AD-A097 521 HONEYWELL INC MOPKINS MN DEFENEE SYSTEWS DIV
F/C 19/6 AUTOMATED GUN LAYING SYSTEM FOR SELFAPAOPELLED ARTILLEET MEAPON-EETCT... mar oc e E LEHTOLA, k a MERZINS

UNCLASSIFIED

n.

Honeywell Defense System Division
600 Second Street Northeast Hopkins, Minnesota 55343

Final Technical Report for Period 25 June 1976-30 June 1978 14 Sept 1978 - 30 Sept 1979

Prepared for

U.S. Army Research and

Development Command Dover, New Jersey 07801

Honevwell

$80 \quad 10 \quad 20 \quad 34$

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)

20. ABSTRACT (Cont.)

The primary objective of the AGLS Program was to develop a test bed to evaluate, on an incremental basis, various options for automation at the battery level. The system being developed would automate all of the on-carriage weapon positioning and fire control operations, while retaining insofar as practical, the existing weapon control and fire control equipment, and keeping the gun crew operations compatible with currently used procedures.

A system was fabricated, installed in an M109A1, and tested by the U.S. Army Field Artill ry Board at Ft. Sill, Oklahoma over the period 20 March through 26 April 1978.

A contract add-on was issued on 9 September 1978 to integrate an advanced digital data communication system into AGLS. This system was designed to enhance the communication capabilities of the AGLS and to make the reconfigured vehicle compatible with the advanced fire direction center concepts employed for HELBAT VII. Additional capability in the form of an improved reference unit processor and interfaces to a projectile velocimeter, propellant temperature monitor and electronic fuze setter were also incorporated.

The system was designed, fabricated and installed in the AGLS equipped M109A1 howitzer and designated Howitzer Test Bed I. Field testing was performed by the Army during HELBAT VII (20 February 1979-30 March 1979) and by the Human Engineering Laboratory at Aberdeen Proving Ground (30 July 1979-25 August 1979). No data from these tests is included in this report; it was retained by the test agencies.

table of contents

AGLS PROGRAM Page
I INTRODUCTION 1
II SUMMARY 3
III CONCLUSIONS AND RECOMMENDATIONS 8
IV SYSTEM DESCRIPTION 14
Fire Control Instrument Servo Subsystem 14
Digital Control Subsystem 28
Gun Alignment Control System 38
Infrared new.... 42
Weapon Control System 42
System Power Supply 56
v DESIGN STUDY 61
Theory of Operation 61
Methodology 61
Fire Control Servos 61
Position Sensors 67
System Power Supply 90
Automatic Gun Laying System - Communications 90
Error Analysis 112
VI SYSTEM DEVELOPMENT AND FABRICATION 123
Fire Control Instrument Servos 123
Infrared Tracker 124
Infrared Tracker Noise 137
Telescope Backlash 141
(Continued Next Page)

TABLE OF CONTENTS (Continued)
AGLS PROGRAM Page
Controls and Displays 142
Vehicle Communication Processor 152
Fire Direction Center - Communications Processor 182
Automatic Gun Laying System Processor 207
Appendix A System and Cabling - AGLS
Appendix B AGLS Functional Flow
Appendix C AGLS Control Program Flow Detail
Appendix D AGLS Control Program Source Listing
Appendix E VECOM/RUP Schematics
Appendix F VECOM Control Program Source Listing
Appendix G RUP Control Program Source Listing
Appendix H FDCOM Schematics
Appendix 1 FDCOM Control Program Source Listing
Appendix J AGLS Control program Source Listing

LIST OF ILLUSTRATIONS

Figure Page
1
Block Diagram, Autonatic Gun Laying System 154
566
7
9 Digital Controller Unit 29
10 Block Diagram, Digital Controller Unit 31
11 Chief of Section Panel 35
12 Gunner's Display Panel 37
13 Assistant Gunner's Display Panel 39
14 41GACS Reference Unit Field Installation
15 43
Weapon Azimuth and Elevation Controller Unit 16 4417
Block Diagram, Weapon Control System - Azimuth 45
Hydraulic Filter Assembly 18 47
19
Azimuth Solenoid Shut-Off Valve 48
20
Azimuth Servo Valve Assembly 49
21 Weapon Azimuth Tachometer, Installed at Ring Gear 50
22
Instrument Controller Unit 16
Modified M-145 Mount with Telescope 18
Modified M-15 Quadrant 19
Block Diagram, Quadrant Cant Servo 21
Block Diagram, Quadrant Pitch Servo

- Block Diagram, Quadrant Pitch Servo23
8 Block Diagram, Telescope Azimuth Servo 26
3 Modified M-117 Telescope 17

LIST OF ILLUSTRATIONS (Continued)

Figure Page
23 Elevation Solenoid Shut-Off Valve 53
24 Elevation Servo Valve Assembly 54
25 Elevation Tachometer, Installed on Weapon Trunnion 55
26
System Power Supply - Installed 57
27 Block Diagram, System Power Supply 58
28 Basic Block Diagram of AGLS Servos 62
29
Servo Motor - Tachometer Cross Section Diagram 6430313233343536373839
Jpen Loop Frequency Response, M-15 Quadrant Cant Axis 66
Tachometer Output - Amplifier Input
Schematic Diagram, GG326 Accelerometer 68
Accelerometer Locations 70
M-15 Quadrant Cant Axis Accelerometer Open Loop Frequency 72
Response. Accelerometer Located on a Horizontal PlaneWith Cant Trunnion Axis
M-15 Quadrant Cant Axis Accelerometer Open Loop Frequency 73Response. Accelerometer Mounted on the Top Surface of theCant Axis Probe
AGLS IR Tracker 76
Lateral Effects Diode 77
Block Diagram, AGLS IR Tracker 80
Schematic Diagram, Sensor and Preamplifier 82Gain Control Amplifier84

LIST OF ILLUSTRATIONS (Continued)

Figure Page
40
AGLS IR Tracker Integrator 86
41 Integrator Timing Diagram 89
42 AGLS/GACS Power Distribution 91
43 Fire Control Geometry 92
44
AGLS/COMM Block Diagram 96
45 Original AGLS/GACS Interface 101
46 New AGLS/COMM Interface 102
47 SPH Fire Control BISYNC Record Format 108
48
SPH Fire Control Message Format 108
49
Inter Vehicle Communication Flow Diagram 110
50 M145 Mount Pitch Axis Open Loop Frequency Response 125Accelerometer Loop M-Plot +40 DB Up
51
M145 Mount Cant Axis Open Loop Frequency Response 126Accelerometer Loop M-Plot +40 DB Up
52
M15 Quadrant Pitch Axis Open Loop Frequency Response 127 Accelerometer Loop M-P lot +40 DB Up
53
M15 Quadrant Cant Axis Open Loop Frequency Response 128 Accelerometer Loop M-Plot +40 DP Up
54
M117 Telescope Azimuth Axis Open Loop Frequency Response IR 129 Tracker Output
55
M145 Mount Pitch Axis Closed Loop Frequency Response 130 Accelerometer Output
M145 Mount Cant Axis Closed Loop Frequency Response 131 Accelerometer Output
57 M15 Quadrant Pitch Axis Closed Loop Frequency Response 132 Accelerometer Output

LIST OF ILLUSTRATIONS (Continued)

Figure Page
58
M15 Quadrant Cant Axis Closed Loop Frequency Response 133 Accelerometer Output
59 Telescope Azimuth with Tracker Closed Loop Frequency Response 134
60 Tracker Output Test 1/2" Iris 17m Range Indoors 139
61 Tracker Output Test 1/2" Iris 17m Rnage Indoor 140
62 Display Driver 144
63
Parallel Input Signal Conditioner 145
64 Dual Digital to Analog Converter 146
65
Dual A/D Converter 147
66 Central Processor Unit 148
67 Parallel Interface 149
68 VECOM Hardware Block Diagram 153
69 VECOM Cabling Diagram 155
70 Reference Unit Processor Block Diagram 156
71 VECOM Front Panel Layout 158
72 VECOM Functional Software Flow Diagrams 161
73 Reference Unit Processor Software Flow Diagrams 183
74 FDCOM Hardware Block Diagram 205
75 FDCOM Functional Software Flow Diagrams 208

LIST OF TABLES

Table Page
1 Fire Control Instrument Servo Performance Parameters 65
2 Automatic Leveling Errors 114

I. INTRODUCTION

Before an artillery weapon can engage a target, the weapon must be oriented on the correct gun position so that the artillery pieces can aim at the target. The current procedure to accomplish this is called "laying" the weapon. It requires considerable time and manpower and reduces the responsiveness of the weapon. The advantage of mobility inherent in the howitzer is diminished by this procedure and a new method to enable rapid deployment is desirable.

Current procedures for laying field artillery involve verbal transmission of data and an iterative sequence of manual procedures involving three or more gun crew members. Previous Human Engineer Laboratory Battalion Artillery Tests (HELBAT) have shown that these procedures can cause gross aiming errors due to transposition of digits and can cause time delays because these operations must be performed sequentially rather than simultaneously.

The Gun Alignment and Control System (GACS) offers one remedy to these problems; increasing the responsiveness of the howitzer by orienting all weapons on the gun position within seconds. Error-free displays of bearing and elevation are provided for members of the howitzer crew. The problem causing concern lies in the Fire Orders Data Section of the GACS, which consists of the Command Post Unit (CPU) and the Gun Unit (GU). Hardware breakdowns of these components have caused catastrophic system failure. The unavailability of engineering drawings has required that the components be returned to the manufacturer for repair for extended time periods and at considerable expense.

To obtain more data on the benefits of automation, Contract DAAA09-76-C-2084 was issued by ARMCOM (and later transferred to ARRADCOM) to desigri, develop, fabricate and install one prototype Automated Gun Laying System (AGLS) in a government furnished M109A1 self-propelled howitzer.

The primary objective of the AGLS Program was to develop a test bed to evaluate, on an incremental basis, various options for automation at the battery level.

The system being developed would automate all of the on-carriage weapon positioning and fire control operations, and improve weapon system effectiveness by reducing human errors and overall reaction time.

A secondary objective was to retain, insofar as practical, the existing weapon control and fire control equipment, and to keep the gun crew operations compatible with currently used procedures. This would retain a degree of commonality, thus facilitating the tasks of crew training and weapon maintenance, and also enabling direct cost/benefit comparisons when the various levels of automation are tested.

An additional task was added to the original workscope for the Automated Gun Laying System (AGLS) program. It provided for the replacement of several components of the GACS which had become unreliable and caused system failure. The primary goal of the added effort was to substitute components which would be more reliable and maintainable than the existing parts by providing a better design, complete with accurate engineering drawings.

Additional interfaces at the howitzer and FDC were fabricated which provided both radio and wire communication links. These were supplied to attain system compatibility for HELBAT VII testing. This howitzer was redesignated the Howitzer Test Bed ${ }^{\#} 1$.

II. SUMMARY

The Automated Gun Laying System developed under Contract DAAAO9-76-C-2084 is a prototype or engineering model designed specifically to the requirements of a test bed system. The system configuration and characteristics were specified through a series of meetings and design reviews with the contractor's design personnel and the Contracting Officer's Technical Representatives (COTR). Following the design definition, the system components were fabricated and installed in the M109 at the contractor's facilities. The AGLS program consisted of the following phases:

1. Design Study

A detailed design study was conducted to establish the system configuration, predict performance characteristics, and to identify major error sources. This study was conducted during the first three months of the program. During this study, the system originally proposed by the contractor was further defined, utilizing the M109 component information provided by the COTR. Math models were developed to predict system performance and preliminary mechanical layout drawings were prepared to determine mechanical design feasibility of the proposed system. The design study validated the proposed method of leveling the M15 quadrant and the $M-145$ mount, and indicated that the weapon could be driven by add-on stabilization system (AOS) hydraulic components.

The study was also directed to the operating characteristics of the Gun Alignment Control System (GACS), which had been proposed as the method of obtaining the azimuth reference for the AGLS. The COTR provided more data on the GACS characteristics, and the study determined that the GACS was suitable as the azimuth reference and as the input port for the fire control commands. However, questions were raised as to the light power output of the GACS reference unit XENON lamp, and the ability of a proposed Charge Coupled Device (CCD) solid state camera to detect the short pulses. Further testing when the GACS reference unit
was delivered confirmed these doubts, and eventually led to the development of an IR tracker using a lateral-effect photodiode.

During the design study on the Automatic Gun Laying System (AGLS) program (Contract DAAAO9-76-C-2084), it became apparent that effort beyond the scope of the original AGLS program would be required to interface with the Automated FDC planned for use on HELBAT VII. This effort was required to analyze, design, fabricate and test the electronic interfaces between the Fire Detection Center (FOC) PDP-11/34 computer and the AGLS onboard the howitzer. The system was required to support additional onboard data gathering from the AGLS, a projectile velocimeter and propellant temperature system. In addition ts relaying gun orders from the FDC to the howitzer, the charge and fuze time were also to be transmitted and the latter relayed to a GFE electronic time fuze setter. The primary data link between the FDC and vehicle employed by AN/VRC-46 Military FMVHF command radio set with backup furnished by a WD-1 and land line link. The effort was proposed to be accomplished by the contractor under Amend/Modification No. POOO11 to the basic AGLS contract.

2. System Development and Fabrication

Following the design study, detail design of the AGLS components was initiated. One of the major tasks involved the modifications of the instrument servo components to provide servo drive capability. Government drawings were used as the basis for detailed layout drawings, from which wood mock-ups were fabricated. These mock-ups were then installed in the M109 and the fire control instruments were placed at the mechanical limit to determine worst case mechanical interferences. The interfering material was then removed from the wood mock-ups, and the layouts were modified to accommodate the available space. Several iterations were necessary before acceptable layouts were generated. Then, detail drawings were drawn, and used by design technicians to build the prototype hardware.

Installation of the AOS hydraulic components was accomplished using special tubes and brackets fabricated specifically for the M109. An Electronic Controller Unit (ECU) as used in the M60A1 was used except that azimuth and elevation modules characterized to the M109 were developed, fabricated and installed.

Further definition of the data display requirements indicated the desirability of three data display panels and a separate digital controller unit. A contract modification was negotiated to incorporate three display panels into the AGLS. The data display requirements, system operating mode selection, and various sequencing operations required to satisfy system performance requirements all pointed to the desirability of using a microprocessor to provide the digital data processing. Since a microprocessor was already being used by the contractor on another program, it was decided to utilize the same processor, a Motorola 6800, and to add the peripheral boards needed by the AGLS system.

The tracker, instrument controller and system power supply were all designed for the AGLS and involved initial design, breadboard test and prototype fabrication. Layout drawings were generated and details were developed sufficient to facilitate fabrication by design technicians. Functional tests were performed on each of the completed units prior to installation in the M109 to assure proper system performance.

The digital subsystem development and fabrication consisted primarily of design of the display panels and controller housing. To assist in the panel design, a human factors specialist reviewed the system requirements, participated in a contract meeting and live fire demonstration at Ft . Sill, and developed the panel arrangement for all three display panels. The remainder of the digital development task involved packaging of previously used circuits for the data interface circuit boards, assembly of previously designed processor boards, and writing of the system software.

After the system components were assembled and installed in the M109, preliminary functional and performance tests were conducted. During these tests, several changes in system sequence control and operating procedures became necessary. These were readily implemented by software changes, most of which could be implemented in less than one day elapsed time, by use of the microprocessor and the contractor's microprocessor development system.

A requirements analysis was performed on the following devices to establish subsystem compatibility and interface requirements for the HELBAT VII effort.

0 GACS (CPU, GU and power supply - interface adapters)

- AN/VRC-46 Military radio
o Digital Equipment Corporation PDP11/34 minicomputer, its UNIBUS structure and DLII-E, DR11-L, DR11-M and DG11 I/O interfaces
o Lear Siegler MVR DR-810 velocimeter
- Electronic Fuze Setter and interfaces: HELBAT VI/XM587E2
- Propellant Temperature System
- M109 AGLS Power Conditioning System

Following completion of the requirements analysis, a detailed design was completed on the FDC Communication Processor and the Vehicle Communication Processor. This effort included the design of microprocessor based communication, control and interface hardware and the associated software formats, protocols and logical instruction sequences to interface between the hardware and the serial (radio and line) data link. In addition, a separate processor was designed to acquire and decode output from the GACS reference unit. This processor became part of the Vehicle Communication Subsystem.

After detailed design, the FDC Communication Processor, Vehicle Conmunication Processor and Reference, Unit Processor were fabricated. The FDC Communication Processor was fabricated and packaged, using open card frame construction, to fit into a 6 inch relay rack chassis. Interface to the FDC computer was accomplished via a multi conductor cable and mating DEC connectors. The Vehicle Communication and Reference Unit Processors were fabricated and pacakged in a custom chassis designed to utilize the space envelope and to contain the communications and reference unit subsystems as well as the displays and controls required to supplement the AGLS Chief of Section panel.

3. System Integration \& Test

Separate in-house and field test programs were conducted for the AGLS and HELBAT VII development tasks. This section presents the details of each of these separate activities in the chronological order they were performed.
a. AGLS

A test plan was prepared and submitted to ARRADCOM for approval prior to AGLS system acceptance testing. The acceptance tests were conducted at the Honeywell Proving Ground, with the assistance of the Contracting Officer's technical representatives. A test report was prepared and has been separately submitted to the Contracting Officer.

The completed AGLS, installed in the M109, was shipped to Ft. Sill, Oklahoma for tests by the U.S. Army Field Artillery Board. These tests consisted of twelve planned days of dry fire testing, and one day of live firing. A contractor representative was present to provide training of the U.S. Army Field Artillery test crews, and to assist in technical support during the test period.

The test plan was prepared by ARRADCOM, and the progress of the tests was monitored by both a contractor's representative and by a representative from ARRADCOM. The tests were conducted over the period 20 March through 26 April 1978. On 26 April, testing was concluded with the firing of twenty M107 projectiles using the M119 propelling charge (Zone 8). With the exception of two display boards being displayed out of their connectors, no AGLS components were affected by the firing shock. A separate report on the Ft. Sill tests will be issued by ARRADCOM.
b. HELBAT VII Communication

Laboratory debug and checkout of the AGLS Communications consisted of simulating the FDC computer, the gun laying subsystem and the serial line interfaces. The existing AGLS simulator was used to checkout that interface and appropriate thumb wheels, switches and displays provided stimulus for the remaining functions.

The reference unit processor was tested separately using the GACS Reference unit and GACS IR Receiver to provide stimulation.

The vehicle communication subsystem along with the available supporting subsystems were installed in the AGLS equipped M109AI vehicle. Inputs to the system were provided through the vehicle communications processor serial line simulator. Test, diagnostic and simulation techniques developed during this testing were documented for subsequent use by the customer.

The vehicle was moved outside the Honeywell Defense Systems Laboratory for a total system checkout using both radio and land line serial data links. FOC computer inputs to the FDC comunication processor were simulated in this test. This test constituted the acceptance test.

Field testing was performed at Ft. Sill, Oklahoma as part of HELBAT VII during the period 20 February 1979 through 30 March 1979. In addition, a Human Engineering Laboratory evaluation test program was performed from 30 July 1979 to 25 August 1979. The specific test results from both these programs are to be published by HEL.
4. Documentation

Drawings were prepared and delivered. This report, with its appendix, is submitted as the final activity on this contract.

III. CONCLUSIONS AND RECOMMENDATIONS

The Automated Gun Laying System developed under contract DAAA09-76-C-2084 satisfied the previously stated objectives. The system automated the leveling, data offset, azimuth reference, elevation reference, and weapon azimuth and elevation functions of the M109Al howitzer. Automation of various functions could be selected on an incremental basis, and all manual operations were retained. All automatic functions utilized the manual inputs (knobs) and feedback sensors (spirit levels or sight picture) to retain commonality, thus enabling the U.S. Army Field Artillery test crews to operate the AGLS/M109 in all levels of automation with a minimum of training. During contractor tests and demonstrations at Ft. Sill, it became apparent that the gun laying function could be accomplished by one crew member. In the case of momentary obscuration between the howitzer and the reference unit, it proved desirable to have a second crew member to assist in recognizing operational faults and to resume laying operations. The second crew member also provides verification of final acquisition as shown in the sight picture, and provides a safety back-up by visually checking the pantel counter and spirit levels.

The M109 operated for over five weeks at Ft. Sill (March-April 1978) with no failures, except for malfunctions precipitated by out-of-specification performance of the M109 electrical systems, and two printed circuit data display boards that became disengaged from their connectors as a result of gun fire shock. In addition, some operational problems were experienced in the use of the government furnished Gun Alignment Control System (GACS).

During the HELBAT VII testing several vehicle failures were experienced which seriously degraded the ability of the AGLS-COMM system to function effectively.

Problems experienced with TB-1 fall into three categories, namely: vehicle automotive, radio data communication, and gun laying. As a result of various vehicle automotive problems with the recoil, electrical, fuel cell and hydraulic hardware, TB-1 was not available for firing until March 18th; the beginning of
the fifth week of the six week test program. While some limited communication system checkout and crew training were accomplished in the interim no complete exercise of the $F D C / v e h i c l e$ interaction in the fully automatic mode was performed.

The lack of a scheduled preparation and crew training phase also resulted in several unanticipated radio data communication problems. The most significant of these was the absence of integrated fully reliable voice communication between the FDC and TB-1. Without this voice radio capability the crew operation of the TB-1 system and range safety management were impacted. Through subsequent efforts (after March 18) of Helbat control and Automated FDC crew a voice radio link was established. Also contributing to the data communication problem were various protocol and timing differences between the TB-1 FDC interface and the FDC computer. These differences were, to a large extent, only revealed when the crew attempted to interact with the FDC in a firing scenario. Because of a lack of scheduled dry firing exercise with a dedicated FDC, many of the interface problems were not discovered until the vehicle was on line. When problems were discovered, software changes were made off-hours and were checked out by Honeywell with the excellent cooperation of the Automated FDC crew. Unfortunately, the military FDC controllers and crew were not present for those after hours training opportunities.

The digital data communication problems experienced with TB-1 were largely the result of the transmission scheme and protocols being different and more sophisticated than that used for the other three vehicles. In addition, the TB-1 system was fabricated, to specification, by Honeywell and was not as familiar to the Automated FDC technicians as the communication system that they designed and built for the remaining vehicles. We feel that the techniques used for the TB-1 system represent future self propelled howitzer digital communication configurations. Because the TB-1 system was different and required in-the-fieid adjustments to interface with the Helbat VII mission sequences, more FDC/crew dry fire training should have been scheduled, with the military crews of the FDC and TB-1 each using procedures identical to those used in live fire missions.

The third significant problem area, gun laying resulted mostly from the same lack of scheduled crew training and preparation. Significant software changes were
accomplished in the field as a result of the crews interface with the TB-1 digital data system and displays. This man-machine interface input was most valuable to our understanding of automated fire control design, but unfortunately was not revealed until the system was on line and scheduled for firing. As an example, it was only after a fire order has been sent to TB-1 at the start of a live fire mission that FDC stated that they could not process a NORMAL angle as had been designed into the Reference Unit Processor section of the AGLS communication unit. Fortunately, the processor could be operated in the Distant Aiming Point mode to provide 3200 based azimuth data back to the FDC. Honeywell design personnel then modified the AGLS vehicle software to provide 3200 based commands and feedback, thus satisfying the belatedly recognized needs of the FDC and gun crew. Other gun laying related problems, involving the GACS Reference Unit alignment, laying the battery and fire order/check fire sequencing also were impacted by the lack of scheduled opportunity for adequate crew training with the dedicated FDC.

The Helbat VII test program was a revealing experience for Honeywell and contributed significantly to the maturation of the TB-1 system. In spite of the problems experienced in the aforementioned areas, very encouraging results were obtained. The crew's acceptance of the system (once they had adequate training) contributed to the excellent results achieved during the last week of the program. While fully automated operation was not achieved on all missions, the ability of the TB-1 system to function reliably in degraded modes was very encouraging. The digital data transmission system consistently transferred valid gun order data into vehicle in spite of severe radio skip interference and conflicting use of assigned radio frequencies; the simplex radio data link reliability was proven. In addition, the flexibility of the microprocessor approach to the onboard fire control scheme was amply demonstrated in that six significant changes to system operational software were implemented in the field.

Some conclusions/reconmendations that result from our observations of the system operating in a "field" environment follow:
a. In the fully automatic mode of operation, the gunner and assistant gunner are not needed. Their tasks are essentially taken over by the chief of section, who operates the power, servo, weapon, load, and reference unit (RU) search switches
to operate the AGLS. Thus, the chief of section has been transferred from a supervisory role in the present M109 to a single operator role in the AGLS. In addition, the chief of section was required to monitor the reference angle from the GACS, to mentally test for reasonableness, and to initiate a recovery plan if erroneous commands were handed off from the GACS to the AGLS. All of these new tasks represent a significant increase in the chief of sections work load.
b. It may be desirable to implement certain or all of the features of the Automated Gun Laying System into either a program to retrofit M109's or to design a new self-propelled howitzer. If this is to be accomplished, and an engineering development program is initiated, the following improvements to the AGLS should definitely be considered:

1. Instrument Servos

The M109 fire control instruments (quadrant, pantel, and mount) should be redesigned to incorporate the AGLS features into these instruments to obtain integral assemblies.

2. Instrument Controller Unit

An investigation should be directed toward the feasibility of a common controller for the five servo channels. This controller should be designed as a functionally complete, plug-in assembly, to satisfy the Reliability, Availability, and Maintainability (RAM) requirements as stated by the Ft. Sill maintenance evaluation.

3. System Power Supply

Operating power consumption measurements should be conducted to determine the maximum power requirements of the AGLS instrument servos and digital components. Test data thus obtained may permit reduction of the peak power capability, and, therefore, the physical size of the system power supply. Thermal characteristics should also be measured, to determine the feasibility of reducing the internal heat sink structure, and thus reduce the power supply size and weight. Plug-in
assemblies, error monitor circuits, and test points should be implemented to enhance maintainability.

4. Digital Controller Unit

After system software has been finalized, the digital controller unit should be repartitioned to yield the minimum necessary digital system. Functionally complete assemblies should be utilized, with a minimum of inter-board connecting harnesses. Second or third generation microcomputer chip sets would permit a reduced number of components and interconnections, with attendant reductions of power consumption and enhanced system reliability.
c. Testing downtime could be minimized and more representative results obtained if more attention was directed in certain areas. These areas include:

1) Vehicular and Equipment "Shake-Down" Prior to Test -- More than one third of the test period was consumed by repair operations.
2) Training and Orientation Exercises -- Much more representative data would be available if the gun crew had a thorough understanding of the system operation. More importantly, the safety of the test program could have been improved if pretest training had been run to identify protocol and communication problems.
3) Testing Procedure -- The advantages of the system would be obvious if the test procedure could have included scenarios designed to depict the level of equipment sophistication.

IV. SYSTEM DESCRIPTION

The AGLS consists of six major subsystems as follows:
o Fire Control Instrument Servo Subsystem
o Digital Control Subsystem
o Gun Alignment Control System
o Infrared Receiver
o Weapon Control System
o System Power Supply

The block diagram showing the major interfaces between subsystems and components is provided in Figure 1. The cable connections between the system components are provided in Appendix A.

The configuration and basic operation of each of the AGLS subsystems is described in the following subsections.

A. Fire Control Instrument Servo Subsystem

The instrument servo subsystem consists of an instrument controller unit (see Figure 2) and the M-109 fire control instruments ($\mathrm{M}-117$ telescope, M-145 mount and M-15 quadrant). The fire control instruments have been modified to provide automatic operation of the basic fire control functions in the AGLS/M-109. The modification includes the addition of electric drive motors, gears, and sensors, which have been attached to the fire control instruments. The modified fire control instruments are shown in Figures 3, 4 and 5. All existing features such as knobs, level vials and mechanical counters have been retained.

The fire control instrument servo subsystem consists of five separate servo channels as follows:

Figure 1. Block Diagram, Automatic Gun Laying System.

Figure 2. Ins trument Controller Unit

Figure 3. Modified M-117 Telescope

Figure 4. Modified M-145 Mount with Telescope
I

Figure 5. Modified M-15 Quadrant

1. M-15 quadrant cant
2. M-15 quadrant pitch
3. M-145 mount cant
4. M-145 mount pitch
5. M-117 telescope azimuth

Each of the servo channels consist of an electric drive motor, an amplifier, and one or more output sensors. All servo channels are similar in operation and are described in the following paragraphs.

1. Quadrant Cant Servo

The cant axis of the M-15 quadrant can be leveled by the quadrant cant servo which is shown in the block diagram of Figure 6 . The servo consists of an integral motor/tachometer, coupled through precision gears to the cross level knob on the quadrant. A sensor mounted on the level vial platform detects an out-of-level condition and generates a positive or negative signal which is applied to the controller amplifier contained in the instrument controller unit. The amplifier processes the signal and generates an electric current to provide power to the servo motor, which then rotates the cross-level knob to bring the quadrant back to a level position.

The tachometer section of the motor/tachometer unit provides a direct current signal proportional to the rotating speed of the servo motor. This rate signal is used to control the maximum speed of the servo, and to provide a prediction signal to more accurately control the motor rotation. Since the tachometer is closely coupled to the motor, it is not influenced by the backlash of the quadrant mechanism, and will provide an accurate indication of servo motor motion. The same type of motor is used in one of two different housings for each of the five instrument servos.

While the tachometer provides a rate signal when the motor is rotating, the final or null position is determined by the signal from the level sensor. The level sensor is an accelerometer, which senses local gravity and generates a positive or negative signal proportional to the angle of the accelerometer with respect to

Figure 6. Block Diagram, Quadrant Cant Servo
level. For an ideal sensor with no null error, the level sensor output will be nulled when the level sensor is level.

The null position of the quadrant cant servo can be adjusted by means of the cant knob on the quadrant trim unit. This control generates a positive or negative signal which is added to the level sensor signal before it is supplied to the controller amplifier.

Trimming the level sensor permits more precise leveling of the quadrant by compensating for the changes in null signal of the level sensor. Adjustment of the trim is accomplished by observing the level vial while adjusting the cant trim knob, with the quadrant cant leveling servo engaged. The cant trim knob is then rotated clockwise or counterclockwise until the bubble is centered in the level vial.

2. Quadrant Pitch Servo

The pitch axis of the M-15 quadrant is shown in the block diagram of Figure 7. The servo consists of a motor/tachometer, gears, level sensor, and controller amplifier similar to those in the cant axis and can be controlled in either of two modes.

In the level mode, the servo functions exactly as described in the preceding discussion of the quadrant cant axis. The quadrant pitch level position can be adjusted by using the pitch trim control knob on the quadrant trim unit.

A digital encoder has been added to the quadrant pitch axis to measure the pitch angle of the level vial platform. This encoder permits operation of the quadrant pitch servo in the automatic offset mode. In this mode, the quadrant level vial platform (and mechanical counter) can be automatically driven to a commanded position, thus displacing the pitch level vial and the level sensor. This mode is used in the automatic offset configuration and also in the fully automatic elevation configuration.

The encoder is geared to the pitch input knob, and utilizes the internal mechanism of the M-15 quadrant to couple the encoder shaft to the level vial

Figure 7. Block Diagram, Quadrant Pitch Servo
platform. The encoder consists of a high resolution section which resolves the knob position to the nearest 0.1 mil , and a low resolution section which counts the number of turns of the knob. The encoder thus measures actual quadrant pitch to the nearest 0.1 mil for the full range of 0 to 6399.9 mils . Since the quadrant range is limited to from negative 228 mils to postive 1383 mils , the encoder will read a negative angle \square as (6400- \varnothing).

The output of the encoder consists of 19 lines of parallel digital information. Each line has either a 5.0 volt output or a zero output. The output, in binary coded decimal form, is transmitted to the digital controller unit by a separate wiring harness. The digital controller unit accepts the encoder data, the commanded data from the GACS gun unit, and the encoder trim data. It then subtracts the actual data from the commanded data to generate a correction digital signal. This digital signal is converted to a positive or negative direct current signal, and applied to the signal selector relay in the instrument controller unit. The signal selector, on command from the digital controller unit, will connect the position error signal derived from the encoder, and disconnect the level sensor signal. The signal is then applied to the quadrant pitch amplifier, to drive the pitch servo motor. This action will continue until the error signal achieves a null, indicating that the encoder output is equal to the commanded input. The quadrant has thus been driven, or offset, to a commanded position by the quadrant pitch servo.

3. Telescope Mount Cant Servo

The cant axis of the M-145 mount can be driven to level by the mount cant servo, which is identical in block diagram form to the quadrant cant servo as shown in Figure 6. The motor/tachometer is coupled through an attached drive mechanism to the cant correction knob. A level sensor mounted to measure telescope cant generates a positive or negative signal in response to the cant position of the telescope mounting seat. This signal is applied to the mount cant amplifier in the instrument controller unit, and the amplifier provides a drive current to the mount cant servo motor to drive the mount to a level condition. As in the two quadrant level axes, the mount cant level null position can be adjusted to a precise level position by use of the cant control knob on the azimuth trim unit.

4. Telescope Mount Pitch Servo

The pitch axis of the M-145 mount can be driven to level by the mount pitch servo. This servo consists of a motor/tachometer, drive mechanism, controller amplifier, and a level sensor located to measure telescope mounting seat pitch attitude. A trim control knob located on the azimuth trim unit is provided to adjust the null position for precise level.

5. Telescope Azimuth Servo

The azimuth line-of-sight of the M-117 panoramic telescope can be deflected by the telescope azimuth servo, shown in the block diagram of Figure 8. Drive is provided by a motor/tachometer coupled through gears to the azimuth knob shaft. A digital encoder is also geared to this shaft, and adjusted to measure the telescope deflection, as displayed in the azimuth counter. A controller amplifier in the instrument controller unit provides power to drive the telescope azimuth motor.

The telescope head has been modified to accommodate three added components; the GACS infrared receiver, the AGLS tracker, and a slip ring assembly. The GACS receiver will be described in a later section. The AGLS tracker is a passive device which detects the XENON lamp output from the GACS reference unit, and generates a positive or negative direct current signal proportional to the deflection of the reference unit from the telescope line-of-sight. The slip ring assembly is used to transfer the GACS receiver and the AGLS tracker signals from the rotating telescope head through a wiring harness to the telescope trim unit, and then to the instrument controller unit.

The telescope azimuth servo can be operated in two modes; Automatic Offset and Reference Unit Acquisition. Selection of mode is accomplished by program control and by the chief of section controls. In the Automatic Offset mode, the encoder output and the azimuth commanded deflection from the GACS gun unit are accepted by the digital controller unit, which calculates the digital difference signal. The digital controller unit generates a converted positive or negative azimuth error signal which is connected by the error signal selector to the telescope azimuth controller amplifier. The amplifier output current is then applied to

Figure 8. Block Diagram, Telescope Azimuth Servo
the telescope azimuth motor to drive the azimuth knob until the telescope deflection, as displayed in the azimuth counter, is equal to the commanded azimuth value. This mode is in principle, exactly like the automatic offset of the quadrant pitch axis.

In the Reference Acquisition mode, the telescope azimuth axis is commanded by the error signal from the tracker mounted on the telescope head. The position error signal from the tracker is applied through the error signal selector to the azimuth controller amplifier. The amplifier output drives the azimuth motor in a direction to reduce the error, until the tracker output achieves a null, thus indicating that the line-of-sight is in alignment with the reference unit. A trim control located on the azimuth trim unit is provided to adjust the final null to center the line-of-sight exactly on the reference unit.

If, prior to servo engagement, the telescope is positioned such that the reference unit is within the tracker field of view of plus or minus 100 mils , the telsscope will automatically lock-on to the reference unit when the servo switch is activated. However, if the reference unit is outside the tracker field of view, the telescope servo must be commanded to acquire the reference unit. This command is provided as a steady positive or negative command from the digital controller unit and is initiated by the Reference Unit (RU) search control on the Chief of Section Panel. The digital controller unit also provides an enable signal to energize the servo and a signal select signal to activate the error signal selector to connect the command signal to the azimuth controller amplifier. The RU search command causes the telescope to drive at constant rate until the reference unit comes into the tracker field of view. As the tracker senses the reference unit, it generates a digital signal which is recognized by the digital controller unit. The digital controller unit then transfers control to the tracker by removing the signal select enable signal, and the tracker will then cause the telescope to lock onto the reference unit by the procedure described previously.

B. Digital Control Subsystem

The digital control subsystem serves as the interface between the gun crew, the fire direction center, and the servo control subsystems of the AGLS. The digital control subsystem consists of the following assemblies:

1. Digital Controller Unit
2. Chief of Section Panel
3. Gunner's Display Panel
4. Assistant Gunner's Display Panel

Each of the above assemblies is described below.

1. Digital Controller Unit

The AGLS digital controller unit (DCU) provides the system logic and control necessary to perform the following functions:
o Receive commanded azimuth and elevation data from the GACS gun unit

- Monitor weapon azimuth and elevation data from the panoramic telescope and M-15 quadrant
- Calculate position errors and generate correction signals to drive the fire control instrument servos
o Generate enable signals for the analog servos
o Provide data to the display panels
- Monitor analog sensor null signals

The digital controller unit is shown in Figure 9.

Figure 9. Digital Controller Unit

The digital controller unit processes signals from and to three separate systems: GACS, AGLS analog and AGLS digital. Since each system has its own separate ground point, ground isolation must be provided beweeen systems to prevent ground currents and common mode noise signals. Optically coupled isolators have been included at the GACS/AGLS digital interface as well as the AGLS digital/analog interface, thus permitting each system to be grounded at its optimum point while providing data flow between the systems. A block diagram of the instrument controller unit is shown in Figure 10.

The DCU consists of seven printed circuit boards as follows:
a. Central Processor Unit (CPU)
b. Parallel Interface Adaptor (PIA)
c. GACS Interface
d. Dual Analog to Digital Converter
e. Multiplexed Analog to Digital Converter
f. Dual Digital to Analog Converter
g. Power Supply

Each of these elements is described in the following paragraphs.
a. Central Processor Unit -- The CPU board contains all the components for a complete microcomputer system, requiring only power and an input/output device to provide a working digital system. The board is a general purpose computer board, containing a Motorola M6800 CPU, 4096 bytes of program memory (PROM), 4096 bytes of random access memory (RAM), two serial asynchronous interfaces (ACIA), one parallel interface adaptor (PIA), a programmable timer, and address bus drivers to interface the CPU to the remainder of the digital system.

The firmware, which determines the operating characteristics of the digital system, is stored in four electrically progranmable memory (EPROM) 2708 integrated circuits. These circuits are mounted in sockets on the CPU board to facilitate program changes during development. Temporary memory, used to store

FIGURE 10. BLOCK DIAGRAM, DIGITAL CONTROLLER UNIT
intermediate data while the program is operating, is provided by the random access memory (RAM).

The ACIAs permit internal access to the CPU by keyboard or phone line for troubleshooting. They are coupled through a cable to the external test connector on the DCU. The timer is used to measure elapsed time for those program tests with a time and magnitude requirement.

In the AGLS application, the CPU board is directly connected to the configuration switch register by a separate cable and connector. The switch register permits selection of program to select the level of automation under the control of the test director. The switches are coupled to the CPU by the on-board PIA. The remainder of the digital components are accessed through the PIA board.
b. Parallel Interface Adaptor -- The PIA board contains eight identical Motorola 6820 PIA circuits, each accessing two 8 bit ports, or 16 lines of input or output data, coupled through a ribbon cable to another interface board. An address decoder is included on the PIA board, to indicate which of the PIA circuits should be connected to the CPU data bus at any given time. The PIA board essentially expands the 8 -line CPU data bus to 128 lines of input or output data. The PIA board drives the display panels data bus directly through PIA circuit number 8 (Figure 10).
c. GACS Interface -- The GACS interface board connects the output of the two GACS 16-line command channels to the PIA board, using optical isolators to separate the GACS and AGLS ground connections. The GACS output circuit permits corresponding lines of the two channels to be connected to a single wire, as long as only one channel is active at any given moment. Two optically coupled isolators are also provided to activate the GACS azimuth or elevation output, under program control. The GACS data is coupled to P.IA circuit number 1 (Figure 10).
d. Dual Analog to Digital Converter -- The dual channel analog to digital converter board is used to interface the azimuth and elevation encoder trim potentiometers into the digital system. A reference voltage of 10 volts is supplied to each potentiometer. The potentiometer output is routed to a buffer
operational amplifier, a sample and hold amplifier, and then to the analog to digital converter. The output of the eight-bit converter is connected to PIA circuit number 6 (Figure 10). The circuitry is adjusted to yield a full eight bit change in the output code thus permitting a trim range of $\pm 12.8 \mathrm{mils}$ for ten turns on the potentiometer.
e. Multiplexed Analog to Digital Converter -- The multiplexed analog to digital converter board accepts the analog error signals from the leveling servos and the IR tracker, and sequentially converts each of these to a digital signal. The digital signal is then transmitted through optically coupled isolators to PIA circuit number 5 (Figure 10) on the PIA board. The CPU compares the digitized errors to an acceptance level, to determine which status lamps should be illuminated.
f. Dual Digital to Analog Converter -- The dual digital to analog converter accepts azimuth and elevation errors calculated by the CPU, and converts them to analog correction signals to be applied to the pantel and quadrant pitch servos. The digital errors are provided by PIA circuit number 7 (Figure 10), optically isolated, and stored in either the azimuth or elevation latch, under control of commands from the CPU. The stored data from each latch is applied to its own D/A converter, which generates an analog signal of up to ± 10 volts full scale, proportional to the input digital error.
g. Power Supply -- The power supply accepts +28 volt regulated power from the system power supply, and converts it to the following dc voltages:

```
+5 volts - Logic supply
-5 volts - Logic supply
+12 volts - Logic supply
+18 volts - Encoder supply
+2O volts - Analog supply
-20 volts - Analog supply
+20 volts - lsolated analog supply
-20 volts - Isolated analog supply
```

The input direct current power is converted to alternating current by the inverter and then applied to a transformer with multiple secondary windings. The output voltages are obtained by rectifying the various transformer voltages, and then regulating the +5 volt, -5 volt, +12 volt, and +18 volt outputs. The +20 volt and -20 volt supplies are regulated to +15 volts and -15 volts on the individual A to D and D to A boards, to minimize the effects of system noise and provide more accurate reference voltages at each board.

2. Chief of Section Panel (COS)

The chief of section panel contains the operating controls for the AGLS, as well as numerical displays of the commanded azimuth and elevation data from the GACS gun unit, actual data corresponding to the counter readings of the M-117 telescope and M-15 quadrant, and the respective errors between commanded and actual values. The panel also contains status lamps to indicate acceptable leveling of the M-15 quadrant and M-145 mount, acceptable tracker to GACS RU lock-on (A/P), and presence of the RU in the tracker field of view (XENON lamp). If any of the above lamps extinguish, the No-Go lamp will illuminate. The chief of section panel is shown on Figure 11.

This panel contains a control to adjust the display brightness, and a test button to check proper function of all the display elements.

The following switches are located on the chief of section panel:

Power -- Activates the system power supply, digital controller unit, all data displays, and certain other electronic assemblies.

Servos -- Activates those fire control instrument servos that have been previously selected by the system configuration switches.

[^0]

Figure 11. Chief of Section Panel

Load Position -- Selects either GACS elevation (down) or previously selected load position (up) to be the command to the weapon elevation servo.

RU Search -- Causes the panoramic telescope to slew clockwise (right) or counterclockwise (left) to locate the GACS Reference Unit, if certain conditions have been satisfied.

Data displays on the chief of section panel consist of the following:

Elevation Commanded Data -- The commanded elevation from the GACS gun unit or the preselected load position.

Elevation Actual -- The elevation value displayed on the $M-15$ quadrant.

Elevation Error -- The difference between the two above values.

Azimuth Commanded Data -- The commanded azimuth from the GACS gun unit.

Azimuth Actual -- The deflection displayed in the upper counter of the M-117 telescope.

Azimuth Error -- The difference between the two above values.

The panel accepts the above data in Binary Coded Decimal (BCD) format, transmitted bit parallel, character serial from the digital controller unit. The panel also contains a power supply which converts the regulated 28 vdc power to +5 vdc required by the display electronics.

3. Gunner's Display Panel

The gunner's display panel accepts and displays the same azimuth data as is displayed on the COS panel. This panel also contains a 28 volt to 5 volt converter to energize the internal electronics. The gunner's display panel is shown in Figure 12.

Figure 12. Gunner's Display Panel

4. Assistant Gunner's Display Panel

The assistant gunner's display panel accepts and displays the same elevation data as is displayed on the COS panel and contains a power supply identical to that used by the gunner's display panel. The assistant gunner's display panel is shown in Figure 13.

C. Gun Alignment Control System

The Gun Alignment Control System (GACS), developed and manufactured by Aviation Electric Limited, is used by the AGLS to provide an azimuth reference. The GACS consists of six assemblies:

1. Command Post Unit (CPU)
2. Command Post Adaptor Unit
3. Converter/Adaptor Unit
4. IR Receiver
5. GACS Gun Unit
6. GACS Reference Unit

The GACS establishes an azimuth reference by using a rotating laser beam synchronized to a flashing XENON lamp. Any GACS equipped gun can determine its azimuth reference by directing its IR receiver, mounted on the panoramic telescope, toward the reference unit. The GACS gun unit will count the pulses from the XENON lamp and observe the rotating laser to measure the reference angle. The command post unit will transmit, on manual command from the Fire Direction Center (FDC) fire orders to the GACS gun unit. The GACS gun unit will then compute the required deflection by adding the reference angle to the conmanded angle. The resulting commanded deflection is automatically transmitted to the AGLS digital subsystem. The GACS also provides a means of transmitting elevation data to the AGLS, and fuse setter data to the GACS gun unit display. The GACS components are described in the following paragraphs.

Figure 13. Assistant Gunner's Display Panel

1. Command Post Unit

The command post unit accepts input data by manually set rotary switches. Data to be transmitted consists of deflection, elevation, and fuse setting. After data has been set in, it is transmitted by manually activating a pushbutton. A flashing lamp indicates that data is being transmitted, and a steady lamp indicates that the gun unit has accepted the transmitted data.

2. Command Post Adaptor Unit

The command post adaptor unit provides a means of coupling the command post unit to either a phone line pair or a radio receiver-transmitter.

3. Converter/Adaptor Unit

The converter/adaptor unit, installed in the $M-109$, accepts the commanded data from the phone lines or radio and couples the data to the GACS gun unit. The converter/adaptor unit also contains a power supply to provide regulated voltages to the gun unit and infrared receiver.

4. IR Receiver

The infrared receiver detects the flashing XENON lamp and the laser beam from the reference unit, and transmits real-time electrical pulse signals as these events occur. The IR receiver is mounted with the AGLS tracker on the panoramic telescope, as shown in Figure 14.

5. GACS Gun Unit

The GACS gun unit accepts the pulses from the GACS infrared receiver to determine the reference angle. It has the capability of adding the reference angle to the commanded angle to compute the commanded deflection. It also has three data display clusters, to display azimuth, elevation, and fuse setting. The azimuth display can exhibit either commanded, reference, or normal angle as selected by a three position switch. Also on the gun unit are two lamps, one to indicate detection of the XENON pulses and, one, the presence of the laser beam.

Figure 14. GACS IR Receiver and AGLS Tracker
Installed on $\mathrm{M}-117$ Tel escope

6. GACS Reference Unit

The GACS reference unit contains a XENON lamp and a laser diode. The laser rotates one revolution per second, and the XENON lamp flashes once for every 40 mils of laser beam rotation, and flashes twice as the laser rotates through South. The reference unit can be energized by a 24 volt storage battery. Initial alignment of the reference unit is accomplished manually by using either a magnetic compass, or a monocular sight if a survey line is available. The GACS reference unit emplaced in a field situation showing the relationship to the vehicle is shown in Figure 15.

D. Infrared Receiver

The AGLS infrared receiver detects the flashing XENON lamp of the GACS reference unit, and provides a direct current positive or negative signal proportional to the horizontal angular position of the XENON lamp in the tracker field of view. The tracker is sensitive to lamp position in the horizontal axis for displacements of 100 mils to the left and right of center, and will detect the lamp within a $\pm 100 \mathrm{mil}$ vertical field of view. The tracker includes direct current rejection circuits and an optical filter to reject ambient light, and contains an automatic gain control to compensate for changes in range from tracker to reference unit. A one-bit digital output is also provided which indicates to the digital controller that the tracker is detecting the GACS reference unit.

E. Weapon Control System

The weapon control subsystem consists of two channels, each consisting of an electrically-operated proportional control servo valve, pressure operated engage valves, an electrically-operated solenoid valve, a tachometer, and a controller module. The two controller modules and their power supply are contained in the Weapon Azimuth and Elevation Controller Unit. See Figure 16.

1. Azimuth Control Subsystem

The azimuth control subsystem is shown in the block diagram of Figure 17. The position error is detected by the infrared tracker mounted on the panoramic

Figure 16. Weapon Azimuth and Elevation Controller Unit

Figure 17. Block Diagram, Weapon Control System - Azimuth
telescope head, and supplied to the azimuth controller module. The module filters the error signal to obtain the desired frequency characteristic, combines the position signal with the tachometer velocity signal, and generates an output error signal to operate the azimuth servo valve.

Hydraulic fluid from the M-109 power pack is filtered and then applied through the azimuth solenoid shut-off valve to the servo valves, and also to the pilot ports of the pressure-operated engage valves. The engage valves will close upon removal of supply pressure, to disconnect the servo valve and permit normal azimuth control with the gunner's control handle. With hydraulic supply pressure applied, the servo valve will apply hydraulic flow to the azimuth hydraulic motor in proportion to the electrical current from the controller module. Direction of hydraulic flow is determined by the polarity of the control current. Pictures of the filter, solenoid shut-off valve and servo valve assembly are shown in Figures 18, 19 and 20 respectively.

The hydraulic motor rotates in response to the servo valve flow, thus rotating the cab to control weapon azimuth. If the panoramic telescope is also being driven, as is the case with the automatic azimuth configuration, the tracker will be driven away from the GACS reference unit, thereby generating a position error which continues to drive the weapon in azimuth until the telescope has reached its commanded deflection. As the telescope comes to rest, the cab will continue to rotate until the final position error, as measured by the tracker, has been reduced to zero. As the weapon approaches its commanded position, the telesocpe mount will be automatically leveled and thus the mount will insert an azimuth correction which compensates for weapon cant by deflecting the telescope line-of-sight. This correction then is automatically inserted as the weapon comes to rest.

A tachometer is utilized to provide a signal proportional to azimuth velocity. This velocity error signal is needed to provide an indication of azimuth velocity, so that the cab will rotate at the proper speed, as the cab and telescope both are driven in the Automatic Offset mode. The azimuth velocity signal is also used as a prediction signal to improve azimuth stability and provide for smooth deceleration as the weapon approaches the final position after a large change in azimuth. A picture of the tachometer is shown in Figure 21.

Figure 18. Hydraulic Filter Assembly

Figure 19. Azimuth Solenoid Shut-Off Valve

Figure 20. Azimuth Servo Valve Assembly

Figure 21. Weapon Azimuth Tachometer-Installed at Ring Gear

2. Elevation Control Subsystem

The elevation control subsystem, shown in the block diagram of Figure 22, is similar in operation to the azimuth control subsystem. The position error is detected by the level sensor mounted on the M-15 quadrant pitch axis and is supplied to the elevation controller module. Hydraulic pressure to the elevation engage valves is applied or removed by the elevation solenoid shut-off valve. The elevation engage valves will close on removal of supply pressure, to disconnect the servo valve and permit control of weapon elevation by either the power control handle or by the manual hand pump. With hydraulic supply pressure applied, the elevation servo valve will control pressure to the elevating mechanism in proportion to the electrical current from the elevation controller module, and polarity of the pressure is determined by polarity of the control current. Pictures of the solenoid shut-off valve and servo valve assembly are shown in Figures 23 and 24 respectively.

As the weapon elevates, the quadrant may also be driven away from level, thus generating a position error which continues to drive the weapon until the quadrant has reached its commanded elevation. After the quadrant reaches the comanded elevation, the weapon will continue to elevate until the position error measured by the level sensor approaches a null, thus indicating that the weapon has reached the proper elevation. As the weapon approaches its final position, the quadrant cant servo is also leveling the quadrant in cant, so that the cant correction is already implemented when the weapon comes to rest at the commanded quadrant elevation.

An elevation tachometer is also provided to generate an elevation velocity error signal. This signal is needed to limit the elevation velocity to a controlled value during large changes in elevation, by providing additional feedback which essentially reduces the influence of the position error signal. The velocity error signal also provides for smooth deceleration and enhanced stability as the weapon comes to rest. A picture of the tachometer in the installed position is shown in Figure 25.

F. System Power Supply

The AGLS system power supply receives +24 volt power from the voltage support battery, and generates the following regulated power:

$$
\begin{array}{lll}
0 & +32 \text { volts } d c \\
0 & -32 & \text { volts } d c \\
0 & +28 & \text { volts } d c
\end{array}
$$

The positive and negative 32 volt supply is capable of delivering a total of 10 amperes from either or both outputs. These voltages serve as the power source for the five servo amplifiers in the instrument servo controller unit. The positive 28 volt dc supply is capable of delivering 5 amperes and is the power source for the digital controller unit, the chief of section panel, and the gunner's and assistant gunner's display panels. A picture of the power supply is shown in Figure 26.

The power supply, shown in the block diagram of Figure 27, consists of two switching regulators, each controlling power to an inverter, with a common frequency source. Input power from the voltage support battery is applied through a manually resettable circuit breaker to a power relay. The power relay, controlled by the power switch on the chief of section panel, applies power to the two switching regulators and serves as the means of energizing or de-energizing the AGLS subsystems.

The +28 volt regulated output power is controlled by two semiconductor power switches on assembly Al (Figure 27). The input power is filtered and applied to the power switches. Each switch is either completely on or off. For example, when power switch U1O is on, current flows from the input filter through U10, the inductor L1 and the current monitor resistors to the 28 volt inverter A4. When the switch $U 10$ shuts off, the current flows through diode 010 through $L 1$ to the load. The switching regulator controls the output voltage to the inverter A4 by adjusting the percentage of time that U1O is conducting. Switches U1O and U11 are essentially in parallel, and the current in each switch is monitored by the current shunt resistors R124 and R125. The pulse width modulator adjusts the conduction times to equalize the current in each switch.

Figure 27. Block Diagram, System Power Supply

The output currents from switches U1O and U11 are combined, and then applied to inverter A4 consisting of transistors Q16 and Q17 and transformer T1. Transistors Q16 and Q17 are alternately driven on and off each for slightly less than 50 percent conduction ratio. Since the two windings on transformer Tl are equal, the inverter essentially doubles the switching regulator output to obtain +28 volts output for +15 volts switching regulator output. The regulated +28 volt output voltage is attentuated by the scaling network, and then compared with a reference voltage. The difference is amplified by U1 and applied as the input to the pulse width modulator. Thus, the switching regulator conduction time is automatically adjusted to maintain a constant output voltage as input voltage and load change.

The current monitor inputs will override the error voltage from Ul if either switch current exceeds 6.0 amps , and will then limit the switch currents to 6.0 amps each, regardless of load resistance. This will limit the short circuit current to 6.0 amps in the event of a regulated 28 volt overload, and prevent further system damage.

The ± 32 volt power supply is similar to the +28 volt supply, except that four power switches, U12, U13, U14 and U15 on assemblies A2 and A3 are connected in parallel to provide the current to inverter A5. Inverter A5, consisting of transformer T2 and transistors Q18 and Q19, multiplies the switching regulator output by a factor of 2.5, and provides isolation of the analog system ground with respect to the M-109 power ground. Feedback voltage is taken from the transformer, rectified, filtered, and compared with the reference voltage. The difference is amplified and applied to the 32 volt pulse width modulator to control the conduction ratio of the power switches. As in the +28 volt regulator, current is measured by the current monitors R126, R127, R128 and R129 to balance the load in each switch. The monitor signals also limit each switch current to 6.0 amps , thereby providing a limit of 10.0 amps on the total +32 and -32 volt supplies to prevent power supply damage in the event of a system overload or short circuit.

All control logic for the switches and inverters is provided by the two circuit boards A6 and A7. The sequencer (A6) contains the master clock for the switching regulators, and the drive amplifiers for both inverters. The regulator assembly

A7 contains the control amplifiers for both basic power supplies, and the modulators and drivers for all six power switches. Input and output power filters are included on the individual assemblies to minimize the electrical noise from the power switches.

A. Theory of Operation

1. Methodology

The Automated Gun Laying System, shown in block diagram form in Figure 1, is configured to perform the same fire control functions as are now performed manually. These functions are enumerated below:

1. Level telescope pitch
2. Cross level telescope
3. Level or offset quadrant cant
4. Cross level quadrant
5. Offset telescope
6. Drive weapon azimuth
7. Drive weapon elevation

Basically, the methodology employed in automating the $M-109$ was to retain the existing fire control geometry, to add sensors in parallel with the existing sensors and to add actuators in parallel with the existing manual controls. As an example, the cant level axis of the M-15 quadrant is shown in the block diagram of Figure 6. The basic quadrant is cross leveled by the assistant gunner, who rotates the cross level knob while observing the spirit vial which tells him in which direction to turn the knob. In automating this axis, a level sensor is attached to the level vial, an electric servo motor is coupled to the knob through gearing, and a power amplifier converts the level sensor output voltage to a current sufficient to drive the motor.

2. Fire Control Servos

All of the fire control servos can be represented by the basic block diagram of Figure 28. The basic servo system utilizes the concept of inner loop velocity feedback, with a tachometer closely coupled to the actuator to accurately measure

FIGURE 28. BASIC BLOCK DIAGRAM OF AGLS SERVOS
actuator movement while minimizing the effects of backlash and mechanical compliance.

The drive torque for each axis is provided by a motor-tachometer, shown in Figure 29, consisting of a direct current torque motor, with a dc tachometer closely coupled on the same shaft. A motor was selected which had sufficient power to drive each of the instrument servos, as shown in the listed requirements of Table I. In the two quadrant and two telescope mount axes, a gear ratio of 20 to 1 was used, and a ratio of 10 to 1 was used in the telescope azimuth axis. Although the gearing did increase the mechanical complexity of the servo drivers, it did permit use of a much smaller and lighter motor, thus resulting in less total actuator weight.

The motor and tachometer are coupled by a steel shaft with no linkages, thus the only dynamic element separating the motor and tachometer is a torsional resonance, estimated to be in excess of 10,000 Hertz. The remaining dynamic effect is the simple first order expression for a dc motor, with a time constant determined by motor inertia, torque constant, and armature circuit resistance. Actual motor-tachometer data from the quadrant cant axis is shown in Figure 30, and does exhibit the predicted dynamic performance. With an actuator and feedback sensor exhibiting dynamic characteristics approaching the ideal, it is possible to utilize high gain in the inner servo loop. The inner loop controllers, identical for all five fire control servos, can then control motor shaft rotation to achieve very low residual error in response to the outer loop sensor.

While the tachometer provides the short term corrections for actuator control, the outer feedback loop is used with a position sensor to drive the system to the desired null position. The outer loop then can be considered as a trimming control, which monitors the at-rest position, compares it with the commanded position, and applies a correction signal to drive the inner loop and ultimately correct the load position.

Figure 29. Servo Motor-Tachometer Cross Section Diagram

TABLE I

Fire Control Instrument Servo Performance Parameters

Servo Axis	Required Load Torque (Max imum)	Required Load Speed	Gear Ratio	Calculated Knob Torque @ Gear Ratio (Maximum)	Calculated Knob Speed @ Load Torque (Max imum)
Telescope		150 RPM			
Azimuth	$9.0 \mathrm{lb}-\mathrm{in}$	$125 \mathrm{mils} / \mathrm{sec}$	10:1	46.9 lb -in	$134.7 \mathrm{mils} / \mathrm{sec}$
Mount Pitch	25.0 1b-in	57 RPM $40 \mathrm{mils} / \mathrm{sec}$	20:1	$93.8 \mathrm{lb}-\mathrm{in}$	73.3 RPM 51 mils/sec
Mount Cant	$12.0 \mathrm{lb}-\mathrm{in}$	71 RPM $40 \mathrm{mils} / \mathrm{sec}$	20:1	93.8 1b-in	87.2 RPM $49 \mathrm{mils} / \mathrm{sec}$
Quadrant Pitch	20.0 lb-in	60 RPM $100 \mathrm{mils} / \mathrm{sec}$	20:1	93.8 lb-in	78.7 RPM $131 \mathrm{mils} / \mathrm{sec}$
Quadrant Cant	18.0 lb-in	60 RPM $100 \mathrm{mils} / \mathrm{sec}$	20:1	93.8 lb-in	80.8 RPM $135 \mathrm{mils} / \mathrm{sec}$

Figure 30. Open Loop Frequency Response M-15 Quadrant Cant Axis - Tachometer Output-Amplifier Input

3. Position Sensors

Three different types of position sensors are used in the AGLS fire control servos, depending on the system requirements of the particular servo. Level sensing is accomplished with accelerometers, shaft position is measured with digital encoders, and the position error of the panoramic telescope is measured with an infrared tracker; each of these is described in the following paragraphs.

a. Level Sensor

Level sensing is accomplished by a GG326 accelerometer built by Honeywell Avionics Division. This accelerometer is mounted with its sensitive axis in the horizontal plane, parallel to the level vial of the axis to be leveled. In this orientation, the accelerometer senses local gravity, and will provide a positive or negative dc signal proportional to the angular displacement from level.

Figure 31 is a schematic view of the GG326 Accelerometer.

The pendulum and torsional suspension is fabricated from quartz fiber. A thin coating of metal is vapor-deposited over the length of the suspension and pendulum, providing a conducting surface. The base of the pendulum is positioned in a permanent magnet field so that current flowing in the pendulum circuit acts as a one-turn torque generator.

The optical pickoff consists of a miniature tungsten filament lamp and a silicon pn junction photodiode. The p-layer of the photodiode is divided into equal parts with a 0.003 inch separation. At the null position, the base of the pendulum coincides with the slot in the photodiode.

An acceleration input will cause the pendulum to deflect from the null position, increasing the amount of light incident on one-half of the photodiode while decreasing the light on the other half. The light unbalance produces a differential voltage signal at the output of the photodiodes. The photodiode signal is amplified and fed back to the torque generator in the proper phase to restore the pendulum to the null position. The rebalance current is directly proportional to the input acceleration and is converted to a voltage by a series resistor.

Figure 31. Schematic Diagram, GG326 Accelerometer

A significant feature of the GG326 accelerometer is the low elastic restraint of the quartz fiber suspension. This restraint is $0.5 \mathrm{~g} / \mathrm{radian}$ ($\mathrm{g} / \mathrm{rad}$), compared to 2 to 3 g 's/rad for metal flexure pivots or torsional suspension. Since the dual photodiode is fabricated from a single silicon chip, the output voltages of the two halves closely track with temperature. Any photodiode deviations have a small effect on accelerometer null bias due to the low elastic restraint.

The pendulum assembly is mounted in a hermetically sealed aluminum housing. The housing is filled with a low viscosity silicon fluid to control the dymac characteristics of the accelerometer. The electronics assembly is designed to accept the terminals from the sensor and is bonded directly to the sensor housing. A hermetically sealed cover over the electronics assembly provides the electrical terminations for the accelerometer, as well as the protection against humidity and other destructive environments.

Since the accelerometer will sense lateral acceleration as well as the acceleration of gravity, its dynamic characteristics must be considered. The accelerometer is considered to be off the axis of rotation for a given leveling application, by a distance R. This displacement includes physical distance due to design constraints of the fire control instrument, internal displacement of the sensitive element of the accelerometer from its mounting face, as well as unknowns in the actual location of the rotational center. The relationship of accelerometer location with respect to axis rotation can take four forms, as shown in Figure 32. In all cases, the rotation θ is considered positive when rotation is in the counterclockwise direction.

In form (a), the accelerometer output V_{a} is equal to

$$
v_{a}=K_{a}\left(g \sin \theta+R \frac{d^{2} \theta}{d t^{2}}\right)
$$

where the first term is due to the angular deviation from level when the accelerometer is at rest, and the second term is due to lateral displacement when the axis in question is being rotated. There will also be a centripetal acceleration applied to the accelerometer in a direction toward the center of rotation, but this term will not cause an accelerometer output since it is not in the direction of the sensitive axis.

(a)

(c)

(b)

(d)

Figure 32. Accelerometer Locations

The accelerometer will be used in a nulling application where the angle 0is small, thus permitting the approximation $\sin \theta=\theta$. Then the expression for the output V_{a} can be further reduced to

$$
v_{a}=K_{a}\left(g \theta+R \frac{d^{2} \theta}{d t^{2}}\right)
$$

In Laplace transform form, the above expression becomes

$$
\frac{V_{a}(S)}{\theta(S)}=K_{a} g \theta\left(1+\frac{R}{g} S^{2}\right)
$$

For $S=j$, it can be seen that the above transfer function is equal to $K_{a} g$ for much less than $\frac{g}{R}$, and is equal to $-K_{a} R 2$ for much greater than $\frac{g}{R}$. At $= \pm \frac{g}{R}$, the transfer function goes to zero. This transfer function thus contains a pair of complex zeros at $= \pm \frac{g}{R}$. The leveling loop frequency response measured during the accelerometer placement study, shown in Figure 33, is representative of the complex zeros as derived above.

Form (c) accelerometer placement will result in a similar expression, with both signs negative.

The transfer function of a form (b) accelerometer placement is:

$$
v_{a}=K_{a}\left(g \sin \theta-R \frac{d^{2} \theta}{d t^{2}}\right)
$$

which when reduced becomes:

$$
\frac{v_{a}(S)}{\theta(S)}=k_{a} g\left(1-\frac{R}{g} S^{2}\right)
$$

This transfer function, for much less than $\frac{g}{R}$, is equal to $K_{a} g$, as in form (a). However, for much larger than $\frac{g}{R}$, the transfer function becomes $+K_{a} R^{2}$ and does not change sign as form (a) did. The roots of this expression are real, at $= \pm \frac{g}{R}$. The frequency response of figure 34 is an example of this:configuration.

FIGURE 33.M15 QUADRANT CANT AXIS ACCELEROMETER OPEN LOOP FREQUENCY RESPONSE. ACCELEROMETER LOCATED

Form (d) accelerometer placement will result in a similar expression, except with reversed polarity.

Thus, it can be seen that the dynamic response of each servo mount can be affected by the location of the accelerometer. Additional factors affecting servo response include the inertia and compliance of each of the individual servo axes. Thus, a different set of compensation networks is needed to accommodate the dynamic characteristics of each of the five instrument servos.

b. Encoder

In the automatic offset mode, the telescope azimuth servo and the quadrant pitch servo must be driven to a given deflection, as indicated by their respective mechanical counters. To sense the actual deflection of these instruments, digital encoders are coupled to the input shafts through precision gears. It was determined that the input knob scale factor will be 100 mils per turn for the quadrant, and 50 mils per turn for telescope.

The required range of operation is zero to 6399 mils , and it was decided to measure in 0.1 mil increments to achieve good system accuracy, resolution, and stability. Thus, an encoder was needed that had a full count capacity of 0 to 63,999 . Vendor surveys revealed that the best method of achieving the required count range in an acceptable size was to use a two-disk encoder.

The encoder used in the AGLS has one disk driven directly by the encoder shaft, and a second disk driven by gears. The direct or high speed disk measures one complete shaft revolution as 1000 counts, while the slow speed disk advances one count for every input shaft revolution from zero to 63. After reaching a count of 63 , the slow speed disk advances to zero. The data output from the slow speed disk is synchronized to the data from the high speed disk so that all numbers change state at the same time. As an example, when changing from 599.9 to 600.0 , the hundreds digit (5 or 6) will be generated by the slow speed disk, while the other digits (99.9 or 00.0) will be generated by the high speed disk. The synchronizing circuitry will prevent the number 699.9 from being output during the transition from 599.9 to 600.0 if backlash or mechanical errors should exist within the encoder.

The encoder data is accepted by the digital controller unit, and used to determine magnitude and polarity of the correction signal to be applied to the instrument servo. The encoder data is also applied to the digital displays, to indicate actual quadrant and telescope counter readings.

The digital controller unit uses simple arithmetic to subtract the encoder value from the input commanded value, except that the error is checked to determine whether it is larger than 3200 mils. If larger, the error is subtracted from 6400 mils, so that the weapon is always driven to null by the shortest path. The digital value is then converted to an analog signal. All servo compensation and control manipulation is performed by the analog servo subsystems.

c. Infrared Tracker

The infrared tracker detects the flashing XENON light from the GACS reference unit, and provides an analog output voltage proportional to the displacment of the XENON lamp from the center of the tracker field of view. The AGLS tracker shown in Figure 35, consists of three major subsystems; the optics, the sensors and the electronics.

Optics

The optical system utilizes a 50.8 millimeter focal length, 50.8 millimeter diameter Fresnel lens to gather the XENON energy and focus it on to the detector. An optical filter with a passband from 820 to 893 nanometers at 50 percent transmission is placed between the lens and the sensor to reduce the ambient light level while permitting the infrared energy to pass through. Reducing the ambient light level will correspondingly reduce the ambient current through the sensor, and will help to minimize the noise output.

Sensor

The sensing element of the IR tracker is a lateral effect photodiode, shown in a cross section in Figure 36. The scene, including the XENON lamp, is focused on the sensor. For purposes of information, assume that the scene is not present and that only the lamp is visible. When the XENON lamp flashes, the photons from

Figure 35. AGLS IR Tracker

Figure 36. Lateral Effect, Diode
the lamp image generate electron hole pairs in the depletion region. Holes are attracted to the P -region and annihilated in the gold film, while the electrons are injected into the high resistance bulk silicon N-region.

The electrons travel to the two back contacts as a function of the distance to those contacts. For a point image located L distance from one edge of the sensor L distance wide, the current out of the reference contact will be (1-) I, and the current out of the other contact will be I, where I is the total current. The difference signal will be

$$
I_{S}=I(1-2)
$$

The sum signal is equal to I, the total current, which is equal to the total current generated due to the XENON lamp energy. If the difference signal is divided by the sum signal, the resulting signal

$$
\frac{I S}{I}=1-2
$$

is independent of XENON energy.

If the scene is now focused onto the detector, the difference signal will represent the centroid of brightness. The signal from the scene will be present as a steady or slowly changing bias upon which the XENON pulses are riding. Since the scene energy can be orders of magnitude larger than the XENON energy, this bias must be removed.

The electrons generated by the photon energy are generated by a linear process. That is, there is a fixed ratio of optical energy to current flow, and this relationship holds for many orders of magnitude. The gain of the Schottky sensor used in the AGLS tracker is approximately 0.4 amps per watts at the XENON IR wavelength. The linear responsivity of the detector permits detection by removal of the ambient signal.

As discussed above, the difference signal should be divided by the sum signal to normalize the tracker output. However, divider circuits usually exhibit problems in linearity, offset and frequency stability. The Automatic Gain

Control (AGC) technique used in the AGLS tracker is to process both the difference and the sum signals, and to multiply both signals by the same gain. The resulting sum signal is then compared with a reference voltage and the difference is used to adjust the gain of both channels. The sum signal is thereby kept constant over varying range and XENON light output. The difference signal output then becomes

$$
\text { Is }=10(1-2)
$$

where Io is a constant.

Electronics

The tracker electronic circuitry shown in the block diagram of Figure 37, accepts the two sensor signals, corrects for ambient light and changes in XENON energy, and generates a positive or negative direct current signal proportional to the XENON position. The major circuit elements consist of the preamplifier, the switched $A G C$, the integrator, the sample and hold amplifier (S / H), the variable AGC, and the output amplifier, as described in the following sections.

Preamplifier

The basic tracker performance limiting characteristic is the fundamental noise of the preamplifier. Discussions with the sensor manufacturer and contractor engineers who have had experience in low noise amplifiers have verified this conclusion. Because of the low power level of the XENON lamp, the effect of the noise will be an increased tracker output noise, or jitter, as range from tracker to XENON lamp is increased. The preamplifier consists of a high gain, high frequency amplifier, and a means of removing the dc and low frequency components of the sensor output. The dc component results from the ambient light of the scene, caused primarily by sunlight. Some of this energy can be reduced by use of the optical bandpass filter. However, there will be steady state light energy in the wavelength of the XENON flashes, so dc removal circuits must still be included.

Figure 37. AGLS IR Tracker Block Diagram

By choosing the frequency at which the dc removal circuit is not effective, low frequency rejection is also achieved, thus reducing sensitivity to moving bright spots in the scene. Low frequency rejection also reduced the bandwidth which reduces the overall noise of the preamplifier.

The preamplifier shown in the schematic diagram as Figure 38, consists of two transconductance amplifiers U1 and U2, a difference amplifier U3, and a sum amplifier U4. The transconductance amplifiers change the current outputs of the sensor to voltages which can be further processed. The two outputs are subtracted by U 3 to obtain a difference signal, while the two outputs are added by $u 4$ to obtain a sum signal.

The transconductance amplifiers each consist of a second order low-pass active filter. While it might appear that a short pulse would be "lost" in a low pass amplifier, it must be noted that the low pass amplifier will output a pulse equal in volt-time integral to that of the input pulse, times the gain of the circuit. Since the integrator will determine the integral, nothing in the signal is lost by going through a low pass filter. However, reducing the magnitude of the pulse will permit more gain to be used in the preamplifier, thereby, reducing the noise effects of the remaining circuitry. The integrator gain can be reduced to maintain the same overall gain. But the most important improvement is the reduction in bandwidth, which will reduce the value of the root mean square (rms) noise of the circuit.

To accomplish dc rejection, the output of transconductance amplifier U1 is lowpass filtered to remove the XENON pulse signal and detect the remaining steady state or slowly varying signals. The signal is then amplified by the dc rejection amplifier U5 and converted by Rl to a current which essentially cancels the steady state input current from the sensor. The same process is used by amplifier U6 and resistor R21 to remove the ambient signal from the output of amplifier $U 2$.

The outputs of amplifiers $U 1$ and U 2 are then subtracted and amplified by difference amplifier U3. Amplifier U4 accepts the U1 and U2 outputs, and amplifies the sum of the two. The sum and difference outputs are then applied to the switched AGC amplifiers.

Figure 38. Schematic Diagram Sensor and Preamplifier

AGC Amplifier

Two concepts for AGC were considered. A digitally selected gain control which would change gain by selecting sets of input and feedback resistors, or a solid state multiplier which would multiply the pulse by a dc control voltage.

The digital AGC is more accurate, but would not provide sufficient resolution. For example, a gain range of at least 100 to 1 is needed. If performed in geometrically uniform steps, two amplifier sets with four gain steps per set could achieve the gain range with a step ratio R, where:

$$
\mathrm{R}=\frac{40 \mathrm{db}}{16 \text { steps }}=2.5 \mathrm{db}
$$

or

$$
R=1.333
$$

Thus, an AGC resolution error of $\pm 16 \%$ could be expected using the completely digital AGC. The solid state multiplier approach would be a less complex circuit and would have essentially infinite resolution. However, the basic accuracy of the multiplier over a dynamic range of 100 to 1 may affect the tracking of the two AGC amplifiers. It was then decided to utilize both switched and continuously variable AGC, to benefit from the advantages of each approach. A total gain span of 1 X to 100 X is needed to a 50 to 500 meter range. To accommodate such a large span, a switched gain amplifier having gains of $1,4,16$ and 64 is the primary gain control amplifiers, and an analog divider will be used to achieve better resolution over a limited span of approximately 6 to 1.

The switched amplifier, shown in Figure 39, uses a programmable amplifier (PRAM) consisting of four preamplifiers which are selected by digital control of the two address lines. Each preamplifier is connected to a resistor network to provide a specific gain. A given digital value on the two address lines will select a certain preamplifier, and thus provide the desired gain. The digital values are established by a separate control circuit through interaction with the linear AGC amplifier.

Figure 39. Gain Control Amplifier

Integrator

The following description of the integrator for the sum charnel, shown in figure 40, will also apply to the difference channel, since the two circuits are identical.

The sum signal is applied through capacitor C 1 to the quad switch S1. Prior to the start of the XENON flash, terminals 1 and 2 are shorted to connect the output side of Cl to the ground. This causes Cl to charge to the direct current (dc) level of the sum signal. This voltage will then be subtracted from the video signal, effectively removing any remaining dc bias from the input signal.

To ensure that the integrator, U1, begins its integration at zero volts, terminals 8 and 9 are shorted, providing feedback around the integrating capacitor, C2.

When a XENON flash occurs, the sum signal initiates the timing and logic necessary to operate the switch drivers. The first step is to open contact 1 to 2 , and 8 to 9 , and to close contact 3 to 4 . The signal then flows through to the integrator input resistor R1, and the signal is integrated for the selected time duration. The second step is to open switch contacts 3 to 4 , and close contacts 10 to 11 , thus applying a zero input to the integrator for a hold period. During this time, the integrator output is sampled by the sample-and-hold circuit.

After the sample has been stored, the contacts 10 to 11 open, contacts 8 to 9 close to reset the integrator, and contacts 3 to 4 close to restore the dc input level. The circuit is now ready to accept another input pulse.

Sample and Hold Amplifier

A sample and hold amplifier is used to accept the integrator output and to store this signal until the signal from the next pulse has been measured. The saple and hold output is then a continuous de signal, with step transierons ." "w tracker should be moving with respect to the reference unit.

Continuous AGC and Output Filter

The sum sample and hold output is then applied to a pulse-modulated switch which either passes the signal when $O N$, or blocks the signal when OFF. The $O N$ to total period ratio is under control of a pulse width modulator. The average output of the switch is then

$$
e_{s w}=\frac{t o n}{T} \times e_{S / H}
$$

where $\quad e_{s / w}=$ average switch output voltage
$\mathrm{e}_{\mathrm{S} / \mathrm{H}}=$ sum sample and hold output
ton $=$ on time of the modulated switch
$T=$ period of switch frequency

The switch output is filtered and subtracted from a reference voltage, and the difference is amplified and applied to a pulse width modulator. Since the pulse width modulator controls the switch conduction time ratio, a closed loop exists to maintain the sum signal at a constant value. The same conduction time ratio is then used to modulate the difference sample and hold amplifier, to adjust the difference signal for changes in XENON intensity. The switched multiplier controls over a dynamic range of about 6.0 to 1.0.

The control scheme is to amplify both the sum signal and the difference signal by the same gain, and to integrate both signals by identical circuits. The sum sample and hold signal is then monitored if it is lower than 1.0 volt, the digital address is advanced one count increasing the gain by a factor of 4.0. After a short time delay, the sum signal is rechecked. If it is still less than 1.0 volt, the count will be advanced again, and rechecked. The process will continue until the sum signal is in the acceptable region, or until maximum gain has been reached. The reverse process is applied if the sum sample and hold signal is too high. In this case, if the signal is more than 6.0 volts, the gain address is reduced one count, which causes the switch AGC amplifier to reduce the gain by a factor of 4.0. The range of acceptable input voltage has been established as greater than 4 to 1 to avoid oscillations which might otherwise occur
if the sample and hold output should be close to the threshold value, and thus alternately advancing and retracting the gain by one count.

The difference sample and hold signal, after being multiplied by the AGC conduction ratio, is then amplified and filtered by a 5 Hertz active filter. The resulting tracker output is then transmitted by wiring harness to the Instrument Controller Unit.

Sequencer

A sequencer circuit is included to trigger the integrators and sample and hold amplifiers in response to the leading edge of the XENON pulse. A digital output from the sequencer also indicates when no pulses are being detected. This onebit output is used by the Digital Controller Unit to determine what control mode should be permitted or implemented.

A timing diagram for the tracker sequencer is shown in Figure 41. Since the tracker, mounted in the M109, does not have any electrical connection to the GACS reference unit, the tracker must synchronize itself by detecting the leading edge of the XENON pulse. This is accomplished by applying the sum amplifier pulse output to the comparator and then to a series of six monostable multivibrators.

Time T_{0} is triggered by the sum amplifier output pulse, which then triggers T_{1}. During time T_{0} the integrator reset switch 8-9 and the input dc restoration switch 1-2 are opened, and they are both closed during the remaining time. During time T_{1}, which envelopes the XENON pulse, the switch $3-4$ is closed to apply the sum and difference pulses to their respective integrators. At the end of time T_{1}, timer T_{2} is triggered to actuate the switch 10-11 which holds the integrator input to zero, and to enable the sample and hold amplifier. After T_{2} goes low, the sample and hold switch opens, but the integrator output is held to assure no S / H loss while the switch is opening. When T_{0} goes low, the integrator resets, and the dc restoration of the input coupling capacitor is initiated. Timer T_{S}, also triggered by the leading edge of T_{0}, is used to block further trigger inputs to timer T_{0} for approximately $4 \mathrm{milliseconds}$. the tracker from being triggered by bright flashes that are not synchronous with the 160 Hertz XENON 1 amp.

Figure 41. Integrator Timing Diagram

Timer T_{3} is triggered from the trailing edge of T_{1}, and is used to clock the address counter for the switched AGC amplifier. The trailing edge of the T_{3} pulse triggers a timer T_{L}, which is 10 milliseconds long. Since timer T_{L} is retriggerable, its output will stay high if it is triggered before 10 milliseconds have elapsed. Since the GACS reference units (RU) pulses are 6.25 milliseconds apart, T_{L} will stay high as long as XENON pulses continue to be present. If XENON pulses should cease, timers T_{3} and T_{L} will form a free-running clock to permit changes in AGC address, and ultimately to drive the switched AGC amplifier to maximum gain.

System Power Distribution

Electrical power for the AGLS components is provided by the vehicle +28 volt dc system through a filter inductor as shown in Figure 42. A battery with charger and disconnect circuitry is provided to maintain input voltage during electrical transients caused by hydraulic pump cycles, slip ring noise and engine starting. Another battery provides steady power for the GACS power supply.

The system power supply accepts power from the voltage support battery, and employs a switching regulator inverter and rectifiers to provide regulated +28 volt dc power for the digital components. A second regulator and inverter provides +32 volt and -32 volt power for the instrument controller unit. Operation of the system power supply is described in Section IV.

5. Gun Alignment Control System Theory of Operation

In laying indirect fire artillery weapons systems we are concerned with the azimuth angle from an arbitrary aiming point to the target. As shown in Figure 43, this angle, defined as the NORMAL angle, has two components; the target grid bearing or azimuth angle and the reverse grid bearing or reference angle, from the weapon sight to the aiming point. The azimuth angle is specified by the fire Direction Center while the reference angle is determined by the weapon laying equipment.

Gun Alignment Control System (GACS) provides a simplified method of communicating the weapon position-dependent reference angle to the weapon. The GACS

Figure 42. AGLS/GACS Power Distribution

reference unit contains a solid state laser telescope which emits a narrow beam of infra-red radiation approximately 0.3 milliradians in width and 300 milli radians in height and an XENON lamp which radiates infra-red energy omni-directionally in the horizontal direction and through 300 milliradians in the vertical direction. The laser telescope rotates counterclockwise at a rate of approximately one revolution per second. At each 40 mil increment of laser rotation a pulse flashes the XENON lamp. In addition, each time the rotating laser passes through the South direction, the XENON tube emits a pair of closely spaced pulses of radiation, thus providing identification of this direction. The GACS receiver is able to receive and identify the XENON and laser pulses, and through the GACS gun unit electronic logic circuits they are processed along with the azimuth angle specified by the Fire Direction Center to yield the NORMAL angle.

In manual operation, the GACS receiver is manually aligned to the GACS reference unit. An electronic counter in the GACS gun unit, located at the weapon, remains inhibited until the pulse-pair indicating that the laser is passing through the South direction is received by the GACS receiver, whereupon it commences to count the regularly spaced XENON flashes. This process continues until the narrow laser beam is intercepted by the GACS receiver which immediately stops the count. An interpolating circuit in the GACS gun unit then calculates the angular position at which the laser pulse was received, to the nearest mil between the 40 mil spaced XENON pulses. This angular position is the reference angle. The GACS gun unit then sums this reference angle with the azimuth angle specified by the Fire Direction Center and displays this sum as the NORMAL angle.

This NORMAL angle is also available at the GACS gun unit as an electrical output in parallel binary coded decimal form. In the original AGLS/GACS implementation, the GACS normal angle was utilized as the commanded input to the M117 panoramic telescope, and a digital shaft encoder reading the azimuth counter value from the pantel provides the feedback or actual value for the telescope servo.

B. GACS Interface

The Gun Alignment and Control System as previously integrated with the AGLS, provides the following functions.

1. Azimuth reference, through an off-board IR/LASER Reference Unit and an on-board IR receiver mounted on the Automated M-117 panoramic telescope.
2. One-way commanded data transmission, by means of manually-operated switches on the Command Post Unit, through radio or field phone lines to the Gun Unit.
3. Addition of the Reference Angle to the Cormanded (azimuth) angle to obtain a Normal Angle in local coordinates.
4. Data display of azimuth, elevation, and fuze setting commands.

The existing GACS system proved to be adequate for purposes of demonstrating and evaluating the Automated Gun Laying System; however, several operational deficiencies were uncovered during acceptance tests at Honeywell and U.S. Army Field Artillery Board tests at Ft. Sill. In the order of frequency of occurrence, these were:

1. The GACS power supply would periodically fail when subjected to transient supply voltage conditions during M-109 system operation. This failure would cause loss of all GACS functions.
2. When the line of sight from Reference Unit to IR Receivers was interrupted, the GACS would provide an angle of either 0 or 80 mils , thus causing erroneous gun laying. After the sight line was reestablished, the GACS was also to provide the correct reference angle.
3. The data communications from FDC to howitzer would intermittently fail, with no indication of the source of the fault.
4. Presentation of azimuth data in NORMAL angle form proved to be confusing to the gun crews, since they were accustomed to numbers based on 3200 being the azimuth of lay.

The Amendment to the Scope of Work required additional data communications capability as listed below:

1. An electronics interface at the Fire Direction Center (FDC) with its PDP-11/34 computer.
2. An electronics interface in the howitzer, with the capability to transmit back to the FDC computer all data from the AGLS controller data bus.
3. Additional electronics interfaces to the DR-810 Muzzle Velocity Radar, Electronic fuze setter, and propellant temperature measuring system.

Since these data communications requirements were beyond the capabilities of the existing GACS components, new communications units were needed at the FDC and at the howitzer. It was decided to provide a new power supply at each location, because the existing GACS supplies were subject to breakdown, and because their output current capability and voltage regulation were not known to either the contractor or the ARRADCOM project personnel.

Replacement of the GACS Gun Unit required that the Reference Angle computation feature be provided in the new Vehicle Communications Unit. The GACS IR Receiver was retained, since it had not appeared to cause any performance problems in the AGLS test phase. The GACS Reference Unit was also used in its existing configuration.

The modified AGLS/COMM System block diagram shown in Figure 44 includes only one interface to the GACS; this is the electrical interface between the Vehicle Communications Unit and the GACS IR Receiver. Electrical power is provided to the IR Receiver, and two pulse signals lines are output from the IR Receiver.

IR Receiver Interfaces

The IR Receiver provides two pulse signals, triggered by the XENON and LASER emissions of the Reference Unit, which are used to determine the Reference Angle from the weapon to the Reference Unit. The XENON pulse signal consists of a
AGLS-COMM BLOCK DIAGRAM

Firure 44
string uniformly spaced pulses with a 6.25 millisecond spacing. There is an additional pulse, occurring once for every 160 of the uniformly spaced pulses, relating to south. The extra pulse is spaced 2.5 milliseconds before the normal pulse, indicating that the next pulse should be counted as ZERO.

The pulse from the LASER detector appears as a separate signal, and occurs at any timing with respect to the XENON pulses. The only constraint on the LASER pulse is that only one can occur per revolution of the reference unit. Both pulses are at TTL levels, and are output by open collector drivers in the IR receiver. Thus pull-up resistors are needed at the reference processor input.

The power required by the receiver was determined to be as follows:

$$
\begin{array}{lll}
\text { Pin E } & +12.6 \text { volts } & 90 \text { milliamperes } \\
\text { Pin G } & -15.5 \text { volts } & 38 \text { milliamperes } \\
\text { Pin D } & +80 \text { volts } & 0 \text { to } 2 \text { milliamperes }
\end{array}
$$

This power was supplied by the power supply in the Vehicle Communications Unit.

C. FDC Computer Interface

Data supplied by ARRADCOM and Digital Equipment Computation were used to define the data interface between the PDP-11/34 and the FDC Communication Processor (FDCOM). The purpose of FDCOM was to relieve the PDP-11/34 from having to perform routine communication tasks assoicated with data transfers between the vehicle and FDC. These routine tasks include formating the message, control of the radios, executing message exchange rules (protocol) and performing error detection and correction via a retransmit sequence. Insofar as the PDP-11/34 is concerned all it expects to do is deliver gun orders and commands to FDCOM and receive accurate vehicle-originated data in return. The hardware interface between the processors used the PDP-11/34 DR11-L and OR11-M general purpose UNIBUS interface connected to the FDCOM M6820 parallel interface adapter. These devices were configured to exchange data in a bit parallel, character serial mode using ASCCII formatted characters and the DEC recommended handshake protocol. (Reference DEC Users Manual EK-DR11L-OP-001.) The messages expected from the PDP-11/34 included:
a) Gun Orders in the form:

$$
\begin{aligned}
& \text { where: } C=\text { Charge } \\
& D=\text { Deflection } \\
& \text { F = Fuze Time } \\
& E=\text { Elevation }
\end{aligned}
$$

b) Fire Command in the form:

$$
\$ * \$ F C\left(\begin{array}{c}
E \\
(0) \\
T
\end{array}\right.
$$

c) Check Fire Cormand in the form:
$\$ * \$ C F\binom{\mathrm{E}}{\mathrm{T}}$
d) Data Request Command in the form:
$\$ * \$ D R(\underset{(}{E})$
e) End of Mission Command in the form:
$\$ * \$ E M\left(\begin{array}{c}\mathrm{E} \\ \mathrm{T}\end{array}\right.$
Messages returned from FDCOM to the PDP-11/34 include:
a) Gun Order acknowledge in the form:

$$
1110 \text { DDDDEEEE FFFC } \underset{T}{\mathrm{O}} \underset{\mathrm{~T}}{\mathrm{O}})
$$

where: $D=$ Echo-back of deflection
$E=$ Echo-back of elevation
$F=$ Echo-back of fuze time
$D=$ Echo-back of charge
b) Check Fire acknowledgement in the form:

0111 DDDDEEEE FFFC $\underset{T}{(\underset{T}{\mathrm{E}})}$
c) Fire Command acknowledgement in the form:

where: $\quad V=$ Velocimeter Reading
$T=$ Propellant Temperature
$E C=$ AGLS Elevation, Command
$E A=$ AGLS Elevation, Actual
$E E=$ AGLS Elevation Error
AC $=$ AGLS Azimuth, Command
$A A=A G L S$ Azimuth, Actual
$A E=A G L S$ Azimuth Errors
L = AGLS Level Status
M = AGLS Mode
d) Ready response acknowledgement in the form:
1011VVVVVTTTTTTEC(5)EA(5)EE(5)AC(5)AA(5)AE(5)LLM (
e) Data response output in the form:
$0000 \operatorname{VVVVVTTTTTTEC}(5) \operatorname{EA}(5) \operatorname{EE}(5) \operatorname{AC}(5) \operatorname{AA}(5) A E(5) L L M(0)$
Several procedural rules were established to control the sequence of operations, namely:
a) When multiple gun orders are transferred to FDCOM, the latest one should be retained for transmission to the vehicle and previous ones discarded.
b) If a gun order update is transferred to FDCOM prior to generation of the "ready request" the gun order should be transmitted to the vehicle upon receipt of the previous gun order acknowledgement.
c) If a check fire command is transferred to FDCOM prior to generation of the "ready request" the check fire should be transmitted to the vehicle upon receipt of the previous gun order acknowledgement.

D. Vehicle System Interfaces

The original interface between the GACS Gun Unit and the AGLC processor was via a character serial, bit parallel port which used a BCD data format (Figure 45). The gun unit provided both a data source for FDC commands and a processor which adjusted the azimuth angle by the measured reference angle to produce normal angle commands to AGLS. Because of reliability problems with the GACS system and the desire to provide bi-directional communication between the howitzer and FDC for HELBAT VII, a replacement to the GACS gun unit was required. This replacement system had to provide communication control, reference angle processing, additional Chief of Section (COS) controls and interface to a projectile velocimeter, propellant temperature monitor and electronic fuze setter. The system was dubbed the vehicle communication processor (VECOM) and interfaced with the AGLS as shown in Figure 46. An analysis of the interface characteristics of all subsystems connected to VECOM was performed. Data supplied by other contractors and cognizant government agencies was used to develop the I/O configuration of VECOM. In addition, our own analysis of the AGLS and reference unit processor (RUP) needs defined those interfaces; as shown in the following list:
o Propellant Temperature -- The initial intent was to interface with a real time electronic thermometer system furnished by Don Lince at Human Engineering Laboratory. The interface was subsequently redefined to be a temperature entry set of thumbwheels which allowed entry of \pm temperatures of 5 digits with resolution to $0.1^{\circ} \mathrm{F}$. The data format was parallel BCD with a multiplexer used to provide character serial transmission (and reduce the number of wires to the portable entry box).

Figure 46
AGLS - COMMUNICATION SYSTEM
o Projectile Velocimeter -- The Lear Siegler XM90 Muzzle Velocity Radar (MVR) was used to acquire real time projectile velocity data. An RS232 compatible serial data output, operating at 300 baud was provided, with data output in the following sequence:
$\mathrm{LF}, \mathrm{SW}, \mathrm{DEF}, \mathrm{MSD}, \mathrm{MSD}_{2}, \mathrm{MSD}_{3}, \mathrm{MSD}_{4}, \mathrm{LSD}, \mathrm{CR}$
where: LF = ASCII line feed character
SW = Front panel switch position code
DEF = Display Error Flag ($\mathrm{E}=$ Error, $\mathrm{F}=$ Good)
MSD = Most Significant Digit
LSD = Least Significant Digit
CR = ASCII carriage return character

In addition to the received data line $\left(R_{x}\right)$ a data set ready signal (DSR) was provided from the MVR. This signal was tied to the data carrier detect (DCD) input of the velocimeter input serial port VECOM and was used to signal the presence (or absence) of the velocimeter. The MVR, which was used in the signal shot capture mode, required a memory clear reset signal prior to acquiring new data. The model used for the TB-I program did not have the capability for a remote reset function, hence it was necessary to instruct the crew (loader) to reset the velocimeter before the round could be measured. Since the data was output continuously from the MVR it was necessary to design the software to:
a) Test to see if velocimeter present; if not zero fill the buffer.
b) Acquire the data "on the fly" by seeking start and stop synchronization from the LF and CR characters respectively.
c) Test to see if velocimeter has been reset prior to "ready acknowledge".

- Electronic Fuze Setter -- The specification for this HDL furnished device required fuze data in the form of a frequency shift keyed (FSK)
(2225 Hz mark, 2025 Hz space) 16 character ASCII message. The message format was:
$C_{\Delta} \mathrm{DODO}_{\Delta} \mathrm{TTT}_{\Delta}$ EEE \#1
where: $\quad C=$ Charge
D = Deflection
$T=F u z e$ Time in 0.1 secs
$E=E l e v a t i o n$
\#1 = Gun Number (TB-1)

This data was to be output to the setter upon receipt of a valid gun order to VECOM from the FDC.
o Reference Unit Processor -- This processor was configured to operate asynchronously from VECOM and provided an updated reference angle to the AGLS system. In order to minimize the latency introduced into either the RUP or VECOM processor, a BCD character serial bit parallel communication format was utilized betweeen parallel interface adapters (PIAS) in the two systems. A foreground communication package was used to exchange data and the control was provided by a PIA-PIA handshake routine. The data format consisted of:
a) A VECOM request for $\operatorname{data}\left(\begin{array}{ccc}S & E & E \\ X & (N) & (T) \\ X\end{array}\right.$
where: $\underset{X}{(T)} \mathbf{X}$. ASCII STX character

$$
\underset{Q}{(N)} \underset{Q}{E}=\operatorname{ASCII} \text { ENQ character }
$$

$\binom{E}{X}=$ ASCII ETX character
b) A RUP data return message:

where: $R=$ Reference angle computed by RUP in ASCII character D = Value to be displayed as function of "mode" switch

Mode	\underline{D}
Normal	Azimuth from FDC
Boresight	3200
FDC	Azimuth from FDC
Base Deflection	Azimuth from FDC

c) A VECOM gun order data update

where: $A=A G L S$ Mode Code
o AGLS Processor -- The primary data to be exchanged with this processor include:
a) Gun Order inputs relayed from FDC via VECOM
b) Operational status from the VECOM control panel
c) Reference angle relayed from RUP via VECOM
d) Elevation command, actual and error data from AGLS displays
e) Azimuth cormand, actual and error data from AGLS displays
f) Active elevation and azimuth commands from AGLS
g) Cormand Mode Status from AGLS, i.e., Normal, Base Deflection, Boresight, Base Deflection Set, Base Def lection Clear
h) Level status from AGLS displays
i) AGLS Mode, i.e., Auto Level, Auto Offset, Full Auto
j) Local Mode, i.e., Base Deflection Preset, Auto update enable

Data were transferred via a bidirectional, RS-232 serial link which employed ASCII formatted data and operated asynchronously at 1200 band.

The protocol employed a request to send (character "T") from VECOM which initiated transfer of the data buffer from AGLS. Parity, overrun and framing were checked upon receipt and a retransmission requested in case of error. A character "R" was sent from VECOM to signal transfer of data to AGLS. Again the data was tested on the receiver and to verify accuracy and a character "X" sent if the tests failed; if the test passed the entire message was echoed-back for verification.

- RT-524/VRC Command Radio Interface -- This VECOM interface analysis consisted of (1) developing a message format and protocol between the vehicle and FDC processors and (2) defining the electrical characteristics of the line/radio interface. The former task was accomplished as part of an ongoing independently funded effort addressing SPH digital communication techniques.

This activity involved a review of current digital data communication schemes and a consideration of their compatibility with the objectives of the SPH fire control problem. While most high-speed computer-tocomputer schemes employ synchronous code transmission because of its efficiency, we determined that the compatibility advantages of the asynchronous technique had more to offer in the relatively short-term application for the AGLS-Communication (AGLS-Comm) task. The compatfbility of asynchronous code transmission, ASCII character formating and 300 -baud FSK modulation with both the RT-524/VRC command radio link and the use of field-wire backup communication made it an ideal choice for AGLS-Comm.

To preserve the longer-range option of synchronous code transmission, a Binary Synchronous Communications (BISYNC) character-oriented protocol was chosen. This protocol uses special characters to delineate the various fields of a message and to control the necessary protocol functions. The communication format designed for AGLS-Comm is presented in Figure 47. Header data is designed to provide control information necessary to steer message traffic (address code), identify message purpose (format code), provide message verification (operation code), and attach special significance (identification code).

To detect transmission errors, BISYNC uses vertical/longitudinal redundancy checks (VRC/LRC). For the ASCII characters a parity check (VRC) is performed on each character (even parity), and an LRC is performed on the whole message. In this case, the block check in the postamble field of the record is a single eight-bit character. If the block check character transmitted does not agree with the block check calculated by the receiver, or if there is a VRC error, then a negative acknowledgement (NAK) is sent to the data source. To correct errors, BISYNC requires the retransmission of a record when an error occurs. Retransmission will typically be attempted several times before it is assumed that the transmission medium (radio or line) is in an unrecoverable state.

When a transmitted record block check character does match the receiver's calcu-. lated $B C C$, the receiver sends a positive acknowledgement (ACK). In addition, alternating sequence code characters (Figure 47) are used to detect duplicated or missing records.

Message formats have been designed to respond to the unique needs of the howitzer fire control problem. The command/request message format (Figure 48) is used for the transmission of gun order data from the FDC to the howitzer. The status field controls the command/request in accordance with the following code:

```
0001 = New Fire Order
0010 = Fire Command
0100 = Ready Request
1000 = Check Fire
```



```
SUH ',TART OT HEADE% (0)16'
```



```
S:- ILUUENLE CODE (41/4.':0'
AC = ADDRESS CODE (4016 ALL.41 - 4F 16)
OC = OPERATION CODE (NO REQ, XMIT CATA, WAIT. ACK/NAK)
IC = IOENT. CODE (40-4F16)
\XiTX = START OF TEXY (02 16)
ETX = ENO OF TEXT (03 16)
BCC : BLOCK CHECK CHAR (EXOR OF SOH - ETX (INCL)
```

rigure 47

The verify message format, from the howitzer to the FDC, provides acknowledgement that the new fire order has been received in the howitzer. In addition, by sending back the data received in the vehicle, a one-for-one comparison with the transmitted fire order can be made in the FDC computer for further data validation.

The data report message format, from the howitzer to the FDC, provides acknowledgement that a fire command, ready response or check fire command has been received in the vehicle. Gun laying and support system parameters are presented in the data field. The status field codes are complemented in the vehicle to identify the command/request that the data report message is responding to in accordance with the following code:
$0000=$ Data Request Acknowledgement
$1110=$ New Fire Order Acknowledgement
$1101=$ Fire Conmand Acknowledgement
$1011=$ Ready Response Acknowledgement
$0111=$ Check Fire Acknow ledgement

Having chosen a protocol (BISYNC, ASCII, 300 baud FSK) and developed a fire control record and message format the inter-vehicle (FDC Howitzer) communication flow (Figure 49) was designed. Critical to the scheme was the necessity to operate the radio (line) in the simplex mode, i.e., the medium (radio channel or line) is unidirectional at any given time, and the transmit/receive mode is under the control of the master processor. The role (master or slave) of the communication processors in the vehicle and fire direction center is dynamic; that is, the roles change as the system executes the connect and disconnect sequence. As the communication systems are initialized, the FDC processor assumes the slave role, polling the communication channel for a request to connect (SELECT) from any vehicle. Once a valid select is received, the FDC processor becomes the master and the vehicle responds. This process continues throughout the communication sequence with the media (radio channel or line) alternately assuming receive and transmit roles. Termination of communication, via the issuance of an end-of-mission to the FDC procesesr again reverses the roles of the processors.

Figure 49 Intervehicle Communication Flow

Figure 49
Intervehnele Commonication Flow (concluded)

This communication scheme was applied in the design of the AGLS-Communication system. The inherent reliability of the self-testing/self-correcting BISYNC protocol has proved especially useful when operating in the radio communication link mode.

Definition of the transceiver electrical characteristics revealed that optimum digital signal-to-noise ratio could be obtained by using the X-mode radio interface which has the following characteristics:

```
Transmit Input Z = 600
Transmit Input Level (Full Dev) = Ob (775 mv)
Receiver Output Z = 600
Receiver Output Level = up to 6 volts pk
```

Further analysis revealed that while the transmitter input characteristics were ideal the receiver output did not go through the squelch circuit and therefore possessed a continuous noise output. In order to take advantage of the squelch circuit the receiver output was tapped off the R / T connector on the rear of the unit. This output was squelched but the level was constant and not effected by the front panel volume control.

B. Error Analysis

The Automated Gun Laying System was designed to utilize the existing fire control instruments, and to essentially add a servo actuator and a sensor to each axis being automated. As a result, the mechanical errors of the existing fire control instruments will be present in the automated system, in addition to the errors due to the AGLS components.

Because the geometric complexity of the M109 fire control configuration, the following error analyses were performed on one axis of control at a time, except the weapon azimuth and elevation axes. Dynamic errors were not included, since the weapon is not fired on the move, and all servos will have come to rest before firing. Errors were calculated for each of the AGLS levels of automation.

1. Automatic Leveling

In the automatic leveling mode, the error sources include the following:
a) Accelerometer null error $\pm 0.75 \mathrm{mil}$.
b) Accelerometer null error due to scale factor change of 1%, for initial bias of $10 \mathrm{mils}=0.01 \times 10 \mathrm{mils}= \pm 0.1 \mathrm{mil}$.
c) Servo amplifier input null error of 1.0 millivolt, for an accelerometer scale factor of 5.0 millivolts per mil $=1 \mathrm{millivolt} \div 5 \mathrm{mv} / \mathrm{mil}=$ $\pm 0.2 \mathrm{mil}$.
d) Servo loop input required to overcome load friction of $2 \mathrm{lb}-\mathrm{ft}$, with a gear ratio of $20: 1$, a motor constant of $0.1 \mathrm{lb}-\mathrm{ft} / \mathrm{amp}$, motor circuit resistance of 10 ohms, amplifier gain of 100,000 , and an accelerometer scale factor of 5.0 millivolts per mil
$=2 \mathrm{lb}-\mathrm{ft} \times \frac{1.0 \mathrm{amp}}{0.1 \mathrm{lb}-\mathrm{ft}} \times 1 / 20 \times \frac{10 \text { volts }}{\mathrm{amp}} \times 1 / 100,000 \times \frac{1.0 \mathrm{mil}}{0.005 \text { volts }}$
$=0.02 \mathrm{mil}$

Maximum untrimmed root sum of squares (RSS) error of AGLS components

$$
=0.75^{2}+0.1^{2}+0.2^{2}+0.2^{2}=0.783 \mathrm{mil}
$$

Assuming the accelerometer and amplifier null error with respect to temperature are linear, and that a maximum short term change would be 0.25 mil , the trimmed RSS error would be
$=0.25^{2}+0.033^{2}+0.067^{2}+0.2^{2}=0.262 \mathrm{mil}$

Using the above errors, and the errors from the applicable specification, the combined leveling errors for the M15 quadrant and the M145 mount are shown in Table 2. In combining errors, the instrument error (excluding backlash) is combined by RSS with the AGLS component RSS

TABLE 2
AUTOMATIC LEVELING ERRORS

Axis (Specification)	Error (Section)	Backlash	Maximum Overall (RSS) + (Backlash +2)	Trimmed Overall (RSS) + (Backlash +2$)$
M-145 Mount (MIL-M-46314B) Pitch or Cant	N/R	1.0 mil	1.28 mil	0.76 mil
M-15 Quadrant (MIL-Q-46315C) Cant	0.75 mil $(3.6 .2)$	0.30 mil $(3.6 .4)$	1.23 mil	0.94 mil
Pitch	0.25 mil $(3.6 .1)$	0.30 mil $(3.6 .4)$	0.97 mil	0.51 mil

value, and added to one-half of the backlash. As an example, the trimmed overall error for the quadrant pitch axis is

$$
=0.25^{2}+0.262^{2}+1 / 2 \times 0.3=0.51 \mathrm{mil}
$$

2. Automatic Offset

In the automatic offset mode, the following error sources are considered:
a) Digital/analog converter error $= \pm 4 \mathrm{mv}$
b) Servo amplifier input null error $= \pm 1 \mathrm{mv}$
c) Servo loop input to overcome load friction of $2.0 \mathrm{lb}-\mathrm{ft}$ (quadrant), or load of $1.0 \mathrm{lb}-\mathrm{ft}$ at $10: 1$ gear ratio (pantel) $= \pm 0.1 \mathrm{mv}$.
d) Total encoder error due to digital round-off plus mechanical error $=$ ± 1 count $\times 2.5 \mathrm{mv} / \mathrm{count}= \pm 2.5 \mathrm{mv}$.

Total Error $=4^{2}+1^{2}+2.5^{2}=4.82 \mathrm{mv}$
Equivalent Error (Untrimmed) $=4.82 \mathrm{mv} \times \frac{1 \text { count }}{2.5 \mathrm{mv}} \times \frac{1 \mathrm{mil}}{10 \text { counts }}= \pm 0.2 \mathrm{mil}$
Assuming that one-half of the digital/analog converter error has been removed by initial trim, the trimmed error is then
$2^{2}+1^{2}+0.1^{2}+2.5^{2}=3.36 \mathrm{mv}=1.34$ counts, or slightly more than $\pm 0.1 \mathrm{mil}$.
3. Automatic Azimuth

a. Reference Unit Acquisition

The reference unit acquisition error is the error that will exist when the AGLS tracker controls the telescope azimuth axis and causes the telescope to point to the GACS reference unit. In this mode, the telescope servo will be driving both
clockwise and counterclockwise to maintain the tracker on the reference unit. The telescope backlash will now be inside the servo loop, and the servo will tend to stay in the middle of the backlash region, whereas the automatic offset mode or the manual procedures will cause the telescope to be set to one side of the backlash. This change will always be in the same direction, since the backlash is removed by approaching the commanded value from a lower number. The backlash measured on the modified telescope is approximately 3.0 mils .

The IR tracker error consists of two components; an offset which is a repeatable function of range, and a random noise which increases as the square of the range from tracker to reference unit. The offset can be trimmed for a given range; that is, after the howitzer has been emplaced. Further offset adjustment will not be needed unless the howitzer or the reference unit is moved. The magnitude of this offset is $\pm 2.0 \mathrm{mils}$ for a range change of ± 50 meters from a nominal range of 100 meters. The random noise will not cause a shift, but causes the telescope servo to move through the backlash. At ranges of 250 meters and beyond, the noise increases to a level which prevents tracker lock-on.

The error on initial lock-on, if an extreme change in range has occurred since the last adjustment, could be

$$
\text { Error }=\frac{3.0 \mathrm{mils} \text { backlash }}{2} \pm 4 \mathrm{mils}=-2.5 \text { to }+5.5 \mathrm{mils} .
$$

All of this error can be trimmed out after initial acquisition. Subsequent acquisitions will result in an error of $1 / 2$ of the backlash, or 1.5 mils to the right of the reference unit, since the tracker null adjustment is to be performed with backlash removed.

The remaining error, the input needed by the telescope servo to overcome friction torque, is equivalent to 0.02 mil , and as such is negitigible in comparison to the backlash. The remaining tracker error due to noise, range change, and scene change is estimated to be 0.25 mil , assuming that the tracker has been properly adjusted at a given range.

b. Telescope

The error in the telescope, excluding backlash, is specified as $\pm 1.0 \mathrm{mil}$. If it is assumed that 20 percent of the backlash might remain or return after backlash has been removed, the overall telescope error becomes

$$
(0.2 \times 3)^{2}+1^{2}=1.17 \mathrm{mi} 1 \mathrm{~s}
$$

c. Telescope Mount

The telescope mount can be the source of large errors of orientation between the telescope and the weapon, because of its mechanical arrangement. The mount specification permits backlash of up to 3.5 mils at maximum quadrant elevation and zero cant. Preliminary checks on the backlash of the GFE mount indicated backlash of up to 20 mils. In addition to the backlash, static errors of up to 2.0 mils can exist at high quadrant elevations. For a quadrant elevation of 800 mils, the backlash is specified as 0.75 mil , and the mechanical error is approximately 1.2 mils. Combining these errors results in an RSS error, on an in-spec mount, of

$$
\frac{0.75}{2}+1.2=1.58 \mathrm{mils} .
$$

However, the backlash of the mount had more of an impact on system accuracy than the specified backlash. The mount backlash, between the tracker (feedback sensor) and weapon (load) caused system instabilities at high weapon elevation. Since the AGLS was required to operate at all weapon elevations, it became necessary to implement a drastic reduction in weapon azimuth controller gain to prevent oscillations. As a result of this gain reduction, other errors became significant, as described in the following paragraphs.

d. Weapon Azimuth

The error in the weapon azimuth channel is primarily due to the dc gain of the weapon controller and the error due to friction. Other error sources include turret backlash, controller offset, and servo valve errors.

The dc gain of the weapon azimuth controller is 2.00 volts out per volt in. For a load friction of 10 percent of rated torque, a valve current of 0.03 milliampere is required, or a valve voltage of $15 \mathrm{millivolts}$. voltage from the tracker of 7.5 millivolts, or, for a tracker scale factor of 30 millivolts per mil, a tracker angular error of 0.25 mil .

Because of the low dc gain of the azimuth controller, other errors due to the servo valve must now be considered. These include hysteresis, null bias, and threshold. Hysteresis is reduced by the application of a high frequency excitation or dither. For the valve being used in the AGLS, the remaining hysteresis would be approximately 15 millivolts. The valve null error is 100 millivolts, and the threshold is $\mathbf{2 5}$ millivolts.

If the threshold is combined linearly with the load friction effect, the total system threshold is $15+25=40$ millivolts, requiring a tracker input of 20 millivolts, for an equivalent input angular error of 0.67 mil .

Combining the threshold, hysteresis, and the null errors, the RSS error due to valve and load friction is equal to

$$
\sqrt{40^{2}+15^{2}+100^{2}}=109 \text { millivolts }
$$

or an equivalent input error of $109 \div 2=54$ millivolts, or 1.8 mils angular error.

If the servo valve is properly trimmed by the weapon azimuth trim control, the 100 millivolt valve error can be reduced to 25 millivolts short term error. The valve error would then be equal to

$$
\sqrt{40^{2}+15^{2}+25^{2}}=49.5 \text { millivolts }
$$

or 0.82 mil equivalent error.

The azimuth system gain was reduced to prevent oscillations due to telescope mount backlash when the weapon was elevated to high quadrant elevations. If the controller de gain were to remain at 14.0 , the value prior to the gain change,
the above calculated error attributed to servo valve and load friction effects would be $109 \div 14$ volts out per volt $=7.8$ millivolts, or 0.26 mil angular error.

e. Combined Azimuth System

With an azimuth controller gain of 2.0 the total system error would be, combining the following errors
0.25 mil tracker offset
1.17 mil telescope
1.58 mil mount
0.82 mil azimuth servo

The resulting azimuth RSS error would be

$$
0.25^{2}+1.17^{2}+1.58^{2}+0.82^{2}=2.14 \text { mils. }
$$

This error prediction is based on the assumption that the tracker and weapon azimuth servo have been properly trimmed.

If the AGLS components are not considered, the combined error of the M109A1 components would be

> 1.17 mil telescope error 1.58 mil mount error
or a combined error of
$1.17^{2}+1.58^{2}=1.97 \mathrm{mils}$.

Thus, it can be seen that the added AGLS components in a properly adjusted system add less than 0.2 mil azimuth error, when RSS errors are compared.

4. Automatic Elevation

In the automatic elevation mode, the quadrant is driven by the digital controller to the commanded quadrant elevation, and the level error, as sensed by the quadrant pitch accelerometer, is used to drive the weapon, thus reducing the accelerometer level error to zero. The error sources to be considered then consist of:

```
M-15 Quadrant Mechanical Error Quadrant Automatic Offset Servo Error
Accelerometer Offset Error
Weapon Elevation Controller Error
```

The impact of each of these error sources on the total elevation error is described in the following sections.

a. Quadrant Mechanical Error

The specified error for the quadrant elevation reading is 0.5 mil . Since the AGLS encoder is coupled to the elevation knob, and the accelerometer is coupled to the level vial, the error between elevation knob and level vial will also be present in automatic elevation. It will be assumed that all of the 0.5 mil error is between elevation knob and the level vial.
b. Quadrant Automatic Offset Error

As discussed previously, the error of the automatic offset mode is 0.13 mil . Since this mode determines actual quadrant setting the same error will be one of the error components in the automatic elevation mode.

c. Accelerometer Offset Error

The trimmed accelerometer output voltage is used to control the elevation drive. Thus, if the quadrant pitch servo was previously trimmed, the residual accelerometer error will be reduced to approximately 0.25 mil short term error.

d. Weapon Elevation Servo

The elevation servo error consists of the error needed to overcome imperfect weapon equilibration, load friction, and servo valve errors. The dc gain of the elevation controller is 225 volts out per volt in at the minimum gain setting. The adjusted gain is estimated as 300 volts per volt.

It is estimated that the equilibration mismatch is $\pm 10 \%$ of supply pressure for different weapon elevations. The load friction is estimated as an additional \pm 10\% of supply pressure. Since the elevation servo valve, a pressure control valve, can develop full supply pressure with 3.0 volts applied, the valve voltage needed to overcome load friction and unbalance is combined by RSS to be

$$
\sqrt{(0.1 \times 3)^{2}+(0.1 \times 3)^{2}}=0.42 \text { volts. }
$$

The valve hysteresis, reduced by dither, is 1.0 percent of full scale. The valve threshold is 3.3 percent of full scale, and the null bias is 5.0 percent of full scale. The combined RSS valve error then becomes

$$
\sqrt{(0.01 \times 3)^{2}+(0.033 \times 3)^{2}+(0.05 \times 3)^{2}}=0.18 \text { volt }
$$

and the combined load plus valve error is

$$
\sqrt{0.42^{2}+0.18^{2}}=0.46 \text { volt. }
$$

The equivalent input required to obtain 0.46 volts out is $0.46 \div 300=1.5$ millivolts. Since the accelerometer scale factor is 5 millivolts per mil, the equivalent angular error due to valve and load errors is $1.5 \div 5=0.3 \mathrm{mil}$.
e. The dc input offset of the elevation controller module is 1 millivolt, equivalent to 0.2 mil angular error.

f. Combined Error

The RSS combined elevation error consists of
0.5 mil quadrant error
0.13 mil automatic offset error
0.25 mil trimmed accelerometer null error
0.30 mil elevation servo error
0.20 mil controller offset
and is calculated to be

$$
\sqrt{0.5^{2}+0.13^{2}+0.25^{2}+0.30^{2}+0.2^{2}}=0.68 \mathrm{mil}
$$

The elevation error without AGLS would be due to quadrant error alone, and would be 0.5 mil assuming no operator errors. Thus, errors due to the automatic elevation components would increase the RSS error by 0.18 mil , if the components are trimmed using the given procedures.

VI. SYSTEM DEVELOPMENT AND FABRICATION

Following the three month design study, development of the AGLS components was initiated. Initial emphasis was placed on the long lead time components, primarily the instrument servo actuators and the infrared tracker, primarily because these components were recognized as the major technical problem areas, but also because the other components (controller amplifiers, power supply and controls and displays) would depend on the characteristics of these components. The weapon drive system was assembled almost entirely from M16A1 Add-On Stabilization System components. The development plan for all of the other AGLS components was to generate layout drawings in sufficient detail to verify their mechanical suitability, prepare drawings of the subassemblies which would permit fabrication by design technicians, and mark up the drawings during fabrication as the need for design changes became evident. The development of the major AGLS components is described in more detail in the following paragraphs.

1. Fire Control Instrument Servos

Early in the development phase, the gearing, drive motors, and other servo components required to provide automatic operation were designed into the M15 quadrant, M145 mount and M117 telescope. Space available for these components had been estimated from the available government drawings, and appeared to be adequate at the time the design review was conducted.

Later, when the M109 was delivered to the contractor, wooden mock-ups of the servos were fabricated and installed on the fire control instruments. It was then found that the added drive components caused interference when the vehicle was canted beyond 5 degrees. Since it was decided that full cant performance capability must be retained, additional effort was exerted to redesign the servo housings to provide full 10 degree cant capability. This redesign activity consisted primarily of installing the wooden mock-ups of the servo components, displacing the fire control instruments to their extreme positions, removing the interfering material, and rearranging the internal mechanical components to fit
within the available space. As a part of this redesign effort, a different motor and tachometer were selected. The new motor has less torque at a higher speed, so 20 to 1 gear ratios were needed to meet the torque requirements of the two mount axes and the two quadrant axes. The calculated speeds for maximum load friction for each servo are shown in Table I.

Inspection of the worm gears in the quadrant and mount revealed that the existing mechanical stop, consisting of a screw in the sector gear, was not adequate for the higher torque available from the servo motor. Limit switches were then installed, to interrupt the motor current when the servo approached the mechanical limit. Each switch is bypassed with a diode which permits reverse motor current to automatically provide drive away from the limit. In addition, resilient stops were installed beyond the limit switch settings to cushion the impact in the event of a hard-over failure. The instrument servo drives, modified as described, were then capable of operating to within 0.5 degree of ± 10 degree vehicle cant and pitch.

Following completion of the fabrication of modified servo units, open loop frequency response data was taken for each of the fire instrument servo units as shown in Figures 50 through 54. In each of these tests, the tachometer feedback loop was closed, a sinusoidal forcing function applied and the position sensor (accelerometer or IR tracker) output was measured in magnitude, and phase. After developing the controllers for each axis, the closed loop frequency response data representing final servo performance were taken and are plotted in Figures 55 through 59.

2. IR Tracker

The proposed method of detecting and locking-on to the GACS reference unit was to use two solid state video cameras, each utilizing a charge-coupled device (CCD) array. However, about five months into the program concern was raised over the projected size of the optical elements needed by these two cameras. Since the camera could not resolve readily to any smaller image distance than that of one sensor element, it would have been necessary to use a large focal length (10 inch) lens to sense 0.5 mi .

1
36 -

Figure 52. M-15 Quadrant Pitch Axis Open Loop Frequency Response Accelerometer

Figure 55. M-145 Mount Pitch Axis Closed Loop Frequency Response Accelerometer

Figure 59. Telescope Azimuth with Tracker Closed Loop Frequency Response.

One solution considered was to integrate the tracker into the pantel optical system, thus utilizing the pantel magnification to reduce the added magnification needed by the AGLS tracker. However, it was apparent that space was limited in the vicinity of the pantel eyepiece, thus potentially creating packaging problems. In addition, the optical accuracy with respect to the lower housing would be degraded.

Analysis of the XENON sterradian lamp energy, based on a Frankford Arsenal measurement of 2500 watts per sterradan, suggested that a CCD array might not be able to detect the XENON lamp in the GACS reference unit. This concern was later determined to be a major problem, when the GACS reference unit was delivered to Honeywell in January, 1977. The reference unit was first set up in a 50 meter indoor ballistic range, and viewed with a commercially available GE camera with a CCD array. The camera could detect the XENON lamp, but the camera lens was opened to a low f-number. The camera output, as read on a television monitor, also exhibited a vertical row of spots rather than a single image. This ghosting would not be acceptable for the AGLS application.

The reference unit was then taken outdoors for further imaging tests. The camera could not detect the XENON flashes, either with a video monitor or with tracking electronics. The problem was more severe outdoors, because the bright scene saturated the CCD sensor when the lens was opened to the number needed for the indoor tests. At higher f-numbers which took the sensor out of saturation, the tracker would not be able to detect the XENON lamp under any ambient light conditions.

The problem is caused because, although the light output of the XENON lamp is high, the time duration is short (1 to 2 microseconds) and the repetition rate is low (160 pulses per second). This results in a low level of average energy. Since each element of the CCD array integrates all light that falls on it during one scan period, the pulse energy is a small fraction of the total energy seen by the array element. Two viable solutions to this problem were considered:

1. Place an electronic (PLZT) shutter, synchronized to the XENON flash, in the optical path to reduce the amount of ambient light while admitting all of the XENON light.
2. Utilize a photodiode sensor which would respond in real time to the high energy pulses, thus producing a high output pulse over a low background ambient signal.

Electronic Shutter

The application of a PLZT shutter to the CCD array was evaluated by several technically qualified personnel. It was determined that although the PLZT shutter would meet the GACS interface requirements (20 to 200 microsecond transmission time at a 160 Hertz rate), there were no off-the-shelf drivers in existence to control the shutter. Thus, in order to evaluate the PLZT shutter in conjunction with a solid state camera, it would be necessary to either build a PLZT shutter specifically for this application or design and build a special driver amplifier.

The PLZT shutter has a capacitance of 0.01 to 0.05 microfarad and must be driven by a 600 volt pulse. For a 20 microsecond wide pulse, the peak current to the PLZT would be from 1.0 to 5.0 amps , assuming a current with a half sine wave time function. The combination of high current and high voltage could cause Electromagnetic Interference (EMI) compatibility problems with the CCD array, since the CCD depends on the generation and transfer of small amounts of charges.

Segmented Photodiode Detector

A segmented photodiode detector system, designed by Honeywell for aircraft fire control systems, was tested to determine its ability to detect the GACS reference unit XENON lamp. This detector was able to readily detect the lamp to ranges beyond 500 meters even in bright sunlight. This test proved that a photodiode sensor detecting in real time was the best solution.

A problem with the segmented detector is that present manufacturing technology cannot provide separation between the elements of less than 0.001 inch (25 micrometers). If a 50 mfllimeter focal length lens were used, this would result in an angular dead space of 0.5 mfl in which the lamp, as a point source, could not be detected.

To circumvent the problem of a finite dead space, a sensor was investigated which provides proportional information on the position of a light spot. The sensor is a lateral-effect photodiode with two output leads. The output current from the leads can be combined by the sum-and-difference amplifier to obtain a signal proportional to the distance of the light spot from the center of the photodiode. A sample of this device was ordered and evaluated for use as a detector.

The spot continuous diode was found to be ideally suited to the GACS tracking problem, for the following reasons.
o It responds to the peak of the XENON flash, thus providing a comparatively large signal to noise ratio.

- The diode responds linearly to light level, so that steady state background illumination can be readily removed from the total sensor signal thus enabling detection of low energy pulses.
o The diode provides a continuous measure of image position, without the descrete steps and dead spaces of a CCD or segmented detector.
- A short focal length simple optical system can be used.
o Only one detector and lens system is needed.
o The sensor is commercially available off-the-shelf at a reasonable cost.

The spot continuous diode was further tested, and electronic circuits were developed to best utilize the signal from the diode. A complete description of the tracker is included in Section III and IV of this report.

3. IR Tracker Noise

A fundamental problem in tracking the XENON lamp is that at far ranges the energy level of the light pulses decreases as an inverse function of the square of the range. The XENON lamp does have enough energy to permit detection. However, the

AGLS tracker is intended to resolve displacement of the XENON lamp, down to 0.25 mil , and has a field of view of $\pm 100 \mathrm{mils}$. Thus, the tracker must be able to resolve a signal corresponding to 0.25 percent of the total energy applied to the sensor.

The tracker was tested with the GACS reference unit at an indoor range of 17 meters. To simulate longer ranges, aperatures were fabricated to reduce the optical entrance area. These tests demonstrated that at 70 meters distance from tracker to reference unit, the tracker output noise is equivalent to a displacement of 0.5 mil peak to peak, increasing to 2.0 mils at 140 meters and 8.0 mils at 280 meters.

The observed noise appeared to be essentially uniform with respect to frequency, and could be reduced by filtering. However, the servo system driven by the tracker cannot tolerate additional filtering since excess phase shift will result.

The tracker noise, therefore, will not permit reference unit lock-on at extended ranges. This was demonstrated in the AGLS acceptance tests, during which lock-on could not be achieved at ranges greater than 200 meters. To extend the lock-on range would require either more power from the XENON lamp or a larger entrance pupil area on the tracker. Since the reference unit is provided as GFE, it cannot be modified. In addition, it might be undesirable to increase the light. output from a countermeasures viewpoint. Increasing the tracker pupil area would add to the tracker size and weight, further compounding the problem of the mechanical loading on the pantel and mount.

This deficiency was avoided during the acceptance tests and the Ft. Sill tests by keeping the reference unit within 50 to 100 meters of the howitzer. At these ranges, no problems were encountered in either acquiring or maintaining lock on the reference unit.

The tracker was installed on the M117 telescope, and data taken on output voltage as a function of telescope deflection when viewing the GACS reference unit. The results are shown in Figures 60 and 61. The two curves on each figure represent clockwise and counterclockwise rotation of the telescope. The difference

í

between the two curves is due to telescope backlash. The increasing slope of the curves as the telescope moves away from center is believed to be caused by reflections placing multiple images in the tracker field of view.

4. Telescope Backlash

When the IR tracker was mounted on the M117 panoramic telescope, the backlash measured either optically or by the tracker was 5 to 6 mils compared to 1.0 mil required in the telescope specification. The AGLS controller is configured to always drive the telescope from a lower number to the desired final number and thus stay on one side of the backlash, using the same procedure as is now used by the gunner. However, this procedure cannot be expected to remove all backlash, and some small amount will remain. This residual backlash is probably proportional to the total backlash, so it is desirable to reduce this backlash to improve the overall accuracy of the telescope in the manual and automatic offset modes.

A second reason for reducing the backlash is that, during reference unit lock-on, the tracker is continually driving the telescope and reversing directions as the telescope servo approaches a null. The backlash will then cause the servo motor to continually hunt through the backlash region, and cause a servo instability. In addition, the telescope/tracker servo will tend to null in the middle of the backlash, but the telescope, when driven by the gunner or under command of the digital controller, will null at one side of the backlash. Thus, the telescope will appear to be in error by one-half of the backlash when the tracker is used to control the telescope.

The backlash was reduced to 2 to 3 mils by Ft. Sill personnel during the system acceptance tests. This was accomplished by turning-in the worm shaft spring adjustment which is external to the telescope. The spring did not require any additional adjustments through the acceptance tests or the Ft. Sill dry firing test sequences. However, during live firing the backlash increased. Again, it could be reduced by turning-in the screw. Since the actual screw position before firing was not marked, it is not known whether the backlash increase was due to the screw moving or if changes occurred internal to the telescope during gun firing.

The telescope was later disassembled and inspected by Ft. Sill field maintenance personnel and a contractor's representative. No sign of mechanical wear could be found. The servo drive was then removed from the telescope and the backlash was rechecked. The telescope backlash was less than 1 mil , as required by the pantel specification.

It appears that the springs which axially and radially load the pantel worm shaft are not adequate to hold the shaft against the motor friction and the motor torque. It would be desirable to incorporate stronger springs to keep the worm shaft in place. However, the increased loading could possibly increase the friction on the pantel.

A design study is needed to review this problem area and to determine what changes can be implemented.

5. Control and Display System Configuration Definition

During the Design Study phase, the need was recognized for data displays distributed among the several gun crew members. Specifically, the chief of section requires full display of all data since he is responsible for proper laying of the weapon. In addition, the gunner must have available at his station a display of all azimuth data, and the assistant gunner requires the elevation data.

The Design Study also pointed to the need to easily modify system configuration, and thus change certain fire control functions from manual to automatic. Since a certain configuration might require proper function of other subsystems, it became apparent that a high level of logic would be required. To provide the additional data displays for all crew members, the contract was modified to require three separate display panels as well as a separate digital controller unit. The three display panels would all receive their display data by means of a data bus, thereby reducing the number of display wires between units from an estimated 480 wires down to less than 60 total conductors.

To satisfy the need for an easily modified system configuration, the contractor selected a microprocessor based digital control subsystem. Such a system can
easily be altered by external configuration selector switches, and can be interfaced with the other AGLS subsystems to provide a high degree of operator safety. The digital system is compatible with the data bus selected to service the data display panels. Another advantage of the microprocessor is that it will permit changes in system operation to be implemented by a simple software modification with no changes in components or wires. Since Honeywell has a complete microprocessor development facility, including semiconductor memory programming equipment, system operating characteristics can be modified by programing a new memory array in a matter of hours.

The block diagrams and descriptions of the digital controller unit are given in Section III. Detailed schematics of the controller unit circuits are shown in Figures 62 through 67.

AGLS Software Development

The AGLS Controls and Display software has been designed to:

0 Sequence control operations as a function of the mode selected.

- Acquire fire order data from the GACS gun unit.
o Monitor leveling servos and GACS reference unit detector.
o Compute pointing errors as the difference between commanded and measured angular data.

0 Display commanded, measured and error quantities as well as level and reference unit detector status.
o Provide overall system performance checks to insure safe operation.
o Interface with chief of section controls to enable interactive operation.

7.

Figure 62. Display Oriver

$$
\begin{array}{lll}
1 & -3 \\
\hline
\end{array}
$$

(26) Channols por bo

Figure 64. Dual Digital to Analog Converter

(2sin

FIGURE 65. DUAL A/D CONVERTER

Figure 67. Parallel Interface

The overall structure of the software employs a main program which sequentially executes a variety of subroutines. This main program and supporting subroutines are written in Motorola Assembly Language (Version 1.00) which is documented in Motorola M6800 Microprocessor Programming Manual (M68 PRM(D).

The main program is supported by an interrupt driven background package which performs the functions of:

0 Providing five double precision (16 bit) programable timers with 1 millisecond resolution.

0 Servicing the Digital to Analog converters for azimuth and elevation each 20 milliseconds.
o Testing for the presence (or absence) of the XENON lamp signal each 20 milliseconds.

- If the XENON lamp signal is present, and has been present for 25 consecutive tests (500 msec) the XENON recognition flag (XRECF) is set.
- If the XENON lamp signal is absent, and has been absent for 1 second or more the XENON recognition flag is cleared.

0 Determining whether the weapon switch is being toggled, each 20 milliseconds, and setting the weapon flag (WPNF) if the switch is enabled.
o Updating the displays and status indicators each 200 milliseconds. Display update is inhibited if new GACS data are being acquired or if a computation is in progress.

The background package is also used to service a program activity monitor which allows examination of the data and flag buffer contents through the use of a CRT on serial port $\$ 3002$.

The main program is structured to run continuously through either the first, second or third loops (Appendix B) depending upon the position of the servo and weapon switches.

The first loop (idle loop) is the only loop active when the servo switch is off. The routines in this loop read commanded (GACS) data, encoder trim, encoder data and servo system status. The difference computation is performed and results are displayed. Manual adjustment of pantel mount and quadrant leveling will be monitored and the appropriate indicators will be illuminated when the values are within established bounds. The system must be operating in this mode to latch in new configuration data or to read information from the GACS system.

The second loop is active anytime the servo switch is on. This loop services the pantel search and auto offset mode of operation and performs the preliminary tests for the automatic modes. Auto-offset mode selection, in either azimuth or elevation, drives the appropriate fire control instrument to the angle commanded via the GACS link. In the azimuth axis a special control algorithm is employed to ensure that the pantel is always driven to the specified angle from the left to right (as observed from the eye piece by an operator). Azimuth search is initiated in the auto-azimuth mode by toggling the switch on the chief-of-section control panel. This operation mode can only be disabled by tracker acquisition of the GACS reference unit or by disabling the servo switch.

The third loop is enabled by actuation of the weapon switch. Before the switch signal will be recognized, the first loop conditions of XENON signal stable and quadrant offset null must be satisfied. Once recognized further testing of the second loop in inhibited. Third loop processing proceeds (if the auto mode has been selected) three continuous checks of the XENON stable signal, by commanding the appropriate weapon servos to position the turret and tube. In the elevation axis a one second delay is employed to ensure that quadrant accelerometer tangential influences have been minimized prior to initiation of tube movement. If load position was selected, and falls within prescribed limits, the tube is driven to the elevation selected by the configuration switches. When QE is selected (load deselected) the servo has to be disabled in order to latch in the commanded elevation angle. System stabilization, as determined by tracker and quadrant staying within specified null limits for a timeout period, is signalled
by flashing of the numerical displays. When this happens, the program goes to idle mode (Loop \#1) and the weapon flag is inhibited. To reset the system, the servo switch must be toggled.

A detailed flow diagram of the main program is presented in Appendix C and the annotated source listing of the entire program is included as Appendix D.

6. Vehicle Communication Processor (VECOM)

The vehicle-located functions of the add on scope of work consist of the Vehicle Communications Processor, which provides two-way data communications with the FDC, and the Reference Unit Processor, which determines the Reference Angle for the GACS subsystem. To minimize the component placement problem, it was decided to house these two processors in a single assembly, mounted at the Chief of Section work station; as shown functionally in Figure 68. Interfaces to the AGLS, AN/VRC-46 Radio, DR-810 velocimeter, electronic fuze setter, and propellant temperature measurement system, were implemented by a start interconnect scheme as shown in the cabling diagram 28116114, of Figure 69.

Both the VECOM and RUP were implemented using the Honeywell H1O microprocessor. This MPU and its supporting board set is shown schematically in Appendix A. Throughout the AGLS-COMM add-on system the respective elements of the H10 (MPU, Memory, PIA, etc.) are interchangeable, differing only in the instruction sets stored in the socket-mounted EPROMS. Two unique circuit cards were fabricated for VECOM; the reference unit phase locked loop and the processor DC power supply.

The pulses from the GACS IR receiver are preconditioned with the phase locked loop, which establishes time windows to accept the XENON pulse (see Figure 70). It was found that the S pulse was approximately 2.5 milliseconds before the next X pulse. The phase locked loop is synchronized with the X pulses, and a time window equal to $\pm 10 \%$ of the pulse period is opened to accept pulses for transmission to the digital processor. Any pulse occurring in this window is assumed to be an X (and not S) pulse. A second window is opened from 3.2 to 4.5 milliseconds after the X puise to accept an S pulse.

(CONTINUED ON FIGURE 68b)
(C102)

parallel interface mooule

虚

$28 \mathrm{voc}-(\mathrm{s})$ (c) FUZE CABLING DIAGRAM
AGLS-COMMUNICATIONS

Figure 69

The LASER pulse is passed directly to the processor, since it is not synchronous with the XENON channel.

The time gates established by the phase locked loop eliminate approximately 80% of any spurious pulses which might be detected. Further filtering is performed in the processor software.

The processor DC power supply was designed to convert raw vehicle power to the variety of voltages required to support the microprocessor system. In addition voltage outputs were provided to power analog supporting subsystems such as the GACS detector.

Operator interface to VECOM was via the controls and displays subsystem. This design used a front panel layout as shown in Figure 71. The operation of VECOM via this panel is described below:

On system power up (using the master power switch on AGLS) VECOM is in the STANDBY mode as indicated by the pilot light. The ELEVATION, DEFLECTION, FUZE and CHARGE displays will indicate 0 since no gun orders have been transmitted to the vehicle. If the GACS reference unit has been acquired and good data are being received the GACS lamp will be lit and the X and L monitors will be flashing at an approximate rate of $80 / \mathrm{sec}$ and $1 / 2$ sec respectively. The reference angle can be read by switching the MODE switch to the REF position.

The operator initiates a connect to the FDC by moving the momentary COMM/STBY switch to the COMM position. A select is sent by VECOM, acknowledged by FDCOM and a turn around code sent by VECOM. At this point VECOM is in the slave mode (listening) while FDCOM is in the master mode. The COMM lamp will be lit when the system is connected and GACS/RUP operation continues as before. During the exchange of data the monitors $0-5$ will flash on and off; the meaning of each is:

```
Monitor O = VECOM is transmitting
Monitor 1 = VECOM is receiving
Monitor 2 = VECOM is processing the message
Monitor 3 = Data Carrier Detect
Monitor 4 = AGLS Comm Link Busy
```


Monitor 5 = Message NAK

When a gun order is sent from the FDC to VECOM the GUN ORDER ACK lamp is illuminated and the beeper sounds. The respective elevation, deflection, fuze and charge values appear in the displays and are relayed to AGLS. The operator acknowledges receipt of the gun order by moving the momentary switch in either direction. This acknowledgement sends the received gun order back to the FDC for validation and generates an automatic ready request. The ready request lights the READY monitor in VECOM and initiates an automatic sequence of updating the reference angle to AGLS. When the weapon has been laid the READY is acknowledged by moving the momentary switch toward the ready lamp. This action terminates the automatic reference angle update to AGLS and sends the data report (consisting of all AGLS status and numerical data) back to the FDC. When the FDC sends the fire command the FIRE lamp illuminates and the horn sounds. As soon as the shot is fired it is signalled to the FDC by moving the momentary switch toward the FIRE lamp. This action sends data report to the FDC. Upon receipt and acknowledgement of this data report the FDC requests an additional report. This latter report contains the measured projectile velocity from the MVR. Messages need not be received in the aforementioned sequence. Gun orders can be sent sequentially to update other gun orders. Check fires (denoted by a flashing display of g's and acknowledged by the READY switch) can be issued at any time to halt a mission.

Operation of the system, insofar as communications are concerned, is identical in either the GACS or Base Deflection (BD) modes. In the latter mode, base deflection initialization is required. This is accomplished by selecting Base Deflection Mode, adjusting the AGLS pantel to acquire the distant aiming point (DAP) and depressing the BD SET button. When the BD setting is locked into the AGLS processor the SET lamp will be lit. One can either operate in this mode or switch back to GACS mode; the BD value remains locked into the computer unless it is powered down. In operation, in $B D$ mode, the preset reading obtained from the pantel and stored during the set operation, is subtracted from all subsequent absolute encoder readings such that if the pantel is directed at the DAP the ACTUAL azimuth reading would be 3200.0 . In the semi-automatic mode of operation (automatic azimuth offset) azimuth gun orders from the FOC are directed to the pantel to drive it to the specified angle. The cab must then be rotated by the
gunner through the power handle to acquire the DAP sight picture; the weapon is then laid in azimuth.

The front panel VECOM displays and controls were designed to minimize Chief of Section (COS) workload. In the fully automatic mode of operation only one control is required from the AGLS COS panel and that is the weapon lay enable (WPN).

The software designed for VECOM is shown in flow form in Figure 72 and the associated assembly level source code is contained in Appendix B.

The reference unit processor, being sufficiently different from any other processor designed until now, was progranmed using the methods of top down software designs. The circuit elements, shown in the block diagram, consist of the GACS IR Receiver, a phase-locked loop, and a standard microprocessor with input/output, random access memory (RAM), program memory and a central processing unit (CPU).

The inputs to the RUP are three pulses:
$X=A$ XENON pulse occurring every 40 mils of LASER rotation.
$S=A$ pulse occurring once for every 160 valid X pulses, spaced between two X pulses.
$L=A$ pulse occurring once for every S pulse, at any timing including coincidence with an S pulse or an X pulse.

The outputs of the RUP are to be:
o The reference angle from 0 to 6399 in binary coded decimal, and

- A status flag showing that the currently computed reference angle is valid.

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)
FIGURE 72a

TRY

(CONTINUED ON FIGURE 72b)

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 7X

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72d

(vic)
(COMTINED ON FIGURE 72e)

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72e

(CONTINUED ON FIGURE 72f)

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72f

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72g

(CONTINUED ON FIGURE 72h)

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72h

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72:

(CONTINUED ON FIGURE 72j)

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72j

(CONTINUED ON FIGURE 721)

FUNCTIONAL FLOW
AGLS VEHICLE
COMM PROCESSOR (PARTIAL)

FIGURE 721

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72m

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE $72 n$

FUNCTIONAL FLOW
AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 720

FUNCTIONAL FLOW
AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72p

FUNCTIOMAL FLOW
AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72q

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72r

FUNCTIOMAL FLOW
AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72s

FUNCTIONAL FLOW AGLS VEHICLE COMM PROCESSOR (PARTIAL)

FIGURE 72t

After the configuration was defined, a software specification was generated, briefly as follows:

0 Three software timers counting from 0 to 159 shall be provided each with a status bit and a cycle counter counting complete cycles from 0 to 7 .

- A timer will be started on the first "X" pulse immediately following "S" pulse, if no other timer is at count 159 and active.
o If a timer is at count 159 and active, and an "S" pulse arrives, that timer stays active and rolls over to count 0 on the "X" pulse immediately following the " S " pulse. Its cycle counter will be incremented if not at the maximum value of 7 .
o If a timer is at count 159 and active, and an "X" pulse arrives without a preceding " S " pulse, that timer goes inactive, and its cycle count is cleared to zero.

This software configuration ensures that an erroneous reference angle can not be computed; and the correct count can be determined by examining the cycle counter and status bit of the three counts.

One additional check is to verify that either the " S " and the "L" pulse are alternating, or they are coincident. If true, and if at least one counter is active, the processor determines that a good GACS measurement exists.

The total reference angle is computed by the above counter, plus an interpolation which resolves the time interval during which the LASER is detected. The reference angle then is determined to be:

$$
\begin{aligned}
& \text { Output }=40 \times \text { (count) }+\frac{40 T_{L}}{T_{X}} \\
& \text { where: Count }=\text { Value of counter with highest value in cycle counter } \\
& T_{L}=\text { System clock cycles from last "X" pulse to "L" pulse } \\
& T_{X}=\text { System clock cycles from ("X" pulse preceding "L" pulse) } \\
& \text { to ("X" pulse following "L" pulse). }
\end{aligned}
$$

The software flow diagram for the RU program is shown in Figure 73 and the associated assembly level source code in Appendix C.

7. Fire Direction Center Communication Processor (FDCOM)

The fire direction center located function of the add on scope of work consisted of the FDC communication processor interfaced to the FDC PDP-11/34 computer. This processor provided two-way communication between the FDC and VECOM. The processor was mounted in a $6^{\prime \prime}$ high rack cage assembly to facilitate installation in ARRADCOM's Automated FDC trailer. A functional block diagram of FDCOM is shown in Figure 74 and the corresponding schematics are contained in Appendix D. This processor used the common board set $\mathrm{H}-10$ microprocessor system which allowed complete interchangeability between it and its vehicle mounted counterpart. One unique circuit card was fabricated for FDCOM that being the PDP-11/34 interface board. This board was required to make the respective system I/0 port electrical characteristics compatible.

On system power up (or RESET) FDCOM goes into the STANDBY mode. In this mode the receiver circuits are enabled waiting a SELECT or sign on message from a vehicleborne VECOM. Upon receipt of a SELECT the message is checked for validity and an acknowledgement is sent to the vehicle. The line-turn around message is then sent to place the vehicle processor in the slave mode and FDCOM in the master mode.

When a message is received from the FDC computer the transmit sequence is initiated. The first message out is usually the gun order, which is returned upon acknowledgement by the Chief of Section. If another gun order or check fire has not been received by FDCOM from the FDC computer in the interim, a ready request is sent to the vehicle. If either the gun order update or check fire was received from the FDC computer, FDCOM sends that next. All acknowledgements from the vehicle and the data messages that go with them are made available to the FDC computer via an interrupt driven output buffer.

For checkout purposes, or in case of FDC computer failure, a background package was written for FDCOM that allowed entry of gun orders and display of vehicle responses via a terminal.

REFERENCE UNIT PROCESSOR FUNCTIONAL FLOW (PARTIAL)

Figure 73a

REFERENCE UNIT PROCESSOR FUNCTIONAL FLOW (Partial)

Figure 73b

reference unit processor FUNCTIONAL FLOW (Partial)

Figure $73 f$

REFERENCE UNIT PROCESSOR

 FUNCTIONAL FLOW (Partial)

Figure 73l

REFERENCE UNIT PROCESSOR FUNCTIONAL FLOW (Partial)

Figure 73p

REFERENCE UNIT PROCESSOR FUNCTIONAL FLOW (Partial)

Figure $73 q$

REFERENCE UNIT PROCESSOR FUNCTIONAL FLOW
(Partial)

PROCESSOR MODULE
PARALLEL

PARALLEL INTERFACE MODULE

Status displays are provided on FDCOM to allow monitoring of the communication sequence; the meaning of each is:

```
NAK = Negative acknowledgement of message received, retransmit
    requested.
DCD = Receive data carrier detect
FDIN = FDCOM is receiving message from either FDC computer or terminal
        (background)
    FDOUT = Data received from vehicle is available for output
    CJ=3 = FDCOM is unpacking received message
    CJ=0 = FDCOM communication link is idle
    COMM = Communication system is connected between vehicle and FDC
    STBY = Communication system not connected and FDCOM is ready to accept a
        select
```

In the connect sequence we have shown how VECOM initiates a data exchange sequence with FDCOM. During this sequence the roles of the respective processors are interchanged; that is, VECOM goes from an active to passive state and FDCOM from a passive to active state. The disconnect sequence again reverses the roles and can be initiated from either end of the link. The disconnect is initiated at VECOM by momentarily switching to the STANOBY mode. This action sets a flag in the processor and when the next message is sent from FDCOM a request for disconnect (RFD) is returned.

The RFD results in a disconnect command (DIS) being sent back to VECOM whose response is to switch to the STANDBY mode.

The disconnect can be initiated at FDCOM by issuing an end of mission command via the FDC computer interface on background package. This message results in a
disconnect being sent to VECOM and a switch to STBY mode by FDCOM once the message has been received by VECOM.

The software designed for $F D C O M$ is shown in flow form in Figure 75 and the associated assembly level source code is contained in Appendix E.

B. Automatic Gun Laying System Processor (AGLS)

As indicated in Figure 8 communication between VECOM and AGLS is via a bidirectional RS-232 serial link. Since the original source of gun order data was via a parallel BCD interface to the GACS Gun Unit, changes were required to the AGLS program.

The operating sequence of the AGLS was modified as follows:

0 All gun order data is received and operating data reported via a bidirectional serial data port.

0 Back up gun order data entry via thumb wheels will be provided using the existing GACS data port.

0 AGLS Status word added to the COMM buffer (mode).
o Separate error bound test routines are used for level and tracker status and tracker/quad pitch null tests.

0 The system now has the ability to operate on one set of gun orders and display the new (command values).

0 New gun orders are latched in with a single switch movement. If in AUTO Az or El mode, the new gun order is latched in via WPN switch; if not AUTO Az or E1, the gun order is latched in via SERVO switch.

0 Load position is selected at any time in AUTO E1 mode without any other switch motion. Return to QE is also automatic; i.e., no other siwtches involved.

AGLS COMMUNICATIONS FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 a

20ß

GLS COMMUNICATIONS
FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 b

GLS COMMUNICATIONS
FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 c

AFLS COMMWIICATIONS FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 d

(CONTINUED ON FIGURE 75e)

AGLS COMMUNICATIONS
FIRE DIRECTION CENTER
COMM PROCESSOR
FUNCTIONAL FLOW
(PARTIAL)
FIGURE 75 e

(CONTINUED ON FIGURE 75f)

AGLS COMMUNICATIONS FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 f

AGLS COMmUNICATIONS
FIRE DIRECTION CENTER COMM PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 g

AGLS COMMNIICATIONS FIRE DIRECTION CENTER COMH PROCESSOR FUNCTIONAL FLOW (PARTIAL)

FIGURE 75 h

TEFRJI

In addition to these changes, the reference angle computation algorithm was changed. Rather than accepting a COMMAND azimuth that is the sum of the FDC gun order deflection and the reference angle, COMMANDED azimuth is accepted and displayed directly. The reference angle data from VECOM is subtracted from the absolute encoded pantel reading to make the ACTUAL azimuth display compatible with the COMMANDED value.

The new assembly level source code listings reflecting these changes are contained in Appendix F.

APPENDIX B

AGLS FUNCTIONAL FLOW

I
1

AgLS Functionain FLow

APPENDIX C

AGLS CONTROL PROGRAM FLOW DETAIL, KEYED TO LISTING OF APPENDIX B

,
1

I

I

00010	NAM AGLS			
00020	OPT O ${ }^{\text {O }}$			
00030	＊REVISED 3／28／78			
30040	＊CRT DISPLAY（PPTION			
00050		＊		
00060				
00070		＊pia ejuates		
00080				
U0090		＊PlaO＊aUTO SMITCHES（A），Clock rate（B）		
00100		＊		
00110	2800	pladoa edu	\＄2800	
00120	2801	riadoa eou	P1AODA＋1	
OO1 30	280？	Piada equ	PIAODA 2	
00140	2803	PIAOCB EQU	HIAODA 3	
00150		Phocb equ HIaODAt3		
00160		＊rlalmgacs LsB（A）．GACS msB（b）		
J0170				
20180	2400	pialda equ	\＄2400	
OUly	2401	PIAIDA EOU	PIA $10 \mathrm{~A}+1$	
002：0	2402	rlajca equ	Plaldat2	
.1021 C	2403	PIAICB EQU	PIAIDA＋3	
J0220		＊		
00230		＊HIAz＊OUAD EL ENCODERimSB＝A，LSB＝B		
00240		$\stackrel{ }{*}$		
00250	2404	PIA20a EQU	\＄ 2404	
00200	24.0	PIALDB EQU	P1a20at1	
00270	2406	HIAzCa EOU	1．A2DA＋2	
：0280	2407	HIAZCE EOU	－1A2DA＋3	
00290				
00300				
00310				
OU：320	2408	plazida eou	52408	
00330	240\％	FIA308 EQU	P1 A30A＋1	
0340	240A	pIasca equ	$1 \mathrm{~A} 3 \mathrm{DA}+2$	
． 0356	2408	PIASCB EOU	PIA3DA +3	
10.300		－		
10376		＊PIA4EI／IO ENCODER oUTPUTS（A），ENABLE OUTPUTS（B）		
00380				
30390	240C	PIA4DA EOU	s240c	
（104：0）	2400	P1A4DH EQU	P1A4DA 1	
．10416．	240E	PIA4CA EQU	FIA4DA +2	
U042	2405	PIAACH EOU	PIAdDA 3	
－04 5		＊		
11444U		＊PIAS mUX A／D DATA（A），mUX ADDR（B）		
Uu450		＊${ }^{\text {cola }}$		
J043．	2410	piaboa edu	\＄2410	
14.4%	2411	H1ASDB EQU	P1ASOA 1	
）4！．	2412	HIASCA EOU	－1ASDA +2	
川为い	2413	HIASCB EOU	HASDA +3	
\because ：\quad \％		－		
ハらい		＊r140＝CL Tr	IM A／D（A）．AZ IRIM A／D（B）	
か．0		－		
H，\％	2414	HIAGMA ECU	\＄ 2414	
ハ．：．，	2415	＋IASDIS EOU	P1A6DA＋1	

（13） 70		0013	BEC	ELU	＊	
02180	0013	00cI	OLr	RMd	1	
U2150	0014	0001	ALGOH	RMB	1	
12200	0015	0001	El．gof	PMA	1	
02310	016	（w）01	nfNF	RMB	1	
$02: 20$	0017	0001	XRtCF	RMB	1	
02230	0018	0001	LPUSF	HMB	1	
． 22240	ouly	0001	XIHRU	iMU	1	
02250	cola	0001	1 DLEF	अМ山	1	
U2？${ }^{\text {a }}$ ：	001.1	0001	RUCWF	RMB	1	
12.70	0015	0001	STF	RMB	1	
U2200	OOIL	0001	TdLK	i24，	1	
02290	nole	Ooul	Eulk	2M3	1	
02100	，01．	nwil	ELLK 1	Hus	1	
123：	0020	onot	A 2 LKI	rimb	1	
J3．6	$0 \cdot 21$	0001	＇ Llk 2	2NB	1	
． 2.330	3022	0001	AZLK2	RMb	1	
（1） 360	10023	0001	DEL4	RMB	1	
い2330	10024	0001	RUCCWF	гив	1	
心－9．．	1025	uncol	AHEDY	RMB	1	
121／4	0.20	0：u1	SIG	R！MB	1	
．2300	0027	ocul	CxOF	RMB	f	
02140	06.28	0001	NEGF	Sidy	J	
12．410	0×28	0001	5Lowf	RMB	1	
U24111	O2A	G601	DTHRU	HMB	1	
$02+20$	0026	0001	DISEL	RMB	1	
$12+30$	－ 620	0nus	OISal	RMB	1	
1：244			＊			
U2．50	0021	0001	CONOS	RMB	1	
12400	002 E	0001	CONTEM	RMB	1	
12410	002F	0001	AZTRM	RMB	，	
12480	0030	0001	ELTRM	RMS	1	
12490	（1031	0002	ELGCS	RMB	2	
－ $2 \cdot 9$	0×33	0002	ALuCS	PMB	2	
$\checkmark 2010$			＊ERROH	V Volt	TAGE BUFFEA	
$\therefore 2020$		3033	EkrbuF	EQU	＊	
1253：	10．3b	0007		RMB	7	
0.354	10．3C	0001	nuxado	R，ME	，	
	00315	0001	NUMRED	RMB	1	
U2＇360	（0）31：	0001	HFEVAL	RMB	1	
12，10	$013+$	0001	LITE	RME	1	
U2つサ）	no40	0001	fFLAu	RMS	1	
1？240			－INTER	RUPT	SERVICE HOUTINE	Flags
Ј》心以	（0．41	0001	Eldaf	itinis	1 I	
12e10	$0^{0} 42$	0001	A LIAF	RiAB	1	
$1{ }^{2} 820$	0,43	C\％I	DISADR	HMB	1	
．2，30	0044	01002	ACT	RMS	2	
02340	0040	0001	Passaz	RMB	2	
1.2050	00147	0001	Passel．	RMB	1	
02000	cosk	O002	PTR	17，MB	2	
0ヤロプ	OR．4A	O002	～TE	PMB	2	
$12 \% 50$	OC．4C	0001	SPC	RMB	1	
02 SO	OUAL	0001	ASP	RYS	1	
02710	OOAE：	0001	XON	HMB	1	

PAGE OUO AGLS

02710			＊		
02720	004F	0002	AZCOm	Rus	2
02730	OUう	0002	El．Com	12 MB	2
$1) 2740$			＊		
U2750	0053	0002	AZERR	RMB	2
02760	0055	0002	ELERR	RMB	2
02780	0057	0001	AZCNT	RMB	1
02790	0058	0001	ELCNT	RMB	1
02300	0059	0002	OPCNT	RMB	2
02810	c054	0002	TRCNT	RMB	2
02820	0051	0002	TRLP	RMB	2
02830	OObF	0001	XTIME	RMB	1
02940	7060	0002	OHLP	R4B	2
02850			＊		
02860	0062	0002	11	RMB	2
02370	0064	0002	A2	RMB	2
02880	0066	0002	51	RMB	2
02890	0068	0002	S2	RMB	2
02400	006A	0002	$\times 1$	RMd	2
02910	006C	0002	$\times 2$	RMB	2
02920			＊		
02930	OO6E	0002	OUTX	AMB	2
02940	0070	0002	HoLDX	RMB	2
02450	0072	0002	TI2X	RMB	2
02960	0074	0002	SIORX	AMB	2
02970	0076	0002	ADDXI	RMB	2
02980	0078	0002	SUBXI	RWB	2
02990	007A	0002	SUBX 2	RMB	2
03000	007C	0002	TX	RME	2
03010			＊		
03020	007E	0001	CNX	RMB	1
03030	007F	0001	OLDAX	RMB	1
03040	0080	0001	OLDEX	RMB	1
03050	0081	0001	THI	RMB	1
03060	0082	0001	TLO	RMB	1
03070			＊		
03080	0083	0001	HoLDE	RMB	1
03090	0084	0002	KEEP	RMB	2
03100	0086	0001	TF	RMB	1
03110	0087	0002	GACTEM	RMS	2
03120			＋		2
03130	0089	0001	Sava	RMB	I
03140	008A	0001	Save	RMB	1
03150			＊DISPL	AYS	BUFFER
03160			－ELEVA	TI ${ }_{\text {a }}$	
03170			＊Gacs		
03180	008B	0005	ELGCDS	RMB	5
03190			＊ENCID	ER	
03200	0050	0005	ELDISP	RMB	5
03210			－ERROP		
03220	0095	0005	ELERD	RMB	5
03230			＊		
03240			＊		

03450			* acls contril priokan		
03460			* AGLS	CONTPOL	L PROCRAM
J3470			*		
〕3480			* ENTEK	K iEkE	ON RESET
03490	4000			ORC	\$4000
03200		4000	AGO	EOU	*
03510	4000	3E OFFO		LDS	\#SOFFO
03520	4 (0) 3	CE 4A36		L.UX	I ISER
03530	4006	HF OFFE		STX	SJFF8
U3)40			- initial hias		
03550	400\%	BLI 496 R		JSR	PlAS
03560			* Cl.ear TImers		
03570	400C	BD 4C27		JSR	CLTM
33580			- clear flags		
03590	400F	BD 495C		JSR	CLFG
1)3600			* SET	DISPLAY	I INTERVALS
03610	4012	CE 0014		LDX	\#20
03620	4015	DF		STX	TIMI
03630	4017	CE OOC8		LOX	*200
03540	401A	DF 08		STX	TIM2
03650	401 C	7C 0004		INC	TFI
03660	401F	7C 0007		INC	TF 2
03670	4022	OE		CLI	
03080			* TEST	IDLE B	BREAKOUT
03690	4023	7F 0042	Al2	CLR	AZDAF
03700	4026	7F 0041		CLR	EI_DAF
03710			*		
03720	402\%	7F 001E		CLR	EbLK
03730	402C	7F 001D		CLR	TJLK
U3140	4024	7F 0050		CLR	OPCNT
03745	4032	7F 005A		CLH	OPCNT+1
03750	4035	7F 005b		CLi	IRCNT
03755	4038	7F 005C		CLK	THCNT+1
03760	4036	7F 005F		CLR	XTIME
0.3770	403t	7F 00IC		CLR	STF
03780	4041	7F 001F		CLR	ELLKI
03790	4044	7F 0020		CLR	AZLKJ
03800	4047	7F 0021		CLR	ELLK2
03810	404A	$7 F 0022$		CLR	AZLK2
03820	404D	7F 0023		CLR	DEL4
03830	4050	7F 0046		CLR	PASSAZ
03840	4053	7F 0029		CLR	SLIWF
03350	4056	7F 0016		CLR	WPNF
03860			* CLR NPNF		
03870	4059	7F 0018		CL.R	RUCWF
03880	405C	7F 0024		CLR	RUCCNF
$\checkmark 3890$			*		
03900	405F	70 001A		TST	I DLEF
03910	4062	27 2C		BEO	AG46
ง3บ20			- Come	F FOM L	Load pos?
03430	4064	75 0018		TST	LPOSF
03940	4067	2600		BNE	A05
03450	4069	70 0013		TST	OLP
03980	406C	2710		BEO	Aus

PAGE 010 AGLS

03040	41317	7F 0025	CLR AREUY
U50：0	4142	7C（025	INC A．SEDY
1） 2060	4145	2065	3HA AU3
15070			＊mearon az disabled
U 5090			＊TESI PANTEL（JFFSET
U5090	414%	10 08	acir LDA A POROM
OSliou	4149	BD 4390	JSR TSTSN
15110	414 C	24 IE	ECC AUl3
US120			＊Enatle pantel offset
Jら130	414t．	Ho EF	LUA A POCO
25140	4150	6D 439E	JSH FIXENB
9blbo			＊TEST AZ LoCK
$0 \leq 160$	4153	70 0020	TSt ALLKI
USI70	4156	2664	BNE AJIG
O5130			＊ENABLE PANTEL AZ
． 55190	4158	86 FH	LDA A PAGO
．Jb200	41 bA	BD 439E	JSR FIXENB
． 15210			＊TEST AZ CLOSIVG
03220	4150	BD 4C62	JSR CLAL
05230	4160	24 5A	BCC A．516
－ 5240			－DISABLE PANTEL AZ
05250	4102	86 Fb	LDA A PAGO
i）5200	4164	BU 4548	JSR FIXDIS
． 5270	4167	7C 0020	INC AZLKI
Uち280	416A	2050	日RA AG16
05290			＊az D／A ouTPUT＝0
05300	416C	CE 0000	AGI3 LDX 0
05310	416F	DF 4 F	STX ALCOM
J5320	4171	7F 0020	CLR ALLKI
155330	4174	2046	BRA AUIG
05340	4176	7F 0025	AG4 CLR AREDY
05350			＊RU SEarch Cw？
05360	4179	96 1B	LDA A RUCWF
05370	417B	2707	BEO AG14
05380	417D	CE OAOO	Ag33 LDX \＃PIOOM
＇35．390	4180	JF 4F	STX AZCum
U5400	4182	2009	BRA AGI5
05410			－HU SEARCH CCW？
05420	4184	9624	Alila LDa a Ruccmp
05430	4136	2717	BEO AG20
． 54440	4188	CE 8A00	LDX \＃MJOOM
05450	4188	DF $4 F$	STX AZCOM
05460			－ENABLE PANTEL OFFSET
05470	4180	86 EF	AGIS LDA A PIGG）
05480	418 F	BD 43yE	－JSR FIXENB
． 54490			－ENABLE pantel az
05500	4192	66 FB	LDA A PPAGO
！ 5510	4194	BD 439E	E JSR FIXENB
U5520			＊set thav bluck
05530	4197	7F 0010	）CLR TSLK
135540	diva	7C 0010	INC TBLK
Ubh50	4190	2010	BRA AU＇l6
－ 5560			＊DISABIE PANTEL aZImUTH
05570	4194	86 FB	agzo lda a pago

PACE 012 AGLS

Ubreko 4	41 A1 BU 4	4548		JSR	FIXDIS
$1{ }^{1} 55904$	41A4．7F	DOID		CLA	TBLK
05600	$41477 C$	010		INC	TBLK
056104	$414 a 20$	10		HRA	AG16
05620			＊TEST	XENON S	stability
056304	4IAC BD	4087	AU3	JSR	XSTAB
056404	4taF 24	05		BCC	AG36
05650			＊Clear	TRAY B	BL＇CK
05680	4183 3F	0030		CLR	TALK
05670	413420	06		BRA	A 16
05680	$41367 F$	0010	AG36	CLR	TBLK
05690	41847 C	0010		INC	TSLK
05700	418C 7F	0041	ACI6	CLR	Eldaf
05710	41BF 7C	0041		INC	ELDAF
05720			＊AUTO	EL SELE	ECIED？
05730	410270	0015		ISI	ELGOF
05740	$41 C 527$	IA		BEO	AG23
05750			＊START	THRU	SET？
05160	41c7 70	001c		TST	5 TF
05770	4ICA 26	44		BNE	AG21
05780			＊TEST	QUAD PI	PITCH CLOSING
05790	41CC 7F	001E		CLR	EBLK
05800	41 CF 7 C	OOIE		INC	EBLK
05810	4102 CE	000A		L．DX	10
05820	4105 DF	60		STX	OPLP
05830	4107 BD	4042		JSR	CLOP
05840	41 DA 24	34		BCC	Au2l
05850			＊NULL	ACHIEVE	VED
05860	$41 D C 7 F$	OOIE		CLR	EBLK
05870	41DF 20	$2 F$		BRA	AU21
05880			＊TEST	QUAD Of	OFFSET SELECT
05890	41E1 86	04	AG23	LDA A	＊OCOROM
05900	41E3 BD	4396		JSR	TSTSN
$05 \geqslant 10$	$41 E 625$	OA		BCS	AG50
05920	41E8 CE	0000		LDX	0
05930	41 EB DF	51		STX	ELCOM
05940	41ED 7F	OOIF		CLR	ELLKI
05950	41FO 20	IE		BRA	AG21
05900			－ENABL	LE OUAD	D \％FFSET
05470	41F2 86	DF	AG50	LDA A	00100
05980	$41 F 4$ BD	439E		JSR	FIXENB
05990			－TEST	EL LOC	
06000	41F770	001F		TST	ELLKI
06010	41FA 26	14		BNE	AG21
06020			－ENAB	le ouad	D PITCH
06030	41FC B6	F7		LDA A	taPGO
06040	$\triangle 1 F E 8 D$	439E		JSR	FIXENB
00050			＊TEST	EL CLO	OSING
06060	4201 BD	4CF7		JSR	CLEL
06070	420425	02		BCS	AG24
08080	420620	08		BRA	AG21
06090			＊DISA	ble ouad	UAD PIJCH
06100	420886	F7	AO24	LDA 4	A OPPO
06110	－420A BD	4548		JSR	FIXDIS

race 014 AULS

07200	42 Do	b?	4548		JSR	FIXDIS
07210	42 j 9	7C	0021		IVC	ELLK2
07220				* TEST	juad Pl	1 TCH
0)7230	42D:	CE	07D)	A0S2	LDX	\$2000
. 17240	42 DF	DF	60		STX	Grit
17250	42E1	BD	4042		JSH	clop
137260	42E4	24	05		3CC	AG30
$\because 7270$				* DISAbL	LE ELEV	VATION
07280	42 EO	86	75	AU48	L.EA A	\#ELG0
1)7290	42 E 8	9 D	4548		JSR	FIXDIS
J7300				* TEST	ENAbLES	
37310	42Es	5 F		AG30	CLR B	
07320	42EC	86	BF		LDA A	*AZG0
07.330	42 EE	43			Com A	
07340	42EF	94	20		AND A	CONGO)
07350	42FI	26	02		BNE	AG31
07360	42F3	C6	01		LDA B	\#1
07370	42 Fs	D7	42	A631	STA B	ALDAF
127380	42 F 7	5F			CLR B	
07390	42 F 8	86	7F		LDA A	*ELGO
$\checkmark 7400$	42 FA	43			COM A	
07410	42FB	94	2D		AND A	Concs)
)7420	$42 F D$	26	06		BNE	Al34
07430	42FF	C6	01		LDA 8	$\cdots 1$
07440	4301	D7	41	1G49	STA B	ELDAF
U 7450	4303	20	12		BRA	A:335
07460				*		
07470	4305	D7	41	AG34 S	STA B	Eldaf
:)7480	4307	70	O00D		ISI	TF4
07490	430A	26	OB		BNE	AO35
07500	430C	7 D	0042		TST	AZDAF
07510	430 F	2 E	06		BGT	AG35
07520	4311	7 F	0016		CLR	WPNF
07530	4314	7C	C01A		INC	IDLEF
07540				* (XUTPUT	T ENABL	LES AND
07550	4317	96	2 D	AG35	LDA ${ }^{\text {a }}$	CONGO
07500	4319	87	2400		STA A	HIA4DB
07570	431 C	7 E	4096		JMP	A07

，0560	4342	7C 0015		INC	ELGOF	
10930	4385	86 FD		LUA A	OCOO	
605AD	4387	8D 434 L		JSR	FIXENB	
00590	438a	86 F 7		LDA A	＊OPLis	
Juerio	4.18 C	HD 43yE		JSR	FIXEN	
10010	438 F	34		HTS		
061020			＊			
91：630			－reau	Conflg	URATICN SMITCH R	REGISTER
00：40						
U1650	4390	B0 2800	CONR）	LDA A	PIAODA	
1060	43×3	$\times 7$ 2E		STA A	CiNTEM	
：10\％70	4345	34		RTS		
： 00630			＊			
10nvo			＊TEST	Config	－SWlTCH WORD	
$11 / 6$			－Cose	$\underline{i f}$ Sn	OVICOO IF GFF	
， H$) 710$						
， 0120	43×6	942 E	TSTSW	AND A	CONTEM	
0730	4348	2702		BEO	TSTSI	
3074！	43×1	OC		CLC		
（6）750	43yb	34		RTS		
micu	$43 \times C$	00	TSTS	SEC		
3770	4390	34		RTS		
ט07：0			＊			
． 0760			＊FIX	ENABLE	MORD	
vusat			＊			
． 0810	439E	9420	FIXENB	AND A	CONGO	
． $20 \cdot 20$	$43 A 0$	5720		STA A	CONGO	
10．150	43 A 2	34		RTS		
10340			＊			
小1950			＊head	TRIM R	OUTINE	
Hsen			－A <1 in	UTi		
Nath	4313	Re 2413	HTRM	lija a	PIAODB	
	4340	CE 2417		LDX	－SAD6B	
Nave	434 L	dJ 43 Co		JSA	SCON	
\cdots	43 AC	CE 2413		LDX	\＃HIAODB	
uylo	－3Ar	ED 43CF		JSR	GET	
小アウu	4352	47 2F		STA A	AZTKM	
．1． 10						
u1940			＊ELEV	ation		
00450	4384	$80 \quad 2414$		LDA A	PlabDa	
$0 \times \%$	4387	CE 2416		LDX	\＃SADOA	
9\％70	4384	60 43100		3 SP	SCON	
． 10970	43BD	CE 2414		LDX	－PIAODA	
NyYO	43 CO	BD 43CF		JSH	GET	
リ100	43 C 3	4730		STA A	ELTRW	
गh10	43 CL	39		PTS		
－1130			＊stro	OEE CONT	Prol pulse（B REG）	
atrac			＊			
31.150	43 Co	Co 3	5 CON	Lin 8	－ 5 3E	
， 60	4背わ	k 700		STA 8	$0 . X$	
Jloia	43 Ch	C6 36		LDA ${ }^{\text {c }}$	\％ 530	
019t！	$43 C 6$	170		S［A 3	O，X	
110	$43 C E$	34		RTS		

02180	4472	54			LSR B	
U2190	4473	D1	81		CMP B	THI
02200	4475	2D	09		HLI	TVAL2
. 22210	4477	$2 E$	05		EGT	TVAL4
j2220	4477	7D	0086		TST	TF
02230	447 C	27	02		HEO	TVAL2
02240	447E	00		TVAL4	SES	
02250	447 F	39			RTS	
) 2220				*		
02770	4480	OC		TVAL2	CLC	
-)2290	4481	39			RTS	
J 2290				*		
02300				- READ	analog	ERROA Voltages
02310				*		
02320	4482	4F		RAEV	CLR A	
!)2330	4483	97	3C		STA A	MUXADD
02340	4485	C6	05		LoA B	\#5
U2350	4487	CE	0035		LDX	*ERRBUF
:12300				* SETUP	P FOR R	REPEATED TRY'S
02370	448A	97	3E	RAEVS	STA A	freval
02380	448C	86	05		LDA A	45
02390	448 E	97	3D		STA A	NJMHED
$\checkmark) 2400$				- Lox)	ON A/D	CHANNELS
02410	4490	86	34	RAEV2	LDA A	\# 534
02420	4492	37	2412		STA A	SAD5
02430	4495	96	3 C		LDA A	muxado
02440	4497	B7	2411		STA A	PIA5DB
02450				* 100	USEC DE	elay
02460	449A	86	10		LDA A	\% 16
02470	449C	4 A		RAEV4	DEC A	
U2480	449D	26	FD		BNE	HAEV4
02490	44.5	86	3C		LDA A	\#S 3C
02510	44AI	87	2412		STA A	SAD5
02510				* walt	Enc	
02520	44.4	86	20		LDA A	- 32
02530	44A6	4A		RAEV3	DEC A	
' 2540	44A7	26	FD		BNE	H4EV3
02550				* Read	AND ST	TUK:
02560	44A9	96	2410		LC+ A	PIABLA
92570				- TEST	For Col	ONSEC. READINGS
- 25 R0	44AC	91	3E		CM, 4	Preval
J2590	44AE	26	[A		3NE	HAEVS
02000	44BC	7A	0030		DEC	NUMEED
U2610	4483	26	DB		BNE	HAEV2
02020	4485	17	00		STA A	$0 . X$
02630	44B7	08			INX	
02640	44,	96	3 C		LDA A	MUXADD
02650	44dA	88	10		$1 \mathrm{COO}^{\text {a }}$	\#S10
02600	44BC	97	3 C		STA A	muxado
02670	44BE	5A			DEC 8	
02080	44BF	26	C9		BNE	HAEV5
02090	44C1	$7 F$	2411		CLR	PlASDB
.)2700	44C4	39			RTS	
02710				*		

02720				＊IEST plab		SWITCHES		$\begin{aligned} & \text { SIDE) } \\ & \text { OFF } \end{aligned}$
02730				＊C SET IF		SW	ON：C＝0	
02740				＊				
， 2750	44C5	64	24 1）	TSTS8女	AND		H｜A8DB	
．） 100	44 CH		02		BEO		TSTBI	
（）こ710	44 CA	OC			CLC			
12740	44CB	39			RTS			
12790	44 CC	00		TSTEI	SEC			
1） 3100	44 CJ	39			HTS			
U2310				＊				
02.820				＊TESI	PlA	5W	WITCHES	SIDE）
02330				－C SET	I IF		（W） $\mathrm{C}=0$	OFF
12840				＊				
J2：50	44CE	34	241 C	ISTS8A	AND		H1A8DA	
J， 1800	44U1	27	02		BEO		TSTE2	
1.9810	44 こ3	OC			CLC			
02830	44D4	39			RTS			
$\therefore 2890$	4405	OD		TSTR2	SEC			
． 24 （10	44 DS	34			RTS			
02610				＊				
92920				＊SET	RU FL	AGS		
J2430				＊				
32940	4407	7 D	0018	SRUF	TST		RUCWF	
02450	44DA	26	1A		BNE		SRUF 3	
02960	44DC	86	10		LDA	A	FRUCWM	
02970	44DE	BD	44CE		JSR		TSTS8A	
． 12990	44EI	24	03		BCC		SRUFI	
32400	44E3	7 C	0018		INC		HUCWF	
03000				＊				
$\cup 3010$	44E6	70	0024	SRUF 1	TST		RUCCWF	
03020	44E9	26	$1 F$		BNE		SRUF4	
U3030	44EB	80	20		LDA	A	RUCCWM	
03040	44ED	BD	44CE		JSR		TSTS8A	
03050	44FO	24	03		BCC		SRUF 2	
03060	44F2	7 C	0024		INC		RUCCWF	
03070	44FS	39		SRUF 2	RTS			
1）3080	44FO	7F	0024	SRUF 3	CLR		RUCCW	
$\checkmark 3090$	44F9	86	20		LDA	A	\＃RUCCNM	
03100	44FB	8D	44CE		JSR		TSTSBA	
03110	44FE	24	F5		$B C$		SRUF2	
03120	4500	7F	0018		CLR		RUCWF	
03130	4503	7 F	0024		CLR		RUCCWF	
03140	4500	7 C	0024		［NC		RUCCWF	
03150	4509	39			RTS			
03160	450A	70	00：8	SRUF4	IST		RUCWF	
03170	450D	27	E6		BEO		SRUF2	
03180	450F	7 F	0024		CLR		RUCCWF	
03190	4512	39			RTS			
03200				＊				
03210				＊SET	LOAD	Po	SITIN	
03220				＊				
03230	4513	CE	0200	SLPOS	LDX		LOADI	
03240	4516	86	80		LDA	A	QLDPIM	
03250	4518	BD	4396		JSR		TSTSW	

03260	4518	24	Of		BCC		SLPOI
03270	4510	CE	0300		LDX		＊LIAD2
03280				＊			
03290	4520	86	40		LDA	A	LOP2M
03300	4522	BD	4396		JSR		TSTSW
03310	4525	24	OF		BCC		SLPO3
03320	4527	CE	0500		LDX		－lata
03330	452A	20	OA		dRA		SLPO3
$\bigcirc 3340$				＊			
03350	452C	80	40	SLPOI	LDA	A	＊I．DH2M
$\checkmark 3360$	452E	BD	4396		J5H		TSTSW
03370	4531	24	03		BCC		SLPO3
03380	4533	CE	0400		LDX		LOAD3
03390				＊			
03400	4530	D＋	31	SLPO3	STX		ELGCS
03410				＊FIX	DISPL	Lay	BUFFER
－）3420	4538	CE	008B		L．DX		\＃ELGCDS
03430	4538	96	31		I．DA	A	ELGCS
03440	4530	BD	4403		JSir		STBF
$\bigcirc 3450$	4540	96	32		LDA	A	ELGCS 1
03460	4542	ED	4403		JSR		STBF
．） 3470	4545	6F	00		CLP		$0 . X$
03480	4547	39			RTS		
03490				＊			
03＋，00				＊			
03510				＊			
03520				＊FIX	DISAB	BLE	KodIl NE
03530							
03． 40	4548	43		FIXUIS	com	A	
03550	4549	vA	2 D		ORA	A	Coner
U3＞60	4ל4B	97	20		STA	A	CONGO
03670	454D	34			RTS		
03580				＊			
03590				＊TEST	OFFS	SET	ERfors
03000				－C SE	T $=0$ F	FSE	T＞ALLOWED
03610				＊C＝0	OFFSE	EI	OK
03620				＊			
J3630	454E	CE	0035	TERR	LDX		＊ERRBUF
03640	4551	5A			DEC	B	
23650	4552	D7	83		STA	B	Hold ${ }^{\text {d }}$
03560	4554	27	04		BED		TERRI
C3670				＊			
03690	4556	O8		TF．RR2	INX		
0.3690	4557	5A			DEC	B	
33700	4ちうE	28	FC		BNE		TERK2
13710	455A	A6	00	TEKRI	1．DA	A	O， X
03720	4 ¢5С	CE	4574		LDX		\＃ERRVAL
03130	$4 ヶ 5 F$	106	83		LCA	B	H）Lija
1.3740	4561	27	04		BPQ		TERH4
1375	4ち53	U6		TEIR3	I $1 \times$		
13760	4564	5A			JEC	B	
． 137%	4＊）${ }^{\text {a }}$	26	FC		Bis		TEPR 3
い3180	1567	26	\％	TERH4	1．LA	3	$0, \mathrm{X}$
.13700	4564	41）			TS5	1	

114340	45135	20	00		1r.E		197
1,4350	4587	86	02		L 74	A	*'
44300	4534	YA	As		Ofi	A	E1LIT
14.70	4bst.	47	AY		SIA	1	ELLI!
. 14380				*			
. 14340	45Bu	C1	01	CKO7	CMr	+	* 1
14400	4t, Hf	26	00		BNE		CK08
J4410	$45 C 1$	88	01		I.2A	A	$\# 1$
14470	45C3	9A	$A 9$		UFA	A	: $=1 / 1 \mathrm{~T}$
34430	45 CJ	97	Ay		ST4	4	ELLI
, 4440				*			
U4450	$45 C 7$	7A	OUBA	CK08	UEC		jav8
04460	45CA	26	BD		BNE		CKO2
04470				* TEST	G(1/N	(1-	
.,4430	45 \propto	70	0040		TST		EFLAC
04490	4ちCF	26	09		BNE		CKOI
04500				* ENabl	LE UO		
04510	4501	156	36		LDA	1	\# 536
04520	45D3	B7	$241 F$		STA	A	LAMP
14530	4506	7 C	0027		INC		CXUF
J4540	4509	34			RTS		
04550				* Enabl	LE NO	-G	
04560	450A	86	3E	CKO1	LDA	A	\# S 3E
04570	45UC	B7	$241 F$		STA	4	LAMr
104580	450F	7C	0027		INC		CKOF
04590	45E2	34			RTS		
04600							
04610				- reau	ELEV	AT	Iov GACS
04620				*			
04630	45E3	80	2402	relgac	L.DA	1	GCSEL
04640	45-0	84	3F		AND	A	\# $53 F$
04650	45E8	81	36		CMP	A	\#536
04600	45EA	27	01		BEO		RELI
34670	45EC	39			RTS		
04680				* head	GACS		
04690	45ED	B6	2401	PELJ	LDA	A	PIAIUB
04700	45FO	43			COM	A	
04710	45F1	CE	0103		LDX		450103
04720	45F4	(1)	81		STX		THI
04730	45F6	BD	445B		JSR		TVAL
04740	45Fy	25	16		BCS		REL 2
04750	45FB	97	87		STA	A	G4CTEM
04760				*			
04770	45FD	86	2400		LDA	A	HIAIDA
04780	4600	43			COM	A	
04790	4601	CE	0909		LDX		1 50909
04800	4604	DF	81		STX		THI
04810	4606	BD	4458		JSR		TVAL
74820	4004	25	06		BCS		REL2
04i330	4608	97	88		STA	A	GACTEM+1
i) 4 840				* FIX	DISHL		BUFFER
04850	460D	DE	87		LDX		GACTEM
04960	460F	DF	31		STX		ELGCS
04870	4611	CE	008B	REL2	L.DX		*ELGCDS

04880	4614	96	31		LDA	A	elgcs
04890	4616	BD	4403		JSR		S IbF
04900	4619	96	32		LDA	A	ELGCS＋1
04910	401B	BD	4403		JSR		STBF
04920	46IE	6 F	00		CLP		$0 . X$
$04 y 30$	4020	39			RTS		
1） 4940				＊			
．74450				＊TEST	AL E		RANGE
04960				－（D／A	Form	mat	
．14\％70				＊			
04980	4021	DE	53	TAZERH	LDX		ALERR
04990	4623	C6	01		LDA	H	MAZLIM
Jち000	4025	BD	4631		JSH		TSTIT
05010	4028	39			RTS		
Uhu20				＊			
05030				－［EST	EL E	ERR	range
USU40				＊			
35050	4024	DE	35	TELERN	LDX		ELERR
U 060	462 b	Co	01		LDA	B	＊ELLIM
	402 L	BD	4031		JSH		TSTIT
5：m30	4630	3）			RTS		
」わいとO				＊			
リり100				＊			
¢1J0				＊TES［	U／A		HMAT
05120							
Oリ30	4831	UF	89	TSTIT	STX		Sava
92140				＊FIX F	FOR S	SIG	
．2150	4033	7i）	0089		TST		SAVA
Jכ150	4830	2A	06		1 1PL		TST1 3
（15170	4038	90	8		LDA	A	SAVA
Ub180	463A	84	7F		AND	A	－S 7F
E190	48．3C	97	89		STA	1	SAVA
$0 \cdot 200$				＊			
16.110	4c3i	96	84	TST13	L．DA	A	SAVA
02	4040	64	OF		AND	A	ESF
ha30	4642	27	02		3E2		TSTI 1
05,240	4044	OD			SEC		
15250	4645	34			HTS		
On200				＊CHECK	K LSb		
） 5270	4 C 46	90	8A	TSTII	LDA	A	SAVB
1berm	4648	11			CBA		
（12）${ }^{\text {a }}$	4C44	01			NOP		
UP，300	404A	22	02		BHI		TSTI 2
（1．） 110	404C	OC			CLC		
123．0	4，4L	39			HTS		
リン 130	$4 \mathrm{CL4E}$	OU		TSTI？	SEC		
－ 340	404F	34			18 TS		
いご．．1．				＊			
i， 2.300				＊C．urru	UTE A	A2	ERROR
12．376；				＊			
123\％	4＜${ }^{\text {c }}$	7 r	0020	combal	CLR		Sis
リア40		7r	（v）2C		CR		UISAZ
ग，${ }^{\text {¢ }}$（\％	＋650	Ct	（0）\％ 0		LDX		－TEM3CD
1541 ．				＊Conve	F．at T	T 7	IM TO BCD

159600	40C8	21	02		BE 2		C．1PAZ2	
1゙メ70	46CA	86	01		L．DA A		\＃ 1	
Ј 280	40CC	97	14	Cural2	STA A	A	ALERD	
15990				＊Conver	ERI ER	RROI	Oll TO BIN	ARY
Jeino	4CCE	CE	00.44		LUx		\＃AZERD	
JoClu	4001	BU	4910		JSR		BCDBIN	
． 10020	4004	［5	5.3		SIX		ALEAR	
30030	4606	7C	002C		INC		DISAZ	
06040	46 JY	34			NTS			
0.0050	46 FA	06		Const	FCB		0．4，0．0．0	
	46Us	04						
	465 C	00						
	46DD	00						
	46DE	00						
00000	460F	03		CONST2	FCH		3，5，0，0．0	
	46E0	06						
	40el	00						
	46 E 2	00						
	40ご3	00						
06070				＊				
06080				＊Compl	UTE EL	Leva	VATION ER	ROR
06090				＊				
00100	46t4	7F	0026	COAPEL	CLR		SIG	
06110	40E 7	7F	0028		CLR		DISEL	
U6120	46EA	CE	notso		LDX		\＃TEABCD	
． 20130				＊Conve	EHT IR	RIM	－T0 BCD	
00140	46ED	4F			CLR A			
16150	46EE	D6	30		LDA B		ELTHM	
）6．100	46FO	2 A	04		BrL		COPELI	
36170	46F 2	7 C	0026		INC		SIG	
） 3180	46F5	53			NEG 8	B		
1 （1190	4 6F6	01		COPELI	NOP			
30200	46F7	01			Nor			
36210	46F8	BD	476E		JSi		BINBCD	
00220				－ADD	TRIM T	T）	EvCODER	HEADING
00230	46FB	CE	0080		LDX		－TEMBCD	
06240	46FE	DF	02		STX		$A 1$	
00250	4700	CE	00BA		LDX		－ELTEMP	
0 02．60	4703	DF	64		STX		12	
06270	4705	CE	0089		LDX		＊RESULT＊	
116280	4708	BD	47FE		JSR		BCDADD	
30290				＊ADJUS	S F FOR		RULLOVER	
06300	4708	CE	0090		LDX		＊ELDISP	
06310	470 E	BD	48A3		JSR		ADJ	
06320				－subir	RACT R	RESU	SULT FROM	GACS
06330	4711	CE	0090		LDX		\＃ELDISP	
06340	4714	DF	68		STX		52	
06350	4716	CE	0088		LDX		＊ELGCDS	
U6360	4719	DF	66		STX		51	
06370	4718	CE	00B5		LDX		－RESULT	
06380	4715	bD	4855		JSR		BCDSUA	
06390				＊ADJUS	UST FOR		RoLl ${ }^{\text {dVER }}$	
06400	4721	CE	0095		LDX		－ELERD	
06410	4724	BD	48A3		JSR		ADJ	

rauf uso auls

PAUE C32 AULS

08040	4\＆2D	0 O			DEX	A^{\prime}＇IDXI			
08050	482E	Dr	76		STX				
13060				＊					
08070	$4: 330$	5A			DEC	H			
0\％080	4831	20	F5		BNE		bCAI		
05.090	4833	DE	62		LDX		$A 1$		
1：810）	4835	A	00		LDA	A	$0 . x$		
08110	4 4 37	D：	64		LDK		A）		
18120	4839	ay	（0）		ADC	A	0.1		
jilsu	4830	B：	4848		JSt		Jucs		
J：3140	4831	24	03		Bra		H：A2		
18150	4840	7C	0020		INC		SIG		
D81t0	4 4． 43	Dt：	76	ECAZ	LDX		ADOXI		
） 4170	4845	A）	no		STA	A	$0 . X$		
UHIRC	4847	3V			RTS				
38190	4848	01		Jock	NOP				
08200	4844	81	08		CMP	A	\＃${ }^{\text {\％}}$		
08：210	4846	2E	02		BGT		JUCKI		
111320	484C	OC			CLC				
08230	484E	34			RTS				
UH240	484F	83	06	JOCKI	100	A	＊ 6		
08250	4851	84	OF		AND	A	＊ 5		
JH200	4853	OD			SEC				
U8270	4854	39			RTS				
19280				＊Subtract 2－5 oIGIT bCD values					
US200									
013300				－SlaAd	DDRE	S	（f）MNUENU		
（33310				－S2＝AD	ODite S	SS	OF SUBTRAHEND		
18320				－$x=A D D$	DRESS	if	of RESULT		
U8330				＊					
08.340	4855	［F	73	BcDSUB	SIX		SUBXI		
U． 350	4857	DH	7A		STx		SUBX2		
18360				＊FIM SUbXI					
1）8370	4「54	C6	04		LDA	B	＊ 4		
J83m0	4とう ${ }^{\text {¢ }}$	b．	47 FY		JSR		FlXX		
J3340	4fint	Di	78		STX		SUBXI		
J84（0）				－commlement suistrahand					
03410				＊THAidSFER SU			SUHTRAHAND		
$0 \mathrm{H4} 20$	4200	CE	oond		LDX		－［EMSUB		
1月3430	4：03	तr－	7C		STX		TX		
仙40	4 4ios	Co	05		LLA	8	＊ 5		
（1846）	4807	LE	68	TXI	Li）X		52		
． 8460	4864	AO	00		LDA	A	$0, \mathrm{X}$		
His470	4：901	08			INX				
20480	4 BOC	OF	68	＊SIX		52			
198450									
，Jbלu	480t	吨	7C		LDX		ix		
U8ち10	4870	17	00		STA	\wedge	O，X		
Јビい	4672	Uts			INX				
185：）	4873	DF	7 C		STX		［X		
Otio40				＊					
． 18550	48．1b	5A			DEC				
13500	4876	20	H．F	＊BNE TXI					
－3510									

$\cdots 1204$	4835	AC 01		LDA A	1．$x^{\text {a }}$	
	4807	81 i2		Che A	12	
ग×14， 4	40．）${ }^{\text {d }}$	2．5 3.		BLT	1321	
1×1004	$4 \% \mathrm{DH}$	0.	T122	SEC		
\therefore Ast	4\％．1t	34		UTS		
＇以16	45：n	Oi	T321	CLC		
－ $11 \cdots$	4sut	34		iTs		
；リ！			＊			
$\because \therefore$			＊			
） 1			＊＊＊＊＊＊＊	＊＊＊＊AこL	3＊＊＊＊＊＊＊＊＊	
\％．4			＊			
$\because \times$			＊			
） 1.2			＊IESI	BCD MAG	LINITS FOR DISPLAY	
n ）${ }^{1}$						
－ $4: 50$			＊ $\mathrm{X}=\mathrm{BUF}$	FEE A A	RēSS	
\therefore dvo						
い\％\％			＊SETUP	DI HEC	ION SIGN	
1． 11.			＊FIXI	$\mathrm{F}>499$		
ぶツ	$4 ., 3$	AO ： 0	TESTM	I．DA A	0，X	
1.1 ：	4e．－1	84 UF		ANS A	\＃SF	
$\cdots 16$	$48+3$	27 0a		3E3	TSTMI	
－（ 5 ¢	48Eち	Ho 94，		LDA 1	\＃ 39	
014.	小 E 7	A 7 O1		STA A	1， X	
H： 0	4．$-=4$	A 702		STA A	2． X	
110	4 BE	1703		STA A	$3 . x$	
儿：	4rEL	A 7 94		STA A	4，X	
\cdots.	48FF	34	TSTM I	RTS		
， 1			＊TEST	IF BCD	A HRAY＞OR $=04000$	
\cdots			＊C SEl	IF TR	UE $\mathrm{C}=0$ IF FALSE	
1． 3 ，						
．${ }^{\text {a }}$ ，	4！F	1000	TESTO4	LOA A	$0 . x$	
\cdots	4 ¢r 2	8106		CMPA	\％ 6	
J． 56	4EF4	2 ta		BGT	T641	
＂と＇0	48FS	20.16		HLT	I642	
1，＇：	48Fs	AO 01		LDA A	1.1	
\because	48FA	P1 04		CMP A	4	
6：U	4 BFC	2 C 02		BGE	T641	
（1） 1	4 HFE	UC	T642	CLC		
If 3.0	4 EFF	39		RTS		
； 301	4900	OU	T04 1	SEC		
K： 34	4צ01	34		RTS		
） 1.340			＊			
， 1300			＊			
； 31.			－Tikans	SFER FR	m BCD array mpesulta	TU
U1340			－Array	Y SPEC 1	FIED BY X	
M390			＊			
	4×02	DF OA	XFER	STX	X 1	
2，41．	$4 \times: 24$	CE OOES		LDX	\％RESULT	
M $: 20$	4407	DF OC		STX	$\times 2$	
1，430	4×09	C6 05		LDA 8	45	
1：441）	4v．）${ }^{\text {b }}$	DE OC	XFER 1	LDX	X2	
（14t，；	4×10	1000		LDA 4	$0 . \mathrm{X}$	
0400	4bOF	08		INX		
$\ldots \mathrm{Cl}$ ，	4410	OF OC		STX	$\times 2$	

00480	4912	DE	6A		LDX		XI	
00490	4914	A7	00		STA	A	$0, \mathrm{X}$	
00500	4916	08			INX			
00510	4917	DF	OA		STX		XI	
00520	4919	54			DEC	B		
00530	4yla	26	EF		BNE		XFERI	
00540	4YIC	34			RTS			
0050				＊Compute b		BINARY DATA FROM BCDC5		DIGIT）value
00560				＊ $\mathrm{X}=\mathrm{ADD}$	DRESS	OF	F SUFFEN（ENTRY）：D／A	Value ${ }^{\text {dexIT）}}$
00570				＊				
00580	4915	98		BCDBIN	INX			
00590	4YIE	C6	04		LUA	8	4	
20600	4¢50	D7	84		S［A	B	SAVB	
30010	4422	7F	0001		CLR		MSBY	
00620	4425	7F	0002		CLR		LSBY	
00330				＊				
00640	4928	16	00	BCDB I	L．DA	A	0，X	
00650	$4 \times 2 A$	97	03		STA	1	TMP	
00660	442C	BD	4BEI		JSR		m0x	
00670	4）2F	08			INX			
00680	4930	7A	COBA		DEC		SAVB	
00090	4933	26	F3		ENE		BCDBI	
00700				＊DIVID	DE $\times 2$			
00710	4935	74	0001		LSR		MSBY	
，10720	4438	76	0002		ROR		LSBY	
30730				＊TEST	SlGN			
1）0740	4435	96	Ol		L．OA	A	MSBY	
00750	4¢3D	75	0026		［SI		SIG	
30760	4440	27	04		3EO		BCDE2	
100770	4442	8A	80		ORA	A	\％ 580	
00780	4944	97	01		STA	A	MSBY	
00790				＊TEST	OVER	RFL	OW	
00800	4946	84	70	BCD82	AND	A	＊ 570	
10810	4948	27	OF		BEO		■CDB3	
00820				＊				
00830	494A	96	01		LOA	A	HSBY	
00340	494C	84	80		AND	A	1580	
J0350	494E	8A	OF		ORA	A	\＄SOF	
00300	4950	97	01		SIA	A	MSBY	
U0875	4952	86	FF		I．${ }^{\text {SA }}$	A	¢ FFF	
00880	4954	97	02		STA	1	LSBY	
00890	4956	17	2410		STA	A	PlABDB	
100900	4954	DE	01	［SCDB 3	LDX		MSBY	
Jリッ10	4とらも	3			RTS			
00920				＊				
00430				＊Clear	R FLA		TABLES	
00940				＊				
00950	495C	CE	0013	CLFG	Lnx		\％ 8 EC	
J0960	4४らF	6 F	00	CLFGI	CL．${ }_{\text {L }}$		O，X	
$0 J .70$	4461	O2			INX			
U0Y80	4962	EC	OOC9		CHX		\＃ENU	
010990	4965	20	－8		BNE		CLFGI	
$01) 00$	4967	39			RTS			
01010				＊				

PAUE 036 AULS

02100				＊INTERRUPT SERVICE RoUTINE			
02110							
02120				＊TEST	Clock		
－ 2130	4 A 30	711	2803	ISER	TST	Platocb	
U2140	4A34	2A	oc		3 LL	1 SERO	
121）0	4A3b	B6	2801		LDA A	PIAODE	
02100	4A3E	B7	2801		STA A	PIAODH	
－2110				＊SCAN	CLOCKS		
）2190	4 A 41	Ct	0004		LDX	－［MTB	
12100	4 A 44	Co	05		I．TA B	\＃ 5	
$\cdots 200$	4 A to	Hi）	4COA		JSR	SCAT	
$\therefore \cdots 1$				＊TEST	INSIDE	L（X）P（20	O MSEC）
Јこ？20	4A4V	70	0004		TST	TFI	
1 2230	4A4C	21	01		BEO	1 SER2	
12240	4A4E	3 H			HTI		
リ－＂0				＊SERVI	ICE INS	IDE L（X）P	
22201	$4 \mathrm{~A} \cdot \mathrm{H}$	CE	0014	［SEH？	LDX	\＃ 20	
12.70	4 A 52	－F	05		STX	TIMI	
1290	4 A 54	7C．	0004		INC	TFI	
$\cdots \cdots$				＊D／A	READY？		
0.300	4A．3l	Bu	4 B 22		JSR	DauUT	
12311				＊TESI	XENON	（）N	
1，3， 0	4AbA	30	40		LDA A	\＃XRECM	
12310	4 AbC	BD	44C5		JSR	TSTS8B	
11．340	4ADF	24	10		BCC	ISER7	
穴356				＊START	DRopou	1 CLOCK	
02300	4 AO 1	7F	0010		CLİ	TF5	
2.310	4864	Ct	O3E8		LDX	\＄1000	
1）33．01	4.07	L1F	11		STX	TI M5	
9，3r6	4AOS	7C	0010		INC	TF5	
22.40				＊TEST	ON FOR	25 TIHES	
U？410	4A6C	7C	004E		INC	XON	
1） 2420	4AOF	96	4E		LDA A	XON	
22430	4A71	31	19		CMH A	＊25	
12440	4 A 73	2D	14		BLT	1 SER8	
1）${ }^{1250}$				＊			
12460	4 A 75	7A	004E		DEC	XON	
12.470	4A78	7 F	0017		CLR	XRECF	
J24E0	4A7B	7C	0017		INC	XRECF	
12440				＊TEST	TI MEOUT	AFTER	OFF
12900	4A7E	7 F	004E	ISER7	CLR	XON	
） 310	4 ABI	70	0010		TST	IF5	
12520	$4 \mathrm{AB4}$	26	03		BNE	ISER8	
12ち30	4A86	$7 F$	0017		CLR	XRECF	
1） $\mathrm{C}_{2} 40$				＊TEST	NEAPON	SH	
い2ら」U	4ASs9	86	80	I SER 8	LDA A	－APNM	
1250：	4AHD	80	44CE		JSR	TSTS8A	
12570	4A8E	24	06		BCC	1 SER 4	
（1）${ }^{\text {cha }}$	$4 \wedge 90$	75	0016		CLR	WPNF	
にりい	$4+ \pm 3$	7 C	0016		INC	NPNF	
－ 2 S．0				＊oUTil	IDE Loor		
$12+10$	4／yc	71，	0007	ISEH4	TST	TF 2	
$12: 20$	4Axy	27	01		BEO	ISER5	
128，30	4AYB	36			RTI		

racie	034	AGLS				
.33180	4AFB	LE 48		LDX	μ TR	
J31\%0	4AFD	צC 4A		CPX	$\mu \mathrm{TE}$	
53200	4AFF	27 OF		3E0	1 SERI5	
03210	4801	1600		L.DA A	$0, \mathrm{X}$	
03220	4803	08		INX		
, 33230	4804	DF 48		STX	PIR	
03240	4806	2A 01		BrL	ISERIB	
03250	4808	4F		CLR A		
113200	4809	8B 30	I SERIB	$A D D$ A	* 530	
133270			* uUTVU	UT CHAR		
03270	4808	61 4C41	1SEH 14	JSR	$A(X)$	
03290	480E	38		RTI		
03300			- wRAP	UP XMIT		
03310	480F	8D 4B19	ISERIS	JSR	DISXMT	
03320 113330	4 bl 2	3 H		RTI		
03340			- DISAB	BLE REC	INT ROUTINE	
03350	4813	86 2A	DISREC	LDA A	\#XIE	
03360	4815	B7 3002		STA A	AC2C	
03370	4818	39		RTS		
U3380			*			
03390			- DI SAB	3LE XMIT	T INT ROUTINE	
03400	4819	86 BA	DISXMT	LDA A	\#AIE	
03410	4818.	873002		STA A	AC2C	
03420	4BIE	86 3003		LDA A	AC2R	
03430	4821	39		RTS		
03440			*			
03450			* OXTPU	T D/A R	Routine	
03400						
03470			- ELeva	TION		
03480	4 B 22	700041	Dadut	IST	Eldaf	
03490	4825	2710		BEO	DAOUTI	
03500	4827	2603		BNE	DACNT3	
03510	4829	$7 \mathrm{7a} 0041$		DEC	ELDAF	
03520	482C	DE 51	DA ${ }^{\text {dut3 }}$	LDX	ELCOM	
03530	482E	FF 2418		STX	HIATDA	
03340	4831	CE 2414		LDX	- fia7ca	
i) 3550	4B34	BD 484D		JSR	USCON	
03560			*			
03570			* AZIMU	IH		
03580	4837	700042	DAOUTI	IST	AZDAF	
03590	4B3A	2 D 10		BLT	Danuta	
03600	4B3C	2603		BNE	DAOUT2	
03610	4B3E	7A 0042		DEC	AZDAF	
03620	4841	DE 4F	DA ${ }^{\text {duT2 }}$	LDX	AZCOM	
03630	$4 \mathrm{B43}$	FF 2418		STX	Platoa	
0)3640	4846	CE 241B		LDX	-PIA 7CB	
03650	4849	BD 4B4D		JSR	USCON	
03660	4B4C	39	DAsNT4	PTS		
03670			-			
03680			- INVERT	TED STR	roae control p	. PULSE
03690						PULSE
03700	4B4D	Co 36	USCON L	LDA 8	\% 36	
03710	484F	E 700		STA 8	$0 . X$	

PAGE O40 AGLS

04200			＊OUTPUT \quad－ECCIAL dISPlays		
04210	4 BOB	750027		IST	CKOF
J428C	4：133	26 cl		BNE	DISIT2
：4250	4 BBL	34		HlS	
14300	4 HBL	Yo 43	の1912	LDA A	DISADR
13431：	41920	W1 ？ 40		STA A	Flas0b
$1 / 438$.	4 CC 3	Ct 46ty		LDX	＊CODE
． 4331	$\therefore \mathrm{AC} 6$	4F		CLP A	
is 540	4 dC 7	D6 3F		I．DA B	LITE
14350	4 sC	27 05		BEO	DISITI
.14300	$4 \mathrm{BC5}$	BJ 47F		JSR	F1XX
1437：	4tce	1600		Lida A	$0, \mathrm{X}$
1.43 3：	4bUU	B1 24 IC	DISI「I	STA A	PIABUA
14340	$4{ }^{\text {A }} 3$	CE $241 E$		L．DX	－rIA8Ca
14401	4 400	BD 4B4D		JjR	USCON
．14410	4ED 9	39		RTS	
$\therefore 44>0$			＊D1SPL	LAY COD	table
04430		4Buly	CODE	EOU	＊－1
14440	4BDA	05		FCs	5
くら450	4EJB	02		FCB	2
Jatat	4t：＇心	OF		FCu	SF
：4／0	4L，儿	04		FCB	4
J4．400	4BLE	00		FCH	6
U4：90	4と：J゙	01		FCB	1
J4．30，	4BEO	OF		FCB	Sr
（0）10			＊		
0702 C			＊＊＊＊＊＊	＊＊＊\＃AGL	54＊＊＊＊＊＊\＃＊＊＊＊
0：030					
（1）40			＊EXEC	SUBROU	IINES
10050			＊HRTI	IPLY MS	EY／LSBY $\times 10+$ TMP
Juveu	4BEI	96 （1）	miox	LDA A	msey
（0） 70	4 bE 3	11602		Lid 8	LSoy
vous？	4 A Ej	OC		CLC	
－いN	4！ 4 ¢ 0	48		ASL A	
$x 1: 0$	4 C E 7	58		ASL H	
． 2110	4 SE8	BU 4C04		JSR	CKC
	4 bEB	$4!$		ASL ${ }^{\text {A }}$	
） 0130	4bEC	58		ASL 8	
00tsu	$43 E D$	$30^{4 C O 4}$		JSH	CRC
jotsou	4 isfo	Ci 0 ？		ADD B	LSHY
火100	4 BF 2	61）4しこ4		JSH	CKC
	4 BFS	48		ASL A	
． 10190	4 BrO	50		ASL B	
）10\％	4 BF 7	BD 4CO4		JSR	CKC
10200	4！SFA	Cb 03		100 B	1M
， 210	4 BrC	BD 4CO4		JSH	CくC
$\bigcirc \cdot 20$	AnFt	4701		TTA A	HSby
（兄）	4 COI	บ7 02		STA is	LSBY
川，44	4033	34		HTS	
－3，${ }^{\prime}$			＊Cireck	K C 311	A ID Fix
－2：	ACO4	25 ， 1	CKC．	tcs	CくC1
（1），${ }^{19}$	$4 \mathrm{Cu}{ }^{\text {c }}$	39		RIS	
（） J	4 C 7	4 C	CKCl	INC A	
is？0	4 COS	OC		CLC	

01040	4DO1	b）	4DOL	CLELI	JSR		ELNULI． CLEL 2	
01.550	4LU4	25	Cl		3 CS			
U10：0	$4[006$	$3 y$			$2[5$			
010い	4107	$C E$	1000	CLEL？	1．1） x		＊J ElCOM	
Jlvero	a Lon	Lt－	51		STx			
小り	4100	（1）			SEC			
01100	4i） 0 ；				PTS			
01110				＊				
$111: 0$				＊				
：11．0				＊TEST	EL NULL．			
11140								
01150				＊Elerr	TEST			
11100	41：OE	BJ	46：9	ELNULL	JSR		TELERR	
ט1170	4LII	23	OE		BCS		ELN 1	
11180	41113	7 C	0058		INC		ELCNT	
01190	4［10	40	58		LDA	A	EICNT	
11／00	4LI8	81	19		CMP	A	＊25	
J120	4DIA	2 F	OB		BLE		ELN2	
.11220	4DIC	14	0058		OEC		ELCNT	
J1330	41：1F	0 D			SEC			
11240	4 L 20	34			RTS			
コ1．${ }^{\text {Ju }}$	4 L 21	7	O058	ELNI	CLH		ELCNT	
11200	4）24	OC		ELN2	CLC			
.1270	4L25	$3 \times$			RTS			
（1）＂u				＊				
$\cdots 2 y 0$				＊TEST	TRACKER NULL			
01300								
J1310	4020	C6	05	CLTK	LDA	B	\＃PAMA	
：11320	41）28	BD	454 E		JSR		TERR	
C13， 30	4L2B	25	OE		HCS		CLTR2	
01340	40う	DE	5B		LDX		TRCNT	
01350	4D2F	08			INX			
－1 300	4030	DF	5 B		STX		TRCNT	
11.310	4D32	9 C	5D		CPX		TIPLP	
111380	4034	26	OA		BNE		CLTR3	
01390	4 U 36	09			DEX			
0， 1400	41,37	DF	$5 B$		STX		TRCNT	
$\because 410$	4D39	OD			SEC			
11420	4D3A	39			RTS			
11430				＊				
．31440	403	CE	0000	CLTH2	LDX		\cdots	
01450	4C3E	DF	5B		STX		TRCNT	
1） 460				＊				
11440	$41) 40$	OC		CLTR 3	CLC			
U1480	4 L 41	34			RTS			
（1） 4×0				＊				
$\begin{aligned} & 11500 \\ & 01510 \end{aligned}$				＊TEST	duad	PI	ITCH NULL	
U520	41／42	Co	01	CLOP	LDA	B	－JPma	
11530	4144	B9	454 F		JSH		TERR	
11） 140	4154	25	OE		BCS		CLOP2	
， 11556	4154	CE	59		LDX		OPCNT	
U1500	4 4 4 b	08			INX			
11570	4D4C	OF	54		STX		DPCNT	

PAGE 046 AGLS

01580	$404 E$		00		CPX	OPLP
01590	4050	20	OA		BNE	CLOP3
01600	4052	09			DEX	
01610	4053	DF	59		STX	OPCNT
01620	4 D 55	OD			SEC	
：11630	4056	39			RTS	
01640				＊		
01650	4057	CE	0000	CLOP2	LDX	10
01660	4D5A	DF	59		STX	OPCNT
01670				＊		
01680	4D5C	OC		CLOP3	CLC	
01690	4D50	39			RTS	
01700				＊TEST	8 FIX	A／D MAGNITUDE
01710	405E	7 F	0028	TMAGA	CLR	NEOF
01720	4D61	40			TST A	
01730	4062	2 A	03		BPL	TMAG3
01740	4D64	7 C	0028		INC	NEGF
01750	4067	84	OF	Tmag3	AND A	SF
01760	4D69	7 L	0029		TST	SLOMF
01770	4D6C	26	13		BNE	TMAGI
01780				＊FULL	SPEED	
01790	4D6E	81	02		CMP A	02
01800	4D70	2 C	03		BGE	TMAG2
01810	4072	8D	23		BSR	mdx
01820	4074	39	．		RTS	
01830	－			\star		
01340	4075	86	OF	TMAG2	LDA A	S0F
01850	4077	7 D	0028		IST	NEGF
01860	4D7A	27	02		BEO	TMAG4
01870	407C	8A	80		ORA A	\＄$\$ 80$
01880	407E	C6	FF	TMAG4	LDA B	－ 5 FF
01890	4D80	39			RTS	
01900				$\star \text { HALF }$	SPEED	
01910	4D81	4 D		TMAGI	IST A	
01920	4D82	26	07		BNE	TMAG5
01930	4084	C1	6F		CMP B	－S6F
01940	4D86	22	03		BHI	TMAG5
01950	4088	80	OD		BSR	M8X
11960	408A	39			RTS	
01970				＊		
1980	4088	86	05	Tmag5	LDA A	4
11990	4D8D	7 D	0028		IST	NEGF
02000	4D90	27	02		BEO	TuAgo
02010	4092	84	80		ORA A	\＄$\$ 80$
02020	4D94	C6	FF	TMAGS	LDA B	＊SFF
02030	4D96	39			RTS	
22040				＊		
02050				＊mULTI	PLY X	8
22060				＊		
02070	4097	CE	0003	M8x	LDX	43
02080	4D9A 5	58		M81	ASL 8	
2090	4D9b 4	49			ROL A	
2100	4D9C 0	09			DEX	
2110	4D90 2	26 F	FB		BNE	M81

PAGE 047 AGLS

02120	4D9F	7D	0028		TST		NEGF
02130	4DA2	27	02		BEO		M82
02140	4DA4	8A	80		ORA	A	*s80
02150	4DA6	39		M82	RTS		
02160	4DA 7	26	BE		BNE		TMAG3
02170				*			
02180				*			
02190				- or b	LoCK	FL	AGS
02200				*			
02210	4DA9	7 D	0010	orblk	TST		TBLK
02220	4DAC	26	07		BNE		URBI
02230	4DAE	7 D	OOIE		TST		EBLK
02240	4DBI	26	02		BNE		ORB1
02250	4DB3	OC			CLC		
02260	4DB4	39			RTS		
02270	4DB5	OD		ORB1	SEC		
02280	4DB6	39			RTS		
02290				* TEST	XEN(N		STABILITY
02300	4D87	7 D	0017	XSTAB	TST		XRECF
02310	4DBA	27	OE		BEO		XSI
02320	4DBC	7C	005F		INC		XTIME
02330	4DBF	96	57		LDA A	A	XTIME
02340	4DCI	81	46		CMP A	A	170
02350	40C3	23	08		BLS		XS2
02360	4DC5	7A	005F		DEC		XTIME
02370	40C8	OD			SEC		
02380	4DC9	39			RTS		
02390				*			
02400	4DCA	7F	005F	XS 1	CLR		XTIME
02410	4DCD	OC		$\times 52$	CLC		
02420	4DCE	39			RTS		
02430	4FF8				ORG		\$4FF8
02440	4FF8	4136			FDB		1 SER
02450	4 FFA	4000			FDB		AGO
02460	4FFC	4 436			FDB		ISER
02470	4 FFE	4000			FD8		aso
04999					ENO		A
TUTAL E	ERHORS	S 00	0000				
ENTER	PASS	: IP	P. $2 \mathrm{P}, 2$	2L, 2 T			

$E 7$

Frort Pavel Switales
 center off momentory beth ways
-
Conme cyu $\overline{N M I}$ pin 17 on cordedge

troped itre ar in
the cerme section riomall this position.

,

* 3 sections soch

RUP PIA - Comm DIA

* A change exists in the cole oillituic I all other lives are sire if t through.
$x \Rightarrow$ brook these Lines
(7) $2 \frac{1}{2} \mathrm{hr}$

Tempratic This.iniel Interfoce
Deluorible Unit

R14

E 15
R16

ACE OOS pVECOM .SA:I
IAM VE(IIM
TULS COMMUNICATIONS
VEHICLE
HEVISED 3/3/79 2000
:AGC EQU 1
rIa EQuates
$\mu!A \mid=P R O P$. TEMPERATURE
A SIUEEINPUTS

- SIJE =()UTPUTS(ADDR)
:AIDA EOU SC2OO
líIDB EOU PIAIDA+I
:AlCA EQU PIAIDA +2
: AICB EOU PIAIDA+3
vi EOU rIAIDA
iI) EQU PIAIDB
(ITNON EOU \$3E
IHNOF EQU $\$ 36$
$:$
- PIA2=CUNTROLS AND UISPLAYS

A SIDEaSm. INPUTS
() SIUE=DATA/ADDR. OUTPUTS

IA2UA EOU SC204
:A2DE EOU P1A2DA+1
IA2CA EOU PIA2DA+2
-IA2CB EOU PIA2DA+3
1: 2 EOU PIA2DA
T2 EQU PIA2DB

- HIA3aREF. UNIT PROC.
- A SIDE-INPUT
- H SINL=OUTPUT
-

IA3JA EOU SC208
ia3us EOU PIA3UA +1
iA3CA EOU PIA3DA +2
:AJCB EOU PIA3DA+3
iisj EJU pla30a
[3 E久U PIA308

- JIA4=NOT ASSICNED
:A4DA EOU SC2OC
:A4UO EOU PIA4CA+I
©A4CA EOU PIAADA+2
: $44 C$ LS EOU PIA4DA 3
i.a EOU HIA4DA

T4 EDU HIA4DE
*
SAIICH MASKS (HIA2A)
:•SM EOU ZOOOOOOOI FIRE ORDER

PAGE 002 PVECIM .SAs!
HKSM EQU \%00000010 READY KESPIINSE
FASM EOU \%00000100 FIRE ACK
BSTM EOU \%OOOOI OOO BORESIGITT
BDFM EQU \%OOOIOOOO BASE DEFL.
NMLM EQU ZOOI 00000 NORMAL
FDCM EQU. 201000000 FDC
HEFM EOU X10000000 REF ANGLE
LMTM EOU \$1 IIIO000 LAMP TEST
${ }_{*}^{*}$

* SWITCH WORDS (PIA2B)

FOAND EOU I FIRE ORDER ACK
FCAWD EQU 2 FIRE COMMAND ACK
HHAWD EQU 4 READY REOUEST ACK CFAND EOU 8 CHECK FIRE ACK
*

* L.EU NORDS (pIA2)
* ADORESS-DATA
*

COMM EOU $\$ 000 B$ COMM.
GUACK EOU $\$ 0004$ GUN ORDER
AEDY EQU $\$ 0002$ READY
FIRE EQU $\$ 0001$ FIRE
BDSET EOU \$0040 BASE DEF. SET
OPRAT EQU \$0020 OPEHATE
STBY EQU $\$ 0010$ STANDBY
CLED3 EQU $\$ 0089$ CARRIER DET.
CI.ED2 EOU $\$ 0084$ CJ=3 STATUS

CLEDI EOU $\$ 00 H 2 \mathrm{CJ}=2$ STATUS
CLEDO EOU \$0081 CJel STATUS
LLEDS EDU \$OOAO NAK
CLED4 EOU $\$ 0090$ AG.S BUSY
*

* perit peral eouates
- coma acia

COMC EOU SCIOO
Coms EOU CoML
Comx EOU COMC +1
COMR EOU COMC+1
*

- agls acia

AGC EOU SCIO2
AGS EQU AGC
AGX EOU AGC+1
AGK EOU AGC+1
*

* TEST PORT ACIA

IPC EOU $\$ 9808$
IPS EOU TPC
TPX EOU TPC+1
1 PR EOU TPC+1
\star

* fuze setier acia

FSC EQU SCOBO
rSS EOU FSC

```
PAGE 003 PYECOM .SA:I
rSX EQU FSC+1
FSR EQU FSC+1
* velncimeter acia
*
VLC EOU SCO82
VLS EOU VLC
VLX EQU VLC+1
VI.H EQU VLC+1
*
* timer
TCHI3 EOU $9800
ISTS EQU $9801
TCR2 EOU $9801
IID tQU $9802
Z2U EOU $9804
[3D E:QU $9%06
* timer constantS
TIIE EOU 20I000000
illi EOU 200000000
*
[2IE EQU x01000001
T2II EQU %00000001
*
TJIE EQU 211000011
[311 EQU x10000011
*
* timedut cunstants (.1 SECONDS)
CONTT EQU OIOO CONNECT THY
CuD ESU DOOT CarmiEH UP DElay
USO EDU O005 CARHIER DN DELAY
CuT EOU 30000 CARHIER DETECT
nT EOU O300 WAIT
* comm equates
*
SOH EQU I START OF HEADEER
SmFC EOU S42 SERVICE MSG FORMAT COUE
IMFC EOU S48 INFI.MSG FORMAT CODE
SLFC EOU $43 SELECT MSG. FORMAT COUE
SC EOU $41 SEOUENCE CODE
AC EQU S4O ADDRESS CNDE
IC EQU S4O IUENT COUE
STX EDU 2 START OF TEXT
ETX EOU 3 END OF TEXT
NNC EOU S40 NI REO OPERATION CODE-
SMTY EOU $40 SERVICE MSG. TYPE
SI.TY EOU SA2 SEIECT MSG TYPE
NOC EOU S42 DATA HLO OPER CCDE
* acla interrupt constants
* ACIAU &ODIOIOOI XMIT INT ENH
NIE EOU XIOOOIDOI RECV INT ENB
WIE EOU %OODOIOOJ INT. OFF
*
IfNE flacC
*
*
* Cumm IntERRupT canstanTS
```

PAGE 004 pVE(I)M .SAal
CNIE EOU 801001001
CHIE ESU \$11001001
CXIE EOU *OO101001
HTS EOU 200001001
ENDC
${ }^{\star}$
IfEO Flagc
\star
CNIE EQU $\% 00001001$
CRIE EOU 710001001
CXIE EQU $\$ 00101001$
RTS EOU *00001001
ENDC
PACE
ORG $\$ 1000$

* COMm HECEJVE BUFFER

RBUF RMB 60
HEND EOU *
RDATA EQU RBUF +7

- Comm TRANSMIT BUFFER

XBUF RMB 60
XEND EQU
XDATA EOU \times BUF +7

* AG. 5 "FR(JM" BUFFER

AGLF EOU
RMB 5 EI.EV. COMAAND
RMB 5 ELEV. ACTUAL
RMB 5 ELEV. ERROR
RMB 5 AL. COMDAND
RMB 5 AZ. ACTUAL
HMB 5 AZ. ERHOR
RMB 5 ACTIVE EL.CMND
RMB 5 ACTIVE AZ CMND
RMB I CIMM MODE
RMB 2 LEVEL. STATUS
RMB I AGLS MODE
RMB 1. LNCAL MNDE
AGFE EOU

* AGLS ${ }^{4}$ TOM BUFFER

AGL.T RMU 5 El.EVATION
RMB 5 AZIMUTH
RMB 1 MIDE
AGTE EOU *
*

* dishlay bufFer

DISBUF EOU *
RMB 4 DEFI.ECTION
RMB 2 ELEVAIION
HMB 2 DUMMY
KMB 2 EJ.EVATION
RMB 3 FUZE
RMB I CHARGE
DISEND EOU *
$*$

* VELOCITY BUFFER

rage 005 pvecom . Sasi	PAGE 006 PVECOIM .SAs
velbuf hmb 10	1 PPTE hmb 2 TEST PORT ENO
*	SPG RMB I SPACE COUNT
XIDLE hmb 2 ldile vector flag	ASP HMB I SPACE COUNT
	RSWD AMB I RECD STATUS NURD (4CHAR)
* fiacs	ASWD RMB I ACK STAFUS WOHD THY RMB I CONNECT TRIES
* FLAcs	DISADD RMB 1 DISPLAY ADOHESS
Fliag eou * emd text flac	DEST HMB 2 CHAR XFER DESTINATION
CJ Rmal cumm Steening	AGTRY RMB : AGLS DATA TRIES
LHFD Rmy l REO. DISC. flag	LEDSD RME ${ }^{\text {a }}$ MODE SWITCH SAVE
LIUM HMB 110 message flac	CEND EQU 2 CURENI LED SIATUS
XPASS Kma I XMIT FIRST PASS	CEND EOU
HJ RME I RECU DATA FLAC	* interrupt driven timers (100 msec)
	*
10LEF RMB I IDLE FLAC	* timer tabie (Decrement)
UBJ RME ' MAIT FLAG	TMTB EOU *
HAG KMB । HEAD AGLS	TFI RMB 1
HAC HMB I WRITE AGLS	TIMI RMB 2
ChRF RME I READY FOR RESP	
vjF hmb I valid data flac	
CONN ramb i Connect flag	
daf rimb i data avail flac	
OUTF RMB 1 WNITE FDC GET OUT	TIM3 RMM 2
FASS HMB 1 HEAD - FDC FIMST PASS	
FILLF AMB I FILL CHAR FLAG(PXMT)	TFA HME 1
VERF RMB J AGLS VERITY	TIM4 RMB 2
CTSUGY Rma $/$ Clir to Send up busy	
CTSuBy rme I CLR TO SENO UN BUSY	TFS RMS 1
IDCDEY RMB ' CARHIER DET, BUSY	TIMS KMB 2
Fend eous Walt due flac	
* CONSTANTS	
BEND RMB 2 BUFFE END POINTEH	* acres vehicle coun processor
$\stackrel{\text { B AFFEH POINTERS }}{ }$	* start vectof for poner up or reset
BRI RMB 2 RECEIVE	
AGXX HMB 2 AOLS TRANSMIT	(fRG SE800
AGRR RMb 2 AGLS RECEIVE	Strt Eau*
хВCC RME I BCC XmIT	* us es 7 F (
KBCC RMP \& BCC RECEIVE	* SETUP Hias
WERR HME I HECV ERROH CONE	JSH PIAS
RSTAT KMG ' KECV STATUS NORD	* Ci.enr buffers
TMPX RMB \mid RJ TEMP INDEX	* data butfers
HXOC RME I RECU OPER COLUE	LUX MUISEND
UldSC hma 3 SEDUENCE CODE Save	STX BEND
SAVES HMB 2 X REG SAVE (INT)	SJP CRBEF
l Saves hmb 2 Int stack save	
javex rmb $2 \times$ reg Save	- Fing bufrer
Sava rixg I Save a reg	STX BENS
Save rmb I Save b reg	
OLDCR2 RMB 1 TIMER CR" 2 NORD	jSA CILAG
\checkmark VCTI NMB 2 TIMER INT VECTOR	
VECT2 RMB 2 TIMER INT VECTUR 2	-1.DX CEND
	STX BECND
IPPTR AMA 2 TEST MORT POINTER	Ux \#3H1


```
PAGE OOO PVECOM .SA.I
10.EI EQU *
```



```
    JSN [BD
* hup request tImer (tF3)
TST TF3
    BNE IDLE2
*
    LDX #10
    STX IIM3
    INC TF3
*
* hequest rup output
JSR RĖOKUP
* READ RUP
JSA RRUP
* AGLS buSy?
    TST RAG
    BNE IOI.E2
* TEST RUP mode SW
LuA a IN2
* ExCludE I.amp TEST
    BII A *SFO
    BEO IULE2
* MASK to SIGNIFICANT DATA (BD,8S,N(OR)
    AND A "K00011000
    CMP A OLDSW
    BNE 10LE4
* TEST CLR/SET PB
    TST PIARCB
    HPL IULEZ
* MOUE OK?
    EOR A **00011000
    GNE IOLE3
    LDA A PIA2DB
    BRA IDLE2
IULE4 STA A OLUSW
* WRITE TO AGLS
IDLE3 JSR COMAGL
* clear comm acia
inie2 lida a mesu
    STA A COmC
* LITE nIULE^IND.
    JSH IDIL.
    JMP IDLEI
    page
    * Subroutines
*
* clear buffer routine
X= BUFFER START
* BENi=buFFER END
*
ClbF Clh O.X
INX
CHX GEND
BNE CLBF
RTS
Page 0IO PYECOM .SA.SI
* Process transmit
*
PXMT LDX BXI
    PXMT LDX BX
    GGT PXM4
    BMI PXM5
    LDA A O.X
    BEO PXMi
    INX
    STX 8XI
*=SOH?
    CMP A SOH
    BNE PXM2
* YES, =SOH
    CLR XBCC
    BKA PXM3
* = DATA
PXM2 TAB
PXM2 TAB
    STA B. XBCC
* transmit char
    JSR XMIT
PXM3 CLC
    RTS
* LAST Chaf
pxM1 LिA A xBCC
    JSR XMIT
    INC FIII.F
    CLC
    RTS
* TRANSMIT FIIL CHAR
PXu4 LIDA A #s20
Pxm4 LDA A #S20
    JSR XMIT
    NEG FIII.F
    ClC
    RTS
* second time around
PXM5 LON A #S2O
    JSR XNIT
    CLH FIII.F
    LDX OXBUF
    STX BXI
    SEC
    SEC
    RTS
*
* process receive
*
phec JSr recv
    BCS PRE6
    * Clear xmit flag
        Cl.C
    RTS
    PREG LUX BRI
    * CHAR = BCC?
    INC ETXF
    BEO PHEI
* NO. = DATA
```

PAGE 011 PVECOM . SA:1

CLR ETXF
 STA A O.X

INX
STX BRI

* IEST recieve status

JSK JSTS

* TEST BUFFER oVERRUN

JSK BOVR

- char = 50h?

CMP A SOH
BED PRE2

- char = ETX3

CMP A EETX
BNE TRE3
DEC ETXF
PRE3 EOR A HBCC
STA A RBCC
LlC
NTS

* Fikst char

HRE2 CLR RBCC
CLA RERH
I.DX ORBUF

STA A O.X
INX
STX BRI
INC VDF
CLC
RTS

* LAST CHAR

PREI EOR A RBCC
BNE PRE4
PHE5 LDX \#RBUF
STX BHI
CL. H VUF

SEC
HTS

* BCx ERROM
rREA LUA.A
EOR A REHR
STA A RERR
GRA PRES
- RECEIVE CHAR ROUTINE
-

recy lua a Coms
hit a HNE HECVI

* mo vata call.
I.DA a comr
ac
RIS DATA cals
* Data call retat
rECVI STA A
- READ CHAR
ion a cuma SEC
HTS
$+$

PAGE OI2 PVECOM. .SA:I

- TEST RECEIVE STATUS

JSTS PSH A
LDA A RSTAT

- PARITY ERROR?

BIT A $\$ 40$
BELO JSTSI
LUA B *SI8
EOR B RERH
STA B RERR

- oVEH RUN ERRIJR?

JSTSI BIT A S20
BEO JSTS2
L.DA 8 \#8

EOR B RERR
STA B HERR

* FRAMING ERROR

JSTS2 BIT A *SIO
BNE JSTS 3
PUL A
RTS
JSTS 3 LUA B *\$20
EOR B REPA
STA 8 RERR
PUL A
HTS
*

* TRANSMIT Char.

XMIT UA 8 COMS
BIT B 2
BNE XMITI

- NO DATA CALL. RESET RECVR

LDA A CJMR
HTS

- data call
xmiti sta a comx
RTS
*
* INHIBIT XMIT/ENB RECV

COMIX LDA A CHIE RECV INT ENB STA A (YIMC
LDA A CTMH RESET RTS
-

* INHIBIT COMM INT
comoff IDA a mCNIE
STA a cime
STA A COMC RTS
INHIHIT RECV/ENB XMIT
$*$
- PREP CNMM
comir eou *
- make sure recd car dn
coml3 LDA A COMS
page ol3 pyequm ．SAs1
BIT A＊4
BEO COMI 3
LDA A Hits
STA A CNMC
＊mait carkier up
COMII．JSH CTSU
BCC Cuml）
lua a
comiz lua b coms
BIT 8 \＃2
日EO COMI2
STA a cumx
LDA a＂CXIE Xmit int enable
STA A COMC
RTS
＊
＊test buffer overrun
＊
EOVR CPX arend
BEO BOVRI
RTS
＊ovehrun has occurred
OOVNI LDA B＂B
EOK B RERR
STA B REHR
UEX
STX BR」
RTS
＊communication poll
－
cpoil．lda a cJ
CMP A 1
BEO CPOLI
CMP A＂ 2
BEO CPOL2
＊RESET INTERRUPT
LUA A COMR
HTS
＊transmit l（x）p
CPOLI EQU
＊FIRST pass？
INC XPASS
BNE CPOLG
＊Setup message headers
CPOLII JSR SETUM
＊Smar seo．codes
JSR SSC
＊phCess transmit
CMOLIS CIR XPASS
JS：R PXMT
sCS CPOL． 5
kTS
＊SmITCh To heceive
CPOLS EOU＊
＊clear heceive buff
LDX MABUF
JSN CLRy
ldx mabuf

PAGE OIA PVECOM ．SA\＆I
STX 8 日 1
－SWITCH COMM．INT
JSR COMIX
lon A 12
STA a CJ
HTS
＊
＊receive Loxip
CPOLI 2 EQU＊
$+$
IFNE FIAGC
＊test carhien
L．DA A MCLED3
JSR LEDOFF
JSR TUCD
bes cpol． 10
LDA A camk
HTS
ENDC
＊
＊PR（）CESS heceive
CPOLIIO L．DA A MCLED3
JSR LEDON
JSR PREC
BCS CPOLT 7
RTS
－Smitch to unpack
CPOLT L．DA A 3
STA A ©
JSR COMOFF
LDA A CleED3
JSK LED（）FF
RTS
${ }^{*}$
＊setup message routine
SETUM EOU．
＊TEST RFD flag
TST ZRFD
BEO SETUM।
＊SETUP service message
LUA 8 ＂s 44
JSH SSM
－TEST I．D．messsage
SETUMI INC ZIDM
BNE SETUMZ
－SETUP select
LUA B \＃542
JSR SSLM
SETUM 2 CI． ZIDM
＊TEST READY FOH RESPONSE INC 2RRF
BNE SETUM3
＊SETUP heady for response
LUA B＊\＄46
JSN SIM

```
rage Olb pVECOM .5AsJ
* SETUP xmit pointeR
GETUM3 CLR ZRAF
    I.DX *XBUF
    STX 8xI
    RTS
*
carmier up delay
*
CTSU EOU *
    TST CTSUBY
    GNE CrSuI
* SETUP timeout vectur
    LINX CLU
    STX IIM2
    INC TF2
    INC CTSUBY
* TEST CTS-UN
CTSUI TST TF2
    BEO CTSU2
    CLC
    RTS
- INHIbIT TImER
CTSU2 CLR CTSUBY
    SEC
    HTS
*
* carkier.domn delay
CTSD EOU .
    TST CTSDBY
    ONE CTSUI
* SETUP tImEout vectur
    LWX CDU
    STX TIM2
    INC TF2
    INC CrsDBY
* TEST CTS DUNN
CTSD1 TST TF2
    4EO CTSU2
    cl.c
    HTS
* INHIbIT TImER
CTSD2 CLH CTSDGY
    SEC
    RTS
*
* test cahhieh detect
*
INCD EOU *
    TST TDCOBY
    BNE TDCD2
* SETUP TImeont vector
    I.DX IDIIEI
    STX VECTI
    Lux **
    STX XIDI.E
    LUX "(CuT/2-1)
    JSR SETI CARRIER DETECT TIME
    INC rUCUBY
    page Olo pyecim .Sasi
    * TEST DCD UP
TDCO2 I.DA a coms
    BIT A #S4
    REO TDCDI
    LDA A COMR
    clc
    RTS
* Inhibit IImer
TUCDI JSR CLRI
    CL.R TDCDBY
    SEC
    RTS
*
* UNPACK h(OUTINE (CJ=3)
*
C3 EOU*
* TEST ERROR flag
    TST RERR
    bNE C36
* UNPack received data
    LDX mRBuF
    L.DA A O,X SOH
    ADD A 6,X STX
* SOH + STX OK?
    cmp A #3
    BEO C3I
* NO
    LDA B #$28
    EOR B RERR
    STA B RERR
C36 JMP RO
* TEST STX+1 (DATA/N(O-DATA)
C31 CLR 8
C31 CLR 8
    LDA A 7. X
    BEO C32
    I.DA 8
C32 STA H RJ
* TEST OPER. CIDE
    CLR B
    LDA A 4,X
    AND A "S 38 mask ack/nak
    BNE C33
    LOA B %
C33 EORB RJ
STA H HJ
* test Seduence cude
    LUA A 2,x
    CMPA RLSC
    BEO C34
    LOA B |
    EOR B RJ
    STA B RJ
C:34 STA A RLSC
* FIX HJ TOINDEX
    I.DA A RJ
    NND A %7
    STA A TMPX
```



```
rage Olg rVECOM .SAas
    TST DAF
    BNE R22
    * SET READY RESP.
    CIR ZRHF
    DEC ZRRF
    *22 CLH DAF
    * SETUP INFO mEss.age
        LuA y *$40
        JSR. SIM
        JMP XIT
    * TESI IF DATA REQUEST
    ~21 CMP A "2
    BNE R2ER
    * SETUP DR aCK mogD
        LDA A MSOF
        STA A ASNU
    * setup data message header
        LDA B %S40
        JSR SUMH HEADER
    * SETUP data hepIRT
    JSR SUR
    * setup data report trailer
    JSR SDRT
    * SET data flag
        CLR DAF
        INC DAF
        JMP XIT
    *
    * Pricess service messaces
    * terminate
    m24 LDA A HXIC
        cmp a &% 3
        BNE R25
    * SET IDLE flag
        CIH IOLEF
        INC IDLEF
~26 1.DA B #s40
    JSR SSM
    JMP XIT
* SEI_ECT?
~25 CMP A "$2
    HEO R26
        * hequest for disconnect?
        CMP A S4
    BNE R27
* set flag foh next pass
    LiNa a "2
    STa A ZRFD
    JMP XIT
* DISCONNECT?
~27 CMP A "s6
    BNE R28
    JSN DISCON
    JMP L(X)P
    * No) INSThuction?
H28 CMP A "so
    BEO H26
* elr(dr processim
    PAgE O2O PVECOM .SASS
    R2EH LDA A #S28
        STA A RE RR
        JMP RO
    *
    * HJ = 5.7
    H5 EOU *
    R5 EOU *
        JSR I.EDIFF
        JMP XIT
    * RESPONU only,already phocessed this SC
    Ro i.ma a mCl.EDS
        JSR LEDIIFF
        I.Da y #S40
        jSR SIM
        JSR SIM
*
* setur walt message
*
WAIT EOU *
* bilng up cahhier
    LDA A #HTS
    sta a comc
    * hol.d to delar
    Lux #O
    *al dex
    MAN DEX
    * ger message
    I.Dx *SWM
    STK SAVEX
    STK: SAVEX
    waz lux savex
    1.DA A 0,X
    INX
    STX SAvEX
    I.DX MCOmC
    JSR. A(O)L
    TST A
    TST A MA2
* tURN off carrier
    LuA A acnie
    STA A (X)MC
    STA A ONMC
    RTS
SWM FCB SOH,IMFC,SC,AC,SA4,IC,STX,ETX,O
*
* setur servicle message
SsM LUX "SMH
    JSR XFEH
    RTS
SMH FCB SOH,SMFC,SC,AC,NOC.IC.STX,ETX,O
* thansfer daja from stack array
* To X array
xFER stx savex
    L.DX #XBUF
    STX DEST
```

```
HAGE 02I pVECOM .SASI
XFEH2 LDX SAVEX
    IDA A O.X
    INX
    STX SAVEX
*
    LDX UEST
    STA A O,X
    INX
    STX UEST
    TST A
    BNE XFER2
* Clear hest of buffer
JSR CLXB
* SET OPER CNUE
    LDX EXBUF
    STA B 4,X
    HTS
```



```
* SETUP INFO MESSAGE
SIM LUX IMH
    JSR XFER
    RTS
I WH FCB SOH,IMFC,SC,AC,NOC,IC,STX,ETX,O
* SETUP dATA mESSAGE HEADER
SUMH LUX 首MH
    JSR XFER
HTS
OMH FCB SOH,IMFC,SC,AC,NKSC,IC,STX,O
* SETUP SELECT MIESSAGE
SSI.M I.DX #SSH
    JSR XFER
    *TS
*
SSH FCB SOH,SMFC,SC,AC,MOC,IC,STX
FCH E[X.O
* stup nak responst
jNH LUA A RERR
* EXTHACT NAK bits
    AND A "S38
    STA A RERR
* RECOVER HEADER
    LUX EXBUF
    I.DA A 4.X
I.DA A 4.X HAK BITS
AND A #S47
* INSENT HERR mESSACE
    EOH A RERK
    STA A 4.X
    HTS
*
*
PAGE 022 PVE(X)M .SA&I
* SWAP SEOUENCE CODES (41-42)
*
SSC LDX #XBUF
    I.DA A Ol.DSC
    I.DA A OL.DSC
    EOR A W
    STA A.2.XX
    STA A.2, X
    RIS
RIS
* SETUP TIMER *I (INTERRUPT)
*
SETI LUA A OLDCR2
SETI LUA A
ORA A #I 
ORA A "I' 
STA A TCR2
* STORE TIME. & START
LDA A TSTS
LDA A TSTS 
STX IID
STX TID 
RTS
*
* clear tImer (I (INTERRUPT)
*
ClRI lDA A olocrz
ora a il
STA A OLDDCR2
    STA A OLDCR
* DISABIE INTERRUPT
LOA A #TIII
STA A TCRI3
RTS
*
* SETUP TIMEH *2 (INTERRUPT)
*
*
SET2 I.DA A #T2IE
    STA A OLDCRT2
    I.DA B TSTS
* STOKE TIME & START
* STORE I
    STX I2D 
    RTS
*
* CIEAR TIMER (2 (INTERRUNT)
*
clR2 lOA A #T2II
CLR2 LDA A #T2I
    STA A OLUCR
    RTS
* RIS
* SETUP TIMER % 3 (INTERRUNT)
* SETUP TIMER * 3 
    AND A #x|ll|lllo
    STA A OLDCR2
    STA A TCR2
* SETA TCR2 & sTAHT
LOA a TSTS
I.DA A TT3IE
```

```
PAGE 023 HVE(O)M .SARI
    STX IJL
    STA a TCR! 3
    HIS
* clear tlmer #3 (INTERrupt)
*
CLK3 LUA A OLUCR2
    AND A ** 1.1111110
    STA A OLDCR2
    STA A TCR2
* DISABIE INTERRUPT
    LDA A MT3II
    STA A TCRI3
    HTS
*
* intehrupt service routine
*
ISER EOU*
* test time
    STS ISAVES
    LDA A TSTS
    BPL ISERI
* TEST CLIOCK (TIMER $3 - JOO mSEC)
    81r A.44
    BEO ISER2
    LOX T30
* scan cluck table
    I.Dx #rmTB
    LDa y us
    JSH SCAT
* upDAIE dISPLAYS
    Lox uISbuf
    JSR SDIS
    HTI
* TEST TIMERS
ISER2 BIT A *2
    BEO ISEEH3
* Fix retyRn via vectorz
LOX T2D
* TEST If mait TIMER INT
    TST UBJ
    BEO ISERIA
    INC WAITF
* test lf acls busy
    IST RAG
    BNE ISERI7
    TST NAG
    BNE ISEHIT
CLH WAITF
* SET malt response
    JSR MAIT
ISERI7 RTI
ISERI4 JSH FRET2
    JSH ClH2
    RTI
ISER3 HIT A MI
    BNE ISEH4
    H5I
```

page 024° pVecom . Sas

* fix retuhn via vectoh *I
1 SER4 JSR FRETI
JSA CLHI
RTI
${ }^{*}$
* test comm interrupt
ISERI TST COMS
BPL ISERS
- comm poill
JSR CPOLL
RTI
*

\star TEST AGLS COMM |
ISERS SST AGS
BPI. ISER6

* test heceive
lua a has
HIT A"I
bEO ISER7
- PRocess heceive
JSR AREC
RTI
* process transmit
ISER7 HIT A \#2
BNE ISERB
* TEST DCD INT.
BIT A 4
BEQ ISEHIS
* WAS I READING3
TST: HAG
BEO ISERI6
JSR RAGL
LUA A AGH
HTI
- WAS I Writings
ISERIG TST MAG
BEO ISERIS
JSH WAGL
LDA A AGR
RTI
* Reset int
ISERIS LUA A AGR
HTI
 * process transmt
ISERB JSH AXMI
RTI
*
* test stanuby switch
* TEST STANUBY SN
ISERO TST PIAZCA
BPL ISERI3
* set uisconnect flag
IDA A 1
STA A ZRFD
LDA A PIA2UA
UTI
RTI
- TEST CRT busy Lockuur
* TEST CRT busy lockout
[SEHI 3 TST CBSY
BEO ISER9


```
    PAGE 027 PVECOM .SA&I
    ANO A #KOIllOOOO
    BNE AREC3
    RTS
    ARECI CLR CBSY
    clh rag
    - INHIBIT INTERKUPT
    LDA A #NIE
    STA A AGC
    RTS
*
* INPUT FROM ACIA
AuI I.DA A 0,x
    BIT A #
    BEO ANII
    LUA A 1,X.
    SEC
    HTS
    AOII CLC
    RTS
    * TEST CR/LF
    *
TCHLF CMP A *SOD
    BNE TCRI
    SEC
    HTS
    *
    TCRI CMP A #SOA
        BEO TCHE
        C.C
    RTS
    *
    TCR8 SEC
        RTS
    *
    * agls Transmit
    *
    AXMT CLLR VERF
    LDX APTR
    LDA A O,X
    ADD A #S30
    INX
    STX APTR
    L.DX #AGC
    JSH A(NO
    BCC AXMTI
    I.DX APTH
    CHX ACTE
    BEO AXMII
    HTS
    AXMII CLH CBSY
    CLH NAG
    INC VERF
    * INHIBIT INTERRUPT
    LUA A MNIE
    STA A AGC
    HTS
NT
```

PAGE 028 PVECOM .SABI

- TEST poht thansmit

IPXMT IST ASP
BEO TPXMI
DEC ASP
TPXM4 LDX TPPIR
CPX TPPTE
BEO TPXM2
LDA A $0, x$
INX
STX TPPTH
TST SPC
BEQ TPXM 3
ADD A.\#S 30
TPXM3 LDX \#TPC
JSR AOO
RTS

* FIX space

TPXMI I.DA A SPC
BEO TPXM4
STA A ASP
LDA A tis 20
BRA TPXM3

* LAST CHAR-INH XMT /ENB RECV

TPXM2 LDA A \%RIE
STA A TPC
I.DA A TPH

RTS
$+$

* TEST pohr heceive
*

IPHEC LUX *TPC
JSK CRI.F
JSK AOI
BCC 「PREI
JSR AOOI.

* - R? (HECV BUFFER)

TPREJ CMP A FR
BNE TPRE 2
LOX MRBUF
STX TPPTK
LDX \#REND
STX TPPTE
CL.R A

BRA TPRE 3

* $=X$? (XMIT BUFFER)

TPRE2 CMP A \# ${ }^{\prime}$
BNE TPRE4
I.DX \#XBUF

STX TPPTR
LUX \#XEND
STX TPYTE
CLR A
BRA TPRE3

- al (ACLS BUFFEN)

TPHE4 CMP A \#-A
BNE TPRES
LDX ACLF
STX TPPTR

```
race 029 PYECOM .SA:I
I.DX #AGTE
STX TPPTE
LUA A #'S
BRA TPHE3
* =F? (FLAC BUFFER)
SPRED CMP A.#'F
GNE TPREG
Lix mFLAG
STX TPMTR
LDX #FEND
STX TPPIE
I.DA A #1
* Setup space count
IPRE3 STA A SPC.
STA A ASP
* vUTPUT CR/LF
    I.DX TTPC
    JSk CHLF
* INH rEC/ENB XMIT
    I.DA A #XIE
    STA A TPC
IPREO RTS
* output jo acila
A(X) PSH A
LDA A 0,X
BIT A *2
Nul. A
BEO A(N)]
STA A I,X
SEC
HTS
A(x)I CLC
    NTS
* ch/lf houtine
*
iHIFF LDA A *SD
    JSR AOOL
    IITA a #SA
    JSR A(M)L
    RTS
* l.cop on outrut
A(x)L JSH A(O)
    BCC A(K)L
    HTS
*
* thansfer recd message go cht
xFRMSG LUX mRDATA
STX TPMTR
* FINu END of message
AKMSI I.DA A 0,X
    cme A metx
    #E2 XHMS2
PAGE 030 PVECOM .SA:1
```

INX
BRA XRMSI

* FIX END adDRESS

XHMS2 STX TPPTE
CLR SPC
CI.R ASP

* output cralf

LDX ITPC
JSR CRI_F

* INH REC/ENB XMIT
lda a oxie.
STA A. TPC
RTS
*
* SET mait timer
*

SWAIT LDX WWaIT
STX VECT2
LOX (MT/2-1)
JSH SET2
CLR UBJ
INC UBJ
RTS
$+$

* Clear wait timer
*

CWAIT JSH CLR2
CLH UBJ
RTS
*

* transfer received data
*

TRAN EOU *

* SET mait Timer

JSR SNAIT

* STRIP status

JSA 515

* TEST EIAE order
cmp A 1
bNE THANI
JSR PFO
bHa THAN2
- TEST CHECK FIRE
trani cmp a $\quad 8$
8NE THAN3
* process check fire

JSH PCF
bRA TRANS

- EChorback recieved data
* SETUP data mSg header
tranz LDA e $\$ 40$
JSR SOMH
* Setur data message

JSH SDM

* setup data message thaller

JSR SDMT

* cleah mait

JSH CNAIT

Page 031 Pyecom .Snsi		PAGE 032	PVECOM	.SA 11
RTS		OEC H		
* test fire command		BNE RST		
IHAN3 Cmp a 2		HTS		
gne than				
JSi PFC		* proces	fire	
BHA TTANS				
* TEST READY REQUEST		PFO EOU	SCII ON	data
: KAN4 CMP A 4 bNE TiANG		LDA B		
JSR PRR		Lux RLI	T 4 +4	
* SEnu data repphet		JSR SAS		
* Setur data messace header		* TRANSF	R DEFLE	10N
Irans lda B - 540		JSH XR		
JSR SUMH		* SET TIM	EOUT	
* SEtup data report		LDX \#30		
JSN SDH		STX TII		
* setup uata report trailer		INC TF		
JSR SOHI		* TEST	lio rup	data
* cleah mait		PFO) TS	piazca	
JSR CNAIT		BMI PFO	data	
HTS		- TEST	me UP	
* CAN- [decode inak)		TST TF		
THANO JSH Cmait		- TIMEPROU		FER DE
CAR TMPX			- trans	
INC AERA				
HTS		- head	TRANSFE	RUP
* Sthip status		PFO2 ${ }^{\text {Cla }}$	TFI	
*		JSH RR		
sTS I.DX \#RDATA		* TRANS	R RECU	ata
Lon ${ }^{\text {a }} 4$		* BUFFE	dor	
CLR HSWO		PFOT JS	xrdo	
STS2 LIDA A O,x		* WRITE	data ro	cls
SUB A \#S 30		JSR ${ }^{\text {a) }}$		
EOR A RSND		BCC PF		
STA A MSWD		- Nak F		
		JSA Cm		
GNE STSI		INC HE		
STSI INX		RTS		
ASL HSNU		- output	Data to	FUZE
BHa STS2		PFob JS	OFD	
heset status		$\begin{aligned} & * \text { TURN } \\ & \text { LDA A } \end{aligned}$	GUACK FO	LITE LITE
heset starus		JSR LE	N	
asts lida a asno fhom proc routine	ack status	JSR H)	IN	
(t)m A		* malt	dr ack	
STA A ASND		PFO3	A ${ }^{\text {a }}$ OSI	Fo
- XFER TO XMIT BUFFER		JSR TS	. ${ }^{\text {H }}$	
Lox "xdata* 3		BCS PF		
LUA ${ }^{\text {O }}$ at		- TEST	UPDA	
rSTS2 Cli.n A		TST TF		
ASH ASnD		BNE PF		
HCCHST				
INC A				
MSTSI ADU A \#S30		$\begin{array}{cl} \text { STX } \\ \text { THC } \end{array}$		
STA O A $0, x$		- HEOUE	RUP U	ate

```
vage 033 rVECOM .SAss
    JSK REONUP
    JSR Rrup
    GHa prio3
* TURN OFF HORN & LITE
mF(04 LJa a mGuack fol lite dISab
    JSR L.EDJFF
    JSR AOKNIF
* SET ACK SIATUS WOHD
    lda a afoamD
    STA a ASwD
    his
*
* transfer tu hef unit proc.
snuP EOU *
* mesjace lount
LUA B "4
* SEND SIX
    lda a #l
    STA A (TT3
    JSh XhUX
* Send message
    LUX HRUATA+4
XHUP4 LOA A O.X
    ADU A #S30
    STA A OT3
    JSR XRUX
    INX
    DEC B
    BNE XHUP4
* SENU AGLS MODE
I.DA A AGFE-2
    ADU A #$30
    STA A OT3
    JSH XRUX
* SEND ETX
    lua a u3
    STA A OT3
    JER XHUX
    HTS
*
* STRUBE AND mAIT DATA ACCEPT
XRUX EQU *
* SEND data ready (CB2)
    LUA A PIA3DB
    JSR STHOB3
* malr Hoh dara accepTED (CBI)
huUXI rSI PIA3CB
    3HI. XhUXI
    NTS
*
* neouest rup data
* SE|du EOU(-j)
*
MEORUR EQU *
- SEND SİX
LuA A 1
```


PAGE 034 PYECOM .SA:I

STA A OIJ
JSR XRUX

- SEND ENO

LDA A \% 5
STA A OT3
JSH XHUX

* SEND ETX

LDA A 3
STA A OT3
JSR XRUX
HTS
*

* TRANSFER CHAR STRING
* $X=S O U K C E$. DEST $=$ UESTINATION, $8=$ CHAR CNT
\star
TCS STX SaVEX
lCSI LUX Savex
I.DA A $0, X$

INX
STX SAVEX
\star
LDX DEST
STA A O.X
INX
STX DESL
UEC B
BNE TCSI
HTS
*

* TRANSFER DEFLECTION TO AGLS

THA LUX AGLT+5
STX DEST
LDX :RDATA+4
LUA H "4
JSH TCS
CLR O.X
KTS
*

- SET agls STATUS wohd
* O=NOHMAI.
- $1=8 \mathrm{D}$
- 2=8S
- 3=8D SET
* 4=BD CLR
*

ASTS EOU *

- READ RUP mide

CLH B
LUA A IN2
COM A
AND A \#\#11100000
BNE ASTSI

* TEST HAE. DEFIECTION

INC H
I.DA A IN2

CIM A
BII A GUDFM

PAGE 035 PYECOM .SAS.I
be 2 ASTS 2

- TEST BASE DEF . SET

TST PlA2CB
BRL ASTSI
LJA A PlazDB
live o
INC B
BRA ASTSI

- TEST BORESIGHT

ASTS2 INC B
BIT A MBSTM
BEO ASTS 3

- TEST BASE DEF CLEAK

TST PIA2CB
BPL ASTSI
LUA A PJAZUB
INC 8
INC B

- SET STATUS N(ORD

ASTSI I.DX AGL.T+10
STA B $0 . x$
ASTS3 RTS

* READ \& TRANSFER RUP dara
*

KHUP EOU *

* TEST DATA REQ (CAl)
nHUPI [ST PIA3CA
BPL RNUPI
* RECEIVE DATA
kRUP2 LDA A IN3
* TEST STX

CMP A 1
BNE HKUP 2
LDA B 4
I.DX UAGLT+5

* SEND DATA ACCEPTED (CA2)

HRUPO LDA A IN3
JSR STROA3

- TEST FOR DATA CALL (CAI)

HRUP4 TST PIA3CA
BPL RADP4

- get vata
nRUPS CIR A
LDA A IN3
GEO HRUPS
- - ETX
cmp a 3
BEO KHUP 3
* GET DATA

SUB A 530
STA A $0, x$
INX
UEC B
BNE KRUPG

* Setur to gef display data Lux wisbuf CU. H

PAGE 036 PVECOM .SAS\&
GRA PRUPG

* SEND DATA AOCEPTED (CAz)

RRUP3 JSK STROA3
LDA A [N3
RTS
*

- transfer réco data buffer
-

XRDB EOU *

- XFEH ELEVATIGN TO acls

LDX *AGLT
STX DEST
L.DX ERDATA +8

LDA B \#4
JSR TCS
CLR 0.X

- SET AGLS mode

JSH ASTS

- SETUP DISPLAY BUFFER
* DEFLECTION
I.DX WDISBUF

STX DEST
LUX AGLT+5
I.DA 8 \#4

JSR TCS

* El.EVATION.FUZE, CHARGE

LDX OUISBUF+4
STX DEST
LDX MRDATA +8
LDA B :2
JSR TCS
-
LDX NUISGUFi+8
STX DEST
LDX "ADATA+10
UAA B * 6
JSK TCS
KTS

* wRITE DATA TO AG.S
*

WAGL JSR ASTS
CLR CUSY
INC CBSY

- SEND "R"

LDA A *\$20
LUX \#ACC
JSR ACKLL
LDA A A-R
JSH AOXKL

- InITIALIZE poInters

UXX aGLT
STX ArTh

- SET flagos

CLR A^{\prime}
sta a kag
INC A

```
rave 05% HVecim .SAsI
    SiA A mag
SIANA XMIT/INH HECV
    LUA A XIE
    STA A MGC
    I.DA A AGR
    HTS
*
*
LEDON EQU *
    LOX LEUUP
    JSR LEDFIX
    HTS
*
LEDIJFF EOU *
    LUX LEDDN
    JSH LEDFIX
    RTS
*
LEDUP EOU *
    TST B
    GNE LUPI
*
    ORA A LEDWD
    STA A LEDND
    HTS
LUPI OKA A LEDWD*I
    STA A LEDND+I
    NTS
    *
    LEDON EOU *
        TST H
        BNE I.DNJ
        com A
        ANU A LEUMO
        STA A LEDND
        RTS
    *
    LON1 COM A
        AND A LEDWD+1
        STA A LEDNO+I
        RTS
    * FIX LEO NORU
    1.EDFIX EOU *
        CLR B
        TST A
        BMI LJNI
    * LON ORDER
        JSR O.X
        RTS
        * hi cmueir
PAGE 058 PVE(Y)M .SA:1
LONI AND A #S IF
    INC H
    JSR O.X
    HTS
* SERVICE LEUS (UATA-ADDR)
SIED EOU *
* ENABLE CHIP SELECT CB2 HI
    I.DA B %001I II.10
    STA B PIAZCB
*
STX SAVES
LDA B %l
* oUTPUT TO LEDS
    i.na a Saves
    AND A #SFO
    AND
    STA A OT2
    STA A OT2
JSR STROBE2
*
    LDA B}
    ASI. SAVES
    ASL SAVES
    ASI. SAYES
    ASL SAVES
    ASL SAVES
    LuA a SAVES
    ABA
    STA A OT2
    JSR STHOB2
*
I.DA & %
    LUA A SAVES+1
    AND A NSFO
    ABA
    STA A OT2
    STA A STHOB2
*
    LDA & %2
    ASL SAVES+1
    ASL SAVES+1
    ASL SAVES+1
    ASL SAVES+I
    LUA a SAVES+1
ABA
STA A OT2
JSH STHOH2
HTS
*
* TEST SWITCA STATUS
* C=SET IF SM ON& C=O IF OFF
*
[STSN AND A IN2
BEO TSTSI
    BEO TSISI
    LLC
    RTS
    HTS
```

```
PAGE 039 PYECNM .SA:1
*
* strobe output pul.SE
* piaza
*
STkiHz l.DA A **00110iol
    STA A PIA2CA
    M0P
    LDA A #*00111101
    STA a plazCa
    RTS
*
* strobe output pulse
* HIA38
*
stho83 LDA A #200H0I00
        STA A PIA3CB
        NOP
        LON A "x00|!1100
        STA A HIA3CE
        HTS
*
* strcoe dutput pulse
* pla3a
Stron3 lon a m00110100
    STA a plajca
    MHP
    l.DA A *x001|lloo
    sta a plajca
    HTS
* process fire command
PFC EOU *
* turn on fire indicator
        \mathrm{ Wa a flihe fikE LIIE ENB}
        JSK LEDIN
        JSR HORN2N
    * wait for ack
    * WCI LDA A #FASm FC ACK SW mask
        jSR TSTSW
        &CC PFCl
        * TURN ofF fire indicator
        LDA A FIRE FIRE LITE DIS
        JSN LEDXIFF
        JSH H)HN2F
    * SET acx status mord
        Lua a afcamu
        STA A ASmD
        HTS
*
    * neal agls data
HAGL CIK CHSY
    H:IC CBSY
    - SEND *T*
    Lua a "OT
        LuA A "OTT
```

PACE 040 PVECIIM .SABI
JSR ACKLL
* initialize minters
LDX AGLF
STX APTR
- SET FI.AGS
CLR A
Sta a mag
INC $\begin{gathered}\text { a }\end{gathered}$
STA A RAG
- ENB HECV/INH XMIT
La a \#nle
DA A "HIt
STA A AGC
I.DA A AGK
RTS

* transfeh hecd buffer to xmit
*

XRX LDX \#XDATA+4
STX DEST
LDX \#RDATA+4
LJA a ${ }^{\text {an }} 2$
JSR TCS

* ADO ASC II to data
* ADD ASC 11
LDX MDATA+4
JSH MASC:
RTS
* TRANSFER ngls -FROM- TO XMIT
$*$
aotx LDX exdata+15
STX DEST
LOX ACEF
LDA B \#30
JSR TCS
JSR TCS
LDX EXDAT
STX DEST
1.DX *AGL.F+41
LDA B \#3
JSR TCS
- ado ascil to data

I.DX \times XDATA 15
JSR AASC
- Fix ag.s erh signs
LDX XDATA +25
LOTX2 LDA H \$ $\$ 20$
AGTX2 LDA 甘 $\$ \$ 20$
I.DA A O.X
CMP A © 531
BNE AGTX3
BNE AGTX3
agTX3 STA 8 o.x
*CPX *XDATA+25
CPX
BEO AGTXI
AGTA
RTS
AGTXI LDXX XDATA+4O
bua AgTX2

```
ragE OAl PVECOM .SASI
HTS
- STRIP ASCIl FR(IM CHARS
sasc lua a o.x
    SUH A #S30
    STA A 0.X
    INX
    DEC B
    gnE SASC
    RTS
*
* AuU ASCIJ TO CHARS
AASC LUA A 0.x
    ADD A #S 30
    STA A 0,X
    INX
    DEC 8
    BNE AASC
    HTS
*
* PROCESS REAOY KEOUEST
^HK EOU *
* TURN ON READY INDICATOR
LDA A #HEUY READY LITE ENB
JSR l.EDON
* TEST VELOCIMETER REAOY
    lua a VLh
    I.DA A VI.S
    GIT A #4
    GNE PRHI
* head data
JSH HVEL
* TEST DATA
    JSR TVEL
    BCC PRR
- waIT F(JR ack
!HKI LUA A #RRSM RH ACK SN MASK
    JSR TSTSM
    HCS PRR2
* TEST RUN upDATE
    TST TF3
    GHE PHRI
*
L.jx #10
    STX TIM3
    INC TF3
* REQUEST RUP UPDATE
    JSH NEOHUP
    JSH HNUP
* REAU MNLS
* riNESENT?
    LJA A AGK
    LuA a AGS
    UIT A $4
```

PAGE OA2 HVECOM .SA\&
BNE PRRI
JJA RAGL
PKR4 TST RAO
BNE PRR4

* TEST auto update

LDA A AGFE-I
CMP A 2
BGE PRR3

* TEST DEFERRED waIT

TST WAITF
HED PRRI
JSR WAIT
BHA PRRI

- auto update xfer new data

PRH3 JSR C)MAG.

* TEST DEFERRED mAIT

TST WAITF
BEO PRAI
JSR WAIT
BRA PHRI

* TURN OFF READY INDICATOK

PRR2 LDA A EREDY READY LITE DIS
JSR LEDXFF

* SET ACK STATUS noud

LDA A mRRAWD
STA A ASWD
RTS

* setup data message
$+$
SUM EOU *
* THANSFER RECD DATA TO XMIT

JSK XRX

* TRansfer status

JSF RSTS
HTS
*

* setup data heport

SUR EQU *

* TEST AGLS PRESENT

LDA A AGR
I.DA A AGS

BIT A \#4
BNE SUMZ
I.DA A NE

STA A AGLF

* WAIT TILL NOT BUSY

SOM 3 TST RAG
BNE SUM3

* RENUEST aG.S data READ

JSR RAG.

* malt complete

SDMI TST RAG
BNE SOMI

* VEhIFY GOON READ
I.DA A AGI.F
cmp A É

hagie 043 PVECOM .SAPI	Page 044 PVECOM .SAz 1
BNE SDM2	Sta a hiazca
- HECD NAK FROM AGLS-RECIVER	* zero displays
JSR COMAGL - Thansfer status	*JSK CDIS
SIM 2 JSH RSTS	* hiaj - ref unit proc
* THANSFER AGLS TO XMIT	* A=Input ${ }^{\text {a }}$
* JEST VELOCIMETER	- B=OUTPUT
	* UE-GLITCH Caz,caz
	$1 . \mathrm{DX} \mathrm{PPIA} 3 \mathrm{Da}$
* Fill vel buffer	
JSH FVEL	
* TEST FIRE CMND Resp	- A = $\mathrm{NPUT}^{\text {a }}$
* SKIP VEL READ IF=	CIR $0, X$
lun a xuatat2	- 8 anutput
Cur A Ms 30	I.DA A /SFF
bea Sumo	STA A 1.X
I.DA A VI.R	- Control
Lua a vis	1.DA A **00111100
BIT A M 4	STA A ${ }^{\text {S }}$ 3. \times
BNE SDMS	* cleah cal .cbi
* READ Yelolocimeter	LDA A $0, x$
* JSA RVEL ${ }^{\text {T }}$	LDA A 1.x
SUMO JSR XYEL	
* head temperature	* TIMER
JSK HTEMP	LDA A T311
HTS	STA A TCRI3
	LDA A T2II
* Setur data msg thailek	STA A TCR2
sumt Lux exparatio	STA A OL.DCR2
LDA A tetx	LDA A TIII
STA A $0 . x$	
Cl.k 1.x	*SET TIMER 3 PERIOU (100 MSEC)
HTS	JSR SET3
* setup data report trajler	
sOHT LUX \#XDATA+48	* Comar acia
S.DA A 咬TX	LDA A
STA A A Oox	STA a comm
CLH $1, x$	Sta a acnie
HTS	sta a crimc
	* agls acia
* Serup pias	loa a ${ }^{\text {c }}$
* rial-pgop temb	STA A AGC
rias Lux mialua	STA A AGIE
I.Da a es 36	SIA A AGC
JSh SeTup	
- piaz-displays a controls	* tiest pont acia
LDX \#lazda	STA A TPC
-ja a assc	I.ina a orie
JSR SETUY	Sta a tre
* SEETUP CAI TO INTERKUPT	
LuA A "x00111101	- fuze setter acia

```
    race 04b pyecom .SA&1
    LDA A WS43
    STA A FSC
    LUA A #NIE
    STA.AFSC
* velocimeter acla
    LDA A 3
    STA A VI.C
    LDA A #%00001101
    STA A VLC
    * DISABI.E INTERRUPTS
    SEI
        NOP
        HTS
    *
    * Setup pias
*
SETUP CLH 2.X EA DO SEL.ECT
    CLR 3.X CB UD SELECT
    I.DA B #SFF B SIDE-dUTPUT
    STA B 1,X 8 SIDE IUTPUT
    CLR O.X A SIDE=INPUT
    STA A 2.X CA OUPUT & CONTROL SELECT
    STA A.3,X CB OUTPUT & CONTRIL SELECT
    CLR 1,X ZERO OUTPUT
    LDA A 0,X RESET
    LDA A 1,X RESET
    HTS
*
* INITIALIZE CONNECT
#
ICON EOU *
* SELECT mESSAGE flaG
    JSR CLRI
    CLR ZIDM
    DEC 21DM
* Clear connect flag
CLH CONN
* TImeout retuhn vector
    LDX IICONX
    STX VECT2
    * THANSMLI BUFFER POINTEK
    LUX axBUF
    STX BXI
* TEST 10 THIES
    UEC TRY
    BEQ ICONI
    HTS
ICONI LDX **
    JMP IDI.E
*
* CONNECT PROCESS
GONR EOU *
* SET PASS flag
    CLR XPASS
    DEC XPASS
    * start clock
```

PAGE 046 PVECOM .SABI
L.DX *(C)NTL/2-1)

JSR SET2

* SET Flag CJ CLHCJ
INC CJ
- ENB XMIT/INH RECV

JSR CIMIR.
RTS

* CONNECT TEST
*

CONT EQU *

* TEST ACK NAK
- STOP TIMER

JSR CLR2
I.DA A RJ

CMP A \#2
BGE CONTJ

- NAK IFI OR O

JMP ICONX

* ACK IF 2 UR 3

CONTI INC CONN

* TURN ON. COMM/OFF STANDGY

LDA A ${ }^{\text {LCOMM }}$
JSR LEDON
LOA A USTBY
JSH LEDOFF

- flag ready for response

CLR ZRRF
DEC LRRF
JMP KIT
*

* head veincimeter
-

RVEL EOU *

* WAIT ON CHAR

RVELI LDX VLS
JSR AOI BCC HVELI

* malt on leauing lf

CMP A
GNE HVELI

* GET uata

LUX \#VELBUF
STX SAYEX
RVEI. 2 I.DX MV.S
JSH AOII
HCC RVEL2

* store char

LDX SaVEX
STA A O,X
INX
STX savex

- GET OUT ON CR

CMP A
BNE RVEL 2
HTS

```
FMGE U47 PYECOM .SASI
* IESI veLIocImETER FOR O
* ceclor. not reset
* C=SET, RESET
IVEL LUX *VELBUF*2
    LDA B #5
IVELI LDA A 0.x
    cmp A #S 30
    BNE TVEL2
    INX
    DEC B
    BNE TVELI
    SEC
    NTS
*
IVEL2 CLC
    HTS
* Thansfert velocITY
*
XVEL LUX EXDATA+4
    STX DEST
    LDX UVELBNF*2
    I.DA B $5
    JSR TCS
    RTS
*
* FILL VEI_OCITY BUFFER (=530)
*
IVEL LOX NVELBUF
    LDA B |lO
    LDA A #s 30
rVEI.I STA A O.x
    INX
    UEC B
    BNE FVEL.I
    HTS
* READ TEMPERATURE
*
MTEMP EQU .
* SETUP bUFFEH PTRS
I.DX IXDATA*I4
CLR B
- rUSH ADOR ANO READ
\MM STA B OTI
LUA A INI
    AND A SOF
    A(N) A $S30
    STA A 0.X
    DEX
    INC &
    Car B m
    BNE HIMI
* GET polahity
STA B OTI
LuA b "'m minus
```


rage 049 precom . Sasi
ASL A
UISI AND A ASFO
E(Dik a disado
STA A OTZ
INC DISADU

- SH A

JSR S[ROB2
PUL A
Crx"O
HEO DIS2
INX
HIS2 DEC B
GNE DIS3
RiJs
*

* liear displays
$*$
duls Lux *O
JSA SDIS
LUX \#O
JSR SLEU
HTS
*
*

output fuze data

* C DDDD FFF EEE \#
:HFD LuX mbataris
LDA 8 *
JSR XFUZE
*

L. Ux * 5

Lía B ${ }^{\prime}$
JSK XfUZE
*
lux muata*a
LDA B "4
JSh XFUZE
*
L.Dx *SP

LJA B 1
JSR XfULE
tux \#RDATA +12
LUA 8 B 3
JSR XfUZE
-
Lux esp
Lua B "!
JSH XrUULE
.
Lidx minata*o
I.ja B
jSR XrUZE
*
LDX GN
lua B \#3
JSH XrUZZ

PAGE 050 PVECOM .SA: 1
*HTS
*
SP FCB SFO
GN FCB SFO.sF3.01

* transmit fuze data
*

xfuze stx savex
XFZI LOX SAVEX
I.DA A $0, X$

INX
StX savex
ADD A \#s 30
LDX FFSC

* L(k)P OUTPUT

JSR AOOL.
DEC B
BNE XFZI
RTS

* set idle lite
*

IDIJ. LDA A . Cosmm
JSR LEDOFF
i.DA a \#stby

JSR LEDON
RTS
$*$

* disconnect cumi

Uiscon cle conn
LDA A 1
STA a ldLef
HTS

* Process check fire

PCF EOU *

* DIsplay ons

PCFG LUA A 9
JSR FIXDIS

* Sound horn

JSR HORNIN

* l.ight heady ack

LUA A HEDY
JSR LEUON

* TEST READY ack

LDA A \#RRSM
JSR TSTSM
BCS PCFI

* wait a little

LDx 0
PCF2 DEX
BNE PCF2

* DISpl.ay bi.ank

LDA A ${ }^{\text {SF }}$
JSH FIXUIS

* Extinguish hihn


```
race 0j3 pyecrmm .Sa&\
PAGE OS4 PVECOM
.SA:1
    LUA A AOR
    LUA A AOS
    BIT A W4
    BEO COMAG5
    CLC
    HTS
*
comagS lin a mcleda
    JSh LEDON
    LDA B "IO
    STA B AGTHY
COMMGI JSH WAGL
* maiT TILL DONE
Cumag2 TST HAG
    BNE COMAG2
* ECHO back to verify
    JSH HAGL.
* nalt till done
comagz TST rag
    bNE O)mAGz
* OK ?
TST VERF
beg (d)maga
* caunt trys
    UEC AGTKY
    BNE CIMAGI
    BNE GIMAGJ
    JSR LEDJFF
SEC
HTS
* G(x)O RETURN
ComAG4 I.DA A MCIEDA
    JSk LEDXOFF
    CLC
    HTS
* TEST aGLS PRESENT
* UCD L(m INU.
*
:UTHEN CL.K B
LUX #60000
HUT2 LDA A AGH
    Loa a agS
    BIT A*4
    BEO RUTI
* FIRST pass ?
    Cux }16000
    3EO RUT3
    TST B
BEO RUTHER
AITJ CLR B
    INC 日
    CEX
    ONE RUT2
    nTS
"UTI TST &
    ONE RUTHER
    DEX
        BNE RUT2
        HTS
*
* TEST base deFi.
TBD EQU *
    LDX MLEDON
    LDA A %BDSET
    LDA B AGFE-1
    AND B #1
    BNE TBDI
    * TURN OFF
    LDX ELEDOFF
    * TURN on
    TBDI JSR O.X
    HTS
    * system vectors
    ORG SFFF8
    FDB ISER
    FDG ISEH
    FDG ISER
    FD8 STRT
    END
LUA A AGH
LUA A AGS
BIT A 4
BEO LOMAGS
CLC
RTS

JSH LEDON
LDA B \({ }^{\prime}\)
STA B AGTHY
COMACI JSH WAGL
CuMAGZ TST WAG
BNE COMAG2
* ECHO BACK TO VERIFY

JSH RAGL.
- nRII TIL DONE

BNE OMMAG3
- OK ?

TST VERF
BEQ (X)MAGA
UEC AGTKY
BNE CIMAGI
JSH LEDOFF
SEC
HTS
COMAG4 I.DA A MCIEDA
JSK LEUXIFF
CLC
* TEST aGLS PRESENT
* UCD L(\% INU.
rUTHEH CL.K B
LUX 60000
TUT2 LDA A AGH
bIT A
BEO RUT
* FIRST pASS ?

CHX 60000
:HEO RUT3
TST B
BEO RUTHER
INC B
CEX
ONE RUT2
rIS
'UTI TST H
DEX

BNE RUT2
HTS
- TEST base defi

TBD EQU *
LDX MI.EDON
BUSEI
AND B MI
BNE TBDI
LDX LEDOFF
- TURN IN

TBDI JSR O.X
RTS
- SYSTEM VECTORS

FDB ISER
FDB ISEH
FDE PWRUP
END

APPENDIX G

RUP CONTROL PROGRAM SOURCE LISTING
```

PAGEE OOI HKUP .SAE
NAM NUP
*

* KEFENENCE UNIT PFOCESSOR
*
* REVISEU 3/2/79 1630
*
* pia equates
* PIAI-REF UNIT RECEIVER
*

~IAIDA EOU SC200
HIAIDG EOU PIAIDA+I
HIAICA EOU HIAIDA+2
pIAICB EQU PIAIDA+3
*

* plaz-comma processohh
* A=0UTPUT
* B=INPUT
HIA2DA EOU SC2O4
PIAZDB EOU PIA2DA+I
HIAZCA EOU PIA2DA+2
HiazCJ EOU PIA2DA+3
*
* plA3-Sw INPUTS/TEST OUTPUTS
*
* A=INPUT
* B=OUTPUT
pIA3DA EOU \$C2O\&
HIA30B EOU HIA3DA+1
PIA3CA EOU PIA3DA+2
HIA3CB EOU HIA3DA+3
*
* IImer equates
TCHI3 EQU \$9800
ISTS EDU \$9801
TCR2 EOU \$980
TID EQU \$9802
I20 EOU \$9804
T3D EOU \$94O6
*
* TImer ConsTants
*

T1II EQU %00000000 C=EXI.0=0FF
TIIE EQU 20I000000
*
I2II EOU 210000001 C=EXT.OmNN
T2IE EOU XII000001
T3I! EOU X10000010 C=INT.(%a()N.NO PRE
T3IE EOU %11000010
*

* acla eouates
*

IPC EQU \$980B
TPS EQU TPC
THX EOU TPC+1
MAG: 002 1S:IF .SA:
THK EOU TPCCO1
*

* acia cunstants
*

XIE EOU %001OIOOI
HIE EOOU \$10001001
NIE EOU *00001OOOI
*

* plas Cinstants
*

GLITE EQU 1
OLITE EOU 2
LLITE EOU 4
XLITE EOU \&
SNUT EOU \$10
LOUT EQU \$20
PAGE

* progham ram
OHG \$O
*

FLAG EOU *
LFLAG RMB I LASER PULSE
LBLOCK RMB I I.ASEK BL.OCK
LGONE RMB | LASER LUST
CFI.AG KMB I COMPUTE
SFLAG RMG I SOUTH PULSE
INF kMA I INMUT FI_AG
FEND EOU:*
*

* CONSTANTS
XPER RMB 2 X PULSE-L PULSE PERIOD
XTIM HMB 2 X MULSE-X PULSE PERIOD
MIL RMB 2 COARSE MILS COUNT
OUT RMB 2 GINARY OUTPUT VALUE
OLDMIL. RMB 2 2 PASS SAVE VALUE
OUTX HMB 2 BUFFER PTR (BINBCD)
DEST RMB 2 TRANSFER. CHAR PTR
SCNT RMH 2 SOUTH PUI.SE CJUNT (TEST)
LVAL HMB 2 LASER PULSE VALUE (TEST)
l.CNT RMB 2 I.ASEH PUI.SE CNUNT (TEST)
SAVES RMB 2 STACK SAYE
AI HMB 2 BCD AND
A2 RMMB 2 BCD ADD
RESULT RMB \& IEMP CHAR BUFFER
SAVEX RMB 2 X REC SAYE
SIG RMB I SIGN OF ADU
OLUCR2 RMB I TIMER 2 CONTROL
THPTK RNB 2 TP CHAR PTR
IPPTE NMB 2 IP CHAR END
IGUF RMB 5 CHAR BUFFER
SPC HMB I SPACE CNT
SPC RMB I SPACE CNT
ASP RMB I ACIIVE SPACE
IMH HMB I UGN TEMPORARY STGRAGE
MSEY RMB I DGN MS BYTE
LSBY RMB I DON MS BYTE
CENU EOU *

```
\begin{tabular}{|c|c|}
\hline rage 003 Prup .SA:1 & PAGE OO4 PRUUP .SA 11 \\
\hline HEND HMB 2 END BUFFEK (CLBF) & \begin{tabular}{l}
STX BEND \\
lux olag
\end{tabular} \\
\hline * timen rable & JSh CLBF \\
\hline * COUNTEK \({ }^{\text {a }}\) & * JSis CLTI \\
\hline  & * Clear buffers \\
\hline TMTI EOU * & I.OX \#BUFEND \\
\hline Csi rme 1 starus & STX BEND \\
\hline \(\therefore\) RMa 1 COUNTER (DEC) & JSM CIEFB \\
\hline CNTI RMB I CYCLE & - indital test s count \\
\hline CPI RME : L( \(X\) OK-AHEAD & * Lux \(\begin{aligned} & \text { (10) } 100 \text { 2) }\end{aligned}\) \\
\hline CHI RME I HOL.D CJUNT & STX SCNT \\
\hline -MT2 EOU * & * inirial test l count \\
\hline - \(\mathrm{S}_{2} \mathrm{HmP} 1\) Status & Ux \({ }^{\text {ST }} 20\) \\
\hline \(\because 2\) HMB I COUNTEH SUEL) & * ENABLE TEST Move \\
\hline CNT2 HMB I CYCle & - I.Da a piajoa \\
\hline - P2 KMIS I L(X)K-NHEAD & BIT A *i \\
\hline -H2 RME 1 Hold COUNT & BNE LI2 \\
\hline [MT3 EQU * &  \\
\hline  & LUX \#(312/2-1) \\
\hline C3 RME I COUNTER (DEC) & JSR SET2 \\
\hline SNT 3 RMB 1 CYCLE & * ENABLE INTERRUPTS \\
\hline Sn 3 RMB । L \((x) \mathrm{K}\)-AHEAD & L12 CLI \\
\hline LH3 RME I HOLD COLUNT & \\
\hline [END EQU * & - progiam active loop \\
\hline * HEFERENCE ANOLE BUFFER & \\
\hline ferbuf hus 4 & L(X)P EQU * \\
\hline ? & \\
\hline - comm proce. buffer & I.DA B CIIITE \\
\hline & - LoCk flag? \\
\hline Cmp aut eou & I.DA A hiajda \\
\hline \(\checkmark 15\) HMB4 & 8IT A \% 1 \\
\hline * & *NE LIIO CIINTER \\
\hline CMPIN EOU &  \\
\hline IJEFL HMB 4 & oha a csz \\
\hline OUMDEND EOU * &  \\
\hline OUFEE EOU* & BEO LIO \\
\hline Page & tSt LGone \\
\hline * & BNE LIO \\
\hline * hefenence unit prociessoh prodgham & LUX MPofF \\
\hline hernence unit & * Contron. macs" lamp \\
\hline & JSH 0.x \\
\hline ORG SF800 & - if glite off, cflagmo \\
\hline  & LUA A PIA30日 \\
\hline LUS \(57 F\) & BIT A MGI. 1 TE \\
\hline * Setup hias and timers & HEO LH \\
\hline SEI & LDA A \%soc \\
\hline JSh plas & JSH PON \\
\hline JSK IIMI & - compute flag \\
\hline * Cli.EAR FI.AGS/CONSTANTS & Lil tsf cilac \\
\hline
\end{tabular}
```

PAGE OOS PKUP .SA:1
BNE LI4
JMP L3

* FINu max likEly value
I.14 l.DA B CH3
LDA a CNi3
CMP A CNT2
BGT L.I
* LDA B CH2
LUA A CNT2
*

LI CMP A CNTI
8GF 12
LDA B CHI
LUA A CNTI
*
L2 TSTA
BEO ERH
CLH MIL.
LDA A *159
S8A
STA A MIL.+I

* TES[(X)ARSE RANGE
CMP A \$159
BHI ERR
*
* COMPUTE\& (NT=40*MIL+4O(XPER/XTIM)
*
* COMPUTE: MIL=MIL*4O
LDX amil.
JSR MUX40
STA A MIL
STA 8 MII.+1
* FETCII XTIM AND TESI LIMITS
Lua a XIIm
* TEST HANGE (<|IOX)
cmp a }
8L! E2
GGT ERR
*

LHA A XrIm+1
*
CMP A *SAF
BGT ENR

* COMPUTES XPER=XPER*40
E2 LUX EXPER
JSH MUX4O
STA A XPER
STA B XPEH+1
* COMPUTE:\& A,B=XPER(A,B)/XIIM
LDX EXTIM
JSA DIVIO
* C(MMPUTE: OUT=MIL+A,B
ADO 8 MIL*.l
ADC A MIL
* aujust For gacs
SLB B \$82
SHC A %O
palie ONo phup asasi
 * Icar moljovek
BPL LJ3
 - FIX holloyer (ado 6400)
AOn A *SIO
LIJSTA A our
STA H OUT+.I
 * TEST HANGE (0-6399)
CMP A MS18
BGT ERR
 * make Sure same value 2x
I.DX OUT
CPX OLDMIL
BEO LIG
STX OLDMIL
HRA ERR
* Convert out TO \&CD
I. 19 I.DX HEFBUF
JSH BINHCD
ERH CLA CFLAG
- lamp TESt?
l3 LOA B piajub
lig lua a piajua
C0M A

 8IT A $$80
 BEO LIS
* TEST l.amps
LDA A \&SOH
JSN MOFF
BRA LIO
* RESTOHE
l.15 STA 8 plajDA
* comm phocesson data call ?
LUA a pIARCB
BMI L4
JMP L(NOP
*
- data call-acoulfe
L4 JSR HCmp
BCC LI7
JMP LONP
* COMPUTE AZIMUTH (UEFL+NEF)
1.17 JSN CAZ
* TEST mODE SNITCH
IDA A PIABDA
com a
AND A \#sfo
BNE L.5
* Normal
* NORMAL
* COPY AZ
STX
STX UEST
I.DX AAZ
LDA B %4
JSH ICS
LDX \#POFF
GRA LO

```




…-......-
```

rage Olb PruP .SA:I
Set2 lua a \#r2IE
STA A OLDCR2
I.DA B TSIS

* store rime and start
STX T2D
SIA A TCH2
RTS

* 16 BIT UNSIGNED DIVIDE
* A,H DIVIDEO GY (X), (X+1)
* RESULT IN A.B
UIV16 PSH B
PSH A
LUA A O.X
I.DA B 1.X
MSH B
MSH B
DES
DES
LDA A \#l
TST I.X
BMI OIVIS3
DIVI5I INC A
ASL 2,X
ROL 1.x
BMI DIVI53
CMP A 117
BNE DIVISA
BNE DIVI51
UNA A 3,X
LDA B 4,x
LDA B 4,x
CLR 4;X
* STACK
*OmCIUNT
+1=MS UIVISOH
+2=1.S DIYISOR
 * 2=1.S DIVISOR
+4aLS DIVIDENU
DIVI63 SUB 8 2.x
SHC A 1.X
BCC DIVIGb
ADD B 2.X
C.C
BKA DIVI67
CIVI65 SEC
DIV167 \&NI. 4,X
ROL 3,X
LSA 1.x
HON 2,x
UEC 0,x
BNE DIVIG3
*
* STACK
*

```

AGE 017 PRUR .SA:I
HTS
oUTPUT STROBE PIARCA
TROA2 LDA A \(\times 00110100\)
STA A PIAZCA
N(IP
LUA A \#2001IIIOO
STA a PIAZCA HTS

TRANSFER CHAK. SIRING UES [=DESTINATION, X=SOURCE B=CHAR CNT

CS STX SAVEX
CSI U.i SAVEX
I.DA A \(0, X\)

INX
STX SAVEX
LDX DEST
STA A.O.X
INX
STX DEST
UEC B
BNE TCSI
HTS
COMPUTE AZIMUTH
\(A \angle=D E F L+R E F\)
: 12 EOU
: FETCH DEFIECTION
1.DX DEFL

SIX AS
- CETCH HEFERENCE

LJX HEFBUF
STX 12
-
LIX FRESULT+3
JSA BCDADD
- adjust for rollover

LDX *AZ
JSR ANJ
RTS
\(\div\)
- AUD 2-4 DICIT BCU VALUES
- AI=ADDNESS OF VALUE 1 MSB
- AZ=ADDHESS OF VALUE 2 MSB
- XeadidRESS OF SUM
+
3COADD STX SAVEX
CLR SIG
- Fixal

LuX AI JSR FIXX

PAGE 018 PRUN .SABI
STX AI
- FIX A2

LDX AZ
JSH FixX
STX 12
CC
* GET finst value
I.DA B 3

BCAI LiJX Al
LDA A O, \(X\)
DEX
STX AI
- ADD SECOND

UX A2
ADC A \(0, X\)
JSH JOCK
DEX
STX AZ
- STOHE SUM

LOX SAVEX
STA A 0,X
DEX
STX SAVEX
OEC B
BNE BCAI
LDX AI
LUA A \(0, X\)
LDX A2
AUC A \(0, x\)
JSH JJCK
BCC 8CA2
INC SIG
bCA2 LDX SAVEX
STA A O.X
HTS
* FIX value of \(X(3 X)\)
*
FIXX LUA B 3
FIXI INX
UEC 8
BNE FIXI
RTS
- adjust fur bco cakhy
-
Jock cmp a \({ }^{19}\) BGT JJCKI
CLC
HTS
JOCKI ADD A *
AND A \#SF
SEC
RTS
- adjust for rolloven
```

PAGE 019 PRUP .SA:I
*
ADJ STX SAVEX
TSI SIG
BNE ADJI

* TEST F(JH >6400 ROLOVEN
I.DX \#RESUI.T
JSR TEST64
8CC ADJ2
* FIX > 6400 ROLIOVER
ADJI LISX NRESULT
SIX AI
LDX %CONO4
STX A2
LDX SAVEX
JSH FIXX
JSR 8CDADD
HTS
* FIX <0400 Value
ADJ2 l.DX SAVEX
JSR XFER
RTS
*

CON64 FCB 3,6.0.0
*

* TEST IF >6400
TEST64 LOA A O.X
CMP A %6
BGT T641
BLT T642
LOA A 1.x
CMP A A
BGE T641
T642 CLC
RTS
T641 SEC
RTS
* THANSFER ARHAY FROM *RESULT^ TO (X)
*

XFER STX DEST
LDX GHESULT
LUA \& \#
JSR TCS
HTS
*

* output to coma phocessom
*

ScMP EOU*

* SET MESSAGE COUNT
I.DA H \#b
- SEND STX
I.DA A HI
JSR XRUX
* SEND MESSAGE
Lox \#CMP(NUT

```




-KI.F I.DA A
Bira UGN4
JSR AOOL
\[
\begin{aligned}
& \text { I.DA A \#SA } \\
& \text { iSA AON }
\end{aligned}
\]
JSH A
HIS
* I. (XIP ON OUTPUT
\[
*
\]
\[
(X) L \text { JSR } A(x)
\]
HTS
*
* CONVERT. STRING TO DECIMAL NO.
- string in tbuf
* ON RETURN A=MSBY,B=LSBY
UGN LUX TBUF
    LDA 8 \#4
    CLH MSBY
    Cl.h LSBY
GN2 LuA A O.X
    CMP A \(\$ 20\)
    BNE DGNI
    INX
    DEC B
    SNE DGN2
-
JGNE SEC
HTS
-UNI CMP A 4
    dEO DGNE
    Suy a
    OLI JGNE
    curn A 19
    BCT DONE
    sta a lsby
    INX
    UEC B
    UEO UGNE
GNA LDA A O.X
    cmp A 4
    ONE DON3
    l.UA A MSBY
LUA B LSBY
Cl.C
HIS
4N3 SUB A *S30
SI.T DCNE
cinp A 9
OCI LGNE
STA A TMP
JSH MIOX
inX
DEC B
dEO VONE

APPENDIX H

FDCOM SCHEMATICS




\section*{FDCOM CONTROL PROGRAM SOURCE LISTING}
```

page dol pfocimm . Sasl
nam fuciom
*

* agi.s cummunications
* FIRE DIRECIION CENTER
* REVISED 2/28/79 1500
*

flagc equ I
*

* pia eovates
* HIAl=UNASSIGNED
vIAIDA EOU SC200
fiaido equ Plasida+i
piaica Egu pIAIDA+2
pIAICB EQU PIAIDA+3
INI EDU PIAIDA
OTI EOU HIAIDB
*
* HIAZzOINTROI.S AND DISPI.AYS
* A SIUE=SN. INPUTS
* B SIDE=I.ED OUTPUTS
*

*Iazda EOU sczo4
PIAZDA EOU HIA2DA+1
pIA2Ca EOU P1A2DA+2
piazch equ piazda+3
IN2 ENU HIAZDA
OT2 EOU PIA2DU
*

* Hiaj=unasSigned
*

fiAjua EOU sc208
mia3DG tou piajDa+1
Hiajca eou pIa3la+2
rIA3CH ENU PIABDA+3
in3 equ pia3us
ot3 ENu riajDB
*

* PIA\&=FDC PUNII/34
* a SIDE=Data InHyt
* y SINE=DATA OUTPUT
fia\&ua eou sczoc
HIA\&DB EOU PIA4DA+I
pia4ca egu pIa4da+2
PIA4CH EDU PIA4DA+3
IN4 EDU PIA4DA
OTA EDU PIA4D*
EOT EOU O4
*
* l.ED mohds (rlaz)
CLEDI EQU x00000001 (STBY)
CLED2 EOU %00000010 (COMM)
CLEU3 EDU \$00000100 (C)J=0)
CI.ED4 EOU %00001000 (CJ=3)

```
~AUE 002 HFDCOM .SAs 1
CLEUS EOU x00010000 (FD IIJT)
Cl.ED6 EOU X00IOOOOO (FD IN)

CLED7 EOU XOI 000000 (CARKIEK DET.) CLEUR EOU \$IOOOOOOO (NAK)
*
* perhiferal. equates
- comm acia

COMC EOU SCION
Coms EOU COMC
ComX EOU COMC*I
COMK EOU COMC+I
-
- test hoht acia

IPC EQU \$980
IPS EON TPC
TPX EOU TPC+1
IPH EOU IPC+1
\(+\)
- TIMEA

TCH13 EOU \(\$ 9800\)
ISTS EOU \(\$ 9801\)
TCH2 EOU \$9801
TID EOU \$9802
T2U EOU \(\$ 9804\)
T3D EOU \(\$ 9806\)
- tIMER CONSTANTS

TIIE EOU. 201000000
IIII EOU 800000000
\(\stackrel{\rightharpoonup}{*}\)
T2IE EOU RO1000001
T2II EOU \$00000001
-
T3IE EOU \(\$ 1.1000011\)
T3II EOU \$10000011
* TImEnUT constants (.1 seconus)

CONTT EQU 020U CONNECT THY
CUD EOU 0007 CARRIER UP DEI.AY CDO EOU 0005 CARRIER DN DELAY
COT EOU 36000 CAHRIER DETECT
MSGT EOU 0600 MSG WAIT TIME
* comm tovates

SOH EOU 1 START OF HEADER
SMFC EOU \(\$ 42\) SERVICE MSG FORMAT COUE
IMFC EOU 848 INFO. MSG FORMAT C(NUE
SI.FC EOU \$a3 SEI.ECT MSG. FORMAT CUDE CMFC EOU \(\$ 44\) CONTHOL MSG FORMAT COUE
SC EQU S41 SEDUENCE CODE
AC EOU 540 ADUAESS CODE
IC EOU \(\$ 40\) IDENT CJDE
SIX EOU 2 STAHT IIF IEXT
ETX EOU 3 ENU OF TEXT
NOC EOU 840 NO REO OPERATION CUIDE
```

HAGE OO3 PFDCOM .SA:I
SMTY EOU S4O SERVICE MSG. TYPE
SI.TY EOU S42 SEIECT MSG TYPE
DUC EOU \$42 DATA HEO OPER CODE
RROC EOU SAO READY HESP. OPER. CIDE
AMC EOU \$44 WAIT IPER. COUE

* acia inTERRUPT ConstantS
XIE EOU XOOIOIDOI XMIT INT ENB
HIE EOU XIVOUIDOI KECV INI ENB
NIE EOU x(0001001 INT. OFF
*

*IfNE flagc
*

* cumm interrupt ounstants
CNIE EOU xO1001001
CHIE EOU \#11001001
CXIE EDU %OOIOIOOI
KTS EOU %00NOIOOI
ENDC
* ifEO flacc
*

CNIE EOU X00001001
CRIE EOU \$10001001
CxIE EOU xOOLOLOOI
NTS EOU X00001001
*
ENDC
page
OHG \$1000

* comm heceive guffer
HBUF RME 60
HEND EDU*
RDATA EOU RBUF+?
* comm TRANSMIT BUFFER
XBUF H:AB 00
XEND EQU *
XDATA EOU XBUF+7
*
* PDP . }11\mathrm{ MFROMm BUFFER
*

FDCF EQU*
KEYS RNB 3
CODE HMB 2
DATA RMB 17
FDCFE EOU *
*

* PDP If mTom guffer
FDCT EOU *
STAT hmb 4
MSG RMS 45
FDCTE EOU.
*

```
fage Dor 'rucom .sa:I
* OLU fire ohder buffer
*
olufo rme 12
-
xiule hab 2 idle vector flag
\(\downarrow\)
\(\stackrel{+}{*}\)
* Flacs
fi.ag egu
ETXF HMB I END TEXT fLAG
CJ hmb I Cumm STEEKING
LRFU RMB I REO. UISC. FLAG
ZIIDM HME I ID MESSAGE FLAG
2IDM HME ' ID MESSAGE FLAG
XPASS HMH I XMIT FIRST PASS
HJ RMB I RECJ OATA FLAG
hisc ram 1 l.ast hecd seo cude
CHHF HMB I HEADY FOR RESP
VUF HMBI VALCD UATA FLAC
CONN HMB I CJMONECT FLLAG
FUCA RMB : UATA aVAIL FLAG
FDCC RMB : FDC DATA CAIL.
\begin{tabular}{l|l} 
FDCC RMB & FDC DATA CAID. \\
OUTF RMB & WRITE FDC CET OUT
\end{tabular}
pass himb i head foc finsi pass
FILII.F RMB I FII.L. CHAK FL.AGI PXMT)
CTSUBY HMB 1. CLR TO SEND UP BUSY
CTSUEYY RMB I CLR TO SEND DN BUSY
tDCDGBY RMB I CARKIER DET. BUSY
UISF RMAB I UISCONNECT REAUY
INF RMB I CHT I IPUT MODE
ATOHR RMB I AUTO REAUY REOUEST
ATOUH RMB I AUTO DATA REQUEST
INEF RMB I INHUT EHHOR (FDC)
FIBSY HMB I FDC INPUT BUSY
Fobsy rab 1 foc output busy

FEND EQU -
- constants
BEND RMB 2 BUFFER ENU POINTER
BEND RMB 2 BURFEK
* BUFFER POINTERS
* BUFFER POINTERS
BRI RMG 2 RECEIVE
BRI RMG 2 RECEIVE
BXI hMB 2 transmit
XBCC RMB I BCC XMIT
RBCC RMB I BCC RECEIVE
RERR RMB I RECV ERHOH CODE
RSTAT RMB I HECY STATUS NORU
RSTAT HMB 1 HECV STATUS
TMPX RMB I RJ TEMP INDEX
TMPX RNB
KXFC RMB
I RJ TEMP INDEX
ROHMAT CODE
RXIOC RMB I HECU OPER CODE
OI.DSC HMB I SEOUENCE CODE SAVE
SAVES RMB 2 STACK SAVE
ISAVES RMB 2 INT STACK SAVE
Savex nug 2 x reg save
SAVEX KMB 2 X REG SAVE
SAVA HMB I SAVE A REC
SAVA RMB I SAVE A REC
SAVB RMB I SAVE B REC
OI.DCR2 RME I TIMER CRO2 NOHD
VECTI RMB 2 TIMER INT VECTOR 1
VECT2 RME 2 TIMEH. INT VECTOR 2
```

HACE OOS HFDCOM .SAEI

```

FAGE 006 pFDCOM . 5ABI
    fox \#CEND
    STX BEND
    LUX EARI
    JSH CLBF
- CLEAR I Imers
    JSR CLTM
* SEED SEO. CODE
    LDA A *SC
    STA A olusc
    * ENABI.E INTEHRUPTS
    ClI
*
- ENABI.E RECV. INTERRUPTS
IULEI LUA A 2
    STA A CJ
    - CLEAR [ImERS
    JSH CLRI
    JSH CLR2
    * initial guffer pointer
    LUX \#HBUF
    STX BRI
*
    CLR CJM
    - TURN (N a STBY*. OFF "COMM
    LDA a CLEDI
    JSR LEDDIN
    LDA A CLEU2
    JSR LEDOFF
    *JSR Comix
\(\stackrel{*}{*}\)
* SySTEM ACTIVE L(x)P
*
L(X)P EQU*
LDA A NCLED3
LDX LEUOFF
TST CJ
ENE LOXPI
- TURN ON *CJ~ON
    I.DX H.EDON
L(X)P JSH O.X
    CPX RLEOON
BNE L(X)NZ
- FDC dATA caL?
TST FDC
BEO L(X)P 2
- SETUP XMIT MSG.
TST INEF
BNE LOOP
JSR SETXMT
TST INEF
GNE L(X)P
CLA FUCC
- TRUN FDC INT BACK ON (CAI)
\begin{tabular}{|c|c|c|}
\hline PAGE 007 PFDCOM . SA: 1 & PACE 008 PFn ¢M . SA\&I & \\
\hline LUA A *x00 llilol & CLK XBCO & \\
\hline STA A pladca & bra pxma & \\
\hline JMP XIT & * = Data & \\
\hline - Foc dara available? & НXM2 TAB & \\
\hline LOX)P2 TST FDCA & EOH 8 XBCC & \\
\hline BEO L(X)P5 & STA B XBCC & \\
\hline - TRANSFER Data TO FUC & * TRANSMIT CHAK & \\
\hline JSH FDOUT & JSR XMIT & \\
\hline L(M)PS LDA A CJ & PXM3 C.C & \\
\hline CMP A 3 & HTS & \\
\hline BNE LOOP4 4 & - Last char & \\
\hline * TURN IN * \({ }^{\text {c }}\) = \(=3 \times\) & PXMI LDA A XBCC & \\
\hline I.DA A MLLED4 & JSR XMIT & \\
\hline JSR LEDON & INC FILLF & \\
\hline Jmp C3 & C.C & \\
\hline * DIS( ) MNECT PENDING? & HTS & \\
\hline L(X)P4 EOU & * Transmlt fill char & \\
\hline * TUKN OFF "CJa \({ }^{(40}\) & PXM4 I.DA A \#S20 & \\
\hline L.DA A CLEEDA & JSR XMIT & \\
\hline JSR L.ELIFF & NEG FILLF & \\
\hline TST DISF & C.C & \\
\hline BEO LONP & RTS & \\
\hline - YES, WAIT TILL SENT & - SECOND TIME ARIUUND & \\
\hline I.DA A CJ & PXMS J.DA A ES20 & \\
\hline CMP A I & JSR XMIT & \\
\hline BEO LOXP & CLH FILLF & \\
\hline * & LDX EXBUF & \\
\hline I.DX ** & SIX BXI & \\
\hline JMP IDLE & SEC & \\
\hline PAOE & HTS & \\
\hline - SUBHOUTINES & * & \\
\hline * & - PROCESS HECEIVE & \\
\hline CLEAR GUFFER ROUTINE & & \\
\hline \begin{tabular}{l}
* clear buffer roiutine \\
* X= BUFFER START
\end{tabular} & PHEC JSR RECV
BCS PRE6 & \\
\hline - BENU=8UFFER ENU & - clear xmit flag & \\
\hline + & CLC & \\
\hline & RTS & \\
\hline CLBF CLR O.X & PREG LOX BRI & \\
\hline INX & * CHar = bcci & \\
\hline CPX BEND & INC ETXF & \\
\hline 8NE CLBF & ECO PREI & \\
\hline RTS & - No. Uata & \\
\hline & CL. \({ }^{\text {STA ETXF }}\) & \\
\hline * PHUCESS TRANSMIT & STA A O.X & \\
\hline PXMT WX BXI & INX
STX
unt & \\
\hline PXMT LSX EIMF & - TEST MECIEVE Status & \\
\hline ECT PXM4 & JSR JSTS & \\
\hline Bu1 0xmb & - TEST anfer uverrun & \\
\hline LDA A O, X - & JSN tIJVA & \\
\hline 8E? PXMI & - Chan - sohr & \\
\hline INX & CWP A MSOH & \\
\hline STX 8xI & HEO PNE2 & \\
\hline - 5 Son? & - char - Etx & \\
\hline CMP A SSOH & Cmp A EETX & \\
\hline 8NE PXM2 & GNE PRE3 & \\
\hline - YES. -SOH & DEC ETXF & \\
\hline
\end{tabular}
```

pAGE OOY pFDCOM .SA:I
PRE3 EOH A HBCC
STA A RUCC
CLC
HTS

* FIRST CHAR
PRE2 CLH RBCL
CLR RENA
L.DX WRGUF
STA A O.X
INX
STX BKI
INC VUF
CLC
HTS
* last char
PREI EOR A RBCC
BNE PHE4
PHE5 LUX *RBUF
STX dKI
C.H VUF
SEC
RTS
* BCC ERHON
PRE4 LUA A Esio
EOH A NEMN
STA A RERH
BRA PRES
- HECEIVE CHAR RIUTINE
*

hecV lova a Coms
BIT A \#l
BNE HECVI

* N() DATA CALL
I.DA A CIMN
CLC
NTS
* DaTA Call
RECVI STA a RSTAT
* reau char
I.DA a CXIm
SEC
RTS
*
* TEST hECEIVE STATUS
JSTS PSH A
LUA A HSTAT
- parity erroh?
BIT A \#\$40
8EO JSTSI
LUA B M\$18
EOIN S HERR
STA Y RERR
- OVER RUN ERHOH?
JSTSI BIT A \#\$20
BEO JSTS2
I.DA B M\&
EOR \& RERR
PACE UIO 听UCOM .SA:I
STA B REKR
* FKAMING ERKOH
JSTS2 BIT A \#SIO
BNE JSTS3
HUL A
HIS
JSTSJ LDA 8 \$20
EIMH O RERA
STA B RERH
PUL A
HTS
*
*
* TRANSmIT Chat.
*

xMIT LUA B COMS
BIT H W2
GNE XMITI

* no) DATA cad... nESET RECVh
LDA A COMR
HTS
* Data call
xmIfl sTA A comx
HTS
*
* INHIBIT XMIT/ENB RECV
*

COMIX LON A OCHIE RECY INT ENB
STA a cIIMC
LUA A COMR RESET
RTS
*

* INHIBIT COMM INT
COMOFF LDA A NCNIE
STA A (x)MC
LDA A COMM
RTS
*
* INHIHIT hECV/ENB XMIT
* PHEN CDMM
COMIR EOU *
* mARE SURE HECU CAR ON
COMI3 LDA A COMS
BIT A M4
BEO (0MI3
BEO CDMI3
LDA A \#RTS
STA A (D)MC
- marT for carrier up
COM1I JSR CTSU
BCC Ciml!
LDA A \#SOH
COMI2 LDA }8\mathrm{ COMS
BIT 8*2
BEO COMI2
STA A (\alpha)Mx
STA A CNMX LU XMIT INT ENABLE
STA A COMC
RTS

```
```

pAGE Oll PFDCOM .SAaJ

* test guffer overrun
BOVH CPX \#HENO
BEO BOVHI
RTS
* overrun has occurred
BOVRI I.OA B *B
EOR B RERR
STA B REHF
DEX
STX BRI
HTS
* communication moli.
*

CPOLL LDA a CJ
CmH a m
BEO CPOLI
CMP A M2
BEO CMOL2

- RESET INTERRUPT
I.DA A COMA
RTS
* tramsmit loop
CPOLI EOU \$.
* FIRST PASS?
INC XPASS
BNE CPOL6
* SETUP meSSage headers
CPOLII JSH SETUM
* SMap seo. codes
JSR SSC
 * prcess transmit
CPOLG CLH XPASS
JSR. PXMT
BCS CHOD.5
RTS
 * SNITCH TO heceIVE
CPOLS EOU:
 * clear heceive buff
LDX mRUUF
JSK CLRB
LDX erbuF
STX BHI
* SmITCH comM INT
JSN COMIX
L.DA A %2
STA A CJ
HTS
*
* RECEIVE L(x)P
CPOLL EOU *
* IFNE FLACC
* TEST CARKIEN
LDA A ecLEDJ
JSR LEMOFF

```
```

page OI2 Procom .Sabi

```
page OI2 Procom .Sabi
        JSK TDCD
        JSK TDCD
        BCS CPOLIO
        BCS CPOLIO
        Lua a comm
        Lua a comm
        HTS
        HTS
*
*
    ENDC
    ENDC
*
*
* phocess heceive
* phocess heceive
cpolio lda a mcled'/
cpolio lda a mcled'/
        JSR LEMON
        JSR LEMON
        JSR WHEC
        JSR WHEC
        BCS CPCK7
        BCS CPCK7
        HTS
        HTS
    * Smltth TO unpack
    * Smltth TO unpack
CHOL7 LDA A OS
CHOL7 LDA A OS
    STA A CJ
    STA A CJ
        JSk (a)moff
        JSk (a)moff
        Loa a eclevj
        Loa a eclevj
        JSR LEDOfF
        JSR LEDOfF
        HTS
        HTS
    *
    *
    * Setup message routine
    * Setup message routine
    +
    +
seTum Equ *
seTum Equ *
* test hfo flag
* test hfo flag
    TST 2NFU
    TST 2NFU
    BEO SETUMI
    BEO SETUMI
- SEtup rFo service messace
- SEtup rFo service messace
    LDA B #s44
    LDA B #s44
    JSH SSM
    JSH SSM
* TEST 1.D. mESSSAGE
* TEST 1.D. mESSSAGE
SETUMI INC ZILM
SETUMI INC ZILM
    BNE SETUM2
    BNE SETUM2
* setup select
* setup select
    UA B #S42
    UA B #S42
    JSR SSIM
    JSR SSIM
SETUMz CLR zIum
SETUMz CLR zIum
* TEST REAUY FOR RESPONSE
* TEST REAUY FOR RESPONSE
    INC ZRAF
    INC ZRAF
    bNE SETUM3
    bNE SETUM3
* SETUP reauy for response
* SETUP reauy for response
    I.na B #S46
    I.na B #S46
    JSH SIM
    JSH SIM
* SETUP XMIT POINTER
* SETUP XMIT POINTER
SETUM3 CI.R ZHAF
SETUM3 CI.R ZHAF
    LDX MXBUF
    LDX MXBUF
    STX UX」
    STX UX」
    RTS
    RTS
*
* Carriek up delay
* Carriek up delay
*
*
CTSU EQU *
CTSU EQU *
    TST crsuby
    TST crsuby
    GNE CTSUI
    GNE CTSUI
* SETUP TIMEIUT VECTUH
* SETUP TIMEIUT VECTUH
    LDX #CUD
    LDX #CUD
    STX TIM2
    STX TIM2
    INC TF2
```

 INC TF2
    ```
\begin{tabular}{|c|c|}
\hline PAGE 013 PrDCOM . SA: & PAGE 014 \({ }^{\text {PFDCOM }}\). SAEI \\
\hline INC CTSUBY & HTS \\
\hline - TEST CTS-up & - INHİIT IImer \\
\hline CTSUI IST TF2 & TDCDI JSK CLik \\
\hline BEO CTSU2 & CLH [DCUBY \\
\hline CLC & SEC \\
\hline RTS & HTS \\
\hline * INHIBIT timer & \\
\hline CTSU2 CLK CTSUBY & * UNGPACK houtine (CJ=3) \\
\hline SEC & \\
\hline RTS & C3 EOU \\
\hline & * TEST ERROH FLAG \\
\hline * Carrien down delay & TST HERH \\
\hline * & BNE C36 \\
\hline CTSD EDU * & * UNPACK RECEIVED data \\
\hline TST CISUBY & I.DX \#RBUF \\
\hline HNE CISUU & LDA A O,X SOH \\
\hline * SETUP TImEOUT VECTOR & ALD A 6.x STX \\
\hline LDX \#CW & - Soht STX OK? \\
\hline STX TIMZ & CMP A M \\
\hline INC TF2 & BEO C3I \\
\hline INC CISUBY & - No \\
\hline - TEST CTS-DIINN & LuA 8 as 28 \\
\hline CTSDI TST TF2 & EOH B REAH \\
\hline QEO CTSD2 & STA \& RERH \\
\hline CTS & C36 JMP RO \\
\hline RIS & * TEST STX+1 (DATMN(HDACA) \\
\hline * INHIBIT TIMER & C31 CLR \(B\) ( \\
\hline CTSU2 CLR CTSUBY & LDA A \(7, x\) \\
\hline RTS & CMP A 3 \\
\hline \({ }^{*}\) KTS & BEO C32 \\
\hline * test carhier detect & LOA B \({ }^{42}\) \\
\hline - & C32 STA S RJ wice \\
\hline TDCD EOU * & CLR 8 \\
\hline TSI TOCDEY & LOA A 4, \(X\) \\
\hline BNE TUCU2 & AND A S 38 mASK ACXINAK \\
\hline * SETUP TIMEOUT VECTIIR & BNE C33 \\
\hline * TEST MODE & LUA B 2 \\
\hline TST CONN & C 33 EMAB RJ \\
\hline BEO TDCO 3 & STA B MJ \\
\hline * SETUP MSC TIMEOUT & - TEST SEOUENCE code \\
\hline LUX XXIT & LOA a \(2, x\) \\
\hline STX VECTI & CMPA RLSC \\
\hline LDX (MSGT/2-1) & BEO C34 \\
\hline 8RA TUCD4 & LDA B 1 \\
\hline TDCD3 LDX IOLEI & EIR B RJJ \\
\hline STX VECTI & STA B RJ \\
\hline  & C34 STA A RLSC \\
\hline SUX *(CDT/2-1) & - FIX RJ TO LNDEX \\
\hline TDCDA JSH SETI CARRIER DETECT TIME & AND A 7 \\
\hline INC TUCUAY - & STA A Tmpx \\
\hline * TEST DCD UP & - ihanch if data \\
\hline TDCD2 LDa a coms & CMP A 44 \\
\hline BIT A \$ \({ }^{4}\) & BLT C35 \\
\hline BEO TDCDI & JSK PUAT \\
\hline LDA A CJMR & - BKANCH TO Phocess ack/nak \\
\hline Cl.C & C 35 LDA 8 TMPX \\
\hline
\end{tabular}
```

 PAGE OIS PFOCIM .SASI
 LDX HMTBL
 JMP O.X
 *
 * hECEIVE RESPINSE TABLE
 * RJ=0 mu-DATa NAK OLD-SC
 * RJ=1 N()-DAIA NAK NEN-SC
 * RJ=2 MI-DATA ACK OLD-5C
 * RJ=3 MJ-DATA ACK NEW-SC
 * hJ=4 data Nak ol.D-SC
 * RJms data nak new-50
 * HJ=o vata ack olv-sc
 * hJe/ daTA ack new-SC
 - ack/nak Table
 RTHL JMP ROHI=O NAK
 JMP ROI NAK
 JMP H2 2 ACK
 JMP H2 3 ACK
 JmP R() & NAK
 JMP RS S PROCESS
 JMP HO 6 RESPONO ONLY
 JMP H5 }7\mathrm{ PROCESS
 * FIX pofnter by index
 FIXX TST 8
 BNE FIXXI
 aTS
 FIXXI INX
 INX
 UEC :
 BNE FIXXI
 HTS
 *
* PROCESS DATA MESSAgE
pOAT loX mabuF
I.DA A 1.X
CMP A :%4A
BNE POATI
 * DATA = MESSAGE FOR CRT
JSR XFRMSO
RTS
* data TO be phoce:SSLd
pgati lda a hJ
cmp a oj
8EO puatz
CMP A %7
8L0 MDAT2
RTS
* TRANSFEK DATA FKIM NEC GUFFEH
MDAT2 JSK TRAN
RTS
* setur xmit message
SETXuT EOU.

```
```

 PAGE OI7 PFUCOM .SA:I
 LDA y |
 *
 UCOUEZ2 LUX TABP
 LUX O,X
 cpx cove
 BEO DCNDE|
 LOX TABP
 INX
 INX
 STX [ABP
 ASL
 CMP & ws80
 BNE DCNDE2
 * TESTI IF *STATUS* colNe
 DCIDEI CMR B #
 BLE DCOOE3
 CLC
 KTS
 DCODE3 SEC
 HTS
 * - thansfer fdc heco data
* xadara destinatIon ador
*

XFDCH EOU
STX DEST

* UEFLECTION
L.DX ODATAP3
LUA B%4
JSH TCS
* ElE゙VaTion
LDX OUTA+12
I.DA B \#4
JSR TCS
- FUZE
LDX MUATA+8
LOA B 13
JSH TCS
- CHAHGE
I.DX \#DATA+I
LUA B l
JSR TCS
RTS
* Setup special mesSages
SSSM EOU *
* DATA REQuEst?
cimp \& \$sio
GNE SSSM!
I.OA H ODOC
JSH SIM
RTS
*
* END aF mISSION2

```

```

 SSSM1 CMH & %S2O
 BNE SSSM2
 CLH LHFU
 INC LHFO
 * ChT MESSAGE (CONTROL RECURD)
 *
 *$40
 GNE SSSMS
 SEIUP CONIKOL RECORD HEADER
 JSR SCHH
 * FIND END OF MESSAGE
 CLK b
 SSSM4 LDA A O.X
 CMP A WEOT
 INX
 INC 8
 BHA SSSm4
 * TRANSFER MSG TO XMIT BUFFEG
 SSSm3. L.DX #XDATA
 STX UEST
 lux muata
 JSH TCS
 * SETUP MSG THAILER
 LuA A WETX
 STA A 0, X
 CLK 1.X
 SSSMS INC INEF
 CLR FUO
 RTS
 * SETUP CONTHOL RECORD HEADEH
*

SCRH LUX \#CRH
JSH XFEH
NTS
CHH FCB SIIH,CMFC,SC,AC,NJC,IC,STX ,O

* TRANSFEK UATA FRAM REC bUFFER
* TO FUC WTOM BUFFER
TKAN EQU
* STHIH STATUS
JSH STS
 * EFIRE ORUER ACK?
cmp A ex00001110
BNac THANI
* YES, [HANSFEN TO FDC "TOm BUFFER
JSH XFDCT
*TESI CHECK FIRE PENUING
TST CFFF

```
```

```
AUE O19 PFDCOM .SA+1
```

```
AUE O19 PFDCOM .SA+1
itQ [HAN3
itQ [HAN3
ris
ris
    SETUP DATA MSG HEADER
    SETUP DATA MSG HEADER
{AN3 LDA B #NOC
{AN3 LDA B #NOC
JSH SUMH
JSH SUMH
    Fix STATUS
    Fix STATUS
LDA a <a
LDA a <a
STA A ASND
STA A ASND
JSH RSTS
JSH RSTS
    TRANSFEH F.O. DATA
    TRANSFEH F.O. DATA
L_XX EXDATA+4
L_XX EXDATA+4
JSR XFDCR
JSR XFDCR
SETUP DATA MSG TRAILER
SETUP DATA MSG TRAILER
JSH SUMT
JSH SUMT
    SET AUTO RH FI_AG
    SET AUTO RH FI_AG
ULH AIOKR
ULH AIOKR
INC A「OKH
INC A「OKH
HTS
HTS
= READY KEO.CHECK FIRE.FIRE COMMAND. DATA REO ACK?
= READY KEO.CHECK FIRE.FIRE COMMAND. DATA REO ACK?
WANI EOU *
WANI EOU *
FIHE CIMMANO ACK?
FIHE CIMMANO ACK?
CLH AIOUK
CLH AIOUK
LiMP A $200001101
LiMP A $200001101
MNE TRANZ2
MNE TRANZ2
INC AIOUH
INC AIOUH
    IRANSFER TO FDC MTOM BUFFER
    IRANSFER TO FDC MTOM BUFFER
ISH XFDCT
ISH XFDCT
SETUP OR MESSAGE
SETUP OR MESSAGE
I.JA B #UCX
I.JA B #UCX
JSH SIM
JSH SIM
~IS
~IS
THANSFER TO FDC mTOM BUFFER
THANSFER TO FDC mTOM BUFFER
KAN2 JSH XFDCT
KAN2 JSH XFDCT
CLiN ATOKH
CLiN ATOKH
OLR ATOUN
OLR ATOUN
nTS
nTS
TRANSFER FHOM HECV 8UFFER TO FDC "TOM BUFFER
TRANSFER FHOM HECV 8UFFER TO FDC "TOM BUFFER
FDCT EOU 
FDCT EOU 
GLEAH FDC BUFFER
GLEAH FDC BUFFER
Lux mucte
Lux mucte
STX BEND
STX BEND
LJX OFDCT
LJX OFDCT
JSH CLEF
JSH CLEF
rIND ETX
rIND ETX
CLNO
CLNO
inx mhuata
inx mhuata
HDCTI I.DA A O.X
HDCTI I.DA A O.X
MP A EETX
MP A EETX
HEO XFDCT2
HEO XFDCT2
INX
INX
INC B
INC B
MM 4 48
MM 4 48
OLS XFDC'T
OLS XFDC'T
THANSFEE DATA
THANSFEE DATA
    PAGE 020 HFDCOM .SA:I
```

 PAGE 020 HFDCOM .SA:I
    ```
```

 XFDCT2 LUX FFOCT
    ```
    XFDCT2 LUX FFOCT
    STX DEST
    STX DEST
    SIX DESI
    SIX DESI
    LLDX WRDA
    LLDX WRDA
    - TAG mITH EOT
    - TAG mITH EOT
    LDA A NEOI
    LDA A NEOI
    LDA A MEOI
    LDA A MEOI
    STA A O,X
    STA A O,X
    * Set data avall. fiag
    * Set data avall. fiag
    CLR FUCA
    CLR FUCA
    INC FDCA
    INC FDCA
    RTS
    RTS
    * test connect sequENCE
    * test connect sequENCE
    TEST CONNECT SEOUENCE
    TEST CONNECT SEOUENCE
    *
    *
    CINT EOU *
    CINT EOU *
    * healy nesponse flal SET?
    * healy nesponse flal SET?
    INC LHRF
    INC LHRF
    NC LHRF
    NC LHRF
    HEO CONTI
    HEO CONTI
    CI.R ZRRF
    CI.R ZRRF
    JMP XITI
    JMP XITI
    * FLAG SET. CONNECT
    * FLAG SET. CONNECT
    conNT cih conN
    conNT cih conN
    INC CONN
    INC CONN
    * TUNN ON MCDNNM I.ED,OFF MSTB
    * TUNN ON MCDNNM I.ED,OFF MSTB
        LDA A MLEDI
        LDA A MLEDI
        JSR LEONFF
        JSR LEONFF
        LDA A ClLED2
        LDA A ClLED2
        JSA LEDON
        JSA LEDON
    *
    *
CLR CJ
CLR CJ
        JMP l.0OP
        JMP l.0OP
    * ACK/NAK PROCESSSING, R'J= 0.1
    * ACK/NAK PROCESSSING, R'J= 0.1
    *
    *
    RO I.DA A Cl.EJ8
    RO I.DA A Cl.EJ8
        JSH LEDIFF
        JSH LEDIFF
        TST RENK
        TST RENK
        BEO ROI
        BEO ROI
    * SETUP NAK HESPONSE
    * SETUP NAK HESPONSE
    JSN SNH
    JSN SNH
        LDA A "CleDd
        LDA A "CleDd
        LDA A MCLED
        LDA A MCLED
    * Swar StO Cudes
    * Swar StO Cudes
    HOI JSH SSC
    HOI JSH SSC
    *
    *
    *
    *
    * heSEE for TRANSmIT
    * heSEE for TRANSmIT
    XIT EOU *
    XIT EOU *
    * TEST CTNNECT
    * TEST CTNNECT
        TST CONN
        TST CONN
        GNE XITI
        GNE XITI
    JMP CONT
    JMP CONT
xITI LUA A *
xITI LUA A *
STA A CJJ
STA A CJJ
    LDA A #SFF
    LDA A #SFF
    STA A XPASS
    STA A XPASS
    GI.R ATIURR
```

 GI.R ATIURR
    ```
\begin{tabular}{|c|c|}
\hline Page 021 PFDCOM ．Sa．l & PASE 022 PFDCOM ．SA：1 \\
\hline CLR AIOUR & JMP LOOP \\
\hline ＊IN CASE malt re－xmit & ＊T（X）many malts \\
\hline JSH CLRI & ＊SET KFD \\
\hline CLR TUCUBy & H23 CLR LKḞD \\
\hline ＊ENB XMIT／INH KECV & INC ZKFD \\
\hline JSR（I）MIR & JMP XIT \\
\hline JMP Lowor & ＊ \\
\hline ＊ & ＊Process service messages \\
\hline ＊ \(1{ }^{*}\) & h24 lua a haoco \\
\hline ＊HJ \(=2.3\) & CMP A \＃S2 \\
\hline H2 LDA A \＃CLEDS & HNE H26 \\
\hline JSR LEDOFF & ＊SETUP INFO MSC \\
\hline I．DX \％RBUF & R28 I．DA H \＄S40 \\
\hline －SIRIP Fohmat code & JSR SIM \\
\hline LDA A İX & JMP XIT \\
\hline STA A HXFC & ＊REQUEST Foh discunnect？ \\
\hline ＊STRIP oper code & H20 CMP A \＃54 \\
\hline L．DA A 4， X & BNE H27 \\
\hline AND A ！ & ＊SETUP UISC SVS MSG \\
\hline STA A HXOC & LUA B＊S46 \\
\hline ＊＊TEST SERVICE MSG & JSH SSM \\
\hline LDA A HXFC & CLR DISF \\
\hline CMP A WSMFC & INC UISF \\
\hline 6EO H24 & CI．R ZRFD \\
\hline －TES［ RANGE of format coue & JMP XIT \\
\hline BLS H2EN & －NO INSTRUCTION？ \\
\hline CMP A \＄4D & H27 CMP A \({ }^{\text {S }}\) \\
\hline BHI H2EH & GNE R2ER \\
\hline ＊TEST OPEH CODE & \\
\hline ＊NO HEO（XC？ & C．R CJ \\
\hline L．DA A HXOC & JMP L（X）P \\
\hline CMP A O & ＊ERROH PROCESSOR \\
\hline BNE R2I
CH CJ & R2ER LDA A＊S28 \\
\hline JMP L（X）P & STA A HERR \\
\hline ＊TEST IF READY HESPUNSE & －Jmp Ro \\
\hline H21 CMP A 6 & －RJ \(=5.7\) \\
\hline BNE H 22 & R5 EQU＊ \\
\hline ＊heady hesponse，SET CONenect flag CLR ZHHF & H6 EOU＊ \\
\hline DEC LHRF & JSA LELIFF \\
\hline JMP XIT & －AUTO KH Fl．ag set？ \\
\hline －TEST IF WAI & TST ALOHR \\
\hline K22 CMP A \＃4 & GNE RSS \\
\hline BNE H2E゙H & －Auto di flag Set？ \\
\hline ＊PROLESS MAIT & TSI A［OUH \\
\hline JSR PMAIT & BEO 451 \\
\hline BCS H23 & ＊TEST Check fihe pending \\
\hline I．DA A \％2 & H52 TSI CFFF \\
\hline STA A C HECEIVE & BNE R51 \\
\hline ＊HESEI HECEIVE & JMP XIT \\
\hline L．DX HRBUF
SIX URI & －malt next message \\
\hline SIX UKi & H51 CLH CJ \\
\hline CLEAn bufFen JSH CLHE & Jmp lout \\
\hline ＊INITINT & ＊SETUP SERVICE MESSAGE SSM LUX SSMH \\
\hline JSk CJMIX & JSH XFEN \\
\hline
\end{tabular}

JMP LOOF
many malts
SET KHD
23 CLR \(\angle R F^{\circ} D\)
JMP XIT
－PhoCESS SERVICE MESSAGES
．ECT
A \(\mathrm{R} \times\)
CMP A \＃s
＊SETUP INFO MSC
R28 I．DA H \(\$ 540\)
JSK SIM
JMP XIT
No
BNE H27
＊SETUP UISC SVS MSG
B 546
CLR DIS
CI．R ZRFD
JMP XIT
－NO INSTRUCTION？
CMP A \({ }^{\text {SO }}\)
＊
思
＊EHROH PROCESSOR
R2ER LDA A ES2 JMP RO）
－RJ＝ 5.7
KS EQU
H6 EOU
LuA a cledo
JSR LELIFF
＊AUTO KH FI．AG SET？
IST AICORR
BNE RSZ
AUTO Di fi．ag SET？
ACOU
＊TEST CHECK FIHE PENDING
H52 TS［ CFFF
BNE RSI
＊walt next messace
H5I CLH CJ
＊SETUP SERVICE MESSAGE
SSM LUX＂SMH JSH XFEN
```

HAGE 023 PFD(N)M .SA:
kTS
SMH FCd SOH,SMFC,SC, AC,NOC,IC,STX,ETX,O
*

* transFer dara from stack arlay
* TO X ARRAY
*

xHEA sIX SAVEX
I.DX EXBUF
STX DEST
XFER2 LDX SAVEX
I.DA A O,X
INX
STX SAVEX
LDX DEST
STA A O,X
INX
STX VEST
TST A
BNE XFER2

* CLEAR HEST OF BUFFER
JSH CLXB
* SET OPERR CODE
LOX exEUF
STA B 4.X
HTS
*
* PROCESS mAII MESSAGE
*

nmAIT DEC maITC
BEQ PNTI
d.c
HTS
*
Pwil lua a wlo
sta a maITC
SEC
HTS
*

* SeTUP INF(I MESSAGE
SIM I.DX IIMH
JSR XFER
KTS
IMH FCHSOH,IMFC,SC,AC,MMC,IC,STX,ETX,O
* SETUP uATA MESSAGE HEADER
SUMH LUX EOMH
JSiH XFEN
HTS
OMHI FCH SOH,IMFC,SC,AC,NOC,IC,STX,O
*
* SETJR DATA mSG THAII.EH
sUMI LJX EXUAIAT16
l.UA A EETX

```

PAGE 024 PFDCOM . SA:I
SIA A O.X
CI.K I.X

HTS
* SETUP SELECT MESSAGE

SSLM LUX *SSH
JSH XFER
HTS
*
SSH FCB SOH,SMFC,SC.AC.NOC.IC.STX FCB E[X.O
* STUP NAK RESPONSE
\(\star\)
SNR I.DA A RERH
- EXTHACT NAK BITS

AND A 38
STA A REERH
- RECOVER HEAUEH
I.DX XBUF

LDA A 4.X
- REMOVE NAK bITS

AND A ©S47
- Inseht reah message EOH A RERH
STA A 4. \(X\)
RTS
-
* Sinar sequence codes (41-42)
*
SSC LUX aXBUF
LOA a illusc
EOH A EJ
STA A \(2 . x\)
STa a olusc
RTS
* SETUP TIMEH | I (INTERRUPT)
\(\star\)
SETI I.JA A OLUCR2
(HA A 1
STA A OI.DCK2
STA A TCH2
- Stohe time \& start
i.DA A TSTS

LDA A TIIE 「IMEH I
STX [ID
STA A TCRI 3
HTS
-
* Cl.EAR IImer (I (Intehrunt)
*
CLhI LUA A OLDCR2
OHA A
STA A ILLECR2
STA A TCR2
- disable in [erkupt
\begin{tabular}{|c|c|}
\hline Pacte 025 prociom . SAil & nact 026 rfocim . 5 AII \\
\hline Lua a milil & JSR SCal \\
\hline Sta a tikiz & HTI \\
\hline HTS & * tes t timers ISER2 BIT A \\
\hline * Seidu [imer 2 (Interkupt) & BEO ISERS \\
\hline S & * Fix heturn via vectohz \\
\hline SET2 LUA A \#T2IE & JSH FRET2
JSH
L1 \\
\hline STA A OLDCH2 & JSH CLHZ \\
\hline L STO B TSTS & HTL \\
\hline * Store time \& Start & ISER3 BIT A \#1 \\
\hline STX I20 & BNE ISER4 \\
\hline STA a tch2 & Hil \\
\hline HTS & * Fix Return via vector \#l \\
\hline * Clear ilmen 2 (interrupt) & ISER4 JSR FRETI \\
\hline & HTI \\
\hline clez lua a *T2Il & \\
\hline STA A Ol.DCh2 & * TEST Comm interrupi \\
\hline STA A TCH2 & ISERI TST COMS \\
\hline RTS & BPL ISER5 \\
\hline * SETU & - COMM POOIL \\
\hline SET3 Lua a ollucrz & HTI \\
\hline AND A X111.111.10 & \\
\hline STA A OLDCR2 & * TEST FDC interruit \\
\hline STA A TCR2 & \\
\hline * SET TIME \& START & ISEH5 TST PIAACA \\
\hline LUA A TSTS & BPL ISEKIS \\
\hline UA a misie & JSh fuin \\
\hline STX T30 & HTI \\
\hline STA A TCRI3 & \\
\hline \({ }_{*}^{\text {HTS }}\) & - TESI CRT int. ISERIS TST TPS \\
\hline * clear timer *3 (interrupt) & BMI ISEHIO \\
\hline * Clat3 ida a oldichz & - HESET INT. \\
\hline and a millillio & RTI \({ }^{\text {a }}\) \\
\hline STA A Ol.DCR2 & * test receive \\
\hline STA A TCH2 & 1 SERIO IDA A TPS \\
\hline * disable interrupt & BIT A \# \\
\hline I.DA A T3II & BEO ISERII \\
\hline STA A TCRI3 & * Service heceive \\
\hline RTS & JSH TPREC \\
\hline * interbupt service houtine & * TEST Thansmit \\
\hline * & ISERII BIT A \({ }^{\text {a }}\) \\
\hline ISER EDU * & BNE ISERI2 \\
\hline * TEST TIME & - heser Int. \\
\hline STS ISAVES & UA A TPR \\
\hline LDA A TSTS & HTI \\
\hline BPL ISELHI & * Servicle transmit \\
\hline * TEST CLOCK (TIMER 3 3 - 100 MSEC ) & [SERI2 JSR TPXMT \\
\hline BIT A"\#4 & HTI \\
\hline HEO ISER2 & \\
\hline 1.0X 130 & \\
\hline - scan clock table & * Scan timer rable \\
\hline  & * \({ }^{*}\) Cat tst \(0 . x\) \\
\hline
\end{tabular}

```

 PAGE 029 PFUCOM .SA&1
 BNE THHE5
 LDX WFDCT
 STX TPMTR
 LDX FIDCTE
 STX TPPTE
 ClR FIBSY
 CLR fDCA
 La a MCleds
 JSA LEDOFF
 CLR A
 JMP TPRE3
 * = F? (FI.AC BUFFER)
 IPHES CMP A #FF
 BNE TPHEG
 lOX #FLAG
 STX TPPTR
 I.DX "FEND
 STX TPPTE
 LuA A |l
 JMP TPKE3
 * TEST data input moue
 THREG CMP A.NS
 BNE TPRE7
 * SET INPuT flag
 CI.R INF
 INC INF
 UNA A WCLEDG
 JSH LEDIIN
 * SET POINTEHS
 LUX #FDCF
 STX TPPTR
 * clleah buFFER
 I PREIO CLA O.X
 INX
 CPX FFDCFE
 SNE TPREIO
 Cl.R CFFF
 LUX FFDCFE
 STX TPPTE
 STAHI INPUT
 TPRE9 LUX TPPTR
 STA A O,X
 * TEST Cancel (XC)
 CMP A #$18
 BNE [PREIZ
 * HESTAKT
 CLH INF
 LUK A WCLEDG
 JSH LEDOFF
 CLH FDU:
 RTS
 IHKEI2 INX
 - STX TPPTR
 CPX TPMTE
 BNE TPKEII
 UEX
 LUA A WEOT
 STA A O.X
 PAGE O3O PFDCOMM .SAR&I
 TPREII CMP A MEOT
 BEO THRE8
 HTS
 * LASI CHAH
 TPREB CIH INF
 * TESI IF CHECK FIHE
 LUA A C()DE
 LOA A C(IDE
 BNE TPREI3
 LWA A CODE&I
 LDA A CODE-
 BNE TPREI3
 INC CFFF
 TPREIJ LOA A MCLEDG
JSH LELOFF
CL.H FDCC
INC FDOC
INC FDO:
RTS

* SETUR space count
THKEJ STA A SPC
STA A ASP
 * OUTPUT CHA.F
LDX OTPC
JSR CRLF
 - INH REC/ENE XMIT
 - LDA A EXIt
LDA A \#xIE
TPRE7 LDA A TPR
HTS
 * TRANSFER FDC .mTon BUFFER TO FDC
+
* output to acia
+

A(x) PSH A
I.DA A 0.x
BIT A %2
PUL A
HEO AOOI
GEO A(O)I
STA A I.X
SEC
RTS
A(x)1 CLC
HTS
*

* cr/lar kouTine
*

CHLF WA A *\&D
JSiR A(M)L
LOA A \#\$A
JSR A(x)I.
RTS
*

* L(x)P ON oUTPUT
*

A(X)L JSR A(X)
BCC AONH.

```
```

HACE O31 HFDCOM .SA:I
HIS
*

* TRANSFEH hECD mESSAGE TO CRT
*

xfirmSg lux whuATa
STX TPPTH

* FIND ENU OF MESSAGE
XRMSI lUA A U.X
CMP A EETX
BEO XHMS2
INX
BHA XRMSI
- FIX ENU ALURESS
XHMS2 UEX
STX rPHTE
CLH SPC
CLH ASP
* OUTPUT CHA.F
LUX FIPC
JSH CHL5
* INH NEC/ENB XMIT
LUA A EXIE
STA A TPC
NTS
*
* STHIP STATUS
STS I.DX HHDATA
LUA B \#4
C.R RSWD
STS2 LDA A 0,x
AND A Il
EOH A RSND
SIA A HSMD
DEC
HNE SISI
HTS
STS\ INX
ASL. HSWD
HRA STS2
*
* RESET STATUS
*

RSTS EOU *

* XFEK IU XMIT BUFFEK
LDX *XDATA+3
I.DA B %4
HSTS2 ELiR A
LSR ASNU
BCC HSTSJ
INC A

USTSI ALU A $$
30
 STA A O,X
 DEX
 UEC B
 BNE HSTS2
 HTS
*
```
```
- PAG尤 O32 PFW.....SAEI
```
- PAG尤 O32 PFW.....SAEI
    * Transfek CHar sThling
    * X=SOUHCE.ULST=ULSTINATION.B=CHAR CNT
*
TCS STX SAVEX
lCSI Lux SavEX
    I.DA A O.X
    INX
    STX SAVEX
*
    LDX DEEST
    STA A O.X
    INX
    STX UEST
    UEC B
    BNE TCSI
    HTS
    *
    * serur rias
    * PIAI-NOT USELU
HIAS EDU *
* PIAz-DISPlayS & CONTROLS
    LUX mIA2DA
    I.DA A
$$36

        JSH SETUP
    * pIAz - mot USEU
* 
- PIA4 - FDC PDPII/34
* SETUP y SIDE FINR OUTPUT
* SETUP A SIDE FOR INPUT
* 

LDX \#PIA4UA
I.DA A \#x00 IIIIOO
JSH SETUP

* ENABLE CAI
I.DA A \#K00111101
STA a pIA\&CA
* 
* TIMER
lua A MT3II
STA A TCRI3
LUA A \#T2II
STA A TCH2
STA A OLDCR2
lua a mTIII
STA A TCHIS
STA A TCHI3
UWX *12500
JSR SET3
* 
* 
* comm acta

LDA A \$\$43
LDA A COMMC
STA A COMC
LUA A GNIE
```

I 16

```
page 0J3 pfoctim .SAs1
    STA A OJMC
*
*
* test port acia
    LDA A #3
        STA A TPC
        I.DA A MHIE
        STA A TPC
*
* uisable interrupts
    SEI
    NOH
    NTS
*
* SETur rias
serup Clr 2.x Ca do select
        CLK 3.X CB DO SELECT
        LDA B USFF y SIDE-GUTPUT
        STA B I.X B SIDE OUTPUT
        LLK O.X A SIUE=INPUT
    STA A 2,\hat{X Ca OUPuT & CONTROL SElECT}
    STA A 3.x CB OUTPUT & CONTROL SELECT
    CLR I,X ZEROS OUTPUT
    IDA A O,X RESET
    LAA A I,X RESET
    NTS
*
* comm led ow
*
I.EDIN ORA A OT2
    STA A OT2
        NTS
*
* COMM LED OFF
*
1.EDOFF (O)M A
    AND A OT2
        STA A OT2
        RTS
* Clear hec buffeh
* Xestart adur
*
CLiky Clh O,X
    INX
        CPX UHEND
        bNE CI.Rb
        HTS
    *
    * clear xmit buffer
* x=start aulir
*
clexs cl.f 0,x
    INX
    CPX exENU
    PAGE 034 PFUCOM .SA&1
        BNE CLXB
        RTS
*
* Input from fuc
*
FDIN EOU *
    Cl.R CFFF
    * TEST Pass flag
        UNA A MCLEDG
        JSR LEDON
        TST FIBSY
        GNE FUI3
        * INITIN_ OOINTER
        LOX #FDCF
        STX FPTH
        INC FIBSY
* OET AND STORE CHAR
FOI3 LUX FPTR
    I.DA A PLAADA
        AND A &S7F
* convert spaces to o
    CMP A #s 20
    8NE FUIS
    1.DA A #s 30
FOIS STA A 0,X
    CLR INEF
    cmp a MEOT
    BEO FDI2
    * Strome data aocept
        JSR STHB4A
        INX
    STX FPTH
    CPX FFDCFE
    BEO FUI4
    BEO
    * HTS MAP UP
    fula INC INEF
    * outpuT FINAL STHIBE
    rDI2 JSR STRBAA
    CLR FIBSY
    INC FnCO
    * TEST IF lHECK fihe
    LuA a cove
    CMP A #C
    BNE FOIO
    LOA A CODE+1
    CMP A #'F
    GNE FDIG
    BNE FUIO
    INC CFFF
FDIG LLA A %ClEDG
    JSR LEDOFF
    * disabI.e Int. (CAI)
    TSI INEF
    BEO FUII
    RTS
rull lua a dxOO|llloo
    STA A PIAACA
    HTS
```

```
HAGE 03b PFDCOM .SAII PAGE 036 PFUCOM .SAEI P
* strode nutput-pia4a
*
STRB4A LUA A %%00110101
    STA A PIA4Ca
    NOP
    LUA A #*00IIIIOI
    STA A PIA&CA
    RTS
* head output char and cenerate parjJy
*
FREAD LDA A 0,X
    JSR PAR
    BCS FRDI
* HECOVEN UATA, EVEN
    I.DA A O.X
    AND A $S7F
    RTS
* tag ro. make even
FRUI LUA A 0.X
    ORA A $$80
    HTS
*
* TEST EVEN PARITY
* C SET=0DO. C CLR=EVEN
*
par CLR 日
PAR2 LSR A
    BCC PARI.
    INC B
PARI TST A
    BNE PAR2
* CHECK B EVEN ON ODD
    LSH }
    RTS
*
* oUTPUT TO FDC
FDOUT EOU*
    I.DA A ClEDS
    JSH LEDIN
* OUTPUT BUSY ?
    TST FOBSY
    BNE FDOI
* INITIAI. BUFFER PTR
    LUX #FDCT
    STX F%TT
* CIEAR data accept (c&I)
    INC FOBSY
F[IJ: I.DA A PIAADB
* SETUP NAIT TIME ( =.5 SEC)
    LUX os
    STX IIMI
* FETCH Char and ouTput
    I.DX FPTT
    JSH FNEAU
    STA A PlA4OU
```

* stroge data heady

JSR STRBAB

* wait Fir acceppt

CLH TFI
INC TFI
FDis TST PIA4CB
BMI FDO2
TST TFI
BEO FDO4
BHA FDO3

- data accepted. recover char

FDO2 I.DA A $0, X$

- INC POINTER

INX
STX FPTT

* TEST Last chah

CMH A EEOT
BeO FuOA
KTS

- I.ast char ci.ear fiags

FDOA CLH F(obsy
clir fuca
I.DA A CIIEDS

JSR LEDOFF
RTS

* STROBE OUTPUT~+IA4B

STRBAB LDA A $\times 200110100$
STA A PJA\&CB
N(1)
I.DA A \%OOIIIOO

STA A PIA4CB
RTS

- SYSTEM VECTORS

ONC SFFFE
FDB ISEK
FDB ISER
FDB ISER
FDB ISER
FDB STHI
END

```
STHT
CLEDS
- output busy ?
TST FOBSY
* INITIAN. BUFFER PTR
LUX FFDCT
- CiEAR data accept (CBI)
INC FOBSY
F(X): L.DA A PIAADB
LUX 4
- FETCH Char and output
JSH FREAO
STA a Pla4de
```


AGLS CONTROL PROGRAM SOURCE LISTING

```
PAGE OOI AGLSI :SA:I
NAM AGLS
* REVISED 7/1b/79 1000
* sehial comm gun ohuehs
*
*t*********AGLSI ###********
* pia eouates
* piag=auto SwITChES(a),clock rate(B)
HIAODA EOU S2,SOO
HIAODB EQU PIAONA+I
HIAOCA EOU PIAODA+2
HIAOCS EOU PIAUDA+3
*
* manual c.o. inful
* A=DAIA, Y=ALXJN.
HIAIUA EQU $2400
UIAIDS EOU HIAIDA+I
HIAIDE EOU PIAIDA+I
HIAICB EOU PIAIDA+3
* PIA2=OUAU EL ENCIDER;MSB=A, LSB=B
pIAZDA EOU $2404
HIA208 EOU PIA2UA+1
HiARCA EOU yIAZDA+2
H1A2CB EOU PIARDA+3
* PIA3=PANTEI. AL ENLIJOERBMSH=A,LSB=B
*
PIABUA EOU $2408
rlajug tov plajuarl
PIABCA EOU PIAJLAA+2
HIAKi8 EOU HIA3OA+3
* PIA&z1/10 ENCODEK OUTPWIS(A), ENABIE OUTPUTS(B)
*
PIA4DA EOU $240C
PIA4NB EOU PIA4RA+1
PIA&CA EOU P[A4DA+2
PIA4CG EQU PIA4DA+3
* Plab=muX nu data (A),muX AlUR(B)
*
HIASDA EOU $2410
HIASUB EOU PIASLATI
PIADCA EOU PIADDA+2
HIASCS EOU PIA5DA+3
*
* HIAO=E. TRIM NU(A),AZ THIM NO(B)
*
plagina tou $2414
HIAgUS EOU PIAODA+I
HIAOCA EOU HIAOUA+2
rlasca EDU riAgDA+3
```

```
PACE (02 AOLSI .SA&I
* miav=d/a cunventek
pla7Da EOU s2418
PIA7D& EOU PIA7DA+1
mIAICA EOU PIATDA+2
HIATCB EOU PIATDA+J
*
* HIAB=DISPLAY(4) aNu SmITCHES(4),(A)
    MISC INPUTS(3) AND DISP ADDH(b),(B)
HIA&DA EOU $241C
PIABDB EOU HIABDA+
PIA8DB EOU PIABOA+1
PIABCA EOU PIAODA +2
*
* pIa o SnItCh masks
*UPIM EQU x100000000
LDP2M EOU $1000000
PLROM EOU $100000
OLROM EOU $I0000
HOKOM EOU $1000
OOHOM EOU %100
AZROM EOU *IO
ELROM EQU $1
* PIA o STHOHE
HWDOG EOU HIAOCA
*
* pIA4 (A) INRUT mASKS
*
ELTM EOU x1111
AETM EOU %1III0000
*
* PIA4 (B) ENABLE BIITS
* O=THUE
*(GO EQU $11111110
ACOO ENU XIIIIIIOI
Pago EOU xIH11IOII
OPGO EQU $11110111
F(rg) ESU $11101111
O(xGO EOU x $1011111
AZGO EOU $101IIIII
El.GO EOU 2O11111.1:
* ERHOH Volltage masks
OPMA EOL I
OCMA EQU 2
MMMAREOU 3
mCMA EOU 4
PAMA EOU 51
```

```
*
* pIAS ENABI.ES AND FI.AG AlNRESSES
SaUj EQU PIASCA


\begin{tabular}{|c|c|}
\hline PAGE 00.7 AGLSI .5A21 & PAGE 008 AGLSI . SA: 1 \\
\hline * & HUCCNF RMB I OCW SEARCH \\
\hline * OFFSET ERROR Words & OPLP RMB I DUAD PITCH ERROK CNT \\
\hline * ELIIS OP=1 & DPCNT HMB 1 DUAD PITCH EHKOR CNT \\
\hline - OC=2 & ATOUP RMB 1 aUTO UPDATE \\
\hline - OP + OC= 3 & IPPASS RMB 1 NPN Sm PASS \\
\hline * AZLII: MPay & END EQU * \\
\hline * MC=2 & Hage \\
\hline \(M P+M C=3\) & \\
\hline \(A P=4\) & * agls control program \\
\hline ELIT HMB I & \\
\hline AZLIT NME 1 & * ENTER HERE ON RESET \\
\hline * mode SnITCH NokD & OHG \$4800 \\
\hline - agls mode select & AGO ĖQU * \\
\hline - autu el \(=1\) & LUS *SOFFO \\
\hline - AUTO AZ \(=2\) & * INITIAL PIAS \\
\hline - DUAJ OFFSET = 3 & JSH HIAS \\
\hline * PAN OFFSET \(=4\) & * Cl.EAR TIMERS \\
\hline AMODE KMB I & JSK CLTM \\
\hline * Local mode mord & * clear flags \\
\hline - =0 NO B.D. PRESET & I.OX BEC \\
\hline * =1 B.D. PRESET & JSR CLFG \\
\hline - \(=2\) AUTO UPDATE F.O. & * SET uISPLAY INTERVALS \\
\hline LMODE RMB 1 & 1.DX 2 \\
\hline ******** & STX TIMI \\
\hline ******** & LUX 20 \\
\hline - TEmporary buFFers & STX TIM2 \\
\hline TEMSUB RMB 5 & INC TFI \\
\hline TEMBCD RME 5 & INC TF2 \\
\hline HESUI.T HMB 5 & - SETUP AZ Foh 3200 \\
\hline ADJX HME 5 & Lux \#azgcus \\
\hline ELTEMP RMB 5 & STX ISAVES \\
\hline AZTEMP RMB 5 & Lux const 3 \\
\hline IHMENC HMB 5 & LUA y ub \\
\hline * HEF ANGLE HOLU BUFFER & JSH TCS \\
\hline HHOLD HMB 3 & * \\
\hline * HEF ANGLE ACTIVE BUFFER & LDX \#AZF0 \\
\hline HEF RMB 5 & STX ISAVES \\
\hline * BASE DEFI.ECTIUN BUFFER & UX WCONST3 \\
\hline GUBUF HMB 5 & I.DA 8 \#S \\
\hline - COMM BUFFEA & JSK TCS \\
\hline CBUF HMB 16 & * TEST MANUAL F.0. INPUT \\
\hline - hestart flags hekt & CLR MANIN \\
\hline HEST EOU * & LUA A PIAIDA \\
\hline * & BIT A \#S10 \\
\hline tBLK RM8 1 L(X)P 2 bLock & BNE AGI \\
\hline 「BI.K RMB I & * disadle acia int. \\
\hline XTIME RMB I XENON STABILITY & LUA A MNIE \\
\hline STF RNE I FIRST PASS FLAG & STA a acic \\
\hline ELJ.KI RMB 1 l.(x)P 2 I.DCK & lod a acir \\
\hline AZLKI RME I & INC MANIN \\
\hline ELKK2 HMB 1 L(x)P 3 Lock & CLI \\
\hline AZIK2 HME 1 - & Bra AG2 \\
\hline UEL 4 HMB I mPN EL START UELAY & - pull ciomm proce hts hi \\
\hline DEI. 6 RME I AL UPDATE DEI.AY & AGI CLI \\
\hline rasjal rmb i al cliosing pass & I.DA A "S89 \\
\hline PASSEL RWE 1 EL CLOSING PASS & SIA A AClC \\
\hline Sidnf nMb 1 AZ Sl.om Speti & lua a aclia \\
\hline ruchar rmb I Ca SEakCh & * Cleah restart Fl.ags \\
\hline
\end{tabular}

PACE 010 AGLSI ..... SA:1
- upoare f.o.
    JSH UFO
    CLH NEWFO
    CLH MrNS
    INC WPPASS
- Load mis. change?
    TST LOADF
    BEO AG8
    INC STF
    CLR LOADF
    - TESI coma move
- NOHMAI. ?
agy CLh bOF
    LUA A CMCDE
    BEO AG18
- BOHEESIGHT ?
    CMP A 2
    BEO AGI8
- CLEAR B.D.?
    CMP A *
    BLT AGI7
- fix clear
    I.DA a Lmode
    AND A \#SFE
    STA A LMODE
    CI.R BDF
    JSR CLHED
    BRA AGIB
- FIX gase def.
AGI / INC BDF
- TESI Bu SET
    Cmp A 3
    BNE AGIU
    SUH A \#2
    STA A CMODE
    LUA A LMoUE
    OHA A I
    STA A LMODE
    - read az enconer and store
    JSH FIXBD
*
- read az and el encoders
AGIS INC DISEI.
    INC DISAZ
    JSH RENCS
* TEST XTHRU FI.AG
    - \(=1\) EL COMPUTE, \(=0\) AL COMPUTE
*
    TST XIHHU
    BNE AGIO
    JSh Compaz
    INC XIHU
    BKA AGII
*
AGIO JSA COMPEL.
    Cl. XITHU
- heau and STore Erhor voltages

PAGE OII AGLSI .SA:I
AGII JSR RAEV
* CHECK OFFSETS

JSK CKII
- Test Servo Sw

LuA a "SRVom
JSR TSTS8B
BCS AG39
I.DA A \({ }^{\text {us FF }}\)

STA A PIA4DB
JMP AG2
- lo(x)p 2 staht
-
* SET ru flags

AC39 JSR SRUF
* WEAMiN AL EnableED?

Cla azdar
tst azgof
BEO AG12
* auto al selected
* test staht ihku flag

AG4A TST STF
BEO AG37
Jmp AGIO
* Fihst time thru
- TEST XENON ON

AG37 TST XRECF
BNE AGU32
JMP AG4
* Enabie pantel az

AG32 LDA PACC
JSH FIXENB
* test readr
tst anedy
BEO AG41
Jmp ag3
* az wa ontput=o

AG41 LD \(\omega 0\)
STX AZCIM
* disable pantel offset
ida a pogos
JSH FIXDIS
* disable ru search flags
CI. H RUCWF
cle ruainf
- set ready
cl.R aredy

INC AhEDY
HHA AG3
- neapin az disabien
* Test pantel offset
agiz lua a "Hohom
JSH SSTSn
bCC AGI3
- Emabie pantei. offset LUA A AP(ici) JSh FIXENB

PAGE OI2 AGLSI .SAAI
* test az lock

TST AZLKI
BNE AG16
* enable pantel az
loa a pago
JSK FIXENB
* test az closing

JSR CLAZ
BCC AGI6
* disable pantel az

LDA a MPAGO
JSK FIXDIS
INC AZLXI
sfa AGIG
* No auto meapin or auto offset
* AZ D/A IUTPUT \(=0\)
agiz Lux *O
STX AL(X)M
CLH ALLKI
BHA AG16
* No lite, test search

AG4 CLis AHEDY
* ru search Ch?
luan nucmp
BEO AG14
I.DX arloom

STX AZC)M
bra AG15
- Ru SEARCH CCw?

AGI 4 LDA A RUCCMF
BEO AG20
I.DX MM100M

STX AZCOM
* Enable pantel offset

AGIS L.DA A \#P()GO)
JSH FIXENB
* enabie pantel. az
lda a apago
JSH FIXENB
- SET ranv block

CLK TBLK
INC THLK
BRA AG16
* oisable pantel azimuth
ag2o loa a mpago
JSH FIXDIS
CLK TBLK
INC TBLK
BHA AGIO
* tesi xenon stability

AG3 CLR THLK
JSK XSTAB
BCS AGIG
- set rhav block

INC rBLK
agio clle eldaf
* auto El. selecteva

TST EI. \()^{\text {OF }}\) F
\begin{tabular}{|c|c|}
\hline PAGE OJ 3 AGLSI .SAA & Page ola aglsi .Snal \\
\hline  & AG2J CI.R STF \\
\hline HEO AC23 & [ST MPNF \\
\hline - stari thru sett & BNE AG27 \\
\hline TSI SIF & JMP Ac7 \\
\hline BNE AG21 & * SET Staht thru \\
\hline * test ouad hitch clousing & aG27 INC STF \\
\hline CLH EBLK & \\
\hline INC EBLK & * auto az losop \\
\hline I.DA A *10 & \\
\hline STA A OPLP & * az enabled? \\
\hline JSR CLOP & TST ALCNF \\
\hline BCC AG21 & bNE AG45 \\
\hline * NULL ACHIEVED & JMP AG26 \\
\hline CLH EBLK & * TEST XENON ON \\
\hline BHA AG21 & AG45 TST XRECF \\
\hline - TEST Quad offset select & BNE AG40 \\
\hline AG23 WAA MOORRM & CLR ArEuy \\
\hline JSH TSTSW & CLR MrNF \\
\hline BCS AG50 & * TEST READY \\
\hline Lux m & AG40 TST AKEDY \\
\hline STX ELCOM & BNE AGI9 \\
\hline CLR ELLKI & - disabi.e pantel. az \\
\hline HRA AG21 & LDA A \#PAGO \\
\hline - ENABIE OUAD OFFSET & JSH Fixuls \\
\hline ag5o loa a midgo & - disabie neapon az \\
\hline JSH FIXENB & LUA A ARGO \\
\hline * TEST EL Lock & JSR FIXDIS \\
\hline TST ELLKI & * disabie meapon el. \\
\hline BNE AG21 & Lua a *elG) \\
\hline * enable ouad pitch & - JSH FIXUIS \\
\hline LDA A OPGO & Jmp AG29 \\
\hline JSR FIXENB & - ENABLE NEAPON AZ \\
\hline * test el closinc & agis lua a mazgo \\
\hline JSH LLEL & JSH FIXENB \\
\hline HCC AC2I & - test az lock \\
\hline * disable quad pitch & TST AZLK2 \\
\hline LUA A MOPGO & BNE AG26 \\
\hline JSR Fixuls & - enable pantel az \\
\hline INC EILKI & Luat PPAGO \\
\hline * output config enables & JSR FIXENB \\
\hline ag2l InC eldaf & * enable pantel uffset \\
\hline IHC ALDAF & LUAA \#POCO \\
\hline LDA A CXNGOM & JSH FIXENB \\
\hline STA A MIAADB & * test azimuth closing \\
\hline - STANT THRU SET? & CLR SLOMF \\
\hline TST STF & INC SLIOWF \\
\hline SNE AG2S & JSR CLAL \\
\hline * TESt Thar oh ei. biodek & BCC AG26 \\
\hline BCC AG25 & * tStandilo \\
\hline TST nrpass & BNE AG28 \\
\hline ane Aciju & \\
\hline  & I.da a lmmode \\
\hline AG3B JMP AG7 & ora a \({ }^{\text {che }}\) \\
\hline - L(x)P 3 Stakt & sta a lmoue \\
\hline * L(x)p 3 start & INC Atour \\
\hline * Lesr meacon sn & INC DELO \\
\hline * test meapon Sn & \\
\hline
\end{tabular}
page ols aglsi .Sasi

\section*{*}

AG28 TST TFO
BNE ACZO
* DISABIE PANTEL az
ag35 CLR SLONF
I.DAA PACO

JSR FIXDIS
INC AZLK2
- FIX Lemode
lda a Lmijde
and a \(\operatorname{msfD}\)
STA A :.mode
CLH DELo
CLH iro
cla atour
*
* Auto = L Lop
- El. Enabletoz

AG2O [ST ELCOF
8EO AG30
* test el lock

AG43 TST ELLK2
BNE AG30
- ENAble ound pitch LUA A MOPGO
JSR FIXENB
* ENAble duad offsei
loda nondo
JSR FIXENB
- delay meapon el

TST UEL4
BNE AG54
LDX 100
STX TIM4
INC Ir4
INC UELA
\(*\)
AG54 TST TFA
BNE AG53
* ENABLE WEAPON EI.

LDA EELCO
JSH FIXENB
* TEST EL Clo(ising

AG53 JSH CLEL
HCC AG30
- DISABLE quan pITCH

INC ELLK 2
AG2Y LUAA \#OPGO
JSH FIXDIS
* INTPIT ENABLES AHD DKIVE
aGjo Llia a 1
STA a ádaf
SiA a ciddat
lla a '.ingo
STA A IAADV
Jmp Ans
pacie.

PAGE 016 AGLSI . .SASI
*********AGi.S2*******
*
* Form configuration woho
*
oce lua a \#sFF
STA A congo
* TEST auTo az
1.DAA *ALKOM

JSR TSTSW
BCC (CEI
I.DA A MLGO

JSH FIXENB
CLH AZGOF
INC AL(X)F
BHA OCE 3
* TEST PANTEL LEVEL
()CEI CLK ALGOF

LUA A WPLROM
JSR TSTSA
BCC OCE2
LDA A "PLGO
JSR FIXENB
* TEST HANTEL IFFSET

OCE2 LDA A PORQM
JSH ISTSM
BCC OCE3
LUA A P(OGO
JSH FI XENB
* TEST AUTO EL.

OCEZ LOA A ELROM
JSH TSTSM
BLS OCE6
CLi EL(G)F
* test quau level
I.DA A WOL.HOM

JSK TSTSW
BCC OCEA
ISA A EOCGO
JSH FIXENB
LUA A apGo
JSR FIXENB
- TEST OUAD OFFSET

ICE4 LUA A MONOM
JSR TSTSW
BCC OCE5
LOA A MPGO
JSR FIXENB
LDA a eonge
JSR FIXENB
OCE5 HTS
* ENABLE AUTO EL

OCEO CLH ELGOF
INC EI. (X)F
LDAA \#OCCO
JSH FIXENB
I.DAM OHOI

JSR FIXENG
\begin{tabular}{|c|c|}
\hline pact oif aclst .SA81 & Page ols ag.si . SA:I \\
\hline & Nop \\
\hline KTS & lua a o.x \\
\hline * head configuhat lon switchit registen & SUB A \#SIF \\
\hline & \\
\hline conno lda a piadoda & * read encoders routine \\
\hline STA A ()NNTEM & * elevation axis \\
\hline COM A & hencs ldx *eltemp \\
\hline ann a "SF & I.DA a PIazidb \\
\hline Sta a amide & AND A \$\$7F \\
\hline HPS & JSR STBF \\
\hline * TEST CONFIG. SWITCL Wohd & LOA A PIA2DA \\
\hline * TESESTIF Sn* ONiC=0 lF OFF & JSR ST8F \\
\hline & JSH SIbfl \\
\hline TSTSW AND A CONTEM & \\
\hline dEO ISTSI & * azimuth axis \\
\hline c..c &  \\
\hline KTS SEC & LDA A PIA ADB \\
\hline rSTSI SEC & AND A \#S 7 F \\
\hline RTS & JSK STBF \\
\hline * FIX ENABLE Nord & LOA A PIA3UA \\
\hline & LDA A PI A4DA \\
\hline FIXENB AND A CONGO & JSH STBF2 \\
\hline Sta a congo. & RTS \\
\hline RTS & \\
\hline * read thim routine & * store display buffer routine \\
\hline * AZİmuth min & STBF TAB \\
\hline hTKM LJa a miagos & JSK STBF2 \\
\hline LUX \#SALSB & INX \\
\hline JSH SCON & JSH STBri \\
\hline JSk GET & INX \\
\hline Sta a ALTHM & * \\
\hline * elevation & * Store dishlay buffer-1 STBFI AND B 3 SOF \\
\hline LDA A MIAGDA & STA B \(0, \mathrm{X}\) \\
\hline Lux \#Sauoa & HTS \\
\hline JSR Scon & \\
\hline LDX UIIACDA & * Store display buffer-2 \\
\hline JSH GET & STBF2 LSH A \\
\hline RTS \({ }^{\text {a }}\) & L.5R A \\
\hline * sthobe control hulsecte kegi & LSH A \\
\hline * Sirobe conjrol hulsers negi & STA A O.X \\
\hline Scun Liva a *S3E & RTS \\
\hline STA A O, \({ }_{\text {cor }}\) & * heal analog erkor voltages \\
\hline LUA B ES 36 & * hev analao error voltaces \\
\hline SIA B O. & HAEV CLRA \\
\hline & STA A muxato \\
\hline * get an data houtine & LDX UEHABUF \\
\hline * \(X\) =DATA KEG. ADDRESS & - SEETUP FOK REMEATED TRY'S \\
\hline -ikt lija \(A 2, x\) & haevs sta a preval I.OA A M \\
\hline M)P & \\
\hline
\end{tabular}
```

 PAGE O19 AG.SI .SAdJ
 STA A NUMKED
 * Lexop ond a/u channels
 haEV2 LDA a #s 34
 STA A SADS
 LDA A muxado
 STA A PIA5DB
 * iou uSEC DELAY
I.DA a \#16
maEVA UEC' A
BNE KAEV4
LDA A \#S3C
STA A SAD5
 * wait eoc
LDA a 32
HAEV3 UEC A
BNE RAEV3
* heau and store data
I.DA a mIASDA
* tes[for consec. readings
CMP A PREVAL
BNE RAEVS
DEC NUMHED
BNE KAEV2
STA A O.X
INX
LuA a muxado
ADD A \#SIO
SIA a muxalu
OEC B
gNE RAEVS
CLH PIASDB
HTS
*
* Test riab Snitches (b side)
* C SES IF Sm ONiC=O IF OFF
*

TSTSBB AND A rIABDB
BEO [ST8I
Cl.C
HTS
ISTH\ SEC
RTS
*

* Test piag snitches (a side)
* c- ser if Sm onac=o IF off
*

tstsya and a plagda
BEJ TSTB2
CLC
HIS
TST82 sec
HIS SCl -

* set ru flags
*

shuf ist hucmf
bNe ShuF3
LuA A "HUCMM

```
```

page 020 ACLSI .SAsi.

```
page 020 ACLSI .SAsi.
    JSH TSTSBA
    JSH TSTSBA
    BCC SHUFI
    BCC SHUFI
    inc hucnf
    inc hucnf
*
*
SRUFI TST HUCCOF
SRUFI TST HUCCOF
    BNE SRUF4
    BNE SRUF4
    i.da a mhuccam
    i.da a mhuccam
    JSH TSTS8A
    JSH TSTS8A
    BCC SRUF2
    BCC SRUF2
    INC RUCLint
    INC RUCLint
SHUF2 RTS
SHUF2 RTS
SHiJF Cl.h ruccma
SHiJF Cl.h ruccma
    LDA a \#huccinm
    LDA a \#huccinm
    JSR TSTSBA
    JSR TSTSBA
    bCC SAUF2
    bCC SAUF2
    CLR NUCAF
    CLR NUCAF
    Cl.h hucimp
    Cl.h hucimp
    inc hucimf
    inc hucimf
    hTS
    hTS
SRUFA TST RUCMF
SRUFA TST RUCMF
    BEO SHUF2
    BEO SHUF2
    CLL RUCCWF
    CLL RUCCWF
    HTS
    HTS
*
*
* test load positon transition
* test load positon transition
+
+
tluad equ *
tluad equ *
* tesi load position
* tesi load position
LUA A LPOSM
LUA A LPOSM
    JSH TSTS甘A
    JSH TSTS甘A
    BCC TLOI
    BCC TLOI
- SN. SET (Lp)
- SN. SET (Lp)
* test last position
* test last position
    TST LPOSF
    TST LPOSF
    BEO Tl.(12
    BEO Tl.(12
    HTS
    HTS
* nENT OE-Lp
* nENT OE-Lp
T1.12 INC I.POSF
T1.12 INC I.POSF
    JSk SLPMS
    JSk SLPMS
    BRA [L()4
    BRA [L()4
    - Sn Not SET (OE)
    - Sn Not SET (OE)
* TESI Last position
* TESI Last position
TLo! IST LPosf
TLo! IST LPosf
    BNE TLOU
    BNE TLOU
    HIS
    HIS
* WENT i.p-oe
* WENT i.p-oe
* comm busy?
* comm busy?
tLo3 CLh LPOSF
tLo3 CLh LPOSF
    TST CbSy
    TST CbSy
    aNE CLOJ
    aNE CLOJ
    - move comm buff To disp
    - move comm buff To disp
    SE!
    SE!
        JSH MVCL
        JSH MVCL
    CLI
    CLI
    * move disp re control
    * move disp re control
    JSH UFO
    JSH UFO
* restart el.evation
* restart el.evation
rloa LLK GHNF
```

rloa LLK GHNF

```
```

PACE 021 ACLSI .SAP1
PAGE 022 AGLSI .SAA1
LDA A \#SFF
STA A WHNS
INC LOAUF

* DISABLE QUAU OFFSEI
I.Da a mooco
JSR FIXDIS
* dISABLE NHN ELEyATION
I.DA A EELGO
JSH FIXDIS
RTS
-
* SET LOAD MISITION
SLPOS LUX *LUADJ
LDA A LOPIM
JSR TSTSN
HCC SLP()I
LUX Load2
* I.DA A I.Dr 2 m
JSR TSTSW
BCC SLP()3
L.DK LI.OADA
BRA SLPOJ
$\stackrel{*}{*}$
SLPOI I.DA.A HLDP2M
JSK TSTSW
HCC SLPO 3
LDX M(OAD3
-

SLPO3 STX LOAUX

- FIX CONTROL BUFFER
I.DX *EI.GCDS
LUA A LOADX
JSH STBF
L.DA A (O)ADX+1
JSR STBF
CLH O,X
- FIX DISM.AY BUFFER
LOX ELEO
LUA A LOAUX
JSH STBF
LDA A L()ADX +1
JSK STBF:
HIS
${ }^{\omega}$
$\stackrel{*}{*}$
* fix uisable houtine
fixuls cim a
(Wha a congo
STA A (O)NGO
NTS
.
- TEST OHFSET ENROHS

```

```

Packe 021 aclsi .SAPI	PAGE 022 AGLSI . SAAI
LDa A \#FFr	* C=0 OFFSET OK
STA A mPNS	* ${ }^{\text {* }}$
inc lonija	terr lox errbuf
* disable quau ofrset	Dect
I.Da a macigo	STA B hildi
JSh FIXDIS	beo TERRI
* disable mpn eleyation	- bed terri
I.DA A ELCLG	TERH2 INX
JSTS FIXDIS	DEC ${ }^{\text {B }}$
	BNE TEHR2
* set load position	TERH LUA A O,X
*	I.DA B Holide
SLPOS LUX *LOADJ	HEO TERH4
LDA A LDPIM	TERR3 INX
JSR TSTSN	DEC B
HCC SLP()I	BNE TERK3
Lux loadz	TERK4 Lua s o.x
I.DA A I.Dr 2 m	
JSR TSTSW	
BCC SLP()3	NEC A
L.DX M.OAD4	TERNG CBA
Bra SLPOJ 3	BPL TERR5
SLPOI I.DA.A ELDP2M	CLC
JSK TSTSW	
BCC SLPO3	TERRS SEC
LDX Lol(AD3	hTS.
SLpo3 STX Loaux	*
* FIX CONTROL BUFFER	tifhval equ *
I.nx El.ccos	FCB EOP
LDA A LOADX	FCB EлC
	FCB EMP
JSk SrBF	FCHEMC
CLH O, X	Fct epa
- FIX DISH.ay buffeh	* Check offseis and control gozno-go
Lox EELFO	* Cheix offseis and control corno-Go
LUA A LIOAUX	cko cler ckof
JSK STBF LDA A L(IADXX 1	LUA B 5
JSk STBr	Sta b savb
CLR $0, x$	
His	CLR ALLIT
*	ckoz i.na b save
*	* call test erhoon
* fix uisable routine	JSH TERA
* Hix ulsagle houtine	* setur ermoh wohd fog display
fixils cam 1	BCC CKIIB
(\%A A CONGO)	inc ertag
STA A Clingo	l.dab sava
nTS	CMPE ${ }^{\text {ch }}$
	BNE こKI)
* C SETMIFFSETPALLCINEU	* bypasis NP If bo mude TST ISUF

```
```

 PAGE U2.3 AGLSI .SAZI
 BNE CKC14
 LUAA *4
 OHAN AZI.IT
 STAA AZLIT
 *
 CKO4 CMPB *4
 BNE CKC%
 I.DAM L2
 (HAA AZLIT
 STAA AZLII
 *

CKO5 CMPB 3
BNE CK(I)
LDAA \#I
OfAA AZL.IT
STAA AZLIT
*
CKOO CMPB \#2
GNE CXOI
LUM \#2
ORAA ELIT
STAA ELLIT
*
CK07 CMPB ..I
BNE CXD8
LDAa |l
ORMA ELJ.IT
STAa ELIT
*
CKOy NEC SAVB
BNE CKO2

* TEST G(%/N(%-GO
TST EFLAG
BNE CKOI
* TEST DIGITAL ERR (<1 mIL)
I.DA A \#SF
CMP A A<ERD
BNE CKOI
* CMP A El.EHD
BNE CKOI
* ENAGLEGO
L.DA A SS 3E
STA A LAMP
INC CKOF
HTS
* eNAblet N()-wo
CKOI LuA A \$S30
STA A LAMP
INC CKOF
HTS
* Tesr al ERh hange
* (u/a format)
*

Talehh l.DX alehh
1.JA B \#AZLIM
JSN TSTIT

```
    Page 024 acesi .SAEJ
        RIS
        * TEST EL ERR HANGE
    TELEKR LDX ELERR
        TELERR LOX ELE
LUA 8 ELIIM
        JSH TSTIT
        HTS
    \({ }^{*}\)
    * test doa format
    *
    TSTIT STX SAVA
    * FIX FOH SIGN
        isI SAVA
        BrI. TSTI 3
        luAa Sava
        ANUA :S7F
        STAA Sava
    *
    csti3 ldaa sava
        AND A *SF
        BEO TSTII
        SEC
        HTS
    * CHECK LSB
    rSTII LOA a savb
        CBA
    - NOM
    HHI SSTI 2
    C.C
    HTS
    TSTI2 SEC
    RTS
*
* COMPUTE AZ ERROR
COMPAL CLK \(51 G\)
    CLR OISAZ
    LUX EIEMBCD
* Convert thim To bcd
    Clik A
    S.DA B aZThm
    BPL (D)PAZI
    INC SIG
    NEG B
COPALI NOP
    NOP
    JSR BIMBCD
- aOD THIM TI Encuder heading
    LUX TIEMBCD
    STX AI
    LDX WAZTEMP
    STX A2
    STX A2
    LDX RRESULT+4
    JSH BCDADU
* ADJJST FOH ROIJ.OVEH
LUX WAZUISH
```

rAGE O25 AGLSI .SAa1
jSA ADJ -

* save trimmed enc. value
UX \#TRMENC
STX ISAVES
LDX azUISP
LDA a m
JSN TCS
* bASE DEFL. SELECT ?
I.DX WHEF
TST BUF
BEO CCLPAZ5
LDX *BDBUF
 * subthact ref. or bu angle
CIPAZS STX S2
LDOX MAZDISP
STX SI
LDX NHESULT
JSR BCDSUB
* adjust for rollover
I.DX \#AZDISP
JSr: ANJ
* Sugithact result from gacs
Lox \#azDISP
STX S2
LDx \#AZGCos
STX SI
I.DX HHESULT
JSH BCUSUB
* ADJUST FOR ROLLOVER
ldx \#AZEHD
JSH ALJJ
* FIX FOH + OH - 32000
CIN SIG
wx *azeru
JSH TEST 32
8CC cIPAZz
* FIX if > 32000
LiNK AAZERD
STX Al
JSH NINCOM
Lx CONST
STX A2
LDX ONESULT+4
JSN BCDALN
* LDX MAZEND
JSH XFEK
CLR SIG
INC SIG
* test magnitade gof uisplay value
COHAL3 IDX OAZERD
JSH TESTM
* Fix Sign of display
BLCC cipala
* blank sign if < I mil

```
page 026 agls
.SA: 1
L.DA A *sF

BRA (u)PAZ2
copazu LuA a "I
TST SIG
BEO cupazz
LUA A *2
Copazz sta a alehd
* CONVEHI ERROH TO binary
L.DX MAZERD

JSk BCDEIN
STX AZEAR
INC DISAZ
HTS
CONST FCH 6.4.0.0.0
CONST2 FCE 3.6.0.0.0
*
* compute elevation ehroh
compel cle sic
CLh UISEL
I.DX TEMBCD
* convert trim to bcu

CLH \(A\)
I.DA B ELTHM

BPL COPELI
INC SIG
NEG B
COPELI NITP
- NoP

JSh BIn macd
* all thim to encoden heading

LUX *LEMBCD
STX 11
LUX ELTEMP
STX 12
LUX OHESULT+4
JSH BCDALU
* ADJUST FOR ROLI.OVER

LOX ELUISP
JSH AJJ
* subthact hesul.t from gacs

LOX etuisp
STX 52
i.vx eil.ocos

STX Si
I.DX Hesul. \(T\)

JSH BCOSJB
* ajujust for hollover

IDX MElERD
JSR ANJ
- FIX \(\mathrm{FO}(\mathbb{H}+\mathrm{OR}\) - 32000
Cl. H Sis

LUX ELERD
JSH TEST32
BCC (u)PEI. 3
* FIX IF > 32000
I.贝X MEIERD

Six AI


- x=ADORESS OF VALUE 2 mSE
- X=ADONESS JF RESUITT

BCDADU STX ADDX:
CLR SIG
- FIX AI
I.DX AI
LUA 8
JSH FIXX
STX A)
* \(F[x\) A2
LUX A2
LUA B
JSR FIXX
STX 12
CLC
GET FIRST VALUE
LDAB \#4
BCAI LUX A
LDA A O. \(X\)
DEX
STX AI
- ADN SECOnD
    LDX 12
    ADC A 0 .
    JSR JUCK
UEX
SIX 12
* stohe in output
    LUX AUUX)
    STA A O.X
    UEX
    STX ADDXI
*
    UEC \(\quad\) B
    GNE BCAS
    LUX Al
    LUAN \(0 . X\)
    l.OX 12
    ALDCA \(0 . x\)
    JSK NICK
    BCC BCAZ
    INC SIG
BCA2 I.DX ADOXI
    \(\operatorname{stan} U, x\)
mis
JuCK Nop
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{HAGE 030 AGLSI . SA 11} \\
\hline & \multicolumn{2}{|l|}{CMPA \#9} \\
\hline & \multicolumn{2}{|l|}{BGT JuCK 1} \\
\hline & CLC & \\
\hline & \multicolumn{2}{|l|}{HIS} \\
\hline & \multicolumn{2}{|l|}{JOCKI ADOA \#6} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ANDA SF}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{HTS} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{- SUBTKact 2-5 digit bcu values} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SIEADONESS OF MINUEND \\
- S2mADDHESS OF SUBTRAHENO
\end{tabular}}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{* Xealuress of result} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Bcusua stx subxi
STX SuHx}} \\
\hline & & \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{* Fix SUBX]} \\
\hline & \multicolumn{2}{|l|}{UAB 4} \\
\hline & \multicolumn{2}{|l|}{JSK FlXX} \\
\hline & \multicolumn{2}{|l|}{S1X SUBXI} \\
\hline & \multicolumn{2}{|l|}{- complement subtrahianu} \\
\hline & - TKANSFEir SUATRAHANO & \\
\hline & \multicolumn{2}{|l|}{LUX I'EmSub} \\
\hline & \multicolumn{2}{|l|}{STX TX} \\
\hline & \multicolumn{2}{|l|}{LDAB 05} \\
\hline & \multicolumn{2}{|l|}{TXI LUX S2} \\
\hline & L.DAA \(0, X\) & \\
\hline & \multicolumn{2}{|l|}{INX} \\
\hline & \multicolumn{2}{|l|}{STX S2} \\
\hline & Lux & \\
\hline & \multicolumn{2}{|l|}{LUX IX} \\
\hline & \multicolumn{2}{|l|}{STAA 0,X} \\
\hline & \multicolumn{2}{|l|}{INX} \\
\hline & \multicolumn{2}{|l|}{STX IX} \\
\hline & * & \\
\hline & \multicolumn{2}{|l|}{DECH} \\
\hline & \multicolumn{2}{|l|}{BNE TXI} \\
\hline & & \\
\hline & I.DX \#TEMSUB & \\
\hline & \multicolumn{2}{|l|}{JSir compor} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{* ADD MINUEND AND Fix SIGN OF RESUL.T}} \\
\hline & & \\
\hline & \multicolumn{2}{|l|}{S3x 11} \\
\hline & \multicolumn{2}{|l|}{.DX \#TEMSUB} \\
\hline & \multicolumn{2}{|l|}{STX A2} \\
\hline & \multicolumn{2}{|l|}{DX SUEXI} \\
\hline & \multicolumn{2}{|l|}{Sin bcdaw} \\
\hline & \multicolumn{2}{|l|}{H5S} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{64*S Compl.EmENT ROUTINE}} \\
\hline & & \\
\hline &  & \\
\hline & JSH NINCOM & \\
\hline & Ux *Const & \\
\hline & STX AZ & \\
\hline & LUX NAESULT+4 & 1 \\
\hline & JSH bCDALO & \\
\hline & . \(1 \times \mathrm{Al}\) & \\
\hline
\end{tabular}
        CMPA 9
        BGI JuCKI
        EL
        HIS
        JOCKI ADOA \#6
        ANDA \({ }^{\text {SF }}\)
        SEC
        RTS
    - SUBTKACT 2-5 0IGIT BCD Values
    - SIEADONESS OF MINUEND
    * S2FADDHESS OF SUBTRAHENO
    * XeauURESS bF RESULT
    BCUSU日 STX SUBXI
    STX SUBX 2
    - Fix SUBX
    WAB FIXX
    STX SUBXI
    - COMPLEMENT SUBTRAHIAND
    - THANSFER SUBTRAHANO
        IEMSUB
    LDAB
    TXI LUX S2
        l.DAA \(0, X\)
    STX 52
    *
    LUX IX
    STAA \(0, X\)
    INX
    STX IX
    *
    BNE IXI
    *
    I.DX "TEMSUB
    JSir compor
    * ADD MINUEND AND FIX SIGN of RESULT
    LDX S
    STX A1
    I.DX "TEMSUB
    STX 12
    LDX SUBXI
    JSH BCDAW
    HTS
*
* 64*s ComHIEMENT ROUTINe
*
compot Srx Al
    JSH NINCOM
    LUX "CONST
    STX AZ
    L.UX NEESULT+4
    JSH BCDALU
    l.DX Al


```

 PAGE OJb AGLSI .SA&1
 I.DA A #S3E
 LDX "PIAJUA
 JSH SETUP
 *
 *IA 4 -EL AND AZ ENCOUEh
 CN PIAACA
 CLK HIA&OA
 UUA A #S3E
 STA A PIA&CA
 * PIA 4 -ENABLES
 I.DA A #4
 STA A PIA4CB
 Li|A A #SFF
 STA A HIA4DB
 CLH PIA4C&
 I.DA A #SFF
 STA A PIA4DB
 LuA A $4
 STA A PIA4CB
 *
 * HIA 5 -MUX A/D
 ClR PIA5CA
 CLK PIASCB
 CLR HIADDA
 LDA A #SFF
 STA A PIASDH
 l.DA A #S3C
 STA A PIA5CA
 I.DA A #
 STA A PIASC&
 *
* piA 6 -THIm aND
LuA A \#\$30
I.DX FrIAODA
JSN ScTUP
*
* rIA / - v/A
CLH PIAICA
CLN PIA7CH
LLN PIA7CB
LDA A \#SFF
STA A PIA7DB
LUA A %S3t
STA A PIA7CA
STA A HIATCA
*
* HIA B -DISPLAY
C.H HIABCA
CLK PIAUCH
LUA A MSF
STA A PIABDA
LUA A uSIF
STA A rIABDB
LUA A SS 3E
STA 4 PIABCA
{UA A \#S 34
SIA A PIAOCH

```
\begin{tabular}{|c|c|}
\hline PAGE 037 AGLSI .SA:1 & hace oje aglsi .SA=1 \\
\hline - & 1.DX CBUF+15 \\
\hline DEC X X & STX PTRE \\
\hline CLH XIfECF & CI.H (X)MERR \\
\hline INC XHECF & RII \\
\hline * TEST timegut after off & -TEST CHAR =T? \\
\hline ISER7 CLK Xon & ISEH2] CMP A TT \\
\hline TST TF5 & BNE ISER22 \\
\hline bNE ISER8 & * initialize f.o. transmit \\
\hline CLR XHECF & LDX MELFO \\
\hline * TEST neapon sw & STX PTRC \\
\hline ISERE I.CAA \#WHNM & 1.DX \#LMODE \\
\hline JSh TSTSAA & SIX PIRE \\
\hline BCC ISER4 & * OUTPUT STARTER \\
\hline CLR MPNF & I. DX \# ACIS \\
\hline INC NPNF & JSH CHLF \\
\hline * FIX APN Sm and & * INH HECV/ENH XmIT \\
\hline I.DA A MPNS & LDX AACIC \\
\hline CMP A \#SFF & JSIR UISHEC \\
\hline HNE ISER4 & HTI \\
\hline CLIK WPNS & * RECIEVED data \\
\hline INC MPNS & ISEH22 SUB A "S 30 \\
\hline - dutside l. dor \(^{\text {a }}\) & BPL ISER 23 \\
\hline * No Service if comm busy & INC COMERH \\
\hline ISER4 TST CBSY & ISER23 CMP A \#9 \\
\hline BEO ISERI & BLE ISER24 \\
\hline HTI & INC COMERH \\
\hline ISERI [ST TF2 & ISEH24 LDX PTHC \\
\hline BEO ISEMS & CPX \% \\
\hline HTI & BEO ISER29 \\
\hline * SERVICE OUTSIDE L(x)p & * store data \\
\hline ISEKS I.DX 20 & STA A O.X \\
\hline STX IIM2 & CPX PTRE \\
\hline INC TF2 & BNE ISER 33 \\
\hline * urdare display & TST Comerk \\
\hline JSh Luls & BNE ISER29 \\
\hline KTI & * test range of data \\
\hline *TESI comm. & INC COMERR \\
\hline * & JSH TESTI4 \\
\hline * comm houtine & BCS ISER29 \\
\hline * & LUX MCButis \\
\hline * & JSR [EST64 \\
\hline ISERO TST AcIs & BCS ISER29 \\
\hline HMI LSENSI & * If AUTO UPUATE \\
\hline JMP ISER20 & CLR COMER \\
\hline ISER3I CLR CBSY & tst atour \\
\hline INC CBSY & BNE ISER 34 \\
\hline * TEST RECV INT & * Move from com buff to uish \\
\hline Lux atcis & JSH MYCD \\
\hline JSH Alli & ISER34 INC NEWFO \\
\hline BCS ISER 26 & * PREP SN MORD \\
\hline JMP ISER32 & L.DA A \#s FF \\
\hline *TEST CHAR = \({ }^{\text {a }}\) ? & STA A MHNS \\
\hline ISEN26 CMP A MR & I SER29 LUX 10 \\
\hline * BNE ISEA2I & STX PTRC \\
\hline * lini mialize F. O. hecieve & CLR CBSY \\
\hline STX PTHC & HTI \\
\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|}
\hline Pacte 045 aglsi .SAz1 & Pace 046 aglsi & .SAP1 & \\
\hline INX & & & \\
\hline INX & LUAA "1 & & \\
\hline Dic \({ }^{\text {a }}\) & STAA passaz & & \\
\hline BNE SCAT & I.DX Fimibak & & \\
\hline HTS & TST SL(MAF ben clazz & & \\
\hline * clear timers houtine &  & & \\
\hline CLTM Lua \(\begin{gathered}\text { e } \\ \text { els }\end{gathered}\) & & & \\
\hline l. \(0 \times\) \#MTB & claze STX azcom & & \\
\hline CLTI Cli \(0 . X\) & HTS & & \\
\hline INX \({ }_{\text {d }}\) & - Pass = 1 & & \\
\hline BNE CLTI & clazi ldaa passaz & & \\
\hline RTS & DECA & & \\
\hline * InPut from acia & bNe Clazz & & \\
\hline adil lidat 0,x & - TEST FOH FIRST & NUL & \\
\hline bita 1 & t.Dx Fulibak & & \\
\hline BEO As) 1 & TSEO SLira & & \\
\hline LUAa 1,x & bed clazy & & \\
\hline SEC & lox marbak & & \\
\hline HTS & CLA29 STX AZCOM & & 1 \\
\hline AOL1 CLC & BHL Claza & & \\
\hline NTS & CLC & & \\
\hline - output to acia & RTS & & \\
\hline A(x) PSHA Ma & * NULL ACHIEVED & & \\
\hline LDMa 0,x & Claza ldx mhafbak & & \\
\hline bita 12 & STX AZCOM & & \\
\hline pula & INC TF3 & & - \\
\hline BEO Amot & inc passaz & & \\
\hline STAA 1.X & C.C & & \\
\hline SEC & His & & \\
\hline HTS & * PASS \(=2\) & & \\
\hline A(x)I CLC & clalz decia & & \\
\hline RTS & bine clazz & & \\
\hline - CR/Lf routine & *TEST TIMER & & \\
\hline CHLF LUM "SD & & & \\
\hline JSH A(X)L & beo clazo & & \\
\hline LUAA esa & Cic & & \\
\hline JSH A(X)L & & & \\
\hline RTS & - DISABLE D/A & & \\
\hline - L(k)p on output & ci.als I.nx 0 & & \\
\hline A(x)L JSR A(x) & STx Azalm & & \\
\hline BCC A(s)L. & LTA A & & \\
\hline WTS & STA a passal & & \\
\hline ************AGLS5*********** & & & \\
\hline & H & & \\
\hline - test az closing & CLAZ2 UEC A & & \\
\hline test pass fi.ag & BNE CLAzo, & & \\
\hline clal tst passal & JSk ALNUIS. & & \\
\hline bite cliazi & BCS CLAZ7 & & \\
\hline - TEST A LERR & LAA AZERK & & \(!\) \\
\hline LuA A AZERR & I. DAB AZEKR + 1 & & \\
\hline AND A \#sbo & STA & & \\
\hline BED CLAZO & STA AZCOM STAB AZCOM+1 & & \\
\hline  & cle & & I \\
\hline STX \(\lim\) & RTS & & I \\
\hline SIX Ifins & Cl.A<7 I.DX 0 & & . \\
\hline
\end{tabular}


J25
\begin{tabular}{|c|c|c|}
\hline pact 049 & AGLSI & .SAB1 \\
\hline \multicolumn{3}{|l|}{OHAA \({ }^{\text {S80 }}\)} \\
\hline \multicolumn{3}{|l|}{MH2 RTS} \\
\hline  & & \\
\hline \multicolumn{3}{|l|}{or block flags} \\
\hline \multicolumn{3}{|l|}{OHBLK TST TBLK} \\
\hline \multicolumn{3}{|l|}{BNE OREI} \\
\hline \multicolumn{3}{|l|}{TST EBI.K} \\
\hline \multicolumn{3}{|l|}{BNE ORBI} \\
\hline CLC & & \\
\hline \multicolumn{3}{|l|}{HTS} \\
\hline OHBI SEC & & \\
\hline \multicolumn{3}{|l|}{His} \\
\hline * & & \\
\hline \multicolumn{3}{|l|}{*} \\
\hline \multicolumn{3}{|l|}{* test xemon stability} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{XSTAB TST XRECF}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{INC XTIME} \\
\hline \multicolumn{3}{|l|}{LDM XTIME} \\
\hline \multicolumn{3}{|l|}{CMPA 070} \\
\hline \multicolumn{3}{|l|}{\(81.5 \times 52\)} \\
\hline \multicolumn{3}{|l|}{DEC XIIME} \\
\hline \multicolumn{3}{|l|}{SEC} \\
\hline \multicolumn{3}{|l|}{HTS *} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{XSI CLR XTIME}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {XS }}^{\text {WTS }}\) CLC}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{- update fire oruek} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{UFO SEI} \\
\hline \multicolumn{3}{|l|}{STS SAVES} \\
\hline * TEST L & AD POS. & \\
\hline \multicolumn{3}{|l|}{LUA A MLPOSM} \\
\hline \multicolumn{3}{|l|}{JSH TSTSBA} \\
\hline \multicolumn{3}{|l|}{6CS UFO3} \\
\hline \multicolumn{3}{|l|}{I.DS EEI.FOR-1} \\
\hline \multicolumn{3}{|l|}{Lox elcius} \\
\hline \multicolumn{3}{|l|}{UА 女 -} \\
\hline UFO) PUL & & \\
\hline \multicolumn{3}{|l|}{STA A O,x} \\
\hline \multicolumn{3}{|l|}{INX} \\
\hline \multicolumn{3}{|l|}{UEC \({ }^{\text {y }}\)} \\
\hline \multicolumn{3}{|l|}{GNE UFOI} \\
\hline \multicolumn{3}{|l|}{UH)3 LDS MALFO-J} \\
\hline \multicolumn{3}{|l|}{Lox alzocus} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{LUA d \({ }^{\text {de }}\)}} \\
\hline & & - \\
\hline \multicolumn{3}{|l|}{STA A 0.x} \\
\hline \multicolumn{3}{|l|}{INX} \\
\hline \multicolumn{3}{|l|}{DEC H} \\
\hline UNE UFO & & \\
\hline \multicolumn{3}{|l|}{1.DS SAve} \\
\hline - move R & F ancle & \\
\hline
\end{tabular}
```

PAGE OHO AGLSI .SA:I
LDX HEF
STK lSAVES
LUX HHKILD
LUA B
JSK TCS
CLI
RTS
*

- tesi auto mede
-

aUto I.DA a (X)NGO
com A
AND A \#\#11000000
BNE AUTOI
CLC
RTS
AUTOI SEC
KTS

- TEST QUAD PITCH ERROR
-

TERRO LDA a ERRBUF
8PI. TEHOI
NEG A
TEROI CMP A MOPLIM
BPL TEHO2
${ }_{0}^{C L}$
MTS
TEHO2 SEC
RTS

* read manual input
*

RMAN EQU *

- TEST IF NEW VALUE
Lux MCBUF
CI.H B
HMN2 JSR RTHM
CMP A $0 . X$
BNE RMNI
INX
CMP 日 10
BNE RMN2
RTS
 - update buffen
RMNI I.DX MCEUF
CLR 1
RMN 3 JSR RTMM
STA A O.X
INX
CMP Y 10
BNE RMN3
 - FIX REF ANGLE (ㅇ)
I.DA 8
CRR A
KMNG STA A O.X
INX
vec a
ENE RMAO

```


END
DATE FILMED 581 DTIC```


[^0]:    Weapon -- Activates the weapon azimuth and elevation servos if they have been selected by the configuration switches, and if certain check conditions have been satisfied.

