Theory of Computer Science D8. Halting Problem Variants & Rice's Theorem

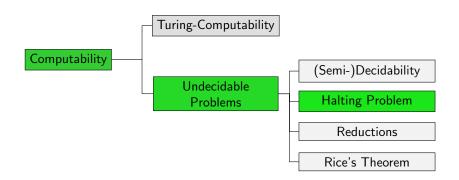
Gabriele Röger

University of Basel

April 17, 2019

Other Halting Problem Variants

Overview: Computability Theory



Reminder: Special Halting Problem

Definition (Special Halting Problem)

The special halting problem or self-application problem is the language

 $K = \{w \in \{0,1\}^* \mid M_w \text{ started on } w \text{ terminates}\}.$

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*, \}$$

 M_w started on x terminates}

German: allgemeines Halteproblem, Halteproblem

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*, \}$$

 M_w started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: *H* is semi-decidable. (Why?)

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*, \}$$

 M_w started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: *H* is semi-decidable. (Why?)

Theorem (Undecidability of General Halting Problem)

The general halting problem is undecidable.

Intuition: if the special case K is not decidable, then the more general problem H definitely cannot be decidable.

General Halting Problem (2)

Proof.

We show $K \leq H$. We define $f : \{0,1\}^* \rightarrow \{0,1,\#\}^*$ as f(w) := w#w. f is clearly total and computable, and

> $w \in K$ iff M_w started on w terminates iff $w \# w \in H$ iff $f(w) \in H$.

General Halting Problem (2)

Proof.

We show $K \le H$. We define $f : \{0,1\}^* \to \{0,1,\#\}^*$ as f(w) := w#w. f is clearly total and computable, and

```
w \in K
iff M_w started on w terminates
iff w#w \in H
iff f(w) \in H.
```

Therefore f is a reduction from K to H. Because K is undecidable, H is also undecidable.

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

 $H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$

German: Halteproblem auf leerem Band

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

 $H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$

German: Halteproblem auf leerem Band

Note: H_0 is semi-decidable. (Why?)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

 $H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$

German: Halteproblem auf leerem Band

Note: H_0 is semi-decidable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape) The halting problem on the empty tape is undecidable.

Rice's Theorem

Halting Problem on Empty Tape (2)

Proof.

We show $H \leq H_0$.

Proof.

We show $H \leq H_0$.

Consider the function $f : \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H₀
 (e.g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.

. . .

Halting Problem on Empty Tape (2)

Proof.

We show $H \leq H_0$.

Consider the function $f : \{0, 1, \#\}^* \rightarrow \{0, 1\}^*$

that computes the word f(z) for a given $z \in \{0, 1, \#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H₀
 (e.g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.
- Decode w to a TM M_2 .

Proof (continued).

- Construct a TM M₁ that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 - otherwise, stop immediately

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 a therwise, stop immediately.
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
- Return the encoding of *M*.

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if x ≠ ε); then stop
 otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
- Return the encoding of *M*.
- f is total and (with some effort) computable. Also:

 $z \in H$ iff z = w#x and M_w run on x terminates iff $M_{f(z)}$ started on empty tape terminates iff $f(z) \in H_0$

 $\rightsquigarrow H \leq H_0 \rightsquigarrow H_0 \text{ undecidable}$

Other Halting Problem Variants

Questions

Rice's Theorem 000000000000000 Summary

Questions?

Rice's Theorem

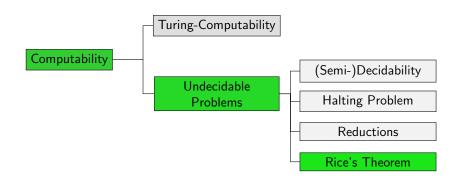
Rice's Theorem

Other Halting Problem Variants

Rice's Theorem

Summar

Overview: Computability Theory



Rice's Theorem (1)

- We have shown that a number of (related) problems are undecidable:
 - special halting problem K
 - general halting problem H
 - halting problem on empty tape H_0
- Many more results of this type could be shown.
- Instead, we prove a much more general result, Rice's theorem, which shows that a very large class of different problems are undecidable.
- Rice's theorem can be summarized informally as:
 every non-trivial question about what a given Turing machine computes is undecidable.

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let \mathcal{R} be the class of all computable functions. Let S be an arbitrary subset of \mathcal{R} except $S = \emptyset$ or $S = \mathcal{R}$. Then the language

 $C(S) = \{w \in \{0, 1\}^* \mid \text{the function computed by } M_w \text{ is in } S\}$

is undecidable.

German: Satz von Rice Question: why the restriction to $S \neq \emptyset$ and $S \neq R$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is semi-decidable. (But there are sets S for which one of the two languages is semi-decidable.)

Other Halting Problem Variants

Rice's Theorem

Rice's Theorem (3)

Proof.

Let $\boldsymbol{\Omega}$ be the function that is undefined everywhere.

Rice's Theorem

Rice's Theorem (3)

Proof.

Let $\boldsymbol{\Omega}$ be the function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Rice's Theorem (3)

Proof.

Let Ω be the function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in S$ Let $q \in \mathcal{R} \setminus S$ be an arbitrary computable function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$).

. . .

Rice's Theorem (3)

Proof.

Let Ω be the function that is undefined everywhere.

```
Case distinction:
```

Case 1: $\Omega \in S$ Let $q \in \mathcal{R} \setminus S$ be an arbitrary computable function outside of S (exists because $S \subseteq \mathcal{R}$ and $S \neq \mathcal{R}$). Let Q be a Turing machine that computes q.

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, where f(w) is defined as follows:

- Construct TM *M* that first behaves on input *y* like *M_w* on the empty tape (independently of what *y* is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- *f*(*w*) is the encoding of this TM *M*

Rice's Theorem (4)

Proof (continued).

We show that $\bar{H}_0 \leq C(S)$.

Consider function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$, where f(w) is defined as follows:

- Construct TM *M* that first behaves on input *y* like *M_w* on the empty tape (independently of what *y* is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

f is total and computable.

. . .

Rice's Theorem

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

 $M_{f(w)} \text{ computes } \begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

. . .

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

 $M_{f(w)} \text{ computes } \begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

 $w \in H_0 \Longrightarrow M_w$ terminates on ε

 $\implies M_{f(w)}$ computes the function q

 \implies the function computed by $M_{f(w)}$ is not in S

$$\implies f(w) \notin C(\mathcal{S})$$

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε $\Longrightarrow M_{f(w)}$ computes the function Ω \Longrightarrow the function computed by $M_{f(w)}$ is in S $\Longrightarrow f(w) \in C(S)$

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \overline{H}_0 is also undecidable.

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w \text{ does not terminate on } \varepsilon$ $\implies M_{f(w)} \text{ computes the function } \Omega$ $\implies \text{ the function computed by } M_{f(w)} \text{ is in } S$ $\implies f(w) \in C(S)$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H}_0$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of $\overline{H_0}$ to C(S).

Since H_0 is undecidable, \overline{H}_0 is also undecidable.

We can conclude that C(S) is undecidable.

Rice's Theorem

Rice's Theorem (7)

Proof (continued).

Case 2: $\Omega \notin S$

Analogous to Case 1 but this time choose $q \in S$.

```
The corresponding function f then reduces H_0 to C(S).
```

Thus, it also follows in this case that C(S) is undecidable.

Rice's Theorem: Consequences

Was it worth it?

We can now conclude immediately that (for example) the following informally specified problems are all undecidable:

- Does a given TM compute a constant function?
- Does a given TM compute a total function (i. e. will it always terminate, and in particular terminate in a "correct" configuration)?
- Is the output of a given TM always longer than its input?
- Does a given TM compute the identity function?
- Does a given TM compute the computable function f?

. . .

Rice's Theorem: Examples

- Does a given TM compute a constant function?
 S = {f | f is total and computable and for all x, y in the domain of f : f(x) = f(y)}
- Does a given TM compute a total function?
 S = {f | f is total and computable}
- Does a given TM compute the identity function? $\mathcal{S} = \{f \mid f(x) = x \text{ for all } x\}$
- Does a given TM add two natural numbers? $S = \{f : \mathbb{N}_0^2 \to \mathbb{N}_0 \mid f(x, y) = x + y\}$
- Does a given TM compute the computable function f? $S = \{f\}$

(full automization of software verification is impossible)

Rice's Theorem: Pitfalls

S = {f | f can be computed by a DTM with an even number of states} Rice's theorem not applicable because S = R
S = {f : {0,1}* →_p {0,1} | f(w) = 1 iff M_w does not terminate on ε}?

Rice's theorem not applicable because $\mathcal{S} \not\subseteq \mathcal{R}$

Show that {w | M_w traverses all states on every input} is undecidable.

Rice's theorem not directly applicable because not a semantic property (the function computed by M_w can also be computed by a TM that does not traverse all states)

Rice's Theorem: Practical Applications

Undecidable due to Rice's theorem + a small reduction:

automated debugging:

- Can a given variable ever receive a null value?
- Can a given assertion in a program ever trigger?
- Can a given buffer ever overflow?
- virus scanners and other software security analysis:
 - Can this code do something harmful?
 - Is this program vulnerable to SQL injections?
 - Can this program lead to a privilege escalation?

optimizing compilers:

- Is this dead code?
- Is this a constant expression?
- Can pointer aliasing happen here?
- Is it safe to parallelize this code path?
- parallel program analysis:
 - Is a deadlock possible here?
 - Can a race condition happen here?

Other Halting Problem Variants

Rice's Theorem

Summary

Questions

Questions?

Rice's Theorem 000000000000000

Summary

Summary

undecidable but semi-decidable problems:

- special halting problem a.k.a. self-application problem (from previous chapter)
- general halting problem
- halting problem on empty tape

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

What's Next?

contents of this course:

A. background \checkmark

b mathematical foundations and proof techniques

- B. logic √
 - How can knowledge be represented? How can reasoning be automated?
- C. automata theory and formal languages √▷ What is a computation?
- D. Turing computability
 - ▷ What can be computed at all?
- E. complexity theory
 - What can be computed efficiently?
- F. more computability theory
 - \triangleright Other models of computability

What's Next?

contents of this course:

A. background \checkmark

b mathematical foundations and proof techniques

- B. logic √
 - How can knowledge be represented? How can reasoning be automated?
- C. automata theory and formal languages √▷ What is a computation?
- D. Turing computability 🗸

▷ What can be computed at all?

E. complexity theory

What can be computed efficiently?

- F. more computability theory
 - Other models of computability

Other Halting Problem Variants

Quiz

kahoot.it