Theory of Computer Science B3. Propositional Logic III

Gabriele Röger

University of Basel

March 4, 2019

Gabriele Röger (University of Basel)

Theory of Computer Science

March 4, 2019 1 / 24

Theory of Computer Science March 4, 2019 — B3. Propositional Logic III

B3.1 Inference

B3.2 Resolution Calculus

B3.3 Summary

Gabriele Röger (University of Basel)

Theory of Computer Science

March 4, 2019 2 / 24

B3.1 Inference

Logic: Overview

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.
- advantage: mechanical method can easily be implemented as an algorithm

Inference Rules

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

- Meaning: "'Every model of φ₁,..., φ_k is a model of ψ."'
- An axiom is an inference rule with k = 0.
- A set of syntactic inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens	$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$	
Modus tollens	$\frac{\neg\psi, \ (\varphi \to \psi)}{\neg\varphi}$	
\wedge -elimination	$\frac{(\varphi \wedge \psi)}{\varphi}$	$\frac{(\varphi \wedge \psi)}{\psi}$
\wedge -introduction	$\frac{\varphi, \ \psi}{(\varphi \wedge \psi)}$	
\lor -introduction	$\frac{\varphi}{(\varphi \lor \psi)}$	
\leftrightarrow -elimination	$\frac{(\varphi \leftrightarrow \psi)}{(\varphi \to \psi)}$	$\frac{(\varphi \leftrightarrow \psi)}{(\psi \to \varphi)}$

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

•
$$\psi_{k} = \varphi$$
 and

• for all
$$i \in \{1, \ldots, k\}$$
:

- ▶ $\psi_i \in KB$, or
- ▶ ψ_i is the result of the application of an inference rule to elements from {ψ₁,...,ψ_{i-1}}.

German: Ableitung, Beweis

Derivation: Example

Example Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$ Task: Find derivation of $(S \land R)$ from KB. P (KB) ($P \rightarrow Q$) (KB) \bigcirc Q (1, 2, Modus ponens) ($P \rightarrow R$) (KB) R (1, 4, Modus ponens) $(Q \land R)$ (3, 5, \land -introduction) • $((Q \land R) \rightarrow S)$ (KB) \odot S (6, 7, Modus ponens) $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

```
Definition (Correctness and Completeness of a Calculus)
We write KB \vdash_C \varphi if there is a derivation of \varphi from KB
in calculus C.
(If calculus C is clear from context, also only KB \vdash \varphi.)
A calculus C is correct if for all KB and \varphi
KB \vdash_C \varphi implies KB \models \varphi.
A calculus C is complete if for all KB and \varphi
KB \models \varphi implies KB \vdash_C \varphi.
```

Consider calculus *C*, consisting of the derivation rules seen earlier. Question: Is *C* correct? Question: Is *C* complete?

German: korrekt, vollständig

Refutation-completeness

- ► We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem: KB ∪ {φ} is unsatisfiable iff KB ⊨ ¬φ
- This implies that $\mathsf{KB} \models \varphi$ iff $\mathsf{KB} \cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol □ for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus *C* is refutation-complete if it holds for all unsatisfiable KB that $KB \vdash_C \Box$.

German: widerlegungsvollständig

B3.2 Resolution Calculus

Logic: Overview

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
- ▶ Show KB $\models \varphi$ by derivability of KB $\cup \{\neg \varphi\} \vdash_R \Box$ with resolution calculus *R*.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. ~> complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- ► Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- ► Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (\neg P \lor Q) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\}\}$$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1\cup\{L\},\ C_2\cup\{\neg L\}}{C_1\cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \Box instead of $\{\}$.

Terminology:

- L and $\neg L$ are the resolution literals,
- $C_1 \cup \{L\}$ and $C_2 \cup \{\neg L\}$ are the parent clauses, and
- $C_1 \cup C_2$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

```
Definition (Proof by Resolution)
A proof by resolution of a clause D from a knowledge base \Delta
is a sequence of clauses C_1, \ldots, C_n with
  \triangleright C_n = D and
  • for all i \in \{1, ..., n\}:
        • C_i \in \Delta. or
        • C_i is resolvent of two clauses from \{C_1, \ldots, C_{i-1}\}.
If there is a proof of D by resolution from \Delta, we say that
D can be derived with resolution from \Delta and write \Delta \vdash_R D.
```

Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutionsbeweis, "mit Resolution aus Δ abgeleitet"

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example Given: $KB = \{P, (P \rightarrow (Q \land R))\}$. Show with resolution that $KB \models (R \lor S)$.

Three steps:

Reduce logical consequence to unsatisfiability.

- Iransform knowledge base into clause form (CNF).
- **③** Derive empty clause \Box with resolution.

```
Step 1: Reduce logical consequence to unsatisfiability.

KB \models (R \lor S) iff KB \cup \{\neg(R \lor S)\} is unsatisfiable.

Thus, consider

KB' = KB \cup \{\neg(R \lor S)\} = \{P, (P \to (Q \land R)), \neg(R \lor S)\}.
```

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathsf{KB}' = \{ P, (P \to (Q \land R)), \neg (R \lor S) \}.$ Step 2: Transform knowledge base into clause form (CNF). ► P \rightarrow Clauses: $\{P\}$ $\blacktriangleright P \to (Q \land R)) \equiv (\neg P \lor (Q \land R)) \equiv ((\neg P \lor Q) \land (\neg P \lor R))$ \rightarrow Clauses: { $\neg P, Q$ }, { $\neg P, R$ } $\neg (R \lor S) \equiv (\neg R \land \neg S)$ \rightsquigarrow Clauses: { $\neg R$ }, { $\neg S$ } $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$. . .

B3. Propositional Logic III

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$ Step 3: Derive empty clause \Box with resolution. • $C_1 = \{P\}$ (from Δ) • $C_2 = \{\neg P, Q\}$ (from Δ) • $C_3 = \{\neg P, R\}$ (from Δ) • $C_4 = \{\neg R\}$ (from Δ) • $C_5 = \{Q\}$ (from C_1 und C_2) • $C_6 = \{\neg P\}$ (from C_3 und C_4) • $C_7 = \Box$ (from C_1 und C_6)

Note: There are shorter proofs. (For example?)

Another Example

```
Another Example for Resolution
Show with resolution, that KB \models DrinkBeer, where
        KB = \{ (\neg DrinkBeer \rightarrow EatFish), \}
                  ((EatFish \land DrinkBeer) \rightarrow \neg EatIceCream),
                  ((EatIceCream \lor \negDrinkBeer) \rightarrow \negEatFish)}.
```

B3.3 Summary

Summary

- A logical consequence KB ⊨ φ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations KB ⊢ φ.
- Complete calculi often not necessary: For many questions refutation-completeness is sufficient.
- ► The resolution calculus is correct and refutation-complete.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution strategies to make resolution as efficient as possible in practice,
- other proof systems, as for example tableaux proofs,
- ▶ algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
 → Foundations of Al course