Theory of Computer Science B3. Propositional Logic III

Gabriele Röger

University of Basel

February 26, 2020

Resolution Calculus

Summary 000

Logical Consequences

Resolution Calculus

Knowledge Bases: Example

If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatIceCream or not DrinkBeer, then not EatFish.

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \end{split}$$

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Resolution Calculus

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,

i.e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models KB$) if \mathcal{I} is a model for every formula $\varphi \in KB$.

German: Wissensbasis, Modell

Resolution Calculus

Properties of Sets of Formulas

A knowledge base KB is

- satisfiable if KB has at least one model
- unsatisfiable if KB is not satisfiable
- valid (or a tautology) if every interpretation is a model for KB
- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Logical Consequences		
Example I		

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}$ have?

Logical Consequences		

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}$ have?

KB is unsatisfiable: For every model \mathcal{I} with $\mathcal{I} \models (A \land \neg B)$ we have $\mathcal{I}(A) = 1$. This means $\mathcal{I} \models (B \lor A)$ and thus $\mathcal{I} \not\models \neg (B \lor A)$.

Example I

Which of the properties does $KB = \{(A \land \neg B), \neg (B \lor A)\}$ have?

KB is unsatisfiable: For every model \mathcal{I} with $\mathcal{I} \models (A \land \neg B)$ we have $\mathcal{I}(A) = 1$. This means $\mathcal{I} \models (B \lor A)$ and thus $\mathcal{I} \not\models \neg (B \lor A)$.

This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \} \text{ have}? \end{split}$$

Resolution Calculus

Logical Consequences: Motivation

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.

How can we prove this?

Exercise from U. Schöning: Logik für Informatiker Picture courtesy of graur razvan ionut/FreeDigitalPhotos.net

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": KB $\models \varphi$ vs. $\mathcal{I} \models \varphi$.

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": KB $\models \varphi$ vs. $\mathcal{I} \models \varphi$. What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and
```

```
\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \}. \end{split}
```

Show: $\mathsf{KB} \models \varphi$

Logical Consequences: Example

```
Let \varphi = \mathsf{DrinkBeer} and
```

```
\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \}. \end{split}
```

Show: $\mathsf{KB} \models \varphi$

Proof sketch.

Proof by contradiction: assume $\mathcal{I} \models KB$, but $\mathcal{I} \not\models DrinkBeer$. Then it follows that $\mathcal{I} \models \neg DrinkBeer$. Because \mathcal{I} is a model of KB, we also have $\mathcal{I} \models (\neg DrinkBeer \rightarrow EatFish)$ and thus $\mathcal{I} \models EatFish$. (Why?) With an analogous argumentation starting from $\mathcal{I} \models ((EatIceCream \lor \neg DrinkBeer) \rightarrow \neg EatFish)$ we get $\mathcal{I} \models \neg EatFish$ and thus $\mathcal{I} \not\models EatFish$. \rightsquigarrow Contradiction!

Resolution Calculus

Summary 000

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

$$\mathsf{KB} \cup \{\varphi\} \models \psi \text{ iff } \mathsf{KB} \models (\varphi \to \psi)$$

German: Deduktionssatz

Theorem (Contraposition Theorem)

$$\mathsf{KB} \cup \{\varphi\} \models \neg \psi \text{ iff } \mathsf{KB} \cup \{\psi\} \models \neg \varphi$$

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $\mathsf{KB} \cup \{\varphi\}$ is unsatisfiable iff $\mathsf{KB} \models \neg \varphi$

German: Widerlegungssatz

(without proof)

Inference 0000000000 Resolution Calculus

Summary 000

Questions

Questions?

Logical	Consequences	

Inference ••••••• Resolution Calculus

Summary 000

Inference

Inference

Resolution Calculus

Summary 000

Inference: Motivation

up to now: proof of logical consequence with semantic arguments

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce with syntactic inference rules formulas that are logical consequences of given formulas.
- advantage: mechanical method can easily be implemented as an algorithm

Logical Consequences	Inference	
	00000000	

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

German: Inferenzregel

Logical Consequences	Inference	Resolution Calculus	
	00000000		

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

• Meaning: "'Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."'

German: Inferenzregel

Logical Consequences	Inference	
	000000000	

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

- Meaning: "'Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."'
- An axiom is an inference rule with k = 0.

German: Inferenzregel, Axiom

Logical Consequences	Inference	
	00000000	

Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}.$$

- Meaning: "'Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."'
- An axiom is an inference rule with k = 0.
- A set of syntactic inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, Kalkül, Beweissystem

Modus ponens

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$

Modus ponens

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$

Modus tollens -

$$\frac{\neg\psi, \ (\varphi \to \psi)}{\neg\varphi}$$

Modus ponens

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$

Modus tollens

$$\begin{array}{c} \neg\psi, \ (\varphi \rightarrow \psi) \\ \hline \neg\varphi \\ (\varphi \wedge \psi) \qquad (\varphi \wedge \end{array} \end{array}$$

 φ

∧-elimination

$$\frac{\psi}{\psi}$$
 $\frac{(\varphi \wedge \psi)}{\psi}$

Modus ponens

Modus tollens

$$\frac{\varphi, (\varphi \to \psi)}{\psi} \\
\frac{\neg \psi, (\varphi \to \psi)}{\neg \varphi} \\
\frac{(\varphi \land \psi)}{\varphi} \quad \frac{(\varphi \land \psi)}{\psi}$$

∧-elimination

 \wedge -introduction

Modus ponens

Modus tollens

$$\frac{\varphi, (\varphi \to \psi)}{\psi}$$

$$\frac{\neg \psi, (\varphi \to \psi)}{\neg \varphi}$$

$$\frac{(\varphi \land \psi)}{\varphi} \quad \frac{(\varphi \land \psi)}{\psi}$$

 \wedge -elimination

 $\wedge \text{-introduction} \quad \frac{\varphi, \ \psi}{(\varphi \land \psi)}$

 $\forall \text{-introduction} \quad \frac{\varphi}{(\varphi \lor \psi)}$

Modus ponens

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$
$$\frac{\neg \psi, \ (\varphi \to \psi)}{\neg \varphi}$$

Modus tollens

 $\wedge \text{-elimination} \quad \frac{(\varphi \land \varphi)}{\varphi}$

 $\wedge \text{-introduction} \quad \frac{\varphi, \gamma}{(\varphi \land \gamma)}$

 $\forall \text{-introduction} \quad \frac{\varphi}{(\varphi \lor)}$ $\leftrightarrow \text{-elimination} \quad \frac{(\varphi \leftrightarrow)}{(\varphi \to)}$ ∨-introduction

$$\begin{array}{c}
\psi \\
(\varphi \rightarrow \psi) \\
\neg \varphi \\
\hline
\psi \\
\psi \\
\psi \\
\hline
(\varphi \leftrightarrow \psi) \\
(\psi \rightarrow \varphi) \\
\hline
\end{array}$$

Resolution Calculus

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

•
$$\psi_k = \varphi$$
 and
• for all $i \in \{1, \dots, k\}$:
• $\psi_i \in KB$, or
• ψ_i is the result of the application of an inference rule
to elements from $\{\psi_1, \dots, \psi_{i-1}\}$.

German: Ableitung, Beweis

Resolution Calculus

Derivation: Example

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$ Task: Find derivation of $(S \land R)$ from KB.
Resolution Calculus

Derivation: Example

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$ Task: Find derivation of $(S \land R)$ from KB.

Example

- Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$ Task: Find derivation of $(S \land R)$ from KB.
 - P (KB)
 - 2 $(P \rightarrow Q)$ (KB)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

P (KB)

2
$$(P \rightarrow Q)$$
 (KB)

3 Q (1, 2, Modus ponens)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- **3** Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- **3** Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- In R (1, 4, Modus ponens)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- **3** Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- In R (1, 4, Modus ponens)
- $(Q \land R)$ (3, 5, \land -introduction)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- \bigcirc Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- In R (1, 4, Modus ponens)
- $(Q \land R)$ (3, 5, \land -introduction)
- $((Q \land R) \rightarrow S) (KB)$

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- **3** Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- In R (1, 4, Modus ponens)
- $(Q \land R)$ (3, 5, \land -introduction)
- (($Q \land R$) \rightarrow S) (KB)
- *S* (6, 7, Modus ponens)

Example

Given:
$$KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$$

Task: Find derivation of $(S \land R)$ from KB.

2
$$(P \rightarrow Q)$$
 (KB)

- \bigcirc Q (1, 2, Modus ponens)
- $(P \rightarrow R)$ (KB)
- In R (1, 4, Modus ponens)
- $(Q \land R)$ (3, 5, \land -introduction)
- $((Q \land R) \rightarrow S) (KB)$
- § 5 (6, 7, Modus ponens)
- **9** $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

```
We write \mathsf{KB} \vdash_{C} \varphi if there is a derivation of \varphi from KB in calculus C.
```

```
(If calculus C is clear from context, also only KB \vdash \varphi.)
```

```
A calculus C is correct if for all KB and \varphi
KB \vdash_C \varphi implies KB \models \varphi.
```

```
A calculus C is complete if for all KB and \varphi
KB \models \varphi implies KB \vdash_C \varphi.
```

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

```
We write \mathsf{KB} \vdash_{C} \varphi if there is a derivation of \varphi from KB in calculus C.
```

```
(If calculus C is clear from context, also only KB \vdash \varphi.)
```

```
A calculus C is correct if for all KB and \varphi
KB \vdash_C \varphi implies KB \models \varphi.
```

```
A calculus C is complete if for all KB and \varphi
KB \models \varphi implies KB \vdash_C \varphi.
```

Consider calculus *C*, consisting of the derivation rules seen earlier. Question: Is *C* correct? Question: Is *C* complete?

German: korrekt, vollständig

- We obviously want correct calculi.
- Do we always need a complete calculus?

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem:

 $\mathsf{KB} \cup \{\varphi\} \text{ is unsatisfiable iff } \mathsf{KB} \models \neg \varphi$

- This implies that $\mathsf{KB} \models \varphi$ iff $\mathsf{KB} \cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem:

 $\mathsf{KB} \cup \{\varphi\}$ is unsatisfiable iff $\mathsf{KB} \models \neg \varphi$

- This implies that $\mathsf{KB} \models \varphi$ iff $\mathsf{KB} \cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol □ for (provably) unsatisfiable formulas.

- We obviously want correct calculi.
- Do we always need a complete calculus?
- Contradiction theorem:

 $\mathsf{KB} \cup \{\varphi\}$ is unsatisfiable iff $\mathsf{KB} \models \neg \varphi$

- This implies that $\mathsf{KB} \models \varphi$ iff $\mathsf{KB} \cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we us the special symbol □ for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus *C* is refutation-complete if it holds for all unsatisfiable KB that $KB \vdash_C \Box$.

German: widerlegungsvollständig

Logical Consequences

Inference 000000000

Resolution Calculus

Summary 000

Questions

Questions?

Inference 0000000000 Resolution Calculus

Summary 000

Resolution Calculus

Logical Consequences

Inference 000000000 Resolution Calculus

Resolution: Idea

Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.

Inference 000000000 Resolution Calculus

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in equisatisfiable formulas (not part of this course)

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
- Show KB $\models \varphi$ by derivability of KB $\cup \{\neg \varphi\} \vdash_R \Box$ with resolution calculus *R*.

Inference 000000000 Resolution Calculus

Resolution: Idea

- Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.
- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation in equisatisfiable formulas (not part of this course)
- Show KB $\models \varphi$ by derivability of KB $\cup \{\neg \varphi\} \vdash_R \Box$ with resolution calculus *R*.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. ~> complexity theory

German: Resolution, erfüllbarkeitsäquivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals
 - (due to commutativity, idempotence, associativity of \lor)
- Knowledge base as set of sets of literals

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals
 - (due to commutativity, idempotence, associativity of \lor)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (\neg P \lor Q) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals
 - (due to commutativity, idempotence, associativity of \lor)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (\neg P \lor Q) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

 $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\}\}$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1\cup\{L\},\ C_2\cup\{\neg L\}}{C_1\cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1\cup\{L\},\ C_2\cup\{\neg L\}}{C_1\cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \Box instead of $\{\}$.

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1\cup\{L\},\ C_2\cup\{\neg L\}}{C_1\cup C_2},$$

where C_1 und C_2 are (possibly empty) clauses and L is an atomic proposition.

If we derive the empty clause, we write \Box instead of $\{\}$.

Terminology:

- L and $\neg L$ are the resolution literals,
- $C_1 \cup \{L\}$ and $C_2 \cup \{\neg L\}$ are the parent clauses, and
- $C_1 \cup C_2$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_1, \ldots, C_n with

- $C_n = D$ and
- for all $i \in \{1, \ldots, n\}$:
 - $C_i \in \Delta$, or

• C_i is resolvent of two clauses from $\{C_1, \ldots, C_{i-1}\}$.

If there is a proof of D by resolution from Δ , we say that D can be derived with resolution from Δ and write $\Delta \vdash_R D$.

Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutionsbeweis, "mit Resolution aus Δ abgeleitet"

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$ Show with resolution that $KB \models (R \lor S).$

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$ Show with resolution that $KB \models (R \lor S).$

Three steps:

- Reduce logical consequence to unsatisfiability.
- Iransform knowledge base into clause form (CNF).
- **③** Derive empty clause \Box with resolution.

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$ Show with resolution that $KB \models (R \lor S).$

Three steps:

- Reduce logical consequence to unsatisfiability.
- Iransform knowledge base into clause form (CNF).
- **③** Derive empty clause \Box with resolution.
- Step 1: Reduce logical consequence to unsatisfiability.

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$ Show with resolution that $KB \models (R \lor S).$

Three steps:

. . .

- Reduce logical consequence to unsatisfiability.
- Iransform knowledge base into clause form (CNF).
- **③** Derive empty clause \Box with resolution.

Step 1: Reduce logical consequence to unsatisfiability. $KB \models (R \lor S)$ iff $KB \cup \{\neg(R \lor S)\}$ is unsatisfiable.

Thus, consider $\mathsf{KB}' = \mathsf{KB} \cup \{\neg (R \lor S)\} = \{P, (P \to (Q \land R)), \neg (R \lor S)\}.$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

 $\mathsf{KB}' = \{ \mathsf{P}, (\mathsf{P} \to (\mathsf{Q} \land \mathsf{R})), \neg(\mathsf{R} \lor \mathsf{S}) \}.$

Step 2: Transform knowledge base into clause form (CNF).

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\mathsf{KB}' = \{ \mathsf{P}, (\mathsf{P} \to (\mathsf{Q} \land \mathsf{R})), \neg(\mathsf{R} \lor \mathsf{S}) \}.$$

Step 2: Transform knowledge base into clause form (CNF).

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\mathsf{KB}' = \{ \mathsf{P}, (\mathsf{P} \to (\mathsf{Q} \land \mathsf{R})), \neg(\mathsf{R} \lor \mathsf{S}) \}.$$

Step 2: Transform knowledge base into clause form (CNF).
Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

- $\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$
- Step 3: Derive empty clause \Box with resolution.
 - $C_1 = \{P\} \text{ (from } \Delta)$
 - $C_2 = \{\neg P, Q\}$ (from Δ)
 - $C_3 = \{\neg P, R\}$ (from Δ)
 - $C_4 = \{\neg R\}$ (from Δ)
 - $C_5 = \{Q\}$ (from C_1 und C_2)
 - $C_6 = \{\neg P\}$ (from C_3 und C_4)
 - $C_7 = \Box$ (from C_1 und C_6)

Note: There are shorter proofs. (For example?)

Inference 000000000 Resolution Calculus

Another Example

Another Example for Resolution

Show with resolution, that $KB \models DrinkBeer$, where

$$egin{aligned} \mathsf{KB} &= \{(\neg \mathsf{DrinkBeer} o \mathsf{EatFish}), \ & ((\mathsf{EatFish} \wedge \mathsf{DrinkBeer}) o \neg \mathsf{EatIceCream}), \ & ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) o \neg \mathsf{EatFish})\}. \end{aligned}$$

Logical Consequences

Inference 000000000 Resolution Calculus

Summary 000

Questions

Questions?

Logical	Consequences

Inference 0000000000 Resolution Calculus

Summary ●00

Summary

Summary

- knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- logical consequence KB $\models \varphi$ means that φ is true whenever (= in all models where) KB is true
- A logical consequence KB ⊨ φ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations KB ⊢ φ.
- Complete calculi often not necessary: For many questions refutation-completeness is sufficient.
- The resolution calculus is correct and refutation-complete.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution strategies to make resolution as efficient as possible in practice,
- other proof systems, as for example tableaux proofs,
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
 → Foundations of Al course