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Reminder: Special Halting Problem

Definition (Special Halting Problem)

The special halting problem or self-application problem
is the language

K = {w ∈ {0, 1}∗ | Mw started on w terminates}.

German: spezielles Halteproblem, Selbstanwendbarkeitsproblem
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General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}

German: allgemeines Halteproblem, Halteproblem

Note: H is semi-decidable. (Why?)

Theorem (Undecidability of General Halting Problem)

The general halting problem is undecidable.

Intuition: if the special case K is not decidable,
then the more general problem H definitely cannot be decidable.
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General Halting Problem (2)

Proof.

We show K ≤ H.

We define f : {0, 1}∗ → {0, 1, #}∗ as f (w) := w#w .

f is clearly total and computable, and

w ∈ K

iff Mw started on w terminates

iff w#w ∈ H

iff f (w) ∈ H.

Therefore f is a reduction from K to H.
Because K is undecidable, H is also undecidable.
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Halting Problem on Empty Tape (1)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

H0 = {w ∈ {0, 1}∗ | Mw started on ε terminates}.

German: Halteproblem auf leerem Band

Note: H0 is semi-decidable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.
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Halting Problem on Empty Tape (2)

Proof.

We show H ≤ H0.

Consider the function f : {0, 1, #}∗ → {0, 1}∗
that computes the word f (z) for a given z ∈ {0, 1, #}∗ as follows:

Test if z has the form w#x with w , x ∈ {0, 1}∗.

If not, return any word that is not in H0

(e. g., encoding of a TM that instantly starts an endless loop).

If yes, split z into w and x .

Decode w to a TM M2.

. . .
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Halting Problem on Empty Tape (3)

Proof (continued).

Construct a TM M1 that behaves as follows:

If the input is empty: write x onto the tape and
move the head to the first symbol of x (if x 6= ε); then stop
otherwise, stop immediately

Construct TM M that first runs M1 and then M2.

Return the encoding of M.

f is total and (with some effort) computable. Also:

z ∈ H iff z = w#x and Mw run on x terminates

iff Mf (z) started on empty tape terminates

iff f (z) ∈ H0

 H ≤ H0  H0 undecidable
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Questions

Questions?



Other Halting Problem Variants Rice’s Theorem Summary

Rice’s Theorem
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Rice’s Theorem (1)

We have shown that a number of (related) problems
are undecidable:

special halting problem K
general halting problem H
halting problem on empty tape H0

Many more results of this type could be shown.

Instead, we prove a much more general result,
Rice’s theorem, which shows that a very large class
of different problems are undecidable.

Rice’s theorem can be summarized informally as:
every non-trivial question about what a given Turing machine
computes is undecidable.



Other Halting Problem Variants Rice’s Theorem Summary

Rice’s Theorem (2)

Theorem (Rice’s Theorem)

Let R be the class of all computable functions.
Let S be an arbitrary subset of R except S = ∅ or S = R.
Then the language

C (S) = {w ∈ {0, 1}∗ | the function computed by Mw is in S}

is undecidable.

German: Satz von Rice

Question: why the restriction to S 6= ∅ and S 6= R?

Extension (without proof): in most cases neither C (S) nor C (S) is
semi-decidable. (But there are sets S for which one of the two
languages is semi-decidable.)
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Rice’s Theorem (3)

Proof.

Let Ω be the function that is undefined everywhere.

Case distinction:

Case 1: Ω ∈ S
Let q ∈ R \ S be an arbitrary computable function
outside of S (exists because S ⊆ R and S 6= R).

Let Q be a Turing machine that computes q. . . .
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Rice’s Theorem (4)

Proof (continued).

We show that H̄0 ≤ C (S).

Consider function f : {0, 1}∗ → {0, 1}∗,
where f (w) is defined as follows:

Construct TM M that first behaves on input y like Mw

on the empty tape (independently of what y is).

Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of Q
for input y and then simulates Q.

f (w) is the encoding of this TM M

f is total and computable. . . .
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Rice’s Theorem (4)

Proof (continued).

We show that H̄0 ≤ C (S).

Consider function f : {0, 1}∗ → {0, 1}∗,
where f (w) is defined as follows:

Construct TM M that first behaves on input y like Mw

on the empty tape (independently of what y is).

Afterwards (if that computation terminates!)
M clears the tape, creates the start configuration of Q
for input y and then simulates Q.

f (w) is the encoding of this TM M

f is total and computable. . . .



Other Halting Problem Variants Rice’s Theorem Summary

Rice’s Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f (w)?

Mf (w) computes

{
Ω if Mw does not terminate on ε

q otherwise

For all words w ∈ {0, 1}∗:

w ∈ H0 =⇒ Mw terminates on ε

=⇒ Mf (w) computes the function q

=⇒ the function computed by Mf (w) is not in S
=⇒ f (w) /∈ C (S)

. . .
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Rice’s Theorem (6)

Proof (continued).

Further:

w /∈ H0 =⇒ Mw does not terminate on ε

=⇒ Mf (w) computes the function Ω

=⇒ the function computed by Mf (w) is in S
=⇒ f (w) ∈ C (S)

Together this means: w /∈ H0 iff f (w) ∈ C (S),
thus w ∈ H̄0 iff f (w) ∈ C (S).

Therefore, f is a reduction of H̄0 to C (S).

Since H0 is undecidable, H̄0 is also undecidable.

We can conclude that C (S) is undecidable. . . .
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Rice’s Theorem (7)

Proof (continued).

Case 2: Ω /∈ S

Analogous to Case 1 but this time choose q ∈ S.

The corresponding function f then reduces H0 to C (S).

Thus, it also follows in this case that C (S) is undecidable.
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Rice’s Theorem: Consequences

Was it worth it?
We can now conclude immediately that (for example)
the following informally specified problems are all undecidable:

Does a given TM compute a constant function?

Does a given TM compute a total function
(i. e. will it always terminate, and in particular terminate
in a “correct” configuration)?

Is the output of a given TM always longer than its input?

Does a given TM compute the identity function?

Does a given TM compute the computable function f ?

. . .
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Rice’s Theorem: Examples

Does a given TM compute a constant function?
S = {f | f is total and computable and
S = {f | for all x , y in the domain of f : f (x) = f (y)}
Does a given TM compute a total function?
S = {f | f is total and computable}
Does a given TM compute the identity function?
S = {f | f (x) = x for all x}
Does a given TM add two natural numbers?
S = {f : N2

0 → N0 | f (x , y) = x + y}
Does a given TM compute the computable function f ?
S = {f }
(full automization of software verification is impossible)
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Rice’s Theorem: Pitfalls

S = {f | f can be computed by a DTM
S = {f | with an even number of states}
Rice’s theorem not applicable because S = R
S = {f : {0, 1}∗ →p {0, 1} | f (w) = 1 iff
S = {f : {0, 1}∗ →p {0, 1} | Mw does not terminate on ε}?
Rice’s theorem not applicable because S 6⊆ R
Show that {w | Mw traverses all states on every input}
is undecidable.
Rice’s theorem not directly applicable because not a semantic
property (the function computed by Mw can also be
computed by a TM that does not traverse all states)
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Rice’s Theorem: Practical Applications

Undecidable due to Rice’s theorem + a small reduction:

automated debugging:
Can a given variable ever receive a null value?
Can a given assertion in a program ever trigger?
Can a given buffer ever overflow?

virus scanners and other software security analysis:
Can this code do something harmful?
Is this program vulnerable to SQL injections?
Can this program lead to a privilege escalation?

optimizing compilers:
Is this dead code?
Is this a constant expression?
Can pointer aliasing happen here?
Is it safe to parallelize this code path?

parallel program analysis:
Is a deadlock possible here?
Can a race condition happen here?
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Questions?
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Summary

undecidable but semi-decidable problems:

special halting problem a.k.a. self-application problem
(from previous chapter)

general halting problem

halting problem on empty tape

Rice’s theorem:

“In general one cannot determine algorithmically

“

what a given program (or Turing machine) computes.”
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What’s Next?

contents of this course:

A. background X
. mathematical foundations and proof techniques

B. logic X
. How can knowledge be represented?
. How can reasoning be automated?

C. automata theory and formal languages X
. What is a computation?

D. Turing computability

X

. What can be computed at all?

E. complexity theory
. What can be computed efficiently?

F. more computability theory
. Other models of computability
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