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Usage of PL: (shorter) proof of convergence of gradient descent

» Set up

» Problem: unconstrained minimization (P) : argminf(x).
xR
» Assumptions

» fis L-smooth: f has L-Lipschitz gradient
> o+ X" = argmin f
> fisPL
> We solve (P) using gradient descent with constant stepsize %

1
Tp4+1 = T — EVf(:Ek) (GD)
» We can use PL to show GD has a linear convergence rate as
* " .
f@e) =1 < (1= %) (f@o) — f)
where f*:= f(x*).

» Important: we didn't assume f is convex.
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Remarks on the setup

» f has L-Lipschitz gradient means
P> V[ exists everywhere and it is (globally) L-Lipschitz,
P equivalently, for all z,y € dom f,

F(y) < (@) + (Vi @)y — )+ £y o

> if f is twice-differentiable, then Agzf(,) < L, i.e., the eigenvalues of Hessian matrix at x are
all upper bounded by L.

See for more information.

» o # X* := argmin f means the set X'*, defined as the solution set of (P), is non-empty.
It means that there exists (at least one) minimizer z*

» Generally f* < 4o0.

» GD with general stepsize a > 0 is 1 = @) — o, Vf(xg).
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https://angms.science/doc/CVX/CVX_alphabeta.pdf

Polyak-t.ojasiewicz inequality

» A differentiable function f : R™ — R satisfies Polyak-tojasiewicz (PLt) inequality if there
exists a scalar p > 0 such that

SIVI@I 2 u(f(@) 7)) Ve edoms, (PL)
where f*:= f(x*) and * € X* is a minimizer of f.

» It links the norm of the gradient ||V f||2, the measure of how close is & to a stationary
point, to f(x) — f*, the measure of how close f at x to the optimal value f*.

» The scaling factor u is called PL constant.

» If f is o-strongly convex, the f is o-PL. We will prove this later.
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PL implies all stationary points are global minimizers
» Since f* :=inf f is the smallest (global) achievable function value, thus

LIV @) > u(f@) 1) = 0.
» At a point x that V f(x) = 0, we have

0= IVF@I? > (@)~ ) > 0.

By squeezing theorem we have f(x) = f*, meaning that such x is a global minimizer.

» The statement “||Vf(x)||2 =0 = x is a global minimizer” is the classical 1st-order
optimality condition in convex smooth optimization. Note that here in PL we didn’t
assume f is convex.

» In fact, PL is related to invex function: a function is invex if and only if every stationary
point is a global minimum.
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What functions are PL?

» Given a function f, how do we know is f satisfies PL?
» Determine “is f PL" for a very general class of function f is an open problem.
» We are doing optimization so we only focus on functions we deal with most of the time.

» In optimization, we have a nice sufficient condition.
If f is o-strongly convex, then f is o-PL.

We prove this now.

7/15



o-strongly convex functions are o-PL
» Let 0 > 0. If f is o-strongly convex , then for all x,y,

g
[) > f@)+ (V@) - @) + 2y - 3 (SO)
Geometrically, it means f is not “too flat”: it is bounded below by a quadratic function.
See for more discussion.

» Now we show SC implies KL. Recall that in KL we have f*, so we need to create f* in

SC. This can be done by just taking min on both sides of SC:
Yy

min { 7(y)} < win { /(@) + (V/ (@), — @) + Sy — <3},

Yy
which gives .
12 f@) = 59 @),
i.e.,
SIVF@IE > o (f(@) - 5°). (PL)
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Polyak 1963's short proof of linear convergence of GD

=
>
IA

F(@)+ (V@) y @)+ ly

fis L-smooth

faer) S S+ (V@)@ — o) + 2o —anl®  puty =@ @ = o

flawn) < o) - 5| V@) GD w4y = i — 1V (1)

flane) < flan) =7 (fl) — ) PL

f@en) = < fl@n) = (f@) = 1) = f° subtract both side by f*
= (1-D (@) -r)

faw) = < (1= 5)" (f@o) — f7) recursion
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Comments

» The proof also applies to optimal stepsize, since

. 1
f(xpy1) = HlO}nf<iL'k - OéVf(ka;)) < f<fl?k: - va(mk)>a
where the < is by definition of the optimal stepsize.

» Pt does not

P> assume f is convex.
P assume the minimizer * is unique.

In contrast, strong convexity (SC) assumes f
P is convex
P is strongly convex, which implies strictly convex and thus implies the minimizer is unique

» SC — PL (we just proved it), so the same convergence rate holds if f is u-SC.
However, proving such convergence rate using SC is tedious. See the
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Prove convergence of randomized coordinate descent (rCD) by Pt

> Set up

» Same problem: (P) : argmin f(x).
zeRd
» Assumptions

» f is coordinate-wise L-smooth

L 2
i) < Vi i, 0€;) + — i
f(z +aey) < f(@) +(Vif(z)ei, aei) + | aei ||
Yy Yy—x y—x
» o # X" :=argmin f and f is PL
> rCD with constant stepsize T

Tpp1 = Tk — %Vi,kf(wk)eik
picking coordinate index i is based on uniform random probability.
» We can use PL to show rCD has linear convergence rate in expectation as
E(fe) — 1) < (1= 2 (o) - ).
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Short proof

fl@er1) < flow) +aVif(zg) + goﬂ f is coordinate-wise L-smooth
1 1
f@en) < flan) = 57 |Vif (@)l rCD update zp11 = @i — Vi f(@k) €,
—_—
Ef(zp+1) < Ef(xi) —Esz|Vif(z)]? take expectation
= f(zg) — iIE\Vif(avk)P expectation is a linear operator
= f(=zr) ~ 57 Z |Vif(xw)|? uniform probability
_ 2
= flw) - oo VS @]
* ]‘ 2 Pt *
Ef(zri) < flor) - dj(f(wk) =) 5 IV @WII* < —u(f(@r) - 17)

Then similar to GD: subtract both side by f*, rearrange and perform recursion will finish the proof.
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Last page - summary

Discussed

» Polyak-tojasiewicz inequality and its applications.

Not discussed

» Proximal version of PL: see

» Relationship between PL and the more general Kurdyka-tojasiewicz inequality.

Reference

» Hamed Karimi, Julie Nutini, Mark Schmidt, “Linear Convergence of Gradient and
Proximal-Gradient Methods Under the Polyak-Lojasiewicz Condition”.
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