Theory of Computer Science

B3. Propositional Logic III

Gabriele Röger
University of Basel

February 26, 2020

Logical Consequences

Logic: Overview

Knowledge Bases: Example

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\}
\end{aligned}
$$

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i. e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models \mathrm{KB}$) if \mathcal{I} is a model for every formula $\varphi \in \mathrm{KB}$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

A knowledge base KB is
■ satisfiable if KB has at least one model

- unsatisfiable if KB is not satisfiable
- valid (or a tautology) if every interpretation is a model for KB
- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?
KB is unsatisfiable:
For every model \mathcal{I} with $\mathcal{I} \models(\mathrm{A} \wedge \neg \mathrm{B})$ we have $\mathcal{I}(\mathrm{A})=1$.
This means $\mathcal{I} \vDash(B \vee A)$ and thus $\mathcal{I} \not \vDash \neg(B \vee A)$.

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?
KB is unsatisfiable:
For every model \mathcal{I} with $\mathcal{I} \models(\mathrm{A} \wedge \neg \mathrm{B})$ we have $\mathcal{I}(\mathrm{A})=1$.
This means $\mathcal{I} \vDash(B \vee A)$ and thus $\mathcal{I} \not \vDash \neg(B \vee A)$.
This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatIceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} \text { have? }
\end{aligned}
$$

Logical Consequences: Motivation

What's the secret of your long life?
I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.
How can we prove this?

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB, φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $\mathrm{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $\mathrm{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.
What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

Let $\varphi=$ DrinkBeer and

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& (\text { (EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatIceCream }), \\
& ((\text { EatIceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} .
\end{aligned}
$$

Show: $\mathrm{KB} \models \varphi$

Logical Consequences: Example

Let $\varphi=$ DrinkBeer and

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} .
\end{aligned}
$$

Show: $\mathrm{KB} \models \varphi$

Proof sketch.

Proof by contradiction: assume $\mathcal{I} \vDash \mathrm{KB}$, but $\mathcal{I} \not \vDash$ DrinkBeer.
Then it follows that $\mathcal{I} \models \neg$ DrinkBeer.
Because \mathcal{I} is a model of KB , we also have $\mathcal{I} \models(\neg$ DrinkBeer \rightarrow EatFish) and thus $\mathcal{I} \models$ EatFish. (Why?)
With an analogous argumentation starting from
$\mathcal{I} \models(($ EatIceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)$
we get $\mathcal{I} \models \neg$ EatFish and thus $\mathcal{I} \not \vDash$ EatFish. \rightsquigarrow Contradiction!

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

$\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \vDash(\varphi \rightarrow \psi)$
German: Deduktionssatz

Theorem (Contraposition Theorem)

$\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$
German: Kontrapositionssatz

Theorem (Contradiction Theorem)

$\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
German: Widerlegungssatz
(without proof)

Questions

Questions?

Inference

Logic: Overview

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
■ no general algorithm

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm

■ solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.

- advantage: mechanical method can easily be implemented as an algorithm

Inference Rules

- Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

German: Inferenzregel

Inference Rules

- Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

■ Meaning: "'Every model of $\varphi_{1}, \ldots, \varphi_{k}$ is a model of ψ."'

German: Inferenzregel

Inference Rules

■ Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

■ Meaning: "'Every model of $\varphi_{1}, \ldots, \varphi_{k}$ is a model of ψ."'

- An axiom is an inference rule with $k=0$.

German: Inferenzregel, Axiom

Inference Rules

- Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

- Meaning: "'Every model of $\varphi_{1}, \ldots, \varphi_{k}$ is a model of ψ."'
- An axiom is an inference rule with $k=0$.
- A set of syntactic inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$
\wedge-introduction $\frac{\varphi, \psi}{(\varphi \wedge \psi)}$

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$
\wedge-introduction $\frac{\varphi, \psi}{(\varphi \wedge \psi)}$
V-introduction $\frac{\varphi}{(\varphi \vee \psi)}$

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$
\wedge-introduction $\frac{\varphi, \psi}{(\varphi \wedge \psi)}$
V-introduction $\frac{\varphi}{(\varphi \vee \psi)}$
\leftrightarrow-elimination $\quad \frac{(\varphi \leftrightarrow \psi)}{(\varphi \rightarrow \psi)} \quad \frac{(\varphi \leftrightarrow \psi)}{(\psi \rightarrow \varphi)}$

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas $\psi_{1}, \ldots, \psi_{k}$ with

- $\psi_{k}=\varphi$ and
- for all $i \in\{1, \ldots, k\}$:
- $\psi_{i} \in \mathrm{~KB}$, or
- ψ_{i} is the result of the application of an inference rule to elements from $\left\{\psi_{1}, \ldots, \psi_{i-1}\right\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.

Derivation: Example

Example
Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .
(1) $P(\mathrm{~KB})$

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(K B)$

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(K B)$
(3) $Q(1,2$, Modus ponens)

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(K B)$
(3) $Q(1,2$, Modus ponens)
(9) $(P \rightarrow R)(\mathrm{KB})$

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(K B)$
(3) $Q(1,2$, Modus ponens)
(4) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens)

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(\mathrm{KB})$
(3) $Q(1,2$, Modus ponens)
(4) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens)
(0) $(Q \wedge R)(3,5, \wedge$-introduction)

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(\mathrm{KB})$
(3) $Q(1,2$, Modus ponens)
(4) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens)
(6) $(Q \wedge R)(3,5, \wedge$-introduction)
© $((Q \wedge R) \rightarrow S)(\mathrm{KB})$

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(\mathrm{KB})$
(3) $Q(1,2$, Modus ponens)
(4) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens)
(6) $(Q \wedge R)(3,5, \wedge$-introduction)

- $((Q \wedge R) \rightarrow S)(\mathrm{KB})$
(8) $S(6,7$, Modus ponens)

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB.
(1) $P(\mathrm{~KB})$
(2) $(P \rightarrow Q)(\mathrm{KB})$
(3) $Q(1,2$, Modus ponens)
(4) $(P \rightarrow R)(\mathrm{KB})$
(6) $R(1,4$, Modus ponens)
(6) $(Q \wedge R)(3,5, \wedge$-introduction)
(0) $((Q \wedge R) \rightarrow S)(\mathrm{KB})$
(8) $S(6,7$, Modus ponens)
© $(S \wedge R)(8,5, \wedge$-introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)
We write $\mathrm{KB} \vdash^{C} \varphi$ if there is a derivation of φ from KB in calculus C.
(If calculus C is clear from context, also only $\mathrm{KB} \vdash \varphi$.)
A calculus C is correct if for all KB and φ
$\mathrm{KB} \vdash c \varphi$ implies $\mathrm{KB} \models \varphi$.
A calculus C is complete if for all KB and φ
$\mathrm{KB} \vDash \varphi$ implies $\mathrm{KB} \vdash^{c} \varphi$.

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)
We write $\mathrm{KB} \vdash^{C} \varphi$ if there is a derivation of φ from KB
in calculus C.
(If calculus C is clear from context, also only $\mathrm{KB} \vdash \varphi$.)
A calculus C is correct if for all KB and φ
$\mathrm{KB} \vdash c \varphi$ implies $\mathrm{KB} \models \varphi$.
A calculus C is complete if for all KB and φ
$\mathrm{KB} \vDash \varphi$ implies $\mathrm{KB} \vdash^{c} \varphi$.
Consider calculus C, consisting of the derivation rules seen earlier.
Question: Is C correct?
Question: Is C complete?
German: korrekt, vollständig

Refutation-completeness

■ We obviously want correct calculi.
■ Do we always need a complete calculus?

Refutation-completeness

■ We obviously want correct calculi.
■ Do we always need a complete calculus?
■ Contradiction theorem: $\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$

- This implies that $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.

Refutation-completeness

- We obviously want correct calculi.

■ Do we always need a complete calculus?
■ Contradiction theorem: $\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$

- This implies that $\mathrm{KB} \models \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol \square for (provably) unsatisfiable formulas.

Refutation-completeness

- We obviously want correct calculi.

■ Do we always need a complete calculus?
■ Contradiction theorem: $\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$

- This implies that $\mathrm{KB} \vDash \varphi$ iff $\mathrm{KB} \cup\{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol \square for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if it holds for all unsatisfiable $K B$ that $K B \vdash c \square$.

German: widerlegungsvollständig

Questions

Questions?

Resolution Calculus

Logic: Overview

Resolution: Idea

■ Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.

Resolution: Idea

■ Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
■ Every knowledge base can be transformed into equivalent formulas in CNF.

- Transformation can require exponential time.
- Alternative: efficient transformation in equisatisfiable formulas (not part of this course)

Resolution: Idea

■ Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
■ Every knowledge base can be transformed into equivalent formulas in CNF.

- Transformation can require exponential time.
- Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
■ Show $\mathrm{KB} \vDash \varphi$ by derivability of $\mathrm{KB} \cup\{\neg \varphi\} \vdash_{R} \square$ with resolution calculus R.

Resolution: Idea

■ Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
■ Every knowledge base can be transformed into equivalent formulas in CNF.

- Transformation can require exponential time.
- Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
■ Show $\mathrm{KB} \models \varphi$ by derivability of $\mathrm{KB} \cup\{\neg \varphi\} \vdash_{R} \square$ with resolution calculus R.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. \rightsquigarrow complexity theory
German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as set of clauses
- Clause as set of literals
(due to commutativity, idempotence, associativity of \vee)
■ Knowledge base as set of sets of literals

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as set of clauses
- Clause as set of literals
(due to commutativity, idempotence, associativity of \vee)
■ Knowledge base as set of sets of literals
Example

$$
\begin{aligned}
\mathrm{KB}= & \{(P \vee P),((\neg P \vee Q) \wedge(\neg P \vee R) \wedge(\neg P \vee Q) \wedge R), \\
& ((\neg Q \vee \neg R \vee S) \wedge P)\}
\end{aligned}
$$

as set of clauses:

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of \wedge)
- Set of formulas as set of clauses
- Clause as set of literals
(due to commutativity, idempotence, associativity of \vee)
■ Knowledge base as set of sets of literals

Example

$$
\begin{aligned}
\mathrm{KB}= & \{(P \vee P),((\neg P \vee Q) \wedge(\neg P \vee R) \wedge(\neg P \vee Q) \wedge R), \\
& ((\neg Q \vee \neg R \vee S) \wedge P)\}
\end{aligned}
$$

as set of clauses:
$\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{R\},\{\neg Q, \neg R, S\}\}$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$
\frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}},
$$

where C_{1} und C_{2} are (possibly empty) clauses and L is an atomic proposition.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$
\frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}},
$$

where C_{1} und C_{2} are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\}$.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$
\frac{C_{1} \cup\{L\}, C_{2} \cup\{\neg L\}}{C_{1} \cup C_{2}},
$$

where C_{1} und C_{2} are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \square instead of $\}$.
Terminology:

- L and $\neg L$ are the resolution literals,
- $C_{1} \cup\{L\}$ and $C_{2} \cup\{\neg L\}$ are the parent clauses, and
$\square C_{1} \cup C_{2}$ is the resolvent.
German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_{1}, \ldots, C_{n} with

- $C_{n}=D$ and
- for all $i \in\{1, \ldots, n\}$:
- $C_{i} \in \Delta$, or
- C_{i} is resolvent of two clauses from $\left\{C_{1}, \ldots, C_{i-1}\right\}$.

If there is a proof of D by resolution from Δ, we say that
D can be derived with resolution from Δ and write $\Delta \vdash_{R} D$.
Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutionsbeweis, "mit Resolution aus Δ abgeleitet"

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example
Given: $\mathrm{KB}=\{P,(P \rightarrow(Q \wedge R))\}$.
Show with resolution that $\mathrm{KB} \vDash(R \vee S)$.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $\mathrm{KB}=\{P,(P \rightarrow(Q \wedge R))\}$.
Show with resolution that $\mathrm{KB} \vDash(R \vee S)$.
Three steps:
(1) Reduce logical consequence to unsatisfiability.
(2) Transform knowledge base into clause form (CNF).
(3) Derive empty clause \square with resolution.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $\mathrm{KB}=\{P,(P \rightarrow(Q \wedge R))\}$.
Show with resolution that $\mathrm{KB} \vDash(R \vee S)$.
Three steps:
(1) Reduce logical consequence to unsatisfiability.
(2) Transform knowledge base into clause form (CNF).
(3) Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $\mathrm{KB}=\{P,(P \rightarrow(Q \wedge R))\}$.
Show with resolution that $\mathrm{KB} \vDash(R \vee S)$.
Three steps:
(1) Reduce logical consequence to unsatisfiability.
(2) Transform knowledge base into clause form (CNF).
(3) Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability. $\mathrm{KB} \vDash(R \vee S)$ iff $\mathrm{KB} \cup\{\neg(R \vee S)\}$ is unsatisfiable.
Thus, consider
$\mathrm{KB}^{\prime}=\mathrm{KB} \cup\{\neg(R \vee S)\}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathrm{KB}^{\prime}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Step 2: Transform knowledge base into clause form (CNF).

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathrm{KB}^{\prime}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Step 2: Transform knowledge base into clause form (CNF).

- P
\rightsquigarrow Clauses: $\{P\}$
■ $P \rightarrow(Q \wedge R)) \equiv(\neg P \vee(Q \wedge R)) \equiv((\neg P \vee Q) \wedge(\neg P \vee R))$
\rightsquigarrow Clauses: $\{\neg P, Q\},\{\neg P, R\}$
- $\neg(R \vee S) \equiv(\neg R \wedge \neg S)$
\rightsquigarrow Clauses: $\{\neg R\},\{\neg S\}$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $\mathrm{KB}^{\prime}=\{P,(P \rightarrow(Q \wedge R)), \neg(R \vee S)\}$.

Step 2: Transform knowledge base into clause form (CNF).

- P
\rightsquigarrow Clauses: $\{P\}$
■ $P \rightarrow(Q \wedge R)) \equiv(\neg P \vee(Q \wedge R)) \equiv((\neg P \vee Q) \wedge(\neg P \vee R))$
\rightsquigarrow Clauses: $\{\neg P, Q\},\{\neg P, R\}$
- $\neg(R \vee S) \equiv(\neg R \wedge \neg S)$
\rightsquigarrow Clauses: $\{\neg R\},\{\neg S\}$
$\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{\neg R\},\{\neg S\}\}$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example
$\Delta=\{\{P\},\{\neg P, Q\},\{\neg P, R\},\{\neg R\},\{\neg S\}\}$
Step 3: Derive empty clause \square with resolution.
■ $C_{1}=\{P\}($ from $\Delta)$

- $C_{2}=\{\neg P, Q\}($ from $\Delta)$
- $C_{3}=\{\neg P, R\}$ (from Δ)
- $C_{4}=\{\neg R\}$ (from Δ)
- $C_{5}=\{Q\}\left(\right.$ from C_{1} und $\left.C_{2}\right)$
- $C_{6}=\{\neg P\}$ (from C_{3} und C_{4})
- $C_{7}=\square\left(\right.$ from C_{1} und $\left.C_{6}\right)$

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution

Show with resolution, that $\mathrm{KB} \models$ DrinkBeer, where

$$
\mathrm{KB}=\{(\neg \text { DrinkBeer } \rightarrow \text { EatFish }),
$$

$(($ EatFish \wedge DrinkBeer $) \rightarrow \neg$ EatlceCream $)$, $(($ EatlceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)\}$.

Questions

Questions?

Summary

Summary

■ knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas

- logical consequence $\mathrm{KB} \models \varphi$ means that φ is true whenever ($=$ in all models where) KB is true
- A logical consequence $\mathrm{KB} \vDash \varphi$ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations $\mathrm{KB} \vdash \varphi$.
■ Complete calculi often not necessary: For many questions refutation-completeness is sufficient.

■ The resolution calculus is correct and refutation-complete.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution strategies to make resolution as efficient as possible in practice,
- other proof systems, as for example tableaux proofs,
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
\rightarrow Foundations of AI course

