

Polyak-Łojasiewicz inequality
Andersen Ang
Department of Combinatorics and Optimization, University of Waterloo, Canada ms \boldsymbol{x} ang@uwaterloo.ca, where $\boldsymbol{x}=\lfloor\pi\rfloor \quad$ Homepage: angms.science

First draft: November 3, 2020 Last update: September 7, 2022

Table of Contents

(1) Polyak-Łojasiewicz inequality

- σ-strongly convex functions are σ-PŁ
(2) Application of Polyak-Łojasiewicz inequality
- Using PŁ to prove convergence of gradient descent
- Using PŁ to prove convergence of randomized coordinate descent

Summary

Usage of PŁ: (shorter) proof of convergence of gradient descent

- Set up
- Problem: unconstrained minimization
- Assumptions
- f is L-smooth: f has L-Lipschitz gradient
- $\varnothing \neq \mathcal{X}^{*}:=\operatorname{argmin} f$
- f is Pt
- We solve (\mathcal{P}) using gradient descent with constant stepsize $\frac{1}{L}$

$$
\begin{equation*}
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right) . \tag{GD}
\end{equation*}
$$

- We can use PŁ to show GD has a linear convergence rate as

$$
f\left(\boldsymbol{x}_{k+1}\right)-f^{*} \leq\left(1-\frac{\mu}{L}\right)^{k}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right)
$$

where $f^{*}:=f\left(\boldsymbol{x}^{*}\right)$.

- Important: we didn't assume f is convex.

Remarks on the setup

- f has L-Lipschitz gradient means
- ∇f exists everywhere and it is (globally) L-Lipschitz,
- equivalently, for all $\boldsymbol{x}, \boldsymbol{y} \in \operatorname{dom} f$,

$$
f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2}
$$

- if f is twice-differentiable, then $\lambda_{\nabla^{2} f(\boldsymbol{x})} \leq L$, i.e., the eigenvalues of Hessian matrix at \boldsymbol{x} are all upper bounded by L.
See here for more information.
- $\varnothing \neq \mathcal{X}^{*}:=\operatorname{argmin} f$ means the set \mathcal{X}^{*}, defined as the solution set of (\mathcal{P}), is non-empty. It means that there exists (at least one) minimizer \boldsymbol{x}^{*}
- Generally $f^{*}<+\infty$.
- GD with general stepsize $\alpha_{k}>0$ is $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \nabla f\left(\boldsymbol{x}_{k}\right)$.

Polyak-Łojasiewicz inequality

- A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies Polyak-Łojasiewicz (PŁ) inequality if there exists a scalar $\mu>0$ such that

$$
\begin{equation*}
\frac{1}{2}\|\nabla f(\boldsymbol{x})\|^{2} \geq \mu\left(f(\boldsymbol{x})-f^{*}\right) \quad \forall \boldsymbol{x} \in \operatorname{dom} f \tag{Pt}
\end{equation*}
$$

where $f^{*}:=f\left(\boldsymbol{x}^{*}\right)$ and $\boldsymbol{x}^{*} \in \mathcal{X}^{*}$ is a minimizer of f.

- It links the norm of the gradient $\|\nabla f\|_{2}$, the measure of how close is \boldsymbol{x} to a stationary point, to $f(\boldsymbol{x})-f^{*}$, the measure of how close f at \boldsymbol{x} to the optimal value f^{*}.
- The scaling factor μ is called PL constant.
- If f is σ-strongly convex, the f is σ - PL .

We will prove this later.

PŁimplies all stationary points are global minimizers

- Since $f^{*}:=\inf f$ is the smallest (global) achievable function value, thus

$$
\frac{1}{2}\|\nabla f(\boldsymbol{x})\|^{2} \geq \mu\left(f(\boldsymbol{x})-f^{*}\right) \geq 0
$$

- At a point \boldsymbol{x} that $\nabla f(\boldsymbol{x})=\mathbf{0}$, we have

$$
0=\frac{1}{2}\|\nabla f(\boldsymbol{x})\|^{2} \geq \mu\left(f(\boldsymbol{x})-f^{*}\right) \geq 0
$$

By squeezing theorem we have $f(\boldsymbol{x})=f^{*}$, meaning that such \boldsymbol{x} is a global minimizer.

- The statement " $\|\nabla f(\boldsymbol{x})\|_{2}=0 \Longrightarrow \boldsymbol{x}$ is a global minimizer" is the classical 1st-order optimality condition in convex smooth optimization. Note that here in PŁ we didn't assume f is convex.
- In fact, $\mathrm{P} Ł$ is related to invex function: a function is invex if and only if every stationary point is a global minimum.

What functions are Pt?

- Given a function f, how do we know is f satisfies $\mathrm{P} Ł$?
- Determine "is f PŁ" for a very general class of function f is an open problem.
- We are doing optimization so we only focus on functions we deal with most of the time.
- In optimization, we have a nice sufficient condition.

If f is σ-strongly convex, then f is σ - P .
We prove this now.
σ-strongly convex functions are σ - $\mathrm{P} \downharpoonright$

- Let $\sigma>0$. If f is σ-strongly convex, then for all $\boldsymbol{x}, \boldsymbol{y}$,

$$
\begin{equation*}
f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{\sigma}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2} . \tag{SC}
\end{equation*}
$$

Geometrically, it means f is not "too flat": it is bounded below by a quadratic function. See here for more discussion.

- Now we show SC implies $\mathrm{K} Ł$. Recall that in $\mathrm{K} Ł$ we have f^{*}, so we need to create f^{*} in SC. This can be done by just taking $\min _{y}$ on both sides of SC:

$$
\min _{\boldsymbol{y}}\{f(\boldsymbol{y})\} \stackrel{\mathrm{SC}}{\geq} \min _{\boldsymbol{y}}\left\{f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{\sigma}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}\right\}
$$

which gives

$$
f^{*} \geq f(\boldsymbol{x})-\frac{1}{2 \sigma}\|\nabla f(\boldsymbol{x})\|_{2}^{2}
$$

ie.,

$$
\frac{1}{2}\|\nabla f(\boldsymbol{x})\|_{2}^{2} \geq \sigma\left(f(\boldsymbol{x})-f^{*}\right)
$$

Table of Contents

(1) Polyak-Łojasiewicz inequality

- σ-strongly convex functions are σ-P \not
(2) Application of Polyak-Łojasiewicz inequality
- Using PŁ to prove convergence of gradient descent
- Using PŁ to prove convergence of randomized coordinate descent

Summary

Polyak 1963's short proof of linear convergence of GD

$$
\begin{array}{rlr}
f(\boldsymbol{y}) & \leq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} & f \text { is } L \text {-smooth } \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{k}\right), \boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\rangle+\frac{L}{2}\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right\|^{2} & \text { put } \boldsymbol{y}=\boldsymbol{x}_{k+1}, \boldsymbol{x}=\boldsymbol{x}_{k} \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} & \text { GD } \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right) \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{\mu}{L}\left(f\left(\boldsymbol{x}_{k}\right)-f^{*}\right) \tag{Pt}\\
f\left(\boldsymbol{x}_{k+1}\right)-f^{*} & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{\mu}{L}\left(f\left(\boldsymbol{x}_{k}\right)-f^{*}\right)-f^{*} & \text { Pubtract both side by } f^{*} \\
& =\left(1-\frac{\mu}{L}\right)\left(f\left(\boldsymbol{x}_{k}\right)-f^{*}\right) . & \text { recursion }
\end{array}
$$

Comments

- The proof also applies to optimal stepsize, since

$$
f\left(\boldsymbol{x}_{k+1}\right)=\min _{\alpha} f\left(\boldsymbol{x}_{k}-\alpha \nabla f\left(\boldsymbol{x}_{k}\right)\right) \leq f\left(\boldsymbol{x}_{k}-\frac{1}{L} \nabla f\left(\boldsymbol{x}_{k}\right)\right)
$$

where the \leq is by definition of the optimal stepsize.

- PŁ does not
- assume f is convex.
- assume the minimizer x^{*} is unique.

In contrast, strong convexity (SC) assumes f

- is convex
- is strongly convex, which implies strictly convex and thus implies the minimizer is unique
- $\mathrm{SC} \Longrightarrow \mathrm{P}$ (we just proved it), so the same convergence rate holds if f is μ-SC. However, proving such convergence rate using SC is tedious. See the long proof here.

Prove convergence of randomized coordinate descent (rCD) by PŁ

- Set up
- Same problem: $(\mathcal{P}): \underset{\boldsymbol{x} \in \mathbb{R}^{d}}{\operatorname{argmin}} f(\boldsymbol{x})$.
- Assumptions
- f is coordinate-wise L-smooth

$$
f(\underbrace{\boldsymbol{x}+\alpha \boldsymbol{e}_{i}}_{\boldsymbol{y}}) \leq f(\boldsymbol{x})+\langle\nabla_{i} f(\boldsymbol{x}) \boldsymbol{e}_{i}, \underbrace{\alpha \boldsymbol{e}_{i}}_{y-\boldsymbol{x}}\rangle+\frac{L}{2}\|\underbrace{\alpha \boldsymbol{e}_{i}}_{\boldsymbol{y}-\boldsymbol{x}}\|^{2}
$$

- $\varnothing \neq \mathcal{X}^{*}:=\operatorname{argmin} f$ and f is Pt
- rCD with constant stepsize $\frac{1}{L}$

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\frac{1}{L} \nabla_{i_{k}} f\left(\boldsymbol{x}_{k}\right) \boldsymbol{e}_{i_{k}}
$$

picking coordinate index i_{k} is based on uniform random probability.

- We can use P to show rCD has linear convergence rate in expectation as

$$
\mathbb{E}\left(f\left(\boldsymbol{x}_{k+1}\right)-f^{*}\right) \leq\left(1-\frac{\mu}{d L}\right)^{k}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right)
$$

Short proof

$$
\begin{array}{rlr}
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\alpha \nabla_{i} f\left(\boldsymbol{x}_{k}\right)+\frac{L}{2} \alpha^{2} & f \text { is coordinate-wise } L \text {-smooth } \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L}\left|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right|^{2} & \text { rCD update } \boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\underbrace{\frac{1}{L} \nabla_{i_{k}} f\left(\boldsymbol{x}_{k}\right)}_{\alpha} \boldsymbol{e}_{i_{k}} \\
\mathbb{E} f\left(\boldsymbol{x}_{k+1}\right) & \leq \mathbb{E} f\left(\boldsymbol{x}_{k}\right)-\mathbb{E} \frac{1}{2 L}\left|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right|^{2} & \text { take expectation } \\
& =f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L} \mathbb{E}\left|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right|^{2} & \text { expectation is a linear operator } \\
& =f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L} \sum_{i} \frac{1}{d}\left|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right|^{2} & \text { uniform probability } \\
& =f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 d L}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} & \\
\mathbb{E} f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{\mu}{d L}\left(f\left(\boldsymbol{x}_{k}\right)-f^{*}\right) & -\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \leq-\mu\left(f\left(\boldsymbol{x}_{k}\right)-f^{*}\right)
\end{array}
$$

Then similar to GD: subtract both side by f^{*}, rearrange and perform recursion will finish the proof.

Table of Contents

(1) Polyak-Łojasiewicz inequality

- σ-strongly convex functions are σ - $\mathrm{P} Ł$
(2) Application of Polyak-Łojasiewicz inequality
- Using PŁ to prove convergence of gradient descent
- Using PŁ to prove convergence of randomized coordinate descent
(3) Summary

Last page - summary

Discussed

- Polyak-Łojasiewicz inequality and its applications.

Not discussed

- Proximal version of PŁ: see here
- Relationship between $\mathrm{P} Ł$ and the more general Kurdyka-Łojasiewicz inequality.

Reference

- Hamed Karimi, Julie Nutini, Mark Schmidt, "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition".

End of document

