

Polyak-Łojasiewicz inequality

Andersen Ang

Department of Combinatorics and Optimization, University of Waterloo, Canada msxang@uwaterloo.ca, where $x = |\pi|$ Homepage: angms.science

First draft: November 3, 2020 Last update: September 7, 2022

Table of Contents

Polyak-Łojasiewicz inequality σ-strongly convex functions are σ-PŁ

2 Application of Polyak-Łojasiewicz inequality
 • Using PŁ to prove convergence of gradient descent
 • Using PŁ to prove convergence of randomized coordinate descent

3 Summary

Usage of PL: (shorter) proof of convergence of gradient descent

Set up

• Problem: unconstrained minimization (\mathcal{P}) : $\operatorname{argmin} f(\boldsymbol{x})$.

- Assumptions
 - \blacktriangleright f is L-smooth: f has L-Lipschitz gradient

$$\blacktriangleright \ \varnothing \neq \mathcal{X}^* \coloneqq \operatorname{argmin} f$$

- ► f is PŁ
- We solve (\mathcal{P}) using gradient descent with constant stepsize $\frac{1}{T}$

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{1}{L}
abla f(oldsymbol{x}_k).$$

▶ We can use PŁ to show GD has a linear convergence rate as

$$f(\boldsymbol{x}_{k+1}) - f^* \le \left(1 - \frac{\mu}{L}\right)^k \left(f(\boldsymbol{x}_0) - f^*\right)$$

where $f^* \coloneqq f(x^*)$.

 \blacktriangleright Important: we didn't assume f is convex.

(GD)

 $\mathbf{r} \in \mathbb{R}^d$

Remarks on the setup

- f has L-Lipschitz gradient means
 - ∇f exists everywhere and it is (globally) *L*-Lipschitz,
 - ▶ equivalently, for all ${m x}, {m y} \in {
 m dom}\, f$,

$$f(\boldsymbol{y}) \leq f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{L}{2} \| \boldsymbol{y} - \boldsymbol{x} \|^2,$$

• if f is twice-differentiable, then $\lambda_{\nabla^2 f(x)} \leq L$, i.e., the eigenvalues of Hessian matrix at x are all upper bounded by L.

See here for more information.

- $\emptyset \neq \mathcal{X}^* \coloneqq \operatorname{argmin} f$ means the set \mathcal{X}^* , defined as the solution set of (\mathcal{P}) , is non-empty. It means that there exists (at least one) minimizer x^*
- Generally $f^* < +\infty$.
- GD with general stepsize $\alpha_k > 0$ is $x_{k+1} = x_k \alpha_k \nabla f(x_k)$.

Polyak-Łojasiewicz inequality

• A differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies Polyak-Łojasiewicz (PŁ) inequality if there exists a scalar $\mu > 0$ such that

$$\frac{1}{2} \|\nabla f(\boldsymbol{x})\|^2 \ge \mu \Big(f(\boldsymbol{x}) - f^* \Big) \qquad \forall \boldsymbol{x} \in \operatorname{dom} f,$$
(PL)

where $f^* \coloneqq f(\boldsymbol{x}^*)$ and $\boldsymbol{x}^* \in \mathcal{X}^*$ is a minimizer of f.

- ▶ It links the norm of the gradient $\|\nabla f\|_2$, the measure of how close is x to a stationary point, to $f(x) f^*$, the measure of how close f at x to the optimal value f^* .
- The scaling factor μ is called PL constant.
- If f is σ -strongly convex, the f is σ -PŁ.

We will prove this later.

PŁ implies all stationary points are global minimizers

• Since $f^* \coloneqq \inf f$ is the smallest (global) achievable function value, thus

$$\frac{1}{2} \|\nabla f(\boldsymbol{x})\|^2 \ge \mu \Big(f(\boldsymbol{x}) - f^* \Big) \ge 0.$$

• At a point \boldsymbol{x} that $\nabla f(\boldsymbol{x}) = \boldsymbol{0}$, we have

$$0 = \frac{1}{2} \|\nabla f(x)\|^2 \ge \mu \Big(f(x) - f^* \Big) \ge 0.$$

By squeezing theorem we have $f(x) = f^*$, meaning that such x is a global minimizer.

- The statement " $\|\nabla f(x)\|_2 = 0 \implies x$ is a global minimizer" is the classical 1st-order optimality condition in convex smooth optimization. Note that here in PŁ we didn't assume f is convex.
- In fact, PŁ is related to *invex function*: a function is invex if and only if every stationary point is a global minimum.

What functions are PŁ?

- Given a function f, how do we know is f satisfies PL?
- Determine "is f PL" for a very general class of function f is an open problem.
- ▶ We are doing optimization so we only focus on functions we deal with most of the time.
- ► In optimization, we have a nice sufficient condition.

If f is σ -strongly convex, then f is σ -PŁ.

We prove this now.

 $\sigma\text{-strongly convex functions are }\sigma\text{-PL}$

• Let $\sigma > 0$. If f is σ -strongly convex , then for all x, y,

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{\sigma}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_2^2.$$
 (SC)

Geometrically, it means f is not "too flat": it is bounded below by a quadratic function. See here for more discussion.

Now we show SC implies KŁ. Recall that in KŁ we have f*, so we need to create f* in SC. This can be done by just taking min on both sides of SC:

$$\min_{\boldsymbol{y}} \left\{ f(\boldsymbol{y}) \right\} \stackrel{\mathsf{SC}}{\geq} \min_{\boldsymbol{y}} \left\{ f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{\sigma}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_2^2 \right\},$$

which gives

$$f^* \ge f(\boldsymbol{x}) - \frac{1}{2\sigma} \|\nabla f(\boldsymbol{x})\|_2^2,$$

i.e.,

$$\frac{1}{2} \|\nabla f(\boldsymbol{x})\|_{2}^{2} \ge \sigma \Big(f(\boldsymbol{x}) - f^{*}\Big). \tag{PL}$$

$$8 / 15$$

Table of Contents

Polyak-Łojasiewicz inequality

 σ-strongly convex functions are σ-PŁ

2 Application of Polyak-Łojasiewicz inequality
 • Using PŁ to prove convergence of gradient descent
 • Using PŁ to prove convergence of randomized coordinate descent

³ Summary

Polyak 1963's short proof of linear convergence of GD

$$\begin{split} f(\boldsymbol{y}) &\leq f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \frac{L}{2} \| \boldsymbol{y} - \boldsymbol{x} \|^2 & f \text{ is } L\text{-smooth} \\ f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_k) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \rangle + \frac{L}{2} \| \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \|^2 & \text{put } \boldsymbol{y} = \boldsymbol{x}_{k+1}, \, \boldsymbol{x} = \boldsymbol{x}_k \\ f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_k) - \frac{1}{2L} \| \nabla f(\boldsymbol{x}_k) \|^2 & \text{GD } \boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \frac{1}{L} \nabla f(\boldsymbol{x}_k) \\ f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_k) - \frac{\mu}{L} (f(\boldsymbol{x}_k) - f^*) & \text{Pt} \\ f(\boldsymbol{x}_{k+1}) - f^* &\leq f(\boldsymbol{x}_k) - \frac{\mu}{L} (f(\boldsymbol{x}_k) - f^*) - f^* & \text{subtract both side by } f^* \\ &= (1 - \frac{\mu}{L}) (f(\boldsymbol{x}_k) - f^*). & \text{recursion} \end{split}$$

10 / 15

Comments

► The proof also applies to optimal stepsize, since

$$f(\boldsymbol{x}_{k+1}) = \min_{\alpha} f\left(\boldsymbol{x}_{k} - \alpha \nabla f(\boldsymbol{x}_{k})\right) \leq f\left(\boldsymbol{x}_{k} - \frac{1}{L} \nabla f(\boldsymbol{x}_{k})\right),$$

where the \leq is by definition of the optimal stepsize.

- ► PŁ does not
 - \blacktriangleright assume f is convex.
 - assume the minimizer x^* is unique.

In contrast, strong convexity (SC) assumes f

► is convex

- \blacktriangleright is strongly convex, which implies strictly convex and thus implies the minimizer is unique
- ► SC \implies PL (we just proved it), so the same convergence rate holds if f is μ -SC. However, proving such convergence rate using SC is tedious. See the long proof here.

Prove convergence of randomized coordinate descent (rCD) by PŁ

- Set up
 - ► Same problem: (\mathcal{P}) : $\operatorname{argmin}_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x})$.
 - Assumptions
 - f is coordinate-wise L-smooth

$$f(\underbrace{\boldsymbol{x} + \alpha \boldsymbol{e}_i}_{\boldsymbol{y}}) \leq f(\boldsymbol{x}) + \langle \nabla_i f(\boldsymbol{x}) \boldsymbol{e}_i, \underbrace{\alpha \boldsymbol{e}_i}_{\boldsymbol{y}-\boldsymbol{x}} \rangle + \frac{L}{2} \| \underbrace{\alpha \boldsymbol{e}_i}_{\boldsymbol{y}-\boldsymbol{x}} \|^2$$

$$\blacktriangleright \quad \mathcal{O} \neq \mathcal{X}^* \coloneqq \operatorname{argmin} f \text{ and } f \text{ is PL}$$

$$\blacktriangleright \quad \text{rCD with constant stepsize } \frac{1}{L}$$

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - rac{1}{L}
abla_{i_k} f(oldsymbol{x}_k) oldsymbol{e}_{i_k}$$

picking coordinate index i_k is based on uniform random probability.

▶ We can use PŁ to show rCD has linear convergence rate in expectation as

$$\mathbb{E}\left(f(\boldsymbol{x}_{k+1}) - f^*\right) \leq \left(1 - \frac{\mu}{dL}\right)^k \left(f(\boldsymbol{x}_0) - f^*\right).$$

Short proof

$$\begin{split} f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_{k}) + \alpha \nabla_{i} f(\boldsymbol{x}_{k}) + \frac{L}{2} \alpha^{2} & f \text{ is coordinate-wise } L\text{-smooth} \\ f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_{k}) - \frac{1}{2L} |\nabla_{i} f(\boldsymbol{x}_{k})|^{2} & \text{rCD update } \boldsymbol{x}_{k+1} = \boldsymbol{x}_{k} - \underbrace{\frac{1}{L} \nabla_{i_{k}} f(\boldsymbol{x}_{k})}{\alpha} \boldsymbol{e}_{i_{k}} \\ \mathbb{E}f(\boldsymbol{x}_{k+1}) &\leq \mathbb{E}f(\boldsymbol{x}_{k}) - \mathbb{E}\frac{1}{2L} |\nabla_{i} f(\boldsymbol{x}_{k})|^{2} & \text{take expectation} \\ &= f(\boldsymbol{x}_{k}) - \frac{1}{2L} \mathbb{E} |\nabla_{i} f(\boldsymbol{x}_{k})|^{2} & \text{expectation is a linear operator} \\ &= f(\boldsymbol{x}_{k}) - \frac{1}{2L} \sum_{i} \frac{1}{d} |\nabla_{i} f(\boldsymbol{x}_{k})|^{2} & \text{uniform probability} \\ &= f(\boldsymbol{x}_{k}) - \frac{1}{2dL} \|\nabla f(\boldsymbol{x}_{k})\|^{2} \\ \mathbb{E}f(\boldsymbol{x}_{k+1}) &\leq f(\boldsymbol{x}_{k}) - \frac{\mu}{dL} (f(\boldsymbol{x}_{k}) - f^{*}) & -\frac{1}{2} \|\nabla f(\boldsymbol{x}_{k})\|^{2} \overset{\text{PL}}{\leq} -\mu (f(\boldsymbol{x}_{k}) - f^{*}) \end{split}$$

Then similar to GD: subtract both side by f^* , rearrange and perform recursion will finish the proof.

Table of Contents

Polyak-Łojasiewicz inequality
 σ-strongly convex functions are σ-PŁ

2 Application of Polyak-Łojasiewicz inequality
 • Using PŁ to prove convergence of gradient descent
 • Using PŁ to prove convergence of randomized coordinate descent

3 Summary

Last page - summary

Discussed

► Polyak-Łojasiewicz inequality and its applications.

Not discussed

- Proximal version of PL: see here
- ► Relationship between PŁ and the more general Kurdyka-Łojasiewicz inequality.

Reference

Hamed Karimi, Julie Nutini, Mark Schmidt, "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition".

End of document