Theory of Computer Science
 B3. Propositional Logic III

Gabriele Röger
University of Basel

March 4, 2019

Theory of Computer Science

March 4, 2019 - B3. Propositional Logic III

B3.1 Inference

B3.2 Resolution Calculus

B3.3 Summary

B3.1 Inference

Logic: Overview

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.
- advantage: mechanical method can easily be implemented as an algorithm

Inference Rules

- Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

- Meaning: "'Every model of $\varphi_{1}, \ldots, \varphi_{k}$ is a model of ψ."'
- An axiom is an inference rule with $k=0$.
- A set of syntactic inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$
\wedge-introduction $\frac{\varphi, \psi}{(\varphi \wedge \psi)}$
V-introduction $\frac{\varphi}{(\varphi \vee \psi)}$
\leftrightarrow-elimination $\quad \frac{(\varphi \leftrightarrow \psi)}{(\varphi \rightarrow \psi)} \quad \frac{(\varphi \leftrightarrow \psi)}{(\psi \rightarrow \varphi)}$

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas $\psi_{1}, \ldots, \psi_{k}$ with

- $\psi_{k}=\varphi$ and
- for all $i \in\{1, \ldots, k\}$:
- $\psi_{i} \in \mathrm{~KB}$, or
- ψ_{i} is the result of the application of an inference rule to elements from $\left\{\psi_{1}, \ldots, \psi_{i-1}\right\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(\mathrm{KB})$
(3) $Q(1,2$, Modus ponens)
(9) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens $)$
(0) $(Q \wedge R)(3,5, \wedge$-introduction)
(0) $((Q \wedge R) \rightarrow S)(\mathrm{KB})$
(8) $S(6,7$, Modus ponens)
(0) $(S \wedge R)(8,5, \wedge$-introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)
We write $\mathrm{KB} \vdash \subset \varphi$ if there is a derivation of φ from KB
in calculus C.
(If calculus C is clear from context, also only $\mathrm{KB} \vdash \varphi$.)
A calculus C is correct if for all KB and φ
$\mathrm{KB} \vdash c \varphi$ implies $\mathrm{KB} \models \varphi$.
A calculus C is complete if for all KB and φ $\mathrm{KB} \vDash \varphi$ implies $\mathrm{KB} \vdash^{c} \varphi$.

Consider calculus C, consisting of the derivation rules seen earlier. Question: Is C correct?
Question: Is Complete?
German: korrekt, vollständig

Refutation-completeness

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: $\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
- This implies that $\mathrm{KB} \models \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol \square for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if it holds for all unsatisfiable $K B$ that $K B \vdash_{c} \square$.

German: widerlegungsvollständig

B3.2 Resolution Calculus

Logic: Overview

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
- Transformation can require exponential time.
- Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
- Show $\mathrm{KB} \models \varphi$ by derivability of $\mathrm{KB} \cup\{\neg \varphi\} \vdash_{R} \square$ with resolution calculus R.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. \rightsquigarrow complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as set of clauses
- Clause as set of literals (due to commutativity, idempotence, associativity of \vee)
- Knowledge base as set of sets of literals

$$
\begin{aligned}
& \text { Example } \\
& \mathrm{KB}=\{(P \vee P),((\neg P \vee Q) \wedge(\neg P \vee R) \wedge(\neg P \vee Q) \wedge R), \\
& \\
& \quad((\neg Q \vee \neg R \vee S) \wedge P)\}
\end{aligned}
$$

as set of clauses:
$\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{R\},\{\neg Q, \neg R, S\}\}$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$
\frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}},
$$

where C_{1} und C_{2} are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\}$.
Terminology:

- L and $\neg L$ are the resolution literals,
- $C_{1} \cup\{L\}$ and $C_{2} \cup\{\neg L\}$ are the parent clauses, and
- $C_{1} \cup C_{2}$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_{1}, \ldots, C_{n} with

- $C_{n}=D$ and
- for all $i \in\{1, \ldots, n\}$:
- $C_{i} \in \Delta$, or
- C_{i} is resolvent of two clauses from $\left\{C_{1}, \ldots, C_{i-1}\right\}$.

If there is a proof of D by resolution from Δ, we say that
D can be derived with resolution from Δ and write $\Delta \vdash_{R} D$.
Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutionsbeweis, "mit Resolution aus Δ abgeleitet"

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example Given: $\mathrm{KB}=\{P,(P \rightarrow(Q \wedge R))\}$.
Show with resolution that $\mathrm{KB} \vDash(R \vee S)$.
Three steps:
(1) Reduce logical consequence to unsatisfiability.
(2) Transform knowledge base into clause form (CNF).
(3) Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability. $\mathrm{KB} \vDash(R \vee S)$ iff $\mathrm{KB} \cup\{\neg(R \vee S)\}$ is unsatisfiable.
Thus, consider
$\mathrm{KB}^{\prime}=\mathrm{KB} \cup\{\neg(R \vee S)\}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathrm{KB}^{\prime}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Step 2: Transform knowledge base into clause form (CNF).

- P
\rightsquigarrow Clauses: $\{P\}$
- $P \rightarrow(Q \wedge R)) \equiv(\neg P \vee(Q \wedge R)) \equiv((\neg P \vee Q) \wedge(\neg P \vee R))$
\rightsquigarrow Clauses: $\{\neg P, Q\},\{\neg P, R\}$
- $\neg(R \vee S) \equiv(\neg R \wedge \neg S)$
\rightsquigarrow Clauses: $\{\neg R\},\{\neg S\}$
$\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{\neg R\},\{\neg S\}\}$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{\neg R\},\{\neg S\}\}$

Step 3: Derive empty clause \square with resolution.

- $C_{1}=\{P\}($ from $\Delta)$
- $C_{2}=\{\neg P, Q\}$ (from Δ)
- $C_{3}=\{\neg P, R\}$ (from Δ)
- $C_{4}=\{\neg R\}$ (from Δ)
- $C_{5}=\{Q\}$ (from C_{1} und C_{2})
- $C_{6}=\{\neg P\}$ (from C_{3} und C_{4})
- $C_{7}=\square\left(\right.$ from C_{1} und $\left.C_{6}\right)$

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that $\mathrm{KB} \vDash$ DrinkBeer, where

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} .
\end{aligned}
$$

B3.3 Summary

Summary

- A logical consequence $\mathrm{KB} \vDash \varphi$ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations $\mathrm{KB} \vdash \varphi$.
- Complete calculi often not necessary: For many questions refutation-completeness is sufficient.
- The resolution calculus is correct and refutation-complete.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution strategies to make resolution as efficient as possible in practice,
- other proof systems, as for example tableaux proofs,
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
\rightarrow Foundations of AI course

