Discrete Mathematics in Computer Science D4. Inference

Malte Helmert, Gabriele Röger

University of Basel
December 11, 2023

Discrete Mathematics in Computer Science

 December 11, 2023 - D4. InferenceD4.1 Inference Rules and Calculi

D4.2 Summary

D4.1 Inference Rules and Calculi

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

Inference Rules

- Inference rules have the form

$$
\frac{\varphi_{1}, \ldots, \varphi_{k}}{\psi}
$$

- Meaning: "Every model of $\varphi_{1}, \ldots, \varphi_{k}$ is a model of ψ."
- An axiom is an inference rule with $k=0$.
- A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

Modus ponens $\frac{\varphi,(\varphi \rightarrow \psi)}{\psi}$
Modus tollens $\frac{\neg \psi,(\varphi \rightarrow \psi)}{\neg \varphi}$
\wedge-elimination $\quad \frac{(\varphi \wedge \psi)}{\varphi} \quad \frac{(\varphi \wedge \psi)}{\psi}$
\wedge-introduction $\frac{\varphi, \psi}{(\varphi \wedge \psi)}$
V-introduction $\frac{\varphi}{(\varphi \vee \psi)}$
\leftrightarrow-elimination $\quad \frac{(\varphi \leftrightarrow \psi)}{(\varphi \rightarrow \psi)} \quad \frac{(\varphi \leftrightarrow \psi)}{(\psi \rightarrow \varphi)}$

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas $\psi_{1}, \ldots, \psi_{k}$ with

- $\psi_{k}=\varphi$ and
- for all $i \in\{1, \ldots, k\}$:
- $\psi_{i} \in \mathrm{~KB}$, or
- ψ_{i} is the result of the application of an inference rule to elements from $\left\{\psi_{1}, \ldots, \psi_{i-1}\right\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $\mathrm{KB}=\{P,(P \rightarrow Q),(P \rightarrow R),((Q \wedge R) \rightarrow S)\}$
Task: Find derivation of $(S \wedge R)$ from KB .

- $P(\mathrm{~KB})$
© $(P \rightarrow Q)(\mathrm{KB})$
- $Q(1,2$, Modus ponens $)$
- $(P \rightarrow R)(\mathrm{KB})$
- $R(1,4$, Modus ponens $)$
- $(Q \wedge R)(3,5, \wedge$-introduction)
- $((Q \wedge R) \rightarrow S)(K B)$
- $S(6,7$, Modus ponens)
- $(S \wedge R)(8,5, \wedge$-introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)
We write $\mathrm{KB} \vdash_{c} \varphi$ if there is a derivation of φ from KB
in calculus C.
(If calculus C is clear from context, also only $\mathrm{KB} \vdash \varphi$.)
A calculus C is correct if for all KB and φ $\mathrm{KB} \vdash c \varphi$ implies $\mathrm{KB} \models \varphi$.

A calculus C is complete if for all KB and φ $\mathrm{KB} \vDash \varphi$ implies $\mathrm{KB} \vdash c \varphi$.

Consider calculus C, consisting of the derivation rules seen earlier. Question: Is C correct?
Question: Is Complete?
German: korrekt, vollständig

D4.2 Summary

Summary (Consequence and Inference)

- knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- logical consequence $\mathrm{KB} \models \varphi$ means that φ is true whenever ($=$ in all models where) KB is true
- A logical consequence $\mathrm{KB} \vDash \varphi$ allows to conclude that KB implies φ based on the semantics.
- A correct calculus supports such conclusions on the basis of purely syntactical derivations $\mathrm{KB} \vdash \varphi$.

Further Topics

There are many aspects of propositional logic that we do not cover in this course.

- resolution: a commonly used proof system for formulas in CNF
- other proof systems, for example tableaux proofs
- algorithms for model construction, such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm. \rightsquigarrow Foundations of AI course

