
Latest Spectroscopy results from ATLAS

Brad Abbott

University of Oklahoma

For the ATLAS collaboration

HQL 2021 University of Warwick Sept 13-17, 2021

Outline

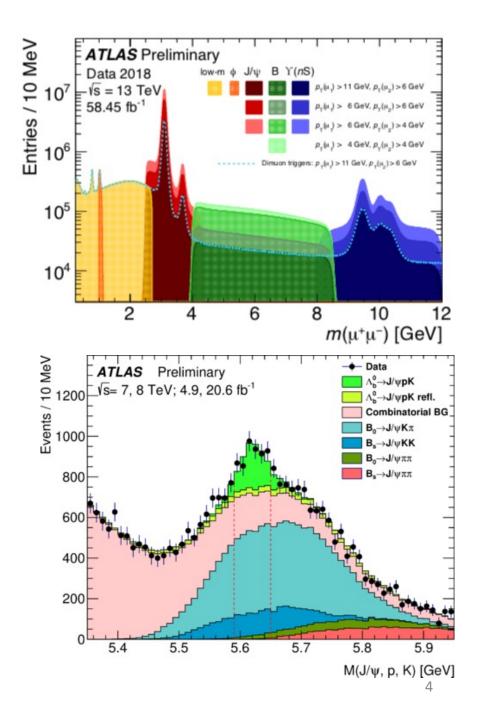
- Study of $J/\psi p$ resonances in the $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays in pp collisions at 7 and 8 TeV with the ATLAS detector. (Pentaquark search) ATLAS-CONF-2019-048
- Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector. ATLAS-CONF-2021-046
- Search for a structure in $B_s^0 \pi^{\pm}$ Invariant Mass spectrum with the ATLAS experiment. (X(5568) search) PRL 120, 202007 (2018)
- Relative B_c⁺/B⁺ production measurement at 8 TeV.
 Phys. Rev D 104, 012010 (2021)

ATLAS-CONF-2019-048

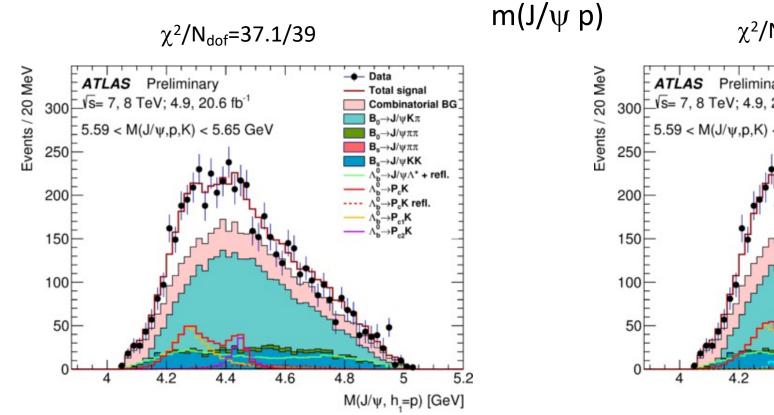
Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$

 $\Sigma_c^+ \overline{D}^{*0}$ History $\Sigma_c^+ \overline{D}'$ 1200 LHCb LHCb data Weighted candidates/(2 MeV) 1000 2 pentaquarks observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$ (PRL 115,072001) 800 P_c(4380)⁺ width ~205 MeV, P_c(4450)⁺ width ~39 MeV 600 $\Lambda_h^0 \to J/\psi p\pi^-$ decays consistent with $\Lambda_h^0 \to J/\psi pK^-$ results 400 Pc(4457) (PRL 117,082003) P_(4312) 200 Larger data set of $\Lambda_h^0 \to J/\psi p K^-$ 4450 4200 4250 4300 4350 4400 4500 4550 $P_{c}(4312)^{+}$, $P_{c}(4450)^{+}$ is two overlapping peaks $P_{c}(4440)^{+}$, $P_{c}(4457)^{+}$ $m_{J/\psi p}$ [MeV] (PRL 112,222001)

Not observed by GlueX Collaboration: PRL 123, 072001

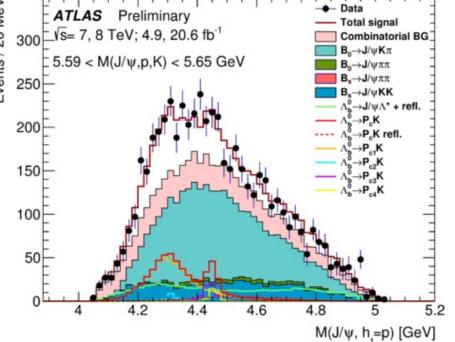

Pentaquarks in $\Lambda_h^0 \to J/\psi p K^-$

No hadron identification in ATLAS so need to consider numerous states.


 $J/\psi \rightarrow \mu^{+}\mu^{-}$ $p_{T}(\mu) > 4 \text{ GeV} ; |\eta(\mu)| < 2.3$ $|m(J/\psi_{pdg}) - m(\mu^{+}\mu^{-})| < 290 \text{ MeV}$

$$\begin{split} & \text{B-hadron reconstruction} \\ & & |\eta(h_x)| < 2.5 \\ & \text{4-track vertex cuts on } (\mu^+, \mu^-, h_1, h_2) \\ & & \text{p}_T(\text{H}_b) > 12 \text{ GeV}, \ |\eta(\text{H}_b)| < 2.1 \\ & \text{Mass, } L_{xy} \text{ decay length and helicity cuts} \end{split}$$

m(K π) and m(π K)>1.55 GeV



Pentaquarks in $\Lambda_h^0 \to J/\psi p K^-$

Hypothesis with two pentaquarks P_{c1} and P_{c2} with spin parity $3/2^{-}$ (lighter) and $5/2^{+}$ (heavier)

χ²/N_{dof}=37.1/42



Hypothesis with four pentaquarks P_{c1} , P_{c2} , P_{c3} , P_{c4}

Masses, widths, relative yields of narrow pentaquarks fixed to LHCb values

P_c(4380)⁺ P_c(4450)⁺

Pentaquarks in $\Lambda_h^0 \to J/\psi p K^-$

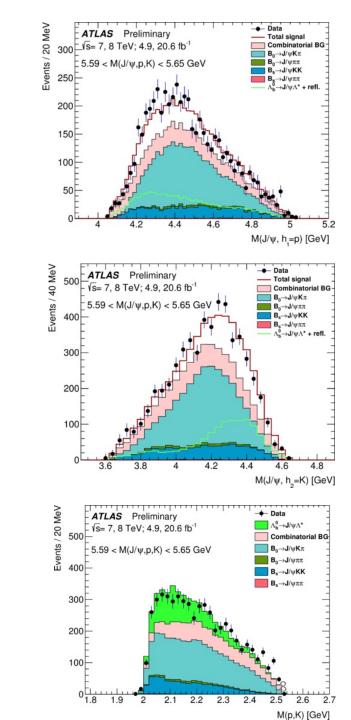
Projections of central fit results for two pentaquarks

Model with 2 pentaquarks describe the data well

B. Abbott HQL2021

Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$

Parameter	Value	LHCb value [5]
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	_
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	—
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	
$m(P_{c1})$	$4282_{-26}^{+33}(\text{stat})_{-7}^{+28}(\text{syst}) \text{ MeV}$	$4380\pm8\pm29~{\rm MeV}$
$\Gamma(P_{c1})$	$140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$	$205\pm18\pm86~{\rm MeV}$
$m(P_{c2})$	$4449^{+20}_{-29} \text{ (stat)}^{+18}_{-10} \text{ (syst) MeV}$	$4449.8 \pm 1.7 \pm 2.5 \ {\rm MeV}$
$\Gamma(P_{c2})$	$51_{-48}^{+59} (\text{stat})_{-46}^{+14} (\text{syst}) \text{ MeV}$	$39 \pm 5 \pm 19$ MeV

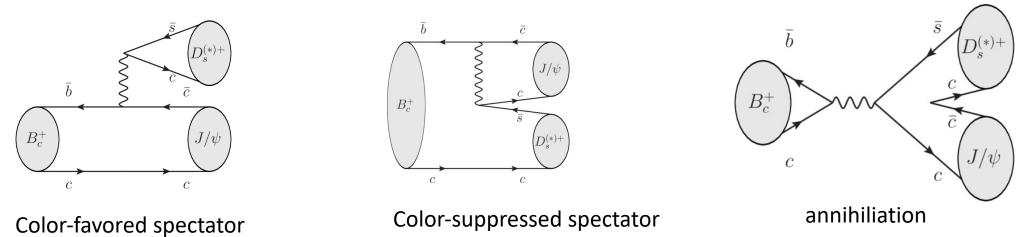

Masses and widths are all consistent with results from LHCb

Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$

• Analysis repeated without pentaquarks

• Descriptions of all distributions are not as good

• Data prefer model with two or more pentaquarks although model without pentaquarks cannot be excluded. χ^2 fit to m(J/ ψ p) distribution gives p-value of 9.1 x 10⁻³

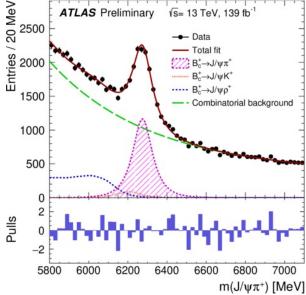


B. Abbott HQL2021

ATLAS-CONF-2021-046

 $B_c^+ \rightarrow J/\psi D_s^{(*)+}$

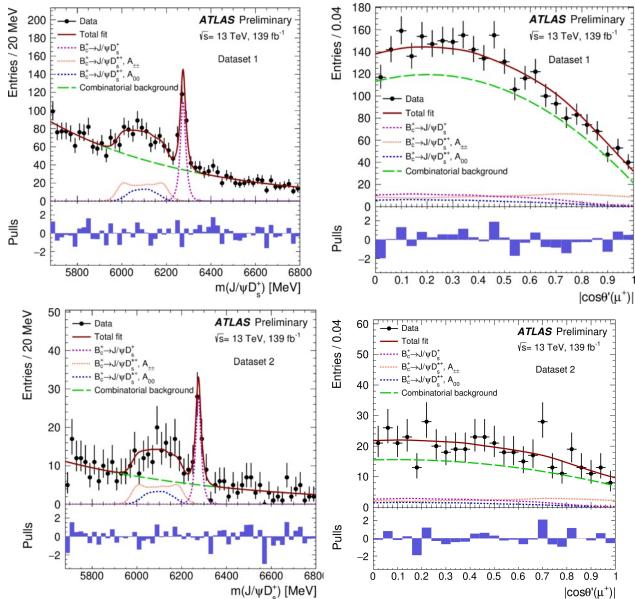
• $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ can occur through b decay with c as spectator, or through annihilation diagram


 $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decays observed at LHCb (PRD 87 (2013) 112012) and ATLAS (EPJC 76 (2016) 4)

This analysis: Provide a more precise measurement of the $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ branching fraction and polarization with full Run-2 data.

Useful for perturbative QCD calculations, relativistic potential models, sum rules calculations ...

 $B_c^+ \rightarrow J/\psi D_c^{(*)+}$


- $B_c^+ \rightarrow J/\psi(\mu^+\mu^-)D_s^+(\rightarrow\phi(\rightarrow K^+K^-)\pi^+)$
- $B_c^+ \to J/\psi(\mu^+\mu^-)D_s^{*+}(\to D_s^+\gamma/\pi^0)$ same reconstructed final state since soft neutral particle is not detected
- Reference channel for BR measurement: $B_c^+ \rightarrow J/\psi \pi^+$
- Fiducial range: $p_T(B_c^+) > 15 \text{ GeV}$, $|\eta(B_c^+)| < 2.0$
- Measurements:
 - Ratio between BR of signal channels and $B_c^+ \rightarrow J/\psi \pi^+$: $R_{D_s^{(*)+}/\pi^+}$
 - Ratio between BR of signal channels to reduce uncertainties: $R_{D_s^{*+}/D_s^{++}}$
 - Transverse polarization fraction $\Gamma_{\pm\pm}/\Gamma$ for $B_c^+ \rightarrow J/\psi D_s^{*+}$

 $B_c^+ \to J/\psi D_s^{(*)+}$

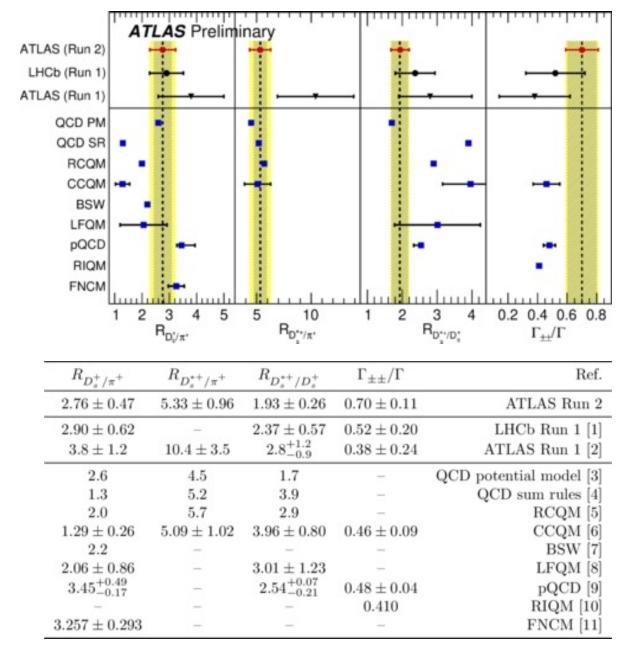
- Dataset 1: Candidates collected by standard dimuon or 3 muon triggers without requirements on additional inner detector track.
 - Can be used to measure $R_{D_s^+/\pi^+}$ and $R_{D_s^{*+}/\pi^+}$

- Dataset 2: Candidates collected only by dedicated $B_s^0 \rightarrow \mu^+ \mu^- \phi$ triggers and not by other ones used in the analysis
 - Improve sensitivity to $R_{D_s^{*+}/D_s^+}$ and $\Gamma_{\pm\pm}/\Gamma$

Results:

 $R_{D_s^+/\pi^+} = 2.76 \pm 0.33$ (stat.) ± 0.29 (syst.) ± 0.16 (br.f.)

 $R_{D_s^{*+}/\pi^+} = 5.33 \pm 0.61$ (stat.) ± 0.67 (syst.) ± 0.32 (br.f)

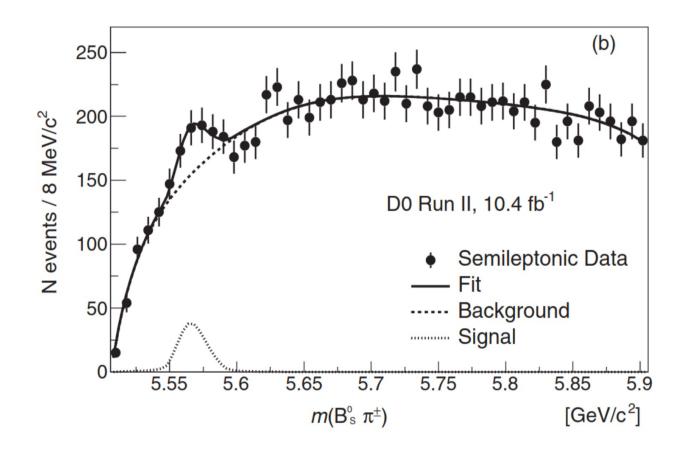

 $R_{D_s^{*+}/D_s^+}$ = 1.93 ±0.24(stat.) ±0.10(syst.)

 $\Gamma_{\pm\pm}/\Gamma$ = 0.70 ± 0.10(stat.) ± 0.04(syst.)

All results are consistent with the earlier measurements of ATLAS and LHCb

The precision of the measurement exceeds that of all previous studies of these decays

QCD relativistic potential model describes well all three ratios

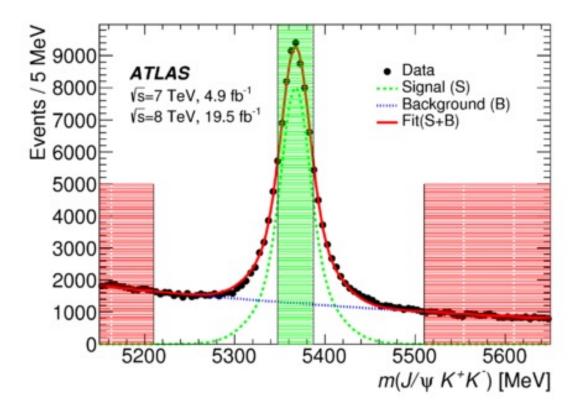

X(5568)[±]Search

History:

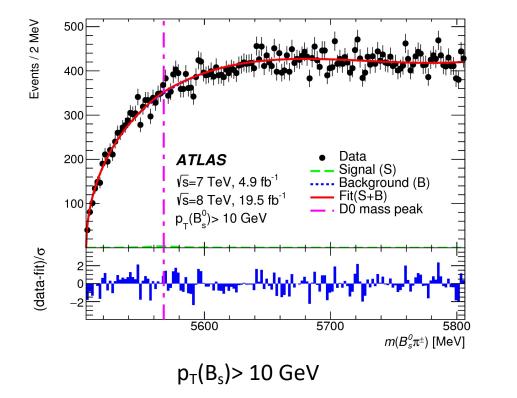
Evidence from D0 of X(5568) state in X(5568)[±] \rightarrow B_s π^{\pm} (PRL 117,022033,PRD 97,092004)

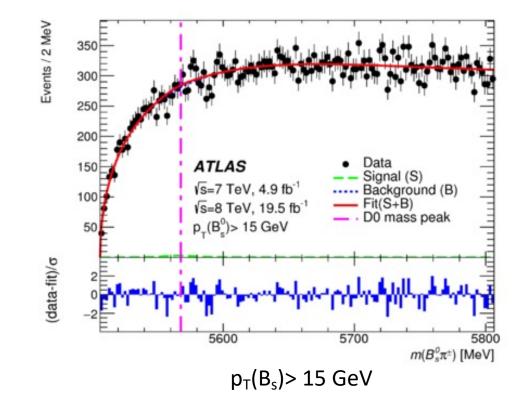
Not observed at: CDF(PRL 120,202006) LHCb(PRL 117,152003) CMS (PRL,120,202005)

ATLAS Search using Run 1 data \sqrt{s} =7 TeV, 4.9 fb⁻¹, \sqrt{s} = 8 TeV, 19.5 fb⁻¹



$X(5568)^{\pm}$ Search


B_s candidates

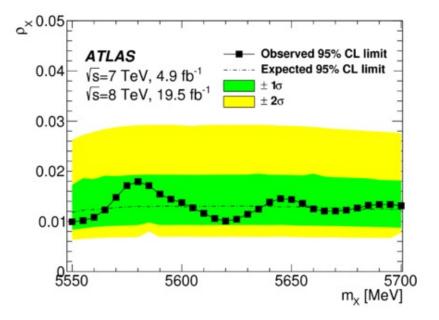

 $p_T(\mu) > 4 \text{ GeV}, p_T(K) > 1 \text{GeV}$ Di-muon, di-kaon, and 4 track mass cuts Di-muon and 4 track vertex cuts $\tau(B_s) > 0.2 \text{ ps}$

 $B_s \pi$ reconstruction $p_T(\pi) > 500 \text{ MeV} + \text{primary vertex cut}$ 5346.6 < m(B_s) < 5386.6 GeV

X(5568) Search

X(5568) Search

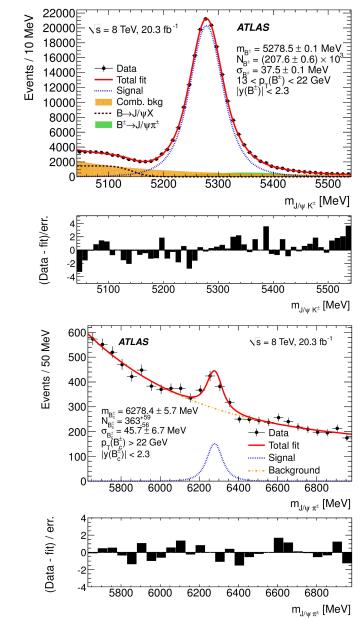
- No evidence of a signal so set limits
- N_x: signal events and ρ_x : B_s fraction from X(5568)^{\pm}


 $p_T(B_s)$ > 10 GeV N_x=60 ± 140 ρ_x < 1.5% at 95%CL

Limits comparable to LHCb and CMS

N_x=-30±150 ρ_x<1.6% @ 95% CL

 $p_{T}(B_{s}) > 15 \text{ GeV}$


No evidence of candidates at other masses in CLs scan

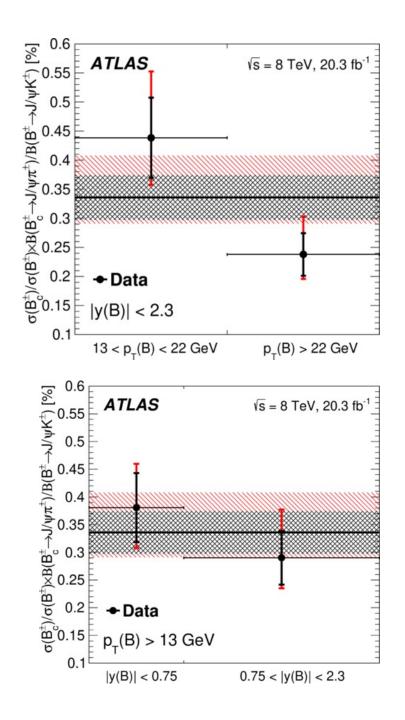
arXiv:1912.02672, Phys. Rev D 104, 012010

Relative B_c^+/B^+ production measurement at 8 TeV

- B_c⁺ is the only known weakly decaying particle made up of two heavy quarks.
- Why study B_c⁺ decays?
 - Test of QCD predictions
 - Input for heavy quark production models
 - Complements CMS/LHCb measurements
- Measurement of ratio: $\frac{\sigma(B_c^+) \cdot Br(B_c^+ \to J/\psi\pi^+) \cdot Br(J/\psi \to \mu^+\mu^-)}{\sigma(B^+) \cdot Br(B^+ \to J/\psi K^+) \cdot Br(J/\psi \to \mu^+\mu^-)}$
- Allows common systematics to nearly cancel.
- Measured in fiducial region $p_T(B) > 13 \text{ GeV}$, |y(B)| < 2.3
 - In addition 2 bins in P_T : 13< $p_T(B)$ < 22 GeV and $p_T(B)$ >22 GeV
 - 2 bins in rapidity |y(B)|< 0.75 and 0.75<|y(B)|<2.3)

Results:

 $\frac{\sigma(B_c^+) \cdot Br(B_c^+ \to J/\psi\pi^+) \cdot Br(J/\psi \to \mu^+\mu^-)}{\sigma(B^+) \cdot Br(B^+ \to J/\psi K^+) \cdot Br(J/\psi \to \mu^+\mu^-)} =$


 $(0.34 \pm 0.04(stat)^{+0.06}_{-0.02}(syst.) \pm 0.01(lifetime))\%$

Production decreases faster with p_T for B_c than B^+

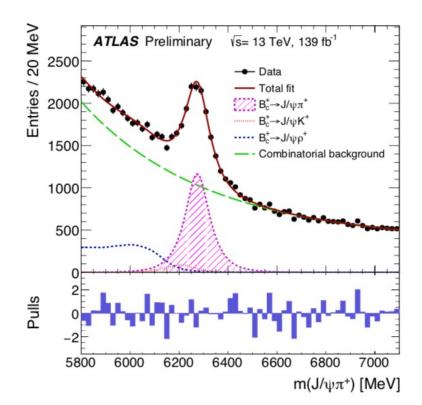
No evidence of any rapidity dependence

$0.683 \pm 0.018 \pm 0.009$	p _T <20 GeV, 2.0 < y < 4.5	LHCb 8 TeV
$0.48 \pm 0.05 \pm 0.03 \pm 0.05$	p _T >15 GeV, y <1.6.	CMS 7 TeV

Analysis bin	$\sigma(B_c^{\pm})/\sigma(B^{\pm}) \times \mathcal{B}(B_c^{\pm} \to J/\psi\pi^{\pm})/\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$
$p_{\rm T}(B) > 13 { m ~GeV}, y(B) < 2.3$	$(0.34 \pm 0.04_{\text{stat}} {}^{+0.06}_{-0.02 \text{ syst}} \pm 0.01_{\text{lifetime}})\%$
$13 < p_{\rm T}(B) < 22 { m ~GeV}, y(B) < 2.3$	$(0.44 \pm 0.07_{\text{stat}} \stackrel{+0.09}{_{-0.04 \text{ syst}}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 22 { m ~GeV}, y(B) < 2.3$	$(0.24 \pm 0.04_{\text{stat}} \stackrel{+0.05}{_{-0.01 \text{ syst}}} \pm 0.01_{\text{lifetime}})\%$
$p_{\rm T}(B) > 13 { m ~GeV}, y(B) < 0.75$	$(0.38 \pm 0.06_{ m stat} \stackrel{+0.05}{_{-0.04 m ~syst}} \pm 0.01_{ m lifetime})\%$
$p_{\rm T}(B) > 13 { m ~GeV}, \ 0.75 < y(B) < 2.3$	$(0.29 \pm 0.05_{\text{stat}} \stackrel{+0.07}{_{-0.02 \text{ syst}}} \pm 0.01_{\text{lifetime}})\%$

Conclusion:

- ATLAS has a rich heavy flavor physics program
- Many analyses statistically limited and will be updated with full Run2 dataset with improved detector performance
- Stay tuned for future results

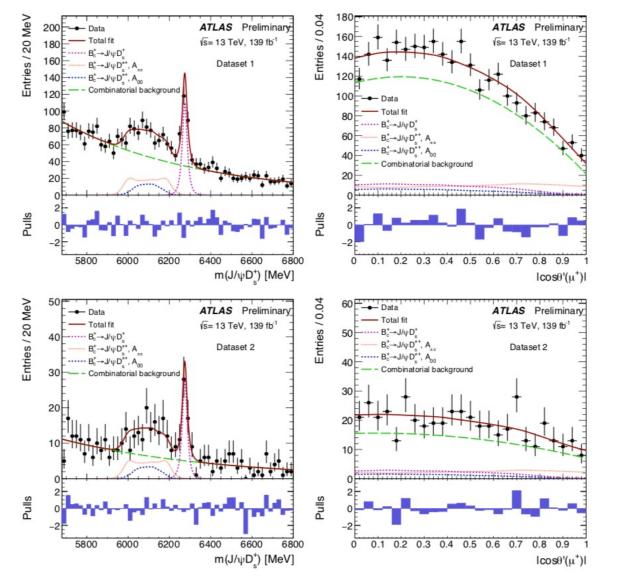

Links

- (Pentaquark search). <u>ATLAS-CONF-2019-048</u>
- Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays <u>ATLAS-CONF-2021-046</u>
- (X(5568) search) PRL 120, 202007 (2018)
- Relative B_c⁺/B⁺ production measurement at 8 TeV. <u>Phys. Rev D 104, 012010 (2021)</u>

Backup

 $B_c^+
ightarrow J/\psi \pi^+$ fit

Parameter	Value		
$m_{B_c^+}$ [MeV]	6274.5 ± 1.5		
$\sigma_{B_c^+}$ [MeV]	47.5 ± 2.5		
$N_{B_c^+ \to J/\psi \pi^+}$	8440^{+550}_{-470}		



$B_c^+ \rightarrow J/\psi D_s^{(*)+}$ fit PDF

- 2D unbinned ML fit of m(J/ψD⁺_s) and | cos θ'(μ⁺)|; mass and angular PDF are factorized
- ▶ ratio between $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ yield and $f_{\pm\pm}$ are the same in DS1 and DS2
- $B_c^+ \to J/\psi D_s^+$ signal
 - mass: modified Gaussian¹
 - $|\cos\theta'(\mu^+)|$: MC kernel template (same in DS1 and DS2)
- ▶ $B_c^+ \rightarrow J/\psi D_s^{*+}$ signals, separately $A_{\pm\pm}$ and A_{00} components
 - mass: MC kernel templates (same in DS1 and DS2)
 - $|\cos\theta'(\mu^+)|$: MC kernel templates (same in DS1 and DS2)
- Background
 - mass: exponential (same slope in DS1 and DS2)
 - $|\cos\theta'(\mu^+)|$: 2nd order polynomial (same parameters in DS1 and DS2)

 $^{1}Gauss^{mod} \propto \exp(-0.5 imes t^{1+1/(1+t/2)})$, where $t = |m(J/\psi D_{s}^{+}) - m_{B_{c}^{+}}|/\sigma_{B_{c}^{+}}|$

 $B_c^+
ightarrow J/\psi D_s^{(*)+}$ fit result

Parameter	Value		
$\begin{array}{l} m_{B_c^+} \; [{\rm MeV} \;] \\ \sigma_{B_c^+} \; [{\rm MeV} \;] \\ r_{D_s^{*+}/D_s^+} \\ f_{\pm\pm} \\ N_{B_c^+ \rightarrow J/\psi D_s^+}^{\rm DS1} \\ N_{B_c^+ \rightarrow J/\psi D_s^+}^{\rm DS2} \end{array}$	$\begin{array}{c} 6274.8 \pm 1.4 \\ 11.5 \pm 1.5 \\ 1.76 \pm 0.22 \\ 0.70 \pm 0.10 \\ 193 \pm 20 \\ 49 \pm 10 \end{array}$		
$ \begin{array}{l} N^{\mathrm{DS1}}_{B^+_c \rightarrow J/\psi D^{*+}_s} \\ N^{\mathrm{DS1\&2}}_{B^+_c \rightarrow J/\psi D^+_s} \\ N^{\mathrm{DS1\&2}}_{B^+_c \rightarrow J/\psi D^{*+}_s} \end{array} $	$\begin{array}{c} 338\pm32\\ 241\pm28\\ 424\pm46\end{array}$		

Ratios calculation

$$R_{D_{s}^{(*)+}/\pi^{+}} = \frac{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{(*)+})}{\mathcal{B}(B_{c}^{+} \to J/\psi \pi^{+})} = \frac{N_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}}{N_{B_{c}^{+} \to J/\psi \pi^{+}}} \times \frac{\varepsilon_{B_{c}^{+} \to J/\psi \pi^{+}}}{\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{(*)+}}} \times \frac{1}{\mathcal{B}(D_{s}^{+} \to \phi(K^{+}K^{-})\pi^{+})}, \quad (1)$$

▶ $\mathcal{B}(D_s^+ \to \phi(K^+K^-)\pi^+)$ taken as $m(K^+K^-)$ -dependent, using CLEO measurement, recalculated to $\pm 7 \text{ MeV}$ ▶

$$R_{D_{s}^{*+}/D_{s}^{+}} = \frac{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{*+})}{\mathcal{B}(B_{c}^{+} \to J/\psi D_{s}^{+})} = \frac{N_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\text{DS1\&2}}}{N_{B_{c}^{+} \to J/\psi D_{s}^{+}}^{\text{DS1\&2}}} \times \frac{\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{+}}^{\text{DS1\&2}}}{\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\text{DS1\&2}}} = r_{D_{s}^{*+}/D_{s}^{+}} \times \frac{\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{+}}^{\text{DS1\&2}}}{\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}}^{\text{DS1\&2}}},$$
(2)

$$\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}} = \frac{1}{f_{\pm\pm}/\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}, A_{\pm\pm}} + (1 - f_{\pm\pm})/\varepsilon_{B_{c}^{+} \to J/\psi D_{s}^{*+}, A_{00}}},$$
(3)

$$\Gamma_{\pm\pm}/\Gamma = f_{\pm\pm} \times \frac{\varepsilon_{B_c^+ \to J/\psi D_s^{*+}}^{\text{DS1\&2}}}{\varepsilon_{B_c^+ \to J/\psi D_s^{*+}, A_{\pm\pm}}^{\text{DS1\&2}}}.$$
(4)

Mode	$\epsilon^{DS1}_{B^+_c o J/\psi X}$ [%]	$\epsilon^{\mathrm{DS1\&2}}_{B^+_c\to J/\psi X} \ [\%]$
$B_c^+ ightarrow J/\psi D_s^+$	$\textbf{0.971} \pm \textbf{0.012}$	1.163 ± 0.013
$B_c^+ ightarrow J/\psi D_s^{*+}$, A_{00}	0.916 ± 0.012	1.088 ± 0.012
$B_c^+ ightarrow J/\psi D_s^{*+}$, $A_{\pm\pm}$	0.868 ± 0.010	1.049 ± 0.011
$B_c^+ ightarrow J/\psi \pi^+$	$\textbf{2.169} \pm \textbf{0.018}$	— 1

B. Abbott HQL2021

 $B_c^+ \to J/\psi D_s^{(*)+}$

Systematics

Source				
	$R_{D_s^+/\pi^+}$	$R_{D_s^{*+}/\pi^+}$	$R_{D_s^{*+}/D_s^+}$	$\Gamma_{\pm\pm}/\Gamma$
Simulated $p_{\rm T}(B_c^+)$ spectrum	1.5	1.9	0.4	0.1
Simulated $ \eta(B_c^{+}) $ spectrum	0.7	0.7	0.1	0.2
B_c^+ lifetime	0.1	< 0.1	-	-
D_{ϵ}^{+} lifetime	0.4	0.4		_
Tracking efficiency	1.0	1.0	< 0.1	< 0.1
Pile-up effects	1.0	1.0	-	-
χ^2/ndf cut efficiency	3.2	3.2	—	-
Impact parameter cuts efficiency	0.2	0.2	-	-
BDT cut efficiency	1.3	1.3	-	-
Trigger efficiency	1.0	1.0		-
$B_c^+ ightarrow J/\psi D_s^{(*)+}$ signal fit:				
D_s^+ signal mass modelling	1.8	0.5	1.3	0.8
D_s^{*+} signal mass modelling	0.6	1.2	1.7	2.7
signal angular modelling	0.4	< 0.1	0.4	0.6
background mass modelling	6.0	9.0	3.2	1.0
background angular modelling	0.9	1.3	2.1	2.4
$B_s^0 o \mu^+ \mu^- \phi$ triggers	0.8	0.5	1.3	4.0
$B_c^+ ightarrow J/\psi \pi^+$ signal fit				
signal modelling	4.2	4.2	-	-
PRD/comb. background modelling	5.8	5.8	-	-
CKM-suppr. background modelling	1.0	1.0	-	-
MC statistics	1.5	1.5	1.7	1.5
Total	10.7	12.6	5.0	5.8
$\mathcal{B}(D_s^+ \to \phi(K^+K^-)\pi^+)$	5.9	5.9	(-)	-

Effect of muon reconstruction and identification efficiency uncertainty affects individual channel efficiencies by about 1–2%. However, for the measured quantities, due to cancellation in the efficiency ratios, it is found to be negligible.

Pentaquarks in $\Lambda_b^0 \to J/\psi p K^-$

Systematics

Source		$V(P_{c1}) \mid N(P_{c1})$		P_{c2})	$N(P_{c1} + P_{c2})$		$\Delta \phi$
Number of $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays		$-1.8_{-0.6}\%$ $+6.6_{-9.2}\%$		3.6% 9.2%	$^{+1.6}_{-0.8}\%$		$^{+0.3}_{-0.0}\%$
Pentaquark modelling	+	$^{+21}_{-0\%}$ $^{+1}_{-22\%}$		$^{+1}_{22}\%$	$^{+8.7}_{-4.4}\%$		$^{+1.6}_{-0.0}\%$
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	+	$^{+14}_{-2}\%$ $^{+5}_{-44}\%$		-5 44%	+9.2 -9.1%		$^{+3.6}_{-1.6}\%$
Combinatorial background	+	$^{+0.7}_{-4.0\%}$ $^{+18}_{-5\%}$		$^{+4.2}_{-4.8}\%$		$^{+3.2}_{-0.0}\%$	
B meson decays modelling	+	$^{+13}_{-25}\%$ $^{+28}_{-35}\%$		$^{+1.6}_{-9.3}\%$		$^{+0.5}_{-2.1}\%$	
Total systematic uncertainty		$^{+28}_{-25}\%$ $^{+35}_{-61}\%$		$^{+14}_{-15}\%$		$^{+5.1}_{-2.7}\%$	
Source		m(P)	c1)	$\Gamma(P_{i})$	c1)	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays		+0.06 % +		+3.5 -2.5	%	$^{+0.07}_{-0.04}\%$	$^{+7}_{-13}\%$
Pentaquark modelling		+0.6% +		$^{+18}_{-0}$	%	$^{+0.2}_{-0.0}\%$	$^{+0}_{-33}\%$
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling		$^{+0.23}_{-0.05}\%$		$+9.2 \\ -1.2$	%	$^{+0.24}_{-0.02}\%$	$^{+2}_{-62}\%$
Combinatorial background		$^{+0.03}_{-0.15}\%$		$^{+0}_{-11}$	%	$^{+0.01}_{-0.17}\%$	$^{+22}_{-4}\%$
B meson decays modelling		$^{+0.2}_{-0.0}$	4 0%	$^{+21}_{-21}$	%	$^{+0.27}_{-0.14}\%$	$^{+17}_{-57}\%$
Total systematic uncertainty		$^{+0.7}_{-0.2}\%$		$^{+30}_{-24}$	%	$^{+0.4}_{-0.2}\%$	$^{+28}_{-91}\%$

Relative B_c/B^+ production

Source of uncertainty	Uncertainty value						
	B_c^{\pm}		B^{\pm}				
	$13 GeV < p_T < 22 GeV$	$p_T > 22 GeV$	$13 GeV < p_T < 22 GeV$	$eV \mid p_T > 22 GeV$			
Signal model of the fit	2.4%	1.1%	0.1%	0.2%			
CS and PRD components	+19.3% -2.4%	+19.9% -2.4%	0.5%	0.5%			
Background model of the fit	1.7%	1.2%	0.2%	0.2%			
Trigger and reconstruction effects	0.9%	0.8%	1.2%	1.2%			
B-meson lifetime uncer- tainty	1.1%	0.9%	< 0.1%	< 0.1%			

Source of uncertainty	Uncertainty value					
		B_c^{\pm}	B^{\pm}			
	y < 0.75	0.75 < y < 2.3	y < 0.75	0.75 < y < 2.3		
Signal model of the fit	2.5%	2.8%	0.1%	0.2%		
CS and PRD components	$^{+11.2\%}_{-2.4\%}$	+23.2% -2.4%	0.5%	0.5%		
Background model of the fit	2.8%	1.3%	0.2%	0.2%		
Trigger effects and recon- struction effects	1.1%	1.0%	1.2%	1.1%		
B-meson lifetime uncer- tainty	1.0%	0.9%	< 0.1%	< 0.1%		