
d d d d
ddd ddd ddd ddd
d d dd

Technische Universität München
Institut für Informatik

Diplomarbeit

Implementation of the 4stack
Processor Using Verilog

Verfasser: Bernd Paysan
Aufgabensteller: Prof. Dr. A. Bode
Betreuer: Dr. W. Karl, M. Leberecht, R. Lindhof
Abgabetermin: 15. August 1996

Ich versichere, daß ich diese Diplomarbeit selbständig verfaßt und nur die angege-
benen Quellen und Hilfsmittel verwendet habe.
München, den 15.8.1996

This paper reveals implementation details of the 4stack processor architecture,
implemented in Verilog as a feasibility study as diploma thesis. Design flow, synthe-
sis tools and verification methods are explained. Partition in functional units and
space-time tradeoff considerations are discussed as well as techniques for efficient
implementation of special arithmetic units.

Special interests have been laid onto the implementation of stack register files
and corresponding spill buffers. Instruction and data caches have been implemented
to satisfy the demands of a VLIW architecture. A fast, pipelined signal processing
unit (integer multiply and accumulate with rounding) and an equally fast, pipelined
floating point unit are described.

Contents

1 Introduction 1
1.1 Goal of this Work . 1
1.2 Motivation . 1
1.3 Characterization of the 4stack Processor Architecture 3
1.4 Structure of this Work . 4

2 Design Approach 5
2.1 Hardware Description Language . 5

2.1.1 Differences Between HDLs and “Classical” Computer Languages 7
2.1.2 Debugging/Verification . 9

2.2 Synthesis Tools . 9
2.2.1 Gate Level Logic . 9
2.2.2 Synthesis Tool Selection . 10

2.3 Synthesis Options . 10
2.4 Routing . 11

3 Implementation of Functional Units 12
3.1 Basic Components . 12

3.1.1 Adder . 13
3.1.2 Multiplier . 16

3.2 Clock Generation . 17

4 First Stage: Instruction Fetch 19
4.1 Details About Prefetching Order . 20
4.2 Instruction Pointer Incrementer . 21
4.3 Instruction Pointer and Output Selection 22

4.3.1 Instruction Pointers . 22
4.3.2 Instruction Pointer Valid Tag . 22
4.3.3 Cache Access Address Selection 23
4.3.4 Opcode Result Selection . 23
4.3.5 Branch Dependent Opcode Selection 24

ii

CONTENTS iii

5 Second Stage: Decode 25
5.1 ALU Decode . 25
5.2 Data Unit Decode . 27
5.3 Stack Decode . 27
5.4 Opcode and Instruction Pointer Tracking 29
5.5 Exception Handling . 29

6 Third Stage: Execute 31
6.1 The Stack . 31

6.1.1 Stack Register File . 33
6.1.2 Stack Bypass . 34
6.1.3 Stack Buffer . 35
6.1.4 Stack Increment/Decrement Unit 37
6.1.5 Stack Component Glue . 38

6.2 The Arithmetic Logic Unit . 38
6.2.1 Adder . 39
6.2.2 Logic . 39
6.2.3 Shifts . 39
6.2.4 Converter . 39
6.2.5 Flag Computation . 40
6.2.6 Bit Field Unit . 40

6.3 DSP Unit . 40
6.3.1 Multiplier . 42
6.3.2 Barrel Shifter . 42
6.3.3 Rounding Network . 42
6.3.4 Adders . 43

6.4 Floating Point Unit . 43
6.4.1 Floating Point Multiplier . 44
6.4.2 Floating Point Adder . 45

6.5 Data Unit . 50
6.5.1 Data Register File . 50
6.5.2 Data ALU . 52
6.5.3 Data Multiplexer . 53
6.5.4 Store Mask . 55

7 Memory Interface 56
7.1 Bus Interface . 56
7.2 Instruction Cache . 57

7.2.1 Branch Address Calculation . 60
7.3 Data Cache . 61

7.3.1 Stack Cache . 63
7.3.2 Victim Buffer . 64
7.3.3 Store Merge Unit . 64

iv CONTENTS

7.3.4 Store Conflict Handling Details 65
7.3.5 Access Address Selection . 65
7.3.6 Victim Buffer Input . 66
7.3.7 Outlook . 66

7.4 Memory Management Units . 66

8 Conclusion and Outlook 68

List of Figures

2.1 Data Path . 6
2.2 Design flow . 7

3.1 Ribble carry adder . 13
3.2 Carry lookahead . 14
3.3 Carry select adder . 14
3.4 Clock flow . 18

5.1 Instruction format . 26
5.2 ALU instructions . 26
5.3 Intruction groups . 27
5.4 Group T1 to T5, based on extend bits 27
5.5 Data operation . 28

6.1 logical stack access flow . 31
6.2 Merging stack operation and ALU input selection 32
6.3 Store bypass, load and ALU push merged 33
6.4 Stack register file opcode . 34
6.5 Stack bypass . 35
6.6 Stack buffer opcode . 35
6.7 Stack buffer . 36
6.8 ALU operation code . 38
6.9 Digital signal processing unit . 41
6.10 DSP unit opcode bits . 41
6.11 Multiply category transition table . 45
6.12 Floating point adder . 47
6.13 Category transition table for addition 47
6.14 Data unit opcodes . 51
6.15 Delayed operations . 52
6.16 Data multiplexer . 54

7.1 Read burst access . 57
7.2 Write burst access . 58
7.3 Instruction cache access flow . 59

v

vi LIST OF FIGURES

7.4 Data cache . 62

Chapter 1

Introduction

1.1 Goal of this Work
As conclusion of a long discussion in the usenet news group comp.arch in spring
1993 about the shortcomings of stack architectures compared to superscalar RISC
processors, I proposed a very long instruction word (VLIW) stack architecture, the
4stack processor. Further discussions (especially with Kyle Hayes) improved the
proposed machine and finally lead to a complete instruction set architecture (ISA)
(see [14]).

Then a simulator for this ISA was implemented as part of a “Fortgeschrittenen-
Praktikum (FoPra)” at Technische Universität München. This simulator allowed to
run some benchmarks and showed that the fine grain parallelism in both digital
signal processing (DSP) and graphic algorithms can be exploited with the proposed
architecture, leading to both fast (due to the VLIW concept) and compact (due to the
stack paradigm of single units) code.

The good results of simulation lead to optimistic prognoses of performance and
usefullness of the 4stack processor, so as next step it was chosen to implement it as
feasibility study using a hardware description language and synthesis tools to gen-
erate an ASIC (application specific integrated circuit) implementation of the proces-
sor architecture. This work now describes design flow, details, and pitfalls of this
implementation.

The goal of this work thus is to implement the 4stack ISA in register transfer
language (RTL) and structural Verilog and synthesize this for the design target
ASIC process. Furthermore, economic aspects of design tradeoffs (e.g. space-time
tradeoffs) have to be discussed.

1.2 Motivation
When the 4stack architecture basically was proposed three years ago, neither very
long instruction word (VLIW) nor stack architectures seemed to be important in-

1

2 CHAPTER 1. INTRODUCTION

struction set architecture paradigms in the forseeable future.
Things have changed since then: according to recent announcements and ru-

mors, Intel and Hewlett Packard are working on a processor with VLIW elements
(“Merced”) which is designed as successor of the most important personal comput-
ing processor (the “Intel Architecture”), and — in terms of system unit sales — the
dominant workstation reduced instruction set computer (RISC) architecture. Sun
tries to push a stack oriented architecture (the Java virtual machine, JavaVM [13])
in embedded control and a new class of terminals or home computing, the network
computer (NC).

VLIW architectures are characterized by large instruction words combining di-
rect and independent action control of every functional unit. Thus one control unit
issues a wide instruction every cycle to utilize a large number of data paths and
functional units in parallel.

Stack architectures organize register accesses as last-in first-out (LIFO) latches,
thus accesses concentrate around a small window. Addressing of registers is implicit
through the stack pointer, so register numbers are not encoded in the instruction
word.

Both ISA paradigms have their own merits and shortfalls. VLIW exploits fine
grain parallelism, but typically leads to bloated code. Stack architectures are sup-
posed to give compact code, but this is depending on compiler quality and coding
style. Single-stack architectures like the JavaVM suffer from lack of registers, espe-
cially to store more than one active (thus changing) values. Also it is hard to exploit
parallelism using superscalar methods, because the top of stack (TOS) value is a
bottleneck. Therefore stack machines either are concentrated to support stack lan-
guages (Forth processors like the RTX 2000 [5]) or have special stack frame support
(JavaVM or AT&T’s CRISP processor [3]).

Both the stack processor shortfall of too few active registers and difficulties to
exploit parallelism and the VLIW’s shortfall of uncompact code and thus very high
recommended memory bandwidth and cache trashing can be overcome by applying
both principles. The TOS bottleneck now serves to help write path separation and
thus to keep register files small and fast.

“Idealized” models of VLIW architectures use uniform functional units connected
to a central register file [2] [4] [9]. Using a central register file with a large number
of ports, communication delays between the processing elements can be minimized.
A central register file together with uniform functional units also simplifies code
generation. However, central multiported register files increase chip complexity
and slow down register access.

Therefore, already the first generation of VLIW architectures like the Multiflow
TRACE machines [2] and the Cydra 5 [18] have either separate register files or use
more sophisticated techniques like the Context Register Matrix.

In the past, the VLIW architecture paradigm has influenced the design of several
microprocessor architectures, too. Examples are the LIFE-VLIW microprocessor,
proposed by Philips Research, Palo Alto [12] [20], Intel’s iWarp microprocessor [15]

1.3. CHARACTERIZATION OF THE 4STACK PROCESSOR ARCHITECTURE 3

and Intel’s i860 64-Bit microprocessor [10].
A more detailed overview of design issues of VLIW architectures and related

architectures exploiting instruction-level parallelism can be found in [1] [17] [8].

1.3 Characterization of the 4stack Processor Archi-
tecture

The basic components of each processor’s data path are ALU and registers to store
values inside the processor. The most prominent feature of the 4stack architecture
is the fact that these registers are organized as LIFO stacks, thus honoring the
locality of register usage, particularly for intermediate values with short lifetimes.
The implementation of stack operations can be characterized as follows:

• Arguments of operations are consumed, thus taken from the stack.

• Results of operations are pushed to the stack.

• All stack elements are of the same size (32 bit on the 4stack processor). Shorter
values are extended, longer values are stored in more than one stack cell.

• Operations that operate on the stack, instead of the values (thus only exchange
or duplicate values, not compute anything) are called “stack operations”.

• All stack accesses concentrate around the top of stack (TOS). If deeper parts of
the stack are not accessible through stack operations, they are not accessible
at all.

The 4stack processor features four stacks, each connected to an ALU. As an exten-
sion of the basic stack operation model, stack operations may read the four topmost
values of other stacks through a four way crossbar switch. Deeper values (up to 8th
element of a stack) can be read only from each operation’s stack. All stacks use an
implicit spill and fill mechanism to and from memory.

Frequently used ALU operations can be merged with stack operations, which are
then executed concurrently with the ALUoperations.

Signal processing is supported by two pipelined integer multiply-and-add units.
Stack 0/1 and stack 2/3 respectively each share a DSP unit. The first pipeline stage
of the DSP unit multiplies two 32 bit signed or unsigned 32 bit integers to a 64
bit product while the second stage contains a barrel shifter to shift the result of the
multiplication, a 64 bit adder to accumulate sums of products, and a round unit that
rounds the upper 32 bits of the resulting sum.

Two data units are responsable for accessing main memory which are shared by
the evenly and oddly numbered stacks, respectively. Memory addresses are com-
puted from a four-register set including a 64-bit base register (Ri), an offset register

4 CHAPTER 1. INTRODUCTION

(Ni, index or increment value), a limit (Li for range checks and to implement FIFOs
(first in, first out buffers)) and usage flags (Fi).

The FPU comprises a floating point adder and a floating point multiplier. Evenly
numbered stacks feed the left argument of floating point operations while oddly
numbered stacks provide the right argument. The floating point input arguments
are preserved.

The instruction prefetcher predecodes branch operations and tries to follow bran-
ches as soon as possible. Both the sequentially followed instruction and the branch
target instruction are decoded.

1.4 Structure of this Work
Chapter 2 describes the design approach and tool usage. It generally explains how to
get from an instruction set architecture to silicon. The following chapters elaborate
functional units, partitioned into pipeline stages. Chapter 3 shows basic low level
units and clock generation. The four pipeline stages are described in Chapter 4
(instruction fetch), Chapter 5 (instruction decode), Chapter 6 (execution phase), and
Chapter 7 (memory interface).

Chapter 2

Design Approach

Starting with the data flow Figure 2.1 a top-down design approach was taken. The
design is partitioned into stacks, arithmetic logic units (ALUs), data units, digital
signal processing (DSP) units, floating point unit (FPU), instruction decoder, pre-
fetch logic, data and instruction cache.

In the further design process these modules were divided into further parts to
keep them manageable (see Figure 2.2 for the design flow).

A library of reusable basic functions like adders and multipliers was generated
as part of this work. These components can be replaced and thus allow tradeoff
decisions. This gives a three layer design: the first layer are the logical units as
found on the data path diagram, the second layer are the parts of these units, and
the finest grain are generic units like adders, multiplexers and so on.

The implementation then was bottom up, concentrating on single units to make
them work. This design approach makes use of the specified interface and allows to
verify simple parts, thus eases the debug process.

2.1 Hardware Description Language
Two hardware description languages today dominate hardware development: VHDL
(Very High Speed Integrated Circuits Hardware Description Language), developed
by the department of defense (USA) and the Verilog HDL (Verify Logic Hardware
Description Language), a former proprietary language of Cadence, Inc.. Both HDLs
now are standardized by IEEE, Verilog recently.

The differences between both HDLs are not big. VHDL’s syntax resembles ADA,
which is a consequence of it’s origin, while Verilog resembles C. VHDL thus is more
wordy and has a complex system of types, most of them useless for synthesis. Ver-
ilog, on the other hand, has a C-like preprocessor, which allows to emulate some
of VHDL’s features like structures (by giving vector subranches symbolic names).
Verilog’s main shortfall behind VHDL is that it does not provide conditional or loop-
ing instantiation of components, which can be partly overcome using an external

5

6 CHAPTER 2. DESIGN APPROACH

ALU0 ALU2 ALU3 DATA0ALU1 DATA1

ALU

ALU

INSTRUCTION CACHE

128 BIT I-BUS 128 BIT I-BUS

PREFETCH QUEUE BRANCH TARGET QUEUE

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

S0
S1
S2
S3
S4
S5
S6
S7

FILL/
SPILL

STACK 1

STACK 3

FILL/
SPILL

STACK 2

STACK 0

DATA CACHE

D-BUSD-BUS

128-BIT 128-BIT

INSTRUCTION DECODE

DSP UNIT

DSP UNIT

X
B

A
RUNIT 0

N F

N F

N F

N FR3

R2

R1

R0

UNIT 1

N F

N F

N F

N FR3

R2

R1

R0L

L

L

L

L

L

L

L

DATA DATA

ALU

ALU

FPADDFPLATCH FPLATCH

FPMULFPLATCH FPLATCH

ALU0 ALU1 ALU2 ALU3 DATA0 DATA1

Figure 2.1: Data Path

2.1. HARDWARE DESCRIPTION LANGUAGE 7

Module specification

Module division

Submodule implementation

Submodule verify

Module verification

Synthesisability check

Synthesis

Figure 2.2: Design flow

macro preprocessor. In the actual design process, this missing feature is only partly
a problem, since Verilog provides widely used repeated structures like memories or
barrel shifters and vector operations.

2.1.1 Differences Between HDLs and “Classical” Computer Lan-
guages

The language target environment (the implementation in silicon) differs quite from
the von Neumann’s paradigm found by software. Logical functions are performed
at any input change. To synchronize processing, clock signals and edge-triggered
flip-flops are used. Verilog provides wires and continuous assignments, which is
the equivalent of a logical function; registers and event-triggered assignment, the
equivalent of edge-triggered flip-flops.

Instead of dividing software in procedures and functions, Verilog programs are
divided into modules1. Modules have private data (per instantiation) and program
parts. This is a partly object oriented approach, while the main principles of object
oriented programming (inheritance and polymorphism) are missing. Among from
providing reusability of parts, the module concept allows individual verification and
synthesis of parts of a design.

Modules are divided into

• module header starting with the keyword module , declares module name
1There are functions, too. However, they don’t play an important role.

8 CHAPTER 2. DESIGN APPROACH

and port list

• port declaration declares all entries of the port list as input , output or
inout

• gate declaration declares used nets, registers, primitives, etc.

• module instances instantiates used modules

• procedural block specifies activities performed during simulation (RTL level
or behavioral Verilog)

While module header, port and gate declarations can be compared with a function’s
head in C, procedural blocks are the functional equivalent of a function’s body. How-
ever, procedural blocks are executed on events, not on calls:

• initial: the procedural block is executed at simulation start (at reset)

• always: the procedural block is executed always at the specified event.
There are synthesizible constructs using events (clock edge triggered flip-
flops, behavioral continuous assignments, level triggered latches), and non-
synthesizible (multiple clocks for one edge triggered register, delays, incom-
plete inputs for behavioral continuous assignments).

• continuous assignments: the assignment is executed always when an input
variable changes. The disadvantage over continuous assignments using the
always statement is that no control structures (like case, for or while) can be
used, the advantage is that you don’t have to specify the input list to trigger
execution.

Inside procedural blocks, Verilog provides assignments, control structures such as
if –else , case tables, for loops, while loops and repeat loops (fixed number of
repetitions) and delays (for simulation only). Assignments are divided into blocking,
non-blocking and continuous assignments (level triggered latches, released with de-
assign). Non-blocking assignments do not have an instantaneous effect, they are
performed at the end of the simulation cycle, after all activated procedural blocks
have been simulated (except if these assignments themselves trigger events).

Assignments provide logical and arithmetical operations (including addition,
multiplication, division and shifts), bit-wise concatenation and function calls.

Verilog has two major synthesizible data types: wires and registers (single bit
and multi-bit). There are integers and floats, too, to help verification.

2.2. SYNTHESIS TOOLS 9

2.1.2 Debugging/Verification

The main purpose of a simulation tool (the Verilog simulator) is to find bugs in
the implementation and verify correctness. Both used Verilog simulators, Verilog-
XL (Cadence) and Veriwell (Wellspring, shareware) support interactive debugging
on the command line (after control-C-ing the simulator or invocation of the sys-
tem function $stop) and program controlled debugging output (via system function
$display and $write). Test vectors can be read using $readmemh. Cadence in
addition has a waveform toolkit, cwaves. Waveforms are good to analyze basic data
flow, but fail for arithmetic units, since in this case the bitwise equivalent of a value
with the specification is of more importance. The waveform toolkit therefore hasn’t
been used.

Verification of modules without internal state and few input bits (e.g. the decoder
parts) can be done exhaustive, thus a complete set of input vectors is generated
in a verification module, and the output vectors are written to the log file using
$display . The Unix commands grep (to select those output vectors that are of
interest) and diff can now help to compare the output vectors with “correct” ones
(e.g. generated using a computer language like C, perl, or Forth, or by the 4stack
simulator), and to find faulty ones.

Logic with many input bits and internal state can’t be tested exhaustive, so a
mixture of random testing and edge conditions have to be found to verify these
parts. Edge conditions concentrate on small parts of the logic and try to follow each
path there.

Later test programs written in the 4stack assembly language were used to test
more complex components. The $display sections were ranked into more and less
important, using command line defined macros to skip them. The highest rank
displays architectural status information in a format comparable to the 4stack sim-
ulator, so diff can be used to find differences in results.

2.2 Synthesis Tools

To close the gap between RTL level Verilog and gate level netlists synthesis tools
are used. Netlists in a standard format (typically EDIF) can be sent to a ASIC man-
ufacturer, who in turn produces gate arrays using this description. So the synthesis
process finally leads to silicon hardware.

2.2.1 Gate Level Logic

Gates usually implement boolean functions or combinations of boolean functions
using transistors as switches. Typically a library does not implement all 2:1 (two
input, one output) boolean functions, but those that can be implemented with about
the same amount of transistors. Furthermore, useful combinations of 2:1 boolean

10 CHAPTER 2. DESIGN APPROACH

functions are provided, such as full-adders (3:2), edge and level triggered flip-flops,
and multiplexers. 1:1 boolean functions are used as inverters and buffers. The latter
are used to overcome signal strength restrictions. Last, but not least, three-state
logic (with states 0, 1, and high impedance) is used to drive bidirectional busses.

2.2.2 Synthesis Tool Selection

Synthesis tools from two major synthesis companies have been used to synthesize
parts of the design. Synopsis Design Analyzer does not support “‘ifdef ”s (condi-
tional compile) and thus complained about the debugging output. It also was not
able to synthesize reset states defined with initial and had problems with a mix-
ture of blocking and non-blocking assignments in blocks. The preprocessing prob-
lems can be excused with the VHDL origin of the Design Analyzer, however, VHDL
both supports mixing of blocking (signal) and non-blocking (wires) assignments, and
reset initialization.

It has thus been decided to use Cadence’s Synergy as synthesis tool, which does
not have the problems above. Synergy provides better optimization support, e.g. it
can collapse design hierarchy. To increase synthesis speed and to improve routing,
higher level libraries can be created, supplying presynthesized user defined mod-
ules.

Synergy provides a number of different synthesis steps. The most important are:

• Synthesizibility check: check only for non-synthesizible constructs

• Design optimization: synthesize the design into a Verilog netlist. Optimiza-
tion can go for speed or costs, optimization efforts can be specified by a number
of different switches.

• Tradeoff curve: generate a curve of space-time tradeoff. This partly synthe-
sizes the design with different optimization strategies (some more for space,
some more for time). The tradeoff curve is especially important if both cost
and timing limits are specified for a design and e.g. the smallest netlist for a
given path length has to be found.

Design optimization also generates a list of paths, longest first. Since the library
timing specifications are worst-case, this often provides more accurate estimation of
timing problems than simulation of the synthesized netlists.

2.3 Synthesis Options

There is no “optimal” synthesis. Optimization can go for costs, for speed, or for
minimal costs at required speed. Furthermore, synthesis takes lots of processor

2.4. ROUTING 11

time and memory, especially for larger designs. Thus a synthesis tool must provide
means to select efforts and synthesis time tradeoffs.

Synergy provides a number of different approaches to select costs and speed of
the design and cost/speed of synthesis:

• Synthesis effort: synthesis effort ranges from 0 (lowest) to 4 (highest) and
thus allows to select the time spent on optimizing netlist

• Tradeoff: cost or time optimization may be selected, either to minimal costs,
to minimal time, or from a point on a tradeoff curve.

• Module hierarchy: modules, functions, and registers can be collapsed (high-
est expected optimization result), preserved in hierarchy (optimize modules in-
dependently, thus faster because repeated modules only get synthesized once,
and netlists are smaller, so a close to optimal solution can be found easier) or
not synthesized at all (to include synthesis from individual runs on this mod-
ule, e.g. done before or concurrently on another machine/processor).

• Standard modules: Adders, multipliers, memory, and other basic multi-
gates modules provided by the synthesis tools may be chosen. The broadest
range of tuning optimization exists for adders, from ripple carry to carry looka-
head tree adder.

• Finite state machine generation: finite state machines can be generated
using “one hot” or “random” encoding.

• Random access memory: for memory blocks, the number of read and write
ports can be specified. Memory blocks can be implemented decomposed (thus
as building block from the higher level library) or behavioral, thus as indi-
vidual gates arranged so that they fit the constraints (which is not optimal,
though).

2.4 Routing
The final step of synthesis is routing. ASIC designs usually are routed by the ASIC
manufacturer, since routing is very specific to the used cell geometry. Since routing
affects space and timing conditions (through wire delays), this may be unsatisfying
for the last edge of performance. However, a much greater edge of performance can
be gained using a standard cell or a full custom implementation. In this case there
are tools in Cadence’s design framework II that allow routing and specification of
cell geometries.

Chapter 3

Implementation of Functional Units

The 4stack processor is a pipelined processor. In this implementation, a basically
three stage pipeline is used. The three pipeline stages thus are:

1. instruction fetch

2. instruction decode

3. execution

There are two main sources of stalls:

• instruction cache misses or mispredicted branches respectively skipped last
entries of single instruction loops

• data cache misses or access conflicts.

Data cache misses stop the whole CPU except those parts that interface with exter-
nal memory. Instruction cache misses are only noticed if they reach execution stage.
They stall execution until valid instructions arrive.

3.1 Basic Components
Above the gate level, a number of basic components are typically used in hardware
design:

• edge and level triggered multi-bit latches to form registers and permanent
store of variables.

• multiplexers to select from a number of different input paths

• adders

12

3.1. BASIC COMPONENTS 13

||| |

^ &

^ &

^ &

^ &

^ &

^ &

^ &

^ &

Figure 3.1: Ribble carry adder

• multipliers

• random access memory, thus latches combined into an array.

• barrel shifters

Verilog provides all these constructs on the behavioral level. For synthesis, however,
a number of tradeoffs have to be taken into account. Synergy is able to synthesize all
constructions above, however, with different results. There are a number of tuning
switches, though, to select different approaches. I decided to implement adders and
multipliers myself and to check whether these or Synergy’s adders and multipliers
are faster.

3.1.1 Adder
There are a number of different approaches to add two numbers using boolean logic
(see for example [6]). A typical simple solution is ripple carry add, (see Figure 3.1).
Ripple carry add is a combination of full-adders (3:2 adders) with sequential carry
propagation.

The classical enhancement is to form a carry lookahead tree network to overcome
the restriction of the sequential carry propation. Basic principle is a divide and
conquer strategy to analyze carry propagation. A carry is propagated, if the first half
adder’s sum result is 1. The carry propagation analysis thus is a AND tree. The real
carry propagation is computed backward then. Each part outputs carry, if either
both carry in and carry propagate is true, or the higher significant subpart outputs
carry (see Figure 3.2). Carry lookahead adders are significantly faster than ripple
carry adders, without much cost overhead. Additionally, they reduce the carry-in-
carry-out path to about half of the longest path.

The other option is a recursive partitioned carry select adder. This adder also
follows a recursive divide and conquer strategy. Each partition computes the sum
with carry 0 and carry 1. Now based on the real carry propagation, the correct
higher part of the sum is selected, using two n bit multiplexers (see Figure 3.3).
This option depends on fast multiplexers, but even when using and, or, and inverter
gates to emulate multiplexers, this approach is slightly faster than carry lookahead
adding. It takes more space, though.

14 CHAPTER 3. IMPLEMENTATION OF FUNCTIONAL UNITS

&

&

|

cocpcp

cocp

ci

2n add

n addn add ^ &

^

ci

cp co

1 add

so

Figure 3.2: Carry lookahead

sl0 sl1 sh0sh1

n add n add

mux

mux

2n add

^ ~^ & |

s0 s1 c0 c1

1 add

s0 s1 c0 c1

Figure 3.3: Carry select adder

3.1. BASIC COMPONENTS 15

The main advantage of the carry select adder is that other properties of the sum
can be extracted while computing the sum. Two such properties are used:

• compute zero flag for ALU operations to get all flags at the same time

• compute number of leading zeros and ones for FP adder for following normal-
ization.

In fact this approach can be used independently of the chosen adder implementa-
tion. This approach e.g. for zero flag computation is called “early out zero”. Using
this approach to implement addition itself seems not to be widely known. I did not
even find a reference, [6] only shows non-recursive carry select adding (which takes
less space, but is of O(

√
n) instead of O(log n)).

To validate the assumption that a slow multiplexer doesn’t affect the perfor-
mance lead, a test synthesis using CellsLib, a library brought with Synergy, was
performed under various optimization options (always optimizing for speed, not for
costs). This library specifies the delay of a multiplexer almost twice as high as AND
gate delay. The optimization target was a 64 bit adder with carry in/carry out. Note
that the overhead for carry lookahead logic in this case almost vanishes compared
to “ripple carry adder”. The main reason is that CellsLib provides a 4 bit adder cell
which is presumed to contain carry lookahead logic. The optimization with flatten-
ing hierarchy did not have a big effect on speed, but on size.

Synthesis Options Longest Path Area Units
Ripple Carry Adder 37.43 ns 160000.000
Carry Lookahead Adder Tree 13.95 ns 168622.578
Recursive Carry Select/Flatten Hierarchy 10.36 ns 303528.625
Recursive Carry Select/Preserve Hierarchy Tree 11.08 ns 365423.125

The same process has been done with a 1.0µ ASIC library (ES2)

Synthesis Options Longest Path Area Units
Ripple Carry Adder 26.58 ns 265620.000
Carry Lookahead Adder Tree 6.58 ns 641820.000
Recursive Carry Select/Flatten Hierarchy 5.06 ns 986485.938
Recursive Carry Select/Preserve Hierarchy Tree 7.83 ns 1892067.500

and a 0.7µ ASIC library (ES2)

Synthesis Options Longest Path Area Units
Ripple Carry Adder 23.93 ns 165668.266
Carry Lookahead Adder Tree 5.48 ns 299291.562
Recursive Carry Select/Flatten Hierarchy 3.85 ns 637828.500
Recursive Carry Select/Preserve Hierarchy Tree 6.24 ns 1168551.500

16 CHAPTER 3. IMPLEMENTATION OF FUNCTIONAL UNITS

This case shows a larger speed improvement between ripple carry and carry
lookahead adder (with area increasing more than two times), thus the assumption
above obviously was valid. Flatten hierarchy this time had a huge effect on size and
a noticeable effect on timing.

Conclusion: on process targets with comparable prohibitive multiplexer costs, a
recursive carry select adder should be chosen only if the speed increase is worth
it’s price (e.g. for the FPU or the DSP unit). The costs of multiplexers thus have
to be evaluated to back the decision whether to use RCS adders or CLA adders.
Costs for additions without carry in are used by omitting the last large multiplexer
(which also has fan-in problems), so this improves response time (to estimated 9.00
ns CellsLib/4.50 ns ES2), whereas CLA adders don’t gain from omitting carry in.

3.1.2 Multiplier
As above, there are different approaches to implement a multiplier. The main ap-
proaches are:

• Shift and add loop: the multipliers are stored in two registers. There is a
target register (of size 2n). One source registers is a shift register, shifting to
the right. Each step the other source register is added to the target register
shifted to the left, if the lowest significant bit of the first source register is one,
else the target register is shifted one bit to the left without adding.

Costs: the critical path is the adder. Compared with the edge-triggered latches,
it is the significant part of the space costs, too. Timing is prohibitive; a n bit
multiplication will take n cycles.

• Shift and add loop using CSA: the approach above can be greatly improved
if a carry save adder (CSA) is used instead of a carry lookahead adder. The
target register now stores both sum and carry bits from the CSA result. The
basic loop is the same as above.

Costs: the critical path is much shorter now (latch setup and carry save adder,
a one bit full adder). However, execution is still O(n), although n can be much
shorter, e.g. if self-timed logic is used (which makes synthesis more difficult).
The product (the two partial sums) has to be summed up using a carry looka-
head adder or by turning the carry save adder network into a ripple carry
adder (not recommended, because this takes another 2n cycles to finish the
multiplication).

• Multiplier array: Instead of sequentially adding, an array of input bits is
added together using cascaded carry save adders. Each array row is either 0 if
the corresponding bit of the first input number is 0, or is the second input num-
ber. This array is reduced to two sums using carry save adder, and finally to
the correct result using a 2:1 adder (carry lookahead or recursive carry select).

3.2. CLOCK GENERATION 17

Costs: a n × n bit multiplier uses n2 AND gates for instantiation of the input
array, and approximately n2 full adders (carry save adder elements) to compute
the result. Finally a 2:1 adder (size 2n) is needed. The longest path is O(log n),
though, so it’s worth it’s price.

All three multipliers can be converted into multiply and add units at almost no
additional cost. Since the DSP units divide multiplication into two steps, the two
partial sums form a natural pipeline point. Also, signed multiplication can be added
at small costs. Unsigned multiplication can be converted into signed using the fol-
lowing equations (a and b are input values, hi is the more significant half of the
result):

• if(a < 0) hi := hi− b

• if(b < 0) hi := hi− a

Since a/2 is already added to the result if b is negative (highest bit set), it is better
to replace the topmost a instantiation by −a. Thus a 32 × 32 signed/unsigned mul-
tiplier instantiates a 32 × 33 array and uses additional XOR gates to compute the
two topmost values. The 33rd array element is used for subtraction of b in signed
multiplies.

3.2 Clock Generation

Pipelining introduces interlocks between different pipeline stages. Basically, there
are two sources that produce stalls on the 4stack processor:

• instruction cache misses

• data cache misses

There are no interlocks between other instructions than those that access memory.
Basically, data cache misses stall the whole CPU except the data cache itself, es-
pecially it has to stop fetching and decoding new instructions. Instruction cache
misses only stall execution until the right instruction has been decoded.

To reach an even duty cycle, the input clock is divided by two. This also allows
for generation of negated clocks which lag one half major cycle behind, to always
trigger on positive clock edges1 and to latch up in the second half of the cycle.

Stalls are indicated by two flags: cache miss (active low), and instruction valid
(active high). If there is a cache miss at the rising major cycle clock occors, no other
clock signal is activated. If there is no valid instruction, clock 2 does not raise. On
falling major cycle clock, all positive edge clock values are copied to their second

18 CHAPTER 3. IMPLEMENTATION OF FUNCTIONAL UNITS

inst. valid

cache miss

clock 2

clock 1

clock 0

clock

clock 2’

Figure 3.4: Clock flow

stage counterparts and set to zero. Figure 3.4 shows a sample clock flow (beginning
at reset).

Some parts, especially the data cache, must be aware of the stall flags. Thus
they set some latches (conditionally) on each raising or falling major cycle, but the
conditions depend on the execution of instructions.

1Verilog simulation triggers the x → 0 transition as negedge clock, so initially (when the clock
goes to 0), all negedge blocks are executed

Chapter 4

First Stage: Instruction Fetch

The prefetcher supplies the CPU with instructions. As branches are resolved at the
end of the execution stage, two following instructions have to be decoded at once, and
up to four instructions have to be fetched (on a speculative basis). It is considered to
be far too expensive to use a four ported cache to satisfy this need, so an alternative
approach has to reduce the demanding cache ports.

First, branch patterns are not distributed equally; the typical case is either a
branchless stream of instructions with rare branches (so no need for demanding
cache accesses), or a single instruction loop. So a good heuristic is to follow branches,
if there are any.

This approach could be improved using prefetch buffers (preferably cache line
width), one supplying linear prefetch, the other prefetching at the branch target
address. The PentiumTM processor uses this approach (see [7]). The main advantage
of this approach is that a single ported instruction cache provides enough bandwidth
to execute one branch per cycle, using branch prediction.

This implementation of the 4stack processor only buffers one additional instruc-
tion, because it reads aligned instruction pairs. Since there are two instructions in
the decode queue, both buffers and ports have to be doubled. Larger prefetch buffers
will help execution of a number of cascading branches, however, more branch target
computing units will be needed, or a more intelligent approach when to compute
branch target addresses has to be made.

The prefetcher thus fetches up to two pairs of instructions per cycle, based on a
static selection of the up to four possible instruction locations. If the decision was
wrong, no more than one stall cycle has to be inserted to finally fetch the remaining
two candidates. In reality, this happens only on (rare) cascaded branches.

The prefetcher does not speculatively load on cache misses, it waits until the
instruction really is executed. Since this delays cache fills only by one cycle, it is
appropriate not to waste bandwidth and possibly trash the cache with speculative
cache loads.

19

20 CHAPTER 4. FIRST STAGE: INSTRUCTION FETCH

4.1 Details About Prefetching Order

The prefetcher needs to fetch up to four instruction destinations:

• linear two instructions ahead of the currently executed instruction

• the branch target of the next linear instruction to be executed

• the linear next instruction of the branch target of the current instruction

• the branch target of the branch target of the current instruction.

Only two of these four instructions are needed in the next step (decode). It is only
clear at the end of the fetch instruction, which two this are.

Each of these addresses is stored into a 64 bit latch, called ipll, iplb, ipbl, and ipbb.
“b” stands for executed branches, “l” stands for linear follower (“ipbb” thus is two
consecutive branches executed, “iplb” is the branch target of the next instruction in
linear order). Given that all instructions could be loaded successfully, there are two
cases:

• if the executing branch instruction is taken, set ipll := ipbl + 1, ipbl := ipbb+ 1

• if the executing instruction doesn’t branch, set ipll := ipll + 1, ipbl := iplb+ 1

The slots of iplb and ipbb are filled with the branch destinations of the two current
instructions (if valid). Instruction pointers may only be incremented, if they did
their job, thus the corresponding instruction was fetched. Also, if the instruction
pointer is changed due to an ip! instruction or during exception handling, this new
instruction pointer can only be used if the previous instruction was fetched success-
fully.

The selection of instruction pointers is done using cascaded multiplexer. These
multiplexer also pass valid bits of the instructions. Instruction pointer latches are
edge triggered with enable signal, so they take new values only when enable is set.

Because it is not possible to fetch four locations out of a dual ported cache, it is
tried to save the lineare follower of one instruction if it is part of the cache request
in two 128 bit latches (64 bit for instruction, 64 bit for branch target address) —
each cache request outputs two instructions. Actually, this is only done for aligned
instruction pairs.

The current priority scheme is to support first the branch target, then the linear
follower. This could be changed to make at least use of the branch prediction hint
stored in the instruction.

The opcode describes the following actions:

4.2. INSTRUCTION POINTER INCREMENTER 21

Position Size Purpose
0 1 set new IP at input address
1 1 force cache load at ipll
2 1 access mode (supervisor/user)
3 1 schedule exception (don’t translate through MMU)
4 1 set loop start
5 1 set loop end
6 1 address size (for set loop start/loop end)

Exception handling slightly differs from normal prefetch executing: an exception
stalls the normal instruction queue and fetches up to four instruction words from
the interrupt table (not translated through MMU). If there is a branch in the ex-
ception code, normal instruction execution is resumed at this new instruction. Nor-
mal execution is resumed, too, if the four instructions have been exhausted without
branching.

In fact, exception handling and resume is handled via “set new IP” and the last
prefetched instructions are aborted.

The prefetch unit further handles hardware counted loops. This is done using
the instruction pointer incrementer. If the incremented instruction pointer equals
loop end address, and the loop counter is not zero, the loop start address is provided
instead of the incremented address.

Single instruction loops pose one problem: the loop counter may be set in the
loop start instruction. However, the first decision whether to loop or to continue has
to be taken at the beginning of the decode stage of the loop start instruction. This
problem is solved by always looping one instruction more than necessary for single
instruction loops, and skipping the last instruction in the execution phase.

To follow branches, each instruction fetch has to compute the branch target ad-
dress of all fetched instructions. The 4stack processor architecture eases this prede-
coding job by using one single bit to distinct between branching and other instruc-
tion. However, there are several (to be exact: four) different branch formats, two
of them using relative addresses. The branch address computation is part of the
instruction cache, so a more detailed description can be found in Section 7.2.

4.2 Instruction Pointer Incrementer

The instruction pointer incrementer consists of a 64 bit adder and a 64 bit com-
pare logic. If the input instruction pointer is equal to loop end and the index is not
zero, the new instruction pointer is loop start, otherwise the incremented instruc-
tion pointer. This selection is done using a 64 bit multiplexer.

Costs: a 64 bit adder, a 64 bit comparison unit, and a 64 bit multiplexer. The zero
index flag is computed only once. There are four instruction pointer incrementer.

ISA changes: the original instruction set architecture described the loop end

22 CHAPTER 4. FIRST STAGE: INSTRUCTION FETCH

pointer to point to the first instruction after the loop. This would have required to
move the comparator after the adder and thus lengthen the path (which is not really
critical). However, explicit setting of loop end (with loope!) is supposed to use the
value returned by loope@ , so this architectural change is transparent.

4.3 Instruction Pointer and Output Selection

As stated above, the instruction pointers are updated using a bunch of multiplexers
to select between different values, depending whether the currently executed in-
struction branches or not, and if the cache returned valid data (valll to valbb). This
section now shows detailed conditions.

4.3.1 Instruction Pointers

• ipll: If the current branch is taken, set it to ipbl + 1 or newip (depending on
opcode[0]) if valbl[0] is true, else set it to ipbl. If the current branch is not taken,
set it to ipll + 1 or newip (depending on opcode[0]) if valll[0] is true, else set it to
ipll.

• ipbl: If the current branch is taken, set it to ipbb+ valbb[0], else iplb+ vallb[0]

• iplb: Set it to brip0

• ipbb: Set it to brip1

4.3.2 Instruction Pointer Valid Tag

Since there are non-branching operations, not every instruction pointer is valid all
the time. There exist four instruction pointer valid bits (vll to vbb).

• vll is always 1, since there is always a linear successor of the current instruc-
tion

• vbl is set to vbb if the current branch is taken, else to vlb.

• vlb is set to 1 if the currently fetched instruction (at ipbl if branch is taken, else
at ipll) is valid and a branching instruction.

• vbb is set to 1 if the currently fetched instruction (at ipbb if branch is taken, else
at iplb) is valid and a branching instruction.

4.3. INSTRUCTION POINTER AND OUTPUT SELECTION 23

4.3.3 Cache Access Address Selection

Since there are only two requests possible, two of the four instruction pointers have
to be selected. Four single bit latches (getll to getbb) hold the result of the selection
decision, because further operation depends on it.

• getll is true when the prefetch buffer for linear following address is empty
(nextllvalid = 0)

• getbl is true when vbl will be set to true and the prefetch buffer for branch
target address is empty (nextblvalid = 0)

• getlb is equal to vlb

• getbb is equal to vbb

Since there are only two address ports, two out of the four addresses (ip0 and ip1)
have to be selected using two 64 bit multiplexers.

• ip0 is ipbb if getbb is true, ipll else. Access is valid, if getll or getbb is true.

• ip1 is ipbl if getbl is true, iplb else. Access is valid, if getbl or getlb is true.

4.3.4 Opcode Result Selection

Not all four possible opcodes (opll to opbb) could be fetched in one cycle. So opcodes
and branch target addresses and the corresponding valid bits have to be selected
(using 133 bit multiplexers) out of six locations: two output ports for the instruction
cache with two instructions each and two prefetch buffers.

• opll either comes form prefetch buffer 0 (if nextllvalid = 1) or from the first
cache output port an is valid if getbb = 0

• opbl either comes form prefetch buffer 1 (if nextblvalid = 1) or from the second
cache output port, it’s only valid if getbl = 1

• oplb comes from the second cache output port and is valid if getlb = 1∧ getbl = 0

• opbb comes form the first cache output port and is valid if getbb = 1.

Since both cache output ports output instruction pairs, another two 128 bit multi-
plexers have to select the correct instruction and branch target address selecting
with the lowest significant instruction pointer bit (bit 60).

24 CHAPTER 4. FIRST STAGE: INSTRUCTION FETCH

4.3.5 Branch Dependent Opcode Selection
Depending if the current instruction branches or not, the final two needed opcodes,
their branch target addresses, and their valid bits are selected using two 133 bit
multiplexers.

• op0 is opbl if the branch was taken, opll otherwise. The output instruction poin-
ter is equal to next ipll.

• op1 is opbb if the branch was taken, oplb otherwise. The output instruction
pointer is equal to next ipbl.

Furthermore, the input and the valid state for the prefetch buffers has to be se-
lected using two 129 bit multiplexers. There is only one valid bit necessary, since
prefetched instructions share all other properties with the original instruction.

• nextllvalid is set, if the current op0 instruction wasn’t the a loop and the in-
struction pointer wasn’t set due to an ip! instruction. Further conditions de-
pend on whether the current instruction branches: if so, op1 must be valid,
getbl = 1, and the last bit of previous ip1 = 0. If not, op0 must be valid, getbb = 0,
and the last bit of previous ip0 = 0.

• nextblvalid is set, if the current op1 instruction wasn’t the a loop and the in-
struction pointer wasn’t set due to an ip! instruction. Further conditions de-
pend on whether the current instruction branches: if so, op0 must be valid,
getbb = 1, and the last bit of previous ip0 = 0. If not, op1 must be valid,
getbl = 0, and the last bit of previous ip1 = 0.

Chapter 5

Second Stage: Decode

As there are up to four possible instructions at the beginning of the fetch stage, there
are up to two remaining instructions at the beginning of decode stage. Therefore,
there are two parallel decoders.

The basic instruction formats of the 4stack processor architecture can be found
in Figure 5.1. Decoding is done in three basic steps:

1. Fill in all those parts that are not covered by the actual instruction. E.g.
branch instructions don’t have a data operation field and a conditional setup
field, while other instructions don’t have a branch operation field. This is based
on the last two bits of the instruction word using a 4:1 multiplexer.

2. Compute operation codes for the functional units and stack effects. Each op-
erational unit is driven by an operation code, and for each stack, all the stack
effects are computed.

3. Compute the actual stack operation code.

Decoding actually is data driven, so these three steps can be handled in one cycle.
There are no more state information as the least two significant bits of the stack
pointers and two stack effect queues for data loads (two bits per stack).

Basically, only the ALU and data operations need further decoding; the branch
target address computation had been done in the instruction fetch unit and the code
of conditional branches naturally fits the branch unit.

5.1 ALU Decode
The ALU operation decoder converts the 10 bit operaton format (see Figures 5.2,
5.3, and 5.4) into 6 bit ALU opcode (see Figure 6.8), 8 bit DSP unit opcode (see
Figure 6.10),10 bit primar FPU opcode, 5 bit special register load/store opcode (see
Figure), 10 bits of the primar stack opcode (numbers of pushs and pops), 3 bit pixel

25

26 CHAPTER 5. SECOND STAGE: DECODE

Alu0 Alu1 Alu2 Alu3

0 6410 20 30 40 60 6250

Alu0 Alu1 Alu2 Alu3

0 6410 20 30 40 6250

Alu0 Alu1 Alu2

0 6410 20 30 62

0 6462

1

2

3

3

0

n/a

1

61

61

Offset/AddressMode

0

far call

branch

normal

32

45 55

45

Address

Offset

cc3cc2cc1cc0

mask cc likelihood

61

0

Data ModeAlu0 Alu1 Alu2 Alu3 Data0 Data1

0 6410 20 30 40 60 6250

cond

call

Figure 5.1: Instruction format

0 0

10

1 extend

push 8 bit signed constant

insert 8 bit constant

0 1 2 3 4 5 6 7 8 9

group

Figure 5.2: ALU instructions

opcode, and one bit whether the flag is computed in the current operation or comes
from deeper in the stack.

ALU operation decoding is done using a large case statement (as continuous
assignment) which results in combinatorial logic and multiplexers after synthesis.

Costs: The primary stack operation is determined by a 6 entry case table (6:1
10 bit multiplexer). Each input computes the stack effects of one instruction group
(and immediate number generation) using two or three bit comparators, OR, and
AND gates. The ALU opcode is computed using a 15 entry case table (unoptimized
a 15:1 6 bit multiplexer) and two 3 bit comparators. DSP opcode is computed using a
five entry case table (5:1 8 bit multiplexer), FPU opcode a eight entry case table (8:1
10 bit multiplexer). The pixel opcode is computed using a 8 bit constant comparator.
The zero flag origin bit uses an eight entry case table. Since the inputs of these case
tables are not suited to drive a multiplexer, a number of comparators (and gates)
have to be applied before.

5.2. DATA UNIT DECODE 27

T4 T5

mul T1

pass T1

subc T1

addc T1add T1

sub T1

subr T1

T3

and T1

T2

or T1

subcr T1

umul T1

xor T1

Figure 5.3: Intruction groups

0 0

0

0

1

1

1

0

1

s<i>p

s<i+4>

s<i>stack

const <i> 0 0

0

0

1

1

1

0

1

s<i>p

s<i+4>

s<i>stack

pin s<i>

0 mul@

0

compute flag1

1

0

mul@+

0 0

1

0 1

1

1

0

shift

convert

<reg>@

<reg>!

1

0

1

1

0

floating point

bit field

pixel

Figure 5.4: Group T1 to T5, based on extend bits

5.2 Data Unit Decode

The data unit decoder decodes one 10 bit data operation code (see Figure 5.5) into
a 37 bit data opcode (see Figure 6.14) using a 6 entry case table (mostly a 6:1 37
bit multiplexer). The stack effect of the various data operations is computed using
an 18 entry case table (unoptimized a 18:1 7 bit multiplexer). Finally, 12 AND bits
distribute stack effects to the correct stack half.

5.3 Stack Decode

The stack operation turns the least two bits of top of stack position, the numbers of
pushs and pops from ALU and data unit, and the stack extend opcode from other
operations into a new top of stack position and multiplexer path selection opcode for
stack register file, bypass unit and stack buffer (see Figures 6.4, 6.6, and 6.5). This
unit does most of the work to turn physical registers and stack buffers into a real
stack. See Section 6.1 for more details about how the stack works.

Stack decode is done in two steps. First, the stack relative positions are turned
into absolute positions using two bit adders. The stack balance (thus the overall
stack effect) and the TOS position at the end of the instruction are computed. Then,
using these absolute positions and the number of individual pushs and pops of each
unit are used to compute data paths.

The six absolute addresses into the stack are the final stack pointer, the desti-

28 CHAPTER 5. SECOND STAGE: DECODE

r/w size mode reg ld/st

offset0 s/i 8 bit constant

st 2st

1 st reg1 type (d)get/set

1 st reg2 c/m operation cache/mmu

1 st reg3 size

ua1 st 0 mode dest reg

i/o,

monitor registers
user constants,

r/wop

r/wd

other ops

Figure 5.5: Data operation

nation stack pointer to write ALU values to, the stack pointer to get values to pass
to the data unit (for storing into memory), and the four NOS accesses from own and
other stacks.

The data paths then are computed using a stack position unit, since stack posi-
tion numbers are encoded in four-bit vectors. One bit is set, if there is an access; if
no bit is set, the output of this multiplexer is high impedance. So the stack position
unit consists of four 3-input ands, comparing stack position number and ANDing it
with the valid bit. Nine such units are used to

• compute TOS position (always)

• store output 0 position (always)

• pick from deeper in stack position

• the four NOS positions

• pin to elements 0-3

• pin to elements 4-7

The bypass opcode is computed using the stack position of the more significant ALU
result and the number of pushs and pops, using four stack position generation units.
Furthermore, it is computed which the two ALU outputs have to be stored to the
stack, based on the ALU push and data unit pop numbers using a five entry case

5.4. OPCODE AND INSTRUCTION POINTER TRACKING 29

table (4:1 2 bit multiplexer, optimized some AND gates and inverters), and if NOS
is bypassed (3 AND gates, two inverters).

The number and positions of stack entries that are rotated one element down is
computed using four AND gates, one OR gate, and a four bit barrel rotator (an eight
bit barrel shifter with two input bits, lower and higher half ANDed together).

5.4 Opcode and Instruction Pointer Tracking

The main decoder keeps track of opcodes and instruction pointers. At clock 1 rise, it
saves both opcodes, instruction pointers and branch target pointers given from the
prefetch unit in six 64 bit latches (when they are valid). At clock 2 rise, it saves the
remaining instruction and branch target pointer in two 64 bit latches, using three
64 bit multiplexers (one selecting for exception handling just after branching).

If the prefetcher can’t deliver the second instruction after a branch, the taken
state falls back to normal state (since the instruction pointers in the prefetcher
already are in their place as if the branch happened), and the current opcode0 is set
to the previous valid opcode1.

The instruction pointer is needed for the ip@ operation, and — when an excep-
tion occurs just after a taken branch — the branch target instruction pointer is used
as new instruction pointer.

5.5 Exception Handling

Instruction pointer tracking also handles exceptions. Four categories of exceptions
can be distinguished:

Number Reason Unit causing fault
0–F General exception Interrupts, instruction faults

0 Reset Reset pin low, double fault
1 Trace Trace bit set
2 Instruction Fault Decoder
3 Privilege Violation Decoder
4 FPU exception Floating point unit
5 reserved
6 instruction ATC Miss Prefetcher
7 Instruction Memory Protection Fault Prefetcher

8–F Interrupts Interrupt pin n

30 CHAPTER 5. SECOND STAGE: DECODE

Number Reason Unit causing fault
10–1F Address computation Data unit

10 no exception
11 Limit cross “Odd” data unit
12 Misaligned Access “Odd” data unit
13 reserved
14 Limit cross “Even” data unit

...
1A Misaligned Access Both data units

Number Reason Unit causing fault
20–2F Memory access Data cache

20 no exception
21 ATC miss “Odd” access port
22 Memory Protection Violation “Odd” access port
23 reserved
24 ATC miss “Even” access port

...
2A Misaligned Access Both access ports

Number Reason Unit causing fault
30–3F Stack ATC miss Stack cache

31 Stack 3 ATC miss
32 Stack 2 ATC miss

...
3F All Stacks ATC miss

The exceptions of the first group are indicated using a 16 bit vector, the other
three groups are indicated using four bits each. A priority encoder generates an
exception number out of these bit vectors. This exception number (shifted five bits
to the left) is used as new instruction pointer. The prefetcher fetches this instruction
without translating the address through the MMU. Instructions that are already
in the decoding queue are aborted (thus not fed into decoding). Instead a “stack
correction” instruction is generated to correct stack effects of aborted data loads1.

Each time an exception occurs, a counter is set to four and decremented after
each executed instruction until either a branch occurs or the counter is zero. Then
exception handling resumes and other pending exceptions can be taken. Instruction
fetching resumes at the interrupted instruction pointer.

1This hasn’t been implemented yet.

Chapter 6

Third Stage: Execute

6.1 The Stack

Stack processors use a stack-like organization of the register file. This makes use of
the locality of register accesses, thus only a small number of registers provide fast
access time. Two special register names have an important role: the top of stack
(TOS), which is source and destination of each operation, and the next of stack
(NOS), which is second source of each operation.

The 4stack processor architecture allows to replace NOS with elements deeper
in the stack (up to depth four) to access elder values, or with elements from other
stacks (up to depth four), to access other recently computed values. This feature can
be explained as parallel stack operation. Furthermore the 4stack processor archi-
tecture provides load and store concurrently to other computations on the stack.

The logical stack access flow in one cycle thus is (see also Figure 6.1):

1. Compute stack operation, thus read value deeper in the stack or from other
stack .

ROT PLUS STORE LOAD

store loadALU

6

4

t

15

21

33

33

15

21 21 21 21 21

15

� � �

� � �

� � �

� � �

� � �� � �

33

48

Figure 6.1: logical stack access flow

31

32 CHAPTER 6. THIRD STAGE: EXECUTE

2

3

1

2 2 23

2

1

4 4 4

store loadALU

5

65

Figure 6.2: Merging stack operation and ALU input selection

2. Rotate zero to three stack items deeper down the stack and push the value
read in step one as new TOS.

3. Pop up to two values beginning with TOS, compute ALU, DSP or FP operation.

4. Push zero to two results back on the stack.

5. Pop up to two values beginning with TOS to store them to memory according
to the data unit operation in the current instruction or pop TOS as part of a
conditional branch or conditional setup operation.

6. Push up to two values loaded from memory according to the data unit opera-
tion of the last cycle.

Performing this sequentially it would take up to six cycles to perform this work.
However, it can be shown that all these six actions can be collapsed in one single
step.

All stack effects share one important property: they move TOS to NOS and re-
place TOS by a value deeper from the stack or from another stack. Instead of just
pushing this value to the stack, it can be directly fed into the ALU, as input one
(former TOS). TOS gives input two (former NOS). This reduces the amount of work
to five steps, see Figure 6.2.

Instead of pushing the result that is stored afterwards, a bypass can be used to
feed the data unit. Furthermore the possible push operation from the ALU then can
be merged with the data load pushes (see Figure 6.3).

This leads to the following requirements of the stack unit:

• deliver TOS to ALU

• rotate one to four elements

• provide up to two elements to store via data, either as bypass from ALU result
or from stack

6.1. THE STACK 33

load

storeALU

4

615

21

33 21

t

� � ��� � �

Figure 6.3: Store bypass, load and ALU push merged

• read up to two elements from ALU

• read up to two elements from data unit.

As stacks spill to and fill from memory, this leads to a division of the stack unit into
three parts:

• stack register file, providing the above requirements (fast access, high band-
width)

• bypass, feeding storage unit with stack contents or ALU results

• stack fill/spill buffer to keep bandwith low on the cache side.

As four values can be pushed or popped in one cycle, the stack buffer has to supply
or take up to four values per cycle. To reduce the number of ports to each buffer
register, it is proposed to use four register rows, one for each of the four registers in
the primary stack register files. These register rows are associated to one physical
stack register. The actual mapping to the logical stack position is done by register
“renaming”. Instead of computing the translation of each logical stack position to
the physical register, only the translation TOS to its physical representation (a two
bit number) is computed and updated every cycle.

6.1.1 Stack Register File
The stack register file thus can do in one cycle:

• deliver TOS

• rotate one to four stack elements or store TOS to a deeper position to imple-
ment stack effects that change deeper positions of the stack

34 CHAPTER 6. THIRD STAGE: EXECUTE

Position Size Purpose
0 4 TOS position
4 4 Store output position
8 4 Valid input

12 4 Spill in values
16 4 Access deeper in stack
20 4 NOS own stack
24 4 NOS stack +1
28 4 NOS stack +2
32 4 NOS stack +3
36 4 Rotate down elements
40 4 Store TOS to deeper position

Figure 6.4: Stack register file opcode

• output any four of four elements as second input (to other stacks, too)

• output up to two elements to data unit

• output up to four elements to stack buffer

• input up to four elements from stack buffer

• input up to two elements from ALU or other computing units

• input up to two elements from data unit.

The requirements thus are not only to hold the topmost four stack positions, but to
provide a number of stack swapping operations, resulting in a network of multiplex-
ers. The data paths are computed in the decode phase, see Figure 6.4.

The four 32 bit latches store the values in the order that is valid at the end of
the cycle. Those parts of the stack that will be replaced by results form ALU or data
unit contain the values to be spilled out.

Because the data unit takes either values from the stack (available at the be-
ginning of a cycle) or from computation results (available at the end of a cycle), two
additional 32 bit latches hold the value supplied from the stack.

Costs: the stack register file containts six 32 bit latches, one four bit latch to
hold the input select opcode part, eight four to one multiplexers, four three to one
multiplexers, and eight two to one multiplexers, each 32 bit wide.

6.1.2 Stack Bypass
The stack bypass passes up to two results from computation to the data unit and
reorders both the computed results and the data load results to the physical order
of the stack registers. The bypass opcode is described in Figure 6.5.

6.1. THE STACK 35

Position Size Purpose
0 1 val0 to st0
1 1 val1 to st1
2 4 ld0 to in0-3
6 4 ld1 to in0-3

10 4 ld2 to in0-3
14 4 ld3 to in0-3

Figure 6.5: Stack bypass

Position Size Purpose
0 1 increment SP
1 1 decrement SP
2 4 select current/next buffer row
6 4 store TOS to deeper position

Figure 6.6: Stack buffer opcode

Costs: It contains a 18 bit latch to hold its opcode until the end of the cycle (where
it is needed), two two to one multiplexers, and four four to one multiplexers, 32 bit
each.

6.1.3 Stack Buffer

The stack buffer’s main purpose is to reduce memory operations due to frequent
stack pointer changes. It interfaces the fast and “narrow” interface to the stack
register file with the wide and slower interface to the data cache. This assures that
even in the worst case (4 pushes or pops on each stack per cycle) there’s only one
data cache access per cycle.

This is done in two steps: the first stage consists of four rows holding four cells
to be pushed or popped, used as a circular buffer. The second stage holds 2 16 byte
lines, and is used as a hysteresis buffer1. This interfaces through a 16 byte bus
to the data cache. There is a cache line size buffer which makes another level of
decoupling. See Figure 6.6 for opcode parts.

The stack pointer (SP) is incremented by 4 cells (16) in each incrementing or
decrementing operation. The lower order stack pointer bits are replaced by the
selection of current/next buffer row (four bits), see Figure 6.7.

The stack buffer’s four rows are used as a ring buffer to interface between
(slower) cache and (faster) stack register file. The current line (indexed by the low-
est two bit of the stack pointer) and the next line take spilled values (in fact, they

1A sort of bidirectional FIFO

36 CHAPTER 6. THIRD STAGE: EXECUTE

pop

push
sp=2

s6 s7 s8 s9
s5s4s3s2

s0 s1

s1s0s3s2

sp=1

s3 s0 s1 s2

s2
s6
s10s9

s5
s1s0

s4
s8s7

s3

Figure 6.7: Stack buffer

copy the whole contents of the stack register file, regardless if it’s actually spilled or
not). The next and the following line provide values to be filled into the stack reg-
ister file (they are provided always, too). The last line fills or spills as whole to the
hysteresis buffer, based on the stack pointer increment/decrement operation bits. If
the hysteresis buffer is full and the stack pointer is decremented (thus the stack
grows), one of the data cache’s data buses is requested. This bus is shared between
two stacks and their data unit. Until all requests are granted, the CPU stalls. The
data cache’s data bus is also requested when the hysteresis buffer is empty and a
stack pointer increment occurs (the stack shrinks).

If a write request is granted, the last line is written out (on the data cache’s data
bus); on a granted read request the first line is written from the data cache’s data
bus. The data cache contains it’s own stack pointer to keep track of stack spills and
fills.

Tradeoff: the size of the hysteresis buffer is highly configurable. The bare mini-
mum would be one element, buffering four stack cells2. In fact, the hysteresis buffer
could be eliminated completely, at much higher costs, though. Some investigations,
[11], lead to the conclusion, that each additional cached stack element halves the
number of accesses to the next memory hierarchy. However, task switches scale lin-
early with the number of cached stack cells, so a good compromise has to be found.
The actual implementation uses two buffer lines, because none of the sample pro-
grams reaches a stack depth greater than eight. The investigations cited above re-

2More precisely, this buffers up to seven stack cells, as the three other buffer lines buffers up to
three stack cells.

6.1. THE STACK 37

sult in no measurable access of the next memory hierarchy for more than 16 cached
values for a single data stack, so it is proposed that an overall buffer of 32 elements
will cancel out any effects of non-uniform distribution of pushed values on the stack.

Costs: the stack buffer contains four 128 bit buffer rows, and two additional 128
bit hysteresis buffer rows. The hysteresis buffer is single ported, while each stack
buffer row has three write ports for each element: one for the spilled out values, one
for the TOS store up to depth eight in stack, and one to interface with the hysteresis
buffer. In addition, there is a 128 bit tristate driver for the data cache’s data bus, a
number of one and two bit state registers, and the stack increment/decrement unit.

6.1.4 Stack Increment/Decrement Unit

The stack pointer basically either is incremented or decremented. Instead of pro-
viding an expensive and large carry lookahead adder (the stack pointer, as all other
addresses, is 64 bit wide), a special two stage incrementer/decrementer could be
used. Because this tradeoff decision has to be backed by measurements, both a
stack pointer incrementer using a CLA adder and the ripple carry approach have
been implemented.

The “cheap” approach uses a two bit wide ripple carry adder for the lower two
bits of the stack pointer, and two registers for the upper part, which both can be
updated by a slow ripple carry adder.

These two registers contain the actual and the either incremented or decre-
mented higher 58 bits of the stack pointer. On increments, there are two possible
transitions, depending which of the two registers is the actual stack pointer:

• If register 0 is the actual stack pointer, register 1 is the incremented stack
pointer, so the actual selection bit changes from 0 to 1.

• If register 1 is the actual stack pointer, the ripple carry adder had at least four
cycles time to compute the increment, so register 0 becomes register 1 and
register 1 takes the computed increment. The actual selection bit stays 1.

The same thing, in reverse direction, holds for decrements.
Tradeoff: This part also can be implemented using a carry lookahead adder and

a single 60 bit register. The advantage of this approach is that no special handling
is required if the stack changes. Both approaches have been implemented and can
be selected for synthesis.

Costs: one two bit latch and two 58 bit latches for lower and higher parts, 120
ANDs to compute the carry bits for decrements and increments, and 118 XOR gates
(or jump and kill flipflops instead of normal edge triggered latches). There is one 58
bit multiplexer and one state bit.

38 CHAPTER 6. THIRD STAGE: EXECUTE

see

flag

opcode

~flag

see

flag

opcode

flagconvert

convert

see

opcode

shift

rotate

<</>>

sign

add

carry

-NOS

-TOS

bit
field

imm

bf

bfs/#<
Operation

specific

Select

Operation

0

1

2

3

4

5

000 001 010 011 100 101 110 111

ALU
inac-
tive

logic

blit 2

blit 1

blit 3

Figure 6.8: ALU operation code

6.1.5 Stack Component Glue

All three basic stack parts are combined into one module, which only contains wires
to combine all these parts.

6.2 The Arithmetic Logic Unit

The 4stack ALU has the following capabilities:

• add and subtract with or without carry, a+ b, a− b, or b− a

• logical operations: AND, OR, XOR

• shift/rotate left and right, signed and unsigned

• create flags

• convert chars and half words to words and vice versa

• immediate number generation

• population count, find first one

• bit field operations.

Thus there are eight parts, which all compute their specific operation, and a eight
to one multiplexer selects which result to take. In fact, population count, find first
one and the conversion units are one operation, and second operator as result is an
additional ALU operation, used to implement stack effects. The ALU takes a 6 bit
opcode (see Figure 6.8).

Costs: the ALU consists of two 32 bit input latches to hold TOS and NOS values,
a 6 bit latch to hold the ALU opcode, and a 32 bit 7:1 multiplexer to form the result.

6.2. THE ARITHMETIC LOGIC UNIT 39

6.2.1 Adder

In addition to adding two numbers and carry, the adder computes a zero flag. This
requires an additional OR path for both results through the recursive carry select
adder.

Costs: A 32 bit recursive carry select adder, 62 OR gates and 62 additional mul-
tiplexers for zero flag computation. A 34 bit multiplexer to finally select the result
on carry. 64 XOR gates on the input negate either TOS or NOS. Three additional
gates compute the actual value of carry.

6.2.2 Logic

Binary logic (OR, AND, and XOR) was implemented using a partly optimized bit
operation ALU without inverted results (0 〈op〉 0 is always 0). Thus only three bits
of the bit block operation code are defined, the fourth is always zero. This logic also
is used to pass NOS for pick operations. Generic logic works by selecting bits of the
opcode using each input bit pair as selector. Thus per bit there are 3 2:1 multiplexers
or the equivalent using AND, OR, and invert gates.

Costs: 96 single bit 2:1 multiplexers.

6.2.3 Shifts

ALU shifts either shift one bit to the left or one to the right. This is done using
a 32 bit multiplexer. Some one bit multiplexer, AND, and inverter gates are used
to select the left and right shift in bit (shift in carry, sign, or bit from other side to
rotate).

Costs: A 33 bit multiplexer (value and carry) and eight other gates for shift in
bits and overflow computation.

6.2.4 Converter

The ALU converts bytes and half words into words and vice versa, including byte
and half word fractions (the byte or half word is the most significant part), signed
and unsigned. This gives a total of six conversions (signed and unsigned conversion
to byte or word fractions are equal). Additionally, find first one and population count
are coded in the two unused conversions . A 33 bit 8:1 multiplexer (one additional
zero indicator) is used.

Costs: one 33 bit 8:1 multiplexer, a 32 bit find first one unit, and a 32 bit popula-
tion count unit. A total of 34 or/nor gates and three inverters compute zero flags.

40 CHAPTER 6. THIRD STAGE: EXECUTE

6.2.5 Flag Computation

Flag computation uses carry and overflow state and TOS value to compute a flag.
The zero flags from the conversion unit are used to determine if TOS is zero. The
most significant bit of TOS is used as sign bit. The flag computation unit itself
consists of a 8:1 multiplexer (one bit output, three bit control) and a few control
gates to compute less than and less or equal.

6.2.6 Bit Field Unit

The bit field unit takes a bit field descriptor from TOS and the bit field value from
NOS. Bit fields can both be (sign) extracted, created and cleared. Inserting values
in bit fields is done using bit field creation on the inserted value and clearing on the
bitfield, both parts are ORed together then.

The bit field descriptor consists of three byte-parts, describing the rotation count
for NOS (least significant byte), the length of the mask (next byte), and the mask
rotation count (next byte). Only the lower 5 significant bits are used. Mask length
0 is a special case, it indicates full mask length. This can be used for arbitrary
rotations of NOS. Rotation is done using two barrel shifters (32 : 5 =⇒ 64) and
ORing the results together. Masking ANDs mask and result together. Finally, sign
extension is obtained by replicating the highest bit of the output value (using the
higher part of the mask) and the negated higher mask is ORed to the extraction
result.

The bit field unit also contains immediate number generation. This either inserts
8 bits from the right into TOS or extends the 8 bit immediate number.

Costs: 3 32:5 barrel shifters (the one for mask generation can be simplified), 3 32
bit ORs, 3 32 bit ANDs, and one collapsing 32 bit OR tree to check for the highest
valid bit. A 32 bit and a 24 bit multiplexer are used to select and generate immediate
numbers.

6.3 DSP Unit

The digital signal processing unit (see Figure) is capable to multiply two 32 bit
values to a 64 bit result (widening multiplication, signed or unsigned), to shift this
result up to 64 bit to the left or right, to add another 64 bit number to this shifted
product, and to round the upper 32 bit according to IEEE rounding conditions (to
nearest even, to zero, to positive or negative infinity). The DSP unit is pipelined,
thus it starts multiplication in one cycle, shifts and adds in the next cycle, while
another multiplication can be started. There are only two DSP units, one for stack
0 and 1, one for stack 2 and 3.

The DSP unit is subdivided in a multiplier array that gives an unfinished result
(sum and carries), two barrel shifters that shift this result, a 128 bit carry save

6.3. DSP UNIT 41

Bypass

+

x

C <<

M ROUND

Multiplier-Array

Barrel Shifter

Addierer

aus Carry-Save-Addierern

Figure 6.9: Digital signal processing unit

Position Purpose
0 multiply
1 signed/unsigned
2 bypass multiplier
3 add from result stack
4 negate multiplier result
5 round
6 shift multiplier result
7 result to low stack
8 result to high stack
9 multiply stack side

Figure 6.10: DSP unit opcode bits

42 CHAPTER 6. THIRD STAGE: EXECUTE

adder to add rounding offsets (e.g. +0.5), a 64 bit adder and a 64 bit carry logic (for
the lower 64 bit of the shifted product) to compute the sum, and a multiplexer to
finally select the correct rounded sum.

Four 64 bit latches are used to hold input multiplication values (two 32 bit num-
bers), intermediate multiplication results, and input sum value. These latches are
set at positive clock edge if the corresponding conditions in the opcode (or previous
opcode for intermediate values) are set. Multiplication input is set using a multi-
plexer, adding input is set using an alternative 64 bit multiplexer, ORing the two
possible inputs (even/odd stack) together, if they both are valid. The same is valid
for shift count (8 bits) and rounding mode (3 bits). The ten opcode bits are saved,
too.

6.3.1 Multiplier

Implementation details about the multiplier have been discussed in Section 3.1. In
short, the multiplier takes two 32 bit input values, and a flag whether to multiply
signed or unsigned. It returns two 64 bit values, sum and carries.

Costs: 1056 AND gates, 32 XOR gates, 32 inverters, and 1290 3:2 carry save
adders.

Path length: 8 CSA elements, one AND, and one XOR gate.

6.3.2 Barrel Shifter

The barrel shifter can shift by up to 64 bit to the left or to the right, in the latter
case both signed and unsigned. In fact, it shifts only to the left (by up to 128 bit
positions), inverting the most significant bit of the shift count. The lower 64 bit are
used as fraction parts and fed into the adder.

Costs: if implemented using a CMOS library, 8192 transistors and some buffers
to work around fan-in and fan-out problems. If more routing resources than switch-
ing cells are available, it would be wise to divide the barrel shifter into two parts,
greatly reducing the number of tristate buffers (transistors). There are two barrel
shifter per DSP unit

6.3.3 Rounding Network

Results of addition are rounded using IEEE rounding modes (to nearest even, 0, pos-
itive and negative infinity). Since both rounding and addition of fraction parts may
increment the result (thus by up to two), rounding offset has to be applied before
addition using two carry save adders (one for each of the two possible conditions).

Rounding offsets are:

6.4. FLOATING POINT UNIT 43

Rounding mode round offset a use offset a, when round offset b
nearest even $8000_0000 using b gives odd number $7FFF_FFFF

zero $0000_0000 using a gives positive number $FFFF_FFFF
∞ $0000_0000 never $FFFF_FFFF
−∞ $0000_0000 always $FFFF_FFFF

Since there are two sizes, rounding is either applied as 96 bit number (result will
be rounded to 32 bit) or 64 bit number (result will be rounded to 64 bit). The lower
bits always are extended from the lowest bit of the rounding offset above. Indeed,
for each rounding offset only three boolean values have to be computed: bit 32 (for
32 bit result rounding), bits 33-63 (all the same) and bit 64.

The final result is selected from the two adders using a 64 bit multiplexer.

6.3.4 Adders
As mentioned above, there are two 3:1 adders, adding 128 bit inputs, giving a 64 bit
output (more significant half), thus two 128 bit carry save adders, two 64 bit carry
detection logic (a “crippled” version of the recursive carry select adder, which just
selects carries and does not add), and two 64 bit recursive carry select adders.

The ability to negate the multiplier’s output is implemented as follows: Instead
of conditionally negating the two 64 bit multiplication results, the adder input sum
is inverted conditionally (using 64 XOR gates). This affects the rounding inputs,
too, so the the six boolean values have to be inverted, too. The final result then is
inverted conditionally again. This makes use of the equation: a− b = a+ b, valid in
two’s complement arithmetic. Since the DSP unit has to compute a zero flag, both
zero (in the adding case) and = −1 (in the subtracting case) flag has to be computed
while adding.

Costs: two 128 bit carry save adders, two 64 bit carry computation units, two
64 bit adders with zero and −1 detection for the higher 32 bits, and two 64 bit
multiplexers.

6.4 Floating Point Unit
The floating point unit is capable to do the following things:

• multiply two input values

• add two input values (float and integers)

• forward the multiplier’s and adder’s result into the adder’s input

• convert single to and from double floats (up to four times)

• scale by or extract exponent (up to four times)

44 CHAPTER 6. THIRD STAGE: EXECUTE

The following tables describe opcode format:

Position Size Purpose
0 4 in0-3 is mullatch0/1 value
4 4 in0-3 is addlatch0/1 value
8 2 mulout is addlatch0/1 value

10 2 addout is addlatch0/1 value
12 2 negate mullatch0/1
14 2 negate addlatch0/1
16 2 convert addlatch0/1 from integer
18 3 out0 selection
21 3 out1 selection
24 3 out2 selection
27 3 out3 selection

Output selection is as follows:

Bits Output is
000 high impedance
001 old input latch
010 adder output
011 multiplier output
100 single to double float
101 double to single float
110 exponent extraction
111 exponent scaling

The floating point unit handles input, output and functional subunit selection.
Among containing converters and scaling/exponent instruction units, there is a mul-
tiplication unit and an addition unit. It contains eight 64 bit latches for adder and
multiplier inputs (and saved input from previous operations) and four 12 bit adders
for exponent exctraction and scaling. Four 64 bit 7:1 multiplexers select output for
each stack.

6.4.1 Floating Point Multiplier

The floating point multiplier consists of two parts: — the first part is a 53x53 multi-
plier array (using a total number 3322 three (bits) to two carry save adders) — the
second part is a recursive adder, includes rounding.

While the multiplier array is computing the partial product, the exponent com-
putation is done, thus compute the new exponent, check for result 0, ∞ or not a
number (NaN), and so on. The last step is a multiplexer that selects the right out-
put (either one of the special conditions 0, infinity or NaN, or one of the two outputs,
if carry is set or not).

6.4. FLOATING POINT UNIT 45

Input categories Output category
n ∗ (n, 0,∞, NaN) (n, 0,∞, NaN)

0 ∗ (n, 0) 0
0 ∗ (∞, Nan) (∞, NaN)
∞∗ (n,∞) ∞
∞∗ (0, NaN) (0, NaN)

NaN ∗ (n, 0,∞, NaN) NaN

Figure 6.11: Multiply category transition table

In detail, the following parts are used:

1. A 53x53 bit multiplication array.

2. Rounding network:Unlike the DSP unit, results are always positive (sign is
part of the exponent), so carry in is sufficient to do the final increment by one
in the round to nearest even case. Rounding to ±∞ depends on the sign of the
result. The rounding vector is added to the two intermediate results using two
106 bit carry save adders, one for rounding if bit 0 of the result is 1, the other
if bit 0 of the result is 0.

3. Special number handling:Floating point numbers fall into four categories:
numbers, zero, infinity and not a number (NaN). This coding is obtained exam-
ining exponent and the first bit of mantissa. Fortunately, the used code allows
to generate the output category with two simple AND gates. Figure 6.11 shows
the category transition table more detailed.

4. Exponent computation adder:A 12 bit adder adds the two input exponents.
Since floating point exponents are biased, first a 12 bit 3:2 carry save adder
subtracts the bias.

5. Final adder:Two 106 bit adders (52 bit full addition, 54 bit carry computation)
add the two outputs from the multiplier network together. This is done in the
second cycle, the two multiplier network outputs are latched in two 106 bit
latches.

6. Output selection:A 63 bit multiplexer selects the correct normalized output.
Another 64 bit multiplexer selects normal path or special category depending
on the category code of the result.

6.4.2 Floating Point Adder

The floating point adder has different input and output paths, depending on what is
needed to compute: it can take two stack item pairs as input, and replace each input

46 CHAPTER 6. THIRD STAGE: EXECUTE

with either multiplier bypass or previous adder result. In fact, all these inputs go
into one quite large shift and adder pair.

There are a number of cases which have to be considered when adding:

• is it a subtraction or an addition

• are the exponents equal or not

• if they are and it is a subtraction, is the result negative or not.

This affects rounding conditions, among other things.
So this is the basic algorithm:

• Compare signs — if equal, it is an addition, else it is a subtraction. Compare
exponents — if equal, go straight on and add, if not, you have to shift the
smaller input right by the exponent’s difference. If this difference is > 52, you
can completely omit the addition.
The postprocessing depends on these conditions, too. If it was an addition, this
is simple: just check for carry, and increment the (larger) exponent, if carry
was set. The rounding mask can just be appended to the larger input value,
things get rounded so without problem.

• If it was a subtraction, there are two cases: equal and different exponents
(thus one input was shifted to the right). If one input was shifted, it is straight
forward: just check the most significant bit, and shift to the left (decrementing
the exponent), and go on. If both exponents were the same, this is less diffi-
cult — the result may have become negative (then invert it) and there are an
unpredictable number of leading zeros. These leading zeros must be counted,
and the result must be shifted to the left (decrementing the exponent appro-
priately). This may even be the case if the smaller input is shifted to the right
by one.
Yet, this is even more complicated with the forwarded inputs from multiplier
and adder. The multiplier’s output isn’t finished, just the exponent is known
with an accuracy −0/1, so the subtraction with leading zeros (no initial shift-
ing) can occur even with a exponent difference of two.

• The worst problem is the forwarded adder. It isn’t finished, too, and especially
if a subtraction occurred, the exponent isn’t computed, only the exponent cor-
rection is known (either the single bit from normal addition or the number of
leading zeros). So the exponent correction is fed into the exponent difference
computation, and the mantissa is normalized, before it is fed again into the
adder.

Figure 6.12 shows the data flow in the floating point adder.
In details, the following parts are used:

6.4. FLOATING POINT UNIT 47

from
multiplier

mantissa
-

+/-
<<

>>

exp0 exp1

-

exp

exponent correction

MAX

MAX/MIN

mantissa0 mantissa1

mantissa

-

Figure 6.12: Floating point adder

Operation on input categories Resulting category
n± (n, 0) n

0± 0 ±0
∞± (n, 0) ∞
∞+∞ ∞
∞−∞ NaN

NaN ± any NaN

Figure 6.13: Category transition table for addition

48 CHAPTER 6. THIRD STAGE: EXECUTE

1. Exponent differences:

• Two 16 bit 3:1 multiplexers select input operands
• Three 16 bit wide AND gates select exponent corrections (either 0 or from

counting leading zeros)
• A 16 bit 3:1 adder (CSA and carry lookahead or recursive carry select

adder) computes the exponent difference. A 12 bit adder has been found
to be insufficient. 13 bit would be enough.
• Two 16 bit adders compute exponent correction for both exponents
• Three cascading 11 bit multiplexers select exponent differences, depend-

ing on signs of the differences and a final correction by one bit (the man-
tissa of the bypassed input operands are known now)

2. Input selection multiplexer:

• Two 54 bit multiplexers conditionally swap input operands depending on
which was larger.

3. Shift lower part left:

• A 53 bit shifter shifts the larger input conditionally one bit to the left
• A 128 bit barrel shifter shifts the other input up to 64 bit to the right

4. Special number handling:

• Numbers like 0, ∞ or NaN (not a number) have to be treated separately.
A category code thus is computed for both inputs. The transition table
found in Figure 6.13 computes the category of the result. Only category
n is computed using the adder path. The categories of the input num-
bers are computed either using bypassed category codes or by examining
the exponent and the first mantissa bit according to IEEE floating point.
Exponent all one is either infinity (first mantissa bit 0) or NaN (first man-
tissa bit 1). A zero exponent is zero or denormal. This floating point unit
doesn’t handle denormals, so they are assumed to be zero, too.

5. Addition featuring find first one/zero of unshifted data:

• A 64 bit find first one/zero adder adds the (almost) unshifted inputs. “Al-
most” means, that they may be shifted to the left, if their origin is a bypass
path and the most significant bit was zero. The find first one/zero adder
basically is a recursive carry select adder which additionally computes the
number of leading zeros/ones based on the values returned from both the
higher and the lower part.

6.4. FLOATING POINT UNIT 49

6. Pipeline latch setup for second pipeline step, latches setup time on positive edge
of clock 2:

• The results of barrel shifting are stored into a 54 bit and a 128 bit latch.
The second is conditionally inverted, if the operation is a subtraction.

• The (uncorrected) exponent is selected using a 11 bit multiplexer and
saved in a 11 bit latch

• Signs, exponent correction bits, the operation type, and estimation, which
path will be used are stored in five single bit latches

• The results of the addition applying find first one/zero are stored in two 64
bit latches (for mantissa, result and negated result) and two7 bit latches
(find first one/zero results).

7. Rounding input:

• A four entry case table computes three bits which are used to form the
rounding input. Unlike in the DSP unit adder, all rounding occurs on pos-
itive values and there are only two input values (not three), so rounding
may only increment results only by one (compared with rounding to zero).
In this case the carry logic can be used to add the additional one for round
to nearest even. Rounding to ±∞ depends on the sign of the sum. For the
path where rounding is needed, this sign is known at this stage.

8. Carry save adders for rounding:

• Two 128 bit 3:2 carry save adders compute intermediate sums for both
final cases (carry set or not) of the left adder path (one argument initialy
shifted).

9. Recursive carry select adders for rounded sum:

• Two 64 bit recursive carry select adders compute the sum of the two 128
bit latches that hold the shifted input path, aided by two 64 bit carry
generators. Depending on the last valid bit and the current rounding
mode (round to nearest even), carry in is chosen. Carry in chooses the
correct carry out bit of the carry generators, and this is used to select the
proper sum (thus is carry in for the recursive carry select adders). This
case shows the importance of the short path for carry in-carry out given
by the recursive carry select adder.

10. Generate output:

50 CHAPTER 6. THIRD STAGE: EXECUTE

• The amount of positions to shift the right path (non-shifted input) is se-
lected using the carry out of the corresponding adder (carry out signals
that the result has to be negated) to drive a 7 bit multiplexer.

• The use of the right path is backed, if both the initial assumption is true,
and the leftmost bits of either sums (normal or negated) on this path are
equal.

• The exponent correction is either the shift amount or {0, 1, 2} based on
initial exponent corrections (necessary for bypass paths).

• The exponent is corrected using a 16 bit recursive carry select adder. This
exponent correction can be corrected by another offset of 1 by computing
carry in later.

• A 64 bit multiplexer and a 64 bit barrel shifter (shifts by up to 64 bits to
the left) normalize the result on the right path

• A 64 bit multiplexer cascade finally selects the correct path, depending on
operation type (subtract or add), left or right path (if it was a subtraction)
and normalizes the results for the right path (shift by at most one bit to
the left). This multiplexer cascade is duplicated to provide the bypass
back to the adder input. This second path doesn’t need normalizing.

• A final 64 bit 2:1 multiplexer selects output based on the category of the
output value

• Based on the category codes and the output sign, the result flag is com-
puted. Overflow and Carry are set if the result is NaN or∞ respectively.

6.5 Data Unit

The data units provide the interface between stacks and data cache. There is one
unit for stack 0 and 2, the other unit for stack 1 and 3. Each data unit has four
register sets for normal execution, and another four register sets for interrupt and
exception execution. A register set can be used (together with IP and TOS of one of
the stacks) to form an address.

The data unit is composed of register file, managing logic, data ALU and data
multiplexer.

6.5.1 Data Register File

The data register file hold 8 register sets (R, N, M, F), four for normal execution,
four for interrupt processing. It is capable to

• compute one memory address per cycle, and eventually update one register

6.5. DATA UNIT 51

Positon Size Purpose
0 1 32/64 bit mode
1 1 mode: 0 normal, 1 interrupt
2 2 register number
4 2 target register number
6 2 register type (R, N, L, F)
8 3 add0 mode (+offset+immediate, subtract) (to reg)

11 3 add1 mode (+offset+immediate, subtract) (to cache)
14 2 stack side, both stacks
16 2 operand size (byte, half word, word, double word)
18 1 reg mode: reg/(offset/ip)
19 1 offset mode; s0/next
20 1 do register load/store
21 1 read/write
22 1 store to register
23 1 0: new immediate, 1: insert lowest 8 bits into immediate
24 8 immediate number
34 3 delayed operation type (see Figure 6.15)

Figure 6.14: Data unit opcodes

• load or store up to 64/128 bits per cycle, using one recently computed address

• pop/push up to two values on up to two stacks

• generate 8 bit immediate constant per cycle

• check for boundary crossing

The opcode bits are described in Figures 6.14 and 6.15.
The data unit consists of three eight entry 64 bit memories for R, N, and L regis-

ters, and one eight entry 16 bit memory for F registers. These memories’ read ports
are addressed using the register and mode field of the opcode. The write port is
addressed using the target register and mode field of the opcode.

A number of multiplexers compute the input values for the data ALU, base and
offset. Base can either be the R register contents, the current instruction pointer, or
the TOS value from the selected stack side (a 64 bit 3:1 multiplexer thus is needed).
Offset can either be the N register contents or the TOS value from the selected stack
side (a 64 bit 2:1 and a 32 bit 2:1 multiplexer).

Two 64 bit 2:1 multiplexer select the source for register set operations (32 or 64
bit mode, stack side).

The real access size is computed by adding the “both stack side” flag to the “size”
opcode field. The scaling operator is either the operation size or 0, depending on F

52 CHAPTER 6. THIRD STAGE: EXECUTE

Value Purpose
0 no operation
1 load
2 cache check
3 MMU check
4 no operation
5 store
6 cache alloc
7 MMU change

Figure 6.15: Delayed operations

register bit 15. The subtraction opcode field for the data ALU has to be one, if both
F register bit 11 and the store opcode bit are one (stack style access).

Since data access occurs a cycle later, a number of results have to be stored in
latches at rising clock 2 edge. The lowest four bits of the address are used to select
the correct value through the data multiplexer. Access size, stack side and endianess
are required, too. A two bit FIFO is used to keep track if either the data cache’s
result or values from register get instructions have to be pushed on the stack.

Register updates (computed by the data ALU or from stack) are stored to their
destinations on rising edge of clock 2, too.

A 128 bit 2:1 multiplexer is used to select between output from cache and from
the register file. Another 64 bit 4:1 multiplexer selects the register type to push to
stack. The store mask computation unit is used to compute the valid bits for the
store operation.

6.5.2 Data ALU

The data ALU is used to compute addresses. Addresses are formed by adding a
register value, an offset value (either from the N part of the register set, or from one
of the stacks) and an immediate value. Therefore a three-to-one adder (a carry save
adder followed by a carry lookahead adder) has been used to do the calculation. The
data ALU also is responsible for register updates. In load and store instructions,
register update just add register and offset, in address update (ua) instructions, the
immediate value is added, too. So a second three-to-one adder is needed for register
update computation.

Address computation includes bound checks. Thus the result of an address com-
putation is compared with the limit (L part of the register), and if it is greater or
equal, it was a boundary crossing. Note that “0” represents the value “∞” for limits.
The reaction for boundary crossings are up to the main data unit. Both address
computation and register update independently have to be bound checked.

For FFT, the data ALU provides reverse-carry addition. Since there are pub-

6.5. DATA UNIT 53

lished self-sorting in-place FFTs (see for example [16]), and unpublished self-
sorting, in-place and unit stride radix 2 FFTs (according to a posting in comp.arch
[19]), it can be argued that this part is superfluous. It therefore has been made
a configurable option(via preprocessor defines). Bit reversing does not take many
gates (just two multiplexer in and one out), but these multiplexers take a lot of area
(and there are a total of six per data ALU). A second, mirrored adder could be used
instead, which only helps routing, if it interleaves with the forward carry adder.

It is therefore proposed to synthesize with reverse carry add option, to mark this
architectural feature as “obsolete”, and to give a sample implementation of a self
sorting radix 2 FFT in the user manual instead, to help users that are not aware
of this option. Later, the carry reverse option can be omitted completely, if the self
sorting FFT shows up to be as fast (or faster, due to unit stride access) as the bit
reverse addressing FFT.

The data ALU takes the following opcode:

Position Purpose
0 use offset for register update
1 use immediate value (for r.a.)
2 negate offset (for r.a.)
3 use offset for address calculation
4 use immediate value (for a.c.)
5 negate offset (for a.c.)
6 reverse carry addition (obsolete)

Costs: Four times 64 AND gates to select usage of offset and immediate values,
two times 64 XOR gates to invert offsets, two 64 bit carry save adders, two 64 bit
adders and two 64 bit greater-equal comparators, 63 OR gates to check if limit is
zero (“infinity”). 6 64 bit bit-reversing multiplexers or another two 64 bit adders, if
the bit reverse add option was enabled.

6.5.3 Data Multiplexer

The data unit loads and stores bytes, half words, words and double words (single
and dual, little and big endian) over the same 128 bit bus. Therefore a multiplexer
must convert raw memory data into the stack format and vice versa. Furthermore,
conversion between little and big endian has to be done.

It turns out that all these things can be done using two fancy 64 bit to 64 bit
multiplexers. Figure 6.16 shows how this multiplexer words. Each number stands
for one byte, 0 is the leftmost (lowest address), 7 the rightmost (highest address).
The multiplexer is divided into eight parts, each selecting one byte. This multiplexer
can shift a number of any power of two size to any aligned position (bold face), big
and little endian (italic). This is exactly what is needed, so that any aligned memory
data can be transformed into a 64 bit word going to the stack, and any 64 bit word

54 CHAPTER 6. THIRD STAGE: EXECUTE

address 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

Figure 6.16: Data multiplexer

(or part extractions) can be shifted into the propper memory bus position.
This approach gives true bi-endian support, too. Unlike using the XOR trick3,

patented by MIPS/SGI and used in other bi-endian CPUs like DEC Alpha and Pow-
erPC, byte storing order is not changed when switching into another endianess. So
byte oriented binary datas, typical format for data exchange, can be shared between
big and little endian application. This is of especial importance if programs of dif-
ferent byte order share the same address space and run under the same operating
system.

Another interesting property is that both read and write conversions can use
the same address computation logic (computation of th 7 bit address) because of
the symmetry on aligned addresses. The lowest valid addressing bits have to be
inverted (not including those bits below the alignment restriction). For little endian
accesses, the bits below alignment have to be set, for big endian accesses, they have
to be cleared. Even strange endianesses could be supported, too, like the PDP11
floating point endianess (big endian two byte words, little endian words, see address
2 and 6).

Finally, the unneeded parts have to be masked out. This is a different job for
load and store. Load just masks out the higher bits. The following table contains 1
for the bytes passed, 0 for the bytes masked out:

Byte 0 0 0 0 0 0 0 1
Half Word 0 0 0 0 0 0 1 1
Word 0 0 0 0 1 1 1 1
Double 1 1 1 1 1 1 1 1

Store does not need to mask unused parts out, since the valid bits computed by
the store mask unit do this job. However, for double stores, two values have to be

3This trick simply reverts the address bits below word addressing (not below alignment). It is
cheap and instantly allows to make both big and little endian systems, but makes mixed-endian
systems (those that switch at run-time and between different tasks) inherently difficult.

6.5. DATA UNIT 55

merged using the store merge unit. Since double stores go to aligned value pairs, the
two masks are each other’s complement. The bits in the first mask can be computed
using all 16 two input, one output boolean functions on the size argument, or this
table:

Byte 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Half Word 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
Word 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
Double 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Costs: there are two entry level 64 bit multiplexers to select the correct 64 bit
words out of the 128 bit data bus, and one 128 bit multiplexer to select read or write
operation. 128 tristate drivers are needed to drive data bus output on writes. Two of
the fancy 64 to 64 bit multiplexers are needed (basically eight 64 to 8 multiplexers,
using three input bits). Gates and space donated for address and mask computation
can be almost neglected. 128 AND gates for masking and 16 8 bit multiplexers from
the store merge unit are needed, too.

Caveat: this multiplexer can’t be used for non-aligned accesses. A different vari-
ant using a barrel rotator (rotating multiples of eight bits) could do this; however,
the bi-endian feature would be lost then.

6.5.4 Store Mask
The store mask computing unit computes the 16 valid bits using the four least sig-
nificant addressing bits, operation size, stack side and both stack flag. It makes use
of the alignment restrictions. The store mask for both stacks (low and high stack
half) are computed individually and ORed together. The individual store masks are
computed generating the following mask parts, which are finally ANDed together:

For each access size, a repetition of the pattern 10 (address “even” in terms of
alignment units) or 01 (address “odd”) is generated, where 1 and 0 are repeated size
times. The overall pattern is repeated to fill all 16 bits of the mask. If the access size
is greater than size, the mask is set all one. In other words: a byte access mask is
true only if a half word, word, and double word mask using the same address is true,
too. A word address however, is true where word address and all subword accesses
using this address and offsets below the alignment conditions, are true, too.

Chapter 7

Memory Interface

7.1 Bus Interface
The 4stack processor can keep a high memory bandwidth busy. A fast and wide bus
therefore is recommended. However, there is a limit of pin numbers, so a compro-
mise has to be found. For the actual ASIC implementation, a multiplexed 64 bit bus
with byte enable is proposed. The tradeoff of multiplexing is small, when bursting
is allowed. As one cache line is 64 bytes large, each burst reads 8 words, so the
overhead is neglectable. The following control wires are required:

• 64 data lines

• 8 byte enable lines

• bus request (active low)

• bus grant (active low)

• read (active low)

• write (active low)

• acknowledge (from memory, active low)

Read and write line and acknowledge are used as handshake lines. The bus di-
rection is handled through the protocol. The first transaction is always in memory
direction, the address. Bus snooping is possible using two wires for read and write.
If the bus is free, the memory controller has to keep read, write and first data high.
If read and first data is low, too, a read address bus cycle is issued — the standard
case for snooping. To signal snoop hit answer, write is set to low by the snooping
processor. Then it has to supply data as in a normal memory write cycle. This both
transports data from one CPU to the other and writes it into memory. The tran-
sition shared to modified in the cache is signalled by a zero data write cycle (thus
after the first acknowledge signal comes, the bus is released).

56

7.2. INSTRUCTION CACHE 57

bus request

bus grant

read

write

Z address Z data Z data Z

acknowledge

data

Figure 7.1: Read burst access

Currently bus snooping is not supported. See Figure 7.1 for a sample read burst
access, and Figure 7.2 for a write burst access.

7.2 Instruction Cache

As has been explained in section 4, the instruction cache has two 128 bit ports, pro-
viding up to four instructions per cycle. For simplification, a direct mapped cache is
used. The cache is physically indexed. Each cache line is 64 bytes, eight instructions
wide.

The instruction cache’s opcode has the following fields:

Position Size Purpose
0 2 read from address 0/1
2 1 fill cache from memory using address 0
3 1 access mode (supervisor=1, user=0)
4 1 translate instruction through MMU (active low)

The instruction cache returns opcode, branch target address and a five bit access
valid code. The valid codes say the reason why an access was invalid (1 signals true,
0 false):

58 CHAPTER 7. MEMORY INTERFACE

bus request

bus grant

read

write

Z address

acknowledge

dataZ data Z data Z

Figure 7.2: Write burst access

Position Purpose
0 access valid
1 cache miss
2 ATC miss
3 protection fault
4 access mode

The access mode is equal to the initial access mode, except if the page was a
“gate page” (see Section 7.4), then it reflects the new access mode. The instruction
cache module also contains the instruction address translation cache (ATC). Ad-
dress translation is done in parallel to cache access, and tag comparing is done in
parallel with branch target address computation (see Figure 7.3). The lowest ad-
dress bits are used to select the appropriate cache line, the higher address bit asso-
ciatively access the address translation buffer (see below). The results form address
translation are compared with the address tags, the protection bits are checked, and
together with the cache valid bits the valid bit vectors are formed.

Concurrently the four instructions fetched are predecoded. Bit 62 indicates if the
instruction is branching. In this case, the branch target instruction is computed.

On cache misses, as indicated by opcode bit 2, the cache goes into read state.
It issues a bus request and waits until bus grant is received. Then it sets ‘r’ and
transmits the address according to the bus protocol (see section 7.1). A three bit
counter is used to keep track until the bus transaction is finished. A one-bit state
flag distinguishes between address transmission and data transmission. Because
the cache is partitioned in 128 bit subblocks, a 64 bit buffer is used to hold the first,
third, fifth and seventh data transaction.

The cache itself is non-blocking. While accessing memory, requests can continue.

7.2. INSTRUCTION CACHE 59

Bus interface

Bus input selection

Branch Address
Calculation

Branch Address
Calculation

T
A

G
 M

em
or

y

Output Selection

Data
Line 0

Data
Line 1

Data
Line 2

Data
Line 3

Address 0

Address 1

Address Comparator

Valid 0 Valid 1
Out 0 Out 1

Address
Translation

Figure 7.3: Instruction cache access flow

60 CHAPTER 7. MEMORY INTERFACE

In fact, no request will be made until the requested instruction pair is stored into the
cache. Then execution can continue. If they cause another cache miss, the current
memory access is finished before starting the next request.

Costs: Cache costs are highly configurable, since the cache size isn’t fixed in the
design. The current design allows cache sizes from page size down to one cache line
(general case: 2n cache lines) without major modifications. Each cache line consists
of 512 static RAM cells, and, since it is dual ported, a second access gate per bit (at
least a second CMOS transistor) for data, 58 − n SRAM cells and additional access
gates for tag memory (2n cache lines, so 58 bits is the tag size for a one-line cache)
and four SRAM cells plus access gates for the four valid bits, one for each cache line
partition. A 4K cache as used in simulation thus uses about 36K dual ported SRAM
cells (dual output port only).

7.2.1 Branch Address Calculation
Since branch address calculation is in the critical path (second step of cache access),
it is important to make it fast. The instruction set therefore is optimized for quick
decoding of branches. The last three instruction bits indicate everything that is
needed for branches.

Bit 63 distinguishs between short (conditional) and long branches.

Bit 62 distinguishs between branching and non-branching operations.

Bit 61 distinguishs between far (cross-4GB segment) and local (inter-4GB segment)
branches.

Bit 30 distinguishs between relative and absolute local branches.

Relative branches require an adder. The two different cases for adder input (short
and long) can be done with bit 63, using a multiplexer for the most significant 18 bits
(either sign extended from bit 50 or copied from bits 32 to 49 from the opcode). The
lower half of the branch target address is either the adder output or the lower half
of the opcode. The higher half of the branch target address is either the instruction
address or the higher half of the opcode (far branches). This requires two additional
32 bit multiplexers.

The three least significant bits are used as status of the branch instruction. The
first two bits are interpreted as hint, the last bit states wether the instruction bran-
ches really (it is cleared for “do” instructions). Currently, hints are not used, except,
that a hint 0 on “do” instruction would misinterpreted as a normal instruction. As
this hint is never generated, it doesn’t hurt.

Costs: one 32 bit (fast) adder to form the branch target address (ip+offset+!isdo),
one 18 bit and two 32 bit multiplexer, and a total number of about 13 or 14 gates for
decoding and control.

7.3. DATA CACHE 61

Alternatives: It can be argued that the adder isn’t necessary. Long relative bran-
ches can be converted (at cache miss time) to absolute branches in the cache, as
well as short relative branches (with the addition of one cache state bit, which se-
lects current or next/previous 8K “page”, depending wether the instruction is in the
first or the last half of the current page; one of the currently unused hint bits could
be used for this purpose). The problem with this approach is that it makes posi-
tion independent shared libraries hard to do (would require a cache flush each task
switch).

7.3 Data Cache

Basically, the data cache seems to have about the same characteristics as the in-
struction cache: two 128 bit ports, thus dual ported, and page size direct mapped
in this implementation. However, the data cache has more unit to serve: the two
data units and the four fill/spill buffers for the stacks. Each of these units can be
active, and all they either read or write data. It would be a waste of resources if
6 read-write access ports were implemented, since cache fills and spills are rare,
and the dominant data access usually is load, not store. Figure 7.4 shows the main
difference between instruction cache and data cache.

The implementation uses a cache with two read ports and one write port, with
the same costs as the instruction cache. However, the access conflicts have to be
resolved. This was by ways the most difficult part of this feasibility implementation.

Another problem is that data accesses are not as regular as instruction accesses.
So a direct mapped cache hurts much more. Since a two-way cache would have
introduced delays (the demultiplexer could not be used concurrently to tag address
comparison) a eight element victim buffer was implemented. This reduces the worst
case to the equivalent of an eight way set associative cache (with one line per set),
and introduces one cycle delay per access. It also reduces the amount of time for
cache writebacks, because they do not block further cache accesses.

Since each stack itself has a very predictable access pattern, a special stack cache
interface has been designed, too. Each cache has one cache line to fill in or spill out.
This reduces access conflicts, since there is no guarantee, that stack pointers point
into the same part of different pages (in fact, after reset, this is exactly the case).

Furthermore, write accesses have to be serialized. There are eight different sour-
ces for cache writes: the two data units, the four stacks, memory transaction and
victim buffer restoring.

Since the stacks and data units share two busses (for “even” and “odd” data
unit respectively stacks), these busses have to be shared, too. Stacks have higher
priority (and among stacks, lower numbers have higher priority). As a side effect
this reduces the amount of write conflicts to be resolved.

The data cache can’t use the stack pointer register, since this points to the top of
stack, using virtual addresses. The data cache however needs the physical address

62 CHAPTER 7. MEMORY INTERFACE

Bus interface

Bus input selection

T
A

G
 M

em
or

y

Output Selection

Data
Line 0

Data
Line 1

Data
Line 2

Data
Line 3

Address 0

Address 1

Address Comparator

Valid 0 Valid 1

Address
Translation

store 0 store 1

stack 0

stack 1 victim buffer

Out 1Out 0

Figure 7.4: Data cache

7.3. DATA CACHE 63

at the bottom of the stack buffer, so it keeps track of this address. This also keeps
stack pointer translation off the data address translation unit. In fact, stack address
translation is completely done in software.

7.3.1 Stack Cache

The stack cache is an interface between the “narrow” 128 bit port and the wide 512
bit cache line size. It thus reduces the amount of reads and writes to the cache due
to stack changes. The stack cache holds a like of 512 bits per stack, organized as
four 128 bit latches. It also keeps track of the stack changes and thus has a second
stack pointer (which now is a physical address, pointing to the bottom of the stack
buffer).

The stack pointer is updated on transaction requests — incremented on reads,
decremented on writes. Only the lesser significant eight bits really are incremented
or decremented using a cheap ripple carry adder, the higher part is a page address,
thus it has be handled in software. Two pages, the current and the one above or
below are kept in eight 52 bit latches (two per stack). One bit holds the state (be-
low/above). If the stack pointer crosses both pages, the entries are swapped, and
the below/above state is inverted. One fourth of a page before an invalid swap (thus
swap a page below as above) is done, an exception is raised. This is the case if the
two topmost counter bits and the state bit are all 1 or all 0. If the counter crosses
a modulo 4 boundary, a cache request must be issued (either read or write, depends
on the direction).

Since there is only one bus for two stacks, accesses have to be serialized. This
is done by priorizing lower stacks (thus stack 0 can transfer before stack 2, stack
1 before stack 3). To handle this, a priority encoder forms the four bus grant bits
and a clock generator forms another four clock signals using the generation clock.
Each of this clock is true if clock 2 would raise at the same time (and no collision
is detected), or, if a collision was detected, in later cycles, when the other access is
handled.

Push transactions are stored to the corresponding stack buffers, pop transactions
are read from there. Exhausted buffers, as said above, lead to a cache access. If this
cache access is finished, the whole cache line is stored in the stack buffer. Full
buffers lead to cache accesses, too. Since two buffers may overflow at once (due
to two push transactions), two 512 bit multiplexers select the output buffers to be
stored in the cache.

Conflicts (thus two overflows at once) are resolved by writing one cache line to
the cache, the other to the victim buffer. Another possible strategy could be to block
the second push transaction for one cycle.

Costs: The stack buffer consists mostly of 2048 dual ported SRAM cells and two
512 bit multiplexers. Eight 52 bit latches hold stack page addresses, and four eight
bit counters keep in-page stack addresses.

64 CHAPTER 7. MEMORY INTERFACE

7.3.2 Victim Buffer

The victim buffer is an essential part of the data cache to drastically increase per-
formance at some access patterns that can’t be handled by direct mapped caches. It
is organized as an eight cache line deep FIFO. Two input lines, each 512 bit wide,
and one output line (another 512 bit) connect it to data and stack cache. Each input
and output line is accompanied by a 60 bit address line and two state bits (the MESI
bits, for the four states modified, exclusive, shared and invalid).

A 128 bit 4:1 multiplexer converts cache lines to smaller pieces for the bus inter-
face.

The victim buffer is full associative, thus there are sixteen address comparators
(60 bit each) to compare the two current addresses with the tags in the FIFO. Cache
misses that hits the victim buffer thus can be detected early, so only one wait state
has to be inserted. The victim buffer returns only one cache line to the cache per
cycle, since the cache has only one write port.

Two three bit counters are used to keep track of the low and high water mark
of the FIFO. The victim buffer tries to get rid of the entries at the low water mark,
if the distance between low and high water mark is 6 or more. Then new write
requests would overflow the buffer. Dirty lines at the low water mark lead to bus
requests and further bus cycles (while blocking the CPU), all other states are just
changed to “invalid”, since the data is valid in memory. To prevent blocking of the
CPU, dirty lines try to get the bus (at low priority) once the distance between low
and high water mark is 2. Then the bus cycles can be done concurrently to further
execution without stalls.

Costs: The 4096 dual SRAM cells for the cache lines, and another 512 dual ported
SRAM cells for address tag and MESI state bits. There is a 512 bit latch for lines
returned to the cache.

7.3.3 Store Merge Unit

Concurrent stores that go to different cache parts can be handled concurrently. How-
ever, some important applications access the same cache part at the same address.
In this case, the conflict is resolved using the store merge unit. Two accesses that go
to the same address are merged together using 16 eight bit multiplexer. The valid
bits of both accesses are ORed together, thus forming one access. Furthermore, the
store merge unit buffers store data until it can be handled by the data cache. If no
further operation accesses the cache, conflicting operations thus can be serialized
without stalling the CPU.

Costs: one 60 bit address comparator, two 128 bit latches to hold store data, two
16 bit latches to hold valid bits, 16 eight bit multiplexers, and one 16 bit multiplexer
to select valid flags. A few gates compute the number of cache write accesses finally
needed.

7.3. DATA CACHE 65

7.3.4 Store Conflict Handling Details

Two conflict sources groups are handled differently. The first group are all those
accesses that are not related to current accesses or store whole cache lines, thus
victim buffer hits, stack cache spills and writes form the bus interface (to fill the
rest of the cache line after the initial request has been satisfied). The second group
are accesses that result either from data stores or from that one of the first group
that was successful.

Using priority encoders, the following priority is established:

• Writes from the bus interface precede stack cache spills and victim buffer hits.
Since there is at most one write every second cycle, the delay only lasts one
cycle

• Stack cache spills precede victim buffer hits.

All these operations buffer their data in one 512 bit latch, thus there is a 512 bit
3:1 multiplexer to select this data. 58 bit address tag (and cache line address) are
stored in another latch. Valid bits (both which parts of the cache line are already
valid and which parts have to be updated) are stored in two four bit latches. Two
bits MESI state and a signal to request the final store must be kept, too.

Four priority encoders detect conflicts for each 128 bit wide cache part. The
priority order is:

• stores from the tree groups above have highest priority,

• stores form the “even” data unit precede finally

• stores from the “odd” data unit.

Since victim buffer hits forward their data to the store merge unit, in this case the
precedence order is reverted. The store form the victim buffer on this cache part is
omitted, if a store operation goes to the same cache line and the same cache part.

7.3.5 Access Address Selection

Stack accesses is stated above, precede data accesses. The cache has two read ports,
thus two read addresses are hold in two 60 bit latches. Each rising basic clock edge
it is checked if a stack access or a new1 or pending data access is requested. The
“pending” bit is set if both a stack access and a new data access are requested at the
same time, and reset if the data access finally is accepted.

1Thus clock 2 is raising, and the cache opcode isn’t a nop.

66 CHAPTER 7. MEMORY INTERFACE

7.3.6 Victim Buffer Input

Each write access may overwrite a valid cache line. Thus a write is preceded with a
read to that cache line. If the write would replace this line (thus is a new write from
the bus interface, a write from the stack cache, or a victim buffer hit) and the line
is valid, it is a valid input for the victim buffer. A 512 bit 2:1 multiplexer selects the
cache line (there is only one at a time) that is target of the next write.

Furthermore, data stores may be cancelled, if the line they store to is moved
to the victim buffer. Therefore another eight 128 bit 2:1 multiplexers select either
cache output or data from the store merge unit.

7.3.7 Outlook

The data cache was one of the most complex parts and very difficult to debug. It
is presumed that not all conflict conditions have been found and detected. Larger
separate stack caches would be a big win in safety, however, not in performance,
since except artificial cache testing programs, many real applications don’t stress
the cache in this way. In other words: many of the bugs found in the cache have
not been produced with the benchmarks and applications written before, but with
special cache test programs.

7.4 Memory Management Units

The MMUs (both for instruction and data accesses) consist mainly of a dual ported
ATC. Each ATC entry contains one virtual address and four physical addresses,
thus four pages are covered within one ATC entry.

On updating the ATC, there are two cases:

1. The virtual address tag already matches, but there is no translated physical
address. Update is easy: Just store it into the appropriate physical address
slot. Check with m[cd]get if the update was successful.

2. The virtual address tag doesn’t match. The OS software notices this because
m[cd]get returns 0. Then it has to replace one of the previous occupied slots,
and store the virtual tag into it using m[cd]set with least significant bit set,
and from bit 11 down the position in the ATC buffer. Bit 1 is reserved for
setting larger pages.

The lower part of a physical page address consists of two parts: access rights and
page properties. Access rights are read, write, execute (rwx) for supervisor and user
(thus 6 bits). Properties consist of 3 bits for the system (cache coherence protocol,
setmode, “ccs”) and 3 bits free for application purposes, which could be typically

7.4. MEMORY MANAGEMENT UNITS 67

used for access stamps (read, modified, executed), but these bits are not processed
by the MMU.

The format thus is in short

ac sys usr
ccs rwx rwx rwx

The setmode bit changes the execution mode when executing an instruction in
this page, and the processor is in a mode not allowed to execute instructions.

The cache coherence protocol defines four different types of pages: totally un-
cached, consistently updated (“write through”), coherent cached and stale cached
(not using the cache coherent protocol for shared to exclusive transitions).

Pages can be considered as empty, if none of the rwxrwx bits for supervisor and
user are set. However, it is up to the ATC fault handler to convert (and validate!)
page table entries.

The MMUs have only partly been implemented, since correct MMU support re-
lies on exception handling, a weak point of this feasibility study. Especially the logic
to abort load and store instructions in process is missing. Therefore a MMU sup-
plement can be used for synthesis, which “translates” all addresses one by one and
returns an “all valid, full cacheable” access right descriptor. This has the further
effect, that the distinction between supervisor and user state is (almost) useless.

Chapter 8

Conclusion and Outlook

This implementation study shows that the 4stack processor architecture does not
pose too hard problems when implemented for an ASIC process. The Verilog code
developed as part of this work is synthesizible and partly has been synthesized with
expected results. A final synthesis run will be made and the resulting netlist will
be given to an ASIC manufacturer. This piece of “first silicon” then can be used as
demonstration object to attract commercial partners for further development. Other
high end processors required hundreds of man-years, so it is estimated that a lot of
work is still to be done.

Implementation in hardware is only part of the success of a processor. A compiler
backend for popular languages (C, Fortran) has to be written. The 4stack processor
architecture claims to be general purpose, but this requires to be able to run a mod-
ern operating system like Unix. To test first silicon, an evaluation board has to be
developed.

To attract interrest, a paper has been submitted to the Micro 29 conference for
publication.

68

Bibliography

[1] G. Böckle. Exploitation of fine-grain parallelism. In Lecture Notes in Computer
Science, volume 942. Springer-Verlag, 1995.

[2] R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman.
A VLIW architecture for a trace scheduling compiler. IEEE Transactions on
Computers, C–37(8):697–979, Aug. 1988.

[3] D. Ditzel, H. McLellan, and A. Berenbaum. The hardware architecture of the
crisp microprocessor. The 14th Annual Int. Symp. on Computer Architecture;
Conf. Proc., pages 309–319, 2-5 June 1987, Pittsburgh.

[4] K. Ebcioğlu. Some design ideas for a vliw architecture for sequential natured
software. In Proceedings of IFIP WG 10.3 Working Conference on Parallel Pro-
cessing, pages 3–21, Pisa, 1988. Elsevier Science Publishers B. V.

[5] Harris Semiconductor. HS-RTX2010RH Data Sheet. Harris Corporation, 1996.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture—A Quantitative
Approach. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1990.

[7] Intel. PentiumTM Processor User’s Manual. Intel Corporation, Santa Clara, CA,
USA, 1993.

[8] W. Karl. Parallele Prozessorarchitekturen – Codegenerierung für superskalare,
superpipelined und VLIW-Architekturen, volume 93 of Reihe Informatik. BI-
Wissenschaftsverlag, Mannheim, 1993.

[9] W. Karl. Some design aspects for vliw architectures exploiting fine–grained
parallelism. In A. Bode, M. Reeve, and G. Wolf, editors, Proceedings PARLE ’93,
Parallel Architectures and Languages Europe, number 694 in Lecture Notes in
Computes Science, pages 582–599. Springer-Verlag, Berlin, 1993.

[10] L. Kohn and N. Margulis. Introducing the intel i860 64-bit microprocessor.
IEEE Micro, 9(4):15–30, Aug. 1989.

69

70 BIBLIOGRAPHY

[11] P. Koopman. Stack Computer—the New Wave. Ellis Horwood, New York, NY,
USA, 1989.
URL http://www.cs.cmu.edu/~koopman/stack_computers/index.html .

[12] J. Labrousse and G. A. Slavenburg. A 50 MHz microprocessor with a very long
instruction word. In IEEE International Solid–State Circuit Conference, 1990.

[13] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Addison-
Wesley, Reading, MA, USA, Sept. 1996.
URL http://java.sun.com/docs/language_vm_specification.html .

[14] B. Paysan. A Four Stack Processor. Fortgeschrittenenpraktikum, Technische
Universität München, 1994.
URL http://www.informatik.tu-muenchen.de/~paysan/4stack.ps.gz .

[15] C. Peterson, J. Sutton, and P. Wiley. iWarp: a 100 MOPS, liw microprocessor
for multicomputers. IEEE Micro, 11(3), June 1991.

[16] Z. Qian, C. Lu, M. An, and R. Tolimieri. Self-sorting in-place FFT algorithm
with minimum working space. IEEE Trans. on Signal Processing, 42(10):2835–
2836, Oct. 1994.

[17] B. Rau and J. Fisher. Instruction-level parallel processing: History, overview
and perspective. The Journal of Supercomputing, 7(1), 1993.

[18] B. R. Rau, R. P. L. Yen, W. Yen, and R. A. Towle. The cydra 5 departmental
supercomputer: design philosophies, decisions and trade-offs. IEEE Computer,
22(1), 1989.

[19] D. A. Schwarz. Re: In-place in-order FFT. Usenet posting to
comp.arch,comp.arch.arithmetic,comp.dsp , 1996.
URL news:schw-3107960949020001@news.hrl.hac.com .

[20] G. A. Slavenburg, A. S. Huang, and Y. C. Lee. The LIFE family of high perfor-
mance single chip VLIWs. In HOT CHIPS Symposium, 1991.

