferent senses of the aligned connectives in French.

For example, “dennoch” might be relatively am-
biguous, as its “semantic space” (for lack of a better
description) is covered by several different connec-
tives in French. These semantic spaces could sur-
face through clusters of connectives, which can be
explored in this bi-lingual setup. The German con-
nectives “allerdings, dennoch, doch, gleichwohl,
jedoch” seem to constitute one potential example
of such a cluster, and map to “cependant, néan-
moins, pourtant, mais”, and “obgleich, obwohl,
wenn auch, wenngleich” mostly map to “bien que,
même si, alors que”. While the PDTB senses are
already such clusters in themselves, our approach
might lead to a more fine-grained classification or
grouping of individual connectives’ meanings. Fur-
thermore, interestingly, there seem to be asymme-
tries in the mapping: The German “aber” frequently
maps only to “mais” and “cependant”. In reverse,
however, “mais” maps to a larger set of German
connectives (“aber, sondern, doch, jedoch”). While
the reason for some of these asymmetries might just
be low frequency, both “aber” and “mais” are fairly
common connectives, indicating that this might not
just be an artefact of the data we used.

In terms of future work, we plan to include con-
nective disambiguation modules to separate con-
nective instances from their sentential interpreta-
tion surface forms. For German, a connective clas-
sifier has been developed (Bourgonje and Stede,
2018). To the best of our knowledge, no such (pre-
trained) classifier is available for French, so for
this language, we consider the use of annotation
projection (Sluyter-Gäthje et al., 2020).

Furthermore, since the performance of our word
aligner is critical for downstream processing, it
would also be interesting to evaluate this module in
isolation by creating a gold set based on our data.

5 Conclusion

We present work on aligning concessive con-
nectives in German and French, using word-
alignments extracted from a parallel corpus. Our
approach is semi-automated and the code is made
available on GitHub. We provide some first in-
sights on how particular relation sense groups are
covered by the two languages. In addition to val-
idating the mono-lingual connective lexicons, we
hope that this contributes to our ultimate goal of
providing insights on how discourse relation senses
are covered in different languages through explicit
markers (i.e., discourse connectives).
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A Appendix

Figure 1: SDRT to PDTB Sense Mapping

DE Connective (frequency) FR Connective(s)
aber (98898) mais (0.65), - (0.09), cependant (0.04)
abgesehen davon (553) cela dit (0.06), - (0.05), par ailleurs (0.03), ceci dit (0.02)
allerdings (14935) cependant (0.18), mais (0.16), - (0.08), néanmoins (0.06), pourtant (0.02)
dennoch (7920) néanmoins (0.19), cependant (0.13), pourtant (0.09), mais (0.08), - (0.07)
dessen ungeachtet (187) néanmoins (0.12)
doch (30068) mais (0.38), - (0.2), cependant (0.03), pourtant (0.03)
gleichwohl (1714) cependant (0.12), néanmoins (0.12), mais (0.09), - (0.08), pourtant (0.07)
immerhin (1023) - (0.26), après tout (0.11), pourtant (0.05), quand même (0.03),

tout de même (0.02), au moins (0.02)
jedoch (43525) mais (0.26), cependant (0.16), - (0.09), néanmoins (0.05), pourtant (0.03)
nebenbei gesagt (59) soit dit en passant (0.24)
nichtsdestotrotz (618) néanmoins (0.38), cependant (0.09), malgré tout (0.02)
nichtsdestoweniger (213) néanmoins (0.4)
obgleich (1612) bien que (0.18), même si (0.15), - (0.09), alors que (0.05), mais (0.05),

bien qu’ (0.05), même s’ (0.03), alors qu’ (0.02)
obwohl (10904) bien que (0.19), même si (0.12), bien qu’ (0.06), - (0.06), alors que (0.06),

alors qu’ (0.03), même s’ (0.02)
trotzdem (3585) néanmoins (0.18), pourtant (0.1), cependant (0.09), - (0.08), mais (0.05),

malgré tout (0.04), quand même (0.03)
wenn auch (1849) même si (0.09), bien que (0.06), - (0.06), mais (0.05), bien qu’ (0.03),

quoique (0.03), même s’ (0.01)
wenngleich (1463) même si (0.23), bien que (0.15), mais (0.06), - (0.05), même s’ (0.05),

bien qu’ (0.04)

Table 1: German to French Connective Alignments
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FR Connective (frequency) DE Connective(s)
alors même que (542) während (0.14), obwohl (0.11), - (0.03)
alors qu’ (3466) obwohl (0.14), während (0.12), - (0.09), als (0.03)
alors que (10341) während (0.22), obwohl (0.09), - (0.07), da (0.03)
après tout (1870) schließlich (0.3), - (0.09), immerhin (0.08), denn (0.03), doch (0.02),

nämlich (0.02)
bien qu’ (3413) obwohl (0.25), - (0.07), obgleich (0.03), zwar (0.02), wenn auch (0.02)
bien que (9678) obwohl (0.25), - (0.06), obgleich (0.03), wenngleich (0.03)
ceci dit (466) - (0.14), abgesehen davon (0.03)
cela dit (1163) - (0.14), allerdings (0.05), aber (0.05), davon abgesehen (0.03),

jedoch (0.03), dennoch (0.03), abgesehen davon (0.03), doch (0.02)
cependant (19138) jedoch (0.36), aber (0.22), allerdings (0.14), - (0.09), doch (0.05),

dennoch (0.05)
en dépit du fait que (159) obwohl (0.17)
mais (142830) aber (0.46), sondern (0.2), doch (0.09), jedoch (0.08), - (0.07)
malgré le fait qu’ (85) obwohl (0.28)
malgré le fait que (259) obwohl (0.19)
malgré que (47) obwohl (0.43)
malgré tout (1145) trotzdem (0.14), dennoch (0.12), - (0.07), doch (0.05), jedoch (0.03)
même s’ (2097) obwohl (0.13), - (0.05), wenngleich (0.03), wenn auch (0.03),

obgleich (0.02)
même si (9593) obwohl (0.16), wenngleich (0.04), - (0.04), obgleich (0.03), zwar (0.03),

wenn auch (0.02)
néanmoins (8521) doch (0.23), dennoch (0.17), aber (0.16), allerdings (0.11), - (0.09),

trotzdem (0.07), doch (0.05), nichtsdestotrotz (0.03), gleichwohl (0.02)
pourtant (5890) jedoch (0.18), - (0.16), doch (0.14), aber (0.12), dennoch (0.11),

allerdings (0.05), trotzdem (0.05), obwohl (0.02)
quand même (1480) doch (0.15), - (0.13), trotzdem (0.08), dennoch (0.07), immerhin (0.03),

auch (0.02)
quoique (413) - (0.17), obwohl (0.15), aber (0.11), wenngleich (0.07)
soit dit en passant (277) - (0.05), nebenbei gesagt (0.04)
tout de même (1628) doch (0.16), - (0.12), immerhin (0.05), dennoch (0.04), trotzdem (0.04)

Table 2: French to German Connective Alignments
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Figure 2: Mappings of German to French Connectives

Figure 3: Mappings of French to German Connectives
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Abstract
Factuality can play an important role when au-
tomatically processing clinical text, as it makes
a difference if particular symptoms are explic-
itly not present, possibly present, not men-
tioned, or affirmed. In most cases, a sufficient
number of examples is necessary to handle such
phenomena in a supervised machine learning
setting. However, as clinical text might con-
tain sensitive information, data cannot be easily
shared. In the context of factuality detection,
this work presents a simple solution using ma-
chine translation to translate English data to
German to train a transformer-based factuality
detection model.

1 Introduction

Factuality refers to the concept that a speaker can
present statements about world events with vary-
ing degrees of uncertainty as to whether they hap-
pened. Factuality reflects, for instance, if an event
is affirmed, negated, or uncertain. In the medical
domain, detecting if symptoms or diseases are sig-
naled as present, not present, possibly or doubtfully
present, and therefore uncertain is essential. De-
tecting factuality is challenging since it can be ex-
pressed by very different linguistic categories (e.g.
verbs, nouns, adjectives, adverbs), plus it must be
taken into account how they are embedded in a
sentence (Rudinger et al., 2018a). Additionally, lin-
guistic factuality cues can be very domain-specific,
so the availability of relevant datasets is essential.

Classical supervised machine learning requires
training data, and, at the same time, most existing
datasets are published in English. In addition, clini-
cal text contains sensitive patient data, which often
makes it difficult to share due to ethical and legal
aspects. Although the situation has slowly changed
regarding the availability of German clinical text
resources (Modersohn et al., 2022), many other lan-
guages suffer a similar situation. Conversely, the
quality of machine translation has significantly im-
proved in the last decade, also regarding the trans-

lation of biomedical text/publications, including
clinical case reports (Neves et al., 2022). For this
reason, this work explores the usage of machine
translation to create (translated) text resources for
factuality detection in German clinical text.

Clinical notes are short text documents written
by physicians during or shortly after the treatment
of a patient. In general, this kind of text contains
much valuable information about the current health
condition, as well as treatment, of the patient. They
differ from biomedical publications and clinical
case reports, as notes are often written under time
pressure with a high information density, a tele-
graphic writing style, non-standardized abbrevia-
tions, colloquial errors, and misspellings. There-
fore, it is unclear if current machine translation
systems can handle this text, considering that data
might contain sensitive information and should not
be shared with a third party outside the hospital.

This work makes the following contributions: 1)
We successfully use a local machine translation to
train a model for factuality detection on German
clinical text. 2) Our model outperforms the only
‘competitor’ NegEx, and 3) will be published as
open access model1. Finally, 4) for those interested
in NegEx, we release it as a modular PyPI pack-
age with a few important fixes2 and also propose
improvement suggestions to the used trigger sets.

2 Methods and Data

The idea of this work is based on the usage of
machine translation to generate a German corpus
to train a classifier dealing with factuality in clinical
text. In the following, we outline the approach, the
necessary methods, and the dataset used.

2.1 Factuality Detection

In literature, (medical) factuality detection is often
reduced to a simple classification. Given a sentence

1https://huggingface.co/binsumait/factual-med-bert-de
2https://github.com/DFKI-NLP/pynegex
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Factuality English German translation
affirmed Clinically, a <E>severe neuropsychological

syndrome</E> was found when the patient
was taken over.

Klinisch fand sich bei Übernahme des Patienten in
<E>schweres neuropsychologisches Syndrom</E>.

negation Patient denies <E>headache</E>. Patient verneint <E>Kopfschmerzen</E>.
possible Thus, a <E>tumour</E> cannot be ruled out. Ein <E>Tumor</E> kann daher nicht ausgeschlossen werden.

Table 1: Example sentences with target entities, factuality label, and possible translations.

and an entity, the task is to define the factuality of
the entity in the given context. In most cases, the
entity of interest is a symptom or medical condi-
tion. Most related work targets the three classes af-
firmed, negated and possible. However, as simple
as this sounds, factuality cannot always be easily
mapped to those few classes.

One of the most prominent tools to deal with fac-
tuality in the medical text is NegEx (Chapman et al.,
2001), a rule-based approach with pre-defined reg-
ular expressions, so-called triggers, and can de-
tect the three aforementioned factuality classes. It
achieves, particularly in the context of negations,
quite good results on clinical text. Hedges instead
offer more possibilities for how they are described,
therefore achieving a much lower performance. Ini-
tially, it was developed for English, but over the
years, it has also been translated into other lan-
guages, such as Spanish or Swedish (Cotik et al.,
2016b; Chapman et al., 2013). In addition, many
alternative (machine learning) solutions have been
published in the last two decades. We refer to the
overview by Khandelwal and Sawant (2019) for
more details. For German, however, only one nega-
tion detection exists, which relies on the NegEx
solution and uses a set of translated trigger words
(English to German) (Cotik et al., 2016a).

2.2 Data
In the following, we briefly introduce the data used
for this work. First, we present i2b2, which has
been used for machine translation and to train our
model. In addition, we later test our model on addi-
tional German data, namely Ex4CDS and NegEx-
Ger, and in the appendix also BRONCO150.

The 2010 i2b2/VA data (Uzuner et al., 2011)
consists of English medical text and includes three
tasks - extraction of concepts, assertions identifica-
tion, and relation detection. In this work, we focus
on the assertion task. Overall a total of six asser-
tion types were considered, namely present, absent,
possible, conditional, hypothetical and not associ-
ated with the patient. However, this work focused
only on the first three labels, as only those are con-
sidered within NegEx. i2b2 data is translated to

German to train a German machine learning model.
Ex4CDS (Roller et al., 2022) is a small dataset

of physicians’ notes containing explanations in the
context of clinical decision support. The notes are
written in German and include various annotation
layers, including factuality. As the data includes
multiple factuality labels, we reduced the labels to
our three target labels, mapping possible-future and
unlikely to possible, and minor to affirmed. As tar-
get entities, we consider only sentences containing
medical-conditions.

NegEx-Ger is a small dataset consisting of sen-
tences taken from clinical notes and discharge sum-
maries and has been used initially to evaluate the
German NegEx version in Cotik et al. (2016a). For
our use case, the data has been used for testing, and
for this, we merged the sentences of both clinical
text types. However, the number of sentences con-
taining the possible label is small (22 for discharge
summaries and 4 for clinical notes).

2.3 Translation Approach
For our proposed idea, two aspects need to be con-
sidered: First, we aim at a solution that could
be applied to sensitive data. Therefore, the ma-
chine translation component must run locally. This
means we cannot rely on the variety of existing
state-of-the-art online approaches. Second, as we
define factuality as a classification problem with a
given sentence (context) and an entity, our transla-
tions need to keep track of the target entity within
a sentence. A simple example is given in Table 1,
which shows an English sentence with a target en-
tity ‘headache’ and the label ‘negation’. The Ger-
man translation needs to keep the focus on the
target entity.

In this work, we rely on TransIns (Steffen and
van Genabith, 2021), an open-source machine trans-
lation that can be installed locally. TransIns is built
on MarianNMT (Junczys-Dowmunt et al., 2018)
framework and enables translating texts with an
embedded markup language. Specifically, we trans-
late sentences with tagged entities, as shown in
Table 1.

A manual inspection revealed multiple problems
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with the translations: In some cases (roughly 40%
of the issues), translations were corrupt as they
contained cryptic and/or repetitive text sequences
that were foreign from the original text. Such noise
patterns could partially or entirely affect the target
texts’ context. Or, in very few cases (only 4%),
no translation output could be produced. In the
rest of the cases, the markup no longer included
the target entity. In any way, such output has been
discarded from the data, and we resulted in 18,297
data points (initially 18,397), which we used to
train and evaluate our machine learning model.

3 Experiments and Results

We conduct three different experiments - starting
with the English i2b2 data, we use Bio+Discharge
Summary BERT (Alsentzer et al., 2019) and com-
pare the results to NegEx. Similar experiments
have also been conducted in other papers. However,
in our case, those results serve as a comparison.
Thus, the model is not optimized to achieve the
best possible performance. Next, we train German-
MedBERT (Shrestha, 2021) on the translated i2b2
data and compare the results to the performance of
the German NegEx implementation. Finally, we
apply both German factuality approaches to differ-
ent German medical texts to determine how well
the models perform in a more realistic setup.

NegEx BERT-based
Label Prec Rec F1 Prec Rec F1
E Affirmed 0.88 0.97 0.93 0.97 0.99 0.98
N Negated 0.89 0.79 0.84 0.98 0.97 0.97
G Possible 0.79 0.04 0.08 0.85 0.64 0.73
G Affirmed 0.84 0.96 0.90 0.96 0.98 0.97
E Negated 0.83 0.65 0.73 0.95 0.93 0.94
R Possible 0.28 0.02 0.04 0.80 0.64 0.71

Table 2: Performance results between NegEx baselines
and BERT-based models on the original English i2b2
dataset (upper part) and German translation (lower part).

The results of the first two experiments are pre-
sented in Table 2 and show various interesting
findings: Firstly, NegEx provides impressive re-
sults on the affirmed label, good results for nega-
tions, and unsatisfying results for the possible label.
Moreover, on both datasets, English and German,
the BERT-based model outperforms NegEx, on
all scores. Additionally, results on the English
dataset are always higher than those on the trans-
lated dataset. This might be unsurprising as data
quality decreases. Finally, the table shows that
BERT-based models show a substantial increase in

performance for the possible label.

NegEx BERT-based
Label Prec Rec F1 Prec Rec F1
N Affirmed 0.96 0.94 0.95 0.97 0.96 0.96
E Negated 0.93 0.96 0.95 0.97 0.98 0.97
G Possible 0.46 0.50 0.48 0.50 0.50 0.50
E Affirmed 0.85 0.88 0.86 0.88 0.92 0.90
X Negated 0.66 0.89 0.76 0.86 0.95 0.90
4 Possible 0.50 0.18 0.26 0.61 0.38 0.47

Table 3: Performance results on different German med-
ical text sources, namely the original German NegEx
(upper part), and Ex4CDS dataset (lower part).

Table 3 presents the performance of the NegEx
and the BERT-based model on two German
datasets. In the upper part of the table, the re-
sults on NegEx-Ger are presented and the results
on Ex4CDS are in the lower part. Similarly, as
on the translated i2b2 dataset in Table 2, the ma-
chine learning model outperforms NegEx. How-
ever, this time the performance gain is not so strong
anymore. The NegEx-Ger is small and relatively
homogeneous (regarding the variety of negations),
and NegEx already performs well on the negations.
Therefore the machine learning model achieves
only a performance boost of two points in F1. In
case of possible, the number of examples might be
too small to see the benefit of the ML model.

On Ex4CDS data, NegEx already struggles with
negated (0.76) and performs low in the case of pos-
sible (0.26) - although the results are much better
in comparison to the results on i2b2 (English and
German). Here, the machine learning model leads
to a performance boost of 14 points for negated
and 21 points for possible.

4 Analysis and Discussion

Our results indicate that we can successfully apply
machine translation to generate a German clini-
cal dataset to train a machine learning model with.
Most notably, this model can outperform NegEx,
which partially already provides satisfying results.
While it is important that a negation detection tool
for German clinical text needs to run within a
hospital infrastructure, it might be questionable
if BERT-based approaches might be the right solu-
tion, as it requires much more hardware resources
than the simple NegEx solution. This is supported
by the results on NegEx-Ger, in which the BERT
achieves only a minor performance gain. However,
as this data is small and homogeneous, the results
on Ex4CDS affirm the usage of machine learning,
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as we achieve a notable performance gain. Note,
information about the frequency of each label in
the test data is provided in the appendix. As our
BERT model was trained on potential suboptimal
translations, we analyse some errors in more detail
in the following.

4.1 Linguistic Error Analysis

Our analysis focuses on the prediction errors
caused by the translation or by differences in the
features of the German and English language. Ta-
ble 7 contains full-text examples illustrating the
issues described below.

In various cases, a factuality cue was completely
missing in the translation, or the sense of the cue
was not preserved (e.g., to rule out was trans-
lated with Vorschriften instead of ausschließen).
In those cases, NegEx and BERT labeled the in-
stances wrongly as affirmations.

In other cases, we observe that the factuality cues
are outside of the original data’s entities but in the
translation they are placed within the entity markup.
That is often correlated with the prediction chang-
ing from negation or possible to affirmation. For ex-
ample, both NegEx and BERT correctly recognized
the negated assertion of the original phrase did not
notice [any blood], whereas both German mod-
els consider the translation bemerkte [kein Blut]
as affirmed in which the negation cue (not / kein)
became part of the entity.

For NegEx, a further problem are missing fac-
tuality cues in the trigger list. For example, it sys-
tematically does not recognize the cue verleugnen
(one of the possible translations of the word deny,
which is included in the English NegEx). Addi-
tionally, some problems with factuality cues are
specific to the German language and require addi-
tional handling: (a) German compounds must be
written as one word; unfortunately, German NegEx
cannot handle cases when a compound consists of
words referring to a medical problem and its nega-
tion (e.g. schmerzfrei / pain free), since it seems
not to recognize a factuality cue if it is not written
as a separate phrase, (b) cues with umlauts in text
such as aufgelöst seem not to be recognized, be-
cause the umlauts are encoded as oe in the German
trigger list, (c) missing possible word orders of fac-
tuality phrases (e.g. word order might depend on
the embedding syntactic structure; e.g. wurde aus-
geschlossen vs. ausgeschlossen wurde in a main vs.
subordinate clause).

5 Related Work

Machine Translation for Cross-lingual Learn-
ing MT is a popular approach to address the lack
of data in cross-lingual learning (Hu et al., 2020;
Yarmohammadi et al., 2021). There are two ba-
sic options - translating target language data to a
well-resourced source language at inference time
and applying a model trained in the source lan-
guage (Asai et al., 2018; Cui et al., 2019), or trans-
lating source language training data to the target
language, while also projecting any annotations re-
quired for training, and then training a model in
the target language (Khalil et al., 2019; Kolluru
et al., 2022; Frei and Kramer, 2023). Both ap-
proaches depend on the quality of the MT system,
with translated data potentially suffering from trans-
lation or alignment errors (Aminian et al., 2017;
Ozaki et al., 2021). While the quality of machine
translation for health-related texts has significantly
improved (Neves et al., 2022), using MT in the
clinical domain remains underexplored, with very
few exceptions (Frei and Kramer, 2023).
Factuality Detection Previous research focused
mainly on assigning factuality values to events and
often framed this task as a multiclass classifica-
tion problem over a fixed set of uncertainty cate-
gories (Rudinger et al., 2018b; Zerva, 2019; Pouran
Ben Veyseh et al., 2019; Qian et al., 2019; Bijl de
Vroe et al., 2021; Vasilakes et al., 2022). In the
biomedical/clinical domain, Uzuner et al. (2011)
present the i2b2 dataset for assertion classification,
and Thompson et al. (2011) introduce the Genia-
MK corpus, where biomedical relations have been
annotated with uncertainty values. van Aken et al.
(2021) release factuality annotation of 5000 data
points sourced from MIMIC. Kilicoglu et al. (2017)
introduce a dataset of PubMed abstracts with seven
factuality values, and find that a rule-based model
is more effective than a supervised machine learn-
ing model on this dataset.

6 Conclusion

This work presented a machine learning-based fac-
tuality detection for German clinical text. The
model was trained on translated i2b2 data and
tested, first on the translations and then on other
German datasets and outperformed an existing
method for German, NegEx. The simple ma-
chine translation approach might interest the Non-
English clinical text processing community. The
model will be made publicly available.

88



Ethical Considerations

We use the original datasets “as is”. Our transla-
tions of i2b2 thus reflect any biases of the origi-
nal dataset and its construction process, as well as
biases of the MT models (e.g., rendering gender-
neutral English nouns to gendered nouns in Ger-
man). We use BERT-based PLMs in our experi-
ments, which were pretrained on a large variety of
medical source data. Our models may have inher-
ited biases from these pretraining corpora.

Since medical data is highly sensitive with re-
spect to patient-related information, all datasets
used in our work are anonymized. The authors of
the original datasets (Uzuner et al., 2011; Roller
et al., 2022) have stated various measures that
prevent collecting sensitive, patient-related data.
Therefore, we rule out the possible risk of sensitive
content in the data.

Limitations

A key limitation of this work is the dependence
on a machine translation system to get high-
quality translations and annotation projections of
the source language dataset. Depending on the
availability of language resources and the quality of
the MT model, the translations we use for training
and evaluation may be inaccurate, or be affected by
translation noise, possibly leading to overly opti-
mistic estimates of model performance. In addition,
since the annotation projection is completely auto-
matic, any alignment errors of the MT system will
yield inaccurate instances in the target language.
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A Appendix

The main contribution of this short paper was
to show that it is possible to develop a machine
learning-based factuality detection for non-English,
without training examples in the given language
- just by using a local machine translation. In ad-
dition, we would like to present a small ‘bonus’
experiment, which did not fit into the main article
anymore. More precisely, we wanted to find out
how the performance of such a model changes if
data in a reasonable size is available for training.
The additional experiment is presented in Appendix
A.1, followed by some additional text examples for
the linguistic error analysis and some further infor-
mation.

A.1 Additional Experiment

The additional experiment has been conducted with
the BRONCO150 (Kittner et al., 2021) dataset, a
relatively large corpus originating from 150 Ger-
man oncological de-identified discharge summaries

and annotated for multiple tasks, including factual-
ity detection. For our experiment, we consider only
the target entities diagnosis. Similar to Ex4CDS,
it has various factuality values, which we mapped
to our three target labels, namely possible future
and speculation to possible. Note, BRONCO150
contains various fragmented entities (entities split
into two to three parts). For our experimental setup,
we merged entity fragments and considered only
those sentences with not more than 50 characters
between the fragments.

The label distribution of the obtained
BRONCO150 data and the distribution of
the other datasets from the main paper are
presented in Table 5.

First, we run the same experiment as presented
in Table 3, also on BRONCO150 data. The re-
sults using our FactualMedBERT-DE model are
presented in Table 4.

NegEx BERT-based
Label Prec Rec F1 Prec Rec F1
N Affirmed 0.96 0.94 0.95 0.97 0.96 0.96
E Negated 0.93 0.96 0.95 0.97 0.98 0.97
G Possible 0.46 0.50 0.48 0.50 0.50 0.50
E Affirmed 0.85 0.88 0.86 0.88 0.92 0.90
X Negated 0.66 0.89 0.76 0.86 0.95 0.90
4 Possible 0.50 0.18 0.26 0.61 0.38 0.47
B Affirmed 0.87 0.96 0.91 0.88 0.97 0.92
R Negated 0.69 0.66 0.68 0.75 0.80 0.77
O Possible 0.68 0.24 0.36 0.73 0.25 0.37

Table 4: Performance results on different German
medical text sources, namely the original German
NegEx (upper part), the Ex4CDS dataset (middle) and
BRONCO150 (lower part).

Affirmed Negated Possible
2010 i2b2/VA 7603 2305 595
Ex4CDS 892 225 179
NegEx-Ger 645 443 26
BRONCO150 3179 331 523

Table 5: Support numbers in the evaluation sets for each
processed dataset.

Next, we train two additional models, one on
a BRONCO150 training split and a second using
the BRONCO150 train together with the translated
i2b2 data. Both models were initialized from the
same model as that of FactualMedBERT-DE. Ta-
ble 6 compares our FactualMedBERT-DE against
the other two BERT-based models on the different
datasets.

Brief discussion: The results show that each
model performs best on the data of the same dataset
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2010 i2b2/VA NegEx-Ger Ex4CDS BRONCO150
Model Label Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

FactualMedBERT-
DE

Affirmed 0.96 0.98 0.97 0.97 0.96 0.96 0.88 0.92 0.90 0.88 0.97 0.92
Negated 0.95 0.93 0.94 0.97 0.98 0.97 0.86 0.95 0.90 0.76 0.79 0.78
Possible 0.80 0.64 0.71 0.50 0.50 0.50 0.61 0.38 0.47 0.68 0.19 0.30

BRONCO150-
BERT

Affirmed 0.88 0.95 0.92 0.97 0.92 0.94 0.90 0.90 0.90 0.96 0.96 0.96
Negated 0.95 0.67 0.79 0.97 0.97 0.97 0.89 0.88 0.88 0.95 0.83 0.89
Possible 0.42 0.47 0.44 0.28 0.65 0.39 0.56 0.59 0.58 0.76 0.84 0.80

i2b2+BRONCO150
BERT

Affirmed 0.94 0.98 0.96 0.98 0.95 0.96 0.90 0.94 0.92 0.95 0.98 0.97
Negated 0.96 0.91 0.93 0.98 0.97 0.97 0.90 0.91 0.91 0.93 0.83 0.88
Possible 0.82 0.54 0.65 0.39 0.73 0.51 0.70 0.54 0.61 0.85 0.74 0.79

Table 6: Performance results of three BERT models trained on translated i2b2 (FactualMedBERT-DE), BRONCO150
and 2010 i2b2 + BRONCO150, respectively. The models were evaluated on different German medical text sources,
namely our translated i2b2 2010 test set, the German NegEx, the Ex4CDS dataset and BRONCO150 test set. For
each dataset, best per-label F1-performances are displayed in bold.

Issue English German
missing trigger in translation The patient radiated down her left arm asso-

ciated with some nausea, no <E> shortness
of breath </E>, cough, vomiting, diarrhea.

Die Patientin strahlte in Verbindung mit
Übelkeit, <E> Atemnot, </E> Husten, Er-
brechen, Durchfall nach unten.

incorrect trigger translation RULE OUT FOR <E> myocardial infarc-
tion </E>

VORSCHRIFTEN FÜR <E> den
Myokardinfarkt </E>

trigger in the translation is out-
side of the entity

She did not notice <E> any blood / urine /
emesis / stool in the bed </E>.

Sie bemerkte <E> kein Blut / Urin / Er-
brechen / Stuhl im Bett. </E>

missing of a possible trigger
translation in NegEx-Ger

Denies <E> fevers </E>, pleuritic chest
pain or cough.

Verleugnet <E> Fieber, </E> pleuritische
Brustschmerzen oder Husten.

missing of translated compounds
of type Entity + trigger in NegEx-
Ger

She was <E> pain </E> free on the day of
discharge .

Sie war am Tag der Entlassung <E>
schmerzfrei. </E>

missing trigger phrase in NegEx-
Ger due to word order

He then presented to Mass. Mental Health
Center where he ruled out for <E> an my-
ocardial infarction </E> by enzymes and
electrocardiograms.

Er überreichte dann der Messe. Men-
tal Health Center, wo er für <E>
einen Myokardinfarkt </E> durch
Enzyme und Elektrokardiogramme
ausgeschlossen wurde.

different encoding of umlauts in
text and NegEx-Ger

<E>the hypernatremia</E> fully resolved
when he resumed eating on his own and
had access to free water .

<E>Die Hypernatrimie</E> vollständig
aufgeloest, als er wieder essen auf eigene
Faust und hatte Zugang zu freien Wasser.

Table 7: Examples of the potential causes for prediction errors. The analysis focuses on the translation problems
and the differences between the German and English language. The tags <E></E> enclose the entities, the factuality
triggers are underlined. The original English examples originate from the i2b2 data.

- FactualMedBERT-DE on the translated i2b2 data
and BRONCO150-BERT on the BRONCO150 data
- this is no surprise. Moreover, the results indicate
that the mixed model (i2b2+BRONCO150-BERT)
performs generally well on all datasets, therefore
might be the model of choice. However, it is impor-
tant to note, that BRONCO150 has got an unusual
label distribution. While affirmed is the most fre-
quent label in all datasets, BRONCO has got an
unusually high frequency of possible labels, which
is connected to the way labels were mapped to the
three final actuality labels. However, this might in-
fluence the actuality classification of other datasets.

A.2 BERT Setup

For BERT, we used epochs number of 3/4 (for En-
glish and German BERT, respectively), a batch size

of 32, a dropout rate of 0.1, and a learning rate of
1e− 5.

A.3 Examples of Linguistic Error Analysis
Our analysis focuses on the potential sources for
false predictions, in particular on causes related
to the translation or the differences in the features
of the German and English languages. Table 7
presents full-text examples from the original and
translated data. For a detailed description of the
possible issues see Section 4.1.
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Abstract

This paper describes and evaluates a gram-
matically informed linking system that assigns
unique identifiers (UIDs) from a central word
repository (COR) to running Danish text. To do
so, the system’s algorithm matches the annota-
tion of a morphosyntactic and semantic parser
(DanGram) to corresponding information in the
word registry, using a scoring method and dis-
ambiguated grammatical tags such as lemma,
POS, inflection and semantic class. In addition
to ordinary words, the linker also assigns UIDs
to the parts of compounds and multi-word ex-
pressions. For mixed Danish text, the linker
assigned correct UIDs to 97.8% of all non-
name, non-number words. Linking failures
were caused either by parser errors (0.3%) or
COR gaps (1.9%) rather than by the matching
tool itself (< 0.1%).

1 Introduction

Despite ongoing advances in natural language pro-
cessing (NLP), integrating different resources re-
mains a recalcitrant problem, not least due to dif-
ferences in tokenization, lemmatization and tag
definitions and granularity. While the latter has
been addressed – at least at the morphosyntactic
level – by the Universal Dependencies initiative
(e.g. Nivre, 2015), resource differences in terms
of lexical granularity are often overlooked, even in
well-resourced languages. Thus, it is not trivial to
which degree differences in etymology, pronuncia-
tion and meaning, inflection paradigms or spelling
variation should warrant separate lexicon entries or
– at the tagger/parser level – different lemmas or
sub-categorization. The problem is compounded
by the fact that state-of-the-art systems, while get-
ting more and more accurate, still inherit a pre-
defined and unquestioned lemma granularity from
their training data, making it difficult to mount a
language technology (LT) pipeline with modules
created with different training data, or different

morphological analyzers. A possible solution is
agreeing – for a given language – on a shared lexi-
cal inventory of both lemmas and inflected forms,
with unique identifiers (UIDs) for each entry. For
Danish, the COR word repository (Dideriksen et al.,
2022) is such a resource. However, while concep-
tually sound, the COR registry itself is still only
half of (LT) heaven, as long as it isn’t aligned with
other resources and shared between tools. Notably,
taggers, parsers and semantic analyzers need to be
able to link their analyses to such a central repos-
itory. In this paper, working with output from the
DanGram parser1, we will show how different mor-
phological and semantic tags from a parser pipeline
can be used to link a wordform to a unique identi-
fier, handling matching and disambiguation in an
integrated fashion.

2 COR

COR (Det Centrale Ordregister) is a new lexical
resource that assigns unique IDs to Danish words2.
The resource is being developed by the Danish
Language Council (Dansk Sprognævn3, DSN) in
cooperation with the Danish Society for Language
and Literature (DSL4) and Copenhagen Univer-
sity’s Center for Language Technology (CST5). In
its first, level-1 edition, COR covers the content of
the official Danish spelling dictionary6. Each word
ID (1a-c) consists of dot-separated parts - a first
part for the lemma and a second part for inflection.
A third part is reserved for spelling variation7.

1https://visl.sdu.dk/visl/da/parsing/automatic/parse.php
2The targeted word classes are the closed and inflecting

POS classes, with predictable limitations for proper nouns,
numerical expressions, abbreviations and punctuation-based
“words” (e.g %, smileys), as well as dialectal and spoken
forms.

3https://dsn.dk
4https://dsl.dk
5https://cst.ku.dk/english/
6https://dsn.dk/ordboeger/retskrivningsordbogen/
7In principle, this includes historical variants and current

spelling made obsolete by a future spelling reform
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1a) COR.37309.200.01 hoste (to cough)
vb, inf, act

1b) COR.37309.203.01 hoster (coughs)
vb, pr, act

1c) COR.38283.200.01 hoste (to host)
vb, inf, act

Homographs are regarded as distinct based on
surface markers rather than etymology or seman-
tics proper. Thus, distinguishing criteria are part
of speech (POS), grammatical gender (2a-b), pro-
nunciation (1c with English [o]) and differences
in inflection paradigms, e.g. different plural forms
or not allowing a plural at all. Here, traditional
etymological or sense distinctions are often cap-
tured implicitly rather than explicitly. For instance,
the missing plural is typical for +mass (-countable)
semantic classes such as substances, liquids and
materials. Thus, because the word træ (’tree’) does
not inflect in the plural when meaning ‘wood’, most
Danish tree names have a separate COR entry as a
type of wood (3a-b).

2a) COR.47455.110.01 brud (bride)
n, utr , sg, idf

2b) COR.48668.120.01 brud (rupture)
n, neu, sg, idf

3a) COR.56312.120.01 bøgetræ (beech tree)
n, neu, sg, idf

3b) COR.59335.120.01 bøgetræ (beech wood)
n, neu, sg, idf

In addition to these implicit semantic distinc-
tions, COR does have a semantic dimension, as it
offers short definitions for ambiguous words, illus-
trating the semantic reach of a given entry. Also, at
level 2, external semantic resources can be linked
to COR (Nimb et al., 2022), for instance the exist-
ing Danish wordnet, DanNet (e.g. Pedersen et al.,
2009) or the Danish Framenet8 (Bick, 2011). How-
ever, as will be discussed in more detail in section
4, sense mapping between such resources and a
primarily morphological resource like COR is not
always a one-to-one mapping, but may involve a
many-to-one sense lumping.

3 DanGram

DanGram is a rule-based, modular parsing sys-
tem, using the Constraint Grammar (CG) formal-
ism (Bick and Didriksen, 2015). For progressive
linguistic annotation levels, contextual rules are
used to map and disambiguate different types of

8https://framenet.dk

token-based tags. Input to the morphosyntactic
CG is provided by a pattern-based tokenizer and a
lexicon-based morphological analyzer. The former
establishes multi-word expressions (MWEs) cover-
ing e.g. names and complex equivalents to function
words. The latter handles inflection, affixation and
compound analysis9. After morphosyntactic anno-
tation, another CG module assigns dependency re-
lations based on syntactic function tags. At higher
levels, extensive semantic lexica are used to support
rules for named entity recognition (NER) and word
sense disambiguation (WSD), as well as framenet
structures and semantic role annotation.

In native format, each token will receive a read-
ings line containing tags for the different annotation
levels in space-separated, type-marked fields, or,
in export format, as xml attributes. For instance,
the lemma field is marked by a [. . . ] bracket, syn-
tactic function by a @-prefix and semantic roles
by ‘§’. Apart from lemma, POS and inflection, the
relevant fields for identifying the correct UID in
COR are the semantic fields, in angular brackets,
e.g. <H...> (human classes), <tool> or <food>, as
well as framenet tags of the type <fn:know> or
<fn:increase>.

4 ID Linking

4.1 Tag conversion

The linking program described here has a two-way
purpose - on the one hand making it possible
to enrich DanGram output with lexical informa-
tion from future resources built around COR
(e.g. dictionaries or encyclopedias), and on the
other supporting users who want to build text
processing applications around COR or to apply
their COR-linked ontologies to e.g. news text
for information retrieval by using the DanGram
parser. The new tool has been implemented as
an independent module, to be run after DanGram
and working with the output of the parser as
is, adding additional COR tags for matchable
words. These tags colntain the COR identifier
number (UID) as well as the lemma, POS and
inflection tags provided by COR for this ID,
with the same uppercase, English abbreviations
used by DanGram itself, for better comparability.
As a default, the inserted tags have the format
<UID:lemma:tags>, with dots between tags, e.g.
<COR.49032.115.01:lærer:N.UTR.S.DEF.GEN>

9For maximal (productive) coverage, the analyzer works
with lemmas and morphemes, not a closed fullform list.
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for the word lærerens (’the teacher’s’). If the UID
is the only desired information, DanGram tagging
can be ignored, and the UID appended to tokens in
running text, e.g. katten_40150.111 åd_38929.206
musen_74798.111 (the cat ate the mouse).

In principle, a simple tag filter would allow the
Linker to work with other parsers than DanGram,
as long as they provide the same type and granular-
ity of tagging. However, while the linker itself is ro-
bust enough to work with (filtered) input from other
parsers, the quality of the latter would, obviously,
have a bearing on the final result. Thus, a lack
of tag types, in particular an absence of semantic,
compound and MWE analysis, would not break the
linker, but negatively affect performance, as would
using a parser with a lower tagging accuracy than
DanGram for the standard tags (POS/inflection).

It should be noted that even with a correct UID
link, parser and COR tags will not necessarily
match one-on-one. For instance, POS-mapping
may be many-to-one (e.g. 3 DanGram pronoun
classes, but only 1 in COR), and DanGram lemmas
may have a number extension, superfluous in COR,
given the latter’s UIDs. Also, DanGram marks
“not genitive” as nominative, while COR only spec-
ifies the genitive. The automatic linker program
has to be robust enough to work in spite of such
mismatches.

4.2 The matching algorithm

The basic linking algorithm first looks up each
non-number, non-punctuation token in the COR
database, acquiring a list of possible UIDs with
their respective lemmas and inflection tags. Next,
for each UID item on the list, the linker tries to
match lemma and tags to equivalent tags found in
the DanGram annotation for the word in question,
computing a matching score. The reading with the
highest score will get its UID selected and linked.
In the straight-forward cases, POS and/or inflec-
tion will decide the issue. The word form vise, for
instance, has four readings, and three meanings,
in both COR and DanGram (DG), with matching
lemma and POS, and a few morphological extra-
tags in DanGram: NOM (nominative) and the port-
manteau tags nG and nD for under-specified gender
and definiteness, respectively10.

4a) COR.30363.200.01, vise, V, INF, AKT
DG: [vise] V INF AKT ('show')

10In context, DanGram will specify these through agree-
ment rules, but they still won’t match a COR tag.

4b) COR.46620.110.01, vise, N, UTR, S, IDF
DG: [vise] N UTR S IDF NOM ('tune')

4c) COR.16117.302.01, vis, ADJ, S, DEF
DG: [vis] ADJ nG S DEF NOM ('wise')

4d) COR.16117.303.01, vis, ADJ, P
DG: [vis] ADJ nG P nD ('wise')

In the case of an adjective singular reading, for
instance (e.g den vise mand – ‘a wise man’), the cor-
rect (third) UID will receive 3 points - for lemma,
pos and number -, while the adjective plural read-
ing (fourth) will get only 2 points, for lemma and
pos. The noun reading (second) will get 1 point,
for number, and the verb reading (first) will fail on
all tags, scoring 0. The inserted linking tag will
then contain the highest-scoring UID and its COR
tags.

4.3 Homograph levels and COR adaptation

The case of vise (’show’, ’tune’, ’wise’) could be
called a level-1 homograph in the sense that its
meaning can be resolved by making use of lemma,
POS, grammatical gender and inflection only. How-
ever, COR also contains about 400 cases of word-
forms that are level-2 homographs, with two (or
more) meanings that can be differentiated only
by resorting to their pronunciation or inflectional
paradigm as a whole (cp. section 2). As neither of
the latter is marked in writing, but rather a manifes-
tation of what is really a semantic feature (such as
plural-less inflection paradigms for +mass nouns),
the linker program has to make use of semantic
clues provided and contextually disambiguated by
the parser11. For about half of the level-2 homo-
graphs, DanGram itself distinguishes between two
(or more) numbered sub-lemmas based on etymol-
ogy or major meaning differences matching the
COR distinction. In these cases, DanGram’s se-
mantic tags are simply bound to the individual sub-
lemmas, as in the three noun options in the readings
cohort for ret in (5).

(5)
"ret" <aquant> ADV ('rather')
"ret" <jshape> <jappro> ADJ

('right', 'straight')
"ret-1" <f-right> <conv>

('right [to]', '[the] law')
"ret-2" <food-c-h> N ('dish')
"ret-3" <inst> N ('court')

11Pronunciation variation without a difference in meaning
(e.g. regional variation) does not lead to different word IDs in
COR
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"rette" <vt> V IMP ('correct!')

However, even without a sub-lemma, the re-
maining COR homographs can be matched, too
- because DanGram in these cases assigns (and
disambiguates!) the different semantic class tag
on the same lemma. This is the case for the
adjective large, which means ‘big’ with an En-
glish pronunciation (semantic class <jsize>), and
‘generous’ with a French pronunciation (seman-
tic class <jpsych>), or the verb hænge (‘hang’),
which changes past tense inflection depending on
transitivity and meaning. Here, the linker ex-
ploits DanGram’s framenet tags, distinguishing be-
tween the intransitive <fn:spatial_configuration>
(past tense hang) and the transitive <fn:put_spatial>
(past tense hængte)12. For the linker to be able to
use level-2 distinctions, however, they had to be en-
tered into the COR database manually13. Thus, the
COR version used by our linker program has been
"lexicographically" enriched with additional infor-
mation/tagging14, adding DanGram sub-lemmas
and their semantic classes (6), or just the latter
(7), to all level-2 homographs in COR. These will
then be matched to DanGram output by the linking
algorithm in the same fashion as ordinary tags.

6a) COR.56686.110.01,brok-1,<sick>,N...
('hernia')

6b) COR.55539.110.01,brok-2,<sem-s>,N...
('complaining')

7a) COR.71663.120.01,marsvin,<Aich>,N...
('porpoise')

7b) COR.77141.120.01,marsvin,<Azo>,N...
('guinea pig')

The word ret (5) is an example where a three-way
lemma distinction in DanGram has to be matched
onto a two-way distinction in COR15. In this case,

12Depending on the semantic type of linked object, preposi-
tions and particles, DanGram distinguishes between nine fur-
ther framenet meanings for this verb, all of which are grouped
into the two COR meanings by the linker in a many-to-one
mapping.

13It is a matter of interpretation, if this is seen as an en-
richment of COR, or as a lookup-filter that is really a part
of the linker program. As new words and loan words tend
to enter a language with one, well-defined meaning, future
level-2 homograph additions to core are unlikely, but they
would need to be treated manually, with a linguist selecting
those DanGram features necessary to make the homograph
distinctions in COR.

14This way, for all non-trivial cases (i.e. where POS feature
matching is not sufficient), the decision of what constitutes a
linking match - and which features to target - has been taken
by a linguist. In other words: what is automatic, is not the
meaning/definition, but the matching

15In principle, DanGram could be used to enrich COR in

the fused sub-lemmas (ret-2 and ret-3) are not used,
because COR’s lemma slot is a 1-item slot. Still,
the distinction (and the link) will work based on
semantic tags alone (8b).

8a) COR.43157.110.01,ret-1,
<f-right><conv><f-cog>, N ...
('right [to]','law','[being] right')

8b) COR.43153.110.01,ret,
<inst><food-c-h>, N ... ('dish')

4.4 Multi-part tokens
A special challenge for the linker were multi-part
tokens with no equivalent entry in COR. Rather
than ignoring such tokens as unlinkable, we opted
to perform part-by-part, multiple linking, in order
to facilitate NLP tasks such as machine translation,
multi-lingual alignment or lemma-driven corpus
searches.

For Danish, this issue is of particular importance,
as productive compounding is an important aspect
of Danish morphology. The process may involve
morphological changes for the first part of a com-
pound, such as stemming or the insertion of fuge
letters, and a hyphen is only used in special cases.
Over 10% of Danish tokens in running text involve
compounding or affixation. In our evaluation text
(section 5), 1.8% of tokens were words with a live
compound analysis and no direct match in COR.
An additional 1.4% were words without a COR
match, but with a compound lexicon entry in Dan-
Gram.

In addition to compounds, tokenization can in-
troduce multi-word expressions (MWEs) by fusing
words that syntactically or semantically function as
close-knit units. Lexically, an MWE makes sense
where its meaning is not transparent from its parts.
On the other hand, MWEs create compatibility is-
sues, as there are no authorized closed lists avail-
able, and many NLP systems perform tokenization
simply by space separation. Therefore, part-by-part
linking is useful, as it allows the end user to eas-
ily (re)create fully COR-linked “space tokens” by
splitting DanGram’s MWEs in the Linker’s output.

Both DanGram and COR contain closed-class
MWEs, but DanGram contains more (table 2), be-
cause they help the parser to simplify syntactic

such cases. However, the two resources are maintained in-
dependently and COR has a policy of following the official
Danish spelling dictionary and not implementing purely se-
mantic distinctions without pronunciation or paradigmatic
support. Therefore, feedback to COR resulting from the work
on our DanGram linker has so far only targeted simple errors
and inconsistencies in the resource
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structure; i hvert fald (’in any case’), for instance,
is a shared MWE, while i eftermiddags (’yesterday
afternoon’) is DanGram-only. Open-class MWEs
are very rare in COR and are limited to a few
foreign expressions (e.g. quiche lorraine), place
names (Sankt Petersborg) and first parts of hyphen-
compounds (dag til dag-levering ‘day-to-day de-
livery’). DanGram, on the other hand, annotates
all complex named entities as MWE (e.g. per-
son/company names, institutions and addresses),
as well as anatomical expressions, species names
and foreign MWE nouns based on pattern matches
(e.g. when including English colour words). Be-
cause of this discrepancy between DanGram and
COR, the linker is set to ignore MWE names with-
out a complete COR match, as well as other “live”
(i.e. heuristic, pattern-based) MWEs16.

For the linker program, we used the same core
strategy for matching compounds and MWEs: Fail-
ing a full match, the multi-part token is split into its
components17, which are then looked up in COR in-
dividually, using a prioritized matching order. COR
contains about 8,000 separate UIDs for compound
first parts and 75 prefix tags, which will get the
highest priority in compound look-ups (COMP for
the former, in 9a and 9c, or PREF for the latter). Af-
ter that, first parts are looked up with the lemma (or
sublemma) and POS provided by DanGram (9b).
Failing that, or if DanGram only provides “prefix”
as POS, they will be looked up as nouns, adjective
or without POS, in that order. Second parts are
looked up using the inflected fullform stripped of
the first part, plus the provided part-lemma (or, in
9c, sublemma). For Danish compounds, the sec-
ond part inherits POS, inflection tags and semantics
from the overall analysis of the word, so ordinary
tag scoring (cp. section 4.1) can be used (e.g. P
in 9a, DEF in 9b and the <act-d>18 semantic tag
in 9c). For first parts, no separate semantic tag is
provided by DanGram, so in a few cases (where
there is polysemy but no sublemma), there is a
theoretical risk of unresolved ambiguity.

16Using DanGram’s <heur> tag to block part-by-part match-
ing attempts for these MWEs.

17In the absence of a hyphen or space separator, we used
DanGram’s compound analysis, which provides first and sec-
ond lemmas (or sublemmas), normalizing first parts as lem-
mas, independently of their morphological manifestation (cp.
fuge-s in 9b and 9c).

18The action tag <act-d> represents one of several mean-
ings of brud-2, each linked to another semantic tag and disam-
biguated by DanGram. In the modified COR entry all options
are listed, and a match for any one of them will select brud-2
(’rupture’ etc.) rather than brud-1 (’bride’, ’weasel’)

COR link tags for compounds are added to Dan-
Gram output in the same fashion as for single
words, but with one, consecutively numbered, link
tag for each part:

9a) havvindmøller [havvindmølle]
(‘offshore turbine’ - ‘sea+windmill’)
<1:COR.59371.129.01:hav:N.NEU.#COMP>
<2:COR.88335.112.01:vindmølle:N.UTR.#P.IDF>
<N:hav+vindmølle> <good-compound> <build>

N UTR #P IDF NOM

9b) nervøsitetsindikatoren
[nervøsitetsindikator]
(‘fear gauge’ - ‘nervousness+indicator’)
<1:COR.85108.110.01:nervøsitet:N.UTR.S.IDF>
<2:COR.98639.111.01:indikator:N.UTR.S.#DEF>
<N:nervøsitet~s+indikator> <good-compound>

<ac> N UTR S #DEF NOM

9c) ægteskabsbrud [ægteskabsbrud]
(‘adultery’ - ‘marriage+infringement')
<1:COR.43176.129.01:ægteskab:N.NEU.#COMP>
<2:COR.48668.120.01:brud: <f-phys>.

<event>.#<act-d>.<Lh>.N.NEU.S.IDF>
<N:ægteskab~s+brud-2> #<act-d>

N NEU S IDF NOM

If one or more compound parts do not have a cor-
responding entry in COR at all (i.e. not even with
a different POS), a dummy ID ‘0’ and a dummy
tag string ‘X’ is used instead. For noun or root
parts, such gaps are relatively rare, but may oc-
cur, if the part in question is itself a compound
(10a, børne|litteratur – ‘child literature’) or an
MWE (en=til=en-programmet – ‘the one-on-one
program’). A more serious problem is COR’s lim-
ited coverage of prefixes (75 entries) and suffixes
(6 entries). As long as the missing affix exists as
a full-word entry, this will be used as a fall-back,
but that is not possible for some otherwise quite
productive prefixes like special- (‘special’, 10b) or
suffixes like -mæssig (‘-related’, 10c).

10a) børnelitteraturfestival [=]
('child literature festival')
<1:COR.0:børnelitteratur:X>
<2:COR.97204.110.01:festival:N.UTR.S.IDF>
<N:børnelitteratur+festival> <occ>
N UTR S IDF NOM

10b) specialgeotekniske [special..nisk]
(‘specialized geotechnical’)
<1:COR.0:special:X>
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<2:COR.22830.302.01:geoteknisk:ADJ.S.DEF>
<F:special+geoteknisk> <jdomain>
ADJ nG P DEF NOM

10c) momsmæssig [momsmæssig]
(‘VAT-related’)
<1:COR.41058.119.01:moms:N.UTR.COMP>
<2:COR.0:mæssig:X>
<N:moms+mæssig><jtype> ADJ UTR S IDF NOM

Unless they match as a whole (11a), MWEs are
also looked up part by part (11c). But unlike com-
pounds, there is no lemma or POS available for
MWE parts, only the individual tokens from the
MWE chain. Also, unlike English noun chains,
Danish MWEs have a more varied (and un-tagged)
internal syntactic structure, so it is unsafe to let the
last part inherit POS or other tags from the MWE as
a whole. Our matching algorithm has to reflect this
lack of (safe) information. Safest are the separate
“in-MWE” UID entries listed by COR for some
words ( 270). Although the MWEs themselves are
not provided in these “in-MWE” entries, there is
no COR ambiguity across MWEs, so if an MWE
matches such an entry, it is assumed to be a correct
link, even if the string also exists in COR as a full
word. The “in-MWE” entry rette19, for instance,
can be used for the 2nd part of the MWE med rette
(‘justifiably’, literally ‘with right’), discarding the
verb infinitive reading ‘to correct’ (11b).

11a) frem=for [=] ('rather than')
<COR.04976.930.01:frem=for:MWE>
<complex> PRP

11b) med=rette [=] ('justifiably')
<1:COR.04087.960.01:med:MWE-PART>
<2:COR.04080.960.01:rette:MWE-PART>
<complex> ADV

11c) i=stedet=for [=] ('instead of')
<1:COR.00852.880.01:i:PRP>
<2:COR.44318.121.01:sted:N.NEU.S.DEF>
<3:COR.00093.880.01:for:PRP>
<complex> PRP

If no “in-MWE” entry is found, the linker then
looks for ordinary entries (11c), beginning with
prepositions and articles, followed by other func-
tion word classes, and finally the content word

19The form is an archaic dative of the noun ret (‘right’), that
does not exist in modern Danish outside of fixed expressions,
and therefore does not have an ordinary inflection entry in
COR.

classes, nouns first. As an exception, adjective
matches are prioritized higher than nouns for first
parts, because Danish NP word order places adjec-
tives to the left of nouns. This matching hierarchy
correctly handled the typical adverbial MWEs of
the type PRP+N+PRP (e.g. i stedet for -’instead
of’), but failed for about sixty20 more idiosyncratic
closed-class MWEs, where one (or sometimes two)
parts were POS-ambiguous and resolved incor-
rectly, e.g. om in the MWE conjunction om ikke
(’if not’), where the ordinary POS hierarchy would
have chosen a preposition reading for om rather
than the correct conjunction reading. This was
solved by adding a small POS lookup table for
problematic closed-class MWEs. The table is used
after “in-MWE” matches, but before ordinary POS
matches.

5 Evaluation

To evaluate both overall performance and link-
ing accuracy, we generated random excerpts from
DSL’s general period corpus Korpus 201021, cov-
ering five different text types for lexical diversity:
blog, parliament, special interest home page, gen-
eral news and financial news, with 11,099 raw to-
kens in all. The texts were annotated with Dan-
Gram both morphosyntactically and semantically,
i.e. including framenet annotation and word sense
disambiguation for nouns and named entities. Af-
ter DanGram’s name and MWE tokenization there
were 8,399 parse tokens (incl. 1,112 punctuation
tokens).

Tables 1 and 2 show, for each relevant part of
speech, the percentage of tokens that could be auto-
matically linked to COR, both for ordinary tokens
(table 1) and for multi-word-expressions (table 2).
For the closed word classes (PRP, ART, PRON and
K) and for adverbs (ADV), coverage was 100% in
both cases.

Among the open word classes, verbs had a bet-
ter coverage (99.6% for full matches) than nouns
(97.1%) and adjectives (97.4%). Also, the latter
had a greater share of out-of-vocabulary (OOV)
compounds, that had to be matched part-by-part,
which led to a certain amount of partial matches
(first or second part only) . Unmatchable parts were,
for instance, prefixes or (u|kontrolleret ‘uncon-
trolled’), suffixes (moms|mæssig – ‘VAT-related),
names (Pisa|testen – ‘the Pisa test’) or numerical

20When checking all of DanGram’s closed-class MWEs
21https://korpus.dsl.dk/resources/details/korpusdk.html
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Table 1: Coverage for non-MWE tokens, direct or
through compound parts (%)

POS22 direct
(full)

comp
full

comp
partial

all full all
partial

N 86.9 10.2 1.8 97.1 98.9
V 99.3 0.4 0.1 99.6 99.7
ADJ 96.9 4.8 1.9 97.4 99.3
ADV 100 - - 100 -
PROP 25.5 0 2.8 25.5 28.4
PRP 99.9 - - 99.9 -

parts (63-årig ‘63-year-old), abbreviations (C20-
indekset – ‘the C20 index’) or English parts. In a
few cases, DanGram provided a 2-way compound
split where one of the parts was itself a compound
that couldn’t be matched (børne|litteratur||festival
– ‘childrens’s literature festival’). Finally, proper
nouns and numerals had a low coverage simply be-
cause COR contains only 700 proper nouns – all
place names – and only numerals that are written
with letters. Overall coverage for non-punctuation
was 97.4%, or 99% when not counting proper
nouns.

For closed-class MWEs there was full cover-
age (table 2), but as DanGram contains more
MWEs than COR, only about 1/3 were direct MWE
matches (2nd column), the rest were part-by-part
matches (3rd column). In absolute terms, the dif-
ference is most marked for MWE prepositions, and
least marked for MWE adverbs.

Table 2: Coverage for closed-class MWE tokens, as a
whole or part-by-part (%)

POS MWE
as a

whole
(full)

MWE
all

parts

MWE
partial

all full

ADV 45.9 54.1 0 100
PRP 19.6 80.4 0 100
PRON 8.3 91.7 0 100
K 25.0 64.3 0 100
All 35.7 64.3 0 100

Obviously, in addition to coverage, accuracy is
important, and because of sense and paradigm am-
biguities, and especially for the major word classes,
nouns and verbs, a link to a COR entry with the
right part-of-speech is not necessarily correct. We
therefore checked all links manually for possible er-

rors23. Here, a distinction should be made between
text-to-COR performance, including DanGram an-
notation errors propagating as COR-link errors, on
the one hand, and linking-only errors on the other,
i.e. correct DanGram analyses still leading to a
wrong COR entry. The latter type of errors proved
to be extremely rare (< 0.1%, first parts in 1 MWE
and 1 compound, plus 1 misspelling), but even text-
to-COR accuracy was satisfactory, given the fact
that linking failures were mostly due to gaps in
COR rather than analysis or linking failures (table
3).

Table 3: Text-to-COR - DanGram errors (column 2,
rows 2-6), linking errors and COR gaps

Error type row
sums

link
match

non-
COR
class

link
error

COR
gap

POS error 18: 12 4 1 1
morph error 2: 2
sem-class error 2: 2
tokeniz. error 4: 1 3
comp. error 2: 1 1
link error only 1
COR error 76
no COR 325 80
Column sums 28 17 332 3 158
% of words 0.3 0.2 4.0 0.0 1.9

4% of all words were outside of COR’s scope
(numbers, numerical expressions and most proper
nouns24, while 1.9% were COR gaps that could
be addressed by improving COR. Of these, about
half had no COR entry at all, half were missing
an entry for the correct POS, but offered another
ID for the word form in question, that could be
used as a fall-back25. Linking-relevant DanGram
errors amounted to only 0.3%, mostly POS errors,
but also a few tokenization, inflection and com-
pound analysis errors, as well as two higher-level,
semantic subclass errors. A quarter of the Dan-
Gram errors concerned non-COR word classes, in

23This was carried out as a double-pass inspection, in-house,
by one specialist, facilitated by the fact that COR has definition
fields for ambiguous entries

24DanGram has a high precision for these word classes, and
there were only two cross-class false positives, both wrongly
tagged PROP - one adjective (that could have been linked) and
one noun (not in COR).

25This POS gap problem concerned only a few, but frequent
word forms. For instance, der was not listed as a relative
pronoun, but only as an adverb, and a couple of common
adverbs (sådan ’this way’ and meget ’very’) were only listed
as adjectives.

99



most of the others (0.2%, i.e. 2/3 of the DanGram
errors) the Linker simply (“correctly”) assigned a
corresponding, wrong UID link. In combination,
COR gaps (1.9%), DanGram errors (0.3%) and
pure linking errors (< 0.1%) amounted to a text-to-
COR failure rate of 2.2%.

6 Conclusion

We have shown how the output of a morphosyn-
tactic and semantic parser with compound analysis
(DanGram) can be linked to unique word identifiers
by matching annotation tags such as lemma, POS
and semantic class with corresponding informa-
tion in the target resource (COR). In a random text
evaluation, 97.8% of all non-number, non-name
words could be matched to a correct COR entry.
As most of the link failures were not caused by
the linking mechanism as such, but by coverage
issues, performance should automatically increase
with future editions of COR. Parser errors were a
smaller issue, and here, too, future improvements
should automatically translate into better linking.

Limitations

The good performance of the parser is unlikely
to be evenly distributed and likely to be lower if
evaluated separately for level-2 homographs only.
Given the fact that DanGram uses the same rule-
based strategy for both morphosyntax and WSD,
alternative methods for this sub-task, in particular
word embeddings (Iacobacci et al., 2016), should
be compared, possibly by boot-strapping training
data with DanGram output. Depending on the ap-
plicational uses of COR, it would make sense to
add a kind of “encyclopedic” section for proper
nouns, for instance by assigning UIDs to (Danish)
Wikipedia entries, allowing a more integrated use
of the resource in tasks like information extraction.
For many applications it would also be extremely
useful to link spelling variations and frequent mis-
spellings to the underlying, correct COR entry26.
Ultimately, of course, it is a design or resource
allocation decision whether normalization should
be addressed “live” at the parser level, as is the
case for DanGram, or whether it (also) should be
supported lexically in COR.

26For frequent variants, COR’s third UID field, reserved
for historical spelling changes, could be used for this purpose.
For a wider, unsystematic, inventory of spelling errors, linking
an external resource would make more sense
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Abstract

The creation of the most famous German dic-
tionary, also referred to as “Deutsches Wörter-
buch” or in English “The German Dictionary”,
by the two brothers Jacob and Wilhelm Grimm,
took more than a lifetime to be finished (1838–
1961). In our work we pose the question, if it
would be possible for them to create a dictio-
nary using present technology, i.e., language
models such as BERT. Starting with the defini-
tion of the task of Automatic Dictionary Gen-
eration, we propose a method based on con-
textualized word embeddings and hierarchical
clustering to create a dictionary given unan-
notated text corpora. We justify our design
choices by running variants of our method on
English texts, where ground truth dictionaries
are available. Finally, we apply our approach to
Shakespeare’s work and automatically generate
a dictionary tailored to Shakespearean vocabu-
lary and contexts without human intervention.

1 Introduction

In 1838, the brothers Jacob and Wilhelm Grimm
started to create the Deutsches Wörterbuch (Grimm
and Grimm, 1854), a comprehensive German dic-
tionary with references for each entry. A dictionary
is a resource that assigns meanings or translations
to words. Words are usually displayed in alphabet-
ical order in their canonical form, called lemma,
and an explanation of the meaning, called a gloss.
The first volumes of the famous German dictionary
were published in 1852. Brothers Grimm could not
finish their work within their lifetime, but different
scholars and institutions later succeeded in 1961.
The creation took 123 years in total. If the brothers
Grimm started their project nowadays, they would
likely use state-of-the-art technology like the in-
ternet and a pretrained language model like the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) to speed up
their work. In our work, we want to examine if

the automated generation of a dictionary is possi-
ble with state-of-the-art technology and if today’s
language models could do the extensive work.

In Natural Language Processing (NLP), we have
to split sentences into smaller units which we refer
to as tokens. Tokens are not only written words
but also punctuation marks and numbers. To auto-
matically build a dictionary from plain reference
texts, we need to find all occurrences of each word
and distinguish their sense only from their context,
which aligns with Wittgenstein’s dictum "the mean-
ing of a word is its use in the language" (Wittgen-
stein, 1953). Given a fixed set of senses, choosing
the correct word sense from that set is defined as
the task of word sense disambiguation (WSD). As
the number of senses for each word appearing in
a given text is unknown, we need to separate the
senses for each word without any prior knowledge,
which is called word sense induction (WSI). The
class of tokens that have the same meaning is re-
ferred to as type. Words with only one meaning are
called monosemous, while ambiguous words are
referred to as polysemous.

It has been shown that BERT’s contextual-
ized word embeddings hold syntactic and seman-
tic knowledge (Rogers et al., 2021). In addi-
tion, they form separable clusters for polysemous
words (Wiedemann et al., 2019). We want to uti-
lize these characteristics of contextualized vector
representations produced by language models such
as BERT and perform word sense induction using a
hierarchical clustering method to tackle the task of
automatic dictionary generation (ADG) from raw
text without any further annotations.

Contributions.

1. We define the task of automatic dictionary
generation (ADG).

2. We discuss how to evaluate automatically gen-
erated dictionaries.
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3. We present a simple approach for ADG using
a pretrained CharacterBERT (El Boukkouri
et al., 2020) model and agglomerative hier-
archical clustering (AHC), and apply it to
the work of William Shakespeare to create
a Shakespearean dictionary.

The remaining paper is structured as follows:
in the upcoming section, we discuss related work.
We then define the task of ADG and afterward ex-
plain our approach to ADG called Grimm’s BERT
and discuss how we evaluate the model. Section 4
presents our experiments on the task of ADG. To
demonstrate the applicability of our ADG pipeline
to an interesting real-world text corpus, we apply it
to the works of William Shakespeare in order to cre-
ate a Shakespearean dictionary in Section 5 before
giving a conclusion of our work in Section 6. All
of our experiments are available on GitHub under:
https://github.com/Weilando/grimm_bert.

2 Related Work

Among the many possibilities, we choose to use
CharacterBERT (El Boukkouri et al., 2020) embed-
dings to calculate contextualized vector representa-
tions of each word in a given text and apply hierar-
chical clustering to distinguish word types used in
a text to create dictionary entries. In the following
section we firstly discuss previous approaches to
generate dictionaries and secondly look at methods
to disambiguate the meaning of words.

Dictionary Generation. The generation of lex-
ical resources such as dictionaries has interested
researchers for a long time (Chang et al., 1995).
Past work on dictionary generation, also referred to
as dictionary construction can be divided into two
categories. There have been methods to construct
(i) bilingual (Kaji et al., 2008) and (ii) monolin-
gual (Tavast et al., 2020) dictionaries which are ei-
ther of a general nature or focus on domain-specific
terms (Ren et al., 2022). Bilingual dictionaries
have been either created by translation (Varga and
Yokoyama, 2009), through the use of parallel cor-
pora (McEwan et al., 2002) or by combining two
existing dictionaries (Kaji et al., 2008). One chal-
lenge all these methods face is the ambiguity of
words. To solve it, additional knowledge has been
necessary in form of thesauri, WordNet (Nicolas
et al., 2021) or statistics given raw text in both
languages (Kaji et al., 2008).

Word Sense Induction And Disambiguation.
To tackle the task of WSD, there are knowledge-
based approaches that utilize linguistic resources
like thesauri and supervised (and semi-supervised)
approaches that train a classifier on manually la-
beled training data and possibly unlabeled corpora
in addition (Wiedemann et al., 2019). In contrast,
we want to solve the task without the use of any an-
notations or further knowledge as a sub-task of the
automatic dictionary generation. For WSD there al-
ready have been approaches based on word embed-
dings. The context-group-discrimination (Schütze,
1998) algorithm, for example, combines context
independent word vectors with context vectors
that capture information from second-order co-
occurrences and clusters. Wiedemann et al. (Wiede-
mann et al., 2019) investigate the application of
the contextualized word embeddings of Flair (Ak-
bik et al., 2018), ELMo (Peters et al., 2018) and
an uncased BERTLarge (Devlin et al., 2019) for
WSD. BERT was the only evaluated contextualized
embedding that allowed distinguishable clusters
and therefore outperformed its competitors (Wiede-
mann et al., 2019). For the task of WSI many
methods apply clustering of some kind of word
representation to discriminate the senses of each
word in context. A simple clustering approach is
k-means, which usually requires to know the num-
ber of clusters beforehand (Giulianelli et al., 2020).
Other approaches are affinity propagation (Martinc
et al., 2020) and agglomerative clustering (Arefyev
et al., 2019). For our ADG pipeline we perform
WSI with agglomerative clustering and contextual-
ized CharacterBERT embeddings.

3 Automatic Dictionary Generation

Informally, automatic dictionary generation (ADG)
is the process of creating a dictionary from raw text,
containing a list of senses with reference sentences
for each type. While this description appears obvi-
ous for common languages like English, there are
a couple of choices to make, which we detail next.

More formally, a text is given as a sequence of
characters, i.e., as a string. The first step is to split
the string into a sequence of tokens. A trivial choice
is to split at whitespace characters. However, many
so-called tokenizers split words even further into
stem and ending. Punctuation marks and numbers
are most often tokens themselves. The second step
is to split the sequence of tokens into subsequences
called sentences. Sentences give context to a token
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Figure 1: Grimm’s BERT: our ADG pipeline implementation. Solid and . . . . . . .dotted arrows indicate obligatory and
. . . . . . . . . .optional connections, respectively.

and should be characteristic of the token’s sense.
Based on these choices, a dictionary is a set of one
dictionary entry per unique word. Each entry con-
sists of a list of senses, where each sense has a list
of reference sentences assigned. Some tokens are
possibly excluded from the dictionary, e.g., word
endings.

Thus to implement ADG, we have to specify
how we define tokens and sentences, since these
choices determine what the generated dictionary
will contain. For most common languages, the
dictionary entries contain an additional human-
understandable description called gloss, which we
exclude from our pipeline for now. Note that in
contrast to WSD, the ADG task does not assume
any knowledge about the number of senses a word
occurring in a text corpus has. Consequently a step
in the ADG pipeline is to perform word sense in-
duction for each word in a text. To solve the task of
ADG, we employ contextualized representations of
each token that capture semantic and syntactic fea-
tures. Several studies show that BERT embeddings
capture syntactic information (Rogers et al., 2021).
Wiedemann et al. (Wiedemann et al., 2019) also
compared different contextualized word embed-
dings for WSD and found that uncased BERT em-
beddings perform best for this task. Motivated by
these results, we use BERT embeddings to tackle
the task of ADG.

Algorithm 1: ADG Pipeline
1 Tokenize the input.
2 Generate one contextualized word vector per token.
3 Perform token-wise sense induction clustering the

contextualized word vectors.

3.1 Grimm’s BERT for ADG.
Next, we propose a method for the ADG task,
which we call Grimm’s BERT. Figure 1 shows the
complete pipeline of our approach. The general
steps that are performed for ADG are also written
down as Algorithm 1. To give further explanation
we next discuss each step separately:

1. Tokenization. BERTLarge solves the task of
WSD better than other contextualized word em-
beddings (Wiedemann et al., 2019). However, the
used WordPiece tokenizer (Wu et al., 2016) cuts
words into so-called word pieces. As our dictio-
nary should contain only human-readable words,
we decided to use a BERT model that is pretrained
using a word level tokenizer. We choose Charac-
terBERT (El Boukkouri et al., 2020), more pre-
cisely CharacterBERTGeneral which is a pretrained
variant of the uncased BERTBase model that uses
ELMo’s (Peters et al., 2018) word level Character-
CNN module instead of WordPiece embeddings.

2. Generate Contextualized Word Embeddings.
We calculate one contextualized word vector per to-
ken with a pretrained CharacterBERTGeneral model,
forward the tokenized input and extract the 768
dimensional output from the model’s last hidden
layer.

3. Token-wise Sense Induction. Each occurring
word has at least one word sense. We perform
agglomerative hierarchical clustering (AHC) to re-
lated word vectors to detect and discriminate dif-
ferent word senses for polysemous words. AHC is
a bottom-up method that starts with single objects
and successively merges the closest objects to build
a binary merge tree. A linkage criterion determines
the relevant distance between clusters for the pro-
cess of merging. Average linkage clustering uses
the average distance between all pairs of objects in
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two clusters, complete linkage takes the maximum
distances between all objects of two clusters and
single linkage uses the minimum distance between
all objects of the two sets.

There are several ways to cut the binary merge
tree into subtrees to get different clusters. One op-
tion is a fixed distance threshold that determines
connections to cut and leaves the resulting num-
ber of clusters open. Another option is a fixed
cluster count that maximizes the linkage criterion
but ignores the absolute value of the cut connec-
tions. Grimm’s BERT builds one dendrogram per
unique word using the average linkage criterion
with the Euclidean distance as linkage distance. It
applies a fixed linkage distance threshold, which
is a hyperparameter, to cut the dendrograms into
subtrees representing different groups of senses.
For our choices of the linkage and cut criterion, we
performed extensive experiments presented in the
Appendix.

3.2 Evaluation.
While WSD is a classification task, ADG is a clus-
tering problem. The following section discusses
how to evaluate an automatically created dictionary
for the case where we have ground truth informa-
tion about the number of word senses. We choose
the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) as an objective evaluation metric to quantify
the quality of the resulting clusters. Classical met-
rics for WSD like the accuracy or the F1 score are
not applicable, as forming clusters of senses can
rather be seen as a separation of unnamed senses
than a selection from a fixed dictionary.

Let X = {X1, . . . , XN} be a set of objects,
Y = {Y1, . . . , YK} be a partitioning of X in K ∈
1, . . . , N disjoint sets and m denote a clustering
method which describes how to obtain Y from a
given X . Then (X,Y,m) describes a clustering
problem, and we call Y a clustering. Rand (1971)
defines the Rand Index (RI) via

RI(Y, Y ′) =

∑n
i<j γij(
n
2

) ∈ [0, . . . , 1] (1)

where Y ′ is another clustering and

γij =





1 if there exist k, k′ s.t. both Xi, Xj

are in both Yk and Y ′
k′

1 if there exist k, k′ s.t. Xi is in both
Yk and Y ′

k′ while Xj is neither in
Yk or Y ′

k′

0 otherwise

with i, j ∈ {1, . . . , N} and k, k′ ∈ {1, . . . ,K}.
Intuitively, γij is true if two objects are together or
separate in both clusterings. RI(Y, Y ′) = 1 indi-
cates identical clusterings, whereas RI(Y, Y ′) = 0
for two clusterings without any similarities.

Rand (Rand, 1971) defined the Rand Index (RI)
to measure the similarity of two clusterings by cal-
culating the agreement between two different parti-
tions. The index considers every pair of the given
data points in the obtained and correct clustering
and counts how many pairs are in the same clus-
ters and how many are in different clusters. The
ARI (Hubert and Arabie, 1985) is the Rand Index,
corrected for chance using the hypergeometric dis-
tribution. We obtain the ARI with

ARI =
RI − E(RI)

max(RI)− E(RI)
∈ [−1, . . . , 1] (2)

where E(RI) is the expected value of RI. Please
note that ARI = 1 indicates perfectly matched
clusterings, ARI = 0 indicates random cluster-
ings regarding the hypergeometric distribution, and
ARI < 0 does not have an intuitive interpretation.
ARI is symmetric, so ARI(Y, Y ′) = ARI(Y ′, Y ).
Only the assignment of objects to the same or differ-
ent clusters matters, as the score is invariant under
the permutation of label names.

As the ARI compares a clustering with some
ground truth, we cannot use it to evaluate a dic-
tionary for corpora without any semantic annota-
tions. In that case, we measure the density and
separation of clusters using the Silhouette Coeffi-
cient (Rousseeuw, 1987) to find a sensible cluster
count k for a set of n objects. In our context, ob-
jects are tokens and clusters are senses.

The Silhouette Coefficient s(i) for each object i
is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)} ∈ [−1, 1] , (3)

where a(i) is the average distance inside the clus-
ter and b(i) is the average distance to the closest
cluster (Rousseeuw, 1987).

Implementation Details. We transform corpora
into lists of sentences, where each sentence is a
list of tokens. We save these lists into an archive
file to avoid repeated preprocessing steps like to-
kenization and lower casing. For the actual WSI
per token, we apply the implementation of AHC
from the machine learning library scikit-learn1. We

1https://scikit-learn.org/stable/
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choose the Euclidean distance between word vec-
tors as affinity and the average linkage criterion
(see Table 4 in the Appendix for a comparison of
different linkage criteria and Cosine vs Euclidean
distance).

4 Experiments

We conduct several experiments to evaluate how
well our pipeline works. To numerically measure
the performance of our approach, we perform ADG
on different annotated corpora and measure the
ARI of our obtained clusters.

4.1 Datasets

For the evaluation of our model, we use textual cor-
pora with token-level sense annotations to evaluate
the performance of semantic tasks. Please note that
many corpora do not contain sense tags for every
token, as semantic tagging by hand is a tedious
and costly process. So-called all-words corpora
contain tags for every token with certain part-of-
speech (POS) tags but usually omit closed-class
words (Snyder and Palmer, 2004; Moro and Nav-
igli, 2015). Table 1 lists all datasets together with
the number of documents, sentences and tokens per
corpus and indicates the kind of POS for tokens
with semantic tags. Senseval and SemEval are part
of WSDEval (Raganato et al., 2017) which is a uni-
fied evaluation framework that offers several anno-
tated corpora in the same XML format with sense
annotations from WordNet (Miller et al., 1990) ver-
sion 3.0. Raganato et al. (Raganato et al., 2017)
applied the XML schema of the SemEval2013 all-
words WSD task (Navigli et al., 2013), removed
annotations for auxiliary verbs, semi-automatically
updated WordNet senses to version 3.0, lemma-
tized and POS tagged all tokens to standardize the
corpora. Some datasets like Senseval2 and Sense-
val3 do not contain semantic tags for all words of a
POS. Sometimes, multiple sense tags exist in the
case of ambiguity or if no suitable WordNet sense
was available (Navigli et al., 2013).

4.2 Performance Evaluation of Our Approach

We compare the performance of our approach with
two different baselines (see Table 2) to assess its
value in practice. The first baseline assigns a dis-
tinct sense to each token, called “No Cluster”-
baseline. The second baseline assigns all occur-
rences of the same word to a single sense, called
“Single Cluster”-baseline. We perform our ADG

pipeline with average linkage and the Euclidean
distance (see Table 4 in the Appendix for other op-
tions). Table 2 presents our results with linkage
distance thresholds, which we optimized within a
range of 8 − 16 (see Appendix A.4). Please note
that all ARI scores are slightly better than our base-
lines (see Table 2), except for the SemEval2013
task for which our best result is equal to the “Sin-
gle Cluster”-baseline. As a proof of concept, we
were able to improve over the baselines with some
parameter tuning of the distance threshold.

To study how the ARI scores depend on the dis-
tance threshold, we show the distribution of ARI
scores in Figure 2 for every dataset for varying dis-
tance thresholds. For large distance thresholds, the
ARI score matches the “Single Cluster”-baseline,
since all occurring tokens end up in a single cluster.
Unfortunately, the scores converge to the baseline.
However, this might be due to selective annotations
in the corpora. Note that for SemEval2007 we can
see a peak before reaching the ARI for the “Sin-
gle Cluster”-baseline, which shows that for that
particular dataset, the token embeddings can give
meaningful clusterings.

To further analyze the SemEval2007 dataset we
show the distribution of the ARI for different link-
age criteria in the left panel, together with the
“Single Cluster”-baseline and the ARI for differ-
ent sense counts in the right panel in Figure 3. We
see that the exact choice of the linkage criterion is
not critical and that for the SemEval2007 corpus
the clustering works well for tokens with a single
and more than three unique senses. For the other
datasets the corresponding plots are in the Figure 7
in the Appendix.

5 ADG for Shakespeare’s Works

So far, we defined the ADG task and proposed
a simple pipeline to solve it. In the experiments
above, we generate contextualized word vectors
with a general CharacterBERT model pretrained
on the English Wikipedia and the OpenWebText
corpus.2 However, ADG is much more interesting
and becomes more complicated if raw text is the
only available training resource for the particular
language to create a dictionary. In that case we
have to pretrain a language model on the exact text
that is the input for the complete pipeline. Note that
such an approach is also applicable to unannotated

2https://skylion007.github.io/
OpenWebTextCorpus/
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Corpora Docs. Sents. Tokens Annotations per POS

Senseval2 (Edmonds and Cotton, 2001) 3 242 5, 766 ADJ, ADV, NOUN, VERB
Senseval3 (Snyder and Palmer, 2004) 3 352 5, 541 ADJ, ADV, NOUN, VERB
SemEval2007 (Pradhan et al., 2007) 3 135 3, 201 NOUN, VERB
SemEval2013 (Navigli et al., 2013) 13 306 8, 391 NOUN
SemEval2015 (Moro and Navigli, 2015) 4 138 2, 604 ADJ, ADV, NOUN, VERB

SemCor (Miller et al., 1993) 352 37, 176 802, 443 ADJ, ADV, NOUN, VERB

Table 1: Overview of WSDEval Corpora. POS tags are adjectives (ADJ), adverbs (ADV), nouns (NOUN) and verbs
(VERB).

Corpus Dist. Threshold Unique Senses No Cluster Single Cluster ADG (ours)
SemCor 14.50 54,806 0.0000 0.6521 0.6522
Senseval2 14.00 1,626 0.0000 0.9136 0.9137
Senseval3 10.30 2,144 0.0000 0.8395 0.8671
SemEval2007 9.60 1,685 0.0000 0.7109 0.8632
SemEval2013 15.00 2,376 0.0000 0.9377 0.9377
SemEval2015 10.60 876 0.0000 0.9464 0.9509

Table 2: ARI scores (last three columns) for two baselines “No Cluster” and “Single Cluster” vs our results “ADG
(ours)” using Grimm’s BERT.

low resource languages.
To investigate this scenario, we apply our

method to generate a dictionary for all works of the
famous English poet William Shakespeare (1564
– 1616). The vocabulary and grammar from Early
Modern English (used in late 15th to mid-to-late
17th century) is different from today’s Modern En-
glish (used since mid-to-late 17th century). Nev-
ertheless, his works have been widely studied and
understood and are readable without too much ef-
fort. As the manual creation of appropriate dic-
tionaries is time-consuming and computationally
expensive, the results of our automated pipeline
(see Algorithm 1) could be a useful starting point
for generating such a dictionary.

Training Data. We use an open corpus with son-
nets and plays from Shakespeare.3 For preprocess-
ing, we remove stage directions beginning with
“<”. We delete all lines that contain only a number,
e.g., years of publication or enumerations of son-
nets. Additionally, we remove repeated line breaks.
The resulting corpus consists of 112,521 sentences
with 1,152,400 tokens and 23,547 unique words. It
is small compared to typical datasets used to train
CharacterBERT, but larger than SemCor (802,443
total tokens, see Table 1).

CharacterBERT Model for Shakespearean En-
glish. We train a CharacterBERT model with the

3https://ocw.mit.edu/ans7870/6/6.006/s08/
lecturenotes/files/t8.shakespeare.txt

original pretraining code4 and our Shakespeare cor-
pus. The used hyperparameters for pretraining can
be found in Table 8 in the Appendix. We also use
the LAMB optimizer (You et al., 2019), a layer-
wise adaptive large batch optimization technique
that works well with attention models like Char-
acterBERT. Please note that the training process
includes two phases. The optimizer works with
a higher learning rate and shorter input sequence
lengths during the first phase to achieve broadly
reasonable weights. The second phase requires
fewer update steps and improves the weights with
a lower initial learning rate and longer input se-
quences. Different sequence lengths require adap-
tions regarding the number of accumulation steps
and batch size, as the target batch size and the
CharacterBERT model need to fit into the GPU’s
memory. We perform our ADG pipeline with av-
erage linkage and the Euclidean distance, as this
setup worked best for most corpora, particularly
for the large SemCor. (see Table 4). We run the
pipeline with threshold 8.0, 9.0, and 10.0. Table 3
shows that different numbers of senses are found
as expected. Since we have no ground truth we ar-
bitrarily choose the threshold 9.0 for the following
examples.

Qualitative Evaluation. The raw text from
Shakespeare does not provide semantic annota-
tions. So we can not use metrics like the ARI for
quantitative evaluation. Instead, we pick examples

4https://github.com/helboukkouri/
character-bert-pretraining
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Figure 2: ARI scores for varying linkage distance thresholds.

Figure 3: Results only for the SemEval2007 dataset. ARI score for different thresholds and linkage criteria and the
“Single Cluster”-baseline (left) and ARI score per sense count and different linkage criteria (right).

Linkage Distance Threshold 8.0 9.0 10.0

Reference Sentences 112,521
Number Tokens 1,152,400
Unique Words 23,547

Unique Senses 52,797 51,070 49,272

Table 3: Number of unique senses for different thresh-
olds in our Shakespeare Dictionary.

from Shakespeare’s Words5, an online glossary, the-
saurus, and collection of Shakespeare’s works, and
compare them with our findings manually. Please
note that we present all tokens lowercase and sep-
arated with single spaces. The enumerator styles
indicate the assigned senses. Our created dictio-
nary offers two different senses for the word eyed.
Looking at the sentence examples, the first example
is an adjective but the second is a verb.

• it is the green - eyed monster , which doth mock
⋄ for as you were when first your eye i eyed ,

Our dictionary correctly lists only one sense for
both occurrences of writer.

• i ’ ll haste the writer , and withal
• drive some of them to a non - come . only get the learned

writer to

However, for wrongful, we incorrectly get two
different senses.

• that i despise thee for thy wrongful suit ,
⋄ in wrongful quarrel you have slain your son .

5https://www.shakespeareswords.com

Curiously, words with more reference sentences
tend to have outliers. For example, the word
englishman only has one meaning, however our
dictionary assigns eight reference sentences to the
same sense but assigns two occurrences to another.

• a soul so easy as that englishman ’ s . ’
• king henry . an englishman ?
• thinking this voice an armed englishman -
• for that my grandsire was an englishman -
• a box of the ear of the englishman , and swore he would

pay him
• caius . by gar , then i have as much mockvater as de

englishman .
• cassio . is your englishman so expert in his drinking ?
• i do not know that englishman alive
⋄ that any englishman dare give me counsel ?
⋄ where ever englishman durst set his foot .

The word major is an interesting dictionary entry.
The first two references form a sense, while the
other two occurrences belong to a second cluster.
At first glance, the division appears correct since
the first sense is a noun, and the second sense is
an adjective. However, major means “matter” in
the first example, but refers to a constellation in
the second one. A correct distinction might require
background knowledge and logical reasoning. Nev-
ertheless, the entry is almost correct.

• fal . i deny your major . if you will deny the sheriff , so ;
if not ,

• nativity was under ursa major , so that it follows i am
rough and

⋄ the major part of your syllables ; and though i must be
content to
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⋄ my major vow lies here , this i ’ ll obey .

In this experiment, the most difficult challenges
are the corpus size, which is small for training a
language model and large for clustering methods.
Contexts in our Shakespeare corpus are often short
and incomplete, since we defined a sentence to be
limited to a single line, but many sentences extend
over several lines. While our generated dictionary
tends to list too many senses per word, it also con-
tains valuable groupings and correct entries.

6 Conclusion

In this paper, we examine whether the brothers
Grimm could create a dictionary using language
models like BERT. To achieve this, we define the
ADG task and a first simple approach to automat-
ically generate a dictionary from raw text using a
language model and AHC.

At its core, ADG is a clustering problem, and it
is possible to evaluate it with ARI scores if sense
annotations are available. Thus, (partially) labeled
corpora for WSD are suitable for comparing dif-
ferent ADG approaches. Other metrics like the
Silhouette Coefficient (see Appendix A.3) measure
the cluster quality without any ground truth but
usually have strong assumptions and miss some
crucial edge cases. In addition, we consider a sce-
nario with texts from Shakespeare’s work. We train
a CharacterBERT model on it and use our pipeline
to generate a customized dictionary. Many dictio-
nary entries are reasonable but sometimes list too
many senses per word.

While our first simple approach to ADG does not
give perfect results yet, we see great potential for
this task and believe that our contribution is a start-
ing point that could be used by linguists who want
to create new dictionaries. It might be reasonably
assumed that the quality of the resulting clusters
of our pipeline will further increase with the con-
tinuous improvement of state-of-the-art language
models. We assume that with today’s technologies,
the brothers Grimm would likely have witnessed
the completion of their German dictionary during
their lifetime.

Limitations

In this work, we defined the task of ADG and pro-
posed one method to solve it. Nevertheless, there
are many open questions emphasizing the key chal-
lenges and proposing new ideas beyond our experi-
ments.

1. How can we train language models even for
low resource languages? Our ADG pipeline
can be used for low resource languages to
build a preliminary dictionary, but requires
to pretrain a language model from scratch.
As we have seen in our experiments with the
works of William Shakespeare, our approach
generates reasonable outcomes, but learning
language models on small corpora is challeng-
ing.

2. Is there a better way to evaluate automat-
ically generated dictionaries? The eval-
uation of dictionaries without any ground
truth remains partially open, mainly because
the Silhouette coefficient is not applicable
to situations where only one cluster exists.
Other metrics and techniques to analyze high-
dimensional clusters might be useful.

3. How can we determine the correct num-
ber of senses for a word? We analyze the
search range for the linkage thresholds in Ap-
pendix A.4. Our experiments show that the
optimal threshold is different for every dataset.
It is still unclear how the optimal cut criterion
can be determined in an unsupervised manner.

4. How can we find relations between words?
We discuss the detection of relations like syn-
onyms in Appendix A.5 but do not deliver a
concrete implementation. The detection of re-
lations like synonyms might be possible using
by clustering the centroids and could lead to a
reasonable extension of our pipeline.

5. Can we automatically generate descrip-
tions for the word types? Generating glosses
(aka descriptions) for each extracted sense is
a challenging task. Currently we are only able
to assign senses to each word in a text, to-
gether with references to sentences. In the
future it will be interesting to automatically
generate short descriptions for each word and
each sense respectively and find a meaning-
ful way to evaluate automatically generated
glosses.

Our work has shown the potential of ADG, yet
some aspects of the approach remain unsolved and
for future work. Nevertheless, we believe that ADG
can lead to powerful practically useful tools for
dictionary generation which will profit from new
and more powerful language models and additional
input created by the deep learning community.
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Ethics Statement

In this paper we propose an approach to automati-
cally generate a dictionary from plain text. Using
technology for communication is a great advan-
tage of today’s world. Having sentences and whole
documents translated in the blink of an eye is ben-
eficial for the communication between humans of
all kinds of languages and cultures. The aim of this
area of research is to use machines to study lan-
guages, potentially also low-resource languages in
the context of written text. It is to say that this kind
of technology should always have a supporting role
and should not be used to make final decisions.
Machine learning models always hold the risk of
producing biased and incorrect predictions. Our
work relies on the use of large language models
such as BERT and CharacterBERT. These models
are trained on large amounts of data and encode
various parts of it. There is a risk that they con-
tain sensitive data, generate false information or
are actively misused.
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A Appendix

Our design choices for the ADG pipeline are based
on extensive experiments that we conducted. These
are described in the following sections. Namely,
we compare different linkage criteria and metrics
for clustering.

A.1 ARI for Clusterings with Different
Affinities and Linkage Criteria

As the geometry of clusters in the embedding space
is not trivial, we empirically search for the best link-
age criterion with the WSDEval corpora. There-
fore, we perform AHC with average linkage, com-
plete linkage and single linkage and aid it with the
true number of clusters it should find. More pre-
cisely, we cluster the word vectors for each distinct,
sense annotated token based on all corresponding
word vectors and the total, unique number of its
annotated senses. We compute the ARI to measure
the quality of the clustering and omit generated
senses.

While the cosine distance measures angles be-
tween vectors, the Euclidean distance compares
their lengths. Even if we usually use the cosine
distance for NLP tasks, we also set both affinities
side by side.

Table 4 presents the ARIs for sense clusterings
with different affinities and linkage criteria and
underline indicates the best performance for each
corpus. All runs but for SemCor with complete
linkage outperform our baselines from Table 4, in-
dicating that our pipeline extracts meaningful word
senses. Average linkage works best for SemCor,
Senseval2, Senseval3 and SemEval2013. Complete
linkage yields the highest ARI for SemEval2007
and SemEval2015. Often, the three criteria perform
similarly well and SemCor is the only corpus for
which complete linkage works significantly worse
than the other two criteria. SemCor contains not
only far more tokens and sense annotations but also
some words with a higher disambiguity with up to
57 unique senses, whereas the other corpora only
hold words with at most 5 unique senses.

We expect marginally better results for the Eu-
clidean distance DEuc(A,B) with A,B ∈ Rd and
d ∈ N>0, because the cosine distance Dcos(A,B)
is equivalent to the Euclidean distance of normal-
ized vectors. By expansion, it holds

D2
Euc(A−B) = (A−B) · (A−B)

= D2
Euc(A) + D2

Euc(B)− 2(A ·B).

With normalized vectors D2
Euc(A) = D2

Euc(B) = 1,
this term is equal to 2(1−cos(A,B)) and therefore
Dcos(A,B) =

D2
Euc(A,B)

2 .
However, the Euclidean distance usually pro-

duces slightly stronger results, but yields the same
ARI as the cosine distance for SemEval2013 and
SemEval2015 with average linkage, Senseval3
and SemEval2013 with complete linkage and Se-
mEval2013 with single linkage. Senseval2 with
single linkage is the only setup for which the cosine
distance moderately outperforms the Euclidean dis-
tance. This experiment suggests a setup with the
Euclidean distance and average linkage. Possible
explanations for the results are rounding errors and
word vectors that are not exactly normalized to
length one.

Please note that Yenicelik et al. (2020) investi-
gate the organization of BERT’s word vectors for
polysemous words. More precisely, they use the se-
mantic annotations in SemCor (Miller et al., 1993)
to analyze the separability and clusterability of the
768 dimensional output of BERT’s last layer.

They perform a dimensionality reduction via
principal component analysis (PCA) (Pearson,
1901) and predict a semantic class per token with a
linear classifier (Yenicelik et al., 2020). They inter-
pret its accuracy as a measure of linear separability.
Results for frequently occurring words show that
individual semantic classes are reasonably linearly
separable and contextual word embeddings form
closed semantic regions (Yenicelik et al., 2020).

For clusterability, they apply several cluster-
ing algorithms on word vectors for sampled
words from SemCor and the news.2007.corpus7

and measure the quality of the resulting clusters
with the ARI (Rand, 1971; Hubert and Arabie,
1985) (Yenicelik et al., 2020). No clustering
method was able to distinguish between multiple
semantic classes on a satisfying level (Yenicelik
et al., 2020). For several words, resulting clusters
differ not only in meanings but also in other linguis-
tic properties like sentiment (Yenicelik et al., 2020).
BERT’s word embeddings form closed but overlap-
ping semantic regions (Yenicelik et al., 2020).

We perform the analysis on the whole SemCor
corpus with AHC and without PCA. In contrast,
Yenicelik et al. (2020) use more complex clustering
methods and sample polysemous words.

7https://www.statmt.org/wmt14/
training-monolingual-news-crawl/
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Average Linkage Complete Linkage Single Linkage
Corpus Cosine Euclidean Cosine Euclidean Cosine Euclidean

Semcor 0.6615 0.6627 0.4899 0.4958 0.6561 0.6558
Senseval2 0.9594 0.9596 0.9553 0.9558 0.9541 0.9540
Senseval3 0.9322 0.9326 0.9280 0.9261 0.9287
SemEval2007 0.9457 0.9612 0.9687 0.9844 0.9457 0.9612
SemEval2013 0.9700 0.9632 0.9694
SemEval2015 0.9712 0.9723 0.9734 0.9711 0.9681

Table 4: ARI for Clusterings with Different Affinities and Linkage Criteria using known sense counts. Underline
indicates the best result per corpus. Joined cells indicate identical ARIs for both affinities. We ignore all tokens with
generated senses.

A.2 Sense-Count-Level ARI for Clusterings
with Different Linkage Criteria

While Table 4 presents the overall performance of
our approach with one ARI per corpus, Figure 4
shows bar plots with one average ARI per unique
sense count. We analyze the dictionaries from Ta-
ble 4 and completely omit tokens with generated
senses in our plots again.

The results for monosemous words are almost
perfect for all corpora and linkage criteria, be-
cause we provide the true number as we generate
these dictionaries (see Section A.1). For polyse-
mous words, the average ARI is usually smaller
but clearly positive, indicating clusterings that are
better than random choice. Especially for larger
corpora like SemCor or SemEval2013, the drop is
more evident. Please note that the total number of
words per bar usually decreases with higher unique
sense counts.

A.3 Sense-Count-Level Silhouette Coefficient
for Clusterings with Different Linkage
Criteria

Now we calculate one average Silhouette coef-
ficient per sense count for the dictionaries from
Table 4 to investigate the quality of sense clus-
terings. Please note that the score requires 2 ≤
k ≤ n− 1 with the sense count k and token count
n (Rousseeuw, 1987). Thus, we omit all annotated
tokens that do not fulfil the condition and cannot
provide any measurements for n = 1. Similar
to Figure 4, the significance of the bars decreases
with higher unique sense counts. As the SemEval
corpora provide very few polysemous words, their
plots are less representative.

The cluster quality decreases with increasing
sense counts, starting at a score of approximately
0.15 for n = 2 and approaching values near 0.1 for
most configurations and corpora. Average and com-
plete linkage usually yield similar scores, whereas

single linkage often performs worse and even gets
some negative scores for SemCor.

A.4 Linkage Distances at the Cut

The sensible prediction of sense counts per word is
problematic due to the fact that we need to evaluate
multiple clusterings per word and do not have any
reliable information for single senses. Choosing
one linkage distance threshold above which we
do not merge any clusters avoids the choice of a
suitable number of senses and requires only one
clustering per word. Therefore, we investigate the
linkage distances at the last cuts that occur during
our clusterings with known sense counts (see Table
A.1).

As the linkage criterion optimizes a certain dis-
tance between clusters, there are n − 1 distances
for n samples. AHC is a bottom-up approach that
starts with clusters that contain only one sample
and successively builds a binary merge tree. We
investigate the exact linkage distance at the tree
node that marks the last merge. If all linkage dis-
tances differ, we can generate the same clustering
by setting the distance threshold to the exact dis-
tance at the last merge and add a small number. In
cases with no available distance, for example, if
we merge all samples into one cluster, we pick the
closest obtainable distance in the tree. For words
with a single occurrence, we do not consider any
distances.

Table 5 and Table 6 show the averages and stan-
dard deviations of the Euclidean and cosine linkage
distances at the last performed merge in the merge
tree. Again, we analyze the dictionaries from Table
A.1 and only consider tokens with known senses.
The averages are fairly similar for all corpora and
the standard deviations are rather small. Our results
for SemEval2015 are clearly the worst due to lower
averages and higher standard deviations, possibly
because it contains comparatively few samples.
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Figure 4: Sense-Count-Level ARI for Clusterings with Different Linkage Criteria using known sense counts and the
Euclidean distance as affinity. Each bar plot shows the average ARI for all words that have the same number of true
unique senses and no generated senses. We analyze the dictionaries from Section A.1.
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Figure 5: Sense-Count-Level Silhouette Coefficient for Clusterings with Different Linkage Criteria using known
sense counts and the Euclidean distance as affinity. Each bar plot shows the average Silhouette Score for all words
that have the same number of true unique senses and no generated senses. We analyze the dictionaries from Section
A.1.
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Figure 6: Euclidean Linkage Distances at the Last Merge using known sense counts. Each histogram shows
frequencies for all words that have no generated senses. We analyze the dictionaries from Section A.1.
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Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 9.6395 2.0394 10.0726 2.1631 9.1755 2.0249
Senseval2 8.4796 1.8256 8.7032 1.9295 8.2633 1.7940
Senseval3 7.7612 2.0223 7.9206 2.0855 7.5898 2.0015
SemEval2007 8.5086 1.7495 8.5396 1.7577 8.4842 1.7464
SemEval2013 8.5505 2.0034 8.7958 2.1140 8.3034 1.9379
SemEval2015 7.4175 2.4254 7.6239 2.5386 7.2192 2.3627

Table 5: Average and Standard Deviation of Euclidean Linkage Distances at the Last Merge using known sense
counts. We analyze the dictionaries from Section A.1 and ignore tokens with generated senses or only one
occurrence.

Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 0.3624 0.1469 0.3960 0.1610 0.3285 0.1423
Senseval2 0.2900 0.1198 0.3060 0.1304 0.2753 0.1156
Senseval3 0.2464 0.1183 0.2566 0.1234 0.2358 0.1165
SemEval2007 0.2928 0.1156 0.2947 0.1161 0.2912 0.1152
SemEval2013 0.2946 0.1297 0.3125 0.1410 0.2771 0.1224
SemEval2015 0.2357 0.1306 0.2497 0.1404 0.2229 0.1257

Table 6: Average and Standard Deviation of Cosine Linkage Distances at the Last Merge using known sense counts.
We analyze the dictionaries from Section A.1 and consider all words with at least two occurrences and no generated
senses.

Figure 6 exhibits histograms for Euclidean link-
age distances at the cut corresponding to Table 5.
Considering the averages and standard deviations
of linkage distances in combination with their dis-
tributions from the histograms, we propose that
most last merges occur near a Euclidean linkage
distance of about 8.5− 9.0 with a standard devia-
tion of about 1.7. This observation holds for most
examined corpora and even accross different link-
age criteria. Due to the sample size of SemCor, the
related results are most representative and suggest
a bell curve with said parameters. Therefore, a link-
age distance threshold slightly above the maximum
of the bell curves should yield a reasonable dictio-
nary. The similarities in our experiments suggest
that 8.0 − 9.5 is a reasonable initial search space
in hyperparameter optimization.

Table 7 offers the averages and standard devi-
ations of the Euclidean linkage distances at the
successor of the last merge in the tree. We need
to cut the tree between the last performed merge
and its successor to obtain the same clustering. The
latter distances are significantly higher than those
from Table 7 and the standard deviations indicate
minor overlaps of both distributions. These results
indicate clear gaps and further suggest the existence
of a reasonable linkage distance threshold.

A.5 Relation Detection

Often, terms and names consist of more than one
token, for example, the “White House”. We could
use syntactic knowledge to find related words in the
sentences. For instance, the contextualized word
embedding BERT encodes some syntactic rules
(Clark et al., 2019; Jawahar et al., 2019). In con-
trast, there are syntactic correlations between differ-
ent words, e.g., for the combination of an auxiliary
verb and its participle like “has finished”. Some
approaches mitigate such problems with seman-
tic knowledge about existing entities and phrases.
Inflections help determine syntax and context in
a sentence. Usually, only one entry per infinitive
exists in resources like dictionaries. Mapping in-
flected forms to their infinitives is challenging and
may require prior knowledge. We need to pick a
distance criterion to separate clusters of word vec-
tors. The criterion could be a fixed threshold or a
relative factor for distances. Some methods might
depend on more sophisticated geometric criteria
or estimate the number of clusters or objects. Its
choice might depend on the given corpus.

Similar contexts yield word vectors close in the
embedding space, so similar word vectors for dif-
ferent words might indicate synonyms. In contrast,
word vectors that point in the opposite direction
might reveal antonyms.

However, performing clustering methods on all
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Average Linkage Complete Linkage Single Linkage
Corpus Avg. Std. Avg. Std. Avg. Std.

SemCor 10.1048 2.0594 10.6219 2.1876 9.5731 2.0454
Senseval2 8.7927 1.7905 9.0681 1.9032 8.5312 1.7627
Senseval3 8.0880 2.1119 8.2969 2.2062 7.8749 2.0615
SemEval2007 8.8758 2.0199 8.9492 2.0532 8.7969 1.9871
SemEval2013 8.7354 2.0456 9.0253 2.1949 8.4543 1.9713
SemEval2015 7.7537 2.3858 8.0112 2.5202 7.5166 2.3156

Table 7: Average and Standard Deviation of Euclidean Linkage Distances after the Last Merge using known
sense counts. We analyze the dictionaries from Section A.1 and ignore tokens with generated senses or only one
occurrence.

words is more computationally expensive. Clus-
tering the centroids of sense clusters might also
reveal related words. In this setting, the definition
of negative concepts like antonyms is less obvious.
We could measure the strength of the relation be-
tween two clusters via the distance between their
centroids. The closer any two centroids are, the
stronger their relation is and vice versa. We could
choose thresholds or ranges to define certain con-
cepts like synonyms and antonyms.

A.6 ARI scores for different linkage distance
thresholds

In Figure 7 we show the details for every dataset on
the distribution of the ARI score next to the “Single
Cluster”-baseline. As described before, for large
thresholds the ARI converges to the ARI of our
“Single Cluster”-baseline. For both the Senseval3
and the SemEval2007 corpus a clear peak before
converging to the baseline. To gain further insights
why our method works better for some corpora
than for others, an analysis of the corpora and the
tagged annotations is necessary.

A.7 Details on Creating Shakespearean
Dictionary

Table 8 shows all hyperparameters we used to pre-
train CharacterBERT for creating a Shakespearean
dictionary.
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Figure 7: Linkage distance thresholds per dataset
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Hyperparameter Phase 1 Phase 2

Learning Rate 6× 10−3 4× 10−3

Warm-Up Proportion 0.2843 0.128
Warm-Up Rate 0.01
Weight Decay 0.01

Target Batch Size 2, 048
Accumulation Steps 256 1, 024
Total Batch Size 8 2

Update Steps 1, 800 800
Max. Input Sequence Size 128 512
Max. Masked Tokens per Input 20 80

Table 8: Hyper-Parameters for Training CharacterBERT on Shakespeare’s Works, based on the hyper-parameters
for the general CharacterBERT model (El Boukkouri et al., 2020).
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Abstract

In this paper, we represent the first version of
the Ukrainian wordnet – Ukrajinet 1.0. It con-
tains 3,360 sets of full synonyms in the field of
physics, consisting of 8,700 words. This knowl-
edge base will help incorporate the Ukrainian
language into multilingual scenarios of Natu-
ral Language Processing that need information
about lexical-semantic relations.

1 Introduction

Information about words and their meanings is
traditionally stored in dictionaries. With the in-
creasing importance of automatic processing of
language, a need for machine-readable dictionar-
ies arose. In this context, wordnets emerged to
store lexical information in a format that can be
used by language processing systems. A wordnet
(WN) is a lexical database of semantic relations
between words in a given language. The basis
of wordnets are synsets: groups of synonyms in
the language that stand for the concepts of mean-
ing. The first wordnet was created for the English
language at Princeton University (also known as
Princeton WordNet, (Fellbaum, 1998)). As the
usefulness of wordnets as lexical resources for a
wide variety of language technology applications
became clear, the Princeton WordNet (PWN) was
expanded and wordnets in other languages were
created. The Open Multilingual Wordnet (OMW)
is an open-source project created with the goal
of facilitating the use of wordnets in multiple lan-
guages with open source license (Bond and Foster,
2013). The OMW has the added benefit of connect-
ing equivalent synsets in different languages (Bond
et al., 2016). This connection is created by an In-
terlingual Index called "ILI". The English version
of the OMW (Open English WordNet, OEWN) is
basically a copy of the PWN, with some improve-
ments and additions, most notably the addition of
an interlingual index for each synset (McCrae et al.,

2019); (McCrae et al., 2020). Many of the OMW
wordnets in other languages were developed us-
ing existing translations in the Natural Language
Toolkit (NLTK). These translations were extracted
and packaged into new wordnets. Consequently,
the corresponding synsets in the resulting word-
nets were linked using the ILI. Goodman and Bond
(2021) developed the Wordnet Python library that
can be used to access the OMW project wordnets
in Python. The OEWN is distributed in electronic
form as part of the NLTK, among others, and can be
used with a corresponding Python library. NLTK
provides translations for synsets into different lan-
guages, although these translations are incomplete.
This means that not every synset in English has an
equivalent translation in another language. There
are also wordnets in other languages that were de-
veloped independently of OMW, such as GermaNet
(Hamp et al., 1997). Many of these wordnets con-
tain high-quality data that is resource- and time-
consuming to create manually. As a result, some
of these wordnets are commercially licensed and
not free to use (nor are they part of NLTK, for
example).

Ukrainian is a language with still few linguis-
tic resources that is not yet contained in OMW.
Therefore, an initiative has been launched to cre-
ate an open-source Ukrainian wordnet (Ukrajinet,
Ukrainian pronunciation [U:kr@:ji::n@t]), which is
being developed as part of the OMW project. The
Ukrainian wordnet, Ukrajinet, will help incorporate
the Ukrainian language into multilingual scenarios
of Natural Language Processing that need informa-
tion about lexical-semantic relations. This paper
presents the first version and demonstrates how this
resource will be expanded.

We will present the related work and show, how
other wordnets have been developed and how the
development of Ukrajinet fits into it. We outline the
process of developing the first version of Ukrajinet
and show how we applied existing methods. Fi-
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nally, we discuss the initial results and demonstrate
how we will proceed.

2 Related Work

In the Open Multilingual Wordnet initiative (OMW,
Bond and Paik, 2012; Bond et al., 2015), wordnets
for several languages were developed and linked
with each other.

Vossen (1998, p11) describes two basic ap-
proaches to developing new wordnet resources: In
the first case (expand), existing PWN synsets of
other languages are taken, and lexical entries are
added for the specific language. In the second case
(merge), language-specific resources are built and
then linked to the PWN.

An example of expand is the Japanese wordnet
(Isahara et al., 2008). It is based on translations
of PWN to Japanese. The Japanese wordnet is
not built fully automatically: most translations are
manually checked. The authors found that there are
differences between concept structures in English
and Japanese, such that several synsets could not
be translated. Other examples of expand include
the Finnish (Lindén and Carlson, 2010) and the
French (Sagot and Fišer, 2008) wordnets.

The Russian wordnet (Alexeyevsky and Tem-
chenko, 2016) is an example of the merge approach.
It is based on a monolingual dictionary and the
word definitions in these. The idea is that defi-
nitions contain hypernyms of the defined words,
often in the form of WORD:HYPERNYM . . . , and
that this information can be used to set up hierar-
chical structures in the wordnet. Other examples
of merge with partly different ideas are the Pol-
ish Wordnet (Derwojedowa et al., 2008), the Nor-
wegian Wordnet (Fjeld and Nygaard, 2009), the
Danish Wordnet (Pedersen et al., 2009), and the
Turkish Wordnet (Bakay et al., 2021).

There were previous attempts to create
Ukrainian wordnets that, however, did not result
in the release of an open Ukrainian wordnet. In
particular, (Kuljchycjkyj et al., 2010) state that
their earlier attempts to apply an expansion method
to Ukrainian failed. The authors claim that in
the next attempt, having used frequency dictionar-
ies, they created the fragment of a wordnet-like
dictionary of the Ukrainian language, in which
194 noun synsets were implemented, being con-
nected by hypo-/hyperonymy links (183 examples),
antonymy (14 examples), as well as additionally
meronymy/holonymy connections (over 150 cases).

However, the project was not continued, and the
results were not made publicly available.

(Anisimov et al., 2013) report the main results
of a project aimed to create the Ukrainian lexical-
semantic knowledge base UkrWordNet (UWN),
describing tools and results. The authors claim
that they automatically created more than 82,000
noun synsets and have about 145,000 nouns in the
lexicon. However, this wordnet cannot be accessed.

Nykonenko et al. (2013) describe a correc-
tion tool designed to create and modify the
Ukrainian linguistic ontology in the UWN. How-
ever, the site of the mentioned project UWN (http:
//lingvoworks.org.ua/) is not accessible any
more.

Thus, we may conclude that despite some efforts
and announced results, a Ukrainian wordnet as part
of the OMW effort under an open source license
is still not available and remains an open field for
research.

3 Method and Material

For Ukrajinet, we decided to use the same approach
as for the (Siegel and Bond, 2021; Bergh and Siegel,
2023) wordnet. So, the approach of the Ukrajinet
initiative is merge. We use an existing synonym
dictionary and several methods to link the synsets
to OMW. The methods from the development of the
(Siegel and Bond, 2021; Bergh and Siegel, 2023)
wordnet are reused for Ukrajinet.

The first version of the open Ukrainian wordnet,
Ukrajinet 1.0, was created on a basis of a dictio-
nary of physical synonymous terms (Vakulenko
and Vakulenko, 2017).

As in other languages, the establishment of an
ontology for the Ukrainian lexical information ne-
cessitates proper accounting of ambiguities result-
ing from homonymy and polysemy. These lexi-
cal semantic relations prevalently occur within the
same syntactic category (Part of Speech, POS) but
can also arise across different POS, e.g.

мати ‘mother’ (noun) – мати ‘have’ (verb)
In most cases, such ambiguities are not paral-

lel to English ones, which results in difficulties
in translation and linking Ukrajinet to OMW. For
example, the Ukrainian term вал has three main
meanings corresponding to different English terms:
1. (tech.) ’shaft’; 2. ’barrage’; 3. (arch.) ’torus’. In
addition, Ukrainian verbal nouns stemming from
the same verb, bear subtle semantic differences that
cannot be reflected in other languages (Vakulenko
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and Vakulenko, 2017).

4 Process of Creating Ukrajinet

Basic information on the wordnet idea can be found
in (Fellbaum, 1998) and (Kunze and Lemnitzer,
2010), among others. The data structure of word-
nets in OMW is an XML structure (which can be
converted to a JSON format). A lexeme has a "Lex-
Entry" with a unique ID, information about the writ-
ten form, syntactic category, and meanings, with
links to associated concepts.

The dictionary of physical terms that we use as
a basis for Ukrajinet was not created primarily for
NLP purposes. It is in Microsoft Word © format
and has entries such as1

будова

будова aтомного ядрa, структyра aтомного ядрa
/+/ збудова aтомного ядрa

Therefore, the first step was to convert the dictio-
nary entries into a machine-readable format. Then,
existing methods could be used to compile this in-
formation into the OMW XML format (section 4.1).
Furthermore, the information is extended with POS
(section 4.2) and multilingual indexing information
(section 4.3).

4.1 From the Dictionary of Physical Synonym
Terms to Synsets

We extracted only the synonym information from
the dictionary and ignored (for the time being)
other information, such as subdomains (optics,
molecular physics, quantum mechanics, etc.). This
information will be added in future work. The
output of the preprocessing was a file of synsets,
with each synset on one line. An example of such
a synset is:

аглютинацiя;склеювання;грудкування (agglutina-

tion, adhesion, clumping)

The target of the transfer process of this synset
is to have three lexical entries and a synset entry.
The format is described in Bond et al. (2016). We
start with the synset and its basic information2:

1structure, structure of the atomic nucleus, construction of
a nuclear core

2The English translation is not part of the synset; the trans-
lation is given here only for better understanding

<Synset id="ukrajinet-30-n" ili="i36192" partOfSpeech="n">

<Definition> мiцне з’єднання мiж собою (strong

connection between each other) </Definition>

</Synset>

The synset has a unique synset ID, a link to
the interlingual wordnet IDs in "ili", a POS, and a
definition. Further, it has relations to other synsets
that we ignore for the moment.

4.2 Adding POS Information

The next task is to find information about the syn-
tactic category (Part-of-Speech, POS). One option
for the part-of-speech tagging of Ukrainian words
is to use a tool such as VESUM3. However, a no-
ticeable part of our terms is not present in VESUM,
such as the words "видим (’antinode’), вогко-
мiр (’psychrometer’), замичник (’relay’), iскриш
(’pyrites’), etc. This is due to the fact that we have
many very specific terms in the field of physics.
Given this, we used the following heuristic ap-
proach, which showed better results.

As the dictionary contains only verbs and nouns
(with rare exceptions), we recognize verbs by their
endings. If a word ends with one of the verbal
endings, then it is a verb in the infinitive form (with
rare exceptions for " ти "), otherwise a noun:

• ти

• тися

• тись

As with other wordnets, we have some cases of
multiword expressions. An example is ставaти
бiльшим (to grow larger). We use the POS of the
first word in the expression, as these are (in this
dictionary) mostly consisting of verb + adjective
(POS V) or noun + noun (POS N). We manually
checked and corrected the cases where a synset
contained words with different assigned POS’s.

A further task is to generate the lexical entries
for the words, sharing the synset sense. This is
what is aimed for:

<LexicalEntry id="w76">
<Lemma writtenForm=" аглютинацiя "4

partOfSpeech="n"/>
<Sense id="w76_30-n" synset="ukrajinet-30-n"/>
</LexicalEntry>

3https://github.com/brown-uk/nlp_uk
4agglutination
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<LexicalEntry id="w77">
<Lemma writtenForm=" склеювання "5

partOfSpeech="n"/>
<Sense id="w77_30-n" synset="ukrajinet-30-n"/>
</LexicalEntry>

<LexicalEntry id="w78">

<Lemma writtenForm=" грудкування "6

partOfSpeech="n"/>

<Sense id="w78_30-n" synset="ukrajinet-30-n"/>

</LexicalEntry>

The lexical entries in a synset belong to one
sense with the same synset ID. Further senses for
lexical entries come from other synsets in the dic-
tionary. Each lexical entry has a unique word ID, a
lemma, and a part of speech (POS).

A validation process is implemented to ensure
correctness of the wordnet. It checks for XML
correctness, duplicate lexical entries (that are only
allowed for homonyms), consistency of POS in
LexEntries, synsets, duplicate ilis, synsets without
words, words without synsets, and others.

4.3 Linking the Synsets with the Open
Multilingual Wordnet

In order to create a useful resource in the OMW
context, it is necessary to link the Ukrainian
synsets by adding an interlingual index in "ili".
We used the translation table that we had created
for another wordnet (Bergh and Siegel, 2023).
It contains the words and definitions for each
English synset in OEWN. The idea behind using
the definitions with the words is that these provide
some context for the translation, such that lexical
ambiguity is reduced. For our example above, we
get:

i36192 bonding: fastening firmly together

The obtained list was automatically translated
into Ukrainian through the DeepL tool and
post-processed by a linguist to render precise
meaning. Then we searched for the Ukrainian
terms in our dictionary. Hence, we found the rows
in the following form:

i36192 bonding: fastening firmly together

аглютинацiя;склеювання;грудкування

5adhesion
6clumping

In the non-ambiguous cases in which an ILI
could be assigned exactly to one synset, we were
able to transfer these words and definitions directly
to Ukrajinet. We used the words and definitions
from WordNet corresponding to those of Ukrajinet
where 571 synsets were connected. We have also
adopted the Ukrainian translation of the definition
in these cases.

The ambiguous cases, where either one ILI is
assigned to more than one synsets or a synset got
more than one ILI assigned, are currently checked
manually.

4.4 Results

So far, we have the first version of Ukrajinet with
8,700 lexical entries organized in 3,360 synsets,
all in the physical domain. 571 of these synsets
are connected to OMW via the ILI. We use a val-
idation script for Ukrajinet that is based on the
OMW validation, before submitting the wordnet
to Github. Ukrajinet is released via GitHub, under
a (CC-BY-SA 4.0)7 license at https://github.
com/hdaSprachtechnologie/ukrajinet. This
can then be loaded directly into the WN Python
library (Goodman and Bond, 2021), which allows
easy use: either on its own or linked to other word-
nets through the Collaborative Interlingual Index
(CILI).

5 Discussion and Future Plans

We presented in this paper the process of creating
the first version of the Ukrainian wordnet, Ukra-
jinet 1.0, which synsets and lexical entries in the
field of physics.

It was possible to reuse methods that were de-
veloped for the creation of the German Wordnet
OdeNet (Siegel and Bond, 2021) and therefore
prove that this is an efficient way to create a word-
net for a new language.

Ukrajinet 1.0 is a starting point for future elabo-
ration of this resource.

We are currently checking ambiguous transla-
tions, such that most of the terms in Ukrajinet 1.0
can be linked to OMW. Wordnets contain relations
between synsets, such as hypernym, meronym, or
antonym relations. Some relations are available
in the dictionary that we use as the basis for our
wordnet. Others can be taken over from OEWN,
in cases where we have the ILI connection. Defini-

7https://creativecommons.org/licenses/by-sa/4.
0/
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tions for the terms in the domain of physics will be
taken from the "Explanatory dictionary in physics"
(Vakulenko and Vakulenko, 2008).

We have so far ignored information in the
physics dictionary that we plan to include in the
future: information about hierarchical relations and
information about subdomains of physics.

Once the information for the terms we now have
in Ukrajinet 1.0 is complete, we can begin to ex-
pand the wordnet. Various sources of information
come into question for this: We can use the exist-
ing translation table to add general terms translated
from OEWN to Ukrajinet. This will be done fol-
lowing the method described by (Bergh and Siegel,
2023). The domain information can be used to
fine-tune the synsets. Further, we can look at the
Wiktionary database of Ukrainian lemmata. We
can also include the information in an academic
dictionary of Ukrainian words, such as (Burjachok
et al., 2001).

It is also planned to provide a Latinized ver-
sion of Ukrajinet, Romanized according to the
Ukrainian national standard 9112:20218 that yields
isomorphic transliteration of Ukrainian texts (Vaku-
lenko, 2022).

We are currently developing a user interface for
manual work on Ukrajinet - corrections, edits, and
additions.

Ukrajinet will be used in various multilingual
scenarios of NLP requiring Ukrainian semantic and
lexical resources, such as multilingual information
retrieval, text analysis and comparison, machine
translation, etc.

Limitations

The work described is work in progress. The results
are promising, but not yet complete.
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Abstract

Transformer-based pointer networks currently
represent the state of the art for English aspect-
based sentiment analysis. Inspired by their per-
formance in extracting structured sentiment in-
formation from text, we aim to transfer this
success to the German language. For eval-
uation we use the GermEval shared task on
“Aspect-based Sentiment in Social Media Cus-
tomer Feedback”, as it consists of four sub-
tasks: (A) Relevance Classification, (B) Docu-
ment-level Polarity, (C) Aspect-level Polarity,
and (D) Opinion Target Extraction (Wojatzki
et al., 2017). We follow the intuition of the
English approach by training a single model
to solve all related subtasks at once. There-
fore, the subtasks are formulated as a single
unified index generation problem, enabling the
model to solve all four subtasks simultaneously.
We find that solving all four subtasks at once
only has a minimal impact on the overall perfor-
mance of our model. Consequently, we closely
match or outperform all previous approaches
despite them training subtask-specific models.

1 Introduction

Explicit customer feedback is an extremely valu-
able source for understanding the needs of cus-
tomers and improving products and services ac-
cordingly, while being available in a large amount
on the Internet in unstructured form. It is neces-
sary to be able to aggregate and analyze the feed-
back in a comprehensive way, to understand the
wide variety of opinions and sentiments expressed.
Ideally, the feedback has to be extracted in a fine-
grained but easily understandable way. The main
interests are, of course, voiced opinions and their
aspects that determine whether and why exactly,
e.g. a review is positive or negative. Consequently,
to break down a long review to its core informa-
tion, tuples of opinion terms and their associated
sentiment have to be extracted. This structured
span-based extraction process, called “Opinion Ex-

traction”, can easily be solved by pointer networks.
Specifically, BARTABSA (Yan et al., 2021) is a
sequence-to-sequence pointer model, which pre-
dicts a sequence of class tokens and pointers to
token indices of the input text. Current research de-
velopments related to pointer networks and aspect-
based sentiment analysis do include multilingual
approaches (R et al., 2022; Pfister et al., 2022) but
notably until now not German. Thus, the research
gap arises on how recent advances in structured
sentiment prediction can be leveraged for German
Opinion Extraction. Despite this gap, for German
evaluation there exists a comparably large data set
introduced by the GermEval 2017 Task that con-
tains customer feedback about “Deutsche Bahn”.
To this end, four subtasks were formulated and,
while all are related to the analysis of customer
feedback, each subtask focuses on a different level
of information classification and extraction. In or-
der of increasing complexity, the formulated tasks
are (A) Relevance Classification, (B) Documen-
t-level Polarity, (C) Aspect-level Polarity (D) Opin-
ion Target Extraction (Wojatzki et al., 2017). Thus,
to solve all tasks successfully, a model needs to
not only classify the entire document itself but
also extract and label all relevant spans correctly.
In contrast to existing approaches, we leverage a
pointer network to solve all of these subtasks with
the same model simultaneously, which we find to
sometimes even increase performance over a model
specialized on a subset of the tasks. In summary
our main contributions are: (i) Formulating all
GermEval 2017 subtasks as a single unified index
generation problem, (ii) thereby introducing doc-
ument-level classes next to sentiment spans to the
BARTABSA approach. (iii) Extensively evaluating
various German-capable transformer encoder-de-
coder basemodels on this German language task.
(iv) We show that our model outperforms or closely
matches all previously existing approaches while
solving all tasks at once.
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Figure 1: Exemplary input sentence for aspect-based
sentiment analysis, annotated with aspects, opinions and
sentiments (Yan et al., 2021).

2 Preliminaries & Related Work

2.1 Seq2Seq-Transformers

Transformer models consisting of an encoder and
decoder are commonly referred to as Seq2Seq mod-
els, as the encoder generates an intermediate rep-
resentation of the input sequence using which the
decoder then generates the output sequence. In
our experiments, we compare different Seq2Seq
models with each other.

First, BART was pretrained as a denoising au-
toencoder (Lewis et al., 2020). Here denoising
refers to the training process, in which a noised/-
masked text sequence is given as input and the
model is trained to reproduce the original sequence
as output. The model is applicable to a wide
range of tasks such as sequence classification, to-
ken classification, sequence generation, or ma-
chine translation. We also explore a BART model
fine-tuned on the MNLI task as inspired by R et
al. (2022) and one fine-tuned on the German ML-
SUM dataset (Scialom et al., 2020). Furthermore,
we use mBART50 which was trained in translating
between 50 languages, including German (Tang
et al., 2020). Lastly, M2M-100 is a Many-to-Many
multilingual Seq2Seq model trained on sentence
pairs to translate between any pair of 100 lan-
guages, including German (Fan et al., 2020).

2.2 Aspect-Based Sentiment Analysis

The goal of Aspect-based Sentiment Analy-
sis (ABSA) is, given a sentence containing ex-
pressed opinions, to extract explicitly voiced opin-
ions, each consisting of an aspect term, its opinion
term and corresponding sentiment polarity (see Fig-
ure 1 for example). Thereby, the aspect terms are
the target to which the opinion terms refer, and thus
express the polarity of the sentiment.

This task consists of two types of subtasks:
extraction and classification. Here extraction
refers to extracting and annotating the span of
terms (a1, a2, o1, o2 in Figure 1), while classifica-
tion describes the prediction of characteristics of
this relationship, e.g. sentiment polarities (s1, s2).

2.3 BARTABSA Pointer Network

The BARTABSA pointer framework introduced
by Yan et al. (2021) proposes a unified solution
to solve various predefined ABSA subtasks. This
comes with a substantial performance gain over
comparable well-performing baselines, including
BERT-based approaches. To achieve this, they re-
formulate all subtasks as a unified generative task,
meaning that every subtask is defined as a sequence
of pointers to indices in the source sequence and
sentiment class tokens. To predict pointers to in-
dices of the source sequence, they implement a
pointer network, which uses BART as a backbone.
Unlike a regular transformer, pointer networks do
not output a probability distribution over a vocab-
ulary of fixed size, but instead a distribution over
tokens of the input sequence.

The model works by first generating an input
representation He ∈ Rn×d from its encoder. Here,
d denotes the embedding size and n the number of
tokens in the input sequence. This He is used by
the decoder to autoregressively generate the target
sequence. In every timestep, it takes He and pre-
viously generated tokens Y<t as input and returns
a vector Hd ∈ Rd. To obtain a token probability
distribution PX over the input sequence, the fol-
lowing calculations are performed: Both - the input
sequence X , and the list of class tokens C - get em-
bedded by the token embedding layer of the model,
resulting in the embedding vectors EX ∈ Rn×d

and EC ∈ Rl×d, where l denotes the number of
class tokens in the vocabulary. Next, a weighted av-
erage is calculated between the encoder output He

and the embedded input sequence EX , to obtain a
new representation H̄e ∈ Rn×d.

H̄e = αMLP(He) + (1− α)EX (1)

Before calculating this weighted average, He gets
processed by a multilayer perceptron (MLP). Fi-
nally, the pointer distribution over the input tokens
PX ∈ Rn+l is calculated, by the softmax over the
concatenation of H̄e and EC times Hd.

PX = Softmax([H̄e ∥ EC ]Hd) (2)

In order to use the list of previous predictions Y<t

as autoregressive input, all pointers are replaced by
their respective token they are pointing to from the
input sequence before feeding them to the decoder.
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2.4 GermEval 2017: Aspect-Based Sentiment
in Social Media Customer Feedback

The GermEval 2017 task is a shared task on an-
alyzing customer reviews and news related to
“Deutsche Bahn” and provides an annotated data
set of 26 209 documents for training and evalua-
tion. The shared task consists of four subtasks to
be tackled individually (Wojatzki et al., 2017).

(A) Relevance Classification: The goal of this
subtask is to classify a document as relevant (true)
or irrelevant (false) for Deutsche Bahn.

(B) Document-Level Polarity: This subtask is
about concluding whether the entire customer re-
view is overall positive, neutral, or negative.

(C) Aspect-Level Polarity: Subtask C involves
the identification of all categories mentioned in the
document and their associated polarity.

(D) Opinion Target Extraction: The goal of sub-
task D is to identify the exact term(s) in the doc-
ument matching the categories and their polarity
from subtask C. Each term is predicted as a span in
the document, and a single span can be associated
to multiple categories.

2.5 Data Set

The provided data was collected using web scrap-
ing with a list of query terms, from May 2015
to June 2016, thus covering various seasonal and
everyday problems such as holidays or strikes (Wo-
jatzki et al., 2017).

In the following, we take a close look at the
training data and list common properties that we
found. In general, the data is divided into two main
categories: irrelevant and relevant to the topic of
“Deutsche Bahn”. Irrelevant documents do not con-
tain annotated opinions and the sentiment is always
set to “neutral”. Relevant data can be further split
into two subcategories: Some documents contain
clearly expressed opinions, which are annotated
accordingly, while others are topically relevant but
do not contain any concrete opinions. In the latter
case, the opinion term, represented by a span in
the source document, is set to “NULL”. Thus the
data can be divided into the following three types:
1. irrelevant 2. relevant without annotated opinion
spans 3. relevant with annotated opinion spans.

The GermEval subtasks C and D require classi-
fying the opinion terms according to suitable cat-
egories. In total, there are 20 main categories and

r relevance s sentiment
negativetrue

„Re: KEIN Stuttgart 21 Ein echter Witz! Die Bahn behauptet damit, daß sie
gar nicht wisse, dass die Aufzüge kaputt seien. Das ist unglaublich dreist“

o1
opinion

o2,3
opinion

Informationen
negative

p2 polarity p3 polarity
c2 category c3 category Komfort und Ausstattung

negative

Barrierefreiheit

neutral

Subtask B: [s]Subtask A: [r]

Subtask C: p!c! , p"c" , (p#c#)
Subtask D: o!$o!% c! , o"$o"% c" , ( o#$o#% c#)

𝑜!,#$ 𝑜!,#%

𝑜&$ 𝑜&%

p1 polarity
c1 category

Figure 2: Example document containing labels for all
four subtasks and our sequential encoding for each.

up to 54 subcategories used to categorize the opin-
ion terms. For the purpose of the shared task, it is
sufficient to predict the correct main categories, as
the subcategories are not taken into account. No-
tably, a single opinion term can be associated with
multiple categories (opinions 2 and 3 in Figure 2).

3 Methodology

Inspired by the performance of pointer networks in
English aspect-based sentiment, we adapt and ex-
tend the BARTABSA framework (2021) aiming to
solve the four subtasks introduced previously (Sec-
tion 2.4) - at once and in German.

3.1 Formulating the Subtasks as a Single
Sequence-to-Sequence Task

In order to predict all subtasks at once, the output
sequence of our model needs to take into account
all spans and labels required to extract the four sub-
tasks. If we are able to model all four subtasks as a
single sequence, we can consequently train a model
to predict this sequence. This sequential represen-
tation has to be unambiguous, so that the output
of the model is always correctly interpretable. In
the following, we define our prediction targets as
a sequence consisting of index pointers and class
tokens, as shown in Figure 2 and Table 1.

Document-Level Classification
The first two subtasks are document-level classi-
fication tasks, which are represented by the first
two rows in Table 1. The output for both tasks
can be modeled by only a single special token,
each specifying the class the document belongs
to. For subtask A we define r ∈ {true, false}
as the relevance class token, indicating whether
the document is relevant to the topic of “Deutsche
Bahn” or not, while for subtask B we define s ∈
{positive, negative, neutral} as the sentiment class
token, indicating the overall sentiment of the entire
input document.
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Table 1: Representation of the target sequences required
to solve all four GermEval subtasks first individually
and then together. Here i represents the ith category and
opinion span present and | depicts the separator token.

Task Target Sequence Representation

A [r]
B [s]
C [c1, p1| . . . |ci, pi| . . . ]
D [os

1, o
e
1, c1| . . . |os

i , o
e
i , ci| . . . ]

Comb. [r, s|os
1, o

e
1, c1, p1| . . . |os

i , o
e
i , ci, pi| . . . ]

Category & Span Prediction

For subtask C a combination of two classes
has to be predicted: a category implicitly
or explicitly rated in the input document
and additionally the expressed sentiment for
each category. Therefore, we define c ∈
{Allgemein,Zugfahrt,Ticketkauf, . . . } as the cat-
egory and p ∈ {positive, negative, neutral} as the
class token associated with the category. A docu-
ment can contain several different opinions, conse-
quently a category-polarity pair has to be predicted
for each mentioned category. We enumerate and
predict these pairs in the order they occur in the
text input, which is why we introduce i represent-
ing the ith pair, associated to the ith mentioned
category. For subtask D, in addition to the cate-
gory c and polarity p the matching opinion term o
has to be predicted, where applicable. Therefore,
we introduce pointer indices corresponding to the
start and end index of the target opinion term in
the source sequence, which we indicate with o us-
ing superscript to mark the starts and ende index
token. Again, i represents the ith term, and again
we encode the opinion terms in the order in which
they appear in the text. It is important to note that a
single opinion span can be associated with multiple
categories and polarities (see Figure 2).

Finally, to solve all four subtasks at once, we
string together the four target sequences into one by
concatenating subtasks A and B, while interleaving
the matching parts of subtasks C and D (Table 1).
In doing so, we must carefully consider the data
types we identified in Section 2.5. We distinguish
between these three mentioned kinds of data types
in the process, to achieve a natural encoding for all
data points. In the following, we lay out the three
encodings for the different data types ordered by
increasing complexity.

Document irrelevant to “Deutsche Bahn”
{"text": "RT @DLR_next: Ach ja: Sie dürfen jetzt
das Alu-Hütchen wieder absetzen. Zu unserer eige-
nen Überraschung hatten wir die Asteroiden-Bahn
korr", "relevance": "false", "sentiment": "neutral"}

Data points labeled as not relevant for the topic
of “Deutsche Bahn” are characterized by their tar-
get for subtask A being “not relevant” and senti-
ment for subtask B being “neutral”. Furthermore,
these data points do not contain annotated cate-
gories, polarities, or opinion terms for tasks C and
D. Consequently, the target sequence contains the
following information: relevance and sentiment,
which gets encoded as two tokens: [BOS, false,
neutral, SEP, EOS].

Document relevant but without Opinion Terms
{"text": "@DB_Bahn Gibts denn ne Ersatzfahrt
oder so?!", "relevance": "true", "sentiment": "neu-
tral", "opinions": [{"category": "Allgemein", "po-
larity": "neutral"}]}

Next we address data points which are relevant
and thus have categories and polarities annotated
but do not contain opinion terms. We extend our
existing encoding scheme by appending a list of
categories and polarity tuples to the target sequence:
[BOS, true, neutral, SEP, Allgemein, neutral, SEP,
EOS]. The sequence now contains the information:
relevance, sentiment, category and polarity.

Document relevant and contains Opinion Terms
{"text": "Juhu Weichen Störung! Ich liebe die
Bahn. . . Nicht -.-", "relevance": "true", "sentiment":
"negative", "opinions": [{ "category": "Allgemein",
"polarity": "negative"}, {"category": "Unregelmäs-
sigkeiten", "polarity": "negative", "from": 1,
"to": 2, "term": ["Weichen", "Störung"]}]}

Finally, we add the ability to encode the spans
that represent opinion terms in our target sequence.
As indicated in Table 1, one document can be an-
notated with multiple categories or opinion terms
(spans). These spans are associated with the cate-
gory we implemented above, and consequently we
concatenate these to their respective category. The
sequence thus has to contain the document’s rele-
vance and sentiment as well as a list of opinionstart,
opinionend, category and polarity. For above ex-
ample we define this target sequence: [BOS, true,
negative, SEP, Allgemein, negative, SEP, 1, 2, Un-
regelmässigkeiten, negative, SEP, EOS]. Following
the BARTABSA encoding, we first predict the span
and the associated category afterwards.

130



3.2 Pointer Network

Architecturally we keep the model introduced in
BARTABSA (Section 2.3) unchanged. To enable it
to predict our previously defined target sequence,
we need to extend the special token vocabulary of
our model, as the task at hand includes document-
level classes as well as 20 categories, all of which
need to be predicted by our model. The vocabu-
lary has to contain the following special tokens:
(i) BOS, EOS, PAD, SEP (ii) two tokens for doc-
ument relevance: true, false (iii) three tokens for
sentiment and category polarity: positive, negative,
neutral (iv) 20 tokens for the categories (Allgemein,
Zugfahrt, Ticketkauf, etc.). At every decoding step,
the pointer network either predicts a pointer to a
token index of the source sequence, or a class spe-
cial token. Conceptionally, these special tokens are
assigned to the lowest available ids, so the first 29
tokens (4+2+3+20) are special tokens. Predictions
larger than this offset are interpreted as pointers
to indices of tokens in the source sequence. The
target sequence is created by converting all tokens
to ids and then adding this constant offset of 29 to
all index pointers to the source sequence. Thus our
previous example of [BOS, true, negative, SEP, All-
gemein, negative, SEP, 1, 2, Unregelmässigkeiten,
negative, SEP, EOS] becomes [0, 4, 7, 3, 9, 7, 3,
30, 31, 14, 7, 3, 2]. The model is then trained to
predict this sequence of special tokens and indices
for each input document. Of course, before con-
verting the predicted index pointers back to spans,
this constant offset is subtracted again.

3.3 Handling Encoding Issues

Inputs longer than the model’s context size are
truncated such that during evaluation twenty data
points of the synchronic test set and eleven of the di-
achronic test set could not be encoded in its entirety.
During evaluation we set fallback defaults of rel-
evance=true for subtask A and sentiment=neutral
for subtask B for data points, where the model fails
to predict either of these tasks. Both values are the
respective majority classes in the training set. This
is necessary to evaluate our results, as the original
evaluation binary provided by the task hosts cannot
handle missing values. For subtasks C and D, no
fallback predictions are required or set.

4 Experiments

4.1 Data Set

To assess the robustness of the participating sys-
tems, two test sets were introduced. In addition to
the “synchronic test set” (Testsyn), a “diachronic
test set” (Testdia) is provided, consisting of docu-
ments from a different time frame: November 2016
to January 2017 (Wojatzki et al., 2017). In total, the
data set consists of 26 209 German messages across
all splits (Train: 19 432 (of which 3231 irrelevant
for “Deutsche Bahn”), Dev: 2369, Testsyn: 2566,
Testdia: 1842), annotated with the document id, rel-
evance, and sentiment, as well as the opinion terms
including exact spans, its sentiment, and category.

4.2 Evaluation & Metric

For evaluation, we use the original GermEval eval-
uation script, which compares the predicted results
considering the micro-averaged F1-score (Wojatzki
et al., 2017). For subtasks A and B the F1-score
is reported, while for subtask C, the task hosts
distinguish two types of metrics: (C1) Only the
category has to match the ground truth. (C2) In
addition to the category, the polarity must be pre-
dicted correctly. Furthermore, for subtask D also
two types of results are differentiated: (D1) Exact
result: The “from” and “to” tags have to exactly
match the ground truth. (D2) Overlap result: The
“from” and “to” tags can deviate from the ground
truth by +/- 1 at the word level. We report our
performance for all task metrics.

4.3 Hyperparameter Search

In order to improve the performance of our model,
we perform an extensive training hyperparameter
search. This includes exploring various ways to
encode our targets, hoping to gain a better under-
standing of how the models performance is influ-
enced by the different parameters. To gain a better
understanding of how well each base model works
for this German task, we perform a grid search,
examining the hyperparameters listed in Table 8,
resulting in 300 combinations of parameters. This
enables us to find the best working model for Ger-
man by comparing the performance of all available
models against each other, while also finding the
best hyperparameter combination for each of them.
For batch size, epochs, and learning rate, we decide
to search and analyze parameters close to the values
proposed by Yan et al. (2021) and keep AdamW.
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Figure 3: Results for subtask D1, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.

5 Evaluation and Results

First we evaluate the findings of our hyperparame-
ter search, before we analyze the impact of differ-
ent prediction orders. Afterwards, we compare our
performance against previous approaches.

5.1 Hyperparameter Study

We systematically evaluate the impact of each hy-
perparameter on the overall performance of our
approach. To identify statistically significant dif-
ferences between hyperparameter combinations,
we performed the Kruskal-Wallis test (Corder and
Foreman, 2014) and corrected for multiple com-
parisons using post hoc Dunn’s test (Dunn, 1964).
Large learning rates can result in training insta-
bilities for some hyperparameter combinations, so
the exploration of the largest learning rate (5e-4)
was canceled early after no valid run could be con-
ducted. Thus, we do not have paired data points for
all learning rates.

To this end, we consider p < 0.05 as a statisti-
cally significant difference and mark it with an ∗
in Figure 3 and Appendix A. We use a black line
to represent the average values. In Figure 3 we
representatively plot the performance on the vali-
dation set for subtask D1. The results for the other
subtasks are similar, and their plots can be found in
Appendix A. To prevent overfitting and ensure that

the test set remains independent for unbiased model
evaluation, the hyperparameter study is performed
using the validation split.

Hyperparameter: Base Model Figure 3 il-
lustrates that the choice of the base model can
have a significant impact on the overall perfor-
mance. Here, we refer to the evaluated base
models by their HuggingFace identifier. We
find that “facebook/bart-large-mnli” performs best,
achieving significantly better results than “face-
book/m2m100_418M” and “Shahm/bart-german”.
The difference between “facebook/bart-large-mnli”
and “facebook/mbart-large-50” is minimal.

Hyperparameter: Batch Size Noticeably, the
batch size has a smaller effect on the performance
of the model and does not show significant differ-
ences between the different configurations.

Hyperparameter: Epochs Inspecting the num-
ber of epochs shows that training just one epoch
is, as expected, statistically worse than training for
three, four, or five epochs. Nevertheless, increasing
the number of epochs to more than two does result
in slight but not significant improvements.

Hyperparameter: Learning Rate Regarding
the learning rate a clear performance deterioration
can be observed starting from a learning rate of
7.75e-5 and becomes significantly worse when the
learning rate increases further. The learning rate
suggested by Yan et al. (2021) of 5e-5 also achieves
statistically significant better results than 5e-6. We
consequently identify a learning rate of 5e-5 to be
the best option over all tasks.

Selected Hyperparameters After conducting
this hyperparameter search, we select the config-
uration that ranks best across the most subtasks
on the validation split. In doing so, we identify
“facebook/mbart-large-50” as the best model with
a learning rate of 5e-5, when training for 5 epochs
with a batch size of 8. As listed in Table 9 we find
that this configuration is among the top-3 combina-
tions for subtasks C and D for both metrics each.
Therefore this configuration will be used for all
following analyses.

5.2 Performance on Subtasks C and D
In order to train the model to solve all subtasks
at once, we have to consider all data points in the
training set. In particular, this includes training on
a large number of data points that are irrelevant
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Table 2: Comparison of results achieved when predict-
ing all subtasks, versus only subtasks C and D. Further-
more different permutations for subtasks C and D are
evaluated. First column matches Section 3.
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Table 3: Comparison of results on the validation set for
all subtasks using the best hyperparameter combination
and only changing the order of the target sequence
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C2 .543 .554 .560 .563 .559 .562
D1 .476 .487 .486 .490 .498 .497
D2 .500 .507 .510 .509 .518 .522

for subtasks B, C and D, as these data points are
only required for subtask A (Section 4.1). As all
previous approaches train separate models for each
subtask, this leads us to investigate how the per-
formance of our model changes, when dropping
all irrelevant data points from the training set and
training only on the two closely related and most
complex tasks: subtasks C and D. Table 2 lists the
results achieved, while training our model only on
subtasks C and D in the first section. Comparing
the first two columns, it is noticeable that leaving
out subtasks A and B slightly improves the perfor-
mance on subtasks C and D, although the impact on
subtask C seems to be slightly larger. We deduce
that additionally predicting subtasks A and B, and
thus even training on a significant amount of off-
topic data, does not impact performance strongly.

Table 4: Comparison of existing approaches for sub-
task A. Best in bold, second underlined.

Team Subtask A Testsyn Testdia

Wojatzki et al. 0.852 0.868
Sayyed et al. 0.903 0.906
Hövelmann and Friedrich 0.899 0.897
Aßenmacher et al. 0.957 0.948

Our (A,B,C&D) 0.953 0.943

5.3 Order of Prediction

In preliminary experiments, we found slight differ-
ences in performance when changing the order of
the target sequence introduced in Section 3. There-
fore, we systematically evaluate the impact of this
order and list the results for different prediction
orders of subtasks C and D in Table 2. We find
that our proposed order in Section 3 overall, scores
rather low among all possible permutations and
that moving the predictions for subtask C in front
of subtask D slightly improves the results.

Consequently, in Table 3 we take the best pre-
diction order for subtasks C and D and analyze
it in combination with different permutations of
subtasks A and B. We find that the overall differ-
ences are small, but predicting subtasks A and B
last (p, c, os, oe, r, s) achieves the best results con-
sidering the mean over all subtasks. Thus, this is
the prediction order we fix for further evaluation.

5.4 Results on the Test Set

Previous analyses were conducted on the valida-
tion split, while the following comparisons against
existing approaches are carried out on the test set.
We also examined the impact of different seeds on
the performance, to get insights into robustness and
reproducibility (Table 10). Notably, in Section 5.1
we selected a combination that performs better on
subtasks C and D than on A and B.

(A) Relevance Classification:
For subtask A (Table 4), our approach outperforms
all original participants and the system provided
by the organizers (Sayyed et al., 2017; Hövelmann
and Friedrich, 2017; Wojatzki et al., 2017). With
the recent approach by Aßenmacher et al. (2021)
achieving the best results, our model comes second.
Our model predicts all four subtasks at once while
remaining competitive with Aßenmacher et al. who
trained a separate model for each subtask.
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Table 5: Comparison of existing approaches for sub-
task B. Best in bold, second best underlined.

Team Subtask B Testsyn Testdia

Wojatzki et al. 0.667 0.694
Naderalvojoud et al. 0.749 0.736
Hövelmann and Friedrich 0.748 0.742
Aßenmacher et al. 0.807 0.800

Our (A,B,C&D) 0.815 0.811

Table 6: Comparison of existing approaches for sub-
task C. Best in bold, second best underlined.

Team Subtask C C1syn C2syn C1dia C2dia

Wojatzki et al. 0.481 0.322 0.495 0.389
Lee et al. 0.482 0.354 - -
Mishra et al. 0.421 0.349 0.460 0.401
Aßenmacher et al. 0.761 0.655 0.791 0.689

reevaluated 0.614 0.475 0.649 0.493

Our (C&D) 0.624 0.514 0.657 0.553
Our (A,B,C&D) 0.632 0.510 0.634 0.535

(B) Document-Level Polarity:
For subtask B (Table 5) our model not only out-
performs all original participants (Wojatzki et al.,
2017; Naderalvojoud et al., 2017; Hövelmann and
Friedrich, 2017) but also the newer approach by
Aßenmacher et al. (2021) while solving all subtasks
at once. Again, the newer LLM-based approaches
clearly perform better than previous models.

(C) Aspect-Level Polarity:
For subtask C (Table 6), our approach again out-
performs all original participants (Wojatzki et al.,
2017; Lee et al., 2017; Mishra et al., 2017). While
Aßenmacher et al. (2021) report better results for
subtask C, it should be noted that their scores are
calculated using a custom reimplementation of the
evaluation metric. Consequently, we reevaluated
their outputs using the original GermEval metric
and achieved different results for subtask C, as we
detail in Appendix C.1. We assume that this dis-
crepancy results from different calculations of the
average (micro vs. macro). Nevertheless, we list
both values in Table 6, the result of their custom
metric in gray, and the result we calculated using
the original metric in black. We report the results
achieved by the best model trained from each: Ta-
ble 2 and 3. Our model trained only on subtasks C
and D outperforms all other previous approaches

Table 7: Comparison of existing approaches subtask D.
Best in bold, second best underlined.

Team Subtask D D1syn D2syn D1dia D2dia

Wojatzki et al. 0.170 0.237 0.216 0.271
Mishra et al. 0.220 0.221 0.281 0.282
Lee et al. 0.203 0.348 - -
Aßenmacher et al. 0.515 0.523 0.518 0.533

Our (C&D) 0.404 0.430 0.442 0.471
Our (A,B,C&D) 0.415 0.440 0.448 0.479

for all reported results, including our model trained
on all subtasks in three out of four cases. Neverthe-
less, we find that our model trained on all subtasks
is able to outperform our model, which specializes
in subtasks C and D once, and even outperforms
all previous approaches in three out of four cases.

(D) Opinion Target Extraction:
For subtask D (Table 7), our approach again com-
fortably outperforms all previous approaches (Wo-
jatzki et al., 2017; Lee et al., 2017; Mishra et al.,
2017). Despite close contact with the authors of
Aßenmacher et al. (2021), we were unable to gen-
erate reportable results for their approach using the
original evaluation script, as we assume that their
approach suffers from a preprocessing bug (C.2).
Interestingly, again we find that our model trained
on all subtasks is able to outperform our model
trained only on subtasks C and D, verifying our in-
tuition of training a single model for all subtasks.

6 Conclusion

In this work, we proposed the first approach that
is able to solve all four subtasks of the GermEval
2017 shared task simultaneously. To achieve this
goal, we used a pointer network to sequentially pre-
dict a single, unified target sequence that encodes
all subtasks. We conducted an extensive hyperpa-
rameter search and thoroughly evaluated different
configurations and orders of prediction. In doing
so, we find that predicting all subtasks at once does
not negatively impact the overall performance of
our model and on the test set can even result in
a performance increase, verifying our strategy of
unifying all subtasks. Consequently, although our
model solves all subtasks at once, it outperforms
or closely matches all previous approaches on both
test sets. For all subtasks we find that our results on
the synchronic and dedicated diachronic test sets
are very similar, indicating robustness.
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7 Limitations

Certain limitations of our approach should be con-
sidered. Our approach to a large degree assumes
that not only multilingual base models, but even
English-only base models are effectively applica-
ble to the German language. This may not translate
well to more niche, specialized, or low-resource
languages or domains. Nevertheless, the assump-
tion only comes into play as to our knowledge there
is no specifically German trained BART model
available. Unifying various subtasks on a data set
might not always improve performance, but inves-
tigating transferability of this paradigm to other
similar (German) tasks consisting of related sub-
tasks seems worthwhile and promising.

8 Ethical Considerations

We acknowledge the potential concern about large-
scale analysis of user content posted online. We
argue that this issue applies only to a lesser extent
to our approach, since the source of the content
is mainly social networks, microblogs, news sites,
and QA sites, which are explicitly written to be pub-
lic. Furthermore, the only metadata available are
the URLs such that the identities of the participants
are not disclosed, as no personally identifiable data
are collected. The data set utilized had previously
already been collected, analyzed, and published.
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A Hyperparameter Analysis

A.1 Parameter Range

In Table 8 we depict the range of explored hyperpa-
rameters, as described in Section 5.1. Since train-
ing runs for the largest learning rate (5e-4) resulted
in training instabilities, the exploration of this learn-
ing rate was canceled early after no valid run could
be conducted.

Table 9: Ranking of the selected hyperparameter combi-
nation across all subtasks.

A B C1 C2 D1 D2

Rank 34 22 3 3 1 1

A.2 Ranking across Subtasks
As described in Section 5.1 we select the combina-
tion “facebook/mbart-large-50” as the best model
with a learning rate of 5e-5, when training for 5
epochs and a batch size of 8. Table 9 lists the rank-
ing of this selected hyperparameter configuration
across all subtasks relative to all combinations of
hyperparameters explored.

A.3 Results per Subtask
In the following we show the hyperparameter
search results for subtasks A, B, C1, C2 and D2 on
the validation set (Figures 4 to 8). As before, we
consider p < 0.05 as statistically significant differ-
ence and mark it with an ∗. Black lines are again
used to represent the average values. Overall, we
find very similar results to subtask D1 (Section 5.1
and figure 3).
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Figure 4: Results for subtask A, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.
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Figure 5: Results for subtask B, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.
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Figure 6: Results for subtask C1, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.
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Figure 7: Results for subtask C2, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.
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Figure 8: Results for subtask D2, aggregated for each
hyperparameter configuration. The hyperparameters are
listed on the x-axis and the results for D1 on the y-axis.
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Table 10: Achieved results on the Testsyn set using dif-
ferent seeds. x denotes the average and σ the standard
deviation. Both are computed per subtask.

Seed A B C1 C2 D1 D2

1 0.940 0.807 0.594 0.485 0.371 0.388
2 0.954 0.832 0.635 0.525 0.419 0.443
3 0.951 0.829 0.633 0.527 0.418 0.444
4 0.942 0.816 0.618 0.507 0.407 0.430
5 0.948 0.821 0.633 0.516 0.413 0.436

42 0.953 0.815 0.632 0.510 0.415 0.440

x 0.948 0.820 0.624 0.512 0.407 0.430
σ 0.006 0.009 0.016 0.015 0.018 0.021

B Seeds

When conducting the hyperparameter optimization
we used the seed 42 for all runs. To illustrate how
robust our results are to changes in random initial-
ization, we additionally examined five more seeds
in Table 10. It should be mentioned that, overall,
the results are stable across different seeds. In our
experiment, only seed value 1 can be viewed as an
outlier, as it performs comparably poor.

C Analyzing Aßenmacher et al. (2021)

During the reevaluation of Aßenmacher et
al. (2021), we found two performance differ-
ences when comparing their custom reimplementa-
tion of the metric with the original metric. All
analyzes are based on the results generated us-
ing their repository: https://github.com/
ac74/reevaluating_germeval2017. In
the following we detail our analysis.

C.1 Subtask C

We reran subtask C and recorded the outputs ob-
tained. During this run, according to the costum
metric, the model achieved a performance close to
their reported results. However, when we converted
these results to the challenge XML format and eval-
uated it using the original GermEval binaries for
easier comparison, we obtained the results, which
we report in Table 6. We suspect different usages
of micro vs. macro averaging to be the issue, but
did not further investigate any possible differences
between the metrics.

C.2 Subtask D

When inspecting the results obtained for subtask
D, we observed that some spans in the input doc-
ument are duplicated. This makes it hard to con-

vert these predicted word-level span annotations
to the original XML format, as the input string
to be predicted gets changed during preprocess-
ing. We show this using a truncated example: “AZ
Muenchen : Technischer Defekt: Störung am Isar-
tor: S- Bahn-Stammstrecke dicht: Ein technischer
Defekt[. . . ]”, which is annotated in the ground-
truth with the opinion terms “Technischer Defekt”
twice, as well as the terms “Störung” and “Bahn-
Stammstrecke”. During preprocessing this sample
is transformed to the following input document:

“az muenchen : technischer defekt technischer defekt
: storung am isartor : s - bahn - stammstrecke :
storung am isartor : s - bahn - stammstrecke dicht
: ein technischer defekt[. . . ]”, duplicating “tech-
nischer defekt” as well as “storung am isator: s-
bahn-stammstrecke” in the process. Notably, these
duplications seem to be connected to the ground-
truth opinion spans. Thus, the annotations for the
ground-truth label seem to leak into the model in-
put, as spans that have to be annotated multiple
times seem to be fed in multiple times. Due to
this presumed bug in the data preprocessing, we
are unable to reliably convert the model outputs to
processable inputs for the original metric.
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Abstract

In this paper, we apply transformer-based Nat-
ural Language Generation (NLG) techniques
to the problem of text simplification. Currently,
there are only a few German datasets available
for text simplification, even fewer with larger
and aligned documents, and not a single one
with narrative texts. In this paper, we explore
to which degree modern NLG techniques can
be applied to German narrative text simplifi-
cations. We use Longformer attention and a
pre-trained mBART model. Our findings indi-
cate that the existing approaches for German
are not able to solve the task properly. We con-
clude on a few directions for future research to
address this problem.

1 Introduction

1.1 Motivation

With the rise of the internet, it has become con-
venient and often free to access an abundance of
texts. However, not all people who have access can
fully read and understand the texts, even though
they speak the language that the text is written in.
Most often this problem originates in the complex
nature of the texts. Text simplification can help to
overcome this barrier.

Narrative forms are one of the primary ways hu-
mans create meaning (Felluga, 2011). Narrative
texts, then, make an important contribution to how
we describe and shape our environment. Simple
language also contributes to involving as many peo-
ple as possible in this process. Providing narrative
texts in a Simple Language (Einfache Sprache) ver-
sion, enables a large audience to read them. So,
we present the first approach for the automatic text
simplification of German narrative texts.

1.2 Related Works

Automatic text simplification started in 2010 (Spe-
cia, 2010) as statistical machine translation to the

rule-based automatic text simplification task, us-
ing a Portuguese corpus (4500 parallel sentences).
The first German text simplification dataset was
created by (Hancke et al., 2012) to train a readabil-
ity classifier. The dataset consisted of unaligned
articles from one adult-targeting and one child-
targeting journal, and was later improved and en-
larged by (Weiß and Meurers, 2018), which added
unaligned transcripts from one adult-targeting and
one child-targeting German TV news show. Simi-
larly, (Aumiller and Gertz, 2022) published a Ger-
man document-aligned dataset with lexicon arti-
cles for adults and for children. The first sentence-
aligned German simplification dataset was pub-
lished in 2013 (Klaper et al., 2013) with 270 articles
from five different websites, mainly of organiza-
tions that support people with disabilities. In 2016
the first (rule-based) automatic text simplification
system for German was released (Suter et al., 2016).
The first parallel corpus for data-driven automatic
text simplification for German was introduced by
(Säuberli et al., 2020). The corpus contains 3616
sentence pairs from news articles. They addition-
ally were the first to use transformer models for
German text simplification and found out that their
corpus was not large enough to train them. (Bat-
tisti et al., 2020) collected a larger corpus with 378
text pairs, mostly from websites of governments,
specialized institutions, and non-profit organiza-
tions. (Rios et al., 2021) investigated the usage
of an adapted mBART (Liu et al., 2020) version
with Longformer attention (Beltagy et al., 2020)
on Swiss newspaper articles. These results have
been further improved with a sentence-based ap-
proach (Ebling et al., 2022). Most recently, the first
detailed surveys about German text simplification
have been released (Anschütz et al., 2023; Stodden
et al., 2023; Schomacker et al., 2023).
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2 Methods

Longformer mBART Our goal was to train a
document-level text generation model with a larger
context (> 510 input tokens; exceeding most
transformer-based models). Longformer is the
only model to our knowledge, which could extend
the context on a pre-trained transformer model.
We searched on huggingface.co and filtered for
text2text-generation models (8551), German (225),
> 5000 downloads (30), and that they can perform
a German-to-German translation task. This leaves
only facebook/mbart-large-50 and facebook/mbart-
large-cc25, both introduced in (Liu et al., 2020).
We decided to take facebook/mbart-large-cc25
since it has been trained on fewer languages (25; in
the CC25 dataset extracted from (Wenzek et al.,
2020; Conneau et al., 2020)) in comparison to
facebook/mbart-large-50 (50). Because we rea-
soned that the greater the relative proportion of
German in pre-training, the better. Our situation
is very similar to (Rios et al., 2021), so we base
our methods on their approaches. mBART uses
a specific input format consisting of the sentence
and a language-tag. We additionally created two
tags: de_OR and de_SI for Standard German and
Simple German, respectively. Both of them are
derived from the original German tag de_DE (fifth-
largest proportion in CC25) and only modified dur-
ing our fine-tuning process. Similar to (Rios et al.,
2021), we applied the Longformer conversion to
the mBART model with a maximum input length
of 1024 and 512 as the attention window size.

Domain Adaptation By using domain adapta-
tion, we aim to enrich the vocabulary with pre-
viously unseen words and adapt the existing em-
beddings to the narrative text domain and the his-
torical environment of the texts. After we cre-
ated the longmbart-model we started the domain
adaptation process. We downloaded all documents
from TextGrid (textgrid.de) in the category “prose”
and randomly sampled 60 documents. In a next
step, we sentence-split the documents using spaCy
(spacy.io), shuffled them and masked 15% of the
words. We used these masked and unmasked
sentence-pairs for a single epoch training of the
model. Both sides of the pair are tagged with the
de_DE tag. We used a learning rate of 3e−10, an
attention window size of 512 during the conversion,
a maximum input and output length of 70, and a
batch size of 8.

Fine-Tuning We fine-tune our model on
document-aligned German narrative texts, using
three sources for Standard Language data: 1)
gutenberg.org, 2) projekt-gutenberg.org, and 3)
textgridrep.org. We selected Die Bremer Stadt-
musikanten (mils-stadtmusikanten), Der selt-
same Fall von Dr Jekyll und Mr Hyde (eb-hyde)
and Der Schimmelreiter (pv-schimmelreiter) as
development set because their amount of words
is close to the average amount of all samples in
the fine-tuning dataset and they originate from
different sources. For the same reasons, we se-
lected Des Teufels rußiger Bruder (mils-bruder),
Der Graf von Monte Christo (eb-christo) and
Der Sandmann (pv-sandmann) for testing. We
used four sources for Simple Language texts: 1)
einfachebuecher.de (eb), 2) kindermannverlag.de
(kv), and 3) passanten-verlag.de (pv), which
consist of classic novels, as well as 4) the Märchen
in Leichter Sprache ‘Fairy Tales in Simple
Language’ from ndr.de (mils). The links to the
Standard Language and Simple Language version
can be found in Table 2 in the appendix. The mils
samples include the complete text, while for the
novels we use only the excerpts provided in the
form of free reading samples (usually the first
chapter of the text). We manually cut in the end of
the Standard Language version to match the extent
of the Simple Language version.

Hyperparameter Setup Following (Rios et al.,
2021), we set the attention mode (Beltagy et al.,
2020) to sliding chunks (with overlap) and the
attention window size to 512. Since our dataset
is rather small, we turn gradient accumulation
(accumulate_grad_batches) off. We use the
Adam optimizer and optimize the learning rate with
the PyTorch Lightning LearningRateFinder be-
tween 3e−20 and 3e−1. For Decoding we use beam
search (size = 4).

3 Analysis and Evaluation

3.1 Analysis

We manually compared the three generated output
sequences of our test texts to the Standard Lan-
guage version and the Simple Language version.
In summary, we found that 1) the model copies the
input text to a very high degree without any modifi-
cations, 2) in cases where the model discarded parts
of the inputs, it did not recognize the importance of
the sequence, such as spelled-out antecedents for
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pronouns, and 3) it truncates rather randomly and
without any semantic reason.

For reasons of space, we only discuss Der Sand-
mann in the appendix (section B), on which we can
show all the phenomena we want to discuss.

3.2 Evaluation Measures

3.2.1 BERTscore, BLEU and ROUGE

BERTscore (Zhang et al., 2020) is currently the
recommended (Alva-Manchego et al., 2021) way
of comparing (generated) text simplification can-
didates and the (gold) references. It is a soft
metric that yields high correlations with human
judgments (Alva-Manchego et al., 2021). We
select google/mt5-base as the underlying model,
since it is the best performing model with Max
Length > 1022, German support, and a compatible
transformers version (Zhang, 2020) (google/mt5-xl
and google/mt5-large did not fit our hardware re-
sources). Following (Alva-Manchego et al., 2021)
we use the BERTscore to determine the early stop-
ping point during fine-tuning. We additionally em-
ployed two n-gram based approaches, BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004), because
they are the most commonly used metrics for text
generation.

3.2.2 Entropy

We use two flavors of Shannon entropy as
a characterization, or measurement, of redun-
dancy. In the basic implementation, we calcu-
late the bag-of-words (BOW) entropy: H(W ) =∑

w∈W
count(w)

n · − log2

(
count(w)

n

)
, where w is a

word in the bag of words W , count(w) is the fre-
quency of w in W , n is the total size of W , and
H(W ) is the text-level entropy.

In addition, we calculate the shortest-unique-
prefix (SUP) entropy (Kontoyiannisy, 1997), by cal-
culating the length of the shortest prefix starting at
xi that does not appear starting anywhere in the pre-
vious i tokens x0, x1, . . . , xi−1. This prefix-length
li can be thought of as the length of the next unique
substring after the past up to position (i − 1) has
been encoded. In other words, this metric measures
the surprise value of a substring. The SUP entropy

is calculated as: ĤN =
[

1
N

∑N
i=1

li
log(i+1)

]−1
with

N < M , where M is the largest possible index (=
the sequence length +1). (Kontoyiannisy, 1997)
do not elaborate on how N should be chosen, so
we set it to

⌊
M
2

⌋
.

In both cases, we use spaCy to tokenize the gen-
erated output. We consider all tokens including
punctuation marks and lowercase them.

3.3 Results and Discussion

We analyze the model’s performance via two kinds
of metrics: similarity-based (BERTscore, BLEU
and ROUGE) and entropy-based (SUP and BOW).
Table 1 shows that the model without fine-tuning
and domain adaptation performs the best both in
terms of entropy and similarity. A single epoch of
fine-tuning seems not to affect the models’ perfor-
mance, but fine-tuning it for 11 epochs worsens it
drastically. Similarly, domain adaption without and
with 1 epoch of fine-tuning drops below all non-
domain-adapted models. Both domain adaptation
set-ups (50 and 100 documents) perform the same,
so the number of domain adaptation documents
seems to have no effect on the performance. In-
terestingly, with more fine-tuning (11 epochs) the
SUP entropy is improved, while the BERTscore-
similarity further drops.

The model without domain adaptation and with-
out fine-tuning performed the best and the more
we trained the model, the more frequently indi-
vidual text elements are repeated—first individual
clauses, then words, and in the end only characters.
These are results that no longer represent meaning-
ful texts, let alone a high-quality text simplifica-
tion. We did not manage to definitively conclude
on reasons why both fine-tuning and domain adap-
tation do not outperform the pre-trained model. We
assume that the main reason could be so-called
catastrophic forgetting, which can occur in all sce-
narios where machine learning models are trained
on a sequence of tasks and the accuracy on earlier
tasks drops significantly. The model in our exper-
iments was previously trained on inter-language
translation (from one language to another) and we
fine-tune it on intra-language translation (from one
version of a language to another version of the same
language). So, domain adaptation, being an intra-
language task, differs from the original mBART
task. The model’s general text generation capabil-
ity dropped after fine-tuning and domain adaptation.
(Ramasesh et al., 2021) demonstrate that forgetting
is concentrated at the higher model layers and ar-
gue that it should be mitigated there. In their set-up,
these layers change significantly and erase earlier
task subspaces through sequential training of mul-
tiple tasks. All the mitigation methods they in-
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Domain Adapt. BERTscoreF1 ROUGE-lF1 BLEU SUP BOW Fine Tuning ♣ lr

- 0.682 0.127 1.43 1.000 6.685 0 -
- 0.682 0.127 1.43 1.000 6.685 1 7.8e-20
- 0.318 0 0 340.000 0.003 11 (100;10) 8.1e-07

50 texts 0.301 0 0 123.666 0.038 1 3e-10 ♠
50 texts 0.301 0 0 123.666 0.038 0 -
100 texts 0.301 0 0 123.666 0.038 0 -
100 texts 0.301 0 0 123.666 0.038 1 3e-10 ♠
100 texts 0.298 0 0 49.666 0.0441 11 (100;10) 3e-10 ♠

Table 1: Average performance of our models on the test texts. ♣ : Best epochs with max epochs (and early stopping
patience, if used, in parenthesis). ♠ : The lr auto was unable to find an optimal learning rate; so we use a predefined
value.

vestigate stabilize higher layer representations, but
vary on whether they enforce more feature reuse,
or store tasks in orthogonal subspaces. There are
several other possible reasons for this behavior and
opportunities to improve the models’ performance.
In the following section, we give an outlook on
possible ways of adjustment.

4 Conclusion and Future Work

In this paper, we apply existing transformer-based
methods to generate text simplifications on docu-
ment level. Furthermore, we investigate the usage
of fine-tuning and domain adaptation.

Our work contributes to the field of automatic
German text simplifications. This field is under-
studied, and future works that want to build on top
of our and other previous works’ findings could
research the following areas:

Catastrophic Forgetting (Yu et al., 2021) in-
vestigate catastrophic forgetting and speculate that
their second phase of pre-training results in some
form of catastrophic forgetting for the pre-trained
model, which could have hurt the adaptation perfor-
mance. They recommend to use RecAdam (Chen
et al., 2020), which mitigated the problem in their
abstractive text summarization study.

Repetition Problem (Fan et al., 2018) show that
maximization-based approaches (such as beam
search) tend to produce text that contains unde-
sirable repetitions, and stochastic methods tend to
produce text that is semantically inconsistent with
the given prefix. We use beam search in our ap-
proach and experience a significant increase of rep-
etition during training. (Xu et al., 2022) divide ap-
proaches for mitigating repetition into 1) training-
based (Welleck et al., 2020; Lin et al., 2021; Xu
et al., 2022) and decoding-based (See et al., 2017;
Fan et al., 2018; Holtzman et al., 2020) approaches.
Recently, two new decoding approaches, Nucleus
(Holtzman et al., 2020) and Contrastive Search (Su

and Collier, 2022), have shown promising results
in terms of reducing repetition and improving the
overall quality of generated text. Future work could
apply these newer decoding methods to the task of
document-level text simplification. However, al-
though there is an increasing number of mitigating
techniques, the causes of the repetition problem are
still under-investigated.

Entropy Entropy metrics provide additional and
very inexpensive guidance on the quality of gener-
ated text simplification. They can show very well
to what degree the repetition problem is present
in the text generation model. We encourage future
research in similar tasks to measure entropy in their
works.

Masking Strategies We only use the commonly
used token masking strategy for BART. (Lewis
et al., 2019) describes other strategies, that can
be used in the future as well.

Controllability and Learning Strategies (Er-
dem et al., 2022, p. 1165–1168) name a few re-
sources where adding metadata, such as named
entities or parts of speech, to the input can be used
as an advanced learning strategy to improve results
and offer more controllability over the output. We
do not add any metadata and observed in Section
3 that our model is not able to properly recognize
named entities. Inserting corresponding metadata
could potentially improve the performance in this
regard.

Unify Designations Designations of people are
interchangeably used in Standard Language. A
good example is the father in Der Sandmann, who
is mostly addressed as Vater (“father”) but also as
Papa (“dad”) by his children and as Herr (“mas-
ter”), as in Herr des Hauses (“man of the house”),
by his house staff. All these words mean the same
and are referring to the same person. Unifying
them could help.
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Limitations

The work we described in this paper investigates
the automatic simplification of narrative documents
in German. Our Methodology is focussed on
document-level simplification and is only transfer-
able to a limited extent to simplification that works
on sentence-level or other linguistic levels. Addi-
tionally, our approach as well as the future research
areas are generally applicable to document-level
simplification in a broad variety of languages. The
choice of quantitative evaluation can be applied
to any text simplification task, with structural and
linguistic limitations. The qualitative evaluation
highly considers the narrative nature of our data, so
it is transferable to the simplification of narrative
texts in any form but hardly applicable to other text
genres.

The data we used is targeted towards different
audiences, children and/or people with a lower lit-
eracy. Furthermore, some are written in easy lan-
guage (Leichte Sprache) and others in the broader
category simple language (Einfache Sprache). Fu-
ture researchers are advised to carefully check the
data sources and evaluate to which degree the data
can be used for the intended purpose. Due to copy-
right restrictions, we are only able to provide public
URLs to the data, and cannot provide the data di-
rectly.

Ethics Statement

We state that our work complies with the ACL
Ethics Policy.1 Our work investigates the automatic
simplification of narrative documents in German.
Providing simplified versions of texts positively
contributes to the inclusion of people with cogni-
tive disabilities and lower literacy into a growing
number of aspects of society. Automatically gener-
ated simplifications offer a lower cost point com-
pared to their human-made equivalents. On the
one hand, this increases the number of people that
can afford to read these text, on the other hand, it
can endanger the future job prospects of human
translators, which specialized in simplifying texts.
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B Analysis of Der Sandmann

The output of the model is shown in Figure 1. From
line 1 to 18, the complete text is equivalent to the
Standard Language input. After Franz Moor den
Daniel (line 19) the model inserts multiple pas-
sages that occur previously in the text, e.g. three
times unglückseligen Krämers gar feindlich auf
mich wirken muß (“I can’t help but think that the
unfortunate grocer must have a hostile effect on
me”) in line 23.

Furthermore, the model changes facts in the text,
e.g. in line 26 supper is served at seven o’clock,
while in the Standard Language version lunch is
served at the same time. The reference Simple Lan-
guage version from Passanten Verlag completely
discards the facts about dinner and supper, boiling
this passage down to a brief introduction of the
father and mentioning that he was busy with his
work and that he told fascinating stories to his kids.
Another aspect of line 26 is that the model output
does not mention the father. This is the first intro-
duction of this character in the story, so the model
discarded an important character from this text pas-
sage. Furthermore, although the model does not
fully remove the father from the text, it only refers
to him via pronouns: Er mochte mit seinem Dienst
(“He might be with his work”) (line 27) refers to
the father by the pronoun Er (“He”), despite the
fact that the character was never introduced or re-
ferred to before. For a reader who has only access
to the model’s output, it is impossible to understand
who Er (“He”) is. A clean or complete removal of
a character would show some simplification capa-
bility, even if it was an important character. In this
case, it was an incomplete removal of an arguably
important character.

Most of the repeated sentences do not contain
information that is important to follow the story.
In this respect, there is actually no need to trans-
fer them into the simplification, let alone repeat
them. Especially sentences like So ist es in der
Tat (“So it is indeed”), are only a linguistic empha-
sis and arguably add linguistic complexity without
additional content. If we assume that repeated sen-
tences are perceived as important by the model 3,

3Profound hypothesis on the causes of repetition are sparse.
We base our conjecture on the results of Xu et al. (2022), as-
suming a correlation between initial probability and repetition
rate. If a text fragment occurs more often in the course of
the document, it is more likely to be repeated. Therefore, we
would say that unglückseligen Krämers (“unfortunate grocer”)
has a high initial probability for the model. In this respect, it

the model correctly recognizes an importance only
in one case, namely the first mention of the barom-
eter seller Coppolla (one of the main characters in
the story) and the narrator’s fear of him in lines
26–28, unglückseligen Krämers gar feindlich auf
mich wirken muß (“unfortunate grocer must have a
hostile effect on me”).

is information that should be repeated more frequently in the
text and can therefore be considered as important.
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Ofel an LotharGewiß seid Ihr alle voll Unruhe, daß ich so lange - lange nicht geschrieben. Mutter zürnt wohl, und Clara mag glauben, ich
lebe hier in Saus und Braus und vergesse mein holdes Engelsbild, so tief mir in Herz und Sinn eingeprägt, ganz und gar. - Dem ist aber
nicht so; täglich und stündlich gedenke ich Eurer aller und in süßen Träumen geht meines holden Clärchens freundliche Gestalt vorüber
und lächelt mich mit ihren hellen Augen so anmutig an, wie sie wohl pflegte, wenn ich zu Euch hineintrat. - Ach wie vermochte ich denn
Euch zu schreiben, in der zerrissenen Stimmung des Geistes, die mir bisher alle Gedanken verstörte! - Etwas Entsetzliches ist in mein
Leben getreten! - Dunkle Ahnungen eines gräßlichen mir drohenden Geschicks breiten sich wie schwarze Wolkenschatten über mich aus,
undurchdringlich jedem freundlichen Sonnenstrahl. - Nun soll ich Dir sagen, was mir widerfuhr. Ich muß es, das sehe ich ein, aber nur es
denkend, lacht es wie toll aus mir heraus. - Ach mein herzlieber Lothar! wie fange ich es denn an, Dich nur einigermaßen empfinden zu
lassen, daß das, was mir vor einigen Tagen geschah, denn wirklich mein Leben so feindlich zerstören konnte! Wärst Du nur hier, so
könntest Du selbst schauen; aber jetzt hältst Du mich gewiß für einen aberwitzigen Geisterseher. - Kurz und gut, das Entsetzliche, was
mir geschah, dessen tödlichen Eindruck zu vermeiden ich mich vergebens bemühe, besteht in nichts anderm, als daß vor einigen Tagen,
nämlich am 30. Oktober mittags um 12 Uhr, ein Wetterglashändler in meine Stube trat und mir seine Ware anbot. Ich kaufte nichts und
drohte, ihn die Treppe herabzuwerfen, worauf er aber von selbst fortging.Du ahnest, daß nur ganz eigne, tief in mein Leben eingreifende
Beziehungen diesem Vorfall Bedeutung geben können, ja, daß wohl die Person jenes unglückseligen Krämers gar feindlich auf mich
wirken muß. So ist es in der Tat. Mit aller Kraft fasse ich mich zusammen, um ruhig und geduldig Dir aus meiner frühern Jugendzeit so
viel zu erzählen, daß Deinem regen Sinn alles klar und deutlich in leuchtenden Bildern aufgehen wird. Indem ich anfangen will, höre ich
Dich lachen und Clara sagen: ’Das sind ja rechte Kindereien!’ - Lacht, ich bitte Euch, lacht mich recht herzlich aus! - ich bitt Euch sehr! -
Aber Gott im Himmel! die Haare sträuben sich mir und es ist, als flehe ich Euch an, mich auszulachen, in wahnsinniger Verzweiflung,
wie Franz Moor den Daniel. So ist es in der Tat. Mit aller Kraft fasse ich Euch aus meiner frühern Jugendzeit so viel zu erzählen, daß
Deinem regen Sinn alles klar und deutlich in leuchtenden Bildern aufgehen wird. Indem ich anfangen will, höre ich Dich lachen und
Clara sagen: ’Das sind ja rechte Kindereien!’ - Lacht, ich bitte Euch, lacht mich recht herzlich aus! - es ist, als flehe ich Euch an, mich
auszulachen, in wahnsinniger Verzweiflung, wie Franz Moor den Daniel. So ist es in der Tat. So ist es in der Tat . Mit aller Kraft fasse
ich Euch aus meiner frühern Jugendzeit so viel zu erzählen, daß Deinem unglückseligen Krämers gar feindlich auf mich wirken muß ,
ja, daß wohl die Person jenes unglückseligen Krämers gar feindlich auf mich wirken muß, ja, daß wohl die Person jenes unglückseligen
Krämers gar feindlich auf mich wirken muß. So ist in der Tat. So ist es in der Tat. - Nun fort zur Sache!Außer dem Mit aller dem
Mittagsessen, das alter Sitte gemäß schon um sieben Uhr aufgetragen wurde , das alter Sitte gemäß schon um sieben Uhr aufgetragen

wurde. Er mochte mit seinem Dienst . Er mochte mit seinem Dienst viel beschäftigt sein. Nach dem Abendessen. Er mochte mit
seinem Dienst viel beschäftigt sein. Nach dem Abendessen, das alter Sitte gemäß, das alter Sitte gemäß, das alter Sitte gemäß, das alter
Sitte gemäß von uns um sieben Uhr aufgetragen. Nach dem Abendessen, daß er aber von selbst fortging, daß er aber von selbst fortging.
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Figure 1: Generated output of our best performing model, with "Der Sandmann" by E. T. A. Hoffmann as input.
We did not change the format of the besides adding highlights and line numbers. The yellow highlights point the
reader towards text passages, which showcase our model’s shortcomings, which we discuss in Section B. For more
information on the of the text, please refer to Table 2.
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Table 2: All documents in our corpus from einfachebuecher.de (eb) which are classified as “Klassiker” (classic
novel) (snapshot from 07/14/2022), and Passanten Verlag (pv) (snapshot from 07/14/2022), Kindermann Verlag (kv)
(snapshot from 07/14/2022) and Märchen in Leichter Sprache (mils) (snapshot from 07/14/2022).
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Abstract

This study focuses on the identification
of English Idiomatic Expressions (IE) us-
ing an information theoretic model. In
the focus are verb-noun constructions only.
We notice significant differences in seman-
tic surprisal and information density be-
tween IE-data and literals-data. Surpris-
ingly, surprisal and information density in
the IE-data and in a large reference data
set do not differ significantly, while, in con-
trast, we observe significant differences be-
tween literals and a large reference data
set.

1 Introduction
The aim of this study is the identification of
English Idiomatic Expressions (IE) with an
information theoretic model (Shannon, 1948).
We focus solely on verb-noun constructions
(VNC) such as kick the bucket, make scene,
blow whistle or take heart. As in a study from
Peng et al. (2018), we look at VNC which can
be used either idiomatically or literally. In
this study, we restrict ourselves to IE in En-
glish because we had manually annotated data
available in which sentences are labelled as ”id-
iomatic” or as ”literal”. We assume that the
amount of information in general and the Flow
of Information (FoI) in IE and literals differ
from each other. We operationalise FoI as in-
formation density (see below subsection Infor-
mation Density). Information density is calcu-
lated from the change of information over time
in linguistic units such as sentences and utter-
ances. The principle of Uniform Information
Density in language production postulates the
smallest possible information changes in a lin-
guistic unit (preferably no steep information
peaks and no deep information troughs) in or-
der not to threaten the processing of the mes-
sage by the receiver (Levy and Jaeger, 2007).

In this study, we utilise contextualised infor-
mation that is surprisal (Tribus, 1961; Hale,
2001; Hale et al., 2015; Levy, 2008)1. Surprisal
represents the amount of certainty / uncer-
tainty, i.e., it measures the deviation between
what the language processor expects to occur
and what actually occurs in a linguistic unit.
We expect that idioms will cause a different
amount of surprisal (over time) than literals
do because we assume that literal meaning is
the expected case, while IE is a deviation from
that and will provide surprisal. That is, the
information jumps in the sentence should be
more pronounced with IE than with literals.
In particular, we use semantic surprisal as the
feature of words since it is derived from the
topics in the environment of the target word,
and to this end, we employ the Topic Context
Model (TCM) (Kölbl et al., 2020, 2021; Philipp
et al., 2022). TCM indicates how surprising
a word is given its distribution in topics and
given the distribution of topics in its environ-
ment, which can for instance be a document
or the entire corpus. We motivate the use of
the TCM to distinguish IE and literals by the
assumption that the distributions of topics in
either case differ which will cause significant
differences in surprisal.

IE are far less subject to the principle of com-
positionality than literal expressions (Espinal
and Mateu, 2019; Nunberg et al., 1994). IE
are stable linguistic constructions, mostly with
specific syntax as in loose face or blow whis-
tle, a feature referred to as (In)flexibility (Es-
pinal and Mateu, 2019; Nunberg et al., 1994).
This feature also means the impermeability of
IE, i.e., grammatical transformations, extrac-
tions and insertions lead to ungrammaticality.
To understand an IE touches on conventional-

1For empirical evidence of surprisal, see i. a. (De-
Long et al., 2005; Bentum, 2021)
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ity in language, since its meaning has evolved
through specific language usage and conven-
tion. Espinal and Mateu (2019) emphasise
that [t]he meaning of IE involves metaphors,
hyperboles, and other kinds of cognitive figure.

2 Selected work on automatic
detection of idiomatic expressions

To the best of our knowledge there is no work
on IE within the framework of information the-
ory. However, the following two studies de-
scribed take the approach that is also taken
in the present study, that the occurrence of
IE is a semantic deviation from the expected.
Peng et al. (2018) report an unsupervised clas-
sification of IE that is based on topic detec-
tion. The authors show that words that are
highly relevant in the main topic of the dis-
course are not very likely to occur in IE, that
is, IE are semantically distinct from the main
topic of the discourse. In their point of depar-
ture, Peng et al. (2018) follow an earlier study
by (Feldman and Peng, 2013) in which the au-
thors state that IE are semantic outliers in a
given context. This approach is also pursued
in Zeng and Bhat (2021) where a BiLSTM-
neural network is employed for the prediction
of a token as idiom or literal. Basis are static
and contextualised embeddings. To the for-
mer, additional information such as PoS-tags
is added, and the enriched static embeddings
are further combined with the contextualised
embeddings. If a contextualized representa-
tion is semantically compatible with its con-
text, is classified as literal, else it is an idiom.
In both studies, IE classification is successful
which is indicated by high precision, recall and
accuracy values.

3 Dataset, concepts and technique
of analysis

The dataset in the recent study comprises
1,997 sentences that are labelled as idioms and
535 sentences labelled as literals.2 The sen-
tences have been extracted from British Na-
tional Corpus (BNC) and, in addition, from
COCA, COHA and GloWbE3 and served as

2The data were made available for us by Jing Peng
and Anna Feldman.

3http://corpus.byu.edu, https://github.com/
bondfeld/BNC_idioms

data basis in Peng et al. (2018). For the de-
termination of a VNC as IE or as a literal ex-
pression, Peng et al. (2018) used the list in
Cook et al. (2008); Fazly et al. (2009). Peng
et al. (2018) treated idiomacity as a binary and
explicitly not as a gradual property (Pradhan
et al., 2018), and this dichotomy is maintained
in the present study.

3.1 Topic Context Model
TCM (Kölbl et al., 2020, 2021; Philipp et al.,
2022) is an extended topic model, since it out-
puts surprisal based on genuine topic models.
In this study, we employ Latent Dirichlet Al-
location (Blei et al., 2003) (LDA).

TCM is built within the framework of Sur-
prisal Theory (Hale, 2001; Jaeger and Levy,
2007). It calculates semantic surprisal of a
word w given the distribution of topics its non-
local environment, for instance a corpus, or in
its local environments, for instance documents
and paragraphs. Surprisal is defined as the
negative log-conditional probability of w, as
given in Formula 1.

surprisal = log2 P (w|CONTEXT) (1)

We define the context as a topic calculated
by LDA and calculate the average surprisal for
each word, see Formula 2, where n is the num-
ber of topics of the LDA. We fixed this at 100
topics. The calculation is given in Formula 2.

surprisal(wd) = − 1

n

n∑

i=1

log2 P (wd|ti) (2)

The term P (wd|ti) is the probability of a
word wd given a topic ti in a document d,
which is calculated according to Formula 3.
cd(w) is the frequency of a word w given a
document d, |d| is the total number of words
in the document d, WT is the normalized word
topic distribution of the LDA4, and P (ti|d) is
probability of a topic t in a document d given
by the LDA.

4model.components_ /
model.components_.sum(axis=1)[:, np.newaxis]
as suggested by https://scikit-learn.org/
stable/modules/generated/sklearn.decomposition.
LatentDirichletAllocation.html
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P (wd|ti) =
cd(wd)

|d| WTwd,tiP (ti|d) (3)

We trained the LDA on a compilation of an
English news corpus (from 2020) and an En-
glish Wikipedia (from 2016) corpus, with with
1M sentences each. Both corpora are taken
from the Wortschatz Leipzig (Goldhahn et al.,
2012)5. This compilation of two corpora forms
the reference data set.

3.2 Information Density
We compare the flow of information in IE
and literals utilising the concept of informa-
tion density.

Formula 4 defines local Uniform Informa-
tion Density (Collins, 2014) (UID, also termed
wordwise Information density (Scheffler et al.,
2023)) as the average of the squared change in
surprisal from word-to-word in sentences. In
Formula 4, it is not distinguished between in-
creases and decreases in surprisal.

UIDLOCAL = − 1

n

n∑

i=1

(idi − idi−1)
2 (4)

UIDLOCAL is per definition negative (Jain
et al., 2018), and therefore a UIDLOCAL value
close to zero indicates a high uniformity of the
information density distribution. A high UID
value is close to zero and thus expresses, on
average, small changes in surprisal in the flow
of information in sentences.

4 Results
First, we run Welch tests (Welch, 1938) to
check whether there are significant mean differ-
ences between the data for surprisal. A Welch
test does not assume homogeneity of variances
in the dataset that are compared. The sizes
of the data sets vary considerably: the News-
Wikipedia data set comprises 41, 284, 165 sur-
prisal values, the IE set hat 48, 500, and the
data set with literals has 11, 655 surprisal
values. We observe significant differences of
means between IE (M = 30.26, SD = 8.12)
and literals (M = 30.10, SD = 8.19), i.e.,
t = 2.19, p = .029 and between the News

5https://wortschatz.uni-leipzig.de/de

and Wikipedia-training and reference data set
(M = 30.25, SD = 7.94) and literals, i.e., t =
2.23 p = 0.025. Not significant is the difference
of means between the News and Wikipedia
data set and IE (t = −0.40, p = 0.69). Despite
of a number significant mean differences as de-
scribed above, the effect sizes that we deter-
mined by Cohen’sd (Cohen and Cohen, 1988)
are consistently small in these cases. That is to
say, idiomacity has not a strong effect on the
information density: Cohen’s d for the pair IE
and literals yields .022, and for the pair News-
Wikipedia and IE it yields .021.

Figure 1 depicts the distribution of the
UIDLOCAL-values in complete sentences. Val-
ues close to zero represent small surprisal
jumps in sentences. The x-axis gives the
UIDLOCAL-values, the y-axis gives the nor-
malised relative frequency of each value, and
the area under each curve should be 1.

Figure 1: The density of the average surprisal
change per word (UID) and sentence in the
datasets. The x-axis depicts the average surprisal
change, the y-axis depicts normalised frequencies
of UID-values.

Figure 2: The density of the average surprisal
change per word (UID) and VNC in the datasets.
The x-axis depicts the average surprisal change,
the y-axis depicts normalised frequencies of UID-
values.
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The plots show that the distribution of the
IE data takes the middle position between the
distributions of the news wiki data and the lit-
erals. The News-Wikipedia training set forms
the steepest peak and the most even distribu-
tion. In contrast, a strongly flattened peak
and a distribution that buys out more to the
left and right can be observed in the literals,
while the IE data set occupies the middle po-
sition. As a next step, we focus solely on the
VNC in IE and Literals data, in particular on
the VNC-list of 12 constructions in Peng et al.
(2018). The resulting data sets comprise 793
(IE, M = 30.40, SD = 7.61) and 637 (liter-
als M = 31.22, SD = 8.07) surprisal values.
A Welch test discloses a significant difference
t = −1.955, p−value = 0.05. Cohen’s d is now
higher than in the comparisons above, that is
.104. The corresponding UIDLOCAL density
plots are given in Figure 2. The density peak
of IE is closer to 0 than the one of the literals
whose density is evenly distributed, indicating
that information jumps tend to be smaller in
IE.

5 Conclusion and discussion
Our study provides first evidence for dif-
ferences in surprisal between IE and liter-
als. This is reflected in the differences av-
erage level of the surprisal values and also
in the flow of information (flow of surprisal),
the determination of which we operationalised
through the measurement of information den-
sity (UIDLOCAL). We conclude therefore that
semantic surprisal from our TCM is a discrim-
inating feature that distinguishes IE from lit-
erals. Our study is comparable with the pre-
cursor study (Philipp et al.): Here, surprisal
was derived from POS tags and thematic roles
which did not result in any differences between
IE and literal expressions.6

Our study has the same point of departure
as (Peng et al., 2018): we as well assumed
that IE are deviations from the semantically
expected, and so it seemed to be plausible to
predict that sentences with IE deviate stronger
than literals from the reference set w.r.t. the
total amount of surprisal and the sentential

6The comparison with the results in (Feldman and
Peng, 2013) and (Peng et al., 2018) who took a com-
pletely different approach is hard because the evalua-
tion measures there differ from ours.

information density.
However, this is not what we observe:

surprisingly IE and the reference dataset
exhibit smaller differences in surprisal and
UIDLOCAL, respectively, than literals and the
reference dataset do. Even with significant
mean differences, there is only a low effect
strength of surprisal. We attribute this out-
comes to the fact that surprisal and informa-
tion density over the entire sentence lengths
are compared, i.e., we used a global measure,
so to speak. It is all the more remarkable,
however, that between IE and literals differ-
ences nevertheless emerge. In contrast, the lo-
cal measure, which we applied solely to VNC
within sentences, increases the effect size of
surprisal considerably which underlines the
classificatory power of the surprisal feature.

The observation that IE and the reference
dataset hardly differ in terms of surprisal
and information density indicates that the
reference-set has a certain idiomatic character.
Our assumption that IE are semantic outliers
given a reference dataset has thus to be re-
vised, rather we conclude that the reference
dataset seems to have a considerable amount
of IE. One important question for future re-
search is whether this conclusion could be gen-
eralised: Does language in general tend to be
more idiomatic or literal?

Limitations

The News and Wikipedia corpora are only
composed of single sentences. However, the
TCM is designed to calculate semantic sur-
prisal of words from large extra-sentential con-
texts, which the corpora do not offer. Future
work should thus be based on longer, coher-
ent texts and documents when calculating the
surprisal in order to make full use of the pos-
sibilities of the TCM. The results could thus
become more valid, to which larger corpora
as data base will also contribute, especially in
the case of literals. In addition, it would be
desirable if the study could be extended to
other languages and thus take on a compar-
ative character. However, this requires anno-
tated corpora in order to train classification
models, which is a desideratum for the future.
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Abstract

Pre-trained Text-to-Text Language Models
(LMs), such as T5 or BART yield promising
results in the Knowledge Graph Question An-
swering (KGQA) task. However, the capac-
ity of the models is limited and the quality
decreases for questions with less popular en-
tities. In this paper, we present a novel ap-
proach which works on top of the pre-trained
Text-to-Text QA system to address this issue.
Our simple yet effective method performs fil-
tering and re-ranking of generated candidates
based on their types derived from Wikidata
instance_of property. This study demon-
strates the efficacy of our proposed method-
ology across three distinct one-hop KGQA
datasets. Additionally, our approach yields re-
sults comparable to other existing specialized
KGQA methods. In essence, this research en-
deavors to investigate the integration of closed-
book Text-to-Text QA models and KGQA.

1 Introduction

Information stored in Knowledge Graphs (KG),
such as Wikidata (Vrandecic and Krötzsch, 2014),
for general domain or some specific knowledge
graphs, e.g. for the medical domain (Huang et al.,
2021), can be used to answer questions in natural
language. Knowledge Graph Question Answering
(KGQA) methods provide not a simple string as an
answer, but instead an entity a KG.

Pre-trained Text-to-Text LMs, such as T5 (Raf-
fel et al., 2019) or BART (Lewis et al., 2020),
showed promising results on Question Answer-
ing (QA). Besides, recent studies have demon-
strated the potential of Text-to-Text models to ad-
dress Knowledge Graph Question Answering prob-
lems (Roberts et al., 2020; Sen et al., 2022).

While fine-tuning a Text-to-Text LM can signif-
icantly improve its performance, there are cases
where questions cannot be answered without ac-
cess to a knowledge graph, especially in case of
less popular entities (Mallen et al., 2022): not all

required knowledge can be “packed” into param-
eters of a neural model. However, even in such
cases, Text-to-Text models can generate plausible
answers that often belong to the same type as the
correct answer. For example, Text-to-Text answers
to the question “What is the place of birth of Philipp
Apian?” are not correct (e.g., T5 model produced
“Neuilly-sur-Seine” or “Freiburg im Breisgau” as
answers), but these wrong candidates are of the cor-
rect type. Namely, the correct type “city” can be
derived from the list of generated answers and used
to perform a local KG search around the question
entity “Philipp Apian” to derive the correct answer
“Ingolstadt”. Motivated by these observations, this
study presents a method for answer type predic-
tion utilizing the output of pre-trained Text-to-Text
language models.

The contributions of our study are as follows:
(1) A simple yet effective approach for improving
generative KGQA using candidate answer type se-
lection method based on instance_of properties
aggregated from diversified beamsearch. (2) An
open implementation of the method that is easily
applicable to pre-trained generative models.1

2 Related Work

Traditional KGQA methods can be classified into
two categories: retrieval-based and semantic pars-
ing. Retrieval-based methods involve vectorizing
the textual question and projecting it into a graph-
based vector space containing candidate entities
(Huang et al., 2019; Razzhigaev et al., 2023). Se-
mantic parsing approaches generate formal ques-
tion representations (e.g., SPARQL queries) to
query a KG for the answer. Retrieval-based ap-
proaches rely on computationally expensive sim-
ilarity searches using vector indices of millions
of candidate entities. Semantic parsing requires
maintaining a graph database capable of process-

1https://github.com/s-nlp/act
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ing SPARQL queries.
Recently, to address these shortcomings of exist-

ing methods, a third wave of approaches emerged
based on pre-trained Text-to-Text LMs such as T5
(Raffel et al., 2019) or BART (Lewis et al., 2020).
Given a question, these models generate a label of
the answer that can be directly linked to the entity
in a KG. These models are more computationally
convenient and they are described below.

The Text-To-Text Transfer Transformer (T5)
(Raffel et al., 2019) is effective for question an-
swering, as demonstrated by Roberts et al. (2020),
or as part of a retrieval pipeline (Izacard and Grave,
2021). Furthermore, it has been shown that training
T5 with Salient Span Masking (SSM) improves the
model’s performance on QA task. T5-ssm involves
tuning T5 as a language model, masking entities
instead of random tokens. T5-ssm-nq is a variant
of the T5-ssm that is additionally fine-tuned on the
NaturalQuestions (NQ) (Kwiatkowski et al., 2019)
dataset. BART, a Text-to-Text model trained as a
denoising autoencoder (Lewis et al., 2020), can
also be applied to KGQA task (Cao et al., 2022).

3 Answer Candidate Type Selection

This section presents our proposed approach, An-
swer Candidate Type (ACT) Selection. We pro-
pose a universal approach to selecting the cor-
rect answer in the KGQA task by using any pre-
trained sequence-to-sequence (seq2seq) model (in
our cases a Text-to-Text Language Model) to gen-
erate answer candidates and to infer the type of
expected answer. The answer candidate type se-
lection pipeline shown in Figures 1 and 2 consists
of four parts: the Text-to-Text model for candidate
generation, Answer Type Extractor, Entity Linker,
and the Candidate Scorer.

3.1 Initial Answer Candidate List Generation

To increase the diversity of the generated results,
we use Diverse Beam Search (Vijayakumar et al.,
2016) to generate an initial list of answer candi-
dates C. It often leads to a better exploration of the
search space by ensuring that alternative answers
are considered. We define the types of entities
using the Wikidata property instance_of (P31).
Note that an entity can be of multiple types. Fi-
nally, the initial list of answer candidates is used in
the Answer Candidate Typing and the Candidate
Scorer with the mined candidates.

´

Figure 1: Answer Candidate Type (ACT) Selection.

3.2 Answer Candidate Typing
We rank all types by their frequency in the initial
list of answer candidates. After that, we merge the
top-K most frequent types and similar types to the
final list T . Types similarity is calculated as a co-
sine similarity between Sentence-BERT (Reimers
and Gurevych, 2019) embeddings of respective la-
bels. The final types are defined as the ones where
similarity is greater than a threshold.

A similar aggregation method using hypernyms
(also known as “is-a” or “instance-of” relations)
was used in the past to label clusters of words
senses in distributional models (Biemann and Riedl,
2013; Panchenko et al., 2017): distributionally sim-
ilar words share common hypernym and “top” com-
mon hypernyms are surprisingly good labels for
sense clusters. The analogy in our method is that
Text-to-Text models appear to produce a list of
distributionally similar candidates.

3.3 Entity Linking
To enrich the list of candidates, we add all one-hop
neighbours of the entities found in the question.
For that we use the fine-tuned spaCy Named Entity
Recognition (NER)2 and the mGENRE (Cao et al.,
2021) entity linking model.

3.4 Candidates Scorer
Finally, we calculate four scores for each answer
candidate and rank them based on the weighted
sum of the scores. The scores are as follows:

(1) Type score represents the size of the inter-
section between the set of types extracted from the

2https://spacy.io. More details about fine-tuning of
the NER can be found in Appendix A.
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Figure 2: An example of the proposed Answer Candidate Type (ACT) Selection result.

answer candidates and the selected answer types.
It is weighted by the number of selected answer
types:

Stype =
|Candidates’ Types ∩ T |

|T | .

(2) Forward one-hop neighbors score
Sneighbour is assigned 1 if the candidate is among
the neighbors of the question entities, and 0
otherwise.

(3) Text-to-Text answer candidate score is de-
termined by the rank of the candidate in the initial
list C generated by the Text-to-Text model divided
by the size of the list:

St2t =
C.index(Candidate)

|C| .

(4) Question-Property Similarity score
Sproperty measures the cosine similarity be-
tween the embeddings of the relevant property
and the entire question. We employ Sentence-
BERT (Reimers and Gurevych, 2019) to encode
the question, following a similar approach used for
the Answer Candidate Type module.

The four scores are calculated for each entity
and then are combined to generate a final score that
determines the entity’s ranking. The answer with
the highest weighted sum of scores in the candidate
list is selected as the final answer:

Sfinal = Stype+Sneighbour+St2t+Sproperty.

4 Experiments

We fine-tuned the Text-to-Text and spaCy NER
models by using the entire training part of the re-
spective datasets and fitting the model for eight

epochs. The initial answer candidate lists were gen-
erated using Diverse Beam Search with 200 beams
and a diversity penalty of 0.1. The Answer Candi-
date Typing module utilized the top-3 types and a
similarity threshold of 0.6.

4.1 Data
We evaluate the ACT Selection on three Wiki-
data datasets containing one-hop questions.
SimpleQuestions-Wikidata (SQWD) (Diefenbach
et al., 2017) is a mapping of SimpleQuestions (Bor-
des et al., 2015) to Wikidata containing 21,957
questions. RuBQ (Korablinov and Braslavski,
2020; Rybin et al., 2021) is a KGQA dataset that
contains 2,910 Russian questions of different types
along with their English translations. Mintaka (Sen
et al., 2022) is a multilingual KGQA dataset com-
posed of 20,000 questions of different types. For
our experiments we took only generic questions,
whose entities are one hop away from the answers’
entities in Wikidata, which resulted in 1,757 En-
glish questions.

4.2 Evaluation
We hypothesize that even if a closed-book QA text-
to-text model returns an incorrect answer, the odds
are that it is of the correct type.

The present study involves the extraction of an-
swer types from Text-to-Text generated answers,
followed by a comparison with the ground-truth an-
swer types in the SQWD dataset. Our experimental
findings demonstrate that the fine-tuned T5-Large-
SSM model equipped with the ACT Selection can
accurately predict the correct answer type in 94%
of the cases, while only 61% of the candidate an-
swers share the same type as the correct answer.
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Model SQWD RuBQ en
QAnswer 33.31 32.30
KEQA TransE PTBG 48.89 33.80
ChatGPT 15.32 36.53
T5-Large-ssm (fine-tuned) 23.66 21.44
Ours: T5-Large-ssm (fine-tuned) 47.42 26.02
T5-11b-ssm-nq (zero-shot) 10.94 33.38
Ours: T5-11b-ssm-nq (zero-shot) 38.51 38.31

Table 1: Comparsion of the ACT Selection with
KGQA baselines in terms of Hit@1 for SimpleQuestion-
Wikidata (SQWD) with T5-Large-ssm fine-tuned on its
training part and T5-11b-ssm-nq in zero-shot mode.

These results have provided an impetus to leverage
this information to facilitate question-answering.

Figure 3: Average Hit@1 scores for the tuned models
on SQWD, RuBQ, and Mintaka datasets from Table 2.

We evaluate the performance of two commonly
used architecture types, T5 and BART. The pro-
posed approach consistently improves the results
of the Text-to-Text models on various datasets, as il-
lustrated in Figure 3. We compare the mean Hit@1
scores of the tuned Text-to-Text models with the
aforementioned datasets. Text-to-Text models were
fine-tuned on the train splits of SQWD and the full
train split of Mintaka datasets, and subsequently
evaluated on the test splits of SQWD, RuBQ, and
Mintaka using both tuned versions of the models.

As demonstrated in Table 2, the proposed ap-
proach consistently enhances the quality of KGQA
tasks across various Text-to-Text models. Further-
more, we conducted experiments to verify that the
proposed method can be employed with the Text-to-
Text models in a zero-shot learning manner, with-
out any fine-tuning. The benefits of the approach,
in terms of quality improvement, are more notice-
able when applied to smaller models. For example,
the T5-large model, with its 737 million parameters,

when paired with ACT Selection, delivers compa-
rable performance to the T5-11b model, which has
11 billion parameters.

In line with expectations, larger models gener-
ally yield superior results. Notably, T5 models
using the suggested method outperformed BART
models. Moreover, across all tested T5 and BART
models, implementing the ACT Selection markedly
enhanced the performance of the foundational Text-
to-Text model.

Table 1 showcases performance comparison
between our suggested method and prominent
KGQA systems, namely QAnswer (Diefenbach
et al., 2020), KEQA (Huang et al., 2019), and chat-
GPT.3 QAnswer is a multilingual rule-based sys-
tem that tranforms the question into a SPARQL
query. KEQA utilizes TransE embeddings of
200 dimensions, trained on Wikidata using the
Pytorch-BigGraph (PTBG) framework (Lerer et al.,
2019). ChatGPT is a conversational model that was
launched in late 2022 and has received worldwide
acclaim. Further details about evaluating ChatGPT
and other generative models through entity-linked
predictions can be found in appendix B. The tab-
ulated data reveals that our approach delivers out-
comes commensurate with those of state-of-the-art
(SOTA) systems.

4.3 Ablation Study

We conducted an ablation study (cf. Table 3) to
investigate the effects of the proposed scores on
the candidate set collection process. Our main goal
was to confirm that incorporating type information
enhances candidate selection. We observed that
methods relying solely on scores (such as Question-
Property Similarity score) were not as effective as
the ACT Selection approach.

Furthermore, we examined the necessity of ini-
tial candidates generated by the Text-to-Text model
and whether restricting to question entity neighbors
was sufficient. This investigation aimed to deter-
mine the added value of initial candidates in the
selection process.

4.4 Error Analysis

We showed above that the ACT Selection approach
fixed errors produced by the Text-to-Text LMs. We
evaluate this approach using a subset of questions
and predictions from the T5-Large-SSM model
for the SQWD dataset. Our focus is on questions

3https://openai.com/blog/chatgpt
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SimpleQuestions-Wikidata RuBQ (English) Mintaka (one-hop, English)
Tuned on → Zero-shot SQWD Mintaka Zero-shot SQWD Mintaka Zero-shot SQWD Mintaka
BART-base 0 16.54 7.08 0 5.93 3.72 0 2.06 9.12
Ours 30.38 42.60 30.70 9.50 11.65 11.72 4.70 5.88 10.29
BART-large 0 16.97 3.02 0 4.07 4.86 0 1.76 12.65
Ours 30.42 42.64 31.39 9.50 12.15 12.79 4.41 5.29 15.29
T5-base 0 21.26 6.19 0 6.22 6.93 0 4.41 8.24
Ours 30.47 43.13 34.60 9.44 14.44 16.58 4.71 8.53 10.59
T5-large 0 22.36 9.43 0 11.15 12.15 0 7.06 14.41
Ours 29.88 43.05 36.89 9.44 18.94 20.51 4.71 10.00 15.88
T5-large-ssm 0.57 23.66 5.92 0.42 21.44 23.87 0.50 19.71 27.65
Ours 23.39 47.42 36.54 9.72 26.02 27.88 6.76 18.53 28.24
T5-large-ssm-nq 5.12 22.52 4.34 18.87 17.80 19.23 17.65 14.12 23.24
Ours 35.09 43.88 36.39 27.52 25.38 26.38 22.94 14.12 25.59
T5-11b-ssm 1.81 — — 14.09 — — 20.88 — —
Ours 25.84 — — 20.94 — — 24.71 — —
T5-11b-ssm-nq 10.94 — — 33.38 — — 41.76 — —
Ours 38.51 — — 38.31 — — 45.00 — —

Table 2: Evaluation results on three one-hop KGQA datasets (Hit@1 scores): comparing Text-To-Text Language
Model with and without our proposed ACT Selection approach in zero-shot (without tuning for QA) or tuned on
SQWD or Mintaka.

Type score Forward one-hop
neighbours score

Text-to-Text LM
candidates score

Question-Property
Similarity score All scores

Only initial candidates
generated by Text-to-Text 2.51 31.73 27.04 31.82 35.89

Only question
neighbours candidates 5.07 4.84 4.52 29.86 30.06

Full answer
candidates set 2.81 5.46 27.04 30.75 47.42

Table 3: Ablation study of ACT Selection. Reporting Hit@1 at SQWD for T5-large-ssm fine-tuned on SQWD.

where the model’s top-1 prediction was incorrect,
but the ACT Selection approach extracted the cor-
rect answer.

The Text-to-Text model generated the correct
answer in only 58.4% of questions in the chosen
subset. However, our Entity Linking module was
able to correctly extract 99.11% of question entities
for this subset. The extraction of additional candi-
dates from the question entity neighbors played a
critical role in finding the correct answer.

5 Conclusion

We introduced a method for question answering
over knowledge graph based on post-processing
of beam-search outputs of a Text-to-Text model.
Namely, a simple aggregation of KG “instance-of”
relations is used to derive a likely type of the an-
swer. This simple technique consistently improves
performance of various Text-to-Text LMs favorably
comparing to both specialized KGQA methods and
ChatGPT with a carefully selected prompt and en-
tity linked output on three distinct English one-hop
KGQA datasets.

Our method may be also used to directly per-
form answer typing. In principle, it can be straight-
forwardly adapted to multilingual setup, but also
multi-hop questions. We find it promising to use
the method with larger pre-trained models to fur-
ther boost performance as our current experiments
show that the a quality growth as the model size
increased.

6 Limitations

The main limitation of the current study is that the
approach was only tested for one-hop questions.
In principle, one can, however, sample candidates
from graph from arbitrary subgraphs, e.g. second-
order ego-networks of entity found in question. At
the same time, improvements shown in this paper
may not nessesarily generalize to such setting and
need to be tested.

Another limitation is using diverse beam search,
which is a computationally more expensive process
as it requires larger beam sizes, usually.

Finally, requesting KG data can be a bottleneck
if one is using a public SPARQL endpoint with
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query limits. This limitation can be alleviated by
using an in-house private copy of a KG.

7 Ethical Considerations

Large pre-trained Text-to-Text models such as
those used in our work are trained on datasets
which may contain biased opinions. Therefore,
QA/KGQA systems built on top of such models
may transitively reflect such biases potentially gen-
erating stereotyped answers to the questions. As
a consequence, it is recommended in production,
not research settings, to use a special version of
debiased pre-trained neural models and/or other
technologies for the alleviation of the undesired
biases of LLMs.
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A Named Entity Recognition

According to the recent review of SOTA NER
(Vajjala and Balasubramaniam, 2022), top-3 ap-
proaches were chosen: spaCy4, Stanza5 and
SparkNLP6. Pre-rained NERs showed very poor
quality ranging from 64% to 88% of missing cases
for the SQWD data set. Among them, spaCy was
the best; therefore, the standard spaCy configu-
ration7 was chosen for further fine-tuning. This
pipeline requires two main pre-processing steps.
First, the span of the entity should be fed into the
algorithm. This span is predefined for Mintaka.
However, for SQWD and RuBQ only Wikidata IDs
of the entities are presented. Therefore, it was nec-
essary first to define labels of the entities and all
corresponding redirects. Next, these labels should
have been found in the initial sentence for the span
detection. Since for some of the entities there was
no direct match in the sentence, the fuzzy search8

was started. Second, spaCy requires the tag of
the entity label (e.g., PERSON for Elon Musk ,
ORG for Tesla - the so-called BIO type tagging)
for training, but in the initial data this label is miss-
ing. PERSON tag was chosen as the one for all
cases. Additional experiments with partial data tag-
ging (defining exact tag for each entity) were not
successful.

B Evaluation generative models on
KGQA problem

To link predicted answers with entities, we utilized
the full-text search engine provided by the Wiki-
data API9. For answers generated by ChatGPT, we
performed an additional step of removing the trail-
ing dot at the end of the prediction (e.g., changing
‘Yes.’ to ‘Yes’). For RuBQ dataset we just checked
that predicted entity is one of the possible answers.

For predicting answers in the KGQA style, we
experimented with different prompts for ChatGPT.
Specifically, we used the prompt ‘Answer as briefly
as possible without additional information.’ for
evaluating the SQWD dataset and ‘Answer as
briefly as possible. The answer should be ‘Yes’,
‘No’ or a number if I am asking for a quantity of
something, if possible, otherwise just a few words.’

4https://spacy.io
5https://stanfordnlp.github.io/stanza/
6https://nlp.johnsnowlabs.com
7https://spacy.io/usage/training/
8https://pypi.org/project/fuzzywuzzy/
9https://www.wikidata.org/w/api.php
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for the RuBQ dataset.

C Examples

In this section, we include figures that illustrate ex-
amples of the working pipeline. Figure 2 presents
the pipeline for the question "Who published neo
contra?" The Text-to-Text model generates a set
of answer candidates, such as "Avalon Hill," "Ac-
tivision," and "Sega." These candidates are used to
extract the type information, such as "video game
developer." This type information is then employed
in the Candidate Score module to rerank the final
set of candidates, ultimately identifying the correct
answer as "Konami."

Additionally, in Figures 4, 5, and 6, we provide
additional examples that demonstrate the extraction
of types and the calculation of scores within the
pipeline.
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Figure 4: Example question: The champions of what two leagues played in the first four Super Bowls?

Figure 5: Example question: Who published neo contra?
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Figure 6: Example question: What is the place of birth of Sam Edwards?
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Abstract

This paper investigates the interplay between
hate speech and emotions in social media post-
ings with the goal of modeling both phenom-
ena jointly. We present a bottom-up analysis
and introduce an English text corpus with fine-
grained annotations for both phenomena, in
which we analyze possible correlations. Our re-
sults show that only some of the categories rep-
resenting negative emotions correlate with hate
speech classes, while others, such as sadness,
do not. With our dataset, we explore methods
for using partially annotated data to learn both
classifications jointly in an experiment with a
transformer-based neural network model. Our
results suggest that using a hate speech dataset
with emotion labels is more useful than stan-
dard multi-task learning with multiple separate
datasets. We make our annotation and the code
of our experiments publicly available.1

1 Introduction

Hate speech2 remains a persisting issue in social
media. This includes offensive language (Wiegand
et al., 2018; Struß et al., 2019; Mandl et al., 2021)
and toxicity (Borkan et al., 2019) which are of in-
terest for regulation and thus motivate automatic
detection approaches. Methods have to consider
a variety of features to capture the complex phe-
nomenon. A survey on general approaches for hate
speech detection is given by Schmidt and Wiegand
(2017). Recently, mainly transformer-based pre-
trained language models (e.g. BERT by Devlin
et al., 2019) have shown the most promising results
(e.g. in Caselli et al., 2021; Magnossão de Paula
et al., 2022). Typically, the focus in natural lan-
guage processing research is on fine-tuning using a
specialized dataset and on model development. In

1https://github.com/Johannes-Schaefer/
HS-EMO

2Warning: This paper contains examples of hate speech
and offensive language. These examples are taken from social
media corpora and do not represent the opinion of the authors.

this paper, we propose to broaden the scope of anal-
ysis to include knowledge from the related field of
emotions.

The underlying emotions in posts on social me-
dia are often studied based on datasets, e.g. Bostan
and Klinger (2018) discuss several corpora anno-
tated for emotion categories. These include emo-
tions such as anger, disgust, sadness, joy, fear and
surprise. Although hate can be considered a type
of emotion, the interplay of the different emotions
with hate speech content has not been precisely
identified. Alorainy et al. (2018) find hate speech
messages from suspended user accounts are often
associated with negative emotions such as disgust,
fear and sadness. This motivates using emotion
analysis as features for hate speech detection, e.g.
as shown by Martins et al. (2018), Markov et al.
(2021), Chiril et al. (2022) and Rana and Jha (2022).
Madukwe et al. (2021) use an emotion lexicon to
generate a weighted emotion embedding vector as
additional features that prove beneficial for hate
speech classification.

To take emotions in hate speech even more into
account, both phenomena can be learned in a joint
model (Rajamanickam et al., 2020; Awal et al.,
2021). Plaza-del Arco et al. (2021) present a multi-
task learning system which includes a classifier for
emotion detection as well as a classifier for hate
speech and offensive language detection. They use
a shared encoder which is trained sequentially with
batches from a different dataset for each classifica-
tion task.

In this paper, we investigate whether such a
multi-task learning approach benefits further from
using a single dataset that contains annotations for
both phenomena. To this end, we perform a bottom-
up analysis of emotions in hate speech posts and
create an annotated dataset that can be used for
joint classification. Our contributions include (i)
a corpus annotated both for four hate speech and
offensive language categories as well as for six
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anger disgust sadness joy fear surprise ? _ total

TEC 1,555
(7 %)

761
(4 %)

3,830
(18 %)

8,239
(39 %)

2,814
(13 %)

3,848
(18 %)

- - 21,047
(100 %)

HS-EMO 352
(35 %)

172
(17 %)

158
(16 %)

113
(11 %)

79
(8 %)

62
(6 %)

37
(4 %)

27
(3 %)

1,000
(100 %)

Table 1: Emotion label distribution in our HS-EMO corpus in comparison to the TEC corpus. The percentages refer
to the proportions in each data set, i.e. they are relative values for the respective row of the table.

emotion categories, and (ii) a preliminary experi-
ment to explore methods for learning the phenom-
ena jointly by leveraging emotion analysis in hate
speech detection.

The remainder of this paper is structured as fol-
lows. In Section 2, we outline our annotation proce-
dure that we use for our dataset, which is presented
in Section 3, where we also discuss salient obser-
vations. Section 4 presents the experiments on our
dataset for joint modeling of hate speech and emo-
tions. Finally, we conclude in Section 5.

2 Annotation

Since the phenomenon of hate speech is rarer than
individual emotion categories, we begin our anal-
ysis with a dataset that has already been anno-
tated for fine-grained categories relevant to the de-
tection of hate speech. Here we use HASOC in
the version from 2021 (Mandl et al., 2021) which
contains Hate and Offensive (HOF) content col-
lected from Twitter during the Covid-19 pandemic.
This dataset comprises 3,843 English text mes-
sages of hate speech (HATE, 683 cases), offensive
language (OFFN, 622 cases) and profane content
(PRFN, 1,196 cases) as well as other/neutral con-
tent (NONE, 1,342 cases).

To analyze these data for the underlying emo-
tions, we annotate a stratified sample of 1,000 in-
stances with six different emotions (joy, anger, dis-
gust, fear, sadness, surprise) on the basis of the
categories by Ekman (1988). Additionally, we
annotate the label “?” in cases where the clas-
sification is not clear and the label “_” in cases
where no emotion is apparent from the message
content. Emotions were classified according to the
presumed emotional state of the author of the an-
alyzed message. The annotation was performed
by one annotator. To gain a better understanding
of the annotation of Twitter data for emotions, the
annotator trained on the Hashtag Emotion Corpus
(TEC, Mohammad, 2012).

Challenges were presented by cases in which

multiple emotions could be detected in a tweet,
i.e., when the author presumably felt two differ-
ent emotions. In such cases, the stronger emotion
was determined by guessing which emotion trig-
gered the writing of the message. While in total we
annotate six different emotions, we also consider
subclasses to ease the annotation. These include,
for example:

• Joy: affection, goodwill, zest, pride, hope, ac-
ceptance, excitement, relief, passion, caring.

• Anger: irritability, jealousy, rage, frustration.
• Disgust: torment, shame, contempt.
• Fear: nervousness, threat, uncertainty, anxiety,

panic, shock.
• Sadness: suffering, regret, displeasure, embar-

rassment, sympathy, depression.
• Surprise: unexpectedness, astonishment, con-

fusion, unpreparedness.
We provide examples for the annotation of differ-

ent emotions found in this dataset in Appendix A.

3 HS-EMO Corpus

Our corpus is a sample of instances from the
HASOC corpus which we annotate for emotion
categories as described above. In total our anno-
tated dataset HS-EMO comprises 1,000 messages
where approximately 65% are to be considered
hateful or offensive. Table 1 illustrates the dis-
tribution of emotions which we identified in this
data in comparison to the distribution in the TEC
dataset. We observe a more skewed distribution
in our data towards negative emotions (especially
anger and disgust) while more positive emotions
are less frequent.

We now analyze the correlation of the differ-
ent emotions with the annotated hate speech cat-
egories (see Table 2 and Table 3). Table 2 shows
the distributions for the binary categories HOF vs.
NONE. Here we observe an even stronger skewed
distribution for the HOF class towards the negative
emotions anger and disgust. Out of the instances
annotated as HOF, approximately 64% (278 and
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anger disgust sadness joy fear surprise ? _ total

HOF 278
(43 %)

139
(21 %)

47
(7 %)

78
(12 %)

30
(5 %)

40
(6 %)

20
(3 %)

16
(2 %)

648
(100 %)

NONE 74
(21 %)

33
(9 %)

111
(32 %)

35
(10 %)

49
(14 %)

22
(6 %)

17
(5 %)

11
(3 %)

352
(100 %)

Table 2: Emotion and coarse-grained HOF/NONE label correlation in our corpus HS-EMO. The percentages refer
to the proportions for each of the labels HOF/NONE, i.e. they are relative values for the respective row of the table.
The total counts for each emotion are displayed in Table 1 (row HS-EMO).

anger disgust sadness joy fear surprise ? _ total

PRFN 136
(44 %)

33
(11 %)

14
(5 %)

65
(21 %)

8
(3 %)

26
(8 %)

16
(5 %)

11
(4 %)

309
(100 %)

OFFN 75
(46 %)

48
(29 %)

9
(5 %)

11
(7 %)

9
(5 %)

7
(4 %)

1
(1 %)

4
(2 %)

164
(100 %)

HATE 67
(38 %)

58
(33 %)

24
(14 %)

2
(1 %)

13
(7 %)

7
(4 %)

3
(2 %)

1
(1 %)

175
(100 %)

Table 3: Emotion and fine-grained HOF label correlation in our corpus HS-EMO. The percentages refer to the
proportions for each label PRFN/OFFN/HATE, i.e. they are relative values for the respective row of the table. The
total counts for each emotion are displayed in Table 2 (row HOF).

139 instances) fall into one of these two emotion
categories. Interestingly, the other negative cate-
gory sadness does not correlate with HOF. Only 7%
(47 instances) of HOF cases occur with the emo-
tion sadness, while sadness was annotated for 32%
(111 instances) of non-HOF cases. We find this
to be the case, since such examples often contain
only sad sympathy for the misfortunes of others
and tend not to be offensive or hateful. We sup-
port these findings by discussing the HOF content
for these emotion categories using selected exam-
ples displayed in Table 4. Examples #1 through
#4 are HOF cases with the emotions anger or dis-
gust. These texts mostly report negative feelings
on the government or political situation. Here we
find expressions in which the blame is assigned to
someone. Actions of certain people or groups are
despised and they are attacked for it. This blaming
is rarely found in examples with sadness. For ex-
ample, consider examples #5 through #7, in which
the authors are more reflective. The expressions
are not necessarily directed towards a person, but
rather refer to an event or the general situation,
which is not expressed as hate speech.

As a deeper analysis, we further consider the dis-
tribution of emotion categories in the fine-grained
hate speech classes. In Table 3, the tweets anno-
tated with emotions are divided into the three HOF
categories (PRFN, OFFN and HATE). Out of the

352 tweets annotated with anger (cf. Table 1), 278
contain HOF (cf. Table 2) and of these 136 are
PRFN, i.e. almost half of the HOF tweets labeled
as anger contain just vulgar language without tar-
geting a particular person or group. However, for
the emotion label disgust we observe a correlation
with the more severe hate speech categories (HATE
and OFFN). For the emotion label surprise, 40 out
of a total of 62 tweets are marked with HOF and
of these only seven examples are considered to be
severe HATE (most of them instead belong to the
PRFN class). Similarly, for the emotion label joy
with a total of 113 examples, 78 are marked as
HOF with most of them belonging to the PRFN
class. Interestingly, for this emotion label joy we
even find two cases which involve HATE. We now
take a closer look at the texts that contain some of
these surprising findings.

The most unexpected cases are probably the two
examples which are both annotated for joy und
HATE. These texts of these messages are as fol-
lows:

• “@USER I don’t think so I am a stupid
and never tell others stupid bcoz it is their
Ignorance. But still I stand with #Re-
sign_PM_Modi #ResignModi #resign_modi”

• “This time I am with you! Bloody #China
spreading #chinesevirus! URL”

Both examples can be seen as instances where the
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# Text Emotion HOF

1 “#CommunistVirus is wreaking havoc in india. Not a single liberal is blaming their Beijing Masters.
Hypocrites. #ChineseVirus”

anger yes

2 “Wow. Massive asshole timing. Fuck this guy forever. He must be popular with the Trumpers. URL” anger yes
3 “What a bunch of absolute fucking idiots in #india #IndiaCovidCrisis. Brainless morons wonder

why they have a "crisis" (this is goa, sent by an Armenian living there for months) @USER @USER
@USER”

disgust yes

4 “Such a pathetic government who keeps denying that there is no shortage of oxygen....shameless
characters to go immediately #AndhBhakt #BjpDestroyedIndia @USER @USER #ResignModi”

disgust yes

5 “I have coworkers whose family and friends are sick and dying in India. Other offshore coworkers
are sick themselves. Praying the international community does the right thing to help India. Yes,
India’s Covid crisis hurts everyone. #PrayForIndia #IndiaCovidCrisis URL”

sadness no

6 “#COVID19 After 70 years of independence we failed to deliver Oxigen, medical facilities and
vaccination to us. #IndiaCovidCrisis”

sadness no

7 “We aren’t opposing BJP, we’re only criticizing them because we don’t want to loss lives of Hindus in
Bengal violence .. #SpinelessBJP #isupportmodi #Modi #BJP #Shamemamatabannerjee #tmcgoons
#ShameOnMamata #ArrestMamata #BengalBurning #BengalViolence #TMCTerror URL”

sadness no

Table 4: Examples of anger/disgust HOF cases in comparison to sadness non-HOF cases as text instances from our
corpus (HS-EMO). Username mentions and URLs have been anonymized.

author seems to be joyful out of an enthusiastic
group sentiment, but that collectively fuels hatred.

In addition, we report another example from the
HATE category where, unexpectedly, no emotion
was detected:

• “Now, the "poorly paid, but professional, crim-
inals" i.e. "gutter worms" from BJP IT Cell
- which is India’s No. 1 #FakeNews factory
- have got another picture to trend by using
these following hashtags: #BengalBurning
#BengalViolence #ShameOnMamata #Arrest-
Mamata URL”

4 Experiments

We now use our data sample annotated for both
emotion and hate speech to assess whether this
joint annotation can be beneficial for modeling both
phenomena jointly. To test different methods for
learning to recognize hate speech while possibly
considering emotion analysis, we implement a neu-
ral network approach. We encode text messages
using the transformer-based pre-trained language
model BERT (Devlin et al., 2019) and perform the
classification for each task in a separate linear layer
on top of the pooled encoder output. Further details
and hyperparameters are described in Appendix B.

4.1 Experimental Setups

We train the shared encoder in any setup and the
classifiers only for the respective tasks available
given the used dataset. All our models are trained
on the HASOC data to optimize the hate speech

classification component (training data HS). Ad-
ditionally, we implement optional training steps
to incorporate emotion analysis in different ways
as follows. We use the TEC corpus as additional
source material to train the emotion classifier al-
ternately with the hate speech classifier (standard
multi-task learning (MTL) on separate datasets,
training data HS&Emo). We also allow for training
on our dataset to train both classifiers simultane-
ously via joint classification (training data HSEmo).
The combination of these training steps results in
four overall approaches which we investigate:

• HS as a first baseline for hate speech detection
without emotion analysis.

• HS & Emo as a second baseline with standard
MTL on two separate datasets.

• HS & Emo & HSEmo as extension of the
second baseline including joint MTL on our
dataset.

• HS & HSEmo as extension of the first baseline
including joint MTL on our dataset.

For each of those we investigate coarse-grained
(binary) as well as fine-grained (four classes) hate
speech detection.

4.2 Results
The performance results of our optimized mod-
els are displayed in Table 6 for the coarse-grained
(binary) hate speech detection and in Table 5 for
the fine-grained (four classes) hate speech detec-
tion. For the different models, we respectively
report the class-based F1 score values as well as
the macro-averaged F1 score value for hate speech
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Training Data F1NONE F1PRFN F1OFFN F1HATE macro-avg F1

HS .7018 .7827 .5121 .5438 .6351
HS & Emo .7100 .7143 .4054 .5436 .5933
HS & Emo & HSEmo .7169 .7522 .4823 .5620 .6283
HS & HSEmo .7154 .7315 .4509 .5655 .6158

Table 5: Fine grained hate speech detection performance of best models trained on different data.

Training Data F1HOF F1NONE macro-avg F1

HS .7277 .8535 .7906
HS & Emo .7293 .8326 .7810
HS & Emo & HSEmo .7340 .8459 .7900
HS & HSEmo .7147 .8299 .7723

Table 6: Coarse grained hate speech detection perfor-
mance of best models trained on different data.

detection on the HASOC 2021 test dataset (Mandl
et al., 2021). Detailed results of different runs in-
cluding hyperparameter optimization are given in
Appendix C.

We briefly compare our best results to the perfor-
mances of the top systems according to the leader-
boards from the HASOC 2021 shared task which
are available online.3 The best observed perfor-
mance of all our models on test data is 0.8187
macro-average F1 for coarse-grained hate speech
detection (see Appendix C, Table 8) and 0.6486
macro-average F1 for fine-grained hate speech de-
tection (see Appendix C, Table 9). These runs
would place us fourth for coarse-grained detection
and third for fine-grained detection, only about 1%
and 2% behind the top systems. Thus, we assume
that our general approach is competitive, while the
hyperparameter optimization of our basic model
remains quite simple.

When incorporating emotion classification, the
overall results (i.e. the macro-average F1 scores of
the optimized models displayed in Table 6 and in
Table 5) show that this does not improve the hate
speech detection performance (the HS approach
performs best). However, in the MTL setups, the
approaches including joint multi-task learning (HS
& Emo & HSEmo and HS & HSEmo) mostly out-
perform the standard MTL approach (HS & Emo).

5 Conclusion

In total, we present a corpus of 1,000 messages
with emotion labels containing also hate speech and
offensive language. Our bottom-up analysis of the

3https://hasocfire.github.io/hasoc/
2021/results.html

occurrence of emotions in hate speech shows that,
as expected, there is a correlation between certain
negative emotions such as disgust and severe hate
speech classes. However, we also identified other
negative emotions that mostly do not correlate with
hate speech, such as sadness. In some cases, we
even found that the authors presumably felt positive
emotions such as joy in hateful messages.

Our experiments with this preliminary dataset
show the benefit of a joint annotation in compari-
son to standard multi-task learning with multiple
datasets. However, since we have only annotated
a sample of the hate speech data so far, further re-
search is needed to use such data to improve hate
speech detection. Future work has to consider a
fair comparison with a fully annotated dataset for
joint learning. Further attempts for optimization
should consider assigning variable weights to the
auxiliary task when the main goal is to improve
hate speech detection.

Ethical Considerations

Limitations. Our analysis of the correlation of
hate speech and emotions is based on an emotion
annotation by only one single annotator. While
we extensively discussed difficult cases beforehand
and the annotation was carefully done, we currently
cannot evaluate the quality of this annotation. In
addition, the annotator was indecisive about the
emotion in about 4% of the instances. Future plans
are to include a second annotation by another an-
notator.

The dataset used for our analysis and experiment
is rather small and contains a topic bias towards
Covid-19 in India in particular. This limits the
generalizability of our results.

Reproducibility. We use datasets with annota-
tions for hate speech and emotions. All of these
datasets are freely available for research use. We
use these data for their intended use, to develop
detection systems. Since we research hate speech,
the datasets have not been filtered or anonymized
for offensive language.
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We publish our program code for maximum
transparency. The described models and predic-
tions of labels can be reproduced with this code.
For training we randomly split the dataset into spe-
cific portions. Additionally, we provide a script to
reproduce the random split used in our experiments
to benefit future research. We report relevant infor-
mation for the used artifacts and refer to the orig-
inal publications for further documentation. We
believe that these descriptions make our approach
reproducible.
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ter Daelemans. 2021. Exploring stylometric
and emotion-based features for multilingual cross-
domain hate speech detection. In Proceedings of the
Eleventh Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 149–159, Online. Association for Computa-
tional Linguistics.

Ricardo Martins, Marco Gomes, José João Almeida,
Paulo Novais, and Pedro Henriques. 2018. Hate
speech classification in social media using emotional
analysis. In 2018 7th Brazilian Conference on Intel-
ligent Systems (BRACIS), pages 61–66.

Saif Mohammad. 2012. #emotional tweets. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and Vol-
ume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages
246–255, Montréal, Canada. Association for Compu-
tational Linguistics.

Flor Miriam Plaza-del Arco, Sercan Halat, Sebastian
Padó, and Roman Klinger. 2021. Multi-Task Learn-
ing with Sentiment, Emotion, and Target Detection
to Recognize Hate Speech and Offensive Language.
In Working Notes of FIRE 2021 – Forum for Infor-
mation Retrieval Evaluation, December 13-17, 2021,
India.

170



Santhosh Rajamanickam, Pushkar Mishra, Helen Yan-
nakoudakis, and Ekaterina Shutova. 2020. Joint mod-
elling of emotion and abusive language detection. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4270–
4279, Online. Association for Computational Lin-
guistics.

Aneri Rana and Sonali Jha. 2022. Emotion based hate
speech detection using multimodal learning. arXiv
preprint arXiv:2202.06218.

Anna Schmidt and Michael Wiegand. 2017. A Survey
on Hate Speech Detection using Natural Language
Processing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media (SocialNLP@EACL 2017), pages 1–10,
Valencia, Spanien.

Julia Struß, Melanie Siegel, Josef Ruppenhofer, Michael
Wiegand, and Manfred Klenner. 2019. Overview of
GermEval Task 2, 2019 Shared Task on the Iden-
tification of Offensive Language. In Proceedings
of the 15th Conference on Natural Language Pro-
cessing (KONVENS 2019), pages 354–365, Erlangen,
Deutschland. German Society for Computational Lin-
guistics & Language Technology.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018 Shared
Task on the Identification of Offensive Language.
In Proceedings of GermEval 2018, 14th Confer-
ence on Natural Language Processing (KONVENS
2018), pages 1–10, Wien, Österreich. Österreichische
Akademie der Wissenschaften.

A Examples from HS-EMO

Table 7 enumerates examples of Twitter text mes-
sages from the HASOC 2021 dataset (Mandl et al.,
2021) which we annotate for emotion labels and
collect in the HS-EMO corpus.

General Examples for the Emotion Categories.
#1 is an example for the emotion category joy. The
writer of this tweet was presumably happy about
something. In the tweet, the person was waiting for
something and now they are excited that it is the
time of “Babs”.

#2 is an example for the emotion category anger.
The author of this message is probably frustrated,
angry and annoyed. The writer compares his ac-
tions to the actions of someone else. He uses a
swear word calling the other person a “shitbag” in
an expression of anger presumably over an unfair
treatment.

#3 is an example for the emotion category dis-
gust. Here the writer probably feels shame for his
country and its people. They are disgusted by the

behavior of the people. They feel shame for some-
thing and are contemptuous towards someone.

#4 is an example for the emotion category fear.
This person may be afraid as they see only cruelty
around them and no help. They list everything that
frightens them and ask for help. The words “dying”,
“begging”, “clueless”, “lies” in this context may be
alarming and are an indicator for the emotion fear.

#5 is an example for the emotion category sur-
prise. Here the writer is confused by the actions of
a certain group.

#6 is an example for the emotion category sad-
ness. The writer of this message is saddened by the
situation in India. They suffer with their fellow hu-
man beings. Words such as “hurting me”, “hope”,
“god save us” may be indicators of sadness.

#7 and #8 are examples where no emotion could
be detected. From these tweets it is impossible
to tell the emotional state of the author without
additional context. Are they pleased, disappointed
or angry? This distinction is not evident from the
content of the message alone.

Borderline Cases. Potentially ambiguous cases
were mostly between the emotion categories dis-
gust vs. anger, anger vs. sadness and disgust vs.
sadness. The stronger emotion was selected when
multiple emotions could be detected. The main
goal was to identify which one was the guiding
motivation for writing the tweet.

Example #9 is annotated it with sadness, how-
ever, it could also be disgust. The writer is pre-
sumably sad and at the same time ashamed of his
government. However, they probably wrote this
tweet out of sadness. Thus, this emotion is stronger
in this example.

Example #10 is annotated with anger while at
first glance it could also be disgust. However, the
anger the person feels seems to be stronger and
ultimately the reason for writing the message.

B Hyperparameters

We pad/truncate instances to the length of 103 to-
kens. We determined this value by the 99th per-
centile of instance lengths in the HASOC 2021
dataset.

In all our experiments we use a batch size of 8
and apply a dropout (probability 0.2) to the output
of the encoder. For optimization we use the Adam
optimizer with default parameters.

We reserve 10% of the HASOC 2021 data as
validation dataset to determine an optimal early

171



# Text Emotion

1 “@USER @USER Because karma is a bitch. Babs’ time had finally come. The Wanker. #LGRW” joy
2 “@USER Here’s hoping. That little shitbag gets arrested. I got arrested for "threatening" when I didn’t even

make a direct threat, and our law system is furbar if crap like this keeps sliding.”
anger

3 “@USER @USER @USER You guys make me sick to the core!!!! Is that really your concern right now,
formation of alliance, when the entire country is on its knees!!! I guess news of dead bodies pilling up,
people dropping dead on the st”

disgust

4 “People are dying, left to go begging for basic medical resources. No ventilators. No O2. Delayed/No
Response from Centre. State govts clueless due lack of aid from Centre. Lies. Cover ups. Please, for the
countrys sake, #ResginModi & let someone more competent do the job. URL”

fear

5 “What the heck the bjp is doing... destroying people life? #ResignPMmodi #BjpDestroyedIndia #BJP
#prayaraj”

surprise

6 “@USER Just tired of all these deaths hurting me from inside hope good days will come back :( may god
save us all #COVIDSecond #COVIDSecondWAVE #COVID119India #COVID19 #OxygenEmergency #In-
diaFightsCorona #IndiaFightsCOVID19 #CovidVaccine #Covid19IndiaHelp #COVIDSecondWaveInIndia
#indianeedoxygen”

sadness

7 “@USER Did you get the old bastard 1 or the young gun 1” _
8 “@USER @USER We need Ethan Winters to say it too” _
9 “I feel devastated for India and deeply ashamed of our Government’a attitude and actions. #IndiaCovidCrisis

URL”
sadness

10 “I am ashamed that I was blind supporter of @USER Your People are dying , Gang Raped and You are
doing this Shit ? #SpinelessBJP #spinelessmodi #MamtaisTerrorist #BengalViolence #BengalBurning”

anger

Table 7: Examples of annotated text instances from our corpus (HS-EMO). Username mentions and URLs have
been anonymized.

stopping epoch (patience 3, minimum delta 0.005)
with a maximum of 10 training epochs. To be able
to use the same data split when training on our
dataset (which is a sample from the HASOC 2021
data), we ensure that the validation data is sampled
from the HASOC 2021 data instances which are
not included in our dataset. The remaining 90% of
the HASOC 2021 data is used for training (training
data HS).

We run hyperparameter optimization by select-
ing the best learning rate based on validation
dataset performance. We test the following ten dif-
ferent values for the learning rate: 1e−7, 2.5e−7,
5e−7, 7.5e−7, 1e−6, 2.5e−6, 5e−6, 7.5e−6,
1e−5, 2.5e−5.

C Detailed Experimental Results

Table 8 shows the performance of the different ap-
proaches for different learning rate values at coarse
grained hate speech and emotion classification. Ta-
ble 9 shows the performance of the different ap-
proaches for different learning rates at fine grained
hate speech and emotion classification. In both ta-
bles we report the performance of the different mod-
els on the validation dataset which has been used
for early stopping and learning rate optimization
(test data: Val HS) as well as the performance on
the HASOC 2021 (Mandl et al., 2021) test dataset

(test data: Test HS). The best macro-averaged F1
scores for hate speech detection on the validation
dataset are underlined for each training data setup
(best learning rate value). The last column in each
of the two tables shows the macro-averaged F1
score for emotion classification on our dataset (test
data: HS-EMO). Note that for some runs (train-
ing data: HSEmo) this dataset is also used during
training.
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Test Data: Val HS Test HS HS-EMO

Training Data Epochs lr F1HOF F1NONE macro-avg F1HS F1HOF F1NONE macro-avg F1HS F1Emo

HS 10 1e-07 .6200 .7120 .6660 .6416 .7109 .6762 –
HS 10 2.5e-07 .6800 .7990 .7400 .6788 .7967 .7377 –
HS 8 5e-07 .7200 .8540 .7870 .7119 .8443 .7781 –
HS 7 7.5e-07 .7340 .8680 .8010 .7221 .8551 .7886 –
HS 7 1e-06 .7290 .8660 .7980 .7213 .8517 .7865 –
HS 2 2.5e-06 .7090 .8570 .7830 .6987 .8443 .7715 –
HS 2 5e-06 .7540 .8750 .8140 .7277 .8535 .7906 –
HS 1 7.5e-06 .7370 .8610 .7990 .7329 .8462 .7896 –
HS 1 1e-05 .7430 .8590 .8010 .7707 .8667 .8187 –
HS 1 2.5e-05 .7540 .8560 .8050 .7623 .8486 .8054 –

HS & Emo 3 1e-07 .4950 .6350 .5650 .5019 .6416 .5717 .0649
HS & Emo 10 2.5e-07 .6140 .6870 .6510 .6341 .6939 .6640 .0759
HS & Emo 8 5e-07 .6560 .8260 .7410 .6565 .8095 .7330 .1163
HS & Emo 9 7.5e-07 .7170 .8510 .7840 .7078 .8352 .7715 .1742
HS & Emo 8 1e-06 .7090 .8570 .7830 .6861 .8323 .7592 .1802
HS & Emo 3 2.5e-06 .6800 .8490 .7650 .6818 .8459 .7639 .1449
HS & Emo 4 5e-06 .7140 .8580 .7860 .7435 .8646 .8041 .2104
HS & Emo 3 7.5e-06 .7100 .8650 .7870 .7315 .8634 .7974 .1916
HS & Emo 2 1e-05 .7330 .8470 .7900 .7293 .8326 .7810 .1923
HS & Emo 3 2.5e-05 .7130 .8640 .7880 .7146 .8517 .7832 .2279

HS & Emo & HSEmo 3 1e-07 .3790 .6480 .5140 .3671 .6399 .5035 .0606
HS & Emo & HSEmo 10 2.5e-07 .6490 .7810 .7150 .6524 .7674 .7099 .3482
HS & Emo & HSEmo 10 5e-07 .7210 .8500 .7860 .6881 .8214 .7547 .4280
HS & Emo & HSEmo 5 7.5e-07 .7070 .8330 .7700 .7226 .8290 .7758 .4483
HS & Emo & HSEmo 5 1e-06 .7130 .8430 .7780 .7164 .8283 .7723 .5602
HS & Emo & HSEmo 2 2.5e-06 .7090 .8320 .7710 .7238 .8223 .7731 .4256
HS & Emo & HSEmo 3 5e-06 .7700 .8760 .8230 .7340 .8459 .7900 .8291
HS & Emo & HSEmo 4 7.5e-06 .7290 .8540 .7910 .7227 .8330 .7779 .9824
HS & Emo & HSEmo 2 1e-05 .7390 .8610 .8000 .7360 .8310 .7835 .8824
HS & Emo & HSEmo 3 2.5e-05 .7490 .8670 .8080 .7109 .8380 .7744 .9871

HS & HSEmo 9 1e-07 .5880 .5960 .5920 .5991 .5726 .5858 .1359
HS & HSEmo 10 2.5e-07 .6300 .7780 .7040 .6387 .7679 .7033 .2889
HS & HSEmo 9 5e-07 .7460 .8520 .7990 .7044 .8196 .7620 .5469
HS & HSEmo 9 7.5e-07 .7570 .8670 .8120 .7147 .8299 .7723 .6352
HS & HSEmo 8 1e-06 .7380 .8480 .7930 .7209 .8225 .7717 .7001
HS & HSEmo 2 2.5e-06 .7440 .8560 .8000 .7193 .8313 .7753 .6710
HS & HSEmo 3 5e-06 .7380 .8670 .8030 .7194 .8486 .7840 .8977
HS & HSEmo 1 7.5e-06 .7280 .8690 .7990 .7208 .8555 .7881 .6214
HS & HSEmo 1 1e-05 .7360 .8580 .7970 .7458 .8517 .7987 .6431
HS & HSEmo 1 2.5e-05 .7400 .8510 .7950 .7325 .8282 .7804 .8524

Table 8: Coarse grained (binary) hate speech and emotion classification performance.

Test Data: Val HS Test HS HS-EMO

Training Data Epochs lr F1NONE F1PRFN F1OFFN F1HATE macro-avg F1HS F1NONE F1PRFN F1OFFN F1HATE macro-avg F1HS F1Emo

HS 9 1e-07 .1930 .7040 .0430 .4640 .3510 .1856 .6965 .0153 .4190 .3291 –
HS 10 2.5e-07 .5590 .7480 .0770 .5230 .4770 .4986 .7566 .0957 .5114 .4656 –
HS 10 5e-07 .5410 .7470 .3690 .5060 .5410 .5544 .7553 .2073 .4955 .5031 –
HS 10 7.5e-07 .6940 .7750 .5540 .5920 .6530 .6473 .7532 .3973 .5325 .5826 –
HS 10 1e-06 .7040 .7760 .5360 .5520 .6420 .7079 .7798 .5012 .5455 .6336 –
HS 8 2.5e-06 .7370 .7680 .5470 .6420 .6730 .7182 .7539 .4822 .5343 .6221 –
HS 4 5e-06 .7690 .7750 .5690 .5830 .6740 .7091 .7598 .4849 .5475 .6253 –
HS 2 7.5e-06 .7510 .7700 .5670 .6470 .6840 .7018 .7827 .5121 .5438 .6351 –
HS 3 1e-05 .7360 .7410 .5560 .6170 .6620 .7307 .7582 .5246 .5808 .6486 –
HS 4 2.5e-05 .7450 .7660 .5650 .6460 .6800 .7119 .7503 .4452 .5285 .6090 –

HS & Emo 10 1e-07 .5630 .7160 .3970 .0900 .4420 .5685 .7193 .2373 .1254 .4126 .1063
HS & Emo 9 2.5e-07 .5480 .7610 .0450 .4460 .4500 .5072 .7625 .0199 .4603 .4375 .0637
HS & Emo 10 5e-07 .5780 .7670 .1430 .5510 .5100 .5452 .7634 .1185 .5131 .4851 .1416
HS & Emo 9 7.5e-07 .6470 .7660 .3260 .5470 .5710 .6062 .7668 .2890 .4970 .5397 .1114
HS & Emo 7 1e-06 .6580 .7700 .4690 .5690 .6170 .6131 .7664 .3021 .4960 .5444 .0694
HS & Emo 9 2.5e-06 .7420 .7570 .5100 .5940 .6510 .7086 .7378 .4467 .5666 .6149 .1574
HS & Emo 4 5e-06 .7200 .7920 .5690 .6480 .6820 .7036 .7665 .5149 .5750 .6400 .0958
HS & Emo 3 7.5e-06 .7270 .7720 .5760 .5690 .6610 .7256 .7748 .4692 .5639 .6334 .1511
HS & Emo 2 1e-05 .7000 .7810 .5270 .6220 .6580 .7057 .7690 .4847 .5726 .6330 .1363
HS & Emo 3 2.5e-05 .7840 .7500 .5790 .6330 .6870 .7100 .7143 .4054 .5436 .5933 .1555

HS & Emo & HSEmo 9 1e-07 .2210 .7190 .0100 .4530 .3510 .2927 .7238 .0591 .4600 .3839 .1069
HS & Emo & HSEmo 10 2.5e-07 .5790 .7670 .1020 .5030 .4880 .5419 .7342 .0648 .4925 .4584 .1813
HS & Emo & HSEmo 10 5e-07 .7130 .7650 .3690 .5810 .6070 .6553 .7577 .3446 .5171 .5687 .5139
HS & Emo & HSEmo 10 7.5e-07 .6940 .7470 .4300 .5920 .6160 .6943 .7665 .3765 .5521 .5974 .6320
HS & Emo & HSEmo 5 1e-06 .6840 .7570 .5040 .5890 .6330 .6561 .7537 .3259 .5348 .5676 .3449
HS & Emo & HSEmo 8 2.5e-06 .7360 .7320 .5300 .5920 .6470 .7053 .7116 .3187 .5191 .5637 .7907
HS & Emo & HSEmo 4 5e-06 .7110 .7280 .5710 .6540 .6660 .7174 .7000 .3910 .5420 .5876 .8134
HS & Emo & HSEmo 2 7.5e-06 .7460 .7430 .5470 .5930 .6570 .7027 .7306 .4346 .5223 .5975 .7409
HS & Emo & HSEmo 2 1e-05 .7500 .7710 .5670 .6270 .6790 .7169 .7522 .4823 .5620 .6283 .8000
HS & Emo & HSEmo 2 2.5e-05 .7420 .7630 .5550 .5830 .6610 .7242 .7412 .4256 .5407 .6079 .9574

HS & HSEmo 10 1e-07 .4780 .7320 .2190 .4950 .4810 .4394 .7023 .1885 .4098 .4350 .1426
HS & HSEmo 10 2.5e-07 .6320 .7560 .3060 .5380 .5580 .6065 .7525 .2582 .4861 .5259 .2588
HS & HSEmo 10 5e-07 .6060 .7690 .4300 .5700 .5940 .5977 .7735 .2856 .4745 .5328 .3308
HS & HSEmo 6 7.5e-07 .7040 .7630 .5170 .6110 .6490 .6667 .7384 .3404 .5230 .5671 .3567
HS & HSEmo 10 1e-06 .7130 .7690 .4660 .5770 .6310 .6777 .7320 .4072 .5125 .5824 .5114
HS & HSEmo 3 2.5e-06 .7350 .7520 .5260 .5870 .6500 .6987 .7413 .4319 .5501 .6055 .4416
HS & HSEmo 4 5e-06 .7560 .7440 .5840 .6280 .6780 .7154 .7315 .4509 .5655 .6158 .8005
HS & HSEmo 2 7.5e-06 .7230 .7080 .5670 .6620 .6650 .7022 .7322 .3357 .5444 .5787 .6371
HS & HSEmo 3 1e-05 .7620 .7210 .5860 .6280 .6740 .7308 .7241 .3772 .5751 .6018 .9246
HS & HSEmo 2 2.5e-05 .7050 .7540 .5980 .5970 .6640 .7093 .7256 .3492 .5547 .5847 .9521

Table 9: Fine grained hate speech and emotion classification performance.
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Abstract

Training large language models is challenging
when data availability is limited, as it is the case
for low-resource languages. We investigate
different data augmentation techniques for the
training of models on Luxembourgish, a low-
resource language. We leverage various word
substitution methods for artificially increasing
textual data: synonym replacements, entity re-
placements and modal verbs replacements. We
present DA BERT and LuxemBERT-v2, two
BERT models for the Luxembourgish language.
We evaluate our models on several downstream
tasks and conduct an ablation study to assess
the impact of each replacement method. Our
work provides valuable insights and highlights
the importance of finding solutions to training
models in low-resource settings.

1 Introduction

Neural network models are data-hungry, making
them challenging to exploit when resources are
scarce. The development of Natural Language Pro-
cessing (NLP) tools for low-resource languages is,
however, important since a large number of people
around the world predominantly speak a language
that can be classified as under-resourced due to
its shortage in available data (Feng et al., 2021).
Therefore, the research community is looking for
ways to get extra data for training models targeting
low-resource languages. Data augmentation is a
common practical way of generating synthetic data
by slightly altering existing data.

Luxembourgish, the national language of Lux-
embourg, is an example of a low-resource language,
in a country that is known as being multilingual:
in addition to Luxembourgish, German, French,
English, Portuguese and Italian are widely spo-
ken among its citizens. Only about 430 000 citi-
zens (Eberhard et al., 2022) speak Luxembourgish
as their native language. Given the limited number
of speakers, textual data in Luxembourgish is not

abundant. LuxemBERT is an existing language
model for Luxembourgish and was developed by
Lothritz et al. (2022) for use cases mainly targeted
to the financial technology (FinTech) domain. To
address the limitation of insufficient data, the au-
thors develop a novel data augmentation technique
leveraging automatic translation of common words
from a closely related language.

In this study, we investigate the effectiveness of
data augmentation techniques other than the one
used by Lothritz et al. (2022). We use synonym,
entity, and modal verb replacements to create new
data for building Luxembourgish language models.

We explore the following research questions:

RQ1: What impact on the model’s performance
can we observe when we modify its input data
through data augmentation techniques?

RQ2: Which data augmentation technique has
the highest impact on our model’s performance?

The contributions of this paper are threefold:
(i) we contribute to the community with new pre-
trained models for Luxembourgish; (ii) we provide
insights on the effectiveness of existing data aug-
mentation techniques for low-resource language
modeling; (iii) we assess, from a different per-
spective, the relevance of the data augmentation
proposed in LuxemBERT by discussing the added
value of traditional data augmentation techniques.

2 Related Work

One of the most common choices of language mod-
els for many low-resource languages is mBERT
(Pires et al., 2019; Wu and Dredze, 2020), a multi-
lingual BERT model (Devlin et al., 2019). mBERT
was trained on 104 languages, one of which is
Luxembourgish. Even though mBERT includes
a range of low-resource languages, Wu and Dredze
(2020) do not recommend using it as the only op-
tion for low-resource languages. It was trained
solely on Wikipedia articles, therefore its ability to
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learn and understand a language decreases notably
the smaller the Wikipedia size of the respective
language is.

LuxemBERT is a recent Luxembourgish BERT
model (Lothritz et al., 2022). The authors imple-
ment a data augmentation technique based on par-
tial translation to train this model. They augment
the training data by incorporating text data from an
auxiliary language, German, which is structurally
closely related to Luxembourgish. Specifically,
they translate a subset of common and unambigu-
ous German function words (e.g. pronouns, deter-
miners, prepositions) to Luxembourgish.

There are several other data augmentation tech-
niques that prove to be useful when working with
limited data (Hedderich et al., 2021; Xu et al.,
2019). The idea is that because there is not
enough data for low-resource languages, the ex-
isting data has to be leveraged as efficiently as
possible through various augmentation techniques
which makes it possible to generate more data with-
out collecting additional samples. Hedderich et al.
(2021) differentiate between approaches performed
on a word or sentence level. They suggest replac-
ing words with synonyms and named entities of
the same type on a token level. On a sentence
level, they propose using back-translation to create
more diverse sentences. This approach translates
a sentence in a source language to a sentence in
a target language, before translating it back to the
source language (Sennrich et al., 2016). Pellicer
et al. (2023) propose paraphrasing as an efficient
strategy to add lexical diversity while retaining the
original meaning. Negation is another approach
that creates new sentences by reversing the mean-
ing of the original ones (Tarasov, 2020).

3 The Data

Pre-Training Data. This dataset was used in
the pre-training corpus of LuxemBERT (Lothritz
et al., 2022), which consists of a total of 12 million
sentences, out of which six million are Luxembour-
gish and six million are partially translated German
sentences. It was collected from different sources
including news articles, chatrooms, user comments
posted on Radio Television Luxembourg (RTL),1

a Luxembourgish news station website, and the
Luxembourgish Wikipedia. Lothritz et al. (2022)
provide further details on the breakdown of the
pre-training corpus.

1https://www.rtl.lu/

Data for Data Augmentation. We use the ex-
isting six million Luxembourgish sentences from
LuxemBERT to create the same number of new
(augmented) sentences. Furthermore, to perform
word substitutions via synonym, entity, and modal
verb replacements, for our data augmentation task
we collect additional data from the Luxembourgish
Online Dictionary2 consisting of Luxembourgish
modal verbs, first names, surnames and locations
(e.g. countries, cities, etc.). We also create a dic-
tionary consisting of Luxembourgish words and
corresponding synonyms.3

Data Augmentation Scheme. Our data augmen-
tation scheme is applied to the six million Luxem-
bourgish sentences that LuxemBERT was trained
on and checks for each word whether that word
is in one of our lists or dictionary. If there is a
match with words from the original data, we re-
place those matches with random words from the
corresponding lists.

The systematic substitution of words from Lux-
emBERT’s training data with words from our lists
allows us to obtain new sentences containing dif-
ferent words without considerably changing the
meaning of the original sentences. Following these
steps, we create six million new Luxembourgish
sentences, for a total of 12 million, the same num-
ber of sentences used for LuxemBERT.

4 Experimental Setup

In this section, we introduce our novel models and
the baselines we compare them against, describe
the training and fine-tuning specifications and for-
mulate the set of experiments consisting of five
downstream tasks to evaluate our models on.

4.1 Models
As mentioned in Section 1, we compare two new
BERT models to LuxemBERT to assess the impact
of our data augmentation scheme. We describe
our two models, DA BERT and LuxemBERT-v2,
which we trained using an augmented dataset.

DA BERT: Data Augmented BERT is a model
which we build and pre-train completely from
scratch using the data obtained through our data
augmentation scheme. The configuration specifi-
cations are the same as for Lothritz et al. (2022)
and are as follows: a vocabulary size of 30 000, 12

2https://lod.lu/
3Data available at https://github.com/iolariu/

Data-Augmentation
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attention heads, 12 hidden layers, and maximum
sequence length of 512.4

LuxemBERT-v2: This model is also trained
with augmented data. We do not pre-train this
model from scratch, but continue pre-training Lux-
emBERT by adding more data. To the original 12
million Luxembourgish sentences, we add our new
6 million augmented sentences to obtain a final
dataset of 18 million sentences.

4.2 Training Parameters

To configure our DA BERT and LuxemBERT-v2
models, we re-use the same parameters as Luxem-
BERT (Lothritz et al., 2022) originating from the
BERT-base model (Devlin et al., 2019): 12 Trans-
former blocks, 768 hidden layers, 12 self-attention
blocks, and a total of 110 million trainable parame-
ters. We choose a tailored alphabet size of 120 char-
acters as for LuxemBERT to take into account the
Luxembourgish alphabet by restricting the charac-
ters to letters used in the Luxembourgish language.

We pre-train our model on the Masked Language
Modeling task and leave out Next Sentence Pre-
diction due to the largely unordered nature of our
dataset. We pre-train our model for 10 epochs us-
ing a masking probability of 15%.

4.3 Baselines

We examine two baseline models for comparison
purposes: mBERT and the original LuxemBERT.

mBERT: The multilingual BERT model was
trained on a mixture of high- and low-resource
languages. Luxembourgish is one of the included
languages and this part was trained on the Luxem-
bourgish Wikipedia data, which contained 59 000
articles at the time of release of the model. The ar-
chitecture consists of 12 Transformer blocks, 768
hidden layers, 12 self-attention blocks, and 110
million trainable parameters (Devlin et al., 2019).

LuxemBERT: We consider LuxemBERT as an-
other baseline model, which is one of the currently
existing BERT-based models for the Luxembour-
gish language. LuxemBERT and DA BERT use the
same configurations in terms of model architecture,
training parameters, and dataset size.

4Models available at https://huggingface.co/
iolariu/DA_BERT and https://huggingface.co/
iolariu/LuxemBERT-v2

4.4 Downstream Tasks

To evaluate the performance of our language mod-
els, we fine-tune them on the same five downstream
tasks as in Lothritz et al. (2022).

POS Tagging. This sequence labelling task con-
sists of assigning to each word in a given sequence
of words a specific grammatical class (Jurafsky
and Martin, 2008). We use the dataset provided
by Lothritz et al. (2022), which consists of 450
Luxembourgish news articles and 5500 sentences.
It is labelled with 15 POS tags including verbs,
pronouns, adjectives, and adverbs.

Named Entity Recognition. This sequence-to-
sequence task extracts key information in a given
piece of text. It assigns a label to each word in a
sentence by locating and classifying proper names
in the sentence. We use the same dataset as for
POS tagging,for which we have five labels: per-
son, organisation, location, geopolitical entity, and
miscellaneous.

Intent Classification.5 Sometimes also referred
to as intent recognition, this task tries to find an
author’s intention given an extract of text, where
the labels of the intents are determined in advance.
We use the Banking Client Support dataset created
by Lothritz et al. (2021), which consists of 28 in-
tents associated to various banking requests, such
as checking bank account balances, opening and
closing bank accounts, or ordering a new credit
card.

News Classification. This task consists of cor-
rectly classifying news articles into various topics
such as politics or sports. The dataset was created
by Lothritz et al. (2022) and consists of 10 052 Lux-
embourgish news articles, which can be classified
into eight topics.

Winograd Natural Language Inference. This
task consists of a pair of texts A and B, where
text A contains one or several pronouns and text B
contains a substring of text A, where the pronoun
in text B is replaced by either a word or a name.
The label is 1 if the pronoun was replaced with the
correct token from text A, or 0 otherwise. We use
the original WNLI dataset (Levesque et al., 2012)
translated into Luxembourgish by Lothritz et al.
(2022).

5We distinguish between IC a and IC b, where we use
all labels for IC a, but leave out trivial intents (e.g. greeting,
thanking, goodbyes) for IC b.
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Fine-tuning Parameters. To allow for a fair com-
parison, we choose the values of the fine-tuning
hyperparameters identical to those used for Luxem-
BERT. Details for the chosen values can be found
in Lothritz et al. (2022).

5 Experimental Results

In this section, we present the results from our ex-
periments across six downstream tasks and address
the research questions introduced in Section 1. For
each task, we fine-tune the pre-trained models over
five runs and take the average of the performance
of each run as our final evaluation measure. The F1
scores for each model on each task are reported in
Table 1.

5.1 RQ1: What impact on the model’s
performance can we observe when we
modify its input data through data
augmentation techniques?

Table 1 shows the results of the fine-tuned mod-
els. We observe an improvement in performance of
our data-augmented DA BERT and LuxemBERT-
v2 models on certain downstream tasks. DA
BERT outperforms all models on NER and IC b
tasks. For IC a, it outperforms mBERT as well
as LuxemBERT-v2. For NC, the performance of
mBERT, DA BERT, and LuxemBERT-v2 are equiv-
alent; all of them perform just slightly worse than
LuxemBERT. For POS tagging, LuxemBERT-v2
reaches the same performance as LuxemBERT, out-
performing both mBERT and DA BERT. Further-
more, LuxemBERT-v2 outperforms mBERT on
NER, IC a, and IC b. Finally, on WNLI which can
be considered as the hardest task, LuxemBERT-v2
outperforms DA BERT, but none of the models
perform better than mBERT on that task.

5.2 RQ2: Which data augmentation
technique has the highest impact on our
model’s performance?

We perform an ablation study to answer this re-
search question which allows us to identify the
effects of individual augmentation techniques. We
compare the difference between applying only syn-
onym replacements or entity replacements to the
data. For this purpose, we pre-train two smaller
models that we compare against a baseline model
described below.
BASELINE-BERT This is a smaller BERT
model that is trained only on the Luxembourgish

Wikipedia data, which consists of half a million sen-
tences. We use this model as a baseline to compare
two same-sized models against for which we sepa-
rately perform synonym and entity replacements.

BERT-SYNS This model is trained on a synonym-
augmented Luxembourgish Wikipedia data. We
generate a total of 465 070 sentences to double
the corpus size compared to the one of BASELINE-
BERT.

BERT-ENTS This model is also only trained on
Wikipedia data, this time augmented with entity
replacements. For the dataset for this model, we
generate 494 241 new sentences.

As shown in Table 2, BERT-ENTS outperforms
BASELINE-BERT and BERT-SYNS on four out of
six downstream tasks. In contrast, BERT-SYNS

outperforms BASELINE-BERT and BERT-ENTS only
on one task, suggesting a tendency towards using
entity replacements for better outcomes.

6 Discussion

Overall, we believe that data augmentation for
our Luxembourgish language models is benefi-
cial despite the mixed conslusions of results. DA
BERT and LuxemBERT-v2 consistenly outperform
mBERT on most tasks except WNLI. This could
be because mBERT lacks training on augmented
text data and relies merely on Wikipedia articles for
each language. Low-resource languages with small
Wikipedia articles perform significantly worse with
mBERT. DA BERT and LuxemBERT-v2 perform
better due to various data augmentation techniques,
which provide more training data.

Nevertheless, mBERT performs best in the chal-
lenging WNLI task. Training data for this task is
relatively small, potentially hindering the learning
ability of DA BERT and LuxemBERT-v2. Lux-
emBERT also fails to outperform mBERT on this
task. We suppose that more training examples or
considering some task-specific architectural modi-
fications could help better capture the information
required for WNLI.

Lastly, inconsistent findings from our ablation
study suggest that several factors could influence
why a certain technique is more suitable for a spe-
cific task. For instance, entity replacements seem
to help NER, whereas other techniques might fall
short on properly understanding context or lack in
entity diversity for that task.
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Models POS NER IC a IC b NC WNLI

mBERT 88.6± 0.1 68.9± 1.0 46.0± 5.6 48.3± 9.4 90.0± 0.5 57.3 ± 0.0
LuxemBERT 89.0± 0.1 70.0± 0.8 72.5 ± 1.1 70.9± 1.8 91.8 ± 0.2 54.6± 1.6
LuxemBERT-v2 89.0 ± 0.0 69.4± 0.0 67.6± 2.5 68.0± 1.0 90.0± 2.2 55.0± 0.0
DA BERT 88.7± 0.0 70.8 ± 0.0 71.7± 2.0 73.8 ± 2.2 90.0± 2.8 52.0± 0.0

Table 1: Comparison of results of our fine-tuned models on downstream tasks.

Models POS NER IC a IC b NC WNLI

BASELINE-BERT 88.0± 0.0 59.4± 0.0 56.9± 5.2 55.8± 3.8 85.7± 0.0 51.8± 0.0
BERT-SYNS 88.0 ± 0.0 61.8± 0.0 55.8± 2.4 55.4± 0.9 87.8 ± 2.2 50.0± 0.0
BERT-ENTS 87.0± 0.0 62.0 ± 0.0 57.2 ± 2.3 59.6 ± 1.5 84.8± 3.3 54.0 ± 0.0

Table 2: Ablation study results on downstream tasks.

7 Conclusion

In this paper we investigate the effectiveness of
data augmentation techniques for low-resource lan-
guage modeling, focusing on Luxembourgish. We
compare two new BERT models, DA BERT and
LuxemBERT-v2, to LuxemBERT and mBERT as
baselines. Results show that data augmentation
can improve the performance of models on certain
downstream tasks and that one approach is more
effective than another depending on the task.

While this study focused on synonym, entity,
and modal verb replacements, we would like to see
future work investigate additional techniques such
as paraphrasing, back-translation or negation. We
would also suggest gathering more diverse and rep-
resentative data for Luxembourgish as well as ex-
ploring different model architectures such as Gen-
erative Pre-Trained Transformer (GPT; (Radford
et al., 2018)) or RoBERTa (Liu et al., 2019) that
are designed to capture the semantics and context
of words.

8 Limitations

We argue that our study has some limitations. The
choice of not training LuxemBERT-v2 from scratch
due to time constraints might have affected its
rather average performance compared to our ex-
pectations. We assume that during the continued
pre-training of LuxemBERT, the model might have
overfitted to the added portion of the data or forgot-
ten what it had learned before.

We take into account that the slightly higher
number of sentences for BERT-ENTS might result
in favouring the entity replacement technique over

synonym replacements.
Lastly, our study is limited to the BERT archi-

tecture. There is a risk that after data augmentation
the meaning of sentences might change and that
the data is not true anymore, especially after replac-
ing entities. Using data augmentation with other
models such GPT (Radford et al., 2018) could be
risky as these generative models rely solely on the
provided data to learn linguistic and commonsense
reasoning.

9 Ethical Considerations

For this study, we trained our models on a text cor-
pus that includes comments on news articles and
chats from a chatroom. While this data originally
included usernames, they were anonymised in or-
der to comply with data privacy laws (Lothritz et al.,
2022). Furthermore, we do not publish this text cor-
pus, merely the models that were pre-trained using
the corpus.
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Abstract

User-generated information content has be-
come an important information source in cri-
sis situations. However, classification mod-
els suffer from noise and event-related biases
which still poses a challenging task and re-
quires sophisticated task-adaptation. To ad-
dress these challenges, we propose the use of
contrastive task-specialized sentence encoders
for downstream classification. We apply the
task-specialization on the CRISISLEX, HU-
MAID, and TRECIS information type classifi-
cation tasks and show performance gains w.r.t.
F1 score. Furthermore, we analyse the cross-
corpus and cross-lingual capabilities for two
German event relevancy classification datasets.

1 Introduction

User-generated information content on social me-
dia has become an important information source
in crisis and emergency situations (Reuter et al.,
2018). Social media posts immediately provide
details about ongoing developments, first-party ob-
servations, and other information which would be
missed with traditional sources (e.g., official news)
(Sakaki et al., 2010). Access to this information
content is thereby crucial for situational awareness
in order to support official institutions, government
organisations, and relief providers (Kruspe et al.,
2021).

However, processing this noisy high-volume so-
cial media streams is challenging and requires so-
phisticated methods for automatic reliable detec-
tion of information content. To tackle this chal-
lenge, recent work has focused on binary, multi-
class, and multi-label information type classifica-
tion approaches (Alam et al., 2018, 2021b; Buntain
et al., 2021). For instance, important information
categories cover missing and injured people, dam-
aged infrastructure, etc.

Another challenge is the nature of data prevalent
in social media and microblogging platforms. For

example, a large portion of noisy user-generated
texts inherit properties such as a limited number
of words, less contextual information, hashtags,
and noise (e.g., misspellings, emojis) (Wiegmann
et al., 2020; Zahera et al., 2021). Furthermore,
event-related biases and entities prevent models
from generalizing to unseen disaster events and
therefore degrade in performance (Zhang et al.,
2021a; Seeberger and Riedhammer, 2022).

These challenges motivates the use of efficient
and effective approaches for adapting classifiers to
the noisy text domain and the different information
type tasks. Recently, contrastive fine-tuning mech-
anisms attracted research efforts for few-shot and
task-specialization settings by adapting language
models and sentence encoders (SE) for downstream
classification (Vulić et al., 2021; Tunstall et al.,
2022; Su et al., 2022). Following this approach, we
aim to analyse the contrastive task-specialization
in the field of information type classification.

Contributions Our main contributions are as
follows: 1) We introduce the contrastive task-
specialization method for information type classifi-
cation. 2) We analyse the cross-corpus capabilities
of the task-specialized models. 3) We empirically
show the cross-lingual and cross-task transfer ca-
pabilities for two German disaster datasets.

2 Method

As discussed in section 1, we follow previous work
(Vulić et al., 2021) and aim to fulfill the require-
ment of effective adaptation by 1) quickly boot-
strapping a general-purpose SE for new domains
and tasks via contrastive learning, and 2) training a
classifier on top of the fixed SE.

2.1 Contrastive Task-Specialization

The main idea is to follow the specialization of a
general-purpose SE which is pre-trained on a large
corpus of sentence pairs. Specializing a universal
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SE to particular tasks has been proven effective in
prior work for multi-class and multi-label scenarios
via further fine-tuning by a contrastive loss (Vulić
et al., 2021; Zhang et al., 2021b; Vulić et al., 2022).
In this way, we can utilize available annotations
to achieve task-adaptation to create more accurate
encodings for the downstream classification.

Positive and Negative Pairs For the creation of
sentence pairs, we follow prior efficient contrastive
and few-shot approaches by implicitly leverag-
ing the information type ids to create positive
and negative learning examples (Tunstall et al.,
2022). Therefore, we use the sentence pair cre-
ation scheme proposed by SETFIT1 and construct
the positive set Pos and negative set Neg by apply-
ing n iterations of sentence pair generations. For
the multi-label task, we follow (Vulić et al., 2022)
by sampling a positive sentence for each label in
the label set of sentence si.

Contrastive Loss As contrastive loss, we opt for
the Online Contrastive Loss (OCL) (Reimers and
Gurevych, 2019; Vulić et al., 2022). This online
version of contrastive loss operates with hard in-
batch negative pairs and hard in-batch positive pairs
and yields the final task-specialized SE. The con-
strastive learning should attract similar sentences
together and push dissimilar sentences apart.

2.2 MLP Classification

A standard approach for classification based on
SE’s is the Multi Layer Perceptron (MLP) which
is stacked on top of a fixed SE. This is much
more lightweight than fine-tuning the entire SE
but still achieves comparable performance in low-
resource settings. We train a MLP classifier com-
posed of a single hidden layer with non-linearity.
For the multi-class and multi-label classifier, we
use the standard cross-entropy and binary cross-
entropy loss, respectively. A threshold θ deter-
mines the final classification for the multi-label
task by only classifying information types with
probability scores ≥ θ.

3 Experimental Setup

3.1 Datasets

We experiment with three TWITTER datasets, cov-
ering 1) multi-class and multi-label classification,

1Tunstall et al. (2022) introduced SETFIT as an efficient
and prompt-free framework for few-shot classification and
fine-tunes sentence transformers in a contrastive manner.

2) different information type ontologies, and 3) nu-
merous diverse event types composed of natural
disasters and human-made disasters.

CRISISLEX The T26 variant of CRISISLEX

(Olteanu et al., 2015) includes labeled tweets for
26 crisis events, annotated with seven information
types including the category NOT RELATED. This
set reflects a wide variety of events about emer-
gencies with approximately 1,000 tweets per indi-
vidual event. As preprocessing step, we removed
tweets with the label NOT APPLICABLE as these
contain issues such as "not readable" for the anno-
tator (Olteanu et al., 2015). This task represents a
multi-class classification problem.

HUMAID This collection contains data about
19 events with dataset sizes ranging from approx-
imately 570 to 9500 tweets (Alam et al., 2021a).
HUMAID covers eleven categories ranging from
NOT HUMANITARIAN to INURED OR DEAD PEO-
PLE which captures fine-grained information about
disasters. We ignore posts with the labels CAN’T

JUDGE and MISSING OR FOUND PEOPLE as the
latter case is only available for four events. Sim-
ilar to CRISISLEX, this task is about multi-class
classification.

TRECIS TREC Incident Streams is a multi-label
classification task composed of over 70 events with
annotations for 25 information types (Buntain et al.,
2021). The sample ranges are from 90 to 5900
tweets and highly vary across events in terms of
tweets and label distribution. Furthermore, the col-
lection also covers the large-scale public-health
event COVID whereby we only focus on gen-
eral crisis events. For our experiments, we drop
COVID events and select the top-30 events with
the highest number of posts as events with a few
posts only cover a small subset of relevant informa-
tion types.

Data Splits For within-corpus classification, we
evaluate each method with 5-fold cross-validation
(5-fold CV) with disjoint events. Due to the high
cost of task-specific annotations, we additionally
focus on low-data scenarios for bootstrapping SE’s.
Therefore, we conduct experiments in the two data
configurations 1) Low and 2) High. For the High-
setup, we use the training and test splits provided
by the 5-fold CV method. Then, in the low-setup,
we randomly sample 10 posts for each informa-
tion type and event in order to construct the low-
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resource training sets. Throughout all experiments,
the test splits remain the same.

3.2 Models and Hyperparameters

For our evaluation, we use MPNETLM
2 (Song

et al., 2020) as language model and MPNETSE
3 as

SE variant, transformed by a standard contrastive
dual-encoder framework. MPNETLM comprises
12 transformer layers with hidden size hT = 768
and prior work has trained MPNETSE with approx-
imately one billion sentence pairs.

Baseline As baseline, we additionally conduct
full end-to-end fine-tuning of the MPNETLM
model with a MLP classification head which we
denote as MPNETLM+FFT. Following suggested
settings (Wang et al., 2021; Alam et al., 2021b;
Seeberger and Riedhammer, 2022), we train the
baseline models for 15 epochs with the optimizer
AdamW, learning rate 2e− 5, weight decay 0.01,
batch size 32, and evaluate the best checkpoint se-
lected by a validation set.

Contrastive Task-Specialization In terms of
CTS fine-tuning with OCL, we adopt a similar
setup. The learning rate of AdamW is set to 2e− 5,
weight decay to 0.01, and batch size to 64. For the
High- and Low-setup, we construct sentence pairs
with n = 1 and n = 5, respectively. We fine-tune
the models on the sentence pairs for 3 epochs with
the warmup ratio of 0.05 and cosine decay.

Classification The classifier consists of a MLP
architecture with one hidden layer of size 512
with ReLU as non-linear activation function. We
train the classifier for 30 epochs with the opimizer
AdamW, learning rate 1e− 3, weight decay 0.01,
dropout 0.4, and batch size 32. For multi-label
classification, we use the threshold θ of 0.3. We
select the best classifier based on a validation split
sampled from the training set with the ratio of 0.1.

3.3 Evaluation

For all experiments, we report the micro-averaged
and macro-averaged F1 scores across events. In the
High-setup, all reported results are averaged across
the five folds. For the Low-setup, we additionally
conduct three runs with random seeds in order to
reach more stable results with respect to few-shot
sampling.

2microsoft/mpnet-base
3sentence-transformers/

all-mpnet-base-v2

4 Results and Discussion

The main results are summarized in Table 1, while
further cross-corpus and cross-lingual experiments
are shown in Table 2 and Table 3. In the following,
we discuss the results and findings.

Contrastive Task-Specialization The results in
Table 1 reveal that performance gains for the
multiclass-classification are achieved via CTS.
These performance boosts are across all Low-
and High-setups with respect to the CRISISLEX

and HUMAID datasets. With focus on the low-
resource setup, we additionally experience signifi-
cant improvements over the full fine-tuning base-
line. In comparison, the gap between MPNETSE
and MPNETSE+CTS is consistently higher than
the counterpart MPNETLM and MPNETSE which
suggests the effectiveness of CTS. However, there
are no substantial performance gains or even a
decrease for the TRECIS multi-label task. This
finding is contrary to the results in the domain of
multi-label intent detection (Vulić et al., 2022). We
hypothesize the cause are differences in semantic
concepts across events and annotations (Seeberger
and Riedhammer, 2022). More sophisticated sen-
tence pair sampling techniques, hard-negative min-
ing or the usage of high level information types
may tackle these shortcomings.

Cross-Corpus With cross-corpus evaluation we
aim to analyze other important aspects of CTS
fine-tuning. We hypothesize that similar informa-
tion type ontologies lead to better classification
performances by transfering the fine-tuned knowl-
edge about semantically similar information types.
Therefore, we trained the SE’s on the source corpus
and only trained the MLP classifier with the fixed
SE on the target corpus. The results in Table 2 in-
dicate an improvement for the datasets CRISISLEX

and HUMAID which share similar information
type ontologies. However, the knowledge trans-
fer for TRECIS does not maintain improvements or
even leads to worse results. We believe the reason
for this observation is two-fold. Firstly, the results
of Table 1 suggest that the obtained embedding
representations are less semantically discriminative
than the pre-trained language model for multi-label
classification. This may result into a worse cross-
corpus knowledge transfer. Secondly, the informa-
tion type ontologies of CRISISLEX and HUMAID
differ from TRECIS. While CRISISLEX and HU-
MAID share most of the information types, the
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CRISISLEX HUMAID TRECIS

Variant Low High Low High Low High
MPNETLM+FFT 54.55.0 / 46.75.7 62.94.9 / 55.03.6 63.64.0 / 57.63.6 73.22.8 / 66.33.6 18.11.2 / 14.30.5 29.12.1 / 22.82.6

MPNETLM 49.9∗
4.7 / 42.9∗

5.4 56.7∗
5.9 / 48.6∗

5.4 56.4∗
4.3 / 52.2∗

3.3 64.2∗
5.8 / 59.5∗

4.5 32.9∗
3.0 / 25.2∗

3.1 30.4∗
2.4 / 23.13.3

MPNETSE 51.7∗
4.0 / 44.1∗

4.8 56.7∗
5.6 / 49.0∗

5.8 58.4∗
4.4 / 53.1∗

2.6 65.6∗
4.1 / 60.1∗

3.2 32.1∗
2.2 / 24.3∗

3.7 30.12.3 / 22.93.6

MPNETSE+CTS 56.6∗
4.9 / 49.2∗

5.5 63.05.4 / 54.35.7 66.7∗
3.1 / 60.6∗

3.0 72.7∗
2.9 / 67.43.7 32.7∗

3.1 / 25.3∗
2.8 29.43.0 / 22.63.1

Table 1: Overall results for event micro-averaged F1 (x100%) and macro-averaged F1 (x100%) scores with standard
deviations. Bold numbers indicate the best performance whereas underlined numbers denote the second best
performance in each column. Results with ∗ are significantly different from MPNETLM+FFT (p-value < 0.05).

ontology of TRECIS differs with fine-grained infor-
mation types such as NEW SUB EVENT, EMERG-
INGTHREATS, and FACTOID.

Cross-Lingual In the cross-lingual setup, we
aim to analyse the adaptation to the German lan-
guage. However, we are not aware of any German
datasets which cover crisis events and information
types. Therefore, we adopt the GERMAN BASF
EXPLOSION (Habdank et al., 2017) and GERMAN

FLOODS (Reuter et al., 2015) datasets which rep-
resent binary classification tasks about relevancy.
We train a classifier on the entire CRISISLEX cor-
pus and map the information type prediction NOT
RELATED to the irrelevant class and all other cat-
egories to the relevant class. Here, we assume that
the SE considers irrelevant and relevant clusters in
the embedding space which can boost the relevancy
classification. Furthermore, we compare the multi-
lingual variant of MPNETSE

4 and the translation5

to English tweets. We summarize the findings in
Table 3 whereby RANDOM corresponds to a ran-
domized classifier. As expected, the comparison
of the RANDOM baseline and the MLP classifiers
validates the task transfer to the binary classifica-
tion. Importantly, we experience the effectiveness
of CTS in the cross-task transfer by comparing the
language model and CTS fine-tuned SE’s. The
performance improvements with the multilingual
variant of MPNETSE+CTS further demonstrates
the capabilities of fine-tuning in the multi-lingual
setting. However, the translated posts outperform
the multilingual model in all English model vari-
ants. This is an indication of catastrophic forgetting
which occurs during training with only English task
data. The lack of multi-lingual data in the domain
of information type classification is still a chal-
lenge.

4sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

5Helsinki-NLP/opus-mt-en-de

Target Corpus

CRISISLEX HUMAID TRECIS
CRISISLEX - 63.73.8 (3.6↑) 22.92.5 (0.0 )
HUMAID 50.45.9 (1.4↑) - 21.92.2 (1.0↓)
TRECIS 45.84.1 (3.2↓) 56.52.0 (0.4↑) -

Table 2: High-data results of cross-corpus transfer with
MPNETSE+CTS. For the results, we report the event
macro-averaged F1 (x100%) score with standard devi-
ations. The numbers and arrows in brackets indicate
absolute improvements (↑) or degradations (↓) in com-
parison to MPNETSE.

Language DE DE → EN

RANDOM 42.2 -

MPNETLM 48.8 54.6
MPNETSE+CTS 50.1 55.1
MPNETSE+ML+CTS 53.4 54.1

Table 3: Results of cross-lingual transfer with MPNET
variants trained on CRISISLEX. For the results, we
report the event macro-averaged F1 (x100%) score. The
column DE → EN indicates the translation to the English
language. The symbol +ML represents the multilingual
variant of MPNET which is further trained with CTS.

5 Conclusion

In this work, we investigated the contrastive task-
specialization of SE’s for the information type
classification. The transformation of universal
SE’s into task-specialized models demonstrates per-
formance gains especially in low-resource setups.
Furthermore, we demonstrate the first results and
opportunities in cross-corpus, cross-lingual, and
cross-task transfer in the focused crisis domain.
There are multiple avenues for future research that
can improve different aspects with respect to infor-
mation type classification. Research directions may
include but are not limited to: 1) data augmentation
techniques, 2) retrieval-augmented classification,
and 3) hierarchical contrastive learning.
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Ethical Considerations

Open Source Intelligence (OSINT) has become a
significant role for various authorities and NGOs
for advancing struggles in global health, human
rights, and crisis management (Bernard et al., 2018;
Evangelista et al., 2021; Kaufhold, 2021). Follow-
ing the view of OSINT as a tool, our work pursues
the goal to support relief government agencies, or-
ganizations, and other stakeholders during ongo-
ing and evolving disaster events. We argue that
Natural Language Processing techniques for OS-
INT and disaster response can have a positive im-
pact on comprehensive situational awareness and
in decision-making processes such as coordination
of particular services. For example, NLP for social
media can enrich the information with the pub-
lic as co-producers (Li et al., 2018). In contrast,
relying on noisy user-generated content as an in-
formation source runs the risk of introducing mis-
and disinformation. This can cause adverse effects
on downstream processing and requires strategies
and particular care before the deployment. Fur-
thermore, data privacy issues may arise due to the
inherited properties of user-based data. Various
anonymization processes should be taken into ac-
count for identifying and neutralizing sensitive ref-
erences (Medlock, 2006).

Limitations

We believe there is much room for improving
the contrastive task-specialization method with re-
spect to the multi-class, multi-label, and noisy user-
generated text setup. We tested only one variant
of language models without considering different
transformer encoder sizes or specialized Twitter-
based pre-trained models. Furthermore, we did
not conduct experiments for a variety of loss func-
tions which may be expanded to triplet loss, cosine
similarity, supervised contrastive loss, and the hier-
archical variants for higher level information types.
We relied for the cross-lingual analysis only on the
German language datasets and only conducted ex-
periments for relevancy classification which poses
a simplification of information type classification.
Future research should consider multi-lingual infor-
mation type datasets and tasks to comprehensively
validate the cross-lingual and cross-task setups in
the crisis-related domain. As highlighted in section
5, sophisticated data augmentation methods can
further improve the overall classification results
but still poses a major challenge for noisy user-

generated content. Lastly, recent advanced in the
area of instruction-based Large Language Model’s
(LLM’s) should be considered for future research.
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela
Gerz, Paweł Budzianowski, Iñigo Casanueva, Nikola
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Abstract
This work introduces a benchmark assessing
the performance of clustering German text em-
beddings in different domains. This benchmark
is driven by the increasing use of clustering
neural text embeddings in tasks that require
the grouping of texts (such as topic modeling)
and the need for German resources in existing
benchmarks. We provide an initial analysis
for a range of pre-trained mono- and multilin-
gual models evaluated on the outcome of dif-
ferent clustering algorithms. Results include
strong performing mono- and multilingual mod-
els. Reducing the dimensions of embeddings
can further improve clustering. Additionally,
we conduct experiments with continued pre-
training for German BERT models to estimate
the benefits of this additional training. Our ex-
periments suggest that significant performance
improvements are possible for short text. All
code and datasets are publicly available.

1 Introduction

Clustering is increasingly used in tasks requiring
to group semantically similar text pieces. This in-
cludes, for instance, data selection (Aharoni and
Goldberg, 2020), data exploration (Voigt et al.,
2022), and neural topic modeling (Zhao et al.,
2021). One approach for this kind of topic mod-
eling is BERTopic (Grootendorst, 2022), which,
in principle, uses generic clustering algorithms for
text embeddings to find latent topics in text corpora.
This is in stark contrast to more traditional topic
modeling techniques using Latent Dirichlet Allo-
cation (Blei et al., 2003) or Non-Negative Matrix
Factorization (Févotte and Idier, 2011) and repre-
senting text as simple bag-of-words. The shift to
embedding-based approaches is driven by the con-
tinuous development of neural language models,

successfully used in natural language understand-
ing (NLU) tasks such as semantic textual similarity
(Reimers and Gurevych, 2019; Gao et al., 2021) or
retrieval and reranking (Huang et al., 2020; Yates
et al., 2021). The availability of plug-and-play
frameworks for the computation of vector represen-
tation only fosters this trend. One such framework
is Sentence Transformers (Reimers and Gurevych,
2019), which is used by BERTopic. It provides
an extensive collection of pre-trained transformer
models and techniques to fine-tune models for
similarity-focused language tasks.

Benchmarks help to understand the usefulness of
these easily available language models, allowing to
compare existing and newly developed models for
language tasks of interest. The Massive Text Em-
bedding Benchmark (MTEB, Muennighoff et al.,
2023) provides such a benchmark for a wide range
of embedding-based tasks (e.g., classification, clus-
tering, or reranking) and datasets from different
domains (e.g., online reviews, scientific publica-
tions, or social media). MTEB includes a wider
range of tasks and focuses on more recent language
models than other benchmarks (such as SentEval
(Conneau and Kiela, 2018)). MTEB, offering an
easy-to-use API, invites the evaluation of models
and submissions to a publicly accessible leader-
board.1

However, MTEB only considers the English lan-
guage for the evaluation of clustering. The inclu-
sion of non-English data is important, as the perfor-
mance of multilingual models may not equal their
monolingual counterparts (Rust et al., 2021), and
as a means to evaluate the potentially strong cross-
lingual transfer capability of multilingual models

1https://huggingface.co/spaces/mteb/leaderboa
rd
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(e.g., Huang et al., 2019). This work addresses this
limitation by providing benchmark datasets and re-
sults for German. What is more, MTEB evaluates
clustering performance on a single clustering algo-
rithm. This is a suitable approach for such a broad
benchmark as it simplifies the evaluation in terms
of computational and content-related complexity.
From a practical point of view, and specifically for
clustering, the evaluation of different algorithms is
helpful. Building on the MTEB API, we provide
code and evaluation results for a broader range of
clustering algorithms.

Finally, we conduct experiments with continued
pre-training. The idea of this additional training is
to adapt language models, typically trained on large
and heterogeneous data collections, to the data of
a specific domain or task, and has been shown to
improve performance on downstream tasks (e.g.,
Howard and Ruder, 2018; Lee et al., 2019; Guru-
rangan et al., 2020). We analyze the benefit of such
adaptive training for clustering within this work.
All code and datasets are publicly available.2

2 Datasets

2.1 MTEB Clustering

Data sources The MTEB clustering benchmark
covers a range of topical domains and writing styles
using data from different sources: arXiv, bioRxic,
and medRxiv for scientific publications (e.g., eco-
nomics or medicine), Reddit for informal social
media, Stack Exchange for topical online discus-
sions (such as code), and the 20 Newsgroup dataset
(Buitinck et al., 2013).

Text length MTEB contains two datasets for
each data source: A sentence-to-sentence (S2S)
dataset compares short texts, and a paragraph-to-
paragraph (P2P) dataset compares relatively longer
texts. For instance, in the case of arXiv, the S2S
dataset only contains publication titles, and the
P2P dataset contains the concatenation of titles and
abstracts. The two datasets provide models with
different amounts of information.

Metric The evaluation is based on the V-measure
(Rosenberg and Hirschberg, 2007). Given a ground
truth, the V-measure outputs a score between 0 and
1, measuring homogeneity (clusters contain only
one class) and completeness (clusters contain all

2https://github.com/ClimSocAna/tecb-de. Addi-
tionally, the datasets are officially part of the MTEB library,
and results are available in the MTEB leaderboard.

class samples). MTEB uses topical categories de-
rived from the data, such as the scientific discipline
of a publication or newsgroup, as the ground truth.

Data selection Lastly, datasets in the MTEB clus-
tering benchmark comprise up to 30 random sam-
ples of varying size and with a number of different
classes drawn from all samples of a data source
(splits).

2.2 German Additions

We follow MTEB’s design for German datasets,
aiming to simulate a wide range of real-world sce-
narios by including different domains, text lengths,
and clustering complexities (Subsection 2.1). Com-
pared to English, fewer German open-source
datasets seem to exist, which are suitable for this
work. Furthermore, some of the open-source
datasets in MTEB are generally less relevant for
a German benchmark as they contain little to no
German content. This includes, for instance, arXiv
and Stack Exchange, both mostly English-only data
sources.3 We have identified three openly available
German data sources relevant to this benchmark.
In the following, we discuss these data sources and
the constructed benchmark datasets in more detail
(see Table 1 for a summary).4

Blurbs As a first data source, we use data from
the GermEval 2019 shared task on hierarchical
blurbs classification (Remus et al., 2019). This
data consists of German book metadata, includ-
ing titles, blurbs (short, promotional descriptions
of books), and genres. Even though blurbs are
not part of MTEB, the data is well-suited: it is
open source and contains topical texts of different
lengths (titles, blurbs). What is more, three levels
of genres express different levels of detail. The
most general genres, for instance, include Sach-
buch (non-fiction) or Literatur und Unterhaltung
(literature and entertainment). Secondary and ter-
tiary genres are increasingly specific (e.g., Fan-
tasy (fantasy) and Historische Fantasy (historical
fantasy)). We use this information to evaluate a
model’s ability to cluster at different granularity
(i.e., the ground truth). We build two datasets, one

3There are only around 600 submissions on arXiv (follow-
ing best practices for search) at the time of writing (https:
//info.arxiv.org/help/faq/multilang.html). Simi-
larly, Stack Exchange content is almost exclusively in English:
https://meta.stackexchange.com/questions/13676/d
o-posts-have-to-be-in-english-on-stack-exchange

4We provide the scripts used to create these datasets in the
Hugging Face repositories linked in our GitHub repository.
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Unique Size Classes Avg. chars
Name Target Samples Splits (per split) (per split) (per sample)
BlurbsClusteringS2S book titles 17,726 28 177 to 16,425 4 to 93 23

BlurbsClusteringP2P
blurbs
(title and blurb)

18,084 28 177 to 16,425 4 to 93 664

TenKGnadClusteringS2S news article titles 10,267 9 1,436 to 9,962 9 51

TenKGnadClusteringP2P
news article texts
(title and text)

10,275 9 1,436 to 9,962 9 2,648

RedditClusteringS2S submission titles 40,181 10 9,288 to 26,221 10 to 50 52

RedditClusteringP2P
submission descriptions
(title and text)

40,305 10 9,288 to 26,221 10 to 50 902

Table 1: Summary of the German benchmark datasets for evaluating the clustering performance of neural language
models. Numbers for Avg. chars are rounded.

that only includes book titles (BlurbClusteringS2S)
and one that includes the concatentation of titles
and blurbs (BlurbsClusteringP2P). The design is
based on MTEB’s arXiv-based clustering tasks,
which use arXiv’s two-level categorization (e.g.,
math and numerical analysis) to simulate cluster
granularity.

More concretely, we create 10 splits (subsam-
ples) that consider only the broadest category
(coarse clustering) and, similarly, 10 splits that
consider the second-level genre (fine-grained clus-
tering across all top-level genres). We randomly
selected between 10 and 100 percent of the avail-
able data for each split. Lastly, we create eight
splits by splitting the data based on the top-level
genre and considering the second-level genre (fine-
grained clustering within a genre).5

Der Krieg der Trolle (4)

Im Land zwischen den Bergen ist
die Zeit des Friedens vorbei. Krieg
liegt in der Luft, und dann taucht auch
noch ein tödlich verwundeter Zwerg im
südlichen Hochland von Wlachkis auf –
Ereignisse, die wie ein dunkler Schatten
auf dem Land liegen. [...]

Example for a book title and blurb from the main cat-
egory Literatur & Unterhaltung respectively Fantasy
and Abenteuer-Fantasy (second level).

News articles As a second source, we use data
from the One Million Posts Corpus (Schabus et al.,

5We only consider samples with one top-level and up to
two second-level genres. If a sample has two second-level
genres, we select the less frequent one (assuming it is more
descriptive) to make the label selection less ambiguous.

2017), inspired by the 10kGNAD dataset6. 10kG-
NAD extracts news article information from the
One Million Posts Corpus, which consists of an-
notated user comments (including the correspond-
ing news articles) posted to an Austrian newspaper
website. There are nine news categories such as
Wissenschaft (science) or Web, and we use these cat-
egories as ground truth for the evaluation. We build
two datasets: TenKGnadClusteringS2S, only using
article titles, and TenKGnadClusteringP2P dataset,
using the whole article texts. We follow MTEB’s
TwentyNewsgroupsClustering (consisting of news
article titles and newsgroups) data selection strat-
egy and draw 10 random samples of varying sizes
(selecting at least 10% of all data).

Stoke holt Shaqiri von Inter

Arnautovic-Klub zahlt Rekordsum-
me für Schweizer

Stoke-on-Trent/Mailand – Xherdan
Shaqiri wechselt von Inter Mailand zu
Stoke City und wird damit Teamkollege
von Marko Arnautovic. [...]

Example of a news article consisting of the title, the
subheadline and the article text from the Sport news
section.

Reddit We use data from Reddit as a third data
source which we retrieved from the official Red-
dit API7. More precisely, we have collected pop-
ular (i.e., hot and top) submissions to 80 German
Subreddits such as r/Bundesliga, r/Finanzen, or

6https://tblock.github.io/10kGNAD
7https://www.reddit.com/dev/api
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r/reisende.8 We do not disclose the raw data. In-
stead, we provide the submission ids and scripts
to reproduce the datasets in our GitHub reposi-
tory. Additionally, Figure 3 in the appendix sum-
marizes the collected data. Our approach is moti-
vated by data privacy and sharing considerations,
as discussed in detail in the Ethics Statement.

In any case, we construct two datasets from
the collected data: SubredditClusteringS2S, which
only considers the submission titles, and Subreddit-
ClusteringP2P, which combines submission titles
and texts. Subreddits We follow the data selection
used for MTEB’s Reddit-based datasets and build
10 splits with submissions from 10 to 50 randomly
selected Subreddits.

Wieviel “Trinkgeld” für Lieferdienste?

Wie viel gebt ihr - sofern ihr Lie-
ferdienste wie Lieferando etc. nutzt -
den Fahrern Trinkgeld? Richtet ihr euch
nach der 10% Faustregel in der Gastro?

Example for a submission consisting of the title and text
to the German Subbredit r/Finanzen.

3 Evaluation Setup

3.1 Models
We select a range of transformer-based models
(Vaswani et al., 2017) based on their ability to pro-
cess German text, architecture, and pre-training
methods.9 For all models, similar to MTEB, we
use the mean of a model’s output embeddings as
text embedding (mean-pooling).

Monolingual models We include the monolin-
gual GBERT and GELECTRA models (Chan et al.,
2020), both based on the BERT (Devlin et al.,
2019) architecture. GBERT uses whole word mask-
ing (WWM) for pre-training10, while GELECTRA
uses the ELECTRA pre-training method (Clark
et al., 2020), which aims to improve computational
efficiency. The models are pre-trained on the Ger-
man part of OSCAR (Ortiz Suárez et al., 2019),

8A Subreddit is a topic-specific forum on Reddit, and a
submission is a post to a Subreddit. We select active German
Subreddit based on desk research and filter for German sub-
missions if Subreddits also contain non-German submissions.

9Table 4 in the appendix lists the repositories of all models.
10The originally proposed BERT architecture (Devlin et al.,

2019) masks subword tokens during pre-training. The authors
introduced whole word masking after the publication: https:
//github.com/google-research/bert/commit/0fce55.

a set of monolingual corpora based on Common
Crawl (Wenzek et al., 2020), which is a reposi-
tory for multilingual web crawl data. Addition-
ally, the pre-training data includes, in smaller parts,
dumps from Wikipedia and text from a range of
domains such as court decisions, movie subtitles,
speeches, or books. GottBERT (Scheible et al.,
2020) presents another BERT-flavoured German
language model. It is trained on the German part of
OSCAR. It uses the RoBERTa pre-training setup
(Liu et al., 2019), aiming to optimize the training
setup (e.g., hyperparameter values) of the original
BERT setup (Devlin et al., 2019).

Multilingual models We choose competitive
multilingual models based on the MTEB leader-
board. This includes two pre-trained English mod-
els (MiniLM-L12-v2-ml, MPNet-base-v2-ml) fine-
tuned using multilingual knowledge distillation
(Reimers and Gurevych, 2020). Another model,
USE-CMLM-ml, uses an adapted masked lan-
guage modeling technique for training (Yang et al.,
2021). SRoBERTa-cross, a Hugging Face commu-
nity model, is based on the small variant of XLM-
RoBERTa, a RoBERTa model trained on data in
over 100 languages from Common Crawl, and then
fine-tuned for German-English sentence similarity.
We also use Sentence-T5 (ST5) encoders (Ni et al.,
2022). These models are based on the multilin-
gual general-purpose T5 encoder-decoder model
(Raffel et al., 2020) and fine-tuned on a large En-
glish dataset for sentence similarity. All of these
models use training techniques designed to improve
short text representations. Therefore, we also select
XLM-RoBERTa-large as a more general-purpose
multilingual model. It uses the masking technique
from BERT (Devlin et al., 2019) for pre-training.

3.2 Clustering

Algorithms Like MTEB, we use Minibatch k-
Means (Buitinck et al., 2013) and V-measure as
an evaluation metric. Additionally, we perform
analyses for Agglomerative Clustering (Buitinck
et al., 2013), DBSTREAM (Montiel et al., 2021),
and HDBSCAN (McInnes et al., 2017). We se-
lect these algorithms based on their ease of use
(e.g., pip-ready package), popularity, and abilities:
Agglomerative Clustering is distance-based, sim-
ilar to Minibatch k-Means. However, it may be
more suited for modeling clusters of varying shapes
and sizes. HDBSCAN, a density-based cluster-
ing algorithm, is used per default by the increas-
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Figure 1: Word embeddings of all texts from the TenkGnadClusteringP2P dataset reduced to two dimensions with
UMAP. Texts belonging to the news category Wissenschaft (science) are highlighted by color and size.

ingly popular BERTopic. Lastly, DBSTREAM is a
density-based algorithm for evolving data streams.
In principle, DBSTREAM could cluster documents
for real-time analysis (e.g., news monitoring). We
use default parameters for all algorithms, focusing
on the out-of-the-box performance. DBSTREAM
does not support setting the number of clusters. In
all other cases, we provide clustering models with
this information (similar to MTEB).

Dimensionality reduction We also experiment
with dimensionality reduction to cluster lower di-
mensional data, motivated by the curse of dimen-
sionality (Beyer et al., 1999; Aggarwal et al., 2001).
We reduce the embedding vectors to two dimen-
sions for every language model using PCA (Buit-
inck et al., 2013), a standard technique and UMAP
(McInnes et al., 2018), which BERTopic suggests.

3.3 Adaptive Pre-training

We conduct experiments with adaptive pre-training
separately for each dataset described in Subsec-
tion 2.2. In general, we assume an application
scenario, where clustering is used to unsupervis-
ingly analyze an ongoing text-based information
feed, e.g., Twitter. Here, the focus lies not on the
extrapolation capability towards new unseen data
but on a consistent clustering of the entire text
body. Thus, we use the evaluation data simulta-
neously as training data. This setup allows us to
draw real-world conclusions, whether continued
pre-training as an additional step before cluster-
ing can reliably improve clustering outcomes. We
experiment with two pre-training techniques and
evaluate them through V-measure. Firstly, we train
with the general-purpose WWM technique (simi-

lar to GBERT). Given the relatively small training
datasets, we follow the parameter setup for task-
adaptive pre-training suggested in Gururangan et al.
(2020). We also experiment with the Transformers
and Sequential Denoising Auto-Encoder (TSDAE)
method (Wang et al., 2021), a state-of-the-art un-
supervised training method for improving sentence
embeddings, and we use the suggested parameter
setup by the authors.

We use GBERT for these experiments. GBERT
perform competitively (as discussed in Section 4),
and we are interested in the potential improvements
for such strong models. What is more, GBERT
uses the general-purpose WWM for pre-training,
allowing it to evaluate the effect of the more task-
specific TSDAE training. Generally, we want to
provide some intuition for the potential use of these
training methods specifically for clustering.

4 Results and Discussion

4.1 Baseline: Minibatch k-Means

Monolingual models GBERT models perform
better than the other monolingual GELECTRA and
GottBERT models, as shown in Table 2. GBERT-
large ranks second best of all evaluated models. All
models perform relatively better on P2P datasets
compared to the S2S counterparts. This is an intu-
itive result, considering that models are presented
with more information in these tasks. The weak
performance of the GELECTRA models is surpris-
ing, given the strong results on downstream tasks
reported in Chan et al. (2020). Figure 1 provides
some visual intuition for this performance lack.
For the news articles from the TenKGnadClus-
teringP2P dataset, GELECTRA produces more
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Blurbs TenkGnad Reddit
Model S2S P2P S2S P2P S2S P2P Avg.
GBERT-base 11.27 35.36 24.23 37.16 28.57 35.30 28.65
GBERT-large 13.38 39.30 34.97 41.69 34.47 44.61 34.74
GELECTRA-base 7.74 10.06 4.11 9.02 6.59 7.73 7.54
GELECTRA-large 7.57 13.96 3.91 11.49 7.59 10.54 9.18
GottBERT 8.37 34.49 9.34 33.66 16.07 19.46 20.23
MiniLM-L12-v2-ml 14.33 32.46 22.26 36.13 33.34 44.59 30.52
MPNet-base-v2-ml 15.81 34.38 22.00 35.96 36.39 48.43 32.16
SRoBERTa-cross 12.69 30.82 10.94 23.50 27.98 33.01 23.16
USE-CMLM-ml 15.24 29.63 25.64 37.10 33.62 49.70 31.82
ST5-base 11.57 30.59 18.11 44.88 31.99 45.80 30.49
ST5-xxl 15.94 39.91 19.69 43.43 38.54 55.90 35.57
XLM-RoBERTa-large 7.29 29.84 6.16 32.46 10.19 23.50 18.24

Table 2: V-measure scores for the benchmark results of all evaluated models using the Minibatch k-Means algorithm.
Results are multiplied by 100 and rounded to two decimals. Bold numbers indicate best column-wise result.

Blurbs TenKGnad Reddit
Algorithm S2S P2P S2S P2P S2S P2P Avg.
Minibatch k-Means 11.77 30.07 16.78 32.21 25.44 34.88 25.19
PCA-reduced embeddings 9.40 23.50 11.41 20.56 11.95 16.10 15.49
UMAP-reduced embeddings 12.65 29.58 21.76 39.73 28.56 41.28 28.93
Agglomerative Clustering 12.45 30.40 17.25 34.18 25.74 35.86 25.98
PCA-reduced embeddings 9.33 23.30 11.03 20.24 11.89 16.67 15.41
UMAP-reduced embeddings 12.72 32.88 21.45 39.94 28.65 41.50 29.52
HDBSCAN n/a n/a
PCA-reduced embeddings 9.68 13.12 7.08 10.60 14.58 16.83 11.98
UMAP-reduced embeddings 14.98 22.51 14.46 27.95 24.19 30.61 22.45
DBSTREAM n/a n/a
PCA-reduced embeddings 6.41 14.19 7.79 12.46 8.38 10.68 9.99
UMAP-reduced embeddings 12.93 31.41 22.56 38.27 28.61 36.59 28.40

Table 3: Average V-measure score of all evaluated models using different clustering algorithms and reduced
embeddings as input (in italic). Results are multiplied by 100 and rounded to two decimals. The bold number
indicates the best overall result and underlined results the best result per clustering algorithm.

evenly-spread embeddings than GBERT, and em-
beddings belonging to the same topic (such as sci-
ence) tend to be more spread. GottBERT lies in
the middle between the GELECTRA and GBERT
models. The gap to GBERT models is likely caused
by GottBERT’s smaller and less diverse training
data. As discussed in Subsection 3.1, GBERT mod-
els contain training data that is more similar to
the characteristics of the evaluation datasets (e.g.,
books and shorter text sequences such as movie
subtitles).

Multilingual models Apart from SRoBERTa-
cross and XLM-RoBERTA-large, multilingual
models perform competitively with scores close
to the monolignual GBERT-base and GBERT-large.
ST5-xxl is the best-performing model overall, scor-

ing best on five out of six datasets (Table 2). More-
over, the scaled ST5-xxl model (4.8B parameters)
shows clear performance gains compared to its base
variant (ST5-base, 110M parameters). ST5 mod-
els’ fine-tuning data includes Reddit data, which
may explain the strong performance on German
Reddit datasets, i.e., a robust cross-lingual transfer.
The relatively weak results for XLM-RoBERTa-
large are likely caused by less diverse training
data and more general pre-training compared to
the other multilingual models. The performance
of SRoBERTa-cross, based on the smaller version
of the XLM-RoBERTA-large model and fine-tuned
for sentence similarity, also points in this direction,
performing better on five out of six datasets than
XLM-RoBERTA-large.
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4.2 Beyond k-Means

Table 3 reports the average V-measure score of
all evaluated models for different clustering algo-
rithms. We do not report results for DBSTREAM
and HDBSCAN for non-reduced embeddings, as
we observed very poor computational performance
for high-dimensional data during our experiments.
In any case, results for Minibatch k-Means and Ag-
glomerative Clustering suggest possibly better per-
formance with reduced embeddings: Using UMAP-
reduced embeddings improves the Minibatch k-
Means and Agglomerative Clustering scores, on
average, by around +13-15% (compared to not us-
ing any reduction at all). What is more, clustering
in low dimensions may benefit the explainability
of models as it allows to visually analyze results
(e.g., Figure 1). However, this does not hold for
clustering with PCA-reduced embeddings, which
show the worst results by far. This limits its use for
text-based clustering.

Overall, and based on the results for clustering
with UMAP-reduced embeddings, Minibatch k-
Means and Agglomerative Clustering perform very
similarly. DBSTREAM performs slightly worse
on average, caused by relatively weaker results for
P2P datasets.11 HDBSCAN performs worst on five
out of six datasets. We suspect the weaker results
for HDBSCAN are caused by its sensitivity to clas-
sifying data points as noise. In our experiments, we
observe that in some cases, more than 30% of the
data is labeled as noise. A different configuration
for HDBSCAN would likely improve results. How-
ever, the usefulness of such sensitive algorithms
may also depend on the use case (e.g., whether any
text data is considered as noise).

4.3 Adaptive Pre-training with GBERT

The evaluation for GBERT-base and adaptive pre-
training with WWM and TSDAE, reported in Fig-
ure 2, shows clear performance improvements for
all benchmark datasets.12 The improvements on
the S2S datasets are considerably more significant
for both pre-training methods: After around one
epoch of TSDAE training, V-measures improve by
around +31% on average. After around 10 epochs
of WWM training, V-measures improve by around
+30% on average. For P2P datasets, the improve-

11Shortly before the final submission, we found a small
bug in the DBSTREAM implementation we used: https:
//github.com/online-ml/river/issues/1265. However,
we do not expect a significant influence on the overall results.

12We provide exact numbers in Table 5 in the appendix.

ments are relatively smaller, and models profit from
more extended WWM training (average improve-
ment of around +15% after 30 epochs). The benefit
of TSDAE training seems less clear, requiring more
extended training to compensate for initial perfor-
mance drops and different training times to reach
maximum improvements. Overall, and based on
the results for 10 epochs of WWM training (Ta-
ble 5), GBERT-base converges to the performance
of the larger GBERT-large (33.70 vs. 34.74) and
ranks second best out of all models for all S2S
dataset. We suspect the more significant improve-
ments on smaller text sequences (S2S) are likely
caused by the fact that GBERT models are gener-
ally pre-trained on much longer sequences (maxi-
mum of 512 subword tokens per sample), consider-
ing that S2S samples are, on average, only around
up to 50 characters long (Table 1). This may also
explain why the improvements for P2P datasets are
relatively minor, as these texts more closely resem-
ble the pre-training data of the unadopted GBERT
(in terms of text length).

We performed similar experiments for GBERT-
large, as shown in Figure 4 in the appendix. In
most cases, and for both pre-training methods, the
performance decreases significantly (e.g., TenKG-
nadClusteringS2S with TSDAE) or stays relatively
unchanged (e.g., TenKGnadClusteringS2S with
WWM). The training stability seems low as differ-
ent training with different seeds may result in differ-
ent performances (see also Table 5). We suspect the
relatively low batch sizes (256 for WWM and eight
for TSDAE compared to 2,048 for GBERT-large’s
previous pre-training) lead to these training insta-
bilities, as parameter updates are too aggressive.
The parameter setups we used are based on experi-
ments with BERT models similar to GBERT-base
in terms of parameters (Gururangan et al., 2020;
Wang et al., 2021). Our results suggest that these
setups are unsuitable for larger models.

5 Conclusion

This work introduces German benchmark datasets
for the evaluation of embedding-based cluster-
ing, building on the monolingual clustering bench-
mark from Massive Text Embedding Benchmark
(MTEB). We introduce six datasets from three
sources (blurbs, news articles, and Reddit). Ad-
ditionally, we evaluate the out-of-the-box perfor-
mance of different clustering algorithms and show
that UMAP-reduced embeddings improve cluster-
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Figure 2: Change of the V-measure score with continued pre-training for GBERT-base comparing WWM and
TSDAE pre-training methods for Minibatch k-Means clustering. Lines represent the average of three model runs
with different seeds, and filled areas indicate minimum and maximum V-measure scores. baseline indicates results
without additional pre-training.

ing outcomes and simplify the visual analysis si-
multaneously.

In total, we evaluate 12 language models. Re-
sults are mixed as there are both strong (GBERT-
large, ST5-xxl) and weak (GELECTRA-base,
XLM-RoBERTa-large) monolingual and multilin-
gual models (Table 2). The selected models cover
a wide range of different pre-training data, model
sizes, and pre-training methods. A thorough inves-
tigation of how these factors influence clustering
outcomes could build on this work.

Lastly, we experiment with adaptive pre-training
for GBERT models. We show that for GBERT-
base, TSDAE and WWM pre-training drastically
improves the performance for short texts and rela-
tively modestly for longer texts. Results for the
larger GBERT model are inconsistent and only
show improvements in one case, which we suspect
is caused by a too aggressive hyperparameter con-
figuration. This leaves room for future experimen-
tation, which would ideally include larger datasets.
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Limitations

Diversity of datasets Compared to the MTEB
clustering benchmark, our proposed German bench-
mark is less diverse. For instance, it does not con-
tain formal writing (e.g., scientific papers). More-
over, the proposed datasets are relatively small with
a maximum split size of around 26k samples (Ta-
ble 1). Real-world applications may involve larger
data (possibly hundreds of thousands of data sam-
ples) with a high degree of semantic variability
(e.g., hundreds of topics), forcing models to per-
form extremely fine-grained clustering.

Pre-training experiments Given the relatively
small training datasets, our experiments do not al-
low us to conclude the possible benefits of more
extensive data. In the case of larger available data,
longer pre-training might be beneficial. Further-
more, the experiments focus on monolingual BERT-
based model architecture. Benefits of continued
pre-training may differ for, e.g., multilingual mod-
els or pre-trained models with smaller pre-training
datasets (such as GottBERT).

Beneficial model properties As discussed in
Section 4, some models perform very differently,
although trained on similar data. From a prac-
tical point of view, a more thorough analysis
of performance-increasing factors would be help-
ful (i.e., model size and architecture, pre-training
method, and training data). Moreover, it would
also be interesting to better understand how models
assess the similarity of text. This could affect how
well models are suited for specific clustering tasks
(e.g., how models deal with words with specific
grammatical functions or unseen words).

Large language models The rise of generative
large language models (LLMs), such as GPT-4
(OpenAI, 2023), and primarily open-source mod-
els, such as LLaMA (Touvron et al., 2023), are
not represented in this work. While the benefit of
generative models for NLU may not yet be fully
understood, preliminary work suggests strong per-
formance (e.g., Neelakantan et al., 2022; Muen-
nighoff, 2022). However, this work focuses on
well-established models and training techniques
that can be easily used with decent resources (e.g.,
a single GPU) and thus benefit the open-source
community the most.

Ethics Statement

We acknowledge the ACL Code of Ethics13 as an
essential instrument in ensuring that research in
computer science serves the public good. In the
context of this work, we want to discuss our ap-
proach to share user-owned social media data re-
sponsibly. Social media has become an integral
part of everyday life and an important data source
in many research fields. For instance, social media
can be used to address information voids during
health emergencies (Boender et al., 2023). Con-
sequently, the use of social media data in NLU
research and applications has increased, rendering
the inclusion of such data in this benchmark (i.e.,
Reddit) essential.

We use Reddit data for this benchmark for com-
parability (to MTEB) and because Reddit has open
API access (meaning that any interested user can re-
produce the published results). In fact, Reddit data
is also available in large amounts without registra-
tion to the Reddit services: The Pushshift dataset
(Baumgartner et al., 2020) has been collecting any
public Reddit data for over a decade, providing the
collected data to anyone and without any form of
authentication. We believe this is a problematic
approach as the data is distributed without requir-
ing parties to accept the Reddit API terms of use.
Specifically, and as per the current terms, Reddit
data is owned by Reddit users (and not the platform
itself), allowing users to delete accounts and con-
tent.14 Specifically, the General Data Protection
Regulation (GDPR), applicable to member states
of the European Union (EU), mandates the right of
the deletion of personal data ("the right to be for-
gotten").15 Deliberately sharing user-owned data
to anonymous parties makes it practically impos-
sible for users to invoke their rights. Instead, data
should only be obtained through the official Reddit
API, which can be used to obtain and update Reddit
data. Therefore, we do not disclose the raw data
and instead, only share data identifiers and advise
interested researchers to use the official channels.

13https://www.aclweb.org/portal/content/acl-c
ode-ethics

14Reddit recently updated the API terms, which became
effective on June 19, 2023 (https://www.redditinc.com/
policies/data-api-terms). The updated terms define a
less permissive use of Reddit data for artificial intelligence
applications, and interested researchers should carefully con-
sider these terms. This work was performed under the old,
more permissive API terms.

15https://gdpr.eu/right-to-be-forgotten
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A Additional Results

Figure 3: Distribution of German Reddit dataset used for RedditClusteringS2S and RedditClusteringP2P.

Model Hugging Face Repository
GBERT-base https://huggingface.co/deepset/gbert-base
GBERT-large https://huggingface.co/deepset/gbert-large
GELECTRA-base https://huggingface.co/deepset/gelectra-base
GELECTRA-large https://huggingface.co/deepset/gelectra-large
GottBERT https://huggingface.co/uklfr/gottbert-base
MiniLM-L12-v2-ml https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
MPNet-base-v2-ml https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
SRoBERTa-cross https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer
USE-CMLM-ml https://huggingface.co/sentence-transformers/use-cmlm-multilingual
ST5-base https://huggingface.co/sentence-transformers/sentence-t5-base
ST5-xxl https://huggingface.co/sentence-transformers/sentence-t5-xxl
XLM-RoBERTa-large https://huggingface.co/xlm-roberta-large

Table 4: Hugging Face repositories for all evaluated language models.
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Figure 4: Change of the V-measure score with continued pre-training for GBERT-large comparing WWM and
TSDAE pre-training methods for Minibatch k-Means clustering. Lines represent the average of three model runs
with different seeds, and filled areas indicate minimum and maximum V-measure scores. baseline indicates results
without additional pre-training.
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Abstract

Aspect-Based Sentiment Analysis (ABSA)
plays a crucial role in understanding fine-
grained customer feedback, particularly in do-
mains like hospitality where specific aspects
of service often influence overall satisfaction.
However, non-English languages such as Ger-
man face a scarcity of readily available corpora
and evaluated methods for ABSA, making it a
challenging problem. This paper addresses this
gap by utilizing BERT-based transformer mod-
els, known for their exceptional performance in
context-sensitive natural language processing
tasks, to perform ABSA in a multi-label classifi-
cation setting. We demonstrate our approach on
a novel dataset of German hotel reviews that we
have collected and annotated from TripAdvisor,
thus contributing a new resource to the field
and proving the effectiveness of our method-
ology. With achieving a micro f1-score of
up to 0.91 for aspect category classification
and 0.81 for end-to-end ABSA, our approach
aligns with the performance of similar meth-
ods on other German-language datasets and
surpasses performance achieved on English-
language datasets in the hotel domain.

1 Introduction

Sentiment analysis deals with the classification of
attitudes, opinions, and sentiments and typically
focuses on the three classes positive, neutral, and
negative. The ever-increasing integration and pres-
ence of social media and the internet in everyday
life is generating a huge amount of user-generated
data that favors the use of sentiment analysis. As
a result, it is nowadays used in various fields and

domains, such as the analysis of political discourse
(Xia et al., 2021; Schmidt et al., 2022), digital hu-
manities (Schmidt and Burghardt, 2018; Schmidt
et al., 2020), healthcare natural language process-
ing (Moßburger et al., 2020), in improving prod-
ucts and services (Xu et al., 2019), and in the fi-
nancial sector to predict stock market movement
(Sousa et al., 2019). In recent years, sentiment
analysis has also expanded its application areas to
non-text-based media such as images and videos,
e.g., in human-computer interaction (Halbhuber
et al., 2019; Ortloff et al., 2019) or film analysis
(Schmidt et al., 2021c; El-Keilany et al., 2022).

Assigning a positive or negative label to entirely
positive or negative texts is usually straightforward.
However, analyzing texts that contain a mixture
of different sentiments in a single sentence or text
quickly becomes a challenge. This is particularly
the case when it is not about general trends or devel-
opments but about precise statements concerning
different aspects or characteristics of products or
services, where a rough estimate of sentiment is
insufficient. For over a decade, Aspect Based Sen-
timent Analysis (ABSA) has gained popularity to
solve this problem, whereby instead of determining
an overall sentiment for a sentence or a document,
the sentiment is determined in relation to individual
aspects or entities occurring in the text, such as the
battery life of a smartphone or the friendliness of a
service employee (Liu et al., 2005).

As in other research fields of natural language
processing (NLP), there is a clear imbalance in
sentiment analysis in terms of available resources
and evaluated techniques when looking at differ-
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ent languages and domains. While research has
progressed a lot during recent years in the English
language domain, the field of ABSA in German
is still relatively unexplored. To our knowledge,
only a small number of ready-to-use corpora exist
and only a few methods have been evaluated (Fehle
et al., 2021; Chebolu et al., 2022). Moreover, cor-
pora that are needed for the training of aspect-based
machine learning approaches or for the evaluation
of ABSA methods are not compatible with corpora
that can be used as resources for general sentiment
analysis approaches that determine sentiment only
at the document or sentence level. Since annotation
of training data for ABSA usually involves work-
ing at the phrase or word level to establish complex
relationships between phrases describing the aspect
and phrases containing the sentiment, the annota-
tion process is often highly time-consuming and
difficult. To counteract this, there are approaches
that handle datasets that have not been annotated
manually or only in a less complex way (Chang
et al., 2019; Kastrati et al., 2020). One promising
example is the definition of ABSA as a multi-label
classification problem (Tao and Fang, 2020; Jin
et al., 2020). In this case, the classifiers are trained
with texts annotated with aspects and polarities,
albeit at the sentence level rather than the phrase
level, thus decreasing complexity. The annotation
contains information about the aspect occurring in
the text as well as its assigned sentiment, but no
information about where the aspect occurs or by
which exact phrase it is composed. This approach
has already achieved good results in the German
language (Aßenmacher et al., 2021). Building on
prior research, this work explores the potential of
applying the multi-label classification method for
ABSA to a different domain. Given the promising
results this approach has yielded in the realm of cus-
tomer reviews in context of public transportation
(Aßenmacher et al., 2021), this work determines
its effectiveness and the expected classification re-
sults when applied to other areas and domains for
which ABSA is a relevant tool for extracting fine-
grained opinions from user-generated content. For
this purpose, a new corpus was created on a domain
that is widely discussed in the English language
(Akhtar et al., 2017; Abro et al., 2020), but to our
knowledge has not yet been addressed in the Ger-
man language: Online reviews of hotels and their
services.

The contributions of this paper are as follows: (1)
the creation of a dataset for ABSA in the domain of
hotel reviews in the German language, (2) an eval-
uation of multiple pre-trained transformer-based
models for ABSA as a multi-label classification
task on hotel reviews in German and (3) a discus-
sion about the performance of transformer-based
models for ABSA at different tasks and various
levels of annotation complexity.

2 Related Work

Over the last decade, ABSA has experienced sig-
nificant growth through different shared task work-
shops, such as the SemEval Shared Tasks for the
English language from 2014 to 2016 (Pontiki et al.,
2014, 2015, 2016), stimulating the development of
various methods addressing the three fundamental
subtasks in aspect-based sentiment analysis: aspect
term extraction, aspect category classification, and
aspect sentiment classification. These tasks uti-
lized datasets compiled from two domains: restau-
rant and laptop reviews. With each iteration of
the SemEval Shared Task, the size of the dataset
and the complexity of the annotations increased.
Initially, only the specific aspect word, its aspect
category, and the corresponding polarity were anno-
tated. Later, however, the aspects were divided into
entities/main aspect categories and attributes/sub-
aspect categories (these terms are often used inter-
changeably), thus increasing the complexity of the
datasets due to a large number of possible combina-
tions between main and subcategories. Even after
these workshops, the datasets continue to be used
as a benchmark resource for the evaluation of new-
found ABSA approaches (Brauwers and Frasincar,
2022; Nazir et al., 2020).

These datasets are far from being the only ones
available in the English language. In particular,
since the first SemEval workshop on ABSA in
2014, the number of accessible datasets for the En-
glish language has significantly increased, covering
various domains with different levels of annotation
complexity, such as hotel reviews (Yin et al., 2017),
financial microblogs (Maia et al., 2018), and Ama-
zon product reviews (Liu et al., 2015).

Approaches to determining aspect-based senti-
ment are diverse and have evolved over time. While
earlier methods primarily relied on rules, word fre-
quencies, or lexicon-based techniques and tackled
only sub-tasks to the ABSA problem, contempo-
rary approaches emphasize neural networks and
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deep learning and try to solve ABSA as a one-
in-all/end-to-end solution (Chen et al., 2022; Yan
et al., 2021). Since their introduction in 2017,
pre-trained transformer models have, together with
deep learning neural networks, been recognized as
state-of-the-art in the field. Nowadays, approaches
achieve accuracy and f1-scores of over 80 % for
subtasks of ABSA or complete ABSA solutions on
various corpora. Notably, some transformer-based
architectures attain scores exceeding 90 % on spe-
cific datasets (Brauwers and Frasincar, 2022; Do
et al., 2019).

In the hotel domain, methods usually only deal
with subtasks of ABSA. For that, star ratings of
the review or individual aspects on rating portals
(e.g. Tripadvisor) are often used to derive the po-
larity of individual reviews and aspects and to gain
a ground truth dataset. Chang et al. (2019) builds
on this method and classifies the individual aspect
categories by using support vector machines and
convolution tree kernels with good success on eight
classes (macro f1-score: 0.80). Tran et al. (2019)
uses the combination of a BiLSTM-CRF model
for the extraction of aspect phrases and their po-
larity and LDA topic modeling for aspect category
classification to capture the aspect category and
the associated sentiment from hotel reviews and
achieves a micro f1-score of 0.873 for the extrac-
tion of aspect phrases and their polarity and an
accuracy of 0.800 for the determination of the asso-
ciated aspect category. Qiang et al. (2020) tackled
the aggregation of aspect-sentiment information
and used a Multi-Attention-Network BiLSTM to
capture the fine-grained statements regarding indi-
vidual aspects in hotel reviews in order to infer the
overall sentiment of a review and achieved a micro
f1-score of 0.798 on a custom generated dataset.

In German, the largest available dataset was pub-
lished as part of the GermEval Shared Task Work-
shop in 2017, which contains more than 26,000
annotations consisting of entity-attribute-polarity
tuples related to the German transportation service
provider Deutsche Bahn (Wojatzki et al., 2017).
However, the dataset was evaluated only based on
main aspects and their corresponding polarities,
with the category of attributes being omitted.

Other datasets in German language include the
SCARE corpus, consisting of 1,760 Google Play
Store reviews with 2,487 aspect-polarity annota-
tions (Sänger et al., 2016); the USAGE corpus,
comprising 611 Amazon reviews with more than

5,000 aspect-polarity annotations (Klinger and
Cimiano, 2014); the PotTS dataset, made of 7,992
Twitter messages on political topics with anno-
tations for sentiment targets and their sentiment
phrases (Sidarenka, 2016); a corpus in the domain
of German historical plays consisting of around
6,500 sentiment/emotion and 12,000 source and
target annotations (Schmidt et al., 2021a,b); and
the TDDL corpus, consisting of 4,521 tweets about
the “Tage der deutschsprachigen Literatur” (Engl.:
“Days of German Literature”) with 8,264 main
aspect-attribute-polarity annotations (De Greve
et al., 2021). As with the English-language datasets,
these German datasets also vary in quality and have
been annotated using different levels of complexity
and granularity in their annotation schemes.

ABSA approaches have been evaluated on
German-language datasets only to a limited ex-
tent. While earlier approaches were mainly based
on classical machine learning like conditional ran-
dom fields or neural networks with pre-trained
word-embeddings, more recent methods focus on
recent advances in NLP like deep learning and
pre-trained transformer architectures (Sänger et al.,
2016; Schmitt et al., 2018; Akhtar et al., 2019).
Aßenmacher et al. (2021) were able to signifi-
cantly improve the performance for classifying as-
pects and their polarities on the GermEval dataset.
They achieved this by treating ABSA as a multi-
label classification problem and employed a BERT-
transformer model instead of the CNN+FastText
model used by Schmitt et al. (2018). This led to
a significant improvement of the model’s accuracy
with a rise of micro-averaged f1-scores from 0.54
and 0.44 to 0.78 and 0.67 for aspect and aspect-
polarity classification respectively. De Greve et al.
(2021) also addressed the subtasks of aspect-term
classification and aspect-sentiment classification
using a BERT architecture. They achieved macro
and weighted F1 scores of 0.69 and 0.83 for the
classification of the six main aspects on the TDDL
dataset, as well as macro and weighted f1-scores of
0.54 and 0.73 for the classification of all 48 com-
binations of main and sub-aspects while using the
gold annotations of the aspect terms as input. The
authors were also able to achieve a macro f1-score
of 0.72 for aspect-polarity classification by imple-
menting a context window of five words before and
after the aspect phrase.
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3 Methods

3.1 Creation of a Dataset of German Hotel
Reviews

3.1.1 Dataset Generation
The foundation of the dataset are 1,512 user re-
views about a selection of hotels in the city of Re-
gensburg (situated in the south of Germany) in
German language. The reviews were acquired with
the web scraping application Parsehub1 from the
site TripAdvisor.2 The selection process focused
on five mid-class hotels, chosen specifically for
their substantial number of user reviews and di-
verse proximity to the city center. In this way, we
were able to capture a range of perspectives related
to the location of the hotels. Furthermore, attention
was paid to ensure that the selected hotels had com-
parable features (e.g. restaurants and parking) to
facilitate consistent topics across the user reviews.

In order to annotate the dataset with aspects and
polarities contained at the sentence level, the 1,512
user reviews were split into sentences with the on-
line sentence splitter tool TextConverter.3 Subse-
quently, we manually inspected the splits and made
any necessary corrections, in case the user’s state-
ment was otherwise no longer comprehensible.4

This results in a dataset of 21,182 sentences. For
the annotation process, the dataset was divided into
chunks of 200 units and randomly distributed to
the participants. This resulted in a subset of 5,000
sentences, with each sentence annotated by two
different annotators as part of the annotation study.

3.1.2 Data Annotation
The goal of the study was the annotation of three-
part tuples consisting of an aspect, an attribute or
sub-aspect (a specific facet of an aspect), and the
associated polarity, following the approach of pre-
vious work (Pontiki et al., 2015, 2016; Wojatzki
et al., 2017). The aspect (e.g. hotel) and the at-
tribute (e.g. price) are combined to form the aspect
category pair. For the determination of the aspect
categories of our dataset, the four predefined rating
categories of each TripAdvisor review - location
(Ger.: Lage), price (Ger.: Preis), cleanliness (Ger.:
Sauberkeit), and service (Ger.: Service) - were

1https://www.parsehub.com/
2https://www.tripadvisor.de/
3https://textconverter.com/
4In rare cases, the manual correction resulted in a sam-

ple comprising up to two sentences. However, for ease of
understanding, we refer to one sample as a sentence in the
remainder of the text.

taken into account, as we assumed that, at least
to some extent, these categories were used by the
users as reference for their written reviews. Fur-
thermore, we also took into account findings from
related work in the same domain, in which addi-
tional aspects and attributes such as ambience (ger.
Ambiente), restaurant (Ger.: Restaurant), rooms
(Ger.: Zimmer), general (Ger.: Haupt) and qual-
ity (Ger.: Qualität) were used (Abro et al., 2020;
Chang et al., 2019). On the basis of this informa-
tion, the five aspects hotel (Ger.: Hotel), food &
drink (Ger.: Essen & Trinken), location, service,
and rooms were selected for annotation. General,
price, quietness (Ger.: Ruhe), cleanliness, and style
(Ger.: Style) were selected as attributes, which
could be annotated in different combinations with
the main aspects. The annotation of the polarity of
the aspects was carried out using the three classes
positive, neutral, and negative. All possible annota-
tions of aspects and attributes can be seen in Table
1, furthermore all possible combinations of aspect
categories are depicted in Table 5 in the appendix.
It was possible to annotate one or more tuples of
entities, attributes, and polarities per sentence. If
no aspect could be identified in the sentence, it was
also possible to skip the sentence and omit it from
the annotation.

Category Possible Class Labels

Aspect Hotel, Location, Food & Drinks,
Service, Rooms

Attribute General, Price, Quietness, Clean-
liness, Style

Polarity Positive, Neutral, Negative

Table 1: All possible class labels of the annotation.

The annotation was carried out in the web tool
INCEpTION (Klie et al., 2018) which is a more
advanced version of its predecessor WebAnno (Yi-
mam et al., 2014). All study participants received
detailed annotation guidelines with an explanation
of the background of the study, an introduction to
the topic, a list of all possible combinations of as-
pects and attributes with example annotations, and
an introduction on how to operate the annotation
tool INCEpTION. The selection of the different as-
pects, attributes, and polarities was predetermined
by the annotation tool in order to prevent incor-
rect annotations. The annotation study was carried
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Aspect Count Percentage Attribute Count Percentage Polarity Count Percentage
Hotel 1,477 26.3 % General 3,326 59.2 % Positive 4,032 71.8 %

Rooms 1,457 25.9 % Style 1,201 21.4 % Neutral 957 17.0 %
Location 963 17.1 % Cleanliness 405 7.2 % Negative 628 11.2 %
Service 907 16.2 % Price 396 7.1 %

Food & Drinks 813 14.5 % Quietness 289 5.1 %

Table 2: Amount of samples per aspect, attribute, and polarity class, ordered by the respective portions.

out by 27 students, with each participant annotat-
ing a subset of either 200 or 400 sentences. Each
sentence was annotated by two annotators. The
agreement between the annotators is visualized in
Table 6 in the appendix. Due to the possibility
of assigning none, one or more aspects to a sen-
tence, Krippendorff’s α5 is a suitable metric for
agreement. The metric is calculated using the masi
distance (Passonneau, 2006). The agreement can
be examined at different levels of complexity: (1)
an isolated view on the aspects, (2) the combination
of either aspects and attributes or (3) aspects and
polarities, and (4) all metrics together - the aspects,
attributes as well as their polarities. If only the
aspects are considered, the average agreement of
the annotators is 0.61, if the attributes are included,
the average value drops to 0.48 and if the whole
tuple is considered, the average agreement goes
down to 0.43. If the complexity of the attribute is
removed from the tuple and only the aspect and its
polarity are considered, the average agreement is
0.54. These agreement values are considered to be
of moderate agreement (Hayes and Krippendorff,
2007; Landis and Koch, 1977).

Subsequently, to increase the quality of the
dataset, all 5,000 sentences were manually curated.
First, all the annotations were approved where both
annotators assigned the same aspect tuple. If sen-
tences were annotated by only one annotator, it was
decided individually whether to accept or discard
the annotation. For sentences with different annota-
tions in terms of entity, attribute or polarity, it was
individually decided which annotation should be
classified as correct or not.

3.1.3 Dataset Characteristics
After curation, the dataset consists of 4,254 sen-
tences (746 sentences did not contain clearly dis-
cernible aspects) and 5,617 annotations of aspect
tuples (see Figure 2 in the appendix for an excerpt
of the dataset). Table 2 contains the frequency
distribution of the dataset at the level of the as-

5https://pypi.org/project/krippendorff/

pects, attributes, and polarities in an isolated view.
The frequencies of the aspects are slightly unbal-
anced, with the most frequent aspect “hotel” oc-
curring almost twice as often as the least frequent
aspect “food & drinks”. The distributions for the
attributes, as well as the polarities, are strongly un-
balanced. Thus, about 59 % of all attributes are
assigned to the general class, while the three least
represented attributes cleanliness, price, and quiet-
ness take up less than 20 % of the total amount. A
similar picture emerges for the polarities. Thus,
almost 72 % of all labels are assigned to the polar-
ity positive, while the classes neutral and negative
are only represented with around 17 % and 11 %
respectively. The distributions for different combi-
nations of aspects, attributes, and polarities in the
data set are also strongly unbalanced (see Figure 1
and additionally Tables 7, 8 and 9 in the appendix).
The frequency distributions for the combinations
of multiple classes are depicted in Figure 1. For
example, for the aspect-polarity combinations, 1/3
of the most frequently occurring combinations ac-
count for more than 2/3 of the total dataset; this
value is significantly higher for the aspect-attribute
combinations with about 83 % and is still topped
off by the aspect-attribute-polarity combinations,
where 1/3 of all combinations account for more
than 87 % of all samples in the dataset.

3.2 Dataset Evaluation with Pre-Trained
Transformer-Models

3.2.1 Data Preprocessing

In multi-label classification, one or more classes are
assigned to each sample, which requires remodel-
ing the dataset structure. For each class, each sam-
ple is given a binary truth value about whether the
class is present in the sample or not, resulting in a
one-hot-encoded sequence. The number of classes
is determined by the level of annotation granularity.
For instance, classifying only the aspects results in
5 classes, considering both aspects and attributes
leads to 18 classes, and incorporating aspects, at-
tributes, and polarity results in 54 classes. It is
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Figure 1: Frequency distributions for all combinations of classes.

important to note that out of these 54 classes, one
class, namely “Food & Drinks#Quietness:Neutral”
did not occur in the dataset and was therefore unin-
tentionally omitted during the annotation process.
However, through the conversion into a binary state-
ment regarding the occurrence of a class, a max-
imum of one occurrence of the same class/same
combination of classes can be included. Thus, the
information of identical classes occurring several
times in the same sequence is considered as one.

As an example, the class labels of the sentence
“The service staff was very nice, but I think the lo-
cation of the hotel is inconvenient.” are depicted in
Table 3. Here, the aspect “Location” was annotated
as negative and the aspect “Service” was annotated
as positive, resulting in the one-hot-encoded label-
ing sequence [0,0,1,0,0,0,0,0,0,1,0,0,0,0,0] which
serves as input for our classifier.

3.2.2 Metrics

In a multi-label classification setting commonly
used metrics are hamming loss, accuracy, preci-
sion, recall, and f1-score (Zhang and Zhou, 2013;
Tsoumakas and Katakis, 2007).

Similar to the metrics used in SemEval 2014,
2015, and 2016, and GermEval 2017 Shared Tasks,
we use a micro-averaged f1-score as the primary
evaluation metric. However, since the balancing of
the created dataset tends to be skewed depending on
the level of detail of the annotation, we also provide
a macro f1-score, averaged over the individual class

f1-scores. Thus, this value also takes into account
the prediction performance of the underrepresented
classes.

3.2.3 Evaluation Procedure
We tested three different pre-trained BERT trans-
former models publicly available: (1) one of the
largest transformer-based BERT language models
for German, gbert-large by Deepset (Chan et al.,
2020), and two of the best-performing BERT-based
models in similar studies, (2) bert-base-german-
uncased by DBMDZ6 and (3) the comparatively
lightweight model distilbert-base-german-cased
(Sanh et al., 2019), pre-trained on the same dataset
as (2).7 All models were acquired via the Hugging
Face platform and implemented using the Python
libraries Pytorch (Paszke et al., 2019) and Trans-
formers (Wolf et al., 2020). Evaluation metrics
were calculated using scikit-learn (Pedregosa et al.,
2011).

For increased validity, the dataset was cross-
evaluated with stratified 4-split kfold, alternating 3
parts of the dataset for training and one part of the
dataset for evaluation. Each model was evaluated
based on four different tasks, split into two cate-
gories of subtasks of ABSA: (1) aspect category
classification and (2) aspect sentiment classifica-
tion. For each subtask, we evaluated on different

6Munic Digitalization Centre Digital Library team at the
Bavarian State Library, see https://github.com/dbmdz.

7In text further referenced as deepset-gbert-large, dbmdz-
bert-base and distilbert-base.

Aspect-Polarity-Combinations
Hotel Location Food & Drinks Service Rooms

Pos Neut Neg Pos Neut Neg Pos Neut Neg Pos Neut Neg Pos Neut Neg
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Table 3: Example labels of the input for the model of an aspect polarity classification. A ’1’ means that this class
occurs in the text, a ’0’ the opposite.
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sets of data, once with information about attributes
and once without. Thus, both subtasks differ in
complexity of the ground truth data used: classi-
fication of the aspect class, classification of the
aspect class and its associated polarity, and both in
combination with the attribute class. This resulted
in classification tasks with 5 and 18 classes for task
1 and 15 and 53 classes for task 2.

Training was done using an AdamW-optimizer
(Loshchilov and Hutter, 2017) and a binary cross
entropy loss function with sigmoid activation,
which is mandatory for multi-label classification.
Since finding the right hyperparameters is a crucial
component in every deep learning-based classifica-
tion task, we performed systematic hyperparameter
tuning for 20 trials per evaluation run with Op-
tuna (Akiba et al., 2019) while trying to minimize
the value of hamming loss with a Tree-structured
Parzen Estimator (TPE). The pre-selection of hy-
perparameters is based on Devlin et al. (2019) and
own pre-experiments:

• Learning rate ∈ [2e− 5, 5e− 5]

• Batch size ∈ {8, 16, 32}
• Number of epochs ∈ {2, 3, 4}

Hyperparameter optimization showed that for 11
out of the 12 runs the best configuration comprised
a batch size of 8 and 3 or 4 epochs. The only excep-
tion was the aspect class determination by deepset-
gbert-large, which achieved the best result with a
batch size of 32. It’s worth noting that all models
struggled significantly with classifying the aspect-
attribute-polarity tuple when using a batch size of
32, frequently failing to predict any class. Regard-
ing the learning rate, no clear trend is discernible,
although often the best results were achieved with
values just at the specified minimum or maximum,
which indicates that the actual optimum of the pa-
rameter might lie outside the limits we had defined.

The training and evaluation were done on a work-
station setup with an Intel Xeon W-2275 CPU, 128
GB of Ram, and 2x NVIDIA RTX A5000 GPUs.

4 Results

The evaluation results for all four subtasks are de-
picted in Table 4, divided in subtasks and mod-
els. In addition, we also included values obtained
by Aßenmacher et al. (2021) which implemented
multi-label classification with BERT on the Ger-
mEval 2017 dataset.8

4.1 Evaluation of Aspect Category
Classification

The three BERT models for classifying aspects
and aspects & attributes differ only slightly in
terms of performance. In predicting the five aspect
classes, deepset-gbert-large performs best with mi-
cro and macro f1-scores of 0.906 and 0.910, plac-
ing it about one percentage point ahead of both
dbmdz-bert-base and distilbert-base. Further anal-
ysis showed that for the best performing model
deepset-gbert-large the individual classes could be
predicted almost equally well with an f1-score of
approximately 0.92, the only outlier being the as-
pect “Hotel” with 0.86. Furthermore, when the
attribute classes are included, deepset-gbert-large
also performed best in the classification of the 18
aspect combinations, achieving micro and macro f1
scores of 0.797 and 0.542, but this time by a margin
of between about 2 and 6 percentage points over the
other models. Upon further analysis of the individ-
ual aspect-attribute class combinations, it’s obvious
that the prediction performance of all models corre-
lates with the frequency of occurrence of the class

8The GermEval dataset was published along with two
datasets for evaluation, each collected at different points in
time. When referring to the results of the GermEval dataset
throughout this paper, we report the average of both eval
datasets.

Aspect Aspect + Attribute Aspect
+ Polarity

Aspect + Attribute
+ Polarity

Language Model F1
Micro

F1
Macro

F1
Micro

F1
Macro

F1
Micro

F1
Macro

F1
Micro

F1
Macro

deepset-gbert-large 0.906 0.910 0.797 0.542 0.809 0.659 0.651 0.173
dbmdz-bert-base-german-uncased 0.891 0.895 0.774 0.504 0.779 0.599 0.592 0.119
distilbert-base-german-cased 0.880 0.886 0.744 0.432 0.741 0.490 0.561 0.107

Multi-label BERT on GermEval2017
(Aßenmacher et al., 2021)

0.776 0.776 0.672 0.672

Table 4: Results for the 4 subtasks of the evaluation. Best values are depicted in bold.
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samples. In terms of the deepset-gbert-large model,
this means that the four least frequently occurring
classes are not detected by the model, while the
four most frequently occurring classes are among
the top 5 predicted classes in terms of classification
results.

4.2 Evaluation of Aspect Sentiment
Classification

The classification of aspects in combination with
polarity gives a similar picture as in chapter 4.1.
Again, deepset-gbert-large achieves the best results
both with and without consideration of the attribute
class. Thus, deepset-gbert-large achieves micro f1-
and macro f1-scores of 0.809 and 0.659 for the clas-
sification of the 15 classes from aspect & polarity.
The model obtains relatively good classification re-
sults for most of the 15 individual classes, up to an
f1-score of 0.931. However, once more, the perfor-
mance drops off with the decrease in frequency of
the class in the dataset, whereby the rarest combina-
tion “Service - Neutral” with only 36 occurrences
cannot be predicted at all. Aspects related to pos-
itive polarity labels are recognized best, followed
by negative and eventually neutral polarity labels.

Taking the attribute category into account, thus
predicting the whole aspect-attribute-polarity tuple,
deepset-gbert-large achieves a micro f1-score of
0.651 and is, therefore, at least five percentage
points ahead of the other models. Since deepset-
gbert-large can only make a correct prediction for
17 of the total 53 classes, the macro f1-score drops
significantly, down to 0.173. The model almost
completely fails to recognize combinations with
the neutral polarity class, while aspects & attributes
in combination with the positive polarity class work
best.

5 Discussion

5.1 Aspect Category and Aspect Sentiment
Classification

In this work, we investigated the adaptation of
ABSA as a multi-label classification for the domain
of hotel reviews and compared its performance in
the context of previous methods. However, compar-
ing values between corpora and approaches should
be done with caution, given the considerable dis-
parities in the origin, quality, depth, and size of the
datasets that most approaches rely on. Based on the
fact that deepset-gbert-large was pre-trained on ten
times the amount of raw data and at the same time

has more than three times as many parameters and
more than twice as many layers as the other two
models, it is plausible that this model also achieves
the best classification results. Nevertheless, the re-
sults in some categories (e. g. aspect classification)
are sufficiently close to each other that it can be
considered that the significantly smaller model size
and the much faster fine-tuning phase could out-
weigh the disadvantages in classification accuracy
(see Table 10 for model parameters and Table 11
for training times).

With regard to the subtask of aspect category
classification, the best transformer model we eval-
uated, deepset-gbert-large, achieves micro and
macro f1-scores of 0.906 and 0.910 for the clas-
sification of the 5 aspect classes, outperforming
values achieved in the domain of English hotel re-
views, such as Andono et al. (2022) with a micro
f1-score of 0.89 on 5 aspects, Chang et al. (2019)
with a macro f1-score of 0.80 on 8 aspect categories
or Afzaal et al. (2019) with 0.85 on an unknown
number of aspects, and in the domain of social me-
dia comments about German literary prize winners
with a macro f1-score 0.79 on 7 aspects (De Greve
et al., 2021).

In terms of the end-to-end approach which com-
bines aspect category classification and aspect sen-
timent classification, all tested BERT models de-
livered convincing results. Among them, the high-
est f1-scores were obtained by deepset-gbert-large
with micro- and macro-averages of 0.809 and 0.651
on aspects and their polarities. Our results surpass
those achieved in comparable settings, such as the
results reported by Tran et al. (2019) and Afzaal
et al. (2019) on the domain of hotel reviews in
the English language. Notably, the approach by
Tran et al. (2019) achieved an f1-score of 0.873 for
aspect term extraction and binary polarity classi-
fication, as well as an accuracy of 0.80 for aspect
category classification, while Afzaal et al. (2019)
managed to achieve f1-scores of 0.85 and 0.91 for
aspect category and aspect sentiment classifica-
tion, respectively. However, two key considera-
tions highlight the differences between their works
and ours: (1) Their approach relied exclusively
on binary polarity labels, which inherently sim-
plified the sentiment analysis process compared
to our approach and (2) they concatenated both
subtasks, which could potentially compound error
propagation throughout their pipeline and, thus,
lower the overall classification performance. In
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contrast, our approach produced superior results
while combining both subtasks, likely due to the
individual strengths of transfer-learning and our
chosen BERT models.

However, it must be noted that our results have
shown that the classification performance can de-
crease significantly when additional aspect classes
are added, which is in line with results obtained in
current research (Aßenmacher et al., 2021). There-
fore the number of classified aspects can be deci-
sive for a comparison between different methods
and datasets.

Additionally, our results for the aspect classi-
fication subtask on 18 aspect categories (micro
f1-score: 0.797) are slightly better than the re-
sults achieved by Aßenmacher et al. (2021) on 20
aspect categories (micro f1-score: 0.776), which
followed the same approach as we did, a (BERT-
based) multi-label classification, but on a German
dataset of user ratings (GermEval 2017). If polar-
ity is taken into account for the end-to-end overall
ABSA solution, here again, deepset-gbert-large
achieves comparable classification results with a
micro f1-score of 0.651 on 53 classes (aspect-
attribute-polarity combinations) to Aßenmacher
et al. (2021) on the GermEval corpus with an
f1-score of 0.672 on 60 classes by their best-
performing model dbmdz-bert-base. Although the
classification results for the aspect-polarity clas-
sification case are slightly worse than the results
obtained on GermEval 2017 by Aßenmacher et al.
(2021), deepset-gbert-large performs better than
dbmdz-bert-base in the direct comparison on the
domain of hotel reviews, suggesting that the per-
formance difference may not be due to the model
itself, but to the underlying language-specific dif-
ferences of the domain or the dataset. Nevertheless,
it can be observed with both approaches on both
domains that the classification of strongly under-
represented classes is significantly worse than that
of frequently occurring classes. This suggests that
this is not a domain-specific problem, but could
be due to the implementation of our approach or
the underlying datasets, which needs to be taken
into account when developing future multi-label
classification approaches.

In summarization, our results allow the conclu-
sion that (BERT-based) multi-label classification
is a valid method for aspect classification and end-
to-end ABSA on domains other than user ratings
on social media, and should be extended to other

domains as it is already the case for the English
language (Kumar et al., 2019).

5.2 Limitations & Ethical Considerations

As the selection of the right dataset is an essential
component for any classification task, the qual-
ity of its (manual) annotations may also reflect
on the classification results of machine learning
approaches. The agreement of the participants re-
garding the annotation of the dataset of this work
indicates a low to moderate agreement. Consider-
ing the fact that a large number of combinations of
different classes can be annotated in ABSA, this is
usually presented as an acceptable result (Moreno-
Ortiz et al., 2019), even though it is reasonable that
a lower level of agreement and thus a debatable
lower quality of the dataset is likely to affect the
classification performance of the methods applied
to it (Mozetič et al., 2016). Since Krippendorff’s α
varies considerably between individual annotator-
pairings (see Table 6 in the appendix), it is possible
that demographic characteristics, such as previous
experience with annotation studies or the subject of
the sentiment analysis, could have an influence on
the quality of the annotations. However, the imbal-
ance of the annotated classes does not seem to be
a rare phenomenon and often occurs in context of
ABSA in connection with user reviews in general
or reviews from the hotel domain or Tripadvisor
in particular (Risch et al., 2021; Tran et al., 2019;
Pontiki et al., 2015).

The process of gathering our dataset followed
strict privacy guidelines to protect the rights of
users. The primary aim was to extract reviews or
texts, while carefully avoiding the collection of
personalized data that could potentially identify
individual users or specific user groups. By do-
ing so, we aimed to mitigate the risk of drawing
unwarranted or ethically questionable conclusions
from our analyses. Additionally, any direct refer-
ences to individuals or hotels were systematically
anonymized. This was done to prevent indirect
identification of individuals or establishments.

The dataset and its annotations are available
upon request from the authors, to ensure that the
dataset is used responsibly and for academic pur-
poses only, thus, respecting the original intent of
the data collection. The Python code for the im-
plementation of this evaluation and the documenta-
tion about the evaluation process is accessible via
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GitHub.9

Despite our thorough data collection and
anonymization procedures, some inherent limita-
tions and ethical considerations persist. Our dataset
may not capture the full spectrum of user sentiment
due to potential bias in review writing, as those
who write reviews may only represent a certain
subset of the population. The ability to transfer
knowledge about semantics and characteristics of
reviews across different rating platforms cannot be
guaranteed either. This inherent bias may be un-
intentionally perpetuated by BERT-based models
used in our ABSA, despite their general effective-
ness in NLP. In addition, our dataset was composed
of reviews in German, which may include the bias
of different language characteristics that might not
be transferable to other languages.

5.3 Future Work

Our work provides valuable insight into the imple-
mentation and expected performance of a multi-
label classification approach for detecting aspect
categories and their associated polarities in reviews
about the hotel industry. Importantly, we demon-
strate that this methodology can be applied beyond
social media to other domains in the German lan-
guage. However, several potential directions for
future work emerge from this study.

Foremost, we want to improve our dataset both
in terms of size and annotation quality. Increasing
the number of sentences in the dataset will provide
a more robust representation of reviews, while a
refined curation process ensures higher accuracy
of labels. Currently, our dataset exhibits class im-
balance, which presents challenges to the ABSA
methods applied and can distort classification per-
formance, particularly for underrepresented aspect
categories.

From a methodological perspective, despite
our results outperforming comparable ABSA ap-
proaches in both German and English languages,
there is still room for improvement. We observed
that the classification performance for severely un-
derrepresented classes tends to decline significantly.
To mitigate this, future efforts could involve opti-
mizing training data balance via class weighting or
subsampling, coupled with a more thorough hyper-
parameter tuning process.

Furthermore, we see great potential in further

9https://github.com/JakobFehle/
absa-hotel-reviews

investigating the performance of large language
models in the scenario of zero- or few-shot learning
in the context of ABSA, which has already yielded
remarkable results in the field of (aspect-based)
sentiment analysis (Zhang et al., 2023; Qin et al.,
2023).
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A Appendix

A.1 Possible Combinations for Aspects and Attributes

Aspect Sub-Aspect/Attribute
Food & Drinks General (Universal Assessments)

Price (Restaurant, Bar, Minibar)
Style (Food Options, Extras)
Quietness (Loudness in the Dining Area, Privacy)

Hotel General (Universal Assessments)
Price (Spa, Wellness, Fitness, Parking)
Cleanliness
Style (Furniture, Products, Convenience)

Location General (Universal Assessments)
Quietness (Traffic Noise)
Price (Public Transport, Taxi)

Service General (Universal Assessments, Friendliness, Helpfullness)
Cleanliness

Rooms General (Universal Assessments)
Price (Stay)
Quietness (Sleep, Noise)
Cleanliness
Style (Furniture, Size, Comfort)

Table 5: All possible combinations of aspects and their attributes.

A.2 Annotators Agreement for the Dataset Annotation

Ann. 1 Ann. 2 Size Asp Asp + Attr Asp + Pol Asp + Attr + Pol
2 9 200 0.74 0.59 0.66 0.53
4 7 400 0.76 0.61 0.66 0.53
3 13 400 0.72 0.52 0.65 0.49

15 17 400 0.65 0.56 0.62 0.54
5 18 400 0.63 0.5 0.60 0.48

24 25 400 0.66 0.51 0.58 0.47
14 16 400 0.62 0.49 0.56 0.45
8 10 400 0.66 0.55 0.55 0.46
1 20 400 0.58 0.46 0.54 0.43

11 23 400 0.61 0.51 0.52 0.44
12 21 200 0.54 0.42 0.47 0.35
6 22 200 0.55 0.39 0.4 0.29

26 27 400 0.46 0.36 0.37 0.28
2 19 400 0.29 0.25 0.27 0.22

Total/Mean 14 5000 0.61 0.48 0.54 0.43

Table 6: Krippendorf’s α values with different levels of granularity for the 14 annotator pairings, sorted by α values
of aspect-polarity combinations.
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A.3 Dataset Excerpt

Figure 2: Example snippet of the dataset with two entries.

A.4 Class Frequencies for Aspect-Attribute Combinations

Aspect#Attribute Count Percentage
Service#General 901 16.0 %

Location#General 861 15.3 %
Rooms#Style 684 12.2 %

Food&Drinks#General 654 11.6 %
Hotel#General 629 11.2 %

... ... ...
Food&Drinks#Price 69 1.2 %

Rooms#Price 37 0.7 %
Location#Price 18 0.3 %

Food&Drinks#Quietness 10 0.2 %
Service#Cleanliness 6 0.1 %

Table 7: Amount of samples per aspect-attribute combination.
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A.5 Class Frequencies for Aspect-Polarity Combinations

Aspect + Polarity Count Percentage
Hotel - Positive 1,062 18.9 %

Rooms - Positive 937 16.7 %
Service - Positive 743 13.2 %

Location - Positive 685 12.2 %
Food & Drinks - Positive 605 10.8 %

Rooms - Negative 405 7.2 %
Hotel - Negative 209 3.7 %
Hotel - Neutral 186 3.3 %

Location - Neutral 166 3.0 %
Rooms - Neutral 135 2.4 %

Service - Negative 128 2.3 %
Location - Negative 112 2.0 %

Food & Drinks - Neutral 105 1.9 %
Food & Drinks - Negative 103 1.8 %

Service - Neutral 36 0.6 %

Table 8: Amount of samples per aspect-polarity combination.

A.6 Class Frequencies for Aspect-Attribute-Polarity Combinations

Aspect#Attribute:Polarity Count Percentage
Service#General:Positive 740 13.1 %

Location#General:Positive 615 10.9 %
Food&Drinks#General:Positive 513 9.1 %

Hotel#General:Positive 485 8.6 %
Rooms#Style:Positive 428 7.6 %

... ... ...
Food&Drinks#Quietness:Positive 3 <0.1 %

Service#Cleanliness:Positive 3 <0.1 %
Service#Cleanliness:Neural 2 <0.1 %

Location#Price:Negative 1 <0.1 %
Service#Cleanliness:Negative 1 <0.1 %

Table 9: Amount of samples per aspect-attribute-polarity tuple.
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A.7 Model Parameters and Characteristics of the Pre-Trained BERT models

Model Parameters Layers Attention Heads Training Data Hidden States
deepset-gbert-large 335 M 24 16 161 GB 768
dbmdz-bert-base-german-uncased 110 M 12 12 16 GB 768
distilbert-base-german-cased 66 M 12 12 16 GB 1024

Table 10: Model parameters and characteristics for each of the 3 pre-trained BERT models.

A.8 Hyperparameter Configurations for the Best Runs

Task Language Model Learning Rate Batch Size Epochs Runtime

Aspect
deepset-gbert-large 2.01 E-05 32 4 3 m 53 s
dbmdz-bert-base-german-uncased 3.90 E-05 8 4 4 m 00 s
distilbert-base-german-cased 5.00 E-05 8 3 1 m 51 s

Aspect +
Attribute

deepset-gbert-large 2.06 E-05 8 4 10 m 07 s
dbmdz-bert-base-german-uncased 2.82 E-05 8 3 3 m 04 s
distilbert-base-german-cased 4.83 E-05 8 3 1 m 51 s

Aspect +
Polarity

deepset-gbert-large 3.50 E-05 8 3 7 m 36 s
dbmdz-bert-base-german-uncased 4.66 E-05 8 4 3 m 56 s
distilbert-base-german-cased 3.97 E-05 8 4 2 m 26 s

Aspect +
Attribute +

Polarity

deepset-gbert-large 2.28 E-05 8 4 10 m 07 s
dbmdz-bert-base-german-uncased 4.42 E-05 8 4 3 m 58 s
distilbert-base-german-cased 4.99 E-05 8 3 1 m 51 s

Table 11: Best hyperparameter configuration for each model per task. Average runtime is given for a single train-eval
run.
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Abstract

The identification and classification of polit-
ical claims is an important step in the anal-
ysis of political newspaper reports; however,
resources for this task are few and far between.
This paper explores different strategies for the
cross-lingual projection of political claims anal-
ysis. We conduct experiments on a German
dataset, DebateNet2.0, covering the policy de-
bate sparked by the 2015 refugee crisis. Our
evaluation involves two tasks (claim identifica-
tion and categorization), three languages (Ger-
man, English, and French) and two methods
(machine translation – the best method in our
experiments – and multilingual embeddings).

1 Introduction

The identification of political claims in news is
a core step in the analysis of policy debates. Dis-
course networks, whose nodes correspond to claims
and the actors who advance them, provide a rich
source of information on phenomena such as for-
mation of coalitions (who agrees with whom), shift
in salience due to external events (e.g., migration
waves making the issues of refugee accommodation
more central in a debate), emergence of leadership,
and polarization of a discourse (Leifeld and Haunss,
2012; Koopmans and Statham, 1999; Hajer, 1993).

Political claims are defined as demands, propos-
als or criticism that are supported or opposed by
an actor (a person or a group of persons). Polit-
ical claims generally form a call to action: they
refer to something that should (or should not) be
done in a policy domain (e.g., assigning empty flats
to refugees). Thus, political claims are related to,
but add a new perspective on, the Argument Min-
ing question of what claims are, and what are the
best strategies for modeling them across domains
(Daxenberger et al., 2017; Schaefer et al., 2022).

The potential and challenges of the NLP support
to political claim analysis have been thoroughly ex-
plored in the recent years in a monolingual setting

(Chen et al., 2020; Dayanik et al., 2022); however,
there are very few resources available in multilin-
gual or crosslingual settings. Thus, there is little
work on the comparison of policy debates in dif-
ferent countries, either completely automatic, or
semi-automatic (supporting the inductive develop-
ment of annotation guidelines in a new language).

This paper reports on cross-lingual pilot experi-
ments on two tasks (claim identification and cate-
gorization), comparing two well known approaches
to cross-lingual transfer in NLP in general, and ar-
gument mining in particular: machine translation
and multilingual embeddings (Eger et al., 2018;
Toledo-Ronen et al., 2020). We first work with a
reference dataset for the German migration policy
debate (Blokker et al., 2023), and on its projec-
tion to English and French, before moving on to
a newly annotated English test set on the same
topic. Machine Translation turns out to be the best
cross-lingual projection strategy.

2 Experimental Setting

2.1 Tasks

This work focusses on two constituent tasks of
political claim analysis (Padó et al., 2019). Our
first task is claim identification, performed as a
binary classification task at the sentence level. Our
second task is claim categorization, phrased as a
multi-label classification task at the sentence level.1

2.2 Data

We carry out two experiments. In the first one, we
use a German corpus, DebateNet, which we auto-
matically translate into English and French: this
represents a cross-lingual transfer within the same
media outlet. In the second experiment, we trans-
fer our DebateNet models to an original English
dataset based on the Guardian newspaper.

1For our evaluation in the claim categorization task, we
consider all claims in the manually annotated gold standard.
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DebateNet 2.0. Blokker et al. (2023) is a dataset2

targeting the German public debate on migra-
tion policies in the context of the 2015 so-called
’refugee crisis’. It is based on 700 articles from the
German quality newspaper die Tageszeitung (taz)
with a total of 16402 sentences.

Political claims are annotated as textual spans,
and each claim span is associated with at least one
of 110 categories drawn from a theory-based code-
book (annotation guidelines). Around 15% of sen-
tences are annotated to contain a claim span. In
total, the dataset contains 3442 claim spans cor-
responding to 4417 claim labels (i.e., each claim
span is associated with an average of 1.3 claim cat-
egories). Annotations are first proposed by pairs
of students of political science, with an inter-coder
reliability is κ = 0.59 (Padó et al., 2019), and then
accepted, rejected or merged by domain experts.
We randomly split DebateNet into a training, devel-
opment, and test set with a ratio of 80:10:10.

Crucially for our experiments, the 110 fine-
grained categories are organized into 8 top-level
categories which encode general domains of the
migration policy field. In the claim categorization
experiments in this paper we focus on the 8 top-
level categories. Table 5 in the Appendix shows
them with the percentage of claims annotated for
each category and illustrative examples.

Guardian test set To compare German news
translated into English to actual UK news, we col-
lected an English-language test set of 36 articles
from the British quality newspaper Guardian, ex-
tracted from the World News section and published
in 2015. To make our test set as compatible as pos-
sible with DebateNet2.0, we look at the five months
most represented in DebateNet2.0 and within each
month sample from articles written in the seven-
day spans with the highest frequency of articles in
DebateNet2.0. Articles were further filtered by key-
words (migrant, refugee, asylum, Germany, Syria,
Afghanistan and their morphological and syntactic
variants) and by the mention of the most salient
political actors (politician and parties).

The Guardian test set was manually annotated
by a native speaker, a MSc-level student in Com-
putational Linguistics, based on the DebateNet2.0
guidelines. Claims were identified and assigned
to one of the 8 top-level categories described in
the previous section. Across the 36 articles with
1347 sentences, the test set contains 82 claim spans

2http://hdl.handle.net/11022/ 1007-0000-0007-DB07-B

which correspond to 101 claim categories (mean of
1.2 categories per span).3 Refer to Table 5 in the
Appendix for the distribution of claim categories.

2.3 Methods

2.3.1 Projection methods

With the German DebateNet2.0 as our starting
point, and the goal of testing the feasibility of
cross-lingual projection to English and French (as
target languages), we compare the two most es-
tablished projection methods (Eger et al., 2018;
Toledo-Ronen et al., 2020): machine translation
(to make the modeling task monolingual) and mul-
tilingual embeddings (to let the model bridge the
language gap implicitly). This yields three experi-
mental conditions:

Translate-train: We machine-translate the Ger-
man training data into the target languages and
fine-tune a monolingual target-language model on
it, to be evaluated on the target-language test data.4

Translate-test: We machine-translate the test
data into German (as described above) and apply
a monolingual German model fine-tuned on the
original German data to it. For the DebateNet ex-
periments in Section 3.1, we can only simulate this
setting, as we do not have genuine foreign-language
test data. We simulate it with a back-translation:
first, we machine-translate the German DebateNet
test set into the target language (EN/FR); then we
translate the simulated EN/FR test sets back into
German. It is only on the Guardian test set (Sec-
tion 4) that we can fully evaluate our models in the
translate-test configuration.

Multilingual: We employ multilingual embed-
dings, fine-tune them on the original German data,
and apply the resulting classifier on the target lan-
guage test data, exploiting the model’s internal
alignment of the source and target languages.

For both claim identification and classification, we
re-implement standard Transformer-based models
from the literature (Dayanik and Padó, 2020). We
use BERT as well as its German, French and multi-
lingual versions. Details on the classifier setups for
both tasks follow below.

330 claims, albeit identified by our annotator, could not
be classified in any categories of the codebook.

4We uses the DeepL translator via its web interface on a
free trial of the “advanced” plan as of August 2022.
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2.3.2 Claim identification
Translate-train: For English, we select the un-
cased model (bert-base-uncased) based on its
performance on the development set, and we set
learning rate to 5e-5 and warm-up steps to 30. The
same configuration is used for the German mono-
lingual baseline. For French, we select the base
version of CamemBERT, camembert-base, with a
learning rate of 4e-5 with 30 warm-up steps.

Translate-test: we employ a German BERT
model, bert-base-german-cased, fine-tuned on
the original German dataset. The hyperparameters
are the same as for English translate-train.

Multilingual: Based on performance on the de-
velopment set, we select the cased variant of the
multilingual BERT from the Huggingface trans-
former library, bert-base-multilingual-cased.
Training this model requires a lower learning rate
of 2.5e-5 and correspondingly more epochs.

2.3.3 Claim categorization
Translate-train: For the English model, we as-
sess both the cased and uncased versions. Since
the uncased one (bert-base-uncased) again per-
forms slightly better, we select it and use a learning
rate of 5e-5. Experiments on the corresponding
development sets establishes 25 warm-up steps as
a reasonable choice for all configurations in Task
2. The French model – the same as for the claim
identification task – requires a learning rate of 4e-5.

Translate-test: We employ bert-base-
german-cased with a learning rate of 4e-5. The
same model is also used for the monolingual
German baseline model.

Multilingual: Based on performance on
the development set, we select bert-base-
multilingual-uncased with a low learning rate
of 3e-5 and correspondingly more epochs.

3 Experiment 1: Within-outlet
cross-lingual transfer

3.1 Claim Identification on DebateNet
The left-hand side of Table 1 shows results for
the first main experiment, comparing the translate-
train, translate-test, and the multilingual embed-
ding approaches to claim identification to a mono-
lingual baseline.5 For comparison, we also run

5Unless indicated by a dagger †, reported values for all
conditions are the averages of two runs to reduce variance.

Setup Train Test Id Cat

BL (mono) de de 56.2 70.5

Translate-train en en 57.3 67.8
Translate-train fr fr 57.4 69.7

Translate-test de de-en 55.8 69.5
Translate-test de de-fr 58.3 69.8

Multilingual de en 45.8 50.3
Multilingual de fr 51.1 51.0

Multilingual† de de-en 52.0 60.0
Multilingual† en de 55.4 64.1

Table 1: DebateNet test set results: F1 scores (positive
class for claim identification (ID), macro average for
claim categorization (Cat)). BL (mono): monolingual
baseline.

the translate-train and translate-test approaches
on the multilingual model (multilingual:en:de and
multilingual:de:de-en). The language labels de-en
and de-fr stand for German data translated into EN
or FR and back-translated into German.

The main contrast of this set of experiments
is the one between the translate-train approach
and the multilingual embeddings approach with
respect to their performance on the target lan-
guages (EN/FR). For both target languages, the
translate-train approach outperforms the monolin-
gual baseline and the multilingual embedding ap-
proach. We ascribe this (small) performance gain
to the higher quality of the embeddings available
for the target languages: The monolingual En-
glish model, bert-base, is trained on a much
larger corpus (English Wikipedia and BookCorpus)
than bert-base-german, which is only trained on
the significantly smaller German Wikipedia. The
French model’s training corpus is also over ten
times larger than the German one. This also means
the translation process, albeit not perfect, has not
degraded the claim "signal" in the training data.

This point is also supported by the results for
the "simulated" translate-test approach, which (cf.
Section 2.3) can be considered a test of translation
quality. Since the performance is in line with the
monolingual baseline (de-en) or even slightly su-
perior to it (de-fr)6, the claim signal is preserved

6The exact reason for the improved performance in the
de-fr setup is to be further investigated. Given that we consider
the translate-test setup in DebateNet as a translation quality
check, the result is not highlighted in bold even if higher than
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Target: yes Target: no

Predicted: yes 71 39
Predicted: no 75 822

Table 2: Claim identification (DebateNet) confusion
matrix of the best model for English (translate-train)

through the back-translation process.
In contrast, the multilingual embeddings per-

form poorly, below the monolingual baseline. The
bottom part of Table 1 shows additional experi-
ments we carried out to better understand this re-
sult. We find that a monolingual setup with multi-
lingual embeddings (DE-DE) still performs below
the monolingual baseline, but the performance gap
is narrower than for the cross-lingual setups (DE-
EN and DE-FR). Reverting the direction of the
mapping, contrasting the performance of English-
German (55.6) vs. German-English (45.8), again
speaks in favor of the German representations being
the weak point – the training data for the English-
German multilingual embeddings setup is the same
as that of the translate-train approach.

The confusion matrix for the best cross-lingual
model for English (translate-train), Table 2, shows
many fewer false negatives than false positives (i.e.,
a high precision). Regarding application to the
(semi-)automatic extraction of discourse networks,
this outcome is complementary to the high-recall
approach applied by Haunss et al. (2020) to the
German annotation in DebateNet, but lends itself
to high-precision human-in-the-loop approaches
like the one proposed by Ein-Dor et al. (2019) for
argument mining.

Error Analysis. The misclassified instances pro-
vide some more insight into the model. For in-
stance, we might expect the word “fordern” (“de-
mand”, “call for”) to frequently appear in claims
and therefore lead the model to make a positive
prediction. Indeed, in the misclassified instances
of the German-French translate-test model, forms
of the word “fordern” or “Forderung” are 13 times
more likely to be FP than FN even though there
are almost twice as many FNs. We can therefore
conclude that this word influences the model in the
expected way. We bolster these observations with
more formal methods: using saliency-based anal-
ysis (Simonyan et al., 2014) we can assign each

translate-train.

token a relevance for the model’s prediction. The
results partially confirm this: the token “fordert”
gets scores above 0.9 throughout. However, other
forms, like the infinitive, receive lower scores, pre-
sumably because the 3rd person singular is more
highly associated with concrete claiming situations.

Saliency scores are highly correlated between
models and between languages. E.g., the sen-
tence “Der bayerische Ministerpräsident Horst See-
hofer begrüßte die Pläne” and its corresponding
English version ‘Bavaria’s prime minister Horst
Seehofer welcomed the plans.’, are both labeled
as claims. In both cases, the highest saliency is
assigned to “Pläne”/”plans”. A systematic com-
parison of scores among models is however com-
plicated by the differences in tokenizations among
embedding models. Alternatively, we can compare
instances misclassified by different models. Here,
we observe large overlap. On one test run, the mul-
tilingual German-French model misclassified 122
out of 1007 test instances, while the monolingual
English model misclassified 120 instances. These
instances have an overlap of 58% (random assign-
ment, should result in 12% overlap). This suggests
that the models struggle with the same instances.
A first qualitative inspection at such "difficult" in-
stances has ruled out the impact of proper names,
length of sentences as well as the type of involved
actors; further analysis in this direction is required.

3.2 Claim Categorization on DebateNet

The right-hand side of Table 1 shows the results
for the claim categorization task (F1 macro over all
classes; Tables 6–9 in the Appendix provide per-
category results). Unsurprisingly, this fine-grained
task is more challenging for cross-lingual transfer.
None of the experimental configurations beats the
monolingual baseline. As in claim id, translate-
train outperforms multilingual embeddings.

Error analysis. Inspection of sentences shows
that many misclassifications arise from misleading
local lexical material in the sentences. For exam-
ple, “Die SPD findet dies könnte die Integration
unterstützen“ (“The Social Democratic party be-
lieves this could support integration”) includes the
word ’integration’ which is a strong cue for the
claim category ’integration’, which the model pre-
dicts. However, the correct category is ’residency’,
as becomes clear from the broader context of the
article. Another example is: "Die sollen ja auch in
der Gesellschaft ankommen" (“They must arrive
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Setup Train Test Id Cat

translate-train en en 25.5 51.0

translate-test de de-en 20.6 53.4

multilingual de en 20.0 39.0

Table 3: Guardian test set results for claim identification
(Id, F1 of positive class) and claim categorization (Cat,
macro F1)

in society after all”), with misleading cue ’society’
indicating claim category ’society’ and gold cate-
gory ’integration’. A saliency analysis, as before,
confirmed this pattern: the “red herring” cues con-
sistently receive the highest saliency scores in the
sentences. Notably, the error pattern persists in the
case of literal translations, but disppears when the
translation changes the wording (‘mit Sicherheit’ –
“with security/certainty” → ‘certainly’).

4 Experiment 2: Cross-outlet
cross-lingual transfer

Results on the Guardian test set are shown in Table
3. For claim identification, the translate-train ap-
proach outperforms the other approaches, confirm-
ing the trend seen on the DebateNet data. For claim
categorization, translate-test outperforms translate-
train and multilingual embeddings. Both of these
results are in line with our findings in Exp. 1.

For both tasks, we see a substantial decrease
of performance on the Guardian data (-30 points
for claim identification, -15 points for claim cat-
egorization). Since our previous experiment also
used English data, this difference cannot be due to
cross-lingual differences, but rather to differences
between the two outlets, taz and the Guardian. In-
deed, we see that a British newspaper is likely to
report differently on German domestic affairs than
a German newspaper, which leads to differences
in claim form and substance: They tend to focus
on the internationally most visible actors and re-
port claims on a more coarse-grained level. They
also overreport the claim categories most relevant
for the British readership: claims migration con-
trol account for 22% of all claims in DebateNet
but for 34% in the Guardian. In contrast, domes-
tic (German) residency issues make up 14% of the
DebateNet claims but only 2% of the Guardian
claims. See Table 5 in the Appendix for a detailed
breakdown and example claims.

Target: yes Target: no

Predicted: yes 29 147
Predicted: no 83 1088

Table 4: Claim identification (Guardian): confusion
matrix of the best model for English (translate-train)

Thus, even if the Guardian claims might be struc-
turally easier to recognize, the cross-outlet differ-
ences in claim distribution make transferring model
representations from DebateNet to the Guardian
hard. The confusion matrix for claim identifica-
tion in Table 4 shows a low-precision scenario, in
contrast to the high precision of the cross-lingual
within-DebateNet setup.

It is interesting to note that claim identification
suffers much more (-30 points) than claim catego-
rization (-15 points), indicating that the model of
claim topics survives the transfer to another outlet
better than the model of what constitutes a claim.

5 Conclusion

This paper explores different strategies for the
cross-lingual projection of political claims analysis
from German into English and French. Our experi-
ments establish the potential of machine translation
for both claim identification and categorization,
setting the stage for further investigations on the
factors affecting projection performance and on
the applicability of cross-lingual transfer for sim-
ilar analyses. Multilingual embeddings yielded
worse results, in line with previous analyses argu-
ing that they attempt to solve a harder (since more
open-ended) task than Machine Translation (Pires
et al., 2019; Barnes and Klinger, 2019). We find
that the language is not the only relevant dimen-
sion, though: in fact, the differences in presentation
between German and British articles on German
affairs go substantially beyond the language gap
(Vu et al., 2019).
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Limitations

Our main experiment was limited to German, En-
glish, and French, three typologically very simi-
lar languages. Generalization to more distant lan-
guages is presumably harder, but was outside the
scope of our study. Our Guardian test set is very
small (albeit not significantly smaller than out-of-
domain gold sets often gathered for validation pur-
poses), and annotating it was challenging due to the
need to apply a codebook developed for the Ger-
man debate to an English source. We are currently
working on improving the size and quality of our
test set.

While our experiments are reassuring as regards
translation quality, we cannot exclude that transla-
tion biases may have been introduced in the data.
We are also aware that DeepL is not the only option
for automatic translation; evaluating different trans-
lation methods, however, falls outside the scope of
this work.

Ethical Considerations

At the level of datasets and annotations, we em-
ployed an existing dataset (DebateNet2.0). Our
own annotation contribution (the Guardian test set)
was based on publicly available data; moreover,
the annotation task was carried out following best
practices. The Guardian test set is available upon
request.

At the modeling level, we use previously defined
models that are publicly available; in this sense,
our contribution does not raise new ethical ques-
tions (e.g. in terms of misuse potential). To the
contrary, our focus is on understanding how these
models transfer across languages and what biases
can potentially arise in this transfer, as shown by
our focus on error analysis.
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A Appendix

A.1 Datasets: quantitative details and comparison

Class Label %DN %G Examples

C1 Controlling Migration 22 34 DN: A fixed resettlement programme is needed, with binding
annual admission quotas.
G: Angela Merkel stressed the need for a fairer distribution of
refugees across the EU

C2 Residency 14 2 DN: These urgent procedures shall be carried out in special recep-
tion facilities.
G: We have to find suitable accommodation for all of them.

C3 Integration 9 3 DN: The CDU insists on an integration obligation for migrants.
G: Michael Fuchs called on the government to set up language
courses and to send job centre employees to assess newcomers

C4 Domestic Security 3 8 DN: The head of the police union, RainerWendt, has called for a
"ban mile around refugee shelters".
G: We should not hand over our streets to hollow rallying cries

C5 Foreign Policy 16 11 DN: The current problems with the refugees must nevertheless be
solved at European and international level, she said.
G: Tomas de Maizière said pressure should be applied to rejection-
ist nations such as Hungary, Slowakia and the Czech Republic.

C6 Economy + Labour Market 3 7 DN: A condition for waiving such proof, however, must be that
collective bargaining conditions or a minimum wage apply in order
to prevent dirty competition to the detriment of all employees.
G: Folkerts-Landau said the influx of refugees has the potential
not just to invigorate our economy but to protect prosperity for the
future generations

C7 Society 17 21 DN: And Reinhard Marx, chairman of the Catholic Bishops’ Con-
ference, criticized the strict separation between war refugees and
economic refugees.
G: As chancellor, I come to the defense of Muslims, most of whom
are upright, constitutionally loyal citizens

C8 Procedures 15 14 DN: The federal government is planning a new law to speed up
asylum procedures.
G: Gerd Mueller called on Tuesday for the EU to appoint a Euro-
pean Refugees commissioner and said it had to treat the problem
with more urgency

Table 5: Claim categories: class, labels, distribution (percentage of total claims), and example claim in DebateNet2.0
(DN) (manually translated into English) and Guardian test set (G).

A.2 Per-category Results
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Class #instances in test Precision Recall F1 score

C1 (Controlling Migration) 35 0.67 0.83 0.74
C2 (Residency) 2 0.66 0.74 0.70
C3 (Integration) 3 0.66 0.60 0.63
C4 (Domestic Security) 8 0.50 0.44 0.47
C5 (Foreign policy) 11 0.87 0.76 0.81
C6 (Economy) 7 0.88 0.50 0.64
C7 (Society) 21 0.70 0.67 0.69
C8 (Procedures) 14 0.75 0.70 0.72

micro avg 0.71 0.71 0.71
macro avg 0.71 0.66 0.67

Table 6: Claim categorization: precision, recall and F1 values for the different classes, translate-train French

Class #instances in test Precision Recall F1 score

C1 (Controlling Migration) 35 0.66 0.74 0.70
C2 (Residency) 2 0.68 0.70 0.69
C3 (Integration) 3 0.72 0.51 0.60
C4 (Domestic Security) 8 0.40 0.33 0.36
C5 (Foreign policy) 11 0.85 0.65 0.73
C6 (Economy) 7 0.80 0.57 0.67
C7 (Society) 21 0.77 0.56 0.65
C8 (Procedures) 14 0.76 0.58 0.66

micro avg 0.71 0.62 0.67
macro avg 0.70 0.58 0.63

Table 7: Claim categorization: precision, recall and F1 values for the different classes, translate-train English

Class #instances in test Precision Recall F1 score

C1 (Controlling Migration) 35 0.76 0.71 0.73
C2 (Residency) 2 0.76 0.69 0.72
C3 (Integration) 3 0.72 0.58 0.64
C4 (Domestic Security) 8 0.40 0.33 0.36
C5 (Foreign policy) 11 0.86 0.65 0.74
C6 (Economy) 7 0.83 0.36 0.50
C7 (Society) 21 0.86 0.56 0.68
C8 (Procedures) 14 0.73 0.61 0.66

micro avg 0.76 0.62 0.68
macro avg 0.74 0.56 0.63

Table 8: Claim categorization: precision, recall and F1 values for the different classes, German baseline
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Class #instances in test Precision Recall F1 score

C1 (Controlling Migration) 35 0.74 0.78 0.76
C2 (Residency) 2 0.69 0.84 0.76
C3 (Integration) 3 0.72 0.62 0.67
C4 (Domestic Security) 8 0.48 0.61 0.54
C5 (Foreign policy) 11 0.81 0.81 0.81
C6 (Economy) 7 0.70 0.50 0.58
C7 (Society) 21 0.72 0.66 0.69
C8 (Procedures) 14 0.70 0.68 0.69

micro avg 0.72 0.73 0.72
macro avg 0.70 0.69 0.69

Table 9: Claim categorization: precision, recall and F1 values for the different classes. Model: best cross-lingual
model (translate-test)

Class Precision Recall F1 score

C1 (Controlling Migration) 0.66 0.66 0.66
C2 (Residency) 0.25 0.50 0.33
C3 (Integration) 0.50 0.67 0.57
C4 (Domestic Security) 1.00 0.25 0.40
C5 (Foreign policy) 0.45 0.82 0.58
C6 (Economy) 0.50 0.29 0.36
C7 (Society) 0.76 0.76 0.76
C8 (Procedures) 0.57 0.29 0.38

micro avg 0.61 0.58 0.60
macro avg 0.59 0.53 0.51

Table 10: Claim categorization: precision, recall and F1 values for the different classes on Guardian dataset. Model:
translate-test
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Abstract
Recent work has shown the potential of know-
ledge injection into transformer-based pre-
trained language models for improving model
performance for a number of NLI benchmark
tasks. Motivated by this success, we test the
potential of knowledge injection for an ap-
plication in the political domain and study
whether we can improve results for policy do-
main prediction, that is, for predicting fine-
grained policy topics and stance for party man-
ifestos. We experiment with three types of
knowledge, namely (1) domain-specific know-
ledge via continued pre-training on in-domain
data, (2) lexical semantic knowledge, and (3)
factual knowledge about named entities. In
our experiments, we use adapter modules as
a parameter-efficient way for knowledge in-
jection into transformers. Our results show a
consistent positive effect for domain adapta-
tion via continued pre-training and small im-
provements when replacing full model train-
ing with a task-specific adapter. The injected
knowledge, however, only yields minor im-
provements over full training and fails to out-
perform the task-specific adapter without ex-
ternal knowledge, raising the question which
type of knowledge is needed to solve this task.

1 Introduction

Identifying policy domains in political text such as
parliamentary speeches or party manifestos is an
important ingredient for many analyses in politi-
cal science. This type of information is crucial for
studying party competition and voting behaviour
or for investigating agenda setting and framing,
and for many other research questions in the field.
Many research projects have thus addressed this
problem, either by creating annotated data sets
for manual and automated analyses (Baumgartner
et al., 2006; Bevan, 2019; Volkens et al., 2019b)
or by developing systems for policy domain pre-
diction (Subramanian et al., 2017; Glavaš et al.,
2017; Abercrombie et al., 2019; Koh et al., 2021).

This task, however, is quite challenging, due to the
large number of fine-grained topic labels in the re-
spective coding schemes. For many of these labels,
only a small number of annotated instances exist
in the training set. Furthermore, as this type of
annotation has been adopted in different research
projects and across countries and time, the anno-
tations themselves include inconsistencies, as the
defined classes might have been interpreted differ-
ently by the coders, depending on their background,
situational context and training.

One way to address (at least part of) this problem
is to enrich the models with external information, in
order to make them more robust to inconsistencies
in the data and to provide more information espe-
cially for the infrequent labels. A number of stud-
ies have looked into this problem, with promising
results. Previous work has demonstrated improve-
ments for various natural language understanding
tasks by incorporating general human knowledge
presented in knowledge bases (Zhang et al., 2019;
Sun et al., 2019; Peters et al., 2019; Lauscher et al.,
2020b) and by adapting pre-trained language mod-
els (PLMs) to specific domains (Lee et al., 2020;
Beltagy et al., 2019; Gururangan et al., 2020). How-
ever, these approaches are resource intensive as
they typically require either re-training the entire
model from scratch (Lauscher et al., 2020b) or tun-
ing pre-trained parameters (Zhang et al., 2019) on
auxiliary pre-training tasks.

To alleviate these problems, researchers have
turned to the lightweight adapter architecture
(Houlsby et al., 2019; Pfeiffer et al., 2021) for
knowledge integration. The adapter module (or
simply adapter) is a set of parameters inserted into
the original transformer layers in the pre-trained
model. Unlike the standard fine-tuning of BERT-
based models where the entire model is updated,
the adapter-based tuning only updates the newly in-
serted adapter parameters when the model is tuned
on downstream tasks, while the underlying pre-
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trained model is frozen. This approach makes
model tuning more efficient, due to the smaller size
of parameters that need to be trained. In addition to
its efficiency, several studies have demonstrated the
effectiveness of adapters for knowledge injection
into BERT-based models (Hung et al., 2022; Meng
et al., 2021; Lauscher et al., 2020a).

Building upon this body of work, we use the
adapter-based approach to incorporate multiple
knowledge sources into multilingual RoBERTa
(XLM-R) (Conneau et al., 2020). Different from
past studies that mostly focused on integrating sin-
gle knowledge sources, we enrich the pre-trained
language model with multiple types of knowledge:
(i) domain knowledge, (ii) lexical semantic know-
ledge (such as word synonyms) and (iii) factual
knowledge about named entities (e.g., Angela
Merkel is a politician). The main research ques-
tions addressed in this paper are:

RQ1 How does external knowledge, such as do-
main knowledge and structured knowledge
from knowledge bases, impact the language
model’s capability to understand natural lan-
guage in the political science domain?

RQ2 Can we use adapters to inject this knowledge
into a pre-trained language model in a more
parameter-efficient manner?

The paper is structured as follows. In Section
2, we outline related work on topic and policy
prediction in the political domain and review re-
cent studies that incorporate adapters into PLMs.
Section 3 presents our approach for adapter-based
knowledge injection, and Section 4 discusses our
results for predicting policy domains from party
manifestos, using adapters and external domain
and world knowledge. In Section 5, we conclude
and outline future work.

2 Related Work

2.1 Predicting Manifesto Policy Domains

Many studies in the context of computational po-
litical text analysis have focused on topic or policy
issue prediction, using dedicated datasets created
within the Comparative Agenda Project (Baumgart-
ner et al., 2006; Bevan, 2019) or the Comparative
Manifesto Project (CMP) (Mikhaylov et al., 2012;
Werner et al., 2014). In our work, we use the Mani-
festo Corpus from the CMP which includes a large

Label Policy Domain % of quasi-sentences

1 External Relations 6.6
2 Freedom & Democracy 4.7
3 Political System 10.6
4 Economy 24.9
5 Welfare & Quality of Life 30.9
6 Fabric of Society 11.2
7 Social Groups 10.0
0 Not Categorized 1.1

Table 1: Distribution of major policy domains in the
manifesto dataset of Koh et al. (2021).

collection of party manifestos from over 50 coun-
tries. Each document in the corpus has been seg-
mented into “quasi-sentences” (mostly clauses) and
has been manually categorized into eight coarse-
grained policy domains (see Table 1). Those main
classes are further subdivided into a set of 57 fine-
grained policy goals and issues that also encode
the author’s stance towards a specific policy issue
(positive/negative), as illustrated in Example 2.1.

Ex. 2.1
“We view the diversity of our nation not as a liabil-
ity, but rather as a shared strength and source of
pride”
Main topic: FABRIC OF SOCIETY

Minor topic: MULTICULTURALISM→ POSITIVE

2.2 Introducing domain-specific knowledge
into PLMs

Transfer learning based on large, pre-trained lan-
guage models (PLMs) has shown to improve model
performance of transformer-based architectures for
a wide range of NLP tasks (Devlin et al., 2019;
Liu et al., 2019). The model is trained on large
amounts of text, using self-supervision, which pro-
vides the model with information about language
structure and the meaning of words in context. Ex-
ploiting this generic knowledge to specific down-
stream tasks reduces the amount of training data
needed for each task. However, many domains
require the model to understand specialised vocab-
ulary terms and information that the model cannot
learn from generic corpora such as Wikipedia. Be-
low, we describe a number of techniques that have
been proposed to address this shortcoming.

Domain adaptation Many studies have demon-
strated that continued pre-training of PLMs on
domain-specific corpora before fine-tuning them
for the final task can improve model performance
of transformer-based models. BioBERT (Lee et al.,
2020) and ClinicalBERT (Alsentzer et al., 2019)
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both adopted the continual pre-training framework.
Other work has skipped pre-training on generic
text collections and, instead, pre-trained domain-
specific models from scratch (Beltagy et al., 2019;
Gu et al., 2022). In our work, we use PolSciBERT,
a PLM that has been adapted to the political domain
through continual pre-training.

External knowledge injection Numerous stud-
ies have shown that integrating knowledge graphs
into BERT-based models is beneficial for nat-
ural language understanding tasks (Sun et al.,
2019; Zhang et al., 2019; Peters et al., 2019;
Lauscher et al., 2020b; Peinelt et al., 2021). These
studies mainly focused on two types of know-
ledge: facts about entities and linguistic knowledge.
Zhang et al. (2019) aligned named entities in the
Wikipedia corpora with entities in the knowledge
base Wikidata (Vrandečić and Krötzsch, 2014)
and trained the model, ERNIE, to learn the align-
ment, based on an entity alignment masking objec-
tive. Sun et al. (2019) proposed Baidu-ERNIE,
which was pre-trained via knowledge masking
strategies. Specifically, the authors used entity-
level and phrase-level masking techniques on Chi-
nese Wikipedia and in-house text collections in
their masked language model pre-training. Peters
et al. (2019) utilized the multi-head attention mech-
anism to fuse knowledge from multiple knowledge
bases, while Peinelt et al. (2021) adopted the gating
mechanism to combine linguistic embeddings and
contextual embeddings from BERT. Lauscher et al.
(2020b) effectively introduced word-level seman-
tic similarity information into BERT via additional
pre-training by predicting semantic relations in a
knowledge graph.

Building on this line of work, we propose to
enrich PolSciBERT with (1) lexical semantic infor-
mation and (2) knowledge about named entities.

Adapter-based architectures Most of the work
described above involves re-training the entire
model with additional pre-training objectives
which, due to the large number of parameters, is
computationally expensive and might suffer from
catastrophic forgetting (McCloskey and Cohen,
1989). To alleviate this problem, adapters have
been proposed as an alternative strategy for down-
stream fine-tuning (Rebuffi et al., 2017; Houlsby
et al., 2019; Pfeiffer et al., 2020a). Unlike the stan-
dard fine-tuning approach, adapter-based tuning
does not require re-training the entire model. In-

stead, it injects a lightweight task-specific adapter
layer in each transformer layer. During fine-tuning,
these newly added adapter layers are trained along
with the final classification layer, while the origi-
nal pre-trained parameters are frozen. Fixing the
original pre-trained model makes it easier to share
its parameters across several different tasks. In
addition, the adapter layer typically has a much
smaller number of parameters than the original pre-
trained model, making adapter-based fine-tuning
much more efficient.

A number of studies have leveraged the adapter-
based approach and demonstrated its potential not
only for domain adaptation (Lu et al., 2021; Hung
et al., 2022; Meng et al., 2021), but also for integrat-
ing structured knowledge bases into transformer-
based models (Wang et al., 2021; Lauscher et al.,
2020a). Inspired by these studies, this work focuses
on incorporating knowledge bases into PolSci-
BERT using adapters, to investigate whether se-
mantic similarity and/or entity knowledge can also
be beneficial for NLP tasks in the political domain.
We compare different methods for combining mul-
tiple adapters, namely adapter stacking (Pfeiffer
et al., 2020b) and adapter fusion (Pfeiffer et al.,
2021).

3 Training Knowledge Adapters

To introduce knowledge into PolSciBERT, we pre-
train a number of specialized adapters, each of
which encodes a certain type of knowledge. These
pre-trained modular adapters allow us to transfer
knowledge from external sources into our model.
We first describe our base model, PolSciBERT, and
then explain the training procedure of the adapters.

All models are implemented in PyTorch, using
the HuggingFace Transformers library (Wolf et al.,
2020)1 and the adapter-transformer library from
AdapterHub (Pfeiffer et al., 2020a).2

3.1 PolSciBERT

PolSciBERT is based on the multilingual XLM-
R model (Conneau et al., 2020) and was further
pre-trained in a multilingual setting with full fine-
tuning. Specifically, the pre-training corpus is
a collection of parliamentary speeches in 5 lan-
guages, German, English, Spanish, French and Ital-
ian, including debates from the European parlia-
ment (Koehn, 2005) and transcripts from parlia-

1v4.17.0. https://huggingface.co/transformers.
2v3.0.0. https://docs.adapterhub.ml.
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mentary meetings (Rauh and Schwalbach, 2020;
MIT Election Data and Science Lab, 2017).3 Start-
ing with the pre-trained XLM-R, we continued pre-
training of PolSciBERT on the political text corpus,
using the masked language modelling (MLM) ob-
jective.

3.2 Corpora for knowledge injection

We explore two publicly available datasets to ac-
quire different types of knowledge: ConceptNet
(Speer et al., 2017) for semantic (dis)similarity and
the KELM corpus (Agarwal et al., 2021) for factual
information about entities.

ConceptNet (Speer et al., 2017) is a large multi-
lingual knowledge base which encodes common-
sense knowledge, such as the causes of an event
(e.g., exercise causes sweat) or the synonyms of a
word. It integrates multiple knowledge sources,
including Wiktionary and a subset of DBPedia
(Lehmann et al., 2012). The latest version (Con-
ceptNet 5.7) comprises 34 million edges and sup-
ports hundreds of languages. ConceptNet has
been used in NLP research to incorporate external
knowledge into large language models (Camacho-
Collados et al., 2017; Zhong et al., 2019; Lauscher
et al., 2020a; Yasunaga et al., 2021).

Since we are interested in enriching PolSciBERT
with semantic similarity and dissimilarity informa-
tion, we extract edges from the knowledge graph
for three types of lexical relations (IsA, Synonym
and Antonym relations) and 5 languages (DE, EN,
IT, FR, ES) as training data for our knowledge
adapters. For each relation type, we extract all
word pairs connected by this relation. Then we per-
form a simple clean-up and split the data into train-
ing (85%) and test set (15%) for adapter training.
We only keep word pairs where both words exist
in each of the 5 languages and remove duplicates
from the data. We also remove triplets whose enti-
ties contain numbers or have a word length of ≤ 1
character. Note that the triplets can be cross-lingual
(e.g., <Synonym, énorme (FR), enorme (IT)>).

To train the CN-SIMILARITY adapter, we merge
the IsA and Synonym relation triplets into one
training and test set since they both encode in-
formation on semantic similarity. This results in
1.3 million training instances for CN-SIMILARITY.
The CN-ANTONYM adapter was trained solely on

3For a detailed list of datasets and information on prepro-
cessing and pre-training, please refer to §A in the Appendix.

Task Train Size Test Size

CN-SIMILARITY TCL 1,317,027 232,417
CN-ANTONYM TCL 30,501 5,383
KELM-ADAP MLM 13,284,213 2,344,273

Table 2: Summary of adapter training tasks and data
(TCL: triple classification; MLM: masked language
modelling).

triplets from the Antonym relation, which com-
prises 30,000 training instances.

KELM In addition to word or phrase level
semantic information, factual knowledge about
named entities has also proven to improve the per-
formance of pre-trained language models (Zhang
et al., 2019; Sun et al., 2019). Thus, we utilize
the Corpus for Knowledge-Enhanced Language
Model pre-training (KELM) (Agarwal et al., 2021)
to inject factual knowledge into PolSciBERT. The
KELM corpus is a synthetic corpus generated by a
T5 model (Raffel et al., 2020). The model has been
fine-tuned on aligned data from English Wikidata
(Vrandečić and Krötzsch, 2014) and Wikipedia by
training the model to convert the Wikidata triples
to natural text (Agarwal et al., 2021).

The raw dataset4 includes more than
15 million instances. Each instance is a
JSON object with three fields: (1) a list of
triples where each triple is in the format
[head entity, relation, tail entity], (2)
the serialized triple sequence which is concatenated
by the list of triples and input to the T5 model, and
(3) the generated text output of the T5 model. For
an example, refer to Figure 1 in the Appendix. The
average length of the generated sentences in the
KELM corpus is 15.2 tokens.

To create the dataset for training the KELM
adapter (KELM-ADAP), we extract the generated
text (the gen_sentence field) from each instance
in the raw dataset and split the resulting dataset into
training set (85%) and test set (15%). The train-
ing (test) set includes about 13 million (2 million)
sentences, as summarized in Table 2.

3.3 Adapter Training

For all our experiments, we adopt the adapter ar-
chitecture proposed in Pfeiffer et al. (2021). That
is, we insert a single adapter with a bottleneck hid-
den size M after the feed-forward sub-layer in the
transformer layer (Vaswani et al., 2017).

4Downloaded from https://github.com/google-rese
arch-datasets/KELM-corpus on April 23, 2022.
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CN-SYNONYM and CN-ANTONYM The Concept-
Net adapters aim at enriching PolSciBERT with se-
mantic similarity and dissimilarity information. To
learn this type of knowledge, we follow Lauscher
et al. (2020b) and train the adapter in a relation
classification task where we input a word pair from
our data and predict whether a CN-SYNONYM (CN-
ANTONYM) relation holds between the two words.

The negative samples needed for training have
been created, using an approach similar to Yao et al.
(2019). For each relation, a triple from the data is
corrupted by replacing either its head h or its tail
t (but not both) by a randomly selected entity h′

or t′ from the dataset. We make sure that the new,
corrupted triple does not appear in the dataset, to
avoid inserting false negatives. This way, we create
k corrupted triples for k true triples, resulting in 2k
triples in total. The set of negative samples can be
presented as

D−R = {(h′, r, t)|r ∈ R ∧ h′ ∈ E ∧ h′ 6= h ∧ (h′, r, t) /∈ D+
R}

∪ {(h, r, t′)|r ∈ R ∧ t′ ∈ E ∧ t′ 6= t ∧ (h, r, t′) /∈ D+
R},

where E is the set of all entities in a semantic
relation R, and D+

C is the set of positive triples for
the semantic relation R.

Similar to previous work (Yao et al., 2019;
Lauscher et al., 2020b), we model a word pair (h, t)
as a sequence pair to perform the relation classifi-
cation task. Specifically, each word pair (h, t) in
a semantic relation,5 including both positive and
negative examples, is turned into a sequence pair
that starts with the <s> token and is separated by
the </s> token. For illustration, the true word pair
in the Similarity relation <color blind, farbenblind>
is transformed into

[s] _color _blind [/s][/s] _far ben blind [/s]

The relation classification task can thus be mod-
eled as a standard sequence pair classification task
for transformer models (Devlin et al., 2019; Liu
et al., 2019; Conneau et al., 2020). The last output
hidden state of the [s] token is used for prediction.
For a true positive instance, the correct label is 1,
and 0 for the generated negative examples.

KELM-ADAP For the KELM adapter, we seek to
encode facts about named entities in the world. To
achieve this goal, we train the adapter with the
masked language modeling objective (MLM) (De-
vlin et al., 2019; Lauscher et al., 2020a; Lu et al.,

5Synonym and IsA for CN-SYNONYM; Antonym for CN-
ANTONYM

2021) on the KELM dataset described above. We
follow the standard MLM procedure to randomly
mask 15% of the tokens in each input sequence and
use the last hidden state of the masked token for
prediction.6

4 Experiments

We now want to test our knowledge adapters on
the task of predicting policy positions in political
manifestos.

Baselines As baselines, we use multilingual
RoBERTa (XLM-R) (Conneau et al., 2020)
and PolSciBERT, our multilingual in-domain
RoBERTa model, to assess whether domain-
specific knowledge improves model performance
(RQ1) and whether the effect of inserting addi-
tional lexical and/or factual knowledge in the model
can further improve results (RQ2).

4.1 Predicting Manifesto Policy Domains
The Manifesto Project Database (Volkens et al.,
2019a) has been widely used in political text anal-
ysis (Laver et al., 2003; Abercrombie et al., 2019;
Menini et al., 2017; Glavaš et al., 2017; Koh
et al., 2021).7 It comprises a large collection of
party manifestos from over 50 countries. The
text in the party manifestos has been segmented
into “quasi-sentences” (similar to clauses). Each
quasi-sentence contains exactly one unique state-
ment (Werner et al., 2021) and has been catego-
rized into one of 57 fine-grained classes reflecting
the most relevant policy goal and issue preference
for this statement. These 57 policy goals and is-
sues are grouped into 8 coarse-grained policy do-
mains. Thus, each quasi-sentence in the dataset has
a coarse-grained policy domain label (the “major
label”) and a fine-grained label capturing the policy
goal and issue (the “minor label”). For illustration,
see Example 2.1.8

To compare our results with related work, we
evaluate our models on the dataset of Koh et al.
(2021) which includes a subset of the manifesto
corpus (version 2019) (Volkens et al., 2019a,c) con-
sisting of all English manifestos.9 Koh et al. (2021)
split this subset into training, validation and test

6For training details and hyperparameters, see §B in the
Appendix.

7https://manifesto-project.wzb.eu/
8For more information, schema please refer to the code-

book of the Manifesto Project (Volkens et al., 2019b,d)
9Note that there are two versions 2019a and 2019b, but the

authors did not specify which version they used.
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Major topics Minor topics

Number of labels 8 57
Number of quasi-sent.

Total 99,279 99,279
Train (0.70) 69,499 69,499
Validation (0.15) 14,887 14,887
Test (0.15) 14,893 14,893

Table 3: Number of labels and examples in the final
manifesto dataset

sets with a ratio of 70/15/15. We first remove ex-
amples with empty text fields from the data, and
then follow the same split to evaluate our models.
The final dataset includes 99,279 quasi-sentences
(see Table 3).

Following Koh et al. (2021), we perform the
quasi-sentence classification task for both major
and minor topics. We model the task as a text clas-
sification problem and use the last hidden state of
the [S] token as a pooled representation of the in-
put sequence to predict labels and compute the loss.
During evaluation, we noticed some preprocessing
problems in the dataset, specifically missing tokens
at the end of most quasi-sentences. We therefore
tried to recreate the dataset with complete quasi-
sentences and report results for both datasets (see
Appendix, C for a more detailed description of the
problem and information on the recreated dataset).

4.2 Experimental setup

To investigate the effectiveness of knowledge injec-
tion via adapters, we experiment with three differ-
ent model setups for our semantic similarity know-
ledge adapters (CN-SIMILARITY) and the factual
knowledge adapter KELM-ADAP, following previ-
ous work in this area (Lauscher et al., 2021; Pfeiffer
et al., 2020b, 2021):

• Adapter full fine-tuning inserts one single
pre-trained knowledge adapter into PolSci-
BERT and tunes the entire model, including
the PolSciBERT parameters and the inserted
adapter. That is, the model is initialized with
the pre-trained parameters and updated during
fine-tuning on the downstream task.

• AdapterStack utilizes the AdapterStack
architecture (Pfeiffer et al., 2020b) and
stacks adapters –the pre-trained knowledge
adapter(s) and a randomly initialized task
adapter on top– and only tunes the task adapter
during fine-tuning while PolSciBERT and all
knowledge adapters are frozen. This setup dif-

fers from Adapter full fine-tuning in that the
model learns the task-specific information sep-
arately, which might be better at preserving
the in-domain information encoded in PolSci-
BERT and the knowledge encoded in the pre-
trained adapters (Lauscher et al., 2021).

• AdapterFusion (Pfeiffer et al., 2021) com-
bines multiple pre-trained knowledge adapters
and a pre-trained task adapter, using a ran-
domly initialized fusion layer. Similar to the
attention mechanism (Vaswani et al., 2017),
the fusion layer learns to weight the different
pre-trained adapters for the downstream task.
During downstream fine-tuning, PolSciBERT
and all adapters are frozen, only the parame-
ters in the fusion layer are updated.

For all three setups, the final task-specific pre-
diction head is randomly initialized. Additional
task adapters are pre-trained for the AdapterFusion
(Pfeiffer et al., 2021) setup. Specifically, we follow
the standard single task training for adapters (Pfeif-
fer et al., 2021; Houlsby et al., 2019), in which
randomly initialized task adapters are inserted into
PolSciBERT and fine-tuned on the downstream
task while PolSciBERT is kept frozen. For training
details, also see Appendix B.1 and B.2.

4.3 Results

Table 4 reports results for major and minor topics
on our dataset. Results for the original dataset from
Koh et al. (2021) are included in the Appendix.

4.4 Baseline Results

Our baseline models (XLM-R, PolSciBERT) out-
perform the BERT-GRU and BERT-CNN models
of Koh et al. (2021) by 2-3% Micro-F1 for the ma-
jor topics and by around 5% Micro-F1 for minor
topics (see Appendix, Table 8). For Macro-F1, the
improvements are more profound, with around 10%
for the fine-grained minor topics.

When training the same models on our new
dataset (without missing tokens), we observe a
slight increase in results across most settings, with
one noteworthy exception. For Macro-F1 on the
minor topics, results on the corrupted training (and
test) data were higher (around 5% for PolSciBERT,
from 36% to 31%). We will look into this issue in
§4.7.
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Major Topics Minor Topics
Model Setup Micro-F1 Macro-F1 Micro-F1 Macro-F1

Baselines (w/o adapters) XLM-R 62.3(0.2) 51.0(0.3) 49.1(0.4) 32.8(1.2)
PolSciBERT 64.6(0.6) 53.4(0.8) 50.8(0.3) 31.2(2.2)

(with adapter) PolSciBERT + task adapter 65.0∗(0.1) 54.5(0.4) 51.8∗(0.3) 36.5(0.2)

CN-SYNONYM
Full 62.6(0.8) 52.5(0.9) 49.6(0.7) 35.0(0.8)
AdapterStack 64.1(0.8) 53.3(0.8) 51.3(0.6) 35.5(1.2)
AdapterFusion 65.0(0.5) 54.3(0.2) 51.7∗(0.3) 36.0(0.5)

KELM-ADAP
Full 62.5(0.7) 53.3(0.4) 50.0(0.6) 34.3(1.9)
AdapterStack 64.8(0.3) 54.1(0.3) 51.5∗(0.3) 36.0(0.4)
AdapterFusion 64.7(0.2) 54.0(0.2) 51.8∗(0.2) 36.2(0.5)

CN-SYNONYM & KELM-ADAP
AdapterStack 63.8(0.2) 52.9(0.3) 51.2(0.2) 35.4(0.6)
AdapterFusion 65.2∗(0.4) 54.4(0.3) 51.6∗(0.2) 36.2(0.8)

Experiments including antonym relations

CN-SYNONYM & CN-ANTONYM
AdapterStack 61.8(1.0) 50.6(1.3) 51.3∗(0.5) 35.7(0.6)
AdapterFusion 65.0(0.5) 54.2(0.4) 51.7∗(0.3) 36.4(0.3)

CN-SYNONYM & CN-ANTONYM
& KELM-ADAP

AdapterStack 62.1(0.5) 51.0(0.8) 50.9(0.5) 34.9(1.0)
AdapterFusion 65.1∗(0.2) 54.5(0.2) 51.5∗(0.1) 34.7(2.5)

Table 4: Test set results of the manifesto quasi-sentence domain classification (Major topics). The first column
specifies the model setup, including the knowledge adapter(s) and the fine-tuning strategy applied. All evaluation
metrics reported for our model setups were averaged over 5 random initializations. The number in the parenthesis
indicates the standard deviation of the 5 runs. Micro-F1 results marked with ∗ are significantly better than the
PolSciBERT baseline w/o adapters (Cochran’s Q with p <= .001).

4.5 Domain Adaptation

We observe an increase in results of around 2% (ma-
jor topics) for PolSciBERT, compared to the vanilla
XLM-R. For the minor topics, results are mixed,
with improvements in the same range for Micro-
F1 while Macro-F1 decreases, probably caused by
a high number of infrequent topics. Our results
show that domain adaptation through continuous
pre-training on in-domain data from the political
domain has a positive effect (RQ1). When replac-
ing full finetuning with a task adapter, we see fur-
ther improvements especially for the minor topics.
In addition, the task adapter seems more robust
(increase in standard deviation). Next, we look into
the performance of the knowledge adapters.

4.6 Knowledge Adapters

Full fine-tuning vs. freezing the LM parame-
ters In general, PolSciBERT equipped with a sin-
gle knowledge adapter, either CN-SIMILARITY or
KELM-ADAP, brings performance benefits across
different fine-tuning strategies compared to PolSci-
BERT without any adapters. When comparing
results for AdapterStack and AdapterFusion with
full fine-tuning, we see that for all settings it is
beneficial to freeze the LM parameters as well as
the knowledge adapter parameters and update only
the weights for the task-specific adapter and (for
AdapterFusion) the fusion layer.

Stacking vs. Fusion Our second observation
concerns the performance of AdapterStack versus
AdapterFusion. When inserting only one know-
ledge adapter, AdapterFusion works better or on
par with AdapterStack. However, when combin-
ing multiple knowledge adapters, adapter fusion
substantially outperforms stacking and yields im-
provements in the range of 3-4% for the major
topics. This shows that letting the model learn
the weights for the different adapters is beneficial.
Overall, however, the knowledge adapters do not
outperform the task-specific adapter.

Micro-F1 vs. Macro-F1 For the fine-grained mi-
nor topics, we observe more significant improve-
ments for Macro-F1 than for the Micro-F1 met-
ric. This implies that the improvements we gain
from adapter training are mostly driven by improve-
ments for the rare labels in the dataset. That is,
the adapters seem to be mostly helpful for sparse
data (i.e., topics with few instances). This obser-
vation is interesting, as it shows that the adapters
seem to have learned additional information that
our in-domain PolSciBERT has not yet learned (as
evidenced by the lower Macro-F1 of PolSciBERT,
compared to the vanilla XLM-R model).

Type of knowledge adapters When comparing
the different types of knowledge that we inserted,
we do not see any crucial differences between the
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entity-based knowledge and the semantic similarity
adapters. Both types of information yield simi-
larly small improvements. This raises some doubts
whether the information we inserted is crucial to
solve our task. We will come back to this question
in §4.7.

Lessons learned Our results show that freezing
the LM parameters and training only the weights
of the adapter(s) can outperform full fine-tuning, at
least in our setup. This provides more evidence that
adapters are a good way to prevent “catastrophic
forgetting” (Kirkpatrick et al., 2017; Lauscher et al.,
2021).

4.7 Error Analysis

We will now look into some open questions men-
tioned above. First, we would like to know why
Macro-F1 for PolSciBERT for the minor classes de-
creased (as compared to the vanilla XLM-R model)
when training on the new dataset while, at the same
time, Micro-F1 for PolSciBERT increased. This
was in contrast to the results on the original dataset
of Koh et al. (2021) where both, Micro and Macro-
F1 for PolSciBERT were around 2% higher than
the ones for the generic XLM-R. When looking
into the data, we found that PolSciBERT trained
on the newly created dataset does not predict la-
bels for 14 out of the 57 classes. Those classes
are the ones with few training (and test) instances
only and the underlying reason for the different be-
haviour of the two models lies in the way the data
was sampled. Koh et al. (2021) decided to create a
training set where the different classes are equally
distributed over the train/dev/test sets. In contrast
to this approach, we did not distribute sentences
from the same file over train, dev and test but se-
lected 33 unseen manifestos and put all sentences
from those documents in the test set. This results
in a slightly less balanced, but more realistic test
case. We assume that, as a result of our sampling
decision, the model had more difficulties to pre-
dict the low-frequency classes which resulted in
a lower Macro-F1 but higher accuracies for most
other predicted classes.

4.8 Zero-shot experiments for German

In our final experiment, we test our multilingual
model on German data in a zero-shot setup where
we predict policy domains and preferences in a
new, unseen language. We apply our model that
has been fine-tuned exclusively on English data

F1 (Major) F1 (Minor)
Model Setup Mic. Mac. Mic. Mac.

E
ng

lis
h XLM-R 62.3 51.0 49.1 31.8

PolSciBERT 64.6 53.4 50.8 31.2
PolSciB+Adap 65.0 54.5 51.8 36.5
CN-SYN AdaptFus 65.0 54.3 51.7 36.0
KELM AdaptFus 64.7 54.0 51.8 36.2

G
er

m
an

XLM-R 51.5 41.8 35.7 22.5
PolSciBERT 56.8 48.0 41.4 24.6
PolSciB+Adap 56.3 47.9 41.5 27.6
CN-SYN AdaptFus 56.5 47.3 40.2 26.8
KELM AdaptFus 56.5 48.8 41.8 25.8

Table 5: Results for English (from Tab. 4) and zero-
shot results for German manifestos.

to German manifestos that have been annotated
within the same framework.10 We are interested to
see (i) how well the model does without any task-
specific German training data and (ii) which of the
different methods (if any) is able to improve results
over the baseline.

Our results for German show a decrease of more
than 10% for the vanilla XLM-R for major topics
(62.4% vs. 51.5% Macro-F1) and around 15-20%
for the minor topics. The in-domain PolSciBERT is
able to improve results for major and minor topics
by around 5% (Micro-F1). However, as seen for En-
glish, none of the knowledge adapters is able to ob-
tain further significant improvements over the best
model trained without external knowledge, again
questioning whether the information that we in-
jected in the model is needed for solving the task at
hand. The adapters, however, provide competitive
results without the need to retrain the full model.

5 Conclusions

Inspired by previous work on enhancing
transformer-based LMs with domain knowledge,
common-sense knowledge and semantic similarity
information, we tested the impact of knowledge
injection for the task of policy domain prediction
from party manifestos. Our results showed that
(a) in-domain pre-training can yield substantial
improvements (PolSciBERT vs. vanilla XLM-R);
(b) freezing the LM parameters and training
task-specific adapters can yield comparable or
better results, compared to full model finetuning;
and (c) adapter fusion is especially important when
integrating more than one adapter in the model.

10Our test set includes German manifestos from 1998 –
2021 (88,694 quasi-sentences), downloaded from https://
manifesto-project.wzb.eu (see Table 3 in the Appendix).
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6 Limitations

While our results showed the effectiveness of
adapters as a parameter-efficient alternative to full
fine-tuning, our attempts to improve model per-
formance based on the injection of external know-
ledge were not successful. This, however, does
not prove that knowledge injection for the task at
hand is not feasible. More thorough testing of dif-
ferent types of knowledge is needed to answer the
question whether knowledge injection can improve
results for policy domain prediction from party
manifestos.

7 Ethical Considerations

While the task of policy domain prediction from
party manifestos has attracted a lot of attention
especially in the political sciences and in the field
of Text-as-Data, it is clear that the results so far
are not yet good enough for applications in the
real world. We thus advise researchers not to use
the output of our system for political text analyses
without any manual post-correction.
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Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A Free Collaborative Knowledgebase. Com-
munications of the ACM, 57(10):78–85.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xu-
anjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang,
and Ming Zhou. 2021. K-Adapter: Infusing know-
ledge into pre-trained models with adapters. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 1405–1418, Online.
Association for Computational Linguistics.

Annika Werner, Onawa Lacewell, and Andrea Volkens.
2014. Manifesto Coding Instructions: 5th fully re-
vised edition. Manifesto Project.

Annika Werner, Onawa Lacewell, Andrea Volkens,
Theres Matthieß, Lisa Zehnter, and Leila van Rin-
sum. 2021. Manifesto Coding Instructions. 5th re-
revised edition.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45,
Online. Association for Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
KG-BERT: BERT for knowledge graph completion.
arXiv preprint arXiv:1909.03193.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
Reasoning with Language Models and Knowledge
Graphs for Question Answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL): Human Language Technologies, pages
535–546. Association for Computational Linguis-
tics.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1441–1451, Florence, Italy. Association
for Computational Linguistics.

Peixiang Zhong, Di Wang, and Chunyan Miao. 2019.
Knowledge-Enriched Transformer for Emotion De-
tection in Textual Conversations. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 165–176, Hong
Kong, China. Association for Computational Lin-
guistics.

240



Supplementary Material

A PolSciBERT

We list the collection of corpora utilized for pre-
training PolSciBERT in Table 6. The raw texts
have been split into sentences using Spacy (Version
2.3.1. https://spacy.io). Sentences without
any lower-case Latin characters have been removed
from the data.

A.1 Hyperparameters for PolSciBERT
pre-training

The pre-training of PolSciBERT was continued on
the political text corpus, using a batch size of 16.
Note that the gradient accumulation step was set to
be 4, meaning model weights were updated once
every 4 batches. The learning rate was 5e− 05. A
new checkpoint was saved every 50,000 steps. We
use the checkpoint at the 5950000-th step as our
base model.

A.2 The KELM Corpus

{
"triples": [
["Valentin Lavigne", "member of sports team", "FC Lorient"],
["Valentin Lavigne", "FC Lorient", "start time", "01 January 2014"],
["Valentin Lavigne", "FC Lorient", "end time", "01 January 2016"]
],

"serialized_triples":
"Valentin Lavigne member of sports team FC Lorient, FC Lorient"
"end time 01 January 2016, FC Lorient start time 01 January 2014.",

"gen_sentence":
"Valentin Lavigne played for FC Lorient between 2014 and 2016."

}

Figure 1: An example instance in the KELM corpus
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B Training Details

B.1 Baseline models

We perform downstream fine-tuning for all model
setups with a batch size of 16 and a linear learning
rate decay and use AdamW (Loshchilov and Hutter,
2019) as optimizer. The learning rate is 5e−5 for
the baseline models and adapter full fine-tuning.
The maximum number of epochs is 30, with early
stopping and a patience of 5, meaning the model
will stop training if the evaluation results on the
development set stop improving for 5 consecutive
epochs.

B.2 Adapters

The training arguments and configurations for the
adapters are presented in Table 7. Following the
settings in Pfeiffer et al. (2021), all adapters are
trained with a learning rate of 1e − 4 with linear
learning rate decay. The warm-up ratio is 0.1. We
train adapters for different batch sized and number
of epochs, depending on the size of the training
data. For CN-SIMILARITY and CN-ANTONYM, we
perform early stopping based on the accuracy on
the test set: If the accuracy stops improving for 5
consecutive evaluation steps, the training is stopped.
We use AdamW (Loshchilov and Hutter, 2019)
with a weight decay of 0.01 for optimization.

C Results on the Koh et al. (2021) dataset

To compare our results with previous work, we
downloaded the data from Koh et al. (2021) from
their github repository.11 We found that, proba-
bly due to some preprocessing problem, the quasi-
sentences in the dataset were not complete (see
examples below). For a fair comparison, we pro-
ceeded as follows. First, we trained and tested our
models on the original dataset of Koh et al. (2021),
to assure that differences in results are not sim-
ply due to the missing tokens. We used the same
train/test splits as specified in the data. Next, in
order to evaluate the impact of the missing tokens
on the results, we downloaded English manifestos
from the Manifesto Project homepage12 and recre-
ated the dataset with manifestos from Australia,
Canada, Ireand, New Zealand, South Africa, the
UK and the US (Table 3). Our new dataset is sub-
stantially smaller than the original dataset and we

11https://github.com/allisonkoh/bertcnn-classi
fying-manifestos, (file: 02.FINAL_minor.csv).

12https://manifesto-project.wzb.eu

did not balance the label distribution across the dif-
ferent splits. To ensure replicability, we will make
our train/dev/test splits available upon publication.

A Once people have what
B Once people have offended, what next?
A The manifesto is
B The manifesto is comprehensive.
A not has turned things
B Choice, not chance, has turned things round.

Figure 2: Examples for missing tokens in the dataset
(A: quasi-sentence taken from Koh et al.; B: recreated
from the original manifestos data).

lang train dev test
Koh et al. (EN) 69,500 14,888 14,894
recreated (EN) 59,559 14,419 13,722
zero-shot (DE) – – 88,694

Figure 3: Statistics for the recreated manifestos dataset
(en) and for the German test set used for zero-shot pre-
diction.
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CN-SIMILARITY CN-ANTONYM KELM-ADAP

Training Arguments
batch size 32 32 16
number of epochs 10 30 1
learning rate 1e-4 1e-4 1e-4
warm-up ratio 0.1 0.1 0.1
weight decay 0.01 0.01 0.01
early stopping True True False
patience 5 5 5
evaluation steps 15000 500 15000
gradient accumulation steps 1 1 4

Adapter Configurations
adapter hidden size 96 96 96

Table 7: Training details for adapter training.

Major Topics Minor Topics
Model Setup Micro-F1 Macro-F1 Micro-F1 Macro-F1

(Koh et al., 2021) BERT-GRU (Base model) 59.3 47.9 43.2 23.9
BERT-CNN (Base model) 59.1 47.3 44.8 26.0

Baselines XLM-R 61.7(0.4) 50.6(1.0) 48.6(0.2) 34.1(1.7)
PolSciBERT 63.2(0.2) 51.9(0.7) 50.5(0.3) 36.1(0.7)

CN-SYNONYM
Full 61.7(0.3) 52.0(0.3) 49.4(0.3) 37.4(1.0)
AdapterStack 63.5(0.1) 52.2(0.5) 51.0(0.2) 37.7(1.1)
AdapterFusion 63.5(0.2) 52.3(0.5) 50.4(0.2) 35.7(2.3)

KELM-ADAP
Full 62.3(0.2) 52.5(0.4) 49.9(0.5) 37.9(0.5)
AdapterStack 63.8(0.2) 53.5(0.3) 51.2(0.2) 38.5(1.0)

AdapterFusion 63.5(0.2) 52.2(0.1) 50.8(0.2) 37.0(1.6)

CN-SYNONYM & KELM-ADAP
AdapterStack 62.8(0.5) 51.5(0.9) 50.6(0.3) 37.0(0.7)
AdapterFusion 63.6(0.2) 52.3(0.2) 50.8(0.3) 37.7(1.4)

Experiments with semantic dissimilarity knowledge

CN-SYNONYM & CN-ANTONYM
AdapterStack 62.1(0.8) 50.7(1.0) 50.3(1.1) 36.3(2.2)
AdapterFusion 63.6(0.2) 52.5(0.3) 50.7(0.3) 37.7(0.6)

CN-SYNONYM & CN-ANTONYM
& KELM-ADAP

AdapterStack 61.9(0.4) 50.3(0.6) 51.0(0.2) 37.8(0.8)
AdapterFusion 63.5(0.3) 52.3(0.2) 50.9(0.1) 38.4(0.9)

Table 8: Test set results for manifesto quasi-sentence policy domain classification (Koh et al., 2021). The results
for Koh et al. (2021) were taken from Table 7 in their paper. The first column specifies the model setup, including
the knowledge adapter(s) and the fine-tuning strategy applied. All evaluation metrics reported for our model setups
were averaged over 5 random initializations. The numbers in parentheses indicate standard deviation over the 5
runs.
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