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Usage of P L: (shorter) proof of convergence of gradient descent
▶ Set up

▶ Problem: unconstrained minimization (P) : argmin
x∈Rd

f(x).

▶ Assumptions
▶ f is L-smooth: f has L-Lipschitz gradient
▶ ∅ ̸= X ∗ := argmin f
▶ f is P L

▶ We solve (P) using gradient descent with constant stepsize 1
L

xk+1 = xk − 1

L
∇f(xk). (GD)

▶ We can use P L to show GD has a linear convergence rate as

f(xk+1)− f∗ ≤
(
1− µ

L

)k (
f(x0)− f∗)

where f∗ := f(x∗).

▶ Important: we didn’t assume f is convex.
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Remarks on the setup
▶ f has L-Lipschitz gradient means

▶ ∇f exists everywhere and it is (globally) L-Lipschitz,
▶ equivalently, for all x,y ∈ dom f ,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2,

▶ if f is twice-differentiable, then λ∇2f(x) ≤ L, i.e., the eigenvalues of Hessian matrix at x are
all upper bounded by L.

See here for more information.

▶ ∅ ̸= X ∗ := argmin f means the set X ∗, defined as the solution set of (P), is non-empty.
It means that there exists (at least one) minimizer x∗

▶ Generally f∗ < +∞.

▶ GD with general stepsize αk > 0 is xk+1 = xk − αk∇f(xk).
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Polyak- Lojasiewicz inequality

▶ A differentiable function f : Rn → R satisfies Polyak- Lojasiewicz (P L) inequality if there
exists a scalar µ > 0 such that

1

2
∥∇f(x)∥2 ≥ µ

(
f(x)− f∗

)
∀x ∈ dom f, (P L)

where f∗ := f(x∗) and x∗ ∈ X ∗ is a minimizer of f .

▶ It links the norm of the gradient ∥∇f∥2, the measure of how close is x to a stationary
point, to f(x)− f∗, the measure of how close f at x to the optimal value f∗.

▶ The scaling factor µ is called P L constant.

▶ If f is σ-strongly convex, the f is σ-P L. We will prove this later.
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P L implies all stationary points are global minimizers
▶ Since f∗ := inf f is the smallest (global) achievable function value, thus

1

2
∥∇f(x)∥2 ≥ µ

(
f(x)− f∗

)
≥ 0.

▶ At a point x that ∇f(x) = 0, we have

0 =
1

2
∥∇f(x)∥2 ≥ µ

(
f(x)− f∗

)
≥ 0.

By squeezing theorem we have f(x) = f∗, meaning that such x is a global minimizer.

▶ The statement “∥∇f(x)∥2 = 0 =⇒ x is a global minimizer” is the classical 1st-order
optimality condition in convex smooth optimization. Note that here in P L we didn’t
assume f is convex.

▶ In fact, P L is related to invex function: a function is invex if and only if every stationary
point is a global minimum.
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What functions are P L?

▶ Given a function f , how do we know is f satisfies P L?

▶ Determine “is f P L” for a very general class of function f is an open problem.

▶ We are doing optimization so we only focus on functions we deal with most of the time.

▶ In optimization, we have a nice sufficient condition.

If f is σ-strongly convex, then f is σ-P L.

We prove this now.
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σ-strongly convex functions are σ-P L
▶ Let σ > 0. If f is σ-strongly convex , then for all x,y,

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ σ

2
∥y − x∥22. (SC)

Geometrically, it means f is not “too flat”: it is bounded below by a quadratic function.
See here for more discussion.

▶ Now we show SC implies K L. Recall that in K L we have f∗, so we need to create f∗ in
SC. This can be done by just taking min

y
on both sides of SC:

min
y

{
f(y)

} SC
≥ min

y

{
f(x) + ⟨∇f(x),y − x⟩+ σ

2
∥y − x∥22

}
,

which gives

f∗ ≥ f(x)− 1

2σ
∥∇f(x)∥22,

i.e.,
1

2
∥∇f(x)∥22 ≥ σ

(
f(x)− f∗

)
. (P L)
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Polyak 1963’s short proof of linear convergence of GD

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 f is L-smooth

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 put y = xk+1, x = xk

f(xk+1) ≤ f(xk)−
1

2L
∥∇f(xk)∥2 GD xk+1 = xk − 1

L
∇f(xk)

f(xk+1) ≤ f(xk)−
µ

L

(
f(xk)− f∗) P L

f(xk+1)− f∗ ≤ f(xk)−
µ

L

(
f(xk)− f∗)− f∗ subtract both side by f∗

=
(
1− µ

L

)(
f(xk)− f∗).

f(xk+1)− f∗ ≤
(
1− µ

L

)k(
f(x0)− f∗) recursion
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Comments
▶ The proof also applies to optimal stepsize, since

f(xk+1) = min
α

f
(
xk − α∇f(xk)

)
≤ f

(
xk −

1

L
∇f(xk)

)
,

where the ≤ is by definition of the optimal stepsize.

▶ P L does not
▶ assume f is convex.
▶ assume the minimizer x∗ is unique.

In contrast, strong convexity (SC) assumes f
▶ is convex
▶ is strongly convex, which implies strictly convex and thus implies the minimizer is unique

▶ SC =⇒ P L (we just proved it), so the same convergence rate holds if f is µ-SC.
However, proving such convergence rate using SC is tedious. See the long proof here.
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Prove convergence of randomized coordinate descent (rCD) by P L
▶ Set up

▶ Same problem: (P) : argmin
x∈Rd

f(x).

▶ Assumptions
▶ f is coordinate-wise L-smooth

f(x+ αei︸ ︷︷ ︸
y

) ≤ f(x) + ⟨∇if(x)ei, αei︸︷︷︸
y−x

⟩+ L

2
∥ αei︸︷︷︸

y−x

∥2

▶ ∅ ̸= X ∗ := argmin f and f is P L
▶ rCD with constant stepsize 1

L

xk+1 = xk − 1

L
∇ikf(xk)eik

picking coordinate index ik is based on uniform random probability.

▶ We can use P L to show rCD has linear convergence rate in expectation as

E
(
f(xk+1)− f∗

)
≤

(
1− µ

dL

)k (
f(x0)− f∗).
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Short proof

f(xk+1) ≤ f(xk) + α∇if(xk) +
L

2
α2 f is coordinate-wise L-smooth

f(xk+1) ≤ f(xk)−
1

2L
|∇if(xk)|2 rCD update xk+1 = xk − 1

L
∇ikf(xk)︸ ︷︷ ︸

α

eik

Ef(xk+1) ≤ Ef(xk)− E 1
2L |∇if(xk)|2 take expectation

= f(xk)−
1

2L
E|∇if(xk)|2 expectation is a linear operator

= f(xk)−
1

2L

∑
i

1

d
|∇if(xk)|2 uniform probability

= f(xk)−
1

2dL
∥∇f(xk)∥2

Ef(xk+1) ≤ f(xk)−
µ

dL

(
f(xk)− f∗) −1

2
∥∇f(xk)∥2

P L
≤ −µ

(
f(xk)− f∗)

Then similar to GD: subtract both side by f∗, rearrange and perform recursion will finish the proof.
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Discussed

▶ Polyak- Lojasiewicz inequality and its applications.

Not discussed

▶ Proximal version of P L: see here

▶ Relationship between P L and the more general Kurdyka- Lojasiewicz inequality.

Reference

▶ Hamed Karimi, Julie Nutini, Mark Schmidt, “Linear Convergence of Gradient and
Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition”.
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