
A MARSHALL CAVENDISH 30 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 3 	 No 30

BASIC PROGRAMMING 62

SUPERCHARGE YOUR BASIC 	 921

Make your BASIC programs run faster and
time BASIC statements

MACHINE CODE 31

CLIFFHANGER: ADDING INSTRUCTIONS 928

Add the instructions screen to INPUT'S
machine code game

BASIC PROGRAMMING 63

ENGINEERING A SOLUTION 	 933

Analyze the interacting forces around you
on your microcomputer

GAMES PROGRAMMING 30

GETTING IT WORD-PERFECT 	 940

Complete the word game and dig out those
obscure words and phrases

APPLICATIONS 18

EXTEND YOUR HOBBIES FILE

Choose from a range of extra routines to extend
the hobbies file to suit your exact needs

INDEX
The lost part of INPUT, Part 52, will contain a complete, cross-referenced index.

For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Paul Chave, Ian Stephen. Pages 921, 922, 923, 926, Kuo Kang
Chen. Pages 928, 931, Paul Chave, Ian Stephen. Pages 933, 934, 935, 936, 937,
Paddy Mounter. Pages 940, 941, 942, 943, 945, Kevin O'Keefe. Page 946, Dave
King. Pages 948, 950, Dave King, Chris Lyon.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 51'A,
England. Printed by Artisan l'resss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

I'here are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland: 	.
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries— and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16IK,
481028, and + 	COMMODORE 64 and 128

11[4 ACORN ELECTRON,
BBC B and B+ 	DRAGON 32 and 64

7181 	 VIC 20 T TAN
COMPUTER

MAKING BASIC PROGRAMS
RUN FASTER

TIMING BASIC STATEMENTS
LOOKING AT STRUCTURE,
MEMORY USE AND SPEED

Don your crash hats, firesuits and
visors. Clean your plugs, and make
sure your machine is running
sweetly. The flag is about to drop,
for it's time to speed up BASIC

At first, all computers seem lightning fast,
performing tasks 'in a blink of an eye' which
would take a human very much longer. But
try to write an action game, or get the machine
to perform a lengthy series of calculations, or
a complex sorting task, using BASIC and
you'll find it's another story altogether. The
machine certainly does take time to complete
the allotted task. Soon, you'll find yourself
complaining about how slow your machine is!

The fastest running programs are those
written in machine code or assembly
language—see INPUT's Machine Code pro-
gramming strand—but most people find it far
easier to program in BASIC. Unfortunately, a
program written in BASIC can never hope to
approach the speed of a program written in
machine code because the computer has to
spend time translating the program from
BASIC into machine code. It has a special
program installed as part of its hardware
which does this job, called an interpreter.

If you do not wish to write programs in
machine code, but still want to extract the last
ounce of speed from the machine, there are
various ploys that can be tried. First, you
should try to structure your programs

properly—see pages 173 to 178. Second, you
should try to make each individual program
line operate at the optimum speed. Choose to
use the parts of BASIC which the interpreter
is quickest at translating.

Every machine has its own quirks, and to
some extent, each program its own require-
ments. Consequently, there can be no hard-
and-fast rules for the perfect program. It is
only possible to give general pointers—it is up
to you how many of the tips you choose to
incorporate into your programs, because
there are sacrifices to be made in using them.

TIMING BASIC PROGRAMS
All the machines have a built-in timer which
can be used to compare how fast programs

run. Type in the routine below which has
been designed for your machine, so you can
follow through the examples later in the
article, and you can see for yourself the
differences between alternative forms of
BASIC programming:

1 POKE 23672,0: POKE 23673,0: POKE
23674,0

100 REM SPECTRUM FUNCTIONS TIMER
120 FOR 1=1 TO 100
130 GOSUB 200: NEXT i
140 LET b= PEEK 23672 + 256*PEEK

23673 + 65536`PEEK 23674
150 PRINT AT 5,5;(b-41)/5;

" MILLISECS"
160 STOP
200 REM
500 RETURN

100 T=TI
110 FORT = 1T0100:GOSUB200:NEXTI
120 T =TI—T
130 PRINT"OTIME TAKEN=";

(T — 21)/6;" ❑ MILLISECS."
140 END
200 REM
500 RETURN

100 T=TI
110FORI =1T0100:GOSUB200:NEXTI
120 T=TI—T
130 PRINT"CITIME TAKEN =";

(T — 18)/6;" ❑ MILLISECS."
140 END

200 REM
500 RETURN

10 REM TIMER FOR BBC
100 TIME = O
101 TIME=TIME —194
110 FOR K=1 TO 2000:GOSUB 200:NEXT
130 CLS:PRINT" ❑ TIME TAKEN El =";

TIM E/100;" El SECONDS"
140 END
200 REM
1000 RETURN

1191
10 REM TIMER FOR ELECTRON
100 TIME=D
101 TIME=TIME-266
110 FOR K=1 TO 2000:GOSUB 200:NEXT
130 CLS:PRINT" ❑ TIME TAKEN ❑ =";

TIM E/100;" E SECONDS"
140 END
200 REM
1000 RETURN

100 TIMER =0
110 FORK =1T0600:GOSUB200:NEXT
120 T=TIMER —101
130 CLS:PRINT" ❑ TIME TAKEN=";

T/50;"SECONDS"
140 END
200 REM
1000 RETURN

Each of these programs contains a REM line at
Line 200 which will later be used to slot in the
test piece. The Spectrum program also con-
tains a REM at Line 100 which is part of the

timing correction, and should not be omitted.
The REMs in Line 10 of the Acorn programs
simply identify which is the BBC version and
which the Electron. For the Tandy, the 101 in
Line 120 should be replaced by 170.

STRUCTURE
Although a considerable amount has already
been said in INPUT about structuring
programs, it's worth recapping on those
factors which have a bearing on the speed of
the program.

Place all frequently used subroutines at or
near the beginning of the program. This is
because the interpreter starts scanning for the
GOSUB line number from the beginning.
Obviously, if the line number is a low one, the
line will be found more quickly than a line
with a higher number. A few milliseconds
saved here and there can soon make a signifi-
cant contribution to speed increase.

In addition to subroutines, the Acorn
machines have the PROCedures offered by
BBC BASIC. Apart from the advantages of
structured programming, opting for
PROCedures can allow you to write faster-
running programs. Although using a
PROCedure will take a little longer than a
subroutine doing the same thing, the matter
isn't quite as simple as all that.

If you have a number of subroutines, they
all cannot be sited at the fastest position, right
at the start of the program. The further from
the start, the slower running the subroutine.
On the other hand, PROCedures can be put
anywhere you wish in the program, and the
speed will not be affected.

Badly thought-out programs using a maze
of indiscriminate GOTOs—sometimes referred
to as 'spaghetti programming'—are not only a
menace to anyone who tries to read the pro-
gram, but can be a great hindrance to speedy
execution. Thus, a well planned listing is

likely to be faster in execution than a program
that has just 'evolved'.

MEMORY AND SPEED
Very broadly, shorter programs are also quite
likely to run faster. However, the three
programmer's aims—speed, clarity and mem-
ory economy—are usually in conflict. Multis-
tatement lines, for example, save memory,
and speed the program, but can make the
listing less easy to follow and debug.

A program designed for maximum speed of
running can increase greatly in length and
memory usage. Conversely, some otherwise
very valid memory-saving techniques save
memory at the expense of speed.

A great deal of memory can be saved by
using subroutines, but calling subroutines is
time-consuming and therefore is undesirable
if you are aiming for the very fastest exe-
cution. As you have seen already, if you do
opt for subroutines, you have to be very
careful with the structure of the program to
ensure that some of the speed loss is
recovered.

Similarly, LET A = VAL "100" is great for
saving memory, but is disastrous when com-
pared with the more memory-hungry LET
A = 100 when you're aiming for speed.

VARIABLES
A knowledge of how variables are stored in
memory can be useful when seeking to speed
up programs. The variables area is emptied
by RUN or CLEAR, and variables are created as
they occur. Generally, new variables are
added to extend the variables area upwards—
although this doesn't apply to the Sinclair
Spectrum.

Consider a situation where you create a
string variable, then a numeric array. Later
you might add something to the string. If the
string has been created early in the program,
then all the subsequently created variables
will have to be moved up in memory to
accommodate any additions to the string.

Take a look at this example:

100 LET T$ = "
110 DIM A(1000)
120 LET T$—T$ +"WHATEVER"

In most versions of BASIC, you would save a
considerable amount of time by exchanging
the first two lines of the program.
DIMensioning the array before defining the
string. In the program as it appears, 5000
bytes might be moved each time
"WHATEVER" is added to T$. Spectrum
owners need not be concerned, as their
BASIC has a different method of managing
the variables area, so this problem does not
arise.

There is a general rule that if you use
variables instead of numbers, then you save a
considerable amount of time. A concrete
example might come from the Commodore
64. Each variable saves approximately five to
ten milliseconds. This may not sound a lot,
but if there are a number of loops where
numbers are constantly handled, then the
time saved could be considerable. In the case
of the Spectrum, the opposite seems true. LET
C =10 + 10 takes 3 milliseconds, whereas LET
C = D + D (where D =10) takes 4.2
milliseconds.

MATHEMATICAL FUNCTIONS
Use the timing routine to compare these
alternative forms:

200 LET C = 4 . 4'4'4

or

200 LET C = 414

You may well expect the machine's own
powers function to be the faster of the two. On
the Spectrum, for example, the first takes 6
milliseconds, whereas the second takes 114
milliseconds! This is yet another example of
memory economy conflicting with speed.

It has sometimes been suggested that on
the Spectrum lines like:

210 IF X>Y THEN LET Y=Y + 1
220 IF X<Y THEN LET Y=Y-1

can be greatly speeded by the substitution of:

10 LET Y=Y+(X>Y)—(X<Y)

Sinclair BASIC does, indeed, allow this kind
of comparison, and the single line may well
appear to be more elegant programming, but
a check with the timing program shows that
the two line version is faster. If you do not
own a Spectrum try the equivalent on your
machine:

210 IF X>Y THEN Y=Y+1
220 IF X<Y THEN Y=Y-1
or
210 Y=Y+(X<Y)—(X>Y)

In each case, try suitable X and Y values.

MULTIPLICATION AND DIVISION
The expression C = D*0.5, and C = D/2 per-
form exactly the same calculation, but you
will find that multiplication is slightly faster.

Try these suggestions to see which is faster,
and keep the results for future reference:

200 LET C=10+10
200 LET C = D + D (where D =10)
200 LET C =10'10
200 LET C =10/10
200 LET C =10 + PI
200 LET C = SIN 10
200 LET C = COS 10
200 LET C= TAN 10
200 LET C= VAL "10"
200 LET C=10
200 LET C= D (where D=10)

200 PRINT AT 21,0; "TEST"
200 PRINT AT 21,0; A$ (where A$ = "TEST")
200 PRINT AT 21,0; 10+1000+

500+5.5
200 PRINT AT 21,0; D+E+F+G (where

D=10, E=1000 etc)

ECK
200 C=10+10
200 C=D +D (where D=10)
200 C=1010
200 C=10/10
200 C=10+ a
200 C=SIN (10)
200 C = COS (10)
200 C=TAN (10)
200 C =VAL ("10")
200 C=10
200 C=D (where D=10)
200 PRINT "TEST"
200 PRINT A$ (where A$="TEST")
200 PRINT 10+1000+500+5.5
200 PRINT D+E+F+G (where D=10,

E =1000 etc)

200 C=10+10
200 C=D+D (where D=10)
200 C=1010
200 C=10/10
200 C=10+PI
200 C=SIN 10
200 C= COS 10
200 C=TAN 10
200 C=VAL "10"
200 C=10
200 C = D (where D=10)
200 PRINT TAB(21,0)"TEST"
200 PRINT TAB(21,0)A$ (where A$"TEST")
200 PRINT TAB(21,0)10 +1000 +

500+5.5
200 PRINT TAB(21,0)D +E+F+G (where

D=10, E =1000 etc)

200 C=10+10
200 C=D +D (where D=10)
200 C=10 . 10
200 C=10/10
200 C=10+PI
200 C=SIN (10)
200 C= COS (10)
200 C=TAN (10)
200 C=VAL ("10")
200 C=10
200 C = D (where D=10)
200 PRINT @260, "TEST"
200 PRINT @260, A$ (where A$ = "TEST")
200 PRINT @260, 10+1000+500+5.5
200 PRINT @260, D+E+F+G (where

D=10, E=1000 etc)

Using PROCedures is faster than GOSUBs.
It is faster to pass parameters to a
PROCedure than to use global variables—
use PROCFAST(X,Y,Z) instead of
PROCFAST

Remember FOR ... NEXT loops are faster
than REPEAT ... UNTIL loops. Both are
faster than IF ... THEN GOTO loops.

Start ARRAYS from subscript 0, not from
1.

When using a FOR ... NEXT loop do not
put a variable after the NEXT.

Define Arrays at the start of the program.

Use INTEGER variables rather than
FLOATING POINT whenever possible.

Use variables instead of numbers

Use short variable names; single letters
where possible.

Put all frequently used subroutines at the
beginning of the program.

Use FOR ... NEXT loops in preference to
loops like:
100 LET X=X+1: IF X<20 THEN
GOTO 100

Use low line numbers—start programming
from line 10 rather than line 1000

Use short Machine Code routines called
from Basic for Scrolling, etc.
Become an avid collector of published
machine code routines.

SORTING AND SEARCHING
The topic of sorting has been covered previ-
ously in INPUT— see pages 392 to 397—so it
won't be examined in too great a depth here.
The Shell-Metzner Sort described in the
article would be the one to choose for any
application involving the sorting of more
than, say, one hundred items. It has the
peculiarity that the more data it has to cope
with, the faster it sorts. This sort is very much
faster than the more well-known Bubble Sort,
but is another example of where you will be
sacrificing memory for speed.

Searching is often thought of alongside

sorting. This time, instead of putting a collec-
tion of data in order, you'll be trying to
retrieve a particular piece (or related pieces) of
data as quickly as possible. Suppose you had a
list of telephone numbers stored in your
machine, and you needed the number of
Albert Bodgitt and Sons, Painters and De-
corators, the last thing you'd want is for the
machine to take longer to find the number
than it would take you to use a telephone
book. You, therefore, are aiming to write the
fastest possible sort routines.

The Serial Search (see listing below) simu-
lates a person searching through a list, item by
item, on paper.

In calculation programs Define a Function
to cover repetitive calculations; e.g.:
10 DEF FN A(x) = x — (INT (x/360)*360)
20 LET number = FN A (number)
Better than:
10 IF number >360 THEN LET
number = number —360

PRINTA$,C:F%=

Plan your program on paper before touching
the keyboard. In this way you will avoid
losing speed by excessive jumping
backwards and forwards, indicative of a
badly planned program.

Remember Subroutines save Memory but
waste Time.

Remove all superfluous common
denominators; e.g. Change
10 LET X =Y/100 +Z/100 to
10 LET X = (Y + Z)/100

Avoid GOTOs whenever possible.

Use multistatement lines when possible.

Remove all unnecessary spaces, blank lines
and REM statements from the program.

When employing an IF statement, put the
most likely FALSE condition first.

Re-use Variable names and loop Variables,
rather than defining extra ones.

Use variable names with an even spread
throughout the alphabet—for example, don't
have all the variable names starting with S.

If you are using integer variables as well
as floating point ones, place the integer
variables at the front of the line, where they
will be executed first.

DOLPHIN,FOX,GOAT,IGUANA
85 DATA JACKASS,MUSTANG,

PIGLET,SCORPION

10 MODE6
20 DIM N$(10)
30 F%= FALSE
40 FOR C%=1 TO 10:READ NA$:

N$(C%)=NA$:NEXT
50 INPUT"ANIMAL TO BE FOUND";A$
60 FOR C=1 TO 10:IF N$(C)=A$ THEN

PR1NTA$,C:F%= TRUE
70 NEXT
80 IF F%= FALSE THEN PRINT —

"NOT FOUND"
85 TIME= 0:REPEAT UNTIL TIME > 200
90 RUN
100 DATA ANTELOPE,BEAVER,

DOLPHIN,FOX,GOAT,IGUANA,
JACKASS,MUSTANG,PIGLET,
SCORPION

ttC
10 REM SERIAL SEARCH
20 DIMB$(10)
30 CLS:FORI =1T010:READB$(1):

PRINT@33+112,B$(1);:NEXT
40 PRINT@417,STRING$(30,32);

STRING$(30,8);:INPUT"ENTER
KEYWORD ❑ ";A$

50 FORX=1T010
60 IF B$(X)=A$ THENPRINT@46

+ X*32,CHR$(191);"FOUND";:
X=10

70 NEXT:GOT040
80 DATA ANTELOPE,BEAVER,

DOLPHIN,FOX,GOAT,IGUANA,
JACKASS,MUSTANG,PIGLET,
SCORPION

a
10 DATA "ANTELOPE","BEAVER",

"DOLPHIN","FOX","GOAT",
"IGUANA","JACKASS","MUSTANG",
"PIG LET","SCORPION"

20 RESTORE 10: DIM B$(10,8)
30 CLS : FOR i=1 TO 10: READ B$(i): PRINT

AT i,5;B$(i): NEXT i
40 POKE 23658,8: INPUT "Enter

keyword ❑ ";A$
50 FOR X=1 TO 10
60 IF B$(x, TO LEN A$)=A$ THEN PRINT

FLASH 1;AT X,13;""; FLASH 0;"FOUND":
GOTO 40

70 NEXT X

10 REM SERIAL SEARCH
20 DIM B$(10)
30 PRINT "Ogigggr:FOR 1=1 TO

10:READ B$(I):PRINT I,B$(I):NEXT I
40 INPUT "I§IENTER KEYWORD

11";A$:PRINT "ERN 	g"
50 FOR X=1 TO 10
60 IF B$(X) =A$ THEN PRINT

SPC(4);"aFOUND":GOTO 75
70 PRINT:NEXT X
75 PRINT "g"
80 DATA ANTELOPE,BEAVER,

Why do the speed tips only apply
to some machines?
There are no hard-and-fast rules about
how to write BASIC programs to extract
the final spurt of speed, and equally,
there are no hard-and-fast rules about
writing interpreters—after all, they are
just machine programs. They can have
similar compromises to any programs
you may write.

The speed of an interpreter will
depend on how it's written, and
the features the manufacturer
provides in BASIC.

Although the Serial Search is a very well-
known search routine, it's not particularly
quick. The Binary Search (see listing below)
is not much more difficult to program, but is
much faster, although you will only notice the
difference when searching large lists.

The greater speed of the Binary Search is
achieved because, unlike the Serial version, it
does not have to examine every item on the
list. The data must have been previously
sorted into numeric or alphabetical order, and
the computer first looks at the element in the
centre of the list. From this point, it moves up
or down, each time cutting the remaining list
in half, as it compares each element encoun-
tered with the item it is searching for. Initi-
ally, it is not looking for an exact match, as in
the Serial Search, but simply notes if the first
letter is higher or lower than that of the
desired item.

10 CLS : RESTORE
20 LET t =10: LET b =1
30 DIM n$(10,10)
40 FOR c=1 TO 10
50 READ n$(c)
60 NEXT c
70 INPUT "ANIMAL TO BE FOUND";

a$
75 LET a$=a$+

"1110011100[11111111"
(TO 10—LEN a$)

80 PAUSE 50
95 CLS
100 IF n$(t) =a$ THEN PRINT n$(t),t:

BASIC's still too slow, but I find
machine code too tedious. What
else can I do?
There is a kind of 'half-way house' in
languages which are compiled rather
than interpreted—interpreting BASIC
statements as the program is RUNning is
what takes the time.

Instead, a compiled language uses
another type of program—rather like the
assemblers you may be familiar with.
from machine code programming—
which converts the program from a high
level language into machine code before
RUNning the program. This means that
after compiling, you are RUNning a
program in machine code, rather
than a high level language.

GOTO 200
110 IF n$(B) =a$ THEN PRINT n$(b),b:

GOTO 200
120 LET p = INT (0.5+ (t+b)/2)
130 IF n$(p) =a$ THEN PRINT n$(p),p:

GOTO 200
140 IF n$(p) > a$ THEN LET t=p
150 IF n$(p) <a$ THEN LET b=p
160 IF t—b=1 THEN PRINT "DO ❑ NOT

FOUND": GOTO 200
170 GOTO 100
200 IF INKEY$="" THEN GOTO 200
210 RUN
580 DATA "Antelope"," Beaver",

"Dolphin","Fox","Goat",
"Iguana","Jackass","Mustang",
"Piglet","Scorpion"

10 PRINT "0"
20 T%=10:B%=1
30 DIM N$(10)
40 FOR C=1 TO 10
50 READ N$(C)
60 NEXT C
70 INPUT "ANIMAL TO BE FOUND

pj";A$
80 T1$="000000"
90 IF TI <50 THEN 90
95 PRINT "0"
100 IF N$(T%) =A$ THEN PRINT

N$(T%),T%:GOTO 200
110 IF N$(B%)=A$ THEN PRINT

N$(B%),B%:GOTO 200
120 P%= (T%+ B%)/2
130 IF N$(P%)=A$ THEN PRINT

N$(P%),P%:GOTO 200
140 IF N$(P%) > A$ THEN T%=P%
150 IF N$(P%) <A$ THEN B%= P%
160 IF T%— B%=1 THEN PRINT

"pi pi pi I./NOT FOUND":GOTO 200
170 GOTO 100
200 GET Y$:IF Y$=`"' THEN 200
210 RUN
580 DATA ANTELOPE,BEAVER,

DOLPHIN,FOX,GOAT,IGUANA
585 DATA JACKASS,MUSTANG,

PIGLET,SCORPION

10 MODE 6
20 T% =10:B% = 1
30 DIM N$(10)
40 FOR C=1 TO 10
50 READ N$(C)
60 NEXT
70 INPUT"ANIMAL TO BE FOUND",

A$
80 TIME=0:REPEAT UNTIL TIME>

100:CLS
90 PRINT""""

100 IF N$(T%) =A$ THEN PRINT
N$(T%),T%:GOTO 200

110 IF N$(B%)=A$ THEN PRINT
N$(B%),B%:GOTO 200

120 LET P%=(T%+B%)/2
130 IF N$(P%)=A$ THEN PRINT

N$(P%),P%:GOTO 200
140 IF N$(P%)>A$ THEN T%=P%:GOT0160
150 B%= P%
160 IF T%— B%=1 THEN PRINT

"ELILIONOT FOUND":GOTO 200
170 GOTO 100
200 TIME=0:REPEAT UNTIL

TIME > 200:RUN
580 DATA ANTELOPE,BEAVER,

DOLPHIN,FOX,GOAT,IGUANA,
JACKASS,MUSTANG,PIGLET,
SCORPION

NCIU1
10 CLS
20 T=10:B=1
30 DIM N$(10)
40 FORC =17010
50 READ N$(C)
60 NEXT
70 INPUT"ANIMAL TO BE FOUND ❑ ";

A$
80 TIMER =0
90 IF TIMER <50 THEN 90 ELSECLS

100 IF N$(T) =A$ THENPRINT
N$(T),T:GOT0200

110 IF N$(B)=A$ THEN PRINT
N$(B),B:GOT0200

120 P=INT(.5+ (T+ B)/2)
130 IF N$(P) =A$ THEN PRINT

N$(P),P:GOT0200
140 IF N$(P)>A$ THEN T= P
150 IF N$(P) <A$ THEN B = P
160 IF T— B =1 THEN PRINT

L1111NOT FOUND":GOT0200
170 GOT0100
200 IF INKEY$="" THEN 200
210 RUN
580 DATA ANTELOPE,BEAVER

DOLPHIN,FOX,GOAT,IGUANA,
JACKASS,MUSTANG,PIGLET,
SCORPION

There is no one answer to speeding Basic
programs, the best results are achieved by
careful attention to lots of apparently insig-
nificant details, together with a great deal of
experimenting. Since every program is uni-
que there can never be any hard and fast rules
about how a program should be written.
There is always something new to be dis-
covered, and here lies part of the fascination
of programming. And the greatest speed gain
for your program is likely to come from the
discovery you make yourself.

Once the title page has been printed—and the
player knows which game he is supposed to be
playing—he needs to be told how to play.
When writing your own games it is easy to
forget that others will not know how to play
them. You should really try to get as much
playing information on the screen as possible.
Nothing is more irritating than having to stop
and refer to printed notes when the game is in
full swing.

The instructions themselves should be
clear and concise. But it is best to give a bit of
a story line at this point too. Games are
supposed to appeal to the imagination as well
as the reflexes.

Again a BASIC program is used to POKE the
instruction data letter by letter into an ASCII
table when it is RUN.

10 LET x=57480
20 FOR n=1 TO 16
30 READ a$: FOR o=1 TO LEN a$: POKE x,

CODE (a$(o TO o)): LET x = x +1: NEXT o
40 NEXT n
100 DATA "DAfter a short walk

Willie ❑❑❑❑❑❑ "
120 DATA "returns to find the goats

have 171 7"
140 DATA "spread his picnic goodies

all0 CI 0"
160 DATA "over a rocky embankment.

❑❑❑❑❑❑❑❑ "
180 DATA "Willie sets off to reclaim his1110"
200 DATA "lost possessions,but is hampered"
220 DATA "by falling boulders,pot

holes, 0 D "
240 DATA "and vicious snakes.To

make ❑❑❑❑❑❑ "
260 DATA "matters worse the tide is rising"
280 DATA "and he is in danger of being cut"
290 DATA "off.To help Willie in his quest ❑ "
300 DATA "read the following and press 'S"'
320 DATA "to start.0 ❑ 0 ❑ 0 OD

0000 ❑❑❑❑❑ "
330 DATA "N1=1001=1—E1RunOODC1

❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑ "

340 DATA "ME ❑ ❑ 0-0 Vertical D
jump ❑❑❑❑❑❑❑❑❑❑❑❑ "

360 DATA "Both ❑ — ❑ Diagonal
0 jump"

500 FOR n = 57435 TO 58000
510 PRINT CHR$ PEEK n;
520 NEXT n

This data is picked up by the following
machine code program and printed on the
screen.

org 58104
call cl
Id ix,57480
Id h1,32
Id a,7
Id b,255
call me
Id b,138
call me

Willie will have to wait. It's no good
trying to help him save his picnic
before you know what to do. So
first you have to print the
instructions on the screen

CONSTRUCTING ASCII
DATA TABLES

PRINTING LINES
MAKING OPERATING

SYSTEM CALLS

The machine code game 'CLIFFHANGER' which
appears in this and subsequent issues of INPUT is
not connected with, and bears no resemblance to,
the game 'CLIFF HANGER' owned and distributed
by NEW GENERATION SOFTWARE

Id de,39
add hl,de
Id b,100
Id a,70
call me

ktt Id a,253
in a,254
bit 1,a
jr nz,ktt
ret

org 58192
cl

org 58155
me

These two programs should be assembled and
SAVEd in the same way as the two programs in
part one of Cliffhanger. When you call this
routine, the routines given in part one of
Cliffhanger must also be in memory so they
can be called.

PRINTING THE INSTRUCTIONS
The cl routine is called again to clear the title
page off the screen. The me routine is used
again to print on the screen. But the registers
first have to be loaded with the appropriate
parameters.

The start address of the new data table is
loaded into IX, the screen position of the
beginning of the line to be printed into HL,
the colour into A and the string length into B.
And the me routine is called again, re-
peatedly, to print the instructions.

The me routine is then called twice, first
with 255 in B and then with 138 in B. The
routine has to be called twice because 255 is
the maximum an eight-bit register like B can
hold. The 138 takes in the remainder of the
string data. A new screen position does not
have to be loaded into A for the second part of
the string data as it follows the first.

The third part of the data is given a new
screen position though. A gap is needed
between the end of the text and the keypress
instructions. This can be done either by
putting a row of spaces in the data string, or
by giving HL a new value. Here, both
methods are illustrated. There are 16 spaces
in the data at this point and in the assembly
language program 39 is put into DE, then DE
is added to HL. The HL register pair acts as a
16-bit accumulator and the result of the
addition stays in HL, which is where you
need the screen position parameter when the
me routine is called.

The rest of the string is 100 characters long
and is in bright yellow—colour 70—rather
than white—colour 7—like the main body of
the text.

WAITING TO START
The instructions stay on the screen until you
press S to start the game. To do this, a
machine code routine using the in command
is used.

The in is used to look at the keyboard in
exactly the same way as on page 482, where it
was looking for the BREAK and 'SYMBOL SHIFT
keys to be depressed. Here though, you are
looking for an S. The 253 in A directs the in to
that part of the keyboard which is accessed, as
before, through port 254.

This time, bit 1 being set means that the S
is being pressed. So bit 1,a looks at bit 1. This
sets the zero flag if bit 1 of the accumulator is
set.

The processor simply goes round and
round the ktt loop until S is pressed, bit 1 is
set and the jr nz condition is not set. The
processor would normally go onto the rest of
the program then. But for now it hits ret and
returns to BASIC as this is the end of part two
of Cliffhanger.

This program prints up the instructions
after the title page when the program in part
one of Cliffhanger is called. The ret which
ended the first part is overwritten when you
assemble this part.

Again a BASIC program is used to POKE the
instruction data letter by letter into an ASCII
table when it is RUN.

10 AD =17312:1= 0
15 POKEAD +1,147:1= I+1
50 N = 3:GOSUB2000
60 POKEAD +1,31:1= I + 1
70 A$ = "THE STORY SO FAR D .

D ❑ .":N = 24:GOSUB1000
80 N = 1:GOSU B2000
90 A$=" ❑❑❑❑❑❑❑❑❑❑

7777 ❑❑❑ ":
N =17:GOSUB1000

100 N = 3:GOSUB2000
110 A$="01110 DIDIDAFTER A SHORT

WALK WILLY RETURNS ❑ ❑ ":
N = 40:GOSUB1000

120 A$ = "TO FIND THE GOATS HAVE
SPREAD HIS PICNIC":N = 40: GOSUB1000

130 A$ = "GOODIES ALL OVER A ROCKY
EMBANKMENT. E ❑ ❑ 111":N = 40:
GOSUB1000

140 A$=" ❑❑❑❑❑❑ WILLY SETS
OFF TO RECLAIM HIS LOST":
N = 40:GOSUB1000

150 A$ = "POSSESSIONS, ❑ BUT IS
HAMPERED BY FALLING ❑
N =40:GOSUB1000

160 A$ = "BOULDERS, ❑ POTHOLES AND
VICIOUS SNAKES. 	":N = 40:
GOSUB1000

170 A$ = "TO MAKE MATTERS WORSE
THE TIDE IS RISING":N =40:
GOSUB1000

180 A$ = "AND HE CANNOT SWIM.
❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑ ":N=40:
GOSUB1000

190 A$="111 0 0 	0 TO HELP
WILLY ON HIS QUEST READ ❑ ❑ ❑ ":
N = 40:GOSU B1000

200 A$ = "THE FOLLOWING CONTROL
INSTRUCTIONS AND00":N =40:
GOSUB1000

210 A$ = "PRESSE ❑ S ❑ ❑ TO START.":
N =19:GOSUB1000

220 N = 3:GOSU B2000
230 POKEAD +1,149:1=1+1
240 A$="111 El 	IIIKEYBOARD111— ❑

SHIFT= MOVE RIGHT ❑ ❑ ❑ ❑ ❑ ❑

❑ ❑ ":N = 40:GOSUB1000
250 A$="01=11:1EIEE11111110111

❑ ❑❑❑❑❑❑ Z ❑❑❑ =JUMP
VERTICAL CI ❑ 	❑ ":N =40:
GOSUB1000

260 A$="111DEIDEDDEIDED
0 0 EBOTH ❑ =JUMP RIGHT

❑❑❑❑❑❑❑❑ ":N=40:
GOSUB1000

270 N = 1:GOSU B2000
280 A$ ="E El CI El 111JOYSTICKEI — ❑

INSERT IN PORT 2E100000
❑ 0":N = 40:GOSU B1000

290 POKEAD +1,0
300 STOP
1000 REM INSTRUCTION TEXT POKER

SUBROUTINE
1010 FOR J =1TON
1020 POKEAD +1,ASC(MID$(A$,J,1))
1030 1=1+ 1:NEXT:RETURN
2000 REM INSERT RETURN SUBROUTINE
2010 FOR J =1TON:POKEAD +1,13:

1=1+ 1:NEXT:RETURN

This data is picked up by the following
machine code program and printed on the
screen.

LDA # $OF
STA $D021
LDA # $A0

STA $FB
LDA # $43
STA $FC
LDY # $00
NOP
LDA ($FB),Y
BEQ $4087
JSR $FFD2
NOP
INC $FB

These two programs should be assembled and
SAVEd in the same way as the two programs in
part one of Cliffhanger.

THE BASIC
Following the two methods used to supply
the data for the words printed on the title
page, the BASIC program here uses a third
way to construct an ASCII table. This time
the words are put in as strings, the ASCII of
each letter is POKEd into the table by the
subroutine starting at Line 1000.

But first of all the screen has to be cleared.
So Line 15 POKEs 147—the ASCII for
CLR/HOMEI—into the table. Then Line 50
puts three carriage returns in the table for
formatting purposes, and Line 60 POKEs in
the code for blue ink into the table.

Line 290 POKEs 0 into the last location in
the table, so that the machine code program
knows when the time has come for it to come
to the end.

THE ASSEMBLY LANGUAGE
The number 9 is stored in D020, which sets
the border colour to brown. Then the screen
colour—which is controlled by memory loc-
ation D021—is set to F or grey.

The start address of the new data is then
stored in zero-page location FB and FC, and
the index register Y is set to 0.

LDA ($FB),Y loads up the data table a byte
at a time using indirect addressing. BEQ
$4087 exits the routine when a zero is loaded
into the accumulator—in other words, the
processor moves onto the next part of the
program when the end of the table is reached.

Again the ROM subroutine at FFD2 is
used to print the character whose ASCII is in
the accumulator on the screen.

The next little routine increments the
pointer in FB and FC. BNE $4083 branches
over the instruction which increments the
high byte of the pointer. The pointer is
incremented while the Y index register is held
to zero because the data table is more than 255
bytes long.

The carry flag is then cleared and the
processor branches back to load up the next
byte of the table.

WAITING FOR THE OFF
The ROM routine at FFE4 is the GETIN
routine which gets a character from the queue
in the keyboard buffer. The ASCII of the
character is returned in the accumulator and
CMP # $53 compares it with 53 hex or 83
decimal, which is the ASCII for S.

If an S has not been pressed and the ASCII
character does not appear in the keyboard
buffer, the BNE $4087 sends the processor
back round this little loop to check the next
byte in the keyboard buffer.

But if an S has been pressed, the BNE
condition is not fulfilled and the processor
moves onto the next routine. Only, in this
case it BReaKs because this is the end of part
two of Cliffhanger.

El
The BASIC part of the following program
puts the instruction data into a data table in
the protected part of memory where the
machine code routine can access it, and the
assembly language prints the instructions on
the screen. Press !BREAK and type PAGE=
&3000 then NEW before typing it in.

80 DATA23,0,10,32,0,0,0,0,0,0
90 FOR A%= &DO2TO&DOB:READ?

A%: NEXT
140 P%= &11D6:FOR B%= 1 TO 16
150 READ ?P%,?(P% + 1),A$:

$(P%+ 2) = A$:P%= P%+ 3 + LENA$:
N EXT

160 ?P%=13:IF P%> &13FE THEN PRINT
"TOO MUCH DATA DON'T CALL MACHINE
CODE":END

170 DATA6,1,BBC Cliffhanger
By D. Summers

180 DATA6,2,* ***** • * * 	• * * * • * •
• ,

190 DATA4,4,After a short walk
Willie returns to

200 DATA0,5,find the goats have
spread his picnic

210 DATA0,6,goodies all over a rocky
embankment.

220 DATA0,7,Willie sets off to reclaim his lost
230 DATA0,8,"possessions,but finds he is

hampered by"
240 DATA0,9,"falling boulders, potholes and

vicious"
250 DATA0,10,snakes.To make matters worse the

tide is
260 DATA0,11,rising and he is in danger of being

cut
270 DATA0,12,off. To help Willie in his quest read

the
280 DATA0,13,following instructions:-
290 DATA16,16,N — Left,16,18,M — Right, 16,20

ORG 16480
LDA # $09
STA $D020

BNE $4083
INC $FC
CLC
BCC $4075
NOP
JSR $FFE4
CMP #$53
BNE $4087
RTS

,SHIFT—Jump,8,23, Press SPACE for start
300 ?&13F7 =13
340 FORPASS=OTO3STEP3
350 P%= &13F8
360 [OPTPASS
370 .Inst
380 LDA # 22
390 JSR&FFEE
400 LDA # 6
410 JSR&FFEE
420 JSRLb11
430 LDA# &D6
440 STA&70
450 LDA # &11
460 STA&71
470 .Lb1
480 LDX# 40
490 .Lb2
500 DEX
510 LDA # 31
520 JSR&FFEE
530 TXA
540 JSR&FFEE
550 LDY#1
560 LDA(&70),Y
570 JSR&FFEE
580 .Lb3
590 INY
600 LDA(&70),Y

610 CMP#13
620 BEQLb4
630 JSR&FFEE
640 STX&72
650 TYA
660 CLC
670 ADC&72
680 CMP # 41
690 BNELb3
700 .Lb7
710 LDA # 80
720 JSRLb8
730 STY&72
740 LDY# 0
750 TXA
760 CMP(&70),Y
770 BNELb2
780 LDY&72
790 INY
800 INY
810 TYA
820 CLC
830 ADC&70
840 STA&70
850 BCCLb5
860 INC&71
870 .Lb5
880 LDY # 0
890 LDA(&70),Y

900 CMP#13
910 BNELb1
920 .Lb6
930 LDA# &81
940 LDY# &FF
950 LDX# &9D
960 JSR&FFF4
970 TXA
980 BEQLb6
990 RTS
1000 .Lb4
1010 LDA#32
1020 JSR&FFEE
1030 DEY
1040 JMPLb7
1050 .Lb8
1060 STA&72
1070 TXA
1080 PHA
1090 TYA
1100 PHA
1110 LDX&72
1120 .Lb9
1130 LDY# &FF
1140 .010
1150 DEY
1160 BNELb10
1170 DEX
1180 BNELb9

1190 PLA
1200 TAY
1210 PLA
1220 TAX
1230 RTS
1240 .Lb11
1250 LDX # 2
1260 . Lb12
1270 LDA&D00,X
1280 JSR&FFEE
1290 I NX
1300 CPX # &C
1310 BNELb12
1320 RTS
1330]NEXT

Save the source code, then RUN this program
to construct the data table and assemble the
machine code. To execute it use:

CALL &13F8

When you SAVE this program, 'SAVE only
from &11D6 onwards to &1492.

THE DATA
Lines 80 and 90 contain the DATA which
switch off the cursor. This DATA was given
before in Lines 80 and 90 of part one of
Cliffhanger. But it is given again here so that
you can test this program independently.

There is no need to save the part of the
machine code data table this DATA is put in
though. When the machine code program
given in part one is in memory as well, part
two can access its data table. The instruction
data is in Lines 140 to 300. Memory locations
are simply defined as strings. These are put
byte by byte into the memory locations
defined and the ones following it. The in-
structions themselves are in plain English and
the two character strings at the beginning of
each line define the X and Y coordinates of
where that line of text should start on the
screen.

THE ASSEMBLY LANGUAGE
Once the assembler has been set up, the
instructions in Lines 380 to 410 switch your
computer into MODE 6. Line 420 jumps to the
subroutine in Lines 1240 to 1320 which pick
up the data in Line 80 and switch the cursor
off.

Lines 420 to 460 store the start address of
the instruction data table in &70 and &71.
The actual printing on the screen is done by
three nested loops. Loop one starts on Line
470 and counts down the lines of text. Loop
two starts on 490 and runs each line of text on
from the right—this is why X is loaded with
40, the character position on the extreme
right-hand side of the screen (once it has been

decremented by the instruction in Line 500),
in Line 480. And loop three starts on Line
580 and prints each character at the right of
the screen while the rest of the line is shifted
to the left.

Lines 510 and 520 are the machine code
equivalent of the VDU 31 which enables the
text cursor to be moved to the X and Y
coordinates specified in Lines 530 to 570.
First the X coordinate is transferred from the
X register into A, then the Y register is used to
index the data from the second of CHR$s in
each line and put it in A. The 'output
character to screen routine' at &FFEE is
called each time.

Line 590 increments Y so Line 600 picks
up the next character—the first character of
text on the first pass. And Line 610 checks for
a 13—a return. If it finds one it doesn't bother
with the rest of the line of text and sends it off
to the routine which prints spaces starting at
Line 1000. The instruction in Line 630
actually prints the character.

Loop three is closed by Line 690. Line 720
calls a pause routine—to give you time to read
the line—starting at Line 1050. Loop two is
closed by Line 770 and loop one is closed by
910. Line 900 checks for a second 13, the end
of data marker POKEd in by Line 300.

Lines 920 to 980 wait for the space bar to
be pressed to continue by calling the OS BYTE
routine at &FF4. (OSBYTEs and the other
operating system routines will be explained in
a later article.)

IC 'HI
Again a BASIC program is used to POKE the
instruction data letter by letter into an ASCII
table. Add the following to the BASIC
program in part one of Cliffhanger and RUN
it:

20 FORI =1 TO 4
70 NEXT A,I
85 DATA" ❑ after a short walk willie ❑ El ❑

❑ ❑ ❑ returns to find the goats
have El ❑ spread his picnic
goodies all 0 ❑ ❑ over a rocky
embankment. ❑❑ O00E ❑❑❑
willie sets off to reclaim his lost possessions,
but is 0 "

90 DATA "hamperedby falling boulders,pot ❑

holes, 0 0 and vicious snakes. to make ❑ ❑
D ❑ 0 0 matters worse the tide is risingand
he is in danger of being cutoff.to help willie
in his quest read the following and press 's'to
start. n ❑ DE10-0 run"

100 DATA "m0D00
—0 vertical jumpboth
—❑ diagonal jump"

This data is picked up by the following

machine code program and printed on the
screen.

ORG 19062
LDX # 1024
LDY #17060
CLRB
JSR LPRINT
LDB #137
JSR LPRINT
LEAX 24,X
LDB #10
JSR LPRINT
LEAX 22,X
LDB #20
JSR LPRINT
LEAX 12,X
LDB #20
JSR LPRINT

KEY 	JSR 32774
CMPA #83
BNE KEY
RTS

LPRINT EQU 19174

These two programs should be assembled and
SAVEd in the same way as the two programs in
part one of Cliffhanger. When you call this
routine, the routines given in part one of
Cliffhanger must be in memory.

PRINTING THE INSTRUCTIONS
The control routine uses the data table and
the same LPRINT routine that the title page
used to print the instructions on the screen.
Again the X register is loaded with the first
print position on each line and the B register
carries the length of the string to be printed
on that line. And once the Y register which
carries the data table pointer has been moved
to the beginning of the appropriate section it
moves down the table, line by line, by itself.

The LEAX instructions increment the print
position to the beginning of each new line—
that's why there is no space between the
words that make up the end of one line and
the beginning of the next in the data table.

The CLRB instruction clears the B register.
This is a quick way of loading it with zero,
which acts like 256 when decremented.

The KEY routine waits for you to press the
S key to start the game. The first thing it does
is jump to the ROM routine at 32,774 which
checks to see whether a key has been pressed.
On the Tandy it is at 41,409, so the hold
instruction should read JSR 41409.

If a key has been pressed the value of the
character is returned in the accumulator. This
is compared to 83, the ASCII for S. If S has
not been pressed the microprocessor simply
goes round and round the KEY loop checking
for a keypress until S is pressed.

THE SIMPLEST MACHINE
MECHANICAL ADVANTAGE

REACHING GREATER HEIGHTS
SAVING EFFORT

THE HYDRAULIC RAM

Mechanics is not just for engineers.
It is the study of interacting forces,
and appears in all sorts of everyday
activities which can be analyzed by
your computer

The construction of many of the world's great
monuments—such as the pyramids of Egypt,
and Britain's Stonehenge—is remarkable, not
least because they were built long before the
development of those technological devices
we consider necessary for such tasks.

Today, few contractors would contemplate
similar tasks without machinery for cutting
and transporting the huge stones or for
hoisting masses of material high above
ground. Yet, even the most sophisticated of
such equipment relies on basic principles that
primitive engineers would have known and
used. Chief among these is the principle of
mechanics—the science of forces.

Whether a system is stationary (as a build-
ing) or in motion (as the components of a
machine), there are forces at work. You can
assess these instinctively, or from
experience—that is what those early builders

did, and what everyone does in all sorts of
everyday activities. For example, if you reach
to pick up a cup of coffee, you automatically
apply the right force to raise it without the
contents flying everywhere. And if you put up
a shelf, you have a fairly good idea of what
sort of timber to use, and how to support it to
stop it bending under the amount of weight
you put on it.

Estimating forces like this is all very well
for such everyday applications, but there are
many occasions when greater precision is
required. And it is in this detailed analysis
that the use of computers comes into its own.

You can, of course, use estimates based on
experience to program computer simulations
of systems involving forces. At its simplest
level, this comes into the sort of simulation
used in many games programs. So you can
estimate, for example, how far away a sword
lands when it is struck from the hands of an
opponent, or how loud a noise results from
two impacting objects.

But when the computer is used as a tool,
you invariably need greater precision. For
example, whether you are an engineer design-
ing a bridge or a home mechanic waiting to

use a hoist to raise a car engine, it is important
to know when breaking point of the structure
is reached. If you use your computer to
analyze the forces in a structure under varying
load, you need absolute precision, as well as
an understanding of how to calculate forces.

THE SIMPLEST MACHINE
The problem of how to move heavy loads
becomes more challenging as larger and
heavier structures are built. During the
1960s, the mighty Saturn V rocket which sent
men to the moon was carried on the world's
largest tracked platform. Today, oil platforms
destined for the North Sea are suspended on
hovercraft-type pads or lubricating plastic
and towed to the beach, then floated out to
sea. These, and similar techniques, depend on
machines of some sort—to provide pressure,
traction or lift, for example. These machines
in turn are merely arrangements of a few basic
devices that have been used for centuries.

Among the most primitive of these is the
lever. In its simplest form, a lever is a pole or
rod, one end of which is placed under an
object while the other end is raised to move
the object. Using this device, a person can
move a load several times his or her own
weight. In fact, Archimedes, the great math-
ematician of the ancient world is credited to
have claimed that he could move the Earth, if
he had a long enough pole and a fulcrum. A
fulcrum is the point about which a lever
pivots, so in the example above, it is a place on
the ground on which the pole rests.

The most usual arrangement of the lever
has the fulcrum not at one end of the pole or
rod, but instead somewhere between both
ends. Enter the first program to see this
demonstrated. In order to display the hi-res
graphics in the first and third programs, the
Commodore 64 needs either to be fitted with a
Simon's BASIC cartridge or programmed
with the INPUT machine code hi-res utility.

30 BORDER 0: PAPER 0: INK 7: CLS : OVER 1
40 INPUT " Distance of fulcrum from

leftIll'""0000EICIEICI (1-8 mtrs
)"•d

50 IF D <1 OR d>8 THEN GOTO 40

60 LET w= (10 -d)/d
70 PRINT AT 1,0;" 0 0 Weight required to

balance El El ❑ 111 El El ❑ 1 0 0
KG =";w*100;" KG"

100 PLOT INK 4;0,15: DRAW INK 4;255,0:
FOR n=0 TO 55: PLOT
(28 + 20'd) - n/3,71 - n

110 DRAW INK 7;2*((28 + 20*d) -
PEEK 23677),0: NEXT n

120 LET a = d -10: LET a =ATN
(a/(1 - ea)) + 2*ATN (1)

130 FOR b = a TO 2*ATN (1) STEP (2*ATN
(1) -a)/10

140 FOR k=1 TO 2: GOSUB 1000: GOSUB
1500

160 NEXT k
170 NEXT b
180 LET B=2'ATN (1): GOSUB 1000:

GOSUB 1500
190 IF INKEY$="" THEN GOTO 190
200 RUN
1000 PLOT 128-100'SIN (b),71-

20'd"COS (b)
1011 DRAW 127 +100*SIN (b)-PEEK

23677,71 + (200 -20"d)"COS (b)- PEEK
23678

1025 DRAW 0, - 8: DRAW -10,0:
DRAW 0, -10: DRAW 20,0:
DRAW 0,10: DRAW -9,0:
POKE 23678,(PEEK 23678) + 6

1030 RETURN
1500 PLOT 128-100'SIN (b),70 -

20*d*COS (b)
1510 LET e = SQR (SQR w)
1520 DRAW 0,-8: DRAW -10'e,0: DRAW

0,-10'e: DRAW 20*e,0: DRAW 0,10'e:
DRAW -9"e,0

1530 RETURN

10 HIRES 0,3
20 COLOUR 6,3:FOR Z=0 T0 O4 STEP

.5:LINE 0,180 +Z .2,319,180+1*
Z,1:NEXT Z

40 CSET(0):INPUT "QDISTANCE OF
FULCRUM FROM LEFT (1-8)";D

50 IF D<1 OR D>8 THEN 40
60 W= (10 - D)/D
70 PRINT"gWEIGHT REQUIRED TO

BALANCE 100 KG =",)Arl 00;"KG"
80 FOR G =1 TO 2000:

NEXT G:CSET(2)
100 LINE 61+20'1)050,51+2WD,

179,1:LINE 61+201)050,71+
20" D,179,1

105 PAINT 61 +20'D,160,1
120 A =10 - D:A = ATN(A*A -1)
130 FOR AN=A TO 2*ATN(1) STEP

(2"ATN(1)-A)/10
140 C =1:GOSUB 1000:C =1:

GOSUB 1500
150 FOR G =1T0 500:NEXT G
160 C = 0:GOSUB 1000:

GOSUB 1500
170 NEXT AN
180 AN =2"ATN(1):C =1:GOSUB 1000:

GOSUB 1500
190 GET A$:IF A$="" THEN 190
200 RUN
1000 X1 =160 -100*SIN(AN):Y1 =149

-20*D"COS(AN)
1010 LINEX1,Y1,167+

100'SIN(AN),149+
(200 - 20'D)'COS(AN),C

1020 X1=160 +100'SIN(AN):Y1 =141
+ (200 - 20'D)'COS(AN)

1025 BLOCK X1,Y1,166 +100*SIN
(AN),149 + (200 - 20*D)*COS(AN),C

1030 RETURN
1500 X1 =165 -100"SIN(AN):Y1 =148

-20"D"COS(AN)
1510 BLOCK 165-100'SIN(AN)-SQR

(W)'7,148-20"D*COS(AN)-SQR
(W)*7,X1,Y1,C

1530 RETURN

10 MODE1
20 VDU19,1,2;0;:GCOL0,129
30 CLS
40 INPUT TAB(0,1)"DISTANCE OF FULCRUM

FROM LEFT (1-8 M) 111"D
50 IF D<1 OR D>8 THEN 30
60W=(10-D)/D
65 @%=&20209
70 PRINT"WEIGHT TO BALANCE 100

KG= ❑ ";W*100;" KG":@%=10
80 G = INKEY(500)
90 GCOL0,129:CLG
100 GCOL0,3:MOVE 140+100'D,205:

MOVE 90 +100`D,60:PLOT85,
190 +100*D,60

120 A =10 - D:A = ATN(A'A - 1)
130 FOR AN=A TO PI/2 STEP

(PI/2 - A)/10
140 GCOL0,2:PROCPOLE:GCOL0,3:

PROCWEIGHT
160 GCOL0,1:PROCPOLE:PROCWEIGHT
170 NEXT
180 AN = P1/2:GCOL0,2:PROCPOLE:

GCOL0,3:PROCWEIGHT
185 PRINT" ANY KEY TO CONTINUE"
190 G =GET
200 RUN
1000 DEF PROCPOLE
1010 MOVE 640 -500'SIN AN,210 +100"

D*COS AN:DRAW640+500'SIN AN,
210 - (1000 -100 . 1))*COS AN

1030 PLOT1,-10,0:PLOT0,25,0:PLOT
0, - 50,0:PLOT81,50, - 30: PLOT81,
-50,0

1040 ENDPROC
1500 DEFPROCWEIGHT
1510 MOVE 660 -500'SIN AN,215+100'

D*COS AN:PLOTO,O,SQR(W) . 35:
PLOT81,-SQR(W)`35,-SQR(W)"

35:PLOT81,0,SQR(W)*35
1530 ENDPROC

MI ill
10 PMODE3,1:PCLS
20 COLOR3:LINE(0,180) — (255,191),

PSET,BF
30 CLS
40 INPUT" DISTANCE OF FULCRUM FROM

LEFTEI ❑ D(1-8 M) ❑ ";D
501F D<1 OR D>8 THEN 30
60 W=(10—D)/D
70 PRINT:PRINT"WEIGHT REQUIRED

TO BALANCED:10E1D ❑ 100 KG
=";W*100;"KG"

80 FORG=1T04000:NEXT
90 SCREEN1,0
100 COLOR2:LINE(28+20*D,150)

— (18 + 20*D,179),PSET
110 LINE— (38 + 201)0 79),PSET:

LINE — (28 + 20*D,150),PSET:
PAINT(28+20*D,160),2

120 A=10 — D:A = ATN(A*A —1)
130 FOR AN =A TO 2'ATN(1) STEP

(2*ATN(1) —A)/10
140 C=4:GOSUB1000:C=3:GOSUB1500
150 FORG =1T0500:NEXT
160 C=1:GOSUB1000:GOSUB1500
170 NEXT
180 AN =2*ATN(1):C=4:GOSUB1000:

C=3:GOSUB1500
190 IFINKEY$=" THEN190
200 RUN
1000 COLORC:LINE(128-100'SIN(AN),

149 — 20*D*COS(AN)) — (134+100*
SIN(AN),149+ (200 —20*D)*COS
(AN)),PSET

1020 DRAW"D2L6D6R10U6L8"
1030 RETURN
1500 COLORC:LINE(132 —100*S1N

(AN),147-20*D*COS(AN)) — (132—

100'SIN(AN) — SOR(W)'7,147 —20*
D`COS(AN) —SQR(W)'7),PSET,BF

1530 RETURN

RUN the program to see a prompt (Line 40) on
the screen for you to specify the distance (D)
of a fulcrum from the lefthand end of a ten
metre pole. Line 60 then calculates the weight
(W) required at this end to balance a 100 kg
load at the other end, and Line 70 prints the
value of W on the screen. Lines 100 to 110
draw the fulcrum. Line 120 sets up variables
for the angle of the pole, and Lines 130 to 170
animate the balancing of the pole, calling a
routine (Lines 1000 to 1030) to draw the pole
and another (Lines 1500 to 1530) to draw the
weights. Line 180 draws the final position of
the pole and weights.

Enter different values for D each time you
RUN the program, and notice that the greatest
effort (value of W) is required when the
fulcrum is farthest from the 100 kg load.
Conversely, when the fulcrum is nearest the
load, the lever gives greatest purchase, so the
effort is small.

MECHANICAL ADVANTAGE
There is a simple mathematical formula for
calculating the lengths and weights in this
arrangement, and it works well whenever you
consider the loading on any sort of beam or
pole—provided you know the position of the
point about which the load acts. This formula
states that the effort times its distance from
the fulcrum equals the load times its distance
from the fulcrum. In terms of variables, this
can be written:

E x DE = L x DL

In the program above, W is used instead of E;

the total length of the pole is 10, so DL is
10— DE. If L has a value of unity, the formula
becomes

W = (10 — DE)/DE

which is the form used at Line 60 in the
program above. You are asked to specify DE
(D in the program), so the effort can be
calculated. Whatever form of the formula you
use, you can calculate the remaining variable
if the others are known.

This very fact is exploited in the principle
of the beam-balance weighing scales. This
consists of a metal beam pivoted on a knife
edge at its centre. This means that DE = DL,
so they can be cancelled in the formula,
leaving E = L. Now to weigh an item you
simply place it on one end of the beam and
place known weights on the other end until
the beam balances. This is fine if you wish to
weigh small quantities, as in a greengrocer's
shop, but what happens when the item to be
weighed is a commercial vehicle, such as a
lorry laden with ore or coal? In fact, the same
principle holds well, but instead of pivoting
the beam at its centre, you place the knife edge
near the load, so only small weights are
needed to balance the beam.

Once you have toyed with this program for
a while, and seen how lengthening the lever
lessens the effort, you should be able to
recognize levers at work in any machine. This
lessening of the effort is properly called
mechanical advantage, and is given by divid-
ing the effort into the load. If you rearrange
the formula above into this form, you can
show that the mechanical advantage is equal
to the distance moved by the effort divided by
distance moved by the load. So next time you
pull a lever—a door handle or bicycle brake—
notice that the travel of the effort end is far
greater than at the other end.

REACHING GREATER HEIGHTS
Pushing and pulling are best done by levers,
but when you need to raise a load to great
height, the lever must be modified. A system
of pulleys is just such a device—it gives
mechanical advantage. Key and RUN the next
program to see this demonstrated:

10 CLEAR 32399: RESTORE : GOSUB 510:
BORDER 0: PAPER 0: INK 7: CLS

20 PRINT AT 10,0;"How many pulleys (2,4 OR
6) ?"

30 LET a$=1NKEY$: IF a$< > "2" AND
a$< > "4" AND a$< >"6" THEN GOTO
30

40 PRINT TAB (10);a$: LET np =VAL (a$):
LET I = 25*np — 50

45 IF np= 2 THEN POKE 32431,25
46 IF np= 4 THEN POKE 32431,17
47 IF np = 6 THEN POKE 32431,14
50 PRINT : PRINT "Effort required =";INT

(1000/np): PRINT "Kilograms to lift 1
Tonne"

55 FOR m=1 TO 500: NEXT m
60 CLS : GOSUB 1000
70 LET sp =120
90 FOR k =1 TO 50
100 RANDOMIZE USR 32400
105 PLOT OVER 1;191 -I-np,sp: DRAW

OVER 1;8,0
110 PLOT OVER 1;191 - I -np,sp: DRAW

OVER 1;8,0
120 LET sp=sp-np: IF sp< =0 THEN LET

sp=120
150 NEXT k
160IF INKEY$ ="" THEN GOTO 160
170 RUN
510 FOR n=32400 TO 32491
520 READ a: POKE n,a
530 NEXT n
540 DATA 62,60,79,230,192,15,15,15,

198,64,103,121,230,7,132,103,
121,135,135,230,224,111,62

550 DATA 175,254,192,208,145,216,8,
14,14,125,177,111,62,30,254,32,208,
145,216,60,79,6,0,197,229,17,224,91,
237,176,225

560 DATA 193,217,8,167,40,30,71,217,
124,60,87,93,230,7,32,10,123,198,32,
95,56,4,122,214,8,87,235

570 DATA 229,197,237,176,193,225,
217,16,227,217,201

580 RETURN
1000 PLOT 0,170: DRAW 255,0
1010 FOR k=1 TO np STEP 2
1020 CIRCLE (232-V26)040,13
1030 CIRCLE (258 - V26),50,13
1040 NEXT k
1050 PLOT 245,170: DRAW 0,-125
1060 FOR k=1 TO np-1

1070 PLOT 246-k'26,140: DRAW 0,-90
1080 NEXT k
1090 PLOT 197-1- np,140: DRAW 0,-140
1100 PLOT 208,141: DRAW (256 -

np*26) - PEEK 23677,0
1110 PLOT 234,50: DRAW (282 -

np . 26) - PEEK 23677,0
1120 PLOT 206,170: DRAW 0,-28: PLOT

258 - np*26,170: DRAW 0,-28
1130 PLOT 231-1'2/3,50: DRAW 0,-20
1140 PLOT 232-1/3,50: DRAW 0,-20
1145 DRAW (231 -1 . 2/3) - PEEK 23677,0
1150 PLOT 231 -1/2,29: DRAW 0,-10
1160 DRAW -9,0: DRAW 0,-10: DRAW

19,0: DRAW 0,10: DRAW -9,0
1170 PLOT 180-1,0: DRAW

(180 -1- 20/SQR (np))- PEEK 23677,0:
DRAW 0,(20/SQR (np)) - PEEK 23678:
DRAW (180 -1)- PEEK 23677,0: DRAW
0,0-PEEK 23678

1210 RETURN

20 A$ = "Oa ENEE1911 11 11 a
PYPJEg11111111S2 ❑ NIZI"

30 FOR Z=1 TO 20:DS= D$+ "gg":
NEXT Z

40 13 $=A$+"❑❑ MINP.IP.U .
 +A$+"❑❑ IIPJMAJ"+A$

50 C$="TaDOIllklaLJOILI
E El nompigooponn
❑•pig ❑❑ •"

60 POKE 53280,7:POKE 53281,7:
GOSUB 1000

90 S= 0:FORZ=18TO6STEP- .5:PRINT
" 	"LEFT$(D$,Z)TAB(19)
B$:PRINT" ❑ "SPC(18)C$

100 PRINTTAB(18)"113 IMMO
❑0:1 ❑ 13PJPJPJE ❑ ITI ❑
EIPJPJPJIII"

110 PRINTTAB(18)" ❑ ❑ ❑ ❑ ❑ 111 B B
Kn ❑ cg ❑ D ❑mim ❑❑❑
El ED"

120 PRINTTAB(24)"1=10.ap
EIDEI 171 • CI 0"

130 PRINTTAB(24)" ❑❑❑❑❑
❑ ":FOR D=1 TO 200:

NEXT D
140 POKE 1278+ 40 . S,93:S= S+ 3:

IF S>15 THEN S=0
150 POKE 1278+ 40 . S,220:NEXT Z:END
1000 PRINT"01";:FOR Z=1 TO

40:PRINT "fi ❑ MI";:NEXT
1003 FOR Z=1 TO 3:PRINTSPC(20)

"MEIPJPJIMPIPJP.1
m EJEJEJIJIJEJEJEJ EJ
Er:NEXT Z

1005 PRINTig gggigg"spc(14)"
OPJNIPIEJPJPIPJ0IPJPJP.1
OPJPJPIIIIIPJPJEJIMPI
El"

1006 FOR Z=1 TO 16:PRINTSPC(14)
"0:111PJPJEOPIPJPJEOPJPJPJ

PJ NJ II PJ PJ PIM PI PI PI
1:0":NEXT Z

1007 PRI NTSPC(14)" gg
Elg11111"

1008 PRINT"00"TAB(10)"gg
anc Nu"

1010 pRINT"gogggigg"TA0(15)As
"i§igigggg"TAB(23)A$1§Igg
gggg"TAB(31)A$

1011 PRINT"giNggigg"SPC
(14)C$

1020 PRINT"lighlglEFFORT REQUIRED
=":PRINT"166.6 KILOGRAMS
TO":PRINT"LIFT 1 TONNE."

1030 RETURN

5 MODE1:VDU19,3,2,0,0,0
10 VDU23,224,1,15,31,63,63,127,127,

254,23,225,254,127,127,63,63,31,15,
1,23,226,127,254,254,252,252,248,224,
128,23,227,128,224,248,252,252,254,
254,127

15 A$=CHR$(224)+ CHR$(227) + CHAS
(8) + CHR$(8) + CHR3(10) + CHR$(225)
+CHR$(226)

20 PRINT""HOW MANY PULLEYS (2,4, OR 6)
?";

30 G$=GET$:IF G$ < > "2" AND
G$< > "4" AND G$ < >"6" THEN 30

40 PRINTG$:NP =VAL(G$):L =125*
NP -50

50 PRINT""EFFORT REQUIRED
=";1000/NP"`KILOGRAMS TO LIFT 1
TONNE":K= INKEY(1000)

60 CLS:PROCSETUP
70 SP = 740
90 FORL=300T0700 STEP4:FORK =1

TONP STEP 2
110 GCOL0,2:MOVE 860 -NP*60,770:

DRAW 860- NP*60,0
120 SP =SP -4*NP:IF SP <0 THEN SP = 740
130 MOVE 855- NP*60,SP:DRAW 875

- NP*60,SP:GCOL0,1:PROCWEIGHT
140 GCOL0,0:MOVE 862- K*60,L -4:

PRINTA$:GCOL0,3:MOVE 862 -
K*60,L:PRINT A$

142 GCOL0,0:PROCWEIGHT
145 MOVE 855- NP*60,SP:DRAW 875 -

NP*60,SP
150 NEXTK,L
160 GCOL0,1:PROCWEIGHT:GCOL0,2:

MOVE 860- NP*60,770:DRAW 860 -
NP*60,0:MOVE 855- NP*60,SP:
DRAW 875 - NP'60.SP:VDU 4: VDU 20

170 G = GET:RUN
1000 DEF PROCSETUP
1010 VDU24,200;940;1080;960;:

GCOL0,130:CLG:VDU26:VDU5
1020 FOR K=1 TO NP STEP 2
1030 MOVE (800- K*60),800:PRINT A$
1040 MOVE (862- K*60),300:PRINT A$
1050 NEXT:GCOL0,2
1060 MOVE 860,937:DRAW 860,280
1070 FOR K=1 TO NP-1
1080 MOVE (860 - K*60),275:DRAW

(860 - r60),770
1090 NEXT
1100 MOVE 860- Nr60,770:DRAW

860- NP*60,0
1110 GCOL0,1:MOVE 780,776:MOVE

780,766:PLOT 85,885- Nr60,776:PLOT
81,0, - 10

1120 L=300:PROCWEIGHT
1130 MOVE 772,768:DRAW772,937:

MOVE 892- NP*60,768:DRAW 892 - NP60,937

1140 MOVE 840 -NP*60,0:MOVE 840 -
NP*60,60/SQR(NP):PLOT81, - 60/
SQR(NP),-60/SQR(NP):PLOT81,0,
60/SQR(NP)

1150 ENDPROC
1160 DEF PROCWEIGHT
1170 M0VE834,L-32:DRAW834,L -150:

DRAW 951 - NP*60,L -150:DRAW951 -
NP*60,L - 32

1180 M0VE893- NP*30,L -150:DRAW 893
- NP*30,L-180:PLOT0,- 40,0

1190 PLOT0,0-40:PLOT81,80,40:
PLOT81,0, -40

1200 IF NP = 6 THEN MOVE 712,L-32:
DRAW 712,L - 150

1210 ENDPROC

fiC1 kuA
1 0 PMODE3,1:DIMP(280)
20 CLS:PRINT"HOW MANY PULLEYS (2,4 OR

6) ?";
30 A$=INKEY$:IF A$< >"2" AND

A$ < > "4" AND A$< > "6" THEN30
40 PRINTA$:NP=VAL(A$):L=25'NP

-50
50 PRINT:PRINT"EFFORT REQUIRED

=";1000/NP:PRINT"KILOGRAMS
TO LIFT 1 TONNE":FORG =1TO
4000:NEXT

60 PCLS:SCREEN1,0:GOSUB1000
70 GET(249,172) - (215- L,106),P,

G:SP = 38

80 COLOR4,1
90 FORK =106T049 STEP-1
100 PUT(249,K+ 66) - (215- L,K),

P,PSET
110 LINE(191 -L-NP,SP)- (199 -

L - NP,SP),PRESET
120 SP=SP+NP:IF SP>191 THEN SP=38
130 LINE(195-L-NP,33)- (195 -

L - NP,191),PSET
140 LINE(191-L-NP,SP)- (199 -

L- NP,SP),PSET
150 NEXT
160 IF INKEY$="" THEN 160
170 RUN
1000 LINE(0,0) - (255,10),PSET,BF
1010 FORK =1TONP STEP2
1020 CIRCLE(232- K*26,33),13,

2:PAINT(232-K*26,33),2
1030 CIRCLE(232-K'26,33),14,

4,1,.5,1
1040 CIRCLE(258 - K*26,121),13,

2:PAINT.(258 - K*26,121),2
1050 CIRCLE(258 - K*26,121),14,

4,1,0,.5
1060 NEXT
1070 LINE(245,10) - (245,121), PSET
1080 FORK=1TONP-1
1090 LINE(246- K*26,33)- (246 -

K*26,121),PSET
1100 NEXT
1110 LINE(195- L- NP,33) - (195

- L - NP,191),PSET
1120 COLOR4,3:LINE(208,32) -

(256 - NP26,34),PRESET,BF
1130 LINE(234,120)- (282- NP*26,

122),PRESET,BF
1140 LINE(206,10)- (206,33),

PSET:LINE(258- NP*26,10) - (258
- NP'26,33),PSET

1150 LINE(232 - L*2/3,121)-
(232- L*2/3,141),PRESET

1160 LINE(232- L/3,121) - (232 -
L/3,141),PRESET

1170 LINE- (232-L*2/3,141),
PRESET

1180 LINE(232- L/2,141)- (232 -
L/2,151),PRESET

1190 DRAW"L9D19R19U19L9"
1200 LINE(180 - L,191) -(180 -L

- 20/SQR(NP),191 -20/SQR(NP)),
PRESET,BF

1210 RETURN

The program gives a prompt (Line 20) for
you to specify the number of pulleys you wish
to see demonstrated. On the Commodore 64,
the program is kept short by having only one
demonstration of six pulleys, so the choice is
omitted for these micros.

Enter 2 to begin with, and the effort to raise
a load of 1000 kg (1 tonne) will be printed

(Line 50) on the screen. Next the program
animates the load being raised. The routine
between Lines 1000 and 1210 (called at Line
60) draws the system of ropes, fixed pulley
and supports, and Lines 90 to 150 draw the
movable pulley, load and rope in motion.

Now RUN the program again, but enter 4,
then 6, in response to the prompt, and
compare the value for effort and the distance
moved by the free end of the rope. Since the
effort equals the load divided by the number
of pulleys, the effort will be 1/2, 1/4 or 1/6 of
1000 kg for 2, 4 or 6 pulleys. So the greater
the number of pulleys, the less the effort
required to raise the same load. As with the
lever, the mechanical advantage is given by
load/effort. For two pulleys, this is 1000
divided by 500, which equals 2. Similarly, the
mechanical advantage is 4 for four pulleys and
6 for six pulleys.

SAVING EFFORT
As for the lever, the relationship between the
distance moved by load and effort also holds
good. Although, in the case of two pulleys,
say, the animation shows that the effort end of
the rope moves down twice the distance
moved up by the load, it is not obvious how
this can be verified. If you consider that the
rope on the lefthand side of the single, fixed
pulley moves down one unit, then the rope on
the righthand side also has to move up two
units. The difference with the single, fixed
pulley is that the rope on its righthand side is
fixed, so a travel of one unit on the left is taken
up if the centre of the pulley moves up half a
unit. By similar reasoning, it can be shown
that the load moves up a quarter as much as
the effort end of a four-pulley system moves
down, and a sixth as much for six pulleys.

Notice that the entire analysis relies on the
fact that the pulleys are all equal in size. Also,
although the arrangement shown on the
computer's screen works well, it is cumber-
some. In a practical design, the pulleys would
be mounted on two axles. A six-pulley sy-
stem, for example, has three sheaves or

Pulleys simulated on Dragon

grooved wheels on an axle within a support
frame, which can be secured to a crane or rigid
overhead structure. A rope attached to the
bottom of the frame is threaded through a
similar system of sheaves, and the load is
attached to the bottom of its frame. This is the
arrangement of the conventional block and
tackle used on all cranes.

THE HYDRAULIC RAM
An equally important application of mechan-
ical advantage is in the hydraulic ram or jack.
This is the device used to move certain parts
on all sort of machinery-from garbage com-
pactor doors and tipper lorry bodies to air-
craft landing gear and even car brakes. The
car hydraulic braking system illustrates well
how a small effort but long travel-at the
pedal-can be magnified to a force strong
enough to stop the wheels even at high speed.
Enter and RUN the next program to see the
principle demonstrated:

30 BORDER 0: PAPER 7: INK 0: CLS
50 GOSUB 300
90 INPUT "Plunger travel (1-90) ? ❑
100 IF tr <1 OR tr> 90 THEN GOTO 90
110 FOR k =1 TO tr
120 PLOT 40,128-(k-1): DRAW INK

7;10,0: PLOT 40,128-k: DRAW 15,0
130 PLOT 175,127 + (k -1)/10: DRAW INK

1;56,0: PLOT 175,127+k/10: DRAW INK
1;56,0

135 PRINT INK 0;AT 3,5;k; INK 0;AT 3,25;INT
(k/10)

140 NEXT k
150 INK 0: PRINT AT 21,0;"111 ❑

❑ EDDO EAgain ? (y OR n)
ODD ElEl"

160 IF INKEY$="y" THEN RUN
170 IF INKEY$ < >"n" THEN GOTO 160
180 STOP
300 FOR n=6 TO 18: PRINT PAPER 1;AT

n,5;" ❑ El": NEXT n
310 FOR n=6 TO 18: PRINT PAPER 1;

ATn,22;"111111111111E111111": NEXT n
320 FOR n=18 TO 21: PRINT PAPER

1;AT n,5;"1110111E1111E E El El
❑ ❑❑ 111E1111 ❑❑❑❑❑❑
❑ ": NEXT n

330 PLOT 39,155: DRAW 0,-155: DRAW
192,0: DRAW 0,155: PLOT 56,155: DRAW
0,-124: DRAW 120,0: DRAW 0,124

340 PLOT 40,127: DRAW -2,0: PRINT AT
6,3;"0": PLOT 40,37: DRAW -2,0: PRINT
AT 17,2;"90": PLOT 232,127: DRAW 2,0:
PRINT AT 6,30;"0"

350 PLOT 232,137: DRAW 2,0: PRINT AT
4,30;"9"

360 FOR n=127 TO 37 STEP -10

370 PLOT 40,n: DRAW -2,0: NEXT n
380 PLOT 232,132: DRAW 2,0
390 PLOT 120,35: DRAW 0,-35
400 PLOT 110,40: DRAW 20,0: DRAW -5,5:

DRAW 5,-5: DRAW -5,-5
410 INK 7
440 RETURN

10 HIRES 0,1
20 MULTI 0,5,6
30 COLOUR 2,7
40 DIM P(4),R(31)
50 GOSUB 300
80 GET A$:IF A$="" THEN 80
90 CSET(0):INPUT "CIPLEASE GIVE

PLUNGER TRAVEL (1-90)";TR
100 IF TR <1 OR TR>90 THEN 90
110 CSET(2):MULTI 0,5,6:FOR K=1 TO TR
115 LINE 16,40 + K,20,40+ K,0
120 BLOCK 16,41+ K,20,48+ K,2
125 LINE 91,53- K/7,111,53- K/7,3
130 BLOCK 91,23-K/7,111,48- K/7,2
140 NEXT K
150 GET A$:IF A$="" THEN 150
160 CSET(0):PRINT " EIAGAIN (Y/N) ?"
170 GET A$:IF A$< >"Y" AND

A$ < >"N" THEN 170
180 IF A$="Y" THEN RUN
190 PRINT "LT:END
300 LINE 15,40,15,200,1
305 LINE 112,40,112,200,1
310 BLOCK 21,40,90,180,1
330 TEXT 50,170," >",0,1,8
340 BLOCK 16,41,20,48,2
350 BLOCK 91,23,111,48,2
355 PAINT 80,190,3:LINE 55,

180,55,200,0
360 FOR K=0 TO 9
370 LINE 13,49 + K*10,15,49 + K*10,1
380 NEXT K
390 TEXT 5,46,"0",1,1,8
395 TEXT 0,140,"90",1,1,8
400 FOR K=0 TO 9 STEP 3
410 LINE 113,49- K,115,49- K,1
420 NEXT K
430 TEXT 116,48,"0",1,1,8
435 TEXT 116,35,"9",1,1,8
440 RETURN

LI
10 MODE 1
20 VDU19,0,4;0;
30 REPEAT:GCOL0,2
50 PROCRam:PROCFluid
60 REPEAT:INPUT"ENTER TRAVEL OF

PLUNGER (0-440) EFT:UNTIL D> =0
AND D< =440

70 GCOL0,1:FORK=1TOD:MOVE205,
800 - K:PLOT3,93,0

80 MOVE705,800 + K/10:PLOT1,309,

0:NEXT
90 INPUT"Again?(Y/N)"K$
100 IF K$="Y" THEN CLG ELSE IF

K$="N" THEN END ELSE 90
110 UNTIL FALSE
120 END
130 DEF PROCColumn(X,Y,XS,YS,C)
140 VDU24,X;Y;XS;300 +YS;
150 GCOL0,128+C:CLG
160 VDU24,X;303+YS;XS;900;
170 GCOL0,128:CLG
180 VDU26:ENDPROC
190 DEF PROCRectangle(X,Y,XS,YS,C)
200 VDU24,X;Y;XS;YS;
210 GCOL0,128+ C:CLG
220 VDU26:ENDPROC
230 DEF PROCRam
240 MOVE 200,900:DRAW 200,300:

DRAW 1016,300:DRAW 1016,900
250 MOVE 300,900:DRAW 300,350
260 DRAW 700,350:DRAW 700,900
270 VDU5:FOR Y=410 TO 810 STEP

100:MOVE 180,Y:PRINT"-":NEXT
280 MOVE 1016,800:DRAW 1036,800:
MOVE 1016,840:DRAW 1036,840
290 MOVE 140,810:PRINT"0":MOVE

80,410:PRINT"400"
300 MOVE 1050,810:PRINT"0":MOVE

1050,850:PRINT"40"
310 MOVE 130,970:PRINT"PLUNGER":

MOVE 800,970:PRINT"RAM"
320 MOVE 450,375:DRAW 550,275:

MOVE 450,275:DRAW 550,375
330 VDU4:ENDPROC
340 DEF PROCFIuid
350 PROCColumn(205,305,298,500,1)
360 PROCRectangle(298,305,700,

345,1)
370 PROCColumn(705,305,1014,

500,1)
380 VDU5:MOVE 205,900:PRINT"1kg"
390 MOVE 800,900:PRINT"10 kg"
400 VDU4:VDU28,0,31,39,31:

ENDPROC

1M !HI
10 PMODE3,1

The lever display on Acorn

20 PCLS
30 SCREEN1,0
40 DIM P(4),R(31)
50 GOSUB300
60 GET(32,52) - (43,38),P,G
70 GET(182,52)-(223,23),R,G
80 IF INKEY$="" THEN80
90 CLS:INPUT"PLEASE GIVE PLUNGER

TRAVELS ❑ E1111111111(1-90)";TR
100 IF TR <1 OR TR >90 THEN90
110 SCREEN1,0:FORK=1TOTR
120 PUT(32,52 + K) - (43,38 + K),

P,PSET
130 PUT(182,52- K/10) - (223,23 -

K/10),R,PSET
140 NEXT
150 IF INKEY$="" THEN 150
160 CLS:PRINT"AGAIN (Y/N) ?"
170 A$= INKEY$:IF A$< >"Y" AND

A$ < >"N" THEN 170
180 IF A$="Y" THENRUN
190 CLS:END
300 DRAW" BM30,30C2D131R195U

131 B L45D2ON R45D96L135U96NL
15U20"

310 PAINT(200,70),3,2
320 DRAW" BM32,50C3R1OBR140R41"
330 DRAW"BM127,161C2U2OBH8C4R

16NH5G5"
340 LINE(34,48) - (41,41),PSET, BF
350 LINE(191,48) - (215,23),PSET,

BF
360 FORK = OTO9
370 COLOR2:LINE(26,50 + K*10)

- (30,50 + K*10),PSET
380 NEXT
390 DRAW"BM20,46C4D6L4U6R4BD

90NL4D6L4U6BL4ND6L4D3R4C2"
400 FORK = OTO9 STEP 3
410 LINE(225,50- K) - (229,50- K),

PSET
420 NEXT
430 DRAW"BM232,48C4D6R4U6L4

BU9NR4U3R4D6"
440 RETURN

When you RUN this program, Line 50 bran-
ches it to a routine (two for the Acorns) to
draw the ram. You are then asked to specify
the travel of the plunger-equivalent to the
pedal on a braking system. The relative
movement of liquid in the ram is then
animated.

The travel is a measure of the effort applied
to the plunger, but the mechanical advantage
of the system is determined by the diameter of
the plunger and the load piston. If both are of
the same diameter, there is no advantage, but
as the diameter of the plunger is reduced, so
the ease of raising a load on the righthand side
of the system increases.

Resurrect zinziberaceous, qintar,
xylem and qinquagesima from the
dusty corners of your dictionary. Use
dirty tactics to gain the edge over
your friends in the word game

In this second and final article about
INPUT'S word game there is all you need to
start playing. Type the remaining lines in to
see some interesting and fun applications for
your machine's string handling. Then try to
baffle your friends with obscure words and
phrases.

There are routines for each of the game's
three options—buying letters, guessing a
specific letter at a specific position, and
guessing the complete phrase. The program
also keeps track of the score, number of
guesses, and the number of turns.

370 IF d$ < > "XX" AND d$ < > "ZZ"
AND LEN d$ >1 THEN GOTO 360

380 IF d$ = CHR$ 32 THEN GOTO 410
385 IF d$="ZZ" THEN LET d$="": GOTO

900
390 IF CODE d$<65 OR CODE d$>90

THEN GOTO 360
400 IF d$="XX" THEN LET d$="": GOTO

500
410 GOSUB 790
420 LET e= 0
430 LET e = e +1

440 IF e =I+ 1 THEN LET tb=tb—g: LET
q$(m TO m + 7) = "": PRINT AT 4,0;q$:
LET d$=`"': GOTO 470

450 IF s$(e) < > d$ THEN GOTO 430
460 IF s$(e) =d$ THEN LET z$(e) =d$:

GOTO 430
470 PAUSE 100: PRINT AT 14,0;:

FOR r=1 T07: PRINT "DODD
❑❑ E1111111 ❑❑❑❑❑❑❑ ":
NEXT r

480 PRINT PAPER 2; INK 6;AT 1,22;tb;CHR$
32: PRINT PAPER 2; INK 6;AT 14,0;z$:
PRINT "GUESS111";f: LET f =f +1: IF
s$=z$ THEN GOTO 730

490 GOTO 360
500 INPUT "WHAT CHARACTER DO YOU

WANT TOO ❑ GUESS?", LINE d$
510 IF LEN d$ >1 THEN GOTO 500
520 IF d$=CHR$ 32 THEN GOSUB 790:

GOTO 550
530 IF CODE d$<65 OR CODE d$ > 90

THEN GOTO 500
540 GOSUB 790
550 PRINT PAPER 2; INK 6;AT 18,0;d$: PRINT

AT 18,2;"AT WHAT POSITION? USE L/R

CURSOR KEYS AND PRESS 0 TO ENTER"
560 PRINT PAPER 2; INK 6; AT 14,0;z$:

PRINT PAPER 6; INK 2; AT 14,b;z$(b +1)
570 PAUSE 0: LET y$=1NKEY$: IF y$= ""

THEN GOTO 570
590 IF y$="8" AND b<1-1 THEN LET

b= b + 1
600 IF y$="5" AND b>0 THEN LET

b = b —1
610 IF y$="0" THEN GOTO 680
640 IF b> =32 THEN LET w=15: LET

v = b — 32
650 IF b<32 THEN LET w=14: LET v=b
660 PRINT PAPER 2; INK 6;AT 14,0;z$: PRINT

PAPER 6; INK 2;AT w,v;z$(b +1)
670 GOTO 570
680 IF z$(b +1) < >"." THEN GOTO 570
690 IF s$(b +1) < >d$ THEN LET

tb=tb—g/2: PRINT FLASH 1;AT
17,0;"BAD LUCK": PAUSE 50: LET b=0
GOTO 470

700 IF s$(b +1) =d$ THEN PRINT FLASH
1;AT 17,0;"GOOD GUESS": PAUSE 50:
LET z$(b +1) =d$: LET tb=tb+g: LET
b=0

710 IF s$=z$ THEN GOTO 730
720 GOTO 470

COMPLETE INPUTS WORD GAME
WITH NEW ROUTINES

BUYING LETTERS
CHECKING THE GUESSER'S

INPUT

PUTTING A SPECIFIC LETTER
IN POSITION

GUESSING THE COMPLETE
PHRASE

SKULDUGGERY!

730 PRINT INK 6; PAPER 2;AT 1,22;tb: PRINT
AT 17,0;"CONGRATULATIONS, ❑ ";b$;TAB
0;TAB 31;"0": PAUSE 100: CLS

740 LET k =k +1: IF k =t*2 THEN GOTO 880
750 LET c$=a$: LET a$=b$: LET b$=c$
760 LET tc=ta: LET ta=tb: LET tb=tc
770 LET q$="": LET d = 0: LET f=1
780 GOTO 160
790 LET m= (CODE d$ —64)*8 — 7
800 IF m= —263 THEN LET m=209
810 IF q$(m TO m +5) =" " THEN GOTO

360
820 LET g = VAL q$(m +2 TO m+ 3)
830 RETURN
880 IF ta >tb THEN CLS : PRINT a$;" HAS

WON WITH 0";ta;"O POINTS TO ❑ ";tb
890 IF tb > ta THEN CLS : PRINT b$;"0 HAS

WON WITH 111" ;tb;" ❑ POINTS T00";ta
892 IF ta=tb THEN CLS : PRINT "THE

RESULT IS A DRAW"
895 STOP
900 INPUT "ENTER THE PHRASE", LINE h$
910 IF h$< >s$ THEN PRINT FLASH 1;AT

17,0;"WRONG!": PAUSE 50: LET
tb = tb —50: PRINT INK 6; PAPER 2;AT
1,22;tb:PRINT AT 15,0;"GUESS ❑ ";f:
LET f=f +1: GOTO 360

920 FOR n=1 TO I: LET d$=z$(n): IF
d$< >"*" THEN GOTO 950

930 LET m = (CODE s$(n) —64)'8 —7: IF
m= —263 THEN LET m=209

940 LET tb=tb+ VAL q$(m +2 TO m+ 3)
950 NEXT n: GOTO 730

380 IF D$="" THEN
M=131:D$=" ❑ ":GOSUB 810:GOTO
420

385 IF D$="ZZ" THEN D$="":GOTO 1000
390 IF D$ = "XX" THEN D$=`"':GOTO 500
400 IF D$<"A" OR D$>"Z" OR

LEN(D$) >1 THEN GOSUB 2000:GOTO
360

410 GOSUB 790
420 E = 0
430 E = E + 1
440 IF E= L +1 THEN TB =TB —G:Q$=

LEFTVQ$,M —1) + ❑❑ ❑ 0" +
MID$(Q$,M +4)

445 IF E= L +1 THEN PRINT "I§Igg
gg gg gg "Q$:D$="":GOTO 470

450 IF MID$(S$,E,1) < > D$ THEN 430

460 IF MID$(S$,E,1)=D$ THEN Z$=
LEFT$(Z$,E —1) + D$ + MID$(Z$,
E+1):GOTO 430

470 GOSUB 950:GOSUB 2000
480 PRINT "gigigg"TAB(20);

TB"IU 	":PRINT "0"LEFT$
(QD$,11);Z$

485 PRINT LEFT$(QD$,13)SPC(15)
"MaGUESS";F:F=F+1:IF S$=Z$
THEN 730

490 GOTO 360
500 GOSUB 2000:PRINT LEFT$(QD$,

21);:INPUT "GUESS AT WHICH
CHARACTER";D$

510 IF LEN(D$) > 1 THEN 500
520ID D$ = CHR$(32) THEN GOSUB 790:

GOTO 550
530IF < "A" OR D$ > "Z" THEN 500
540 GOSUB 790
550 PRINT "LAT WHAT POSITION ❑ — ❑

USE CURSOR AND 	pi PITO
ENTER."

560 GOTO 660
570 GET Y$:IF Y$="" THEN 570
590 IF Y$="1.1" AND B<L-1 THEN

B= B +1
600 IF Y$="11" AND B>0 THEN

B=B-1
610 IF Y$ = "0" THEN 680
660 PRINT "0"LEFT$(QD$,11);Z$:

PRINT "0";TAB(B);"aM*MM"
670 GOTO 570
680 IF MID$(Z$,B +1,1) < >D$ THEN 690
685 TB =TB - G:PRINT 	l"TAB

(17)"CHEAT!M":FOR DE=1 TO
1000:NEXT:B =0:GOTO 470

690 IF MID$(S$,B +1,1) = D$ THEN 700
695 TB =TB - G/2:PRINT"Ig g"TAB

(15)"BAD LUCK!M":FOR DE=1 TO
100:NEXT:B=0:GOTO 470

700 IF MID$(S$,B +1,1) < > D$ THEN 710
705 PRINT "C§I 1"TAB(15)"GOOD

GUESSM":FOR DE=1 TO 100:NEXT
706 Z$=LEFT$(Z$,B)+D$+ MID$

(Z$,B +2)
708 TB=TB+G:B=0
710 IF S$=Z$ THEN 730
720 GOTO 470
730 PRINT "gla 'CONGRATULATIONS,

❑ ";B$;:GOSUB 950:PRINT "DM"
740 K=K+1:IF K=T*2 THEN 880
750 C$=A$:A$= B$:B$= C$
760 TC = TA:TA = TB:TB = TC
770 Q$ = "":D =0:F =1
780 GOTO 160
790 M = (ASC(D$) - 64)*5 -4
810 IF MID$(Q$,M,4) ="111111111" THEN

360
820 G =VAL(MID$(Q$,M +2,2))
830 RETURN
880 IF TA >TB THEN PRINT "IZI"A$;

"0 HAS WON WITH";TA;"POINTS":
PRINT "TO";TB

8901F TB > TA THEN PRINT "ID"B$;
"0 HAS WON WITH";TB;"POINTS":
PRINT "TO";TA

892 IF TA =TB THEN PRINT "OTHE RESULT
IS A DRAW"

895 END
950 FOR DE=1 TO 1500:NEXT DE:

RETURN
1000 GOSUB 2000:PRINT LEFT$(QD$,

20)"IENTER THE PHRASE ❑
- M":1NPUTGU$

1005 IF GU$=S$ THEN 1020
1010 PRINT "el l"TAB(17)"WRONG!

M":TB =TB -50:PRINT "iggggg"
TAB(20);TB"11 ❑ ❑ ":GOSUB 950

1015 GOSUB 2000:PRINT LEFT$(QD$,
13)SPC(15)"a aGUESS" ; F:
F= F+1:GOTO 360

1020 FOR N=1 TO L:D$=MID$(Z$,
N,1):IF D$< >"*" THEN 1050

1030 M= (ASC(M1D$(S$,N,1)) -64)
*8-7:IF M= -263 THEN M=209

1040 TB = TB +VAL(MID$(Q$,M + 2,2))
1050 NEXT N:GOTO 730
2000 PRINT LEFT$(QD$,20);SP$;

SP$;SMSMSPS;"Ig a A";SPS;
"HI 0 • M":RETURN

MI !HI
370 IF D$< > "XX" AND D$ < > "ZZ" AND

LEN(D$) >1 THEN 360
380 IF D$=CHR$(32) THEN 410
385 IF D$="ZZ" THEN D$="":GOTO 1000
390 IF D$<"A" OR D$ >"Z" THEN 360
400 IF D$ = "XX" THEN D$="":GOTO 500
410 GOSUB 790
420 E= 0
430 E = E + 1
440 IF E= L +1 THEN TB =TB -G:MID$(Q$,

M,8)="0 	E1711710":PRINT
@96,Q$:D$="":GOTO 470

450 IF MID$(S$,E,1) < > D$ THEN 430
460 IF MID$(S$,E,1)=D$ THEN MID$

(Z$,E,1) = D$:GOTO 430
470 GOSUB 950:PRINT@448:PRINT

@416:PRINT@480,STRING$(31,32);
480 PRINT@54,TB:PRINT@352,Z$:PRINT

@320,"GUESS";F:F = F +1:IF S$=Z$
THEN 730

490 GOTO 360
500 PRINT@448:PRINT@416:PRINT@

448,"";:LINE INPUT "GUESS AT WHICH
CHARACTER? ";D$

510 IF LEN(D$) > 1 THEN 500
520 IF D$=CHR$(32) THEN GOSUB 790:

GOTO 550
530 IF D$ <"A" OR D$ >"Z" THEN 500
540 GOSUB 790
550 PRINT@448,"AT WHAT POSITION-

USE ARROWSEDDLAND '0' TO
ENTER.";

560 PRINT@352,Z$:POKE 1024+352+B,
(ASC(MID$(Z$,B+1,1))AND 191)

570 Y$=INKEY$:IF Y$="" THEN 570
590 IF Y$=CHR$(9) AND B< L-1 THEN

B= B +1
600 IF Y$=CHR$(8) AND B>0 THEN

B= B -1
610 IF Y$ ="0" THEN 680
660 PRINT@352,Z$:POKE 352+1024+ B,

(ASC(MID$(Z$,B + 1,1))AND191)
670 GOTO 570
680 PRINT@480,STRING$(31,32);:

IF MID$(Z$,B + 1,1) = D$ THEN
TB =TB -G:PRINT@448,"CHEAT!":
FORDE=1T0100:NEXT:B=0:GOTO 470

690 IF MID$(S$,B +1,1) < >D$ THEN
TB =TB -G/2:PRINT@448,"BAD
LUCK!":FOR DE=1 TO 100:NEXT:

B = 0:GOTO 470
700 IF MIDS(S$,B + 1,1) = D$ THEN

PRINT@448,"GOOD GUESS":FOR
DE =1 TO 100: NEXT:MID$(Z$,
B+1,1)=D$:TB=TB+G:B= 0

710 IF S$ = Z$ THEN 730
720 GOTO 470
730 PRI NT©480,"CONG RATU LATIONS,

❑ ";B$;:GOSUB 950:CLS
740 K = K +1:IF K = T*2 THEN880
750 C$ = A$:A$ = B$: B$ = C$
760 TC = TA:TA = TB:TB = TC
770 Q$ = "":D = 0:F =1
780 GOTO 160
790 M = (ASC(D$) —64) . 8 — 7
800 IF M = — 263 THEN M = 209
810 IF MID$(Q$,M,6) = ❑ ❑ 111 ❑ ❑ "

THEN 360
820 G = VAL(MIDVQ$,M + 2,2))
830 RETURN
880 IF TA > TB THEN CLS:PRINT A$;

"0 HAS WON WITH";TA;"POINTS":
PRINT"TO";TB

890 IF TB > TA THEN CLS:PRINT B$;
" 0 HAS WON WITH";TB;"POI NTS":
PRINT"TO";TA

892 IF TA = TB THEN CLS:PRINT"THE RESULT
IS A DRAW"

895 END
950 FOR DE =1 TO 1500:NEXTDE:RETURN
1000 PRINT@448:PRINT@416:PRINT©

416,"ENTER THE PHRASE— ":LINE INPUT
GU$

1010 IF GU$< >S$ THEN PRINT@416,
"WRONG!":TB = TB — 50:PRI NT@54,
TB:GOSUB 950:PRI NT4320,
"GUESS";F;:F = F + 1:GOTO 360

1020 FOR N = 1 TO L:D$ = MIDVZS,
N,1):IF D$ < >"*" THEN 1050

1030 M = (ASC(MID$(S$,N,1)) —64)
*8 — 7:IF M= —263 THEN M = 209

1040 TB =TB +VAL(MID$(Q$,M + 2 , 2))
1050 NEXT N:GOTO 730

As with the last part of the word game, all the
programs are very similar, except the one for
the Acorn machines.

Lines 370 to 410 handle the guesser's
input—the choices of buying letters or guess-
ing. D$ (or d$) is the guesser's decision, and
the routine checks the input to see whether it
is just a single letter or a space—to signify
buying—or if it is XX, or ZZ, for a guess. The
routine also traps any invalid inputs by
sending the program back to the input
prompt line—Line 360

BUYING LETTERS
If a player decides to buy a letter, the first
thing the computer does is to check what
value is placed on it. To do this, the program
sends it on to the subroutine starting at Line
790.

This checks the ASCII value of the letter,
then performs a calculation on this value to
find out how far through the table of letter
values this occurs. If the computer finds a
blank at that point, it means that the chosen
letter has already been bought, so the
program goes back to Line 360 for the player
to pick again. Otherwise, it then slices out the
part of the string containing the value, which
it assesses using VAL. This will be used in a
moment to update the player's score.

The routine which looks after letter buying
starts at Line 430. Lines 430 to 460 step
through the phrase, looking for occurrences

of the bought letter. The dummy string is
updated, replacing the asterisks with the letter
in every position that it occurs in the phrase
and the new string is then displayed. Its value
is subtracted from the guesser's total whether
the letter occurs in the phrase or not. The
running total of guesses, F (or f) is incremen-
ted. Line 440 overprints the chosen letter and
its value with blanks to signify that this option
is no longer available.

SPECIFIC LETTERS
If the guesser wishes to try a specific letter in a
specific position, XX will be selected. This
causes the program to jump to Line 500. The
guesser must first enter the letter to be tried.
There are a number of error traps to ensure
that the input is legal. If a legal choice is
made, then the guesser is given instructions
about positioning the cursor to insert the
letter. With the cursor positioned at the
correct place, the 0 key has to be pressed. The
program makes sure the choice is allowable,
and checks if it is correct.

If the letter is wrong, Line 690 tells the
guesser BAD LUCK, and subtracts half the
letter's value from the guesser's score as a
penalty. If the letter and position are correct,
then Line 700 tells the guesser GOOD
GUESS, and adds the letter's value to the
score. If the phrase has now been completed,
Line 710 sends the program to Line 730,
which announces to the lucky guesser
CONGRATULATIONS.

THE WHOLE PHRASE
If the guesser is more ambitious, and has

selected the option to guess the
whole phrase

(ZZ), then Line 385 sends the program to
Line 900, in the case of the Spectrum
program, and Line 1000 in the case of the
Commodore and Dragon/Tandy programs.
The routine asks the guesser to enter the
phrase. The guess is compared with the
phrase originally entered. If the guess is
wrong, 50 points are deducted from the score,
and the guess count is incremented. If the
guess is correct, then the score for the un-
guessed letters is calculated, and the program
jumps back to Line 730, which displays
CONGRATU LAT I ON S .

THE END
After the phrase has been guessed correctly,
the program checks if the number of goes for
each player chosen at the start of the game
have been used up. If they have not, the turn
passes to the next player, after the strings and
variables used in the game have been reset.

If the game has finished, then the program
jumps to Line 880. The scores are compared
in this and the following two lines, and the
final outcome of the game displayed.

The game ends here, but you may wish to
add an 'another go?' routine to make the game
really complete.

90 PROCINPUT
100 P=3— P
110 IF TP=2 AND TQ=NG THEN 130
120 PROCWORD
130 NEXT
140 NEXT
150 GOTO 920
240 DEF PROCKILL(N)
250 IF N= —33 THEN N=26

260 PRINTTAB((N MOD 4)'10,4+N DIV
4)SPC10

270 B$= B$+ CHR$(N +65)
280 ENDPROC
290 DEF PROCINPUT
300 PRINTTAB(0,2)" ❑ ❑ ❑ D"; S(1)"0"

TAB(23,2)S(2)"0"TAB(0,16)Z$:
IF G< >0 THEN PRINTTAB(15,15)

"GUESS ";G
310 PRINTTAB(0,16)Z$:IF G< > 0 THEN

PRINTTAB(15,15)"GUESS ❑ ";G
320 VDU23,1,1;0;0;0;
330 IF INSTR(Z$,"*")= 0 THEN

PRINTTAB(0,18)"CONGRATULATIONS
❑ ❑ 0":FOR T=1 TO 10000:
NEXT:ENDPROC

340 VDU 31,X —1,16:K = GET:VDU23,
1,0;0;0;0;

350 IF K=136 AND X>1 THEN X=X-1:
GOTO 300

360 IF K=137 AND X< LENZ$ THEN
X = X+ 1:GOTO 300

370 IF K=2 THEN PROCBUY
380 IF K=7 THEN PROCGUESS
390 IF K< >32 AND (K<65 OR K>90)

THEN 300
400 IF MIDVZ$,X,1)< > "*" THEN 300
410 IF INSTR(B$,CHR$K)< > 0 THEN 300
420 G=G+1
430 PS= 0:IF MID$(Y$,X,1)=CHR$K THEN

PS=1
440 IF PS=0 THEN S(3— P) =S(3— P)—

V(K —64 — (K= 32)*59)/2:PRINTTAB
(0,18)"BAD LUCK":FOR T=1 TO
3000:NEXT:PRINTTAB(0,18)SPC(8):
GOTO 300

450 S(3— P) = S(3— P)+ V(K — 64 —

(K=32) .59):Z$=LEFTVZ$,
X-1) + CHR$(K) + MIDVZ$,X +1)

460 GOTO 300
710 DEF PROCBUY
720 PRINTTAB(0,18)"BUYING A

CHARACTER"
730 K=GET:IF (K<65 OR K>90) AND

K< >32 THEN 730
740 IF INSTR(B$,CHR$K) THEN 780
750 FOR T=1 TO L:IF MID$(Y$,T,1)

= CHR$K THEN Z$=LEFT$(Z$,T-1)
+ CHR$K+ MID$(Z$,T + 1)

760 NEXT
770 B$= B$+ CHR$K:PROCKILL(K —65):

S(3— P) =S(3 — P)—V(K —64— (K=32)
*59):G =G +1

780 PRINTTAB(0,18)SPC18:ENDPROC
790 DEF PROCGUESS
800 PRINTTAB(0,18)"GUESS THE PHRASE"
810 INPUT""A$
820 IF LENA$ < >L THEN PRINTTAB

(0,18)"WRONG LENGTH ❑ ❑
PRINTSTRING$(80,"111"):FOR
T=1 TO 3000:NEXT:GOTO 800

830 IF A$< >Y$ THEN PRINTTAB
(0,18)"THAT IS WRONGE ❑ 0":
PRINTSTRING$(80,"171"):S(3—
P) =S(3— P) —50:ENDPROC

840 FOR T=1 TO L
850 IF INSTR(B$,MID$(A$,T,1))

THEN 870
860 IF MIDCZ$,T,1)="*" AND

MIDVY$,T,1)=MIDVA$,T,1)
THEN S(3— P) =S(3 — P) +V(ASC(MID$
(A$,T,1)) — 64— (MID$(A$,T,1)
= "0759)

870 NEXT
880 Z$=Y$
890 G=G+1:ENDPROC

920 IF S(1) <S(2) THEN T= S(1):
S(1) = S(2):S(2) = T:A$ = A$(1):
A$(1) = A$(2):A$(2) = A$

930 CLS:PRINTTAB(12,10)
"FINAL RESULTS"

940 IF S(1) = S(2) THEN PRINTTAB
(0,13)"IT WAS A DRAW AT ❑ ";
S(1);" 0 POINTS EACH":END

950 PRINTTAB(0,13)A$(1)" ❑ BEAT ❑ "
A$(2)" ID BY ❑ ";S(1);" El TO ❑ ";
S(2);" ❑ POINTS"

The Acorn program presents the options to
the guesser slightly differently from the other
programs, but the game is exactly the same.

This is how the program works:

INPUT
Line 90 calls PROCIN PUT, which extends from
Line 290 to Line 460. There is a prompt to
input a letter which the guesser wishes to
place in a specific position in the phrase. This
is done by pressing the left and right cursor
keys, but at this stage the guesser can select

the buy or guess a phrase option instead. If
either of these are chosen, the program jumps
to PROCBUY or PROCGUESS.

The remainder of PROCINPUT checks
whether the input is correct, and tells the
guesser the outcome.

BUYING LETTERS
PROCBUY, starting at Line 710 allows the
guesser to buy a character. The PROCedure
checks if the chosen letter is valid before
proceeding to check where (if at all) the letter
occurs in the phrase to be guessed.

If the letter is present in the phrase or not,
the end section of Line 770 subtracts the
value of the letter from the guesser's total, and
increments the number of guesses.

PROCKILL blanks out the bought letter
from the table.

GUESSING THE PHRASE
PROCGUESS, starting at Line 790, prompts

the guesser for the phrase to be tried. The
length and correctness of the phrase are
checked, and the guesser is told the outcome.
If the phrase is wrong, the guesser loses 50
points.

If the phrase is correct, Lines 840 to 870
calculate the value of the letters which were
not displayed at the time the phrase was
correctly guessed and adds this total to the
guesser's score.

COMPLETING THE GAME
After PROCINPUT has been completed, the
program continues from Line 100. It's now
the guesser's turn to input a phrase, but first,
Line 110 checks if the number of turns chosen
at the start of the game have been completed.
If they have, the program jumps to Line 920.

The 'end of game' routine displays the
winner if there was one, or informs the players
of a draw.

Finally, you may wish to add an 'another
go?' routine to the program to round it off.

Here are some extra routines to add
to your hobbies file program to
make it even more useful, and you
can choose which ones to add to
suit your exact needs

EXTENDING THE FILE
ADDING NEW OPTIONS

UPDATING THE ROUTINES
CONTINUOUS PRINTOUT

A NEW SORT

SEARCHING MORE THAN ONE
FIELD AT A TIME

ADDING A NEW FIELD TO
AN EXISTING FILE

CONVERTING TO DISK

The datafile program given on pages 46 to 53
and 75 to 79 is an extremely useful way of
storing information. It doesn't matter
whether it's details of your hobby, inform-
ation from a survey, a mailing list for your
business, or any other mass of data. If you put
it into the datafile you can look up records,
amend them, print them out, delete some and
still have an ordered list at the end of it.

However, no general purpose datafile can
possibly suit all possible applications. This
time, so you can tailor your datafile to meet
your specific needs, there are some extra
routines to add to the program and other
routines to update existing sections. As usual
the extra routines are different for each
computer and they are described below sepa-
rately for each machine.

The extra routines for the Spectrum are a
continuous printout option, a continuous
input of records and a conversion for the
Microdrive.

CONTINUOUS INPUT
By entering these lines you can input your
records one after the other without having to
return to the menu each time. Press ENTER

 when you've entered the records. These lines
also prevent you entering a null string for the
first record (which would confuse the
program). If you do enter a null string the
program returns to the main menu instead:

2000 CLS : LET C = V
2110 FOR N=V TO A: PRINT INVERSE V;AT

V+ N*2,0;N$(N);AT V+ N*2,12; FLASH
V;"?": INPUT "(up to El ";A(N);" ❑
characters)",LINE A$(C,B(N) +V
TO B(N +V)): IF N =V AND A$(C,B(N)
+ V) = CHR$ 32 THEN RETURN

2115 PRINT AT V+ N'2,12; A$(C,B(N) + V
TO B(N + V)): NEXTN

2120 FOR F =V TO 150: NEXT F: IF C=V
THEN GOTO 2000

2140 IF A$(C) > = A$(C —V) THEN GOTO
2000

2150 LET X$=A$(C): LET A$(C) =
A$(C — V): LET A$(C — V) = X$: LET C=
C —V: IF C=V THEN GOTO 2000

CONTINUOUS PRINT
At present the print option allows you to print
out only one record at a time. If you want to
print out the whole list you have to sit by the
computer pressing F to go on to the next
record. The continuous print option prints
out all records, from the one you are looking
at to the end. It can be stopped at any time by
pressing any key. If you want to print out all
records, then just make sure you start at
record 1.

120 LET OP=1
3015 IF D —V= R THEN LET D= D —V: IF

OP=6 THEN LET OP=1
3020 IF A$(D,V) = CHR$ 32 THEN LET

D= D —V: IF OP=6 THEN LET OP=1
3085 IF OP=6 THEN LET D = D +V: GOTO

3010
4060 IF D>R THEN LET D = PM: IF OP=6

THEN LET OP=1
4080 IF A$(D,V) = CHR$ 32 THEN LET

D=PM: IF OP=6 THEN LET OP=1
4165 IF OP=6 THEN LET MO = V: LET

D=D +MO: GOTO 4060
9502 IF OP=6 AND INKEY$=`"' THEN

COPY : RETURN
9505 PRINT INVERSE V;AT

19,U;" ❑ C(ontinuous print)";TAB 31;" ❑ "
9585 IF V$="C" THEN COPY : LET OP=6

MICRODRIVE CONVERSION
These lines allow the program to work with
the Microdrive. Don't type them in if you are
using the program with tape as they overwrite
the old ones. If you are upgrading from tape
to Microdrive, LOAD in the old program and
your existing data first, break into it and add
these lines, then SAVE the new program and
the data that it contains to the Microdrive.

5000 CAT 1
5005 INPUT "Enter file name to save under",

LINE Q$: IF LEN Q$<V OR LEN Q$>10
THEN GOTO 5005

5010 SAVE . "M",1;Q$ LINE 10: VERIFY
*"M",1;Q$: RETURN

6000 CAT 1
6010 INPUT "Enter name of file to be loaded",

LINE X$: IF LEN X$ <V OR LEN X$ >10
THEN GOTO 6010

6020 PRINT #1;"LOADING FILE NOW":
LOAD *"M",1;X$

There are six extra routines for the Commo-
dore. These are a continuous print option, a
new search and sort, a facility to add extra
fields to an existing file, a disk load and save
routine and a verify option.

CONTINUOUS PRINT
The new lines allow you to print out all the
records in the file with one keypress—C—for
continuous print. It saves you having to press
F for forward then P for print each time. The
printout starts from the record you are view-
ing at the time so if you want a list of all your
records be sure to start from the beginning.

3130 printcucucurtx3$x2$;
spc(11)"C- print";

3140 ifaa$ = "c"then3630
3200 ok$ = "fbmadp ❑ c":gosu b10600
3300 printro$;:onbgoto3900,3000,

1990,3700,3400,3600,3900,3600
3650 next:print # 4,uI$:ifb = 8or

aa$="c"thenaa$="c":b= 1:
goto3900

3660 close4:goto3100
3720 y = sh —2+ 2 .vic:x = 0:gosub11500:

printro$;:z = ir(2- 2'vic) — 2:
gosubl 3500

3722 if b = 6orb = 8thenreturn
3902 ifaa$ = "c"thenclose4:aa$ = "n"

SORT ANY FIELD
At present the records are sorted automati-
cally on field 1 as you enter them. The new
lines let you reorganize the data so it can be
sorted on any of the fields. You can do this at
any time by choosing option 8 from the main
menu and entering the new field number.
This field is then displayed at the top.

6 dimfc(8,1):fori = 1to8:readfc(i 3O):fc(i,l) =
— 1:next:data — 1,„„ — 1, — 1,

52 cl$ = chr$(157):cr$ = chr$(29):
c4$ = cd$ + cd$ + cd$

76 dimm$(9):fori = Oto9:readm$(i):
next:data" ❑ Resequence data"

558 printtab(10)cu$xl $"7"x2$m$(7)
"33„

560 if(nf >1)andfdthenprinttab(9)
x1cucu$"8"x2$m$(0)x3$;cdcd

620 a = asc(a$) — 48:ifa <lora > 8then
gosub10000:goto650

670 a = asc(a$) — 48:ifa <lora > 8then
gosub10000:goto600

890 ifu = Oand((a = 3)or(a = 4)or(a = 8))
thengosub10000:goto600

900 onagosubl 000,2000,3980,4000,
950,950,7000,8000

950 if aa$ = "n" then clr:gosub6:a = 6:
gosub955:gotol 00

955 printro$;cstgrttab(11);m$(a)

c4$" El"
8000 printcd$"1111=1 ❑ ❑ PLEASE INPUT

FIELD NUMBER 0"x3S;
8010 ok$ = left$("2345678",nf —1):

gosub10600:printx2$;(ix + 1);
8020 ix$ = hd$(ix +1):hd$(ix +1)

= hd$(1):hd$(1)=ix$:i= lx
(ix +1):Ix(ix + 1) = lx(1)

8025 lx(1) = i
8030 i = hx(ix +1):hx(ix + 1) =

hx(1):hx(1)=i
8040 forup = Otou —1:ix$ = t$(up,ix ,):

t$(up,ix) = t$(up,0):t$(up,O) = ix$:next

8050 do = u:ifu =1thenreturn
8060 dn = int(dn/2 + .6):i = 0:

forup = dntou —1
8070 ift$(r(up — dn),0) > t$

(r(up),0)theni = 1:ru = r(up —
d n):r(u p — dn)=r(up):r(up)=ru

8080 next:dn = dn + i:if(dn >1)then8060
8090 return

MULTIPLE SEARCH
This option allows you to search more than
one field at once. Choose the search option
from the main menu then enter the number of
the first field to be searched and the entry
you're looking for. If you are searching more
than one field answer Y to 'Anything else?'
and enter details of the other fields. You are
then asked if all of these must be found
together. If you answer N then the program
will print out all records with at least one of
the things you are looking for. If you answer
Y, the program will print out records with all
items you're searching for.

For example, if you had a mailing list on
file and were looking for someone called
Smith who lived in London, answering Y to
the question gives you all Smiths in London,
while answering N gives you all Smiths
wherever they live and all people who live in
London.

If you now choose the Continuous print
option it will print out the records found that
satisfy these criteria, not all the records in the
file.

3935 ifaa$ = "y"thengosub4000
4000 fg = 0
4002 printcs$x1$gr$" ❑ WHICH FIELD IS TO

BE SEARCH ED?:"ccr 171"c3;
4030 printchr$(ix + 48):fx(fg) = ix
4080 fx$(fg) = ix$:ff(fg) = len(ix$)
4090 printrt$x1$" L1ANYTHING ELSE

(y/n)?":gosub10500:ifaa$ = "y"
thenfg = fg + 1:goto4002

4092 iffg > Othenprintrt$x1$" IIIMUST ALL
THESE BE FOUND TOGETHER
(y/n)?":gosub10500

4094 fh = (aa$ = "Y")
4110 for gf = Otofg
4112 ix$ = t$(r(up),fx(gf) —1)
4120 fe = len(ix$) — ff(gf) +1
4130 iffe <1then4154
4140forj = ltofe:ifmid$(ix$,j,ff

(gf)) < >fx$(gf)thennext:goto
4154

4150 if(gf =fg)ornot(fh)then3040
4152 next gf
4154 ifnot(fh)thennextgf

ADD A NEW FIELD
This is a very useful facility that allows you to
add extra fields to an existing datafile. Now, if
you discover that you need to extend your file
it is relatively easy to do so. With the original
program you would have to re-enter all the
data.

Before doing anything else, make sure you
have a copy of your existing data on tape.

To set up the new file with the extra fields
you'll need to know the structure of the old
file—the number of fields along with their
names and lengths. So look this up first. If
you haven't made a note of these you'll have
to LOAD in your existing data first to check.
Now choose option 1 to create a new file and
enter all the details for the old fields plus the
new ones. But don't enter any data—hit
'RETURN instead for the main menu. Now
choose option 6 to LOAD in your old data from
tape and fill in the new fields one at a time
using the Amend option.

83 data,"Merge tape file "
802 ifa = 6thenprinttab(11)x1$"MERGE

EXISTING DATA?";:gosub
10500:a =12 — 3'ix:goto900

900 onagosub1000,2000,3980,4000,
950,950,7000,8000,950

980 ifa > =6then6000
6112 ifa = 9then6500
6220 close1:goto6980
6500 input #1,u0,n0,ix
6510 ifu + u0 > vthenprint"TOO

MUCH TO MERGE, CUT SHORT";:
u0=v—u:for n=1to1000:next

6520 Porn = 1ton0: input # 1,ix$,
ix,ix:next

6530 forup=Otou0:forn=lton0:input
#1,t$(up+ u,n-1):next

6540 input # 1,ru:r(up + u)=
ru + u:next

6550 closet :ix = 1:u = u + u0:
goto8050

CHANGING TO DISK
Add these lines if you want to use the datafile
with a disk drive. They overwrite the original
routine that SAVEd and LOADed data from
tape. (By the way, the original Line 6000 for
tape load should read 'Position tape for
output', not 'Position tape for input' as
printed.)

5000 printcsrv"C10000
❑ ❑ INSERT DISK FOR OUTPUT

❑❑❑❑❑❑❑❑❑ "
5100 open 1,8,1,f$
6000 printcsrv" ❑ ❑ ❑ ❑ ❑ ❑

❑ ❑ ❑ INSERT DISK FOR INPUT
❑ ❑❑❑❑❑❑❑❑ "

6100 open 1,8,04
6220 close 1:goto 6980

If you want to transfer your data to disk from
tape, type in the new disk SAVE routine first
(Lines 6000 to 6220), LOAD in the data from
tape and SAVE to disk. Then type in the disk
LOAD routine (Lines 5000 and 5100). You'll
then be able to LOAD the new datafile on the
disk as well.

VERIFY THE DATA
If you add these lines you'll be able to verify
the DATA once it's SAVEd:
5160 print"111D0 YOU WANT TO

VERIFY? (y/n)":gosubl 0500:
ifix=lthen6000

6114 ifa = 5then6700
6700 input # 1,u0,n0,ix
6702 if(u0< > u)or(nO< > nf)or

(ix < > tt)thenprint"FIRST ITEMS
WRONG":goto6750

6710 forn=1tonf:input#1,ix$,n0,ix
6712 if ix$ < > hd$(n)or nO < > Ix(n)

or ix < > hx(n)thenprint
"WRONG HEADING";n: goto6750

6720 next:forup = Otou:forn =1
tonf:input#1,ix$

6722 if ix$ < > t$(up,n —1)thenprint
"DATA WRONG rec";up;"field";n:
goto6750

6730 next:input #1,ix
6732 if ix < > r(up)thenprint

"POINTER WRONG rec",up:
goto6750

6740 next:print"VERIFIED OKAY"
6750 closel :fori = 1to2000:next: return

If you answer y to the question 'do you want
to verify' you are invited to reposition the tape
at the start of the DATA and the DATA is then
verified producing an error message or
VERIFIED OKAY.

Test the verify option by creating and
SAVEing some data and verifying it. Then
amend a data field. When the program offers
you 'verify' the second time, rewind the tape,
to check the new data in memory against the
old data on tape. It will fail at the appropriate
field of the record you altered.

If the program stops with an error message
when you haven't altered any records type
GOTO 100 followed by RETURN to get back
into the program, and try SAVEing the DATA
again.

One point to note is that you cannot use
this option to bypass old data files in the same
way that you might bypass old programs
using the normal program verify. This is
because, unlike the program verify, this one
does not go all the way to the end of a file after
finding an error. So take care to position the

tape carefully at the beginning of the correct
data file.

1E1
There are five new routines for the Acorn
computers. These are continuous print, new
search and sort options, the facility to add
extra fields to an existing file, and changes for
a disk drive.

CONTINUOUS PRINT
The new lines give you the option of printing
out all the records in one go. Press P for print
as usual, then answer Y to the question Do
you want all your records?

145 IF G < >7 THEN OT=G:GOTO 148
9004 IF G=67 THEN VDU2
9015 PRINT
9025 IF G=67 THEN VDU3
9500 DEF PROCPRINTER
9510 PRINT"`Check printer-

C(ontinue)":G = GET AND &5F:
IF G< >67 THEN VDU11:PRINT
STRING$(39,"111 "):VDU11,11:
ENDPROC

9520 PRINT— DO YOU WANT ALL YOUR
RECORDS (Y/N)":G =GET AND &5F:IF
G < >89 THEN C= 0:PM = D%:GOTO
9540

9530 D%= 0:C =1:F =1:PM =N%-1:
Q=0

9540 REPEAT
9550 IF OT = 3 THEN D%= D%+C ELSE

PROCFIND
9560 IF Q=2 THEN 9580
9570 G =67:PROCVDU
9580 VDU2,1,10,1,10,3
9590 UNTIL PM = D%
9600 ENDPROC

SORT ANY FIELD
At present the records are sorted automati-
cally, on field 1, as you enter them. The new
routine lets you reorganize the data so it is
sorted on any of the other fields. You can do
this at any time by choosing option 8 from the
main menu and entering the number of the
field you want sorted. The fields are displayed
in the same order as before (so if it was a
mailing list the name would still be on top)
but the records are sorted in order based on
the new control field (street, town etc.).

1 MODE7:M%=0:N%=1:CF =1
4 HIMEM = PAGE+ &3000
5 DIMA(8),N$(8),TRL(8),A$(8),N(8)
117 PRINT"`1111111111111111118 :—Reorganize

Records"
130 G=GET-48:IF G<1 OR G>8 THEN

130
140 IF M%=0 AND (G >1 AND G<6 OR

G =8) THEN 130
148 ON G GOTO 150,160,170,180,190,

200,0,210
210 PROCSORT:GOTO 30
2090 X = B%+ G*1:1%:Y= B%+ (G —1)*

R%:IF $(X+TRL(CF)) > =$(Y+TRL
(CF)) THEN 2000

3100 IF $(X+TRL(CF)) > =$(Y+TRL
(CF)) THEN3130

10000 DEF PROCSORT
10010 CLS:IF A=1 THEN PRINT"CAN'T

REORGANIZE ONE FIELD":FOR T=1 TO
3000:NEXT:ENDPROC

10020 PRINT"FIELD NO.","NAME"
10030 FOR N=1 TO A:PRINT;N,N$(N):

NEXT
10040 PRINT:PRINT"ENTER NEW CONTROL

FIELD NO. (1 TO 0 ";A;")"
10050 INPUTAA:AA = INT(AA):IF AA <1 OR

AA > A THEN PRINT"RE-ENTER":GOTO
10050

10060 CF = AA
10070 CLS:PRINT"REORGANIZING FILE"
10080 FOR N=1 TO N%— 2:K = N
10090 FOR J = N +1 TO N% — 1
10100 X= B%+J*R%:Y= B%+ K*11%
10110 IF $(X+TRL(CF)) <$(Y+TRL

(CF)) THEN K=J
10120 NEXT:IF N = K THEN 10150
10130 X = B%+ N*13%:Y= B%+ K*R%
10140 FOR T=1 TO A:$B%=$(X+TRL

(T)):$(X+TRL(T)) =$(Y+TRL(T)):
$(Y+TRL(T)) =$B%:NEXT

10150 NEXT:ENDPROC

MULTIPLE SEARCH
This option allows you to search more than
one field at once. Choose the usual search

option from the menu—option 4—then enter
the number of fields you want to search. You
are then asked if you want an AND or an OR
search. An AND search means that all the
things you are looking for have to be found
together before a record is printed out. An OR
search will print out a record as long as it
contains at least one of the things you are
looking for.

As an example, say you had a stamp
collection on file and you were searching for
British stamps in field 2 and 10p stamps in
field 3. An AND search prints out all British
10p stamps, while an OR search prints out all
British stamps and all 10p stamps.

If you now choose Continuous print it will
print out all records found, not all the records
on the file.

Delete Lines 5010 to 5090 of the original
program then add:

5010 CLS:IF N%= 1 THEN ENDPROC
5020 INPUT'"`HOW MANY FIELDS DO YOU

WANT TO SEARCH",NMF
5030 IF NMF = 0 THEN ENDPROC
5040 IF NMF< 0 OR NMF>A THEN 5020
5050 IF NMF =1 THEN TYPE= 0:GOTO 5075
5060 INPUT"DO YOU WANT (A)ND OR (0)R

SEAR CH ES",A$
5070 IF A$ < > "A" AND A$ < > "0" THEN

5060 ELSE TYPE = — (A$ = "A")
5075 CLS:PRINT"FIELD NO.0 ❑ El",

"NAME"":FOR T=1 TO A:PRINT
"'El El 	";T," L 1 ",N$(T):
NEXT:PRINT

5080 FOR P=1 TO NMF
5090 INPUT"ENTER SEARCH FIELD

N UM B ER ",N (P)
5100 IF N(P) <0 OR N(P) >A THEN

PRINT"RE—";:GOTO 5090
5110 PRINT"LOOK FOR WHAT ? ";:

PROCINPUT(A(P)):A$(P)=$B%:PRINT
5120 NEXT
5130 D%= 0:C =1
5140 F= 0:PM = D%+ C:IF PM = 0 THEN

PM = N%— 1
5150 IF PM = N% THEN PM =1
5160 PROCFIND
5170 IF Q=2 THEN 5200
5180 Q= 0:PROCVDU:PROCKEY:IF Q=1

-- THEN ENDPROC

5190 GOTO 5140
5200 CLS:PRINTTAB(0,10)"THERE ARE NO

RECORDS WITH THAT SPEC."
5210 FOR P=1 TO 5000:NEXT
5220 ENDPROC
5230 DEF PROCFIND
5240 Q= 0:LOCAL T
5250 REPEAT
5260 D%= D%+ C:IF D%= 0 THEN

D%= N% — 1
5270 IF D%= N% THEN D%= 1
5280 FOR T=1 TO NMF
5290 IF A$(T) < >SW/0+ D%*R% + TRL

(N(T))) THEN 5320
5300 IF TYPE= 0 THEN T=NMF
5310 IF T=NMF THEN Q= 1:NEXT:

GOTO 5350 ELSE 5330
5320 IF TYPE =1 THEN T=NMF
5330 NEXT
5340 IF F=1 AND PM = D% THEN Q=2

ELSE F=1
5350 UNTIL Q< >0
5360 ENDPROC

ADD A NEW FIELD
This allows you to add new fields to an
existing file—ideal when you find you need to
extend the range of your data or find you've
forgotten some important aspect of your
records. Without this option you would have
to type in all the data again.

Now when you choose option 1 from the
main menu—open new file—you're asked if
you want to add fields to an old file. Answer Y
and the program LOADs in the start of your
old file and displays its structure showing the
field names and lengths, the number of
records used and the maximum allowed. You
are told if you cannot add any more fields,
otherwise you simply enter the number of
extra fields and enter their names and lengths.
You are then told how many records you can
use with the new structure—take care if this is
less than the number you have as the extra will
be lost. The program then LOADs in the rest of
the file. To fill in the new fields, View the
records, then use Amend to fill in the gaps.

Delete Lines 1000 to 1110 then add:

8 . 0 PT2,1
150 PROCCREATE:GOTO 30
200 A$="N":PROCLOAD:GOTO 30
1000 DEF PROCCREATE
1010 CLS
1020 PRINTTAB(13,12)"ARE YOU SURE"
1030 IF GET$ < >"Y" THEN ENDPROC
1040 N%= 1:R% = 0:A = 0
1050 CLS:PRINT"DO YOU WANT TO ADD

FIELDS TO AN OLD FILE(Y/N)": INPUTA$
1060 IF A$ ="Y" THEN PROCLOAD ELSE

1130

1070 S%= R%
1080 CLS:PRINT"`THIS WAS YOUR OLD

STRUCTURE"
1090 PRINT"`FIELD NAMED ❑ ❑ ❑

ED LENGTH":PRINT
1100 FOR T=1 TO A:PRINTN$(T),

A(T):NEXT
1110 PRINT"`MAX NO. =";M%;"111

❑ ❑❑❑❑ NO. USED =";N%-1
1120 IF A=8 THEN PRINT:PRINT"YOU

CAN'T ADD ANY MORE FIELDS":GOTO
1260

1130 PRINT:PRINT"HOW MANY FIELDS DO
YOU WANT";:IF A$="Y" THEN
PRINT" ❑ NOW";

1140 PRINT"(";A+1;" TO 8)"
1150 AA=GET-48:IF AA<A+1 OR AA>8

THEN 1150
1160 PRINT"ENTER NEW FIELD NAMES &

LENGTHS"
1170 PRINT
1180 FOR N=A+1 TO AA
1190 PRINT"`Name of field ❑ ";N;

"E":PROCINPUT(10):IF $B%< >""
THEN N$(N)=$B% ELSE 1190

1200 PRINT"`What is the max length
of 0";N$(N);" ❑ ";

1210 INPUT T:IF T< >0 THEN A(N)=T
1220 IF A(N) >27 OR A(N) <1 THEN

PRINT"OUT OF RANGE":GOTO 1210
1230 TRL(N) = R%:R%= A(N) +1 + R%
1240 NEXT N:IF R%<11 THEN R%=11
1250 A=AA
1260 M%= INT((&7C00 — HIMEM)/R%)

—1:PRINT""You can use up to 11";M%;
"E records":D% = INKEY(300)

1270 IF A$="Y" THEN PROCLOAD2PART
1280 ENDPROC
8023 IFA$ = "Y" THEN ENDPROC
8200 DEF PROCLOAD2PART
8205 PRINT"LOADING UP THE REST OF

YOUR FILE"
8210 IF N%> M% THEN N%= M% +1
8220 FOR T=1 TO N% — 1
8230 FOR Q=0 TO R%— 1
8240 IF Q<S% THEN ?(B% + R% .

T+ Q)= BGET # X ELSE ?(B%+ R%*
T+ Q) =13

8250 NEXT
8260 NEXT
8270 GOTO 8060

ERROR TRAPPING
Make these changes to the error-trapping
routine. You can press !ESCAPE' at any time to
return to the main menu:

125 PRINT"`PRESS ESCAPE TO RETURN TO
THE MAIN MENU";

13000 VDU3:IF ERR =17 THEN 30
13050 REPORT:PRINT" OAT LINE ❑ ";ERL

CHANGES FOR DISK
The BBC automatically defaults to disk drive
if a disk interface is fitted. The only changes
you have to make to the program are to delete
Lines 3 and 8.

If you have upgraded your computer from
tape to disk and want to transfer your data
then follow these steps. First type 'TAPE then
LOAD the datafile from tape. Delete Line 2,
RUN the program, LOAD the data, press
ESCAPE, type "DISK then type PROCSAVE.
This will transfer the data to disk, but note
that if you have filled up a large number of
records, then some data may be lost due to the
disk filing system taking up part of the
computer's memory. Now press [ESCAPES
again, reinstate Line 2, delete Lines 3 and 8 as
above and SAVE the datafile program on disk.
It may sound complicated, but each step is
really quite straightforward.

CHANGES FOR THE ELECTRON
You'll need to change the &7C00 in Line 1260
to &6000 and change Line 1 to:

1 MODE 6:M%=0:N%=1:CF =1

tW
There are four extra routines for the Dragon
and three for the Tandy. These are the
continuous print option, a new search, a new
sort, and a routine to convert the datafile to
work with the Dragon Data disk drive.

CONTINUOUS PRINT
This option allows you to print out all of your
records in one go. Choose the usual Print
option then choose either C for continuous
print or S for single print. The printout starts
from the record you are viewing and goes on
to the end, so if you want a list of all your
records be sure to start from the beginning.

1050 PRINT@385,"NUMBER OF FIELDS
(1-8) ?";

1060 IN$=INKEY$:IFN$<"1" OR
IN$> "8" THEN1060

1070 A = VAL(IN$):DIM A(A),N$(A)
5070 IF D>NR AND G=1 THENG = 0:

CH= —1:CP= 0 ELSE IF D>NR THEN
CP = 0:GOT05230

5105 IF CP =1 GOSUB10040:GOT05160
5210 GOSUB10000:GOT05160
6025 IF CP=1 GOSUB10040:GOT06080
6130 GOSUB10000:IF CP=1 THEN 6080

ELSE 6030
6140 IF D>NR THEND=1:CP= 0
10000 PRINT©451,"11111I ❑ CHECK

PRINTER El ED ❑ cONT";STRING$
(36,32);

10010 IF INKEY$< >"C" THEN 10010

10020 PRINT@451,"cONTINUOUS OR
sINGLE RECORD ?";

10030 IN$=INKEY$:IF IN$< >"C" AND
IN$ < >"S" THEN10030

10035 IF 1N$ = "C" THEN CP =1

SORT ANY FIELD
In the old datafile the records are sorted
automatically on field one as you enter them.
The new menu option '8—Reorganize fields'
now lets you choose which field is the main
control field. When you choose this option
the records are resorted and the new control
field is displayed at the top of each record.

105 PRINT©388,"8:— REORGANIZE
FIELDS"

120 IN$= INKEY$:IFIN$<"1"ORIN$
>"8" THEN120

150 ON IN GOSUB1000,2000,6000,
5000,7000,8000,9000,11000

11000 IF A=1 THEN PRINT" OCANNOT
REORGANIZE 1 FIELD !":FORK =1
T05000:NEXT:RETURN

11010 PRINT" ❑ FIELD NO.","NAME"
11020 FORN =1TOA:PRINTN,N$(N):

NEXT
11030 PRINT:PRINT" ENTER NUMBER OF

NEW CONTROL ❑ ❑ ❑ ❑ ❑ FIELD (2
TO";A;")";:INPUT NC

11040 NC= INT(NC):IF NC < 2 OR NC> A
THENCLS:GOT011010

11050 CLS:PRINT" ❑ CHANGING AND
SORTING FIELDS"

11060 T$= N$(1):N$(1) = N$(NC):
N$(NC) = T$:T = A(1):A(1) = A(NC):
A(NC)=T

11070 FORN =1TONR:T$=A$(N,1):
A$(N,1) =A$(N,NC):A$(N,NC) =
T$:NEXT

11080 FORN =1TONR —1:K = N
11090 FORJ = N +1 TO NR
11100 IF A$(J,1)<A$(K,1) THEN K=J
11110 NEXT:IF N < > K THEN FORC =1

TOA:T$=A$(K,C):A$(K,C) = A$
(N,C):A$(N,C) =T$:NEXT

11120 NEXT:RETURN

MULTIPLE SEARCH
The new search option lets you search for
entries in more than one field at once. When
you choose the search option from the main
menu you are asked what you are searching
for in each field. You can search as many fields
as you like. You are then asked if you want all
these things to be found at the same time. If
you answer N then the program will display
records where at least one of the conditions
applies. An example will make this clearer.
Say you kept details of the stock in a clothes
shop and were looking for shirts in field 2 and

Is there any way of recovering
my data if the program crashes?
Yes, luckily there is. When a program
crashes the data is not lost immediately,
but it will be if you try to RUN the
program again as this clears all the
variables. So here's what to do:

Press IBREAKI then type GOTO 100. If
IBREAKI doesn't work on the Commodore,
follow it with I RESTORE! then enter poke
bg,0:poke bd,0 followed by GOTO 100.

The error-trapping routine given at the
bottom of page 951 makes sure the
program stops if anything goes wrong. If
this happens type GOTO 30 to restart it.

11: ii
Press 'BREAK I then type
GOTO 40.

blue in field 4. If you want all these to apply at
once, the program prints out all records with
blue shirts. If you answer N to the question
you'll be given a list of all shirts and all blue
items.

5000 PRINT@B,B$;"search";B$;
"option";B$

5010 BT= 0:PRINT:FORN =1TOA:PRINT
"SEARCH FIELD";N;", ❑ ";
N$(N),"FOR WHAT ?";

5020 LINEINPUTS$(N):IF S$(N) < >
THEN BT= BT+ 1

5025 NEXT:IF BT=0 THEN RETURN
5027 IF BT <2 THEN BT= 0:GOT05060
5030 PRINT:PRINT"DO YOU WANT ALL

THESE TO BED ❑ ❑ ❑ ❑ FOUND
TOGETHER (Y/N) ?";

5040 IN$=INKEY$:IF IN$ < >"Y" AND
IN$ < > "N" THEN 5040

5050 CLS:BT= 0:IF IN$ ="Y" THEN BT=1
5090 FORZ=1TOA:PS=INSTR(A$(D,

Z),S$(Z)):IF PS > 0 AND BT=0 AND
S$(Z) < >"" THEN
Z=A:NEXT:GOT05100

5093 IF PS = 0 AND BT=1 THEN
Z=A:NEXT:D = D + CH:GOT05070

5096 NEXT:IF BT=0 THEN D = D + CH:
GOT05070

5230 CLS2:PRINT@2," NO RECORD
WITH ❑ ❑ ❑ ❑ OOF THESE";:IF BT =1
THEN PRINT©18,"ALL ❑ "; ELSE

PR INT©18,"ANY ❑ ";
5235 FORZ =1TOA:IF S$(Z) ="" THEN 5245
5240 PRINT@96+ Z*32,N$(Z);:PRINT

©107 + Z . 32,S$(Z);
5245 NEXT:CP = 0

CHANGES FOR DISK
The next set of changes allow the program to
work with a Dragon Data disk drive, and is for
the Dragon only. Don't enter the lines if you
intend to carry on with tape because they
overwrite the tape LOAD and SAVE.

Delete Lines 8060 to 8070, 8150 to 8200
from the tape LOAD using DEL 8060-8070 and
DEL 8150-8200, and Lines 7090 to 7140 from
the tape SAVE by typing DEL 7090-7140 before
entering the new lines, and see below for the
method of transferring data from tape to disk.

80 PRINT©292,"5 :-0 ❑ SAVE FILE"
90 PRINT@324,"6 :— ❑ ❑ LOAD FILE"
1130 NEXT:R = INT(10000/(5 + 5*A))

—1:PRINT"El MAX NUMBER OF
RECORDS =";R

7000 CLS:PRINT" 0 ENSURE DRIVE IS ON
AND A DISK ❑ ❑ ❑ IS INSERTED, THEN
PRESS enter"

7010 IF INKEY$< >CHR$(13) THEN 7010
7020 PRINT:PRINT"0 INPUT FILENAME

?";:LINEINPUT F1$
7030 IF LEFT$(Fl$,1) < "A" OR

LEFT$(FI$,1)>"Z" THEN 7020
7040 CREATE FI$:CLS6:PRINT@232,

"El SAVING 0 ";FI$;
7050 FWRITE FI$;R,",",A,",",NR
7060 FORN =1TOA:FWRITE FI$;N$

(N):FWRITE FI$;A(N):NEXT
7070 FORC=1TONR:FORN=1TOA:

FWRITEFl$,A$(C,N):NEXTN,C
7080 CLOSE:RETURN
8030 PRINT@65,"SELECT DISK, THEN PRESS

enter"
8040 IF INKEY$< > CHR$(13) THEN 8040
8050 IF R>0 THENRUN9210
8080 PRINT:PRINT" ❑ INPUT FILENAME

?";: LIN El N PUTF1$
8090 IF LEFT$(Fl$,1) <"A" OR

LEFT$(FI$,1)>"Z" THEN 8080
8100 FREAD FI$,FROMO;R,A,NR
8110 DIMA(A),N$(A),A$(R,A)
8120 FORN =1TOA:FREAD FI$;N$(N):

FREAD FI$;A(N):NEXT
8130 FORC=1TONR:FORN=1TOA:

FLREADFI$;A$(C,N):NEXTN,C
8140 CLOSE:RETURN

If you want to transfer existing data from tape
to disk, first LOAD the program and make the
disk SAVE changes. Then LOAD in the data
from tape and SAVE to disk. Then make the
disk LOAD changes and SAVE the new program
on disk.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Applications

hobbies file, extra options 	947-952
text-editor program

852-856,878-883,914-920
ATTR, Spectrum 	 844-847

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
mechanics, principles of 	933-939
programming function keys 	825-829
speeding up BASIC programs 921-927

Beasty
connecting and controlling 	887-888

Binary search routine 	926-927
@BLOCK, Commodore 64 	 877
BYE Acorn 	 847-849

C
Circles

drawing 	 858
uses of 	 863,893-894

Cliffhanger game
Acorn, Commodore 64,

Dragon, Spectrum
part 1—title page 	904-913
part 2—adding instructions

928-932
Colour

routines for changing
Commodore 64 	 872-877

Conic sections 	857-863,889-895
Continuous input routine

in hobbies file program
Spectrum 	 947

Continuous print option
in hobbies file program

Acorn 	 949
Commodore 64 	 947
Dragon, Tandy 	 951-952
Spectrum 	 947

@CSET, Commodore 64 	 872
Curves, drawing 	857-863,889-895

D
Datafile

program, adding options to 	947-952
use of in text-editor 	 852

Digital clock routine 	896-898
Disk drive option

in hobbies file program
Acorn 	 951
Commodore 64 	 949
Dragon 	 952

Drawing a new typeface 	838-843

E
Editing

using El keys
Acorn 	 829

using text-editor program
852-856,878-883,914-920

Ellipses
drawing 	 858-859
uses of 	863,890-891,894-895

Engineering
see Mechanics

F
Fields, adding to hobbies file program

Acorn 	 951
Commodore 64 	 949

Focus, of curves 	 889-895
Form letters routine

in text -editor program 	914-920
Formatting

with text -editor program 	914-920
Function keys, programming

Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger 	904-913,928-932
goldmine 	 830-837,864-871
wordgame 	899-903,940-945

Goldmine game
part 1—basic routines 	830-837
part 2—option subroutines 	864-871

Graphics
effects using curves 	857-863,889-895
hi-res

for custom typeface 	838-843
setting up new commands

Commodore 64 	 872-877
in goldmine game

832-837,870-871

H
@HICOL, Commodore 64
	

874
Hobbies file, extra options for

	
947-952

Hydraulic ram
program to demonstrate
	

938-939
Hyperbolas

drawing
	

860-861
uses of
	

863,894-895

Instructions, adding to BASIC
Acorn, Dragon, Spectrum
	

844-851
Interrupts

use of in clock routine
	

896-897

INV, Acorn
	

847-849
INVERSE, Spectrum
	

844-847
INVERT, Dragon
	

849-851

L
Letter-generator program

	
838-843

Levers and fulcrums
program to demonstrate
	

933-935
@LINE, Commodore 64
	

876
LOGO language 	 888
@LOWCOL, Commodore 64

	
874

M
Machine code

games programming 904-913,928-932
routines for hi-res graphics

Commodore 64 	 872-877
routine to alter BASIC

Acorn, Dragon, Spectrum 	844-849
timer routine 	 896-898

Mathematical functions
in mechanics 	 935
speedy use of 	 923-924
to draw curves 	857-863,889-895

Mechanics
programs to show principles 	933-939

Memory
saving vs speed 	 923
storing new keystrokes in

Acorn, Commodore 64, Vic 20 827-829
storing new typeface in 842

Microdrive conversion option
for hobbies file program

Spectrum 	 947
@MULTI, Commodore 64 	872-874
Multiple search option

in hobbies file program
Acorn 	 950-951
Commodore 64 	 948
Dragon, Tandy 	 952

N
@NRIN, Commodore 64
	

872

0
OLD, Dragon
	

849-851
Operating system software

Acorn, Commodore 64, Vic 20
	

826-828

P
Parabolas

drawing
uses of

Peripherals

robotics
	

884-888
@PLOT, Commodore 64
	

874-876
Polygons, drawing
	

893-894
Printer routine

in text -editor program
	

914-920
PROCedures, Acorn

advantages of
	

922,924
Pulleys

program to demonstrate
	

935-938

R
@REC, Commodore 64
	

876-877
ROBOL language 	 887
Robotics
	

884-888

S
Scaling

custom typeface
	

841-843
parabolas and hyperbolas 859-861,863

Search routine
binary and serial
	

924-927
in text-editor program
	

914-920
Serial search routine
	

924-925
Sort routines

in hobbies file program
Acorn
	

948-950
Commodore 64
	

947-948
Dragon, Tandy
	 952

in text-editor program
	

914-920
Speeding up BASIC programs 921-927

T
Text-editor program

part 1—basic routines
	

852-856
part 2--editing facilities
	

878-883
part 3—sorting, searching,

formatting and printout
	

914-920
Timer routine

for BASIC lines
	 922

machine code
	

896-898
Turtle
	 885-887,888

Typeface. setting up new
	

838-843

V
Variables

managing for program speed
	

923-925
Verify option

in hobbies file program
Commodore 64
	

949

899-903
940-945

	

859-860 	Wordgame

	

863,891-893
	

part 1—basic routines
part 2—adding the options

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

-10ne of the first uses for computers was
in code-breaking. Find out about the art
of SENDING SECRET MESSAGES

—/ Enter part one of OTHELLO—a game in
which you and the computer try to
ensnare one another

CLIFFHANGER continues with the
routines before the game itself starts.
This time, you add the THEME MUSIC

JFor high-level control, you often need
to DETECT SEVERAL KEYPRESSES.
Find out what's possible, and when

—10n the ACORN machines, explore the
sophisticated commands which control
COLOUR MIXING AND FILLING

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

