
7/ OCR Output

md
·

e
a»' 4W

E g Secretariat : tcl. 2844 — 3674
D " p =z

1/7
/ 4//

aj Z?

/

y

{ .wa

standard model.
7//particle physics. We present all the ingredients necessary for the construction of the

we discuss the main concepts in gauge theories and their application in elementary
After a brief and practical introduction to feld theory and the use of Feynman diagrams,

ABSTRACT er ,

%%

/ / PLACE ¤ Auditorium

_g10.30 to 12.00 hrs — AuditoriumW
V _

DATE 15,17,19, 23 & 25 October

7z// Quantum field theory

% SPEAKER , B. DE WIT / Institute for Theoretical Physics, Utrecht

wg

LEc·rUR1~; sER11~;s Fon 1>0smm1>uA1*12 STUDENTS

1990-1991 ACADEMIC TRAINING PROGRAMME

/@2

AT00000s09

V ;

7 L /’%%
75%;

· ` CERN uBRAmEs, cENEvA

%/ |'|

/ {

¢7 f

%/
7; '

.¤.~..» xxxx \ ~»\.» \..\.\\» x



for the standard model. OCR Output

consider the nonabelian version of these theories and discuss the ingredients that are necessary

we proceed to introduce simple abelian gauge theories and explain their properties. Then we

and discuss the rules needed for the calculation of Feynman diagrams. After some applications

As you can see from the above table of contents, we will start with generic field theories

an in this school.

latter will be put to a test in Hollik`s lectures on precision tests of the electroweak theory later

and ideas of gauge fields and acquire some experience in Feynman diagram calculations. The

also with the help of the discussion sessions, you will get acquainted with the basic principles

a self-contained and thorough treatment of these topics in just six lectures, but the hope is that.

gauge theory, and the use of Feynman diagrams. Of course, it is really not possible to give you

The purpose of these lectures is to give a practical introduction to field theory, in particular
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of the fields and their first-order derivatives. The action thus assigns a number to every field OCR Output

for the particle trajectory in (1.3). As indicated in (1.7), the Lagrangian is usually a function

where the values of the fields at the boundary of the integration domain are fixed just as we did

(1-7)5`l¢(¢)] = /d‘=£(¢(¢),6`.1¢(¢)).

of the Lagrangian density (which is also commonly referred to as the Lagrangian).

Again one can define the action. which can now be written as the integral over space-time

or the surface of a drum. or some force field such as an electric or a magnetic field.

instance. they could describe the local displacement in a continuous medium like a violin string

Fields such as do may be used to describe the degrees of freedom of certain physical systems. For

where Ig E ct and c is the velocity of light (henceforth. we will use units such that c = 1).

:r" = (::0,x), (1.6)

d>(:c). which are functions of the four-vector of space—time.

Let us now generalize to a field theory. The system is now described in terms of fields. say,

This is precisely Newton’s law.

Or
(1.5)m s = -£°Y.£‘2_

trajectories that satisfy the equation of motion,

cording to Hami1ton`s principle. the extremum of (1.4) (usually a minimum) is acquired for those

For each trajectory satisfying the boundary conditions (1.3) the action defines a number. Ac

(1.4)5[r(z))=dzL(i-(:).1-(1)).V2 / ii

The action corresponding to this trajectory is then defined as

(1·3)r1= r(t1). rz = r(¢z)·

motion. with fixed endpoints given by

Consider now some particle trajectory r(t), which does not necessarily satisfy the equation of

(1.2)L(r,i·) : §m i·2 - \·'(r).

the Lagrangian is defined as the difference of the kinetic and the potential energy,

Gr
(1.1)F - —

6V(r)

mechanics. For instance. for a point-particle subject to a conservative force

the dimension of Planck's constant h. and the Lagrangian are well-known concepts in classical

Field theories are usuallv defined in terms of a Lagrangian. or an action. The action. which has

1. The action



fields. One always has the option to decompose a complex field into its real and its imaginary OCR Output

with { an arbitrary parameter. Of course. it is only a matter of convenience to use complex

(1.15)¢—·a>'=e*€ d>,

is invariant under

(1.14)L = -|0,,q>|‘ - m2 W - g (ar

invariant under phase transformations. For instance, the Lagrangian

For complex fields there is no such condition. Complex fields are convenient if the theory is

d>'(k):—.¢(-k). (1.13)

For real fields. as in (1.8), the fields in the momentum representation satisfy the condition

(1.12)d>(z)= (27r)" /d‘ke"""’¢>(k).

The inverse of this relation is

(1.11)<1$(k)= /d‘:re""’¢(z)

transform

Later we will consider the fields in the momentum representation. defined by the Fourier

to be introduced shortly.

order to contract four-vectors. This convention is convenient when dealing with gamma matrices.

that case there is no difference between upper and lower indices and we do not need a metric in

opposite sign is used. Alternatively, we may use indices ;1,u = 1.2,3,4 and define :1:., 5 i:cO. ln

which is a diagonal matrix with eigenvalues (··.+.+.+). In the literature also a metric with

where four—vector indices are lowered (raised) with a metric 1;,,,, (rf"), with ;i.u = 0.1,2,3.

.r·y=x),y=zyu=x·y-xgyo.
““ (1.10)

orentz-invariant inner product of two four-vectors, defined by

with positive sign in the Lagrangian, just as in (1.2). Observe that we have introduced the

equation the Klein-Gordon equation. Equation (1.9) shows that the time-derivatives appear

The quadratic part of (1.8) is called the Klein-Gordon Lagrangian. and the corresponding field

1.9 ( l. 3 ' = ( ~°’l 0¢>‘ (aa —— - —— (ax 8..,
where

(1-8)£=—%(6,.<1>)'-%m’4>’—»\4>“—g¢>‘.

a Lorentz transformation. It can be used to describe spinless particles. A standard Lagrangian

transforms trivially under Lorentz transformations: a>’(m') = a>(2:), where :c' and sc are related by

The simplest theory is that ofa single scalar field m( 1: ). This field is called a scalar field because it

Let us now discuss a few examples of field theories that one encounters in particle physics.

has an extremum for fields that satisfy the classical equations of motion.

configuration. and it is again possible to invoke Hamilton`s principle and verify that the action



components. OCR Output

be regarded as a coincidence. In a d-dimensional space-time spinors have in general 2 14/2]

The fact that in a four-dimensional space-time. spinors have also four components. should

second term is required. with precisely the coefficient §, in order that the Lagrangian describes

The first and the last term in (1.21) are obvious generalization of the first two terms of (1.8). The

(1.21)£= -§(8,,V,,)l+%(8uV“)J — QM? YQ?.

the action (this follows from applying Gauss` law), this Lagrangian can be written as

Modulo a total divergence. which we can drop because it contributes only a boundary term to

(1.20)C: —}(8,,V,,—0,,V,)l— %M2 Vf.
the Proca Lagrangian.

vectors under Lorentz transformations). For the description of massive spin·1 particles one uses

Another Lagrangian which is relevant is based on vector fields (i.e.. fields that transform as

(1.19)w = 1;*1*74, or. in components. ipc = (7., )B¤.

spinor field tb is then defined by

ln this notation there is no difference between upper and lower four-vector indices. The conjugate

(M8)(7")' =‘1"· (#=1.2.3.4)

so that all gamma matrices can be chosen hermitean,

spinors in the literature. Adopting (1.17) as a starting point. it is convenient to define 7* 2 i·y·

We should caution you that that exist many different conventions for gamma matrices and

(1.17)7‘*·y"+·y"·y"=2n“”1. (;4,v=0.1,2,3)

relations

dient are the Dirac gamma matrices 7**, which are 4 x 4 matrices satisfying the anticommutation

is the Dirac equation. The spinor fields have 4 independent components} An important ingre

quadratic terms in ·(1.16) constitute the Dirac Lagrangian. The corresponding field equation

Such couplings of the (pseudo)scalar nelds to fermions are called Yukawa couplings. The

(I-161£= -5N*-mEw+G.¢,E¢+iG,¢pw1su·.

respectively.

Lagrangian for spin-Q fermions interacting with a scalar and a pseudoscalar field. 0, and op,

in the tutorial sessions we will discuss several applications with fermions. llere we give a typical

are extremely important. we will largely ignore the spinor fields due to lack of time. However.

under the Lorentz transformation). which describe the fermions. In spite of the fact that they

ially under the Lorentz group. For instance. one has spinor fields (which transform as spinors

In principle. it is only a small step to consider Lagrangians for fields that transform nontriv·

11.14} which differ from those in (1.8).

iakes the form of a rotation between these two real fields. Observe the normalization factors in

part. and to write the Lagrangian (1.14) in terms of two real fields. The invariance 11.15) then



(1.24) OCR Output(J1?.) - EE 0(@..¢>) @¢>
of fields o and first·order derivatives of fields 6,,qS only. these equations read

tions are the so-called Euler·Lagrange equations. For a general Lagrangian LZ. defined in terms

for which the action has an extremum. must satisfy the equations of motion. These field equa·

As we have already mentioned above. Hamilton’s principle implies that the field configurations

Let us end this section by defining the field equations corresponding to a given Lagrangian.

theory, but cannot be quantized consistently.

is Einstein’s theory of gravitation. general relativity, which is very succesful as a classical field

this implies that the theory does not lead to sensible predictions. An example of such a theory

have parameters with negative mass dimension. then the theory is not renormalizable. Usually

important for the quantum mechanical properties of these theories. If quantum field theories

that we have introduced in the above Lagrangians have positive mass dimension. This fact is

dimension [mass]. whereas spinor fields have dimension {mass]°(2. Observe that all parameters

Lagrangians have dimension [mass]? It is then easy to see that scalar and vector fields have

so that length and time have dimension [mass]'l. The action is then dimensionless. so that

case mass parameters have dimension [length]"l, or mass can be adopted as the basic unit

this convention there is only one dimensional unit; for example, one may choose length. in which

light in vacuum and Planck`s constant are dimensionless and equal to unity: c = Ft = 1. With

In relativistic quantum field theory it is convenient to use units such that the velocity of

where §(z) is an arbitrary function of z.

Arif) —· AL(¢) = AAI) + 0,.E(¢)·

under so-called gauge transformations.

discuss this in section 3. An important ingredient in the proof of this is the invariance of (1.22)

spin have precisely 2 independent polarizations. irrespective of the value of the spin. We will

where we have again suppressed a total divergence in the second line. Massless partices with

= — (1.22)%(8,,A,,); + Q-(6,,A“)l,

L = ·i(@»A»· @~A»)

reads

play an important role in these lectures. The Lagrangian is called the Maxwell Lagrangian. and

The M —· 0 limit of (1.20) describes massless spin·1 particles such as photons. and will

fields.

possible to extend (1.20-21) to complex fields. analogous to what we did previously for scalar

in (1.21). We have implicitly assumed that Vu is a real field. i.e. V; = Vu, but it is perfectly

has 4 independent components. It is this discrepancy which forces us to include the second term

independent polarization states. whereas the held V, on which the Proca Lagrangian is based

is + l independent polarizations. So a Lagrangian for spin—l particles should give rise to 3

van already see that some care is required here. Massive particles with spin s have in general

pure spin-1 particles. and no additional spinless particles. From a simple counting argument one



integral over space·time of a Lagrangian. OCR Output

• The theory: Begin with a field theory defined in terms of an action. which is expressed as an

explicit derivations. The rules are presented in a number of steps:

mathematical expressions corresponding to a Feynman diagram. We refer to the literature for

grams. We shall just define the Feynman rules. which tell you how to evaluate the complicated

In these lectures there will be no time to give a detailed derivation of the Feynman dia

field theory, but can only be understood within the context of quantum field theory.

tion with diagrams that contain closed loops. Their contributions do not follow from classical

classical field theory. Such diagrams have the structure of tree diagrams. This in contradistinc

of these Feynman diagrams will correspond to the same contributions that one would find for a

there exists a convenient graphical representation in terms of so-called Feynman diagrams. Some

ementary particles. Those amplitudes can also be evaluated in perturbation theory, for which

theory. Ultimately we are interested in the quantum mechanical scattering amplitudes for el

Such theories can be studied as classical field theories. and this is often done in perturbation

ln the previous section we have presented field theories in terms of an action or a Lagrangian.

2. Feynman rules

gives rise to only three independent polarizations.

found in problem 1. Find the conditions for the momentum ku. Verify that the Proca Lagrangian

Consider plane wave solutions. i.e., solutions proportional to exp(ik·x ). for the free field equations

Problem 3:

where the electromagnetic fields Fu, are defined by FW E BNA., — 0.,.4,,.

(1.29)3,,F“"=J".

equations coincide with the inhomogeneous Maxwell equations (in the relativistic formulation)

Add an extra source term J" .4,, to the Lagrangian (1.22) and show that the corresponding field

Problem 2:

where 82 E 6**8,.

(1.28)6”(6,,V,, — 6,,V,,) + M2 V,) = 0,

(1.27b)E( 0 +m)=G,¢>,$+iG,,¢,Y515.

(1.2m)(0+m)w=G,d>,w+iG,o,v·5u·.

(1.2cb)(02 - m°)¢>· = 2g|d>|°o'.

(wsa)(6* — m’)¤» = 2g|¢(2¢.

(1.25)(6*-m*)¢=aA¤>2+4g¢°.

21) are given by

\`erify that the field equations corresponding to the Lagrangians ( 1.8). (1.14). (1.16) and ( 1.20

Problem 1:



leads to the same diagram as for real fields. but now the arrow also indicates that the propagator OCR Output

The propagator is now defined by the inverse of -(21r)‘[k° + mz] multiplied by a factor i. This

(2.5)S = -(2¤)* /d‘k ¢·(k)[k’ + m°]¢(k).

c>(-kl)

which. in terms of the Fourier transforms of the fields. leads to (we no longer have ¢'(-k)

iw= /d‘= [—n3..¢»1°—m2 iw +0u wi].

5 = fd*xL

ln that case the kinetic terms in the action are

We have already pointed out that the normalization factors are different for complex fields.

(i.e. probability conservation) of the resulting theory.

prescription for dealing with the propagator poles is crucial for the causality and the unitarity

___ pole at kg = —m°: the limit 6 l 0 should only be taken at the end of the calculations. This

endpoints refer to two space-time points (see Fig. 1). The is-term defines how to deal with the

Its graphical representation is a line. with an arrow indicating the momentum flow. while the

**··*-·’• , i(2rr)* k2 + mz - is
2.3 ( )1 1 Z ——-··—···—·**··AU:)

we thus find

the propagator is defined as a factor éi times the inverse of this matrix. For the case at hand

Hence the elements of the diagonal matrix are just equal to —§(21r)"[k2 + mz]. For real fields

where we have made use of the fact that we are dealing with real fields (i.e. a>'(k) : rp(-k)).

(2.2)s = -g(2»)* [.1*1. ¢·(k)[k2 + m2l¢(k),

the fields are then equal to

Iow express the action in terms of the Fourier transforms of the fields The terms quadratic in

(2.1)= [dw [—%(8,¢5)2 - gmwz + o(¢=*i]

s = /.1*; L

The action is

is diagonal in the momentum variables. Suppose we take the Lagrangian (1.8) as an example.

that are quadratic in the fields. The quadratic terms define a matrix in momentum space which

• Propagatorsz Calculate the propagators of the theory, which follow from the terms in the action

Fig. 1. Propagator line



recall that fields correspond to lines with incoming arrows and their complex conjugates to lines OCR Output

ln the Feynman diagrams for complex fields the lines at the vertices carry an orientation:

of the second interaction becomes proportional to (kl -k2 + kyka + k;,·k,).

be summed will be discussed next. but it is rather obvious in this case that the total contribution

also factors (—k,· kg) and (—k,· kg) will contribute. The way in which these contributions must

is arbitrary. A complete calculation must also include other possible line attachments. so that

choosing the second and the third momentum as those corresponding to the differentiated fields.

i(21r)‘g 6‘(/cl + kg + ka) and i(2vr)‘g (—k2 · k;,)6‘(k1 + kg + kg), respectively. In the latter case.

the terms 903 and gq>(8,,¢)2 both correspond to three-point vertices. but yield different factors:

momentum factors are part of the coefficient indicated in the generic definition (2.6). Thus

contributes a factor ik] to the vertex where kj is the incoming momentum of the jth line. These

If the vertices in the Lagrangian contain derivatives then each differentiation of the fields

summarized in Table 1.

the fields. For example, the Feynman rules for the theory described by the Lagrangian (1.8) are

where our conventions are such that the kj denote incoming momenta associated with each of

(2.6)vertex = i(21r)‘6*(E’kJ) x (coefficient of o" in the Lagrangian).

Each vertex therefore has the structure

yields a delta-function in momentum space. thus guaranteeing energy-momentum conservation.

thus vields a vertex with three lines. Translational invariance ensures that the Fourier transform

n lines with every term in the Lagrangian that contains n field. A Lagrangian with a 03-term

• Vertices: The next step is to define the vertices of the graphs. We associate a vertex with

real fields.

fields. and by decomposing QJ = it/§(d>l + io;) one makes contact with the description given for

to o'. Of course. complex fields can always be regarded as a linear combination of two real

namely o and o': the standard convention is that incoming arrows refer to o. and outgoing ones

is oriented in the sense that the endpoints of the propagator lines refer to independent helds.

Table 1. Feynman rules for the Lagrangian (1.8)

*1 / \*#
ziziiiwi. +k.+i-3 +k.><-gi“°\ /*·

__/\ M
i('2¢t)*64fki+i‘z+ka)(—»\)

i(2:)* kg + mi — is



a characteristic dependence on the momenta associated with the external lines. OCR Output

calculate the corresponding expressions. There are four Feynman diagrams. each giving rise to

Consider the tree diagrams with four external lines that follow from the Lagrangian (1.8), and

Problem 4:

following problems contain a few suggestions.

that you start from a simple Lagrangian. such as (1.8), and calculate some diagrams. The

their corresponding mathematical expressions. To get acquainted with their use. I recommend

From these rules it is in principle straightforward to write down Feynman diagrams and

vector and spinor fields that are possible.

all types of internal lines that are possible. Therefore, we have to sum over all components of

more unrestricted momenta over which one should integrate. Likewise. we must also sum over

momenta of the internal lines are fixed bv momentum conservation, and one is left with one or

These rules also apply to diagrams with closed loops. However. in this case not all the

vertices.

one must avoid overcounting by dividing by nl, where n is the number of such indistinguishable

in an indistinguishable way, i.e. not distinguished by their attachments to external lines. then

There is only one exception to the above counting argument. If identical vertices occur

ultimately integrate over all vertex positions in space-time).

but diagrams that only differ in the position of the vertices are counted as identical (because we

ways in which a diagram can be formed by connecting vertices to propagators and external lines.

factor associated with each of the diagrams. ln principle this weight factor counts the number of

configuration of external lines. In order to do so one must determine the combinatorial weight

• Summing and combinatorics: Finally one sums over all possible diagrams with the same

the number of possible diagrams will be reduced.

the line. but also the orientation (e.g. charge flow) then the lines cannot always be joined. and

in order to reflect this fact. lf the arrow denotes more than just the momentum assignment of

momentum—conserving 6-functions at the vertices. and for real fields one may readjust the arrows

form the various diagrams. The momentum flow through the various lines is determined by the

• Diagrams: One now joins all the lines emanating from the vertices via propagators in order to

if the number of incoming and outgoing arrows is the same at each vertex).

orientation often corresponds to the flow of electric charge; obviously, charge will be conserved

lines coming from the vertices can now only be joined if their orientational arrows match (the

conjugates o'. so that each vertex has an equal number of incoming and outgoing lines. The

ln that case every interaction must contain an equal number of fields <1> and their complex

<:>—·<1>' = e‘°d>.

·heory is invariant under phase transformations. i.e.

with outgoing arrows. A formulation in terms of complex rather than real helds is useful if the
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ki. =(ko.k). k,.=(—k¤.k). (3-8) OCR Output

k,,s,,(k.»\)=s0(k,»\)=0. (»\= 1,2)

independent vectors. s,,(k. A),k,, and ku, defined by

which is manifestly invariant under the transformation (3.6). Decomposing A“(k) into four

(3.7)k‘A,,(k) -· kuk"A,,(k) = 0.

The field equation (3.4) now takes the form

A,,(k) — AL(k) = A,,(k) + E(k)k,,. (3.6)

Under gauge transformations A,,(k) changes by a vector proportional to ku

(3.5) ,._**·*A,,(k) = (2¤)·* /4*; Ay(;)e·

In order to examine plane wave solutions of this equation we take the Fourier transform of A,,(:z)

(3.4)3"(8.,A,.—0,,A,,)=0.

following from (3.1),

also reduced in comparison to the massive case. To see this explicitly consider the field equation

depends on a smaller number of fields. Correspondingly the number of plane wave solutions is

The main consequence of an invariance under local gauge transformations is that the theory

FMV = OLLAU —- GUAM

equal to

potential is subject to the same transformations. The electromagnetic field strength is then

This transformation is familiar from Maxwell’s theory of electromagnetism where the vector

(3.2)A,.(z)— A,J(:r)+6,,f(::).

which is invariant under local gauge transformations

(3.1)L = —}(8“A, - 8,,A“)°,

Lagrangian for massless spin-1 fields,

are a number of technical complications for theories with photons. Let us start by recalling the

this section we refer to the particles described by these fields as photons. As it turns out there

We would now like to derive the Feynman rules for theories that involve masless spin-1 fields. ln

3. Photons

integrals are well defined.

external lines. Write down the corresponding expressions and verify whether the momentum

Determine the three possible one·loop diagrams following from the Lagrangian il.8) with two

Problem 5:
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(k‘r;,,,,·kuk,,)k" :0. (3.13) OCR Output

has a zero eigenvalue. as we see from

inverse of (kznw, - kuk,). In this case. however. the inverse does not exist because this matrix

According to the general prescription given in section 2. the propagator is proportional to the

(3.12)S[A,,] = -g(2¤)* d·*k A;(k) [t°q··~ - kw] Mt)./

this we rewrite (3.1) in the momentum representation.

spin-1 particles, which is again related to the invariance under gauge transformations. To show

There is a further difficulty when one attempts to calculate Feynman diagrams for massless

spin.

sequently massless particles have only two polarization states. irrespective of the value of their

involve the states with spin (i.e. helicity) is in the direction of motion of the particle. Con

SO(2) has only one—dimensional complex representations. For spin s these representations just

trivially on the particle states in order to avoid infinite-dimensional representations). The group

ku : (w(k).k) invariant is somewhat larger, but the extra (noncompact) symmetries must act

the group SO(2) (actually, the group of transformations that leave the particle momentum

dimensional rotations around the direction of motion of the particle. These rotations constitute

particles it is not possible to go to the rest frame and one is forced to restrict oneself to two

way by specifying the value of the spin projected along a certain axis. However, for massless

transform among themselves under rotations. and which can be distinguished in the standard

sentation of the rotation group SO(3). ln other words. there are 2s+l polarization states. which

rotations. so that its spin degrees of freedom transform according to a (2s+ l )-dimensional-repre

rest frame. where the four momentum of the particle remains unchanged under ordinary spatial

be understood as follows. For a massive spin—s particle one can always choose to work in the

The fact that massless particles have fewer polarization states than massive ones. can also

by lightlike momenta (kg = 0) and transverse polartizations.

,.r meaning. We thus find that there are only two independent plane wave solutions characterized

of a gauge transformation we may adjust c(k) to zero. which shows that c(k) has no physical

is gauge invariant. Consequently the field equation cannot fix the value of c(k). By means

because c(k) can be changed arbitrarily by a gauge transformation. whereas the field equation

The field equation does not lead to any restriction on c(k). This should not come as a surprise

(3.11)ka(k) = 0 and b(k) = 0.2 "

from which we infer for the coefhcient functions (note that k·k is positive)

(3.10)
2*ka(k)e,,(k..\)+b(k)(NE)-(k-Eye,) :0.

The field equation (3.7) then implies

(3.9),~l,,(k)=n"(k)eL,(k.»\)+b(k)ku+c(k)ku.

we mav write
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for it and/or u = O
.\=l.2

(3.17) OCR Output6,,,, — for y,u :1,2,3 Z e,,(k,A)ef,(k,A)=! lk |’

orthonormal polarization vectors)

transversal polarization vectors. In order to sum over photon polarizations one may use (for

kuk,-term of the propagator residue vanishes when contracting the invariant amplitude with

ing scattering and decay amplitudes for photons in the standard fashion. The A-dependent

Using the propagator (3.16) one can now construct Feynman diagrams and correspond

depend on the parameter A.

izations. This requirement forms an essential ingredient of the proof that physical results do not

order to extract the physical content of the theory one should only consider transversal polar

we have somewhat obscured the relation between propagator poles and physical particles. In

by transversal polarizations). However. one must realize that by making the above modification

Clearly the propagator has more poles at k2 = 0 than there are physical photons (characterized

(3.161n...—<i-A·>g§#2f(
ascii = (km — ti — A°>k..kV]

so that for A yi 0 the propagator is equal to

(2.1.5)${.4,,] = -g(2¤)* {awt A;(k) [kwv - wv + A2k~k·] A.,(k).

corresponding to the combined Lagrangian becomes

where A is an arbitrary parameter. Because of this term the Fourier transform of the action

(3.14)L,_,_ = -g(A6,,A~)2,

term to the Lagrangian. The most convenient choice is to add (3.1)

prescription for defining the propagator. To do that one introduces a so-called ”gauge-fixing"

is a rather subtle matter to prove that this is indeed the case. In this section we only present the

the true gauge invariant part of the theory. and the physical consequences remain unchanged. It

the interactions of the theory. Therefore. the effect of this procedure can still be separated from

freedom are introduced only in order to make the propagator well-defined and they will not affect

(gauge) degrees of freedom. which formally spoils the gauge invariance. However. the degrees of

called gauge condition. A convenient procedure amounts to explicitly introducing the missing

The standard way to circumvent the singular propagator problem is to make use of a so

ensured provided that the photon couples to a conserved current.

is absent in (3.12) should not reappear through the interactions. One can show that this is

characterizes gauge transformations in momentum space. Obviously. the degree of freedom that

null vector associated with the zero eigenvalue is proportional to ku. which according to (3.6)

itself in the presence of zero eigenvalues in the quadratic part of the Lagrangian. indeed. the

Gauge invariance implies that the theory contains fewer degrees of freedom; this fact reiiects

l`he presence of the zero eigenvalue is a direct consequence of the gauge invariance of thc theory.
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particle associated with 45. Combining this with Maxwell’s Lagrangian gives

Lagrangian (cf. (1.14)), where ab is a complex scalar held and ;l;e is the electric charge of the

by performing the so-called minimal substitution 6,,d>—· Ouqb — ieA,, ¢» in the free Klein-Gordon

As a first step we consider the coupling of a complex spinless field cb to photons. This is done

discuss some of the technical complications related to spin-Q particles.

reaction (4.1) enables us to discuss the characteristic features of such process without having to

pointlike particles with no spin. A more relevant reaction is e`*`e‘—· ;i+p'. but considering the

mediated by a virtual photon in tree approximation. The particle P* and se are hypothetical

(4.1)P+ + P- —- 5* + 5‘

To get acquainted with the use of Feynman diagrams we will consider the annihilation reaction

4. Annihilation of spinless particles by electromagnetic interaction

(3.20)k21;“" — k“k" + »\2l:“k"l A""(k) = éf.

solve the equation

To prove the result (3.16) parametrize the propagator as A,,.,(k) = A(k)17,,., + B(k)k,,k.., and

Problem 7:

from the rest of the theorv.

the free massless Klein-Gordon equation. so that the effect of the gauge-fixing term decouples

some conserved current. After addition of the gauge-fixing term (3.14). show that 0 · A satisfies

theory that does not interfere with the interactions. consider the Maxwell theory coupled to

To demonstrate that the gauge-fixing term only introduces an extra degree of freedom into the

Problem 6:

____ which is manifestly Lorentz invariant. We will return to this aspect in section 6.

»\=l.2

(3.19)|M,,£“(k,»\) lz: .M“M,,

over the transverse polarizations. one has

the noncovariant terms in (3.18) may be dropped. Consequently. when summing ) A4,,£‘*(k. »\) P

(3.19)k".M,, = 0.

momentum.

couple to conserved currents. such that the amplitude vanishes when contracted with thc photon

that the transversality condition k·s(k. »\) = 0 is not Lorentz invariant. However. if the photons

Obviously (3.17) and (3.18) are not manifestly Lorentz covariant. which is related to the fact

.\:l.2

tris)ku EV = in ku Z gint./t)e;(k./\1=n..t————Ie-——.
.-\.n alternative form is
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are taken on the mass shell. because (p1+p2)·(pl- pg) = pg - pg = 0 and (pl — pg ) ·(pi + P2)
observation is that the gauge·dependent part of the photon propagator vanishes when the pions

where we have set the photon momentum equal to lc, = (p;+p; ),, = (ql +q2 ),,. A first imp¤1’¤¤·¤¤

··· M=‘—_"—-—-—— - (P1+P2) (¢I1+<I2)”) 6"-1-A2)--—-J-——--- - ), (4.4)

i(21r)‘ and a momentum-conserving 6-function, the invariant amplitude is given by

qi and q2 refer to the outgoing particles 5+ and S', respectively. Extracting overall factor of

order. Observe that pl and pg refer to the momenta of the incoming particles P*' and P`, while

Consider now the diagram shown in F ig. 2, which describes the reaction (4.1) in lowest

now subject to the same gauge transformation as ¢>.

(and thus the same electric charge) as ¢, but a different mass denoted by M. Observe that X is

particle 5* we introduce a separate field X, which has the same interactions with the photon

Assume that the particles P* are associated with the field d> introduced above. For the ` I

included in the expressions for the vertices.

particle absorption of its negatively-charged antiparticle. Combinatorial factors have not been

such that an outgoing arrow on an external line indicates the emission of a positively charged

line indicates the flow of (positive) charge rather than the momentum. We choose conventions

The propagators and vertices implied by (4.2) are shown in Table 2. The arrow on the pion

This aspect will be extensively discussed in subsequent sections.

AAI) —· A..(¢) + 6..t'(=). ¢(=) —·€"¢<=)“"

transformations

An important property of the Lagrangian (4.2) is its invariance under the combined gauge

Table 2. Feynman rules for the Lagrangian (4.2)

Il \\
P2 ,’ *f’i

i(21r)* 64(pi ··· pz + ki + k2)(·€2) 'hw

} 5 I \
P2 ,4 p, i(2#)"6‘(1¤i +k—pz)(—i¢)(f1>i ‘*"·P2lu

_2 u, ’l»»·(l··#\ )··g‘
kk1 l ;ET;FF(

i(21r)·* pz + mz

1 1



15

3s V s — 4m? vl sz
O: (412) OCR Output

2 _ _“ 2 , 2 2 2 vm /s 4M? (_ 4(m +M ) _ 16mM

total cross section

Here. or denotes the fine structure constant cx = ez/4vr. Integration over the angles gives the

4.11 ( ). '. cOS 0do a2 \/s—4M2 4m2 4M° -—-—=— -1-1---——-—- dQCM 4s .s—4m2( s )(1 s )
Application of the above formulae gives rise to

»\(2:, y,z) = ::+ y+ z— 2:y - 2IZ - 2yz. (4.10)2 2 z

where my-mr denote the masses of the particles 1-4, and the function A is defined by

. ., d£2cM 641r* s V »\(s,m{,m2·)
4.9 ( )I , ll ldo 1 1 /»\(s,m§.mf) , = V‘

ceaction 1+ 2 —· 3 + 4.

We now use the general formula for the differential cross section for a quasi-elastic scattering

(4.8)U:··%S+T722+AI2—gy/(S···l77?.2)(.$···l1t!2)COS0.

t= -§s + mz + A/I2 + §\/(sn- —I_m2)(.s - 4M'2)cos 6.

between pg and q1:

In the centre-of-mass frame t and u are expressed in terms of s and the scattering angle 0

(4.7). - I M = e- L-.

the amplitude can be written in a simple form

(4.6)s+z+u=2m+2M,*’

which satisfy

(4-5)= —(1>i + pz)? ¢= —(r>i - <1i)°. u = —(pi — qz)°'.

Introducing Mandelstam variables

by introducing the gauge-fixing term into the Lagrangian.

pf — p§ = 0. This confirms that the physical consequences of the theory have not been affected

Fig. 2. Lowest-order Feynman diagram for the reaction (4.1)

P2
\* - P+ ’ / S ,

- _ Q2 .D1/ P+
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41r¤‘

and

.._. : — 1 ‘ 0 . QCM 45( +c¤s ) 4.17 ( 1
do O2 n

one finds the well-known results

where m is the electron mass and M the muon mass. When E >> M.m. as is usually the case.

-) 3s V s -— 4m
U= 1+s (4-16)2 2 +j}1 s2 _ 2 2 2 4rr¤ /5 4flI[2(m +M)4mlI

angles. one obtains the total cross-section

spins. Observe that the cos6 dependent terms coincide with (4.11). After integration over the

where we have averaged over the (incoming) electron and summed over the (outgoing) muon

\dQCM 4s s — -4m 2 s s s2 t _ 3 2 A 2 2 I) .(LL.=9.../;...l{1+ +1-2 1-gL g¤s·0_ (4.15)

For comparison we give the corresponding expression for e+e' —· ;¢+;1`

3s
= U 4.14 ( l

mr

and

(1QCM ~l5
-1.13 l ldo oi . —--— = ——° 9. COS

For s >> mz. M2. these results become
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one could attempt to construct a modified derivative D,) transforming according to

addition of new terms whose variation will compensate for the Oui term in (5.4). As a first step

In order to make (5.1) invariant under local phase transformations, one may consider the

of the Lagrangian (5.1).

derivative of the transformation parameter. This term is responsible for the lack of invariance

induced by the transformations at neighbouring space-time points which is proportional to the

Clearly 3), tb does not have the same transformation rule as w itself. There is an extra term

(5.4)= e‘°€(’l(8“¢»(x) 4- iq0,,g(x)w(I)).

I Y 6,.¢(¢) —· (6n¢(¤¤)) = <7,.(¤"’“"¢(¤¤))

transformation on Outb:

neighbouring space-time points. To see the effect of this. let us evaluate the effect of a local

of the fields in an infinitesimally small neighbourhood. will be subject to transformations at

local character of the transformation is crucial. A derivative. which depends on the variation

same point in space-time. But as soon as we compare fields at different points in space-time the

term. since the variation of that term onlv involves the transformation of fields taken at the

Of course. the local aspect of the transformation is not important for the invariance of the mass

Let us now consider local phase transformations. and verify whether (5.1) remains invariant.

strengths. Phase transformations generate the group of 1 >< 1 unitary matrices called Ufl).

tions. because eventually we want to simultaneously consider fields transforming with different

llere we have introduced a parameter q that measures the strength of the phase transforma

(5-3)E-? =¤··#€E.

implies

(5.2)tit —· W = e‘°€ti*.

are the same at each point in space-time. This is so because

which is obviously invariant under rigid phase transformations. i.e. phase transformations which

(5.1)
~

C,). = -·1;0'¢‘·-7`I1‘lLT‘L(J,

transformations. Our starting point is the free Dirac Lagrangian

.-\s a first example let us construct a field theory which is invariant under local phase

shall also discuss theories based on nonabelian gauge groups.

abelian gauge transformations. i.e. gauge transformations that commute. In later sections we

present the main ingredients of these theories. For simplicity we will first consider the case of

based on gauge invariance. Such theories are called gauge theories. In this section we will

*o charged spinless fields. This is one of the simplest examples of an interacting field theory

ln the previous section we have considered scalar electrocivnamics. the theorv of photons coupled

5. Gauge theory of U(1)
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abelian.

but. as we will see later. this is a coincidence related to the fact that U(1) transformations are

6F,,,, = 6,,6,,f — 0,,3,,f = 0. (5.17)

(5.8) shows that Fu., is even gauge invariant,

conclude that Fw, is itself a covariant object. In fact. application of the gauge transformation

However. since rb transforms covariantly and the left-hand side of (5.15) is covariant. we may

Fu., = 6,1A,, — 0,,,4,,. (5.16)

where

lD,.»D»l tb = —iqF.rt¢·. (515)

one easily establishes

Du(Dv1·(l) = Ougvw ` (qAu8vd` ` " l>qAv0uu` " ([2ApAu w•

Writing explicitly

[D,r.Dtl¢ = D,i(D./¤Z>) — Dt(D,tt/») (5-13)

gauge fields. Namely, we apply the antisymmetric product of two derivatives on tb

tities. This fact may be used to construct a new covariant object which depends only on the

Of course. repeated application of covariant derivatives will always yield covariant quan

With these definitions it is straightforward to verify the validity of (5.11).

Dui/J3 = (8,, ··· fqgA“)1,(’2.

Du¢,1:(0u " iq1Au)¢’1w

D,,(wiu>z) = (Gp - i(qi + <1z)A,,)(¢·itl¤e).

transform under local phase transformations with strength qi and q2, respectively, then we have

tied to the transformation character of the quantity on which it acts. For instance. if tb; and tb;

To appreciate this result one should realize that the precise form of the covariant derivative is

(5-11)D,.(tbit(¤z) = (D,r¢i)¤l>z + ¢*i(D,,tl*z)

tives must satisfy the Leibnitz rule. just as ordinary derivatives do

The observation that D, corresponds to an infinitesimal variation shows that covariant deriva

(5.10)6w = a“D,,¢·.

such a translation a field transforms as

transformation with parameter { = —u,,A,, is sometimes called a covarzanz translazzon. lfnder

combination of an infinitesimal transformation over a distance :1,, and a field-dependent eauge

OCR Outputvariation under an infinitesimal gauge transformation 6u· = iqfzk, with parameteré = —.-i,,. The
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the combined local gauge transformations (5.2) and (5.8). It is not difficult to see that this theory

so that we have obtained an interacting theory of a vector field and a fermion field invariant under

(5.23)= -1w,./iv - 0,,A“)2 - Epo - mab + iq/4,JE~,#t;i,

L = LA + cw

This Lagrangian can now be combined with (5.9),

,.
(5.22)E : -}F3

gauge field itself

The field strength tensor can now be used to write a gauge invariant Lagrangian for the

the homogeneous Maxwell equations.

field. precisely in accord with (5.16). The identity (5.21) is well known in electrodynamics as

This result is called the Bianchi identity; it implies that FW can be expressed in terms ofa vector

(5.21)0,,}:},, + 0,,F,u + 0),1*,,,, = O.

variant bv ordinarv derivatives and obtain

ln this case the field strength is invariant under gauge transformations so we may replace co

D,,F,,,, + D.,F,,, + D,,F,,,, = 0. (5.20)

where we used (5.11) and (5.15). Therefore the Jacobi identity implies

(5-19)= —i<1(D..F»»)¤¢¤

lD»» [Du- Dpllw = D»(lD»· Dplw) — lD»» D»lDit¢

term acting explicitly on w(:c),

as can be verified by writing all the terms. To see the consequence of (5.18) let us write the first

(5-18)lD»»lD»- Dpll + lD~»lD»· Dill + [Up-[Dm D~ll = 0

cyclic combination vanishes identically,

double commutators of covariant derivatives [Du, [D,,, D,,]]. According to the Jacobi identity the

We can use covariant derivatives to obtain yet another important identity. Consider the

that of curvature.

on the right-hand side of (5.15) measures the lack of commutativity, its effect is analogous to

translations on a curved surface. which do not commute for finite curvature. As the tensor Fu,

identity this is not the case for finite Fw,. One encounters the same situation when considering

would lead to the same result when applied in the opposite order. According to the Ricci

two successive infinitesimal covariant translations. one in the A and the other in the 1} direction.

reason for this nomenclature is not difficult to see: if the left-hand side of (5.15) were zero then

called the field strength. This field strength Fu, is sometimes called the curvature tensor. The

derivatives is an infinitesimal gauge transformation with parameter { = —F,),,, where Fu, is

The result (5.15) is called the Ricci identity. lt specifies that the comutator of two covariant
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carry electric charges :i:q. We shall give a more precise definition of the electric charge in section

with the gauge held Au. Hence in electromagnetism the particles described by the various fields

of phase caused by the gauge transformation. also determines the strength of the interaction

The parameter q that we have been using to indicate the relative magnitude of the change

D“D,,¢— m”¢ = 0.

scalar field can be written as

and appears on the right-hand side of the Maxwell equation (5.24). The field equation of the

Ji. = fq((D..¢')¢ - ¢'(D,.¢>)). (531)

the current (5.28) now depends also on the gauge field Ap; it reads

interaction terms in (5.30) that are quadratic in Au. Therefore the corresponding expression for

procedure. Unlike in spinor elcctrodynamics, which is defined by the Lagrangian (5.9). there are

erve that the effect of the covariant derivative coincides with that of the minimal substitution

This is the Lagrangian for scalar electrodynamics. which we have been using in section 4. Ob

(win2 °’= -l<9..¢l— mi¢i— iqA.¢· 6. ¢— q°A?.i¢i°

ct = —iD..¢P - m2i¢1°

so that one obtains a gauge invariant version of the Klein-Gordon Lagrangian

(.5.29)1),,45 = (6,, — iqA,,)qb,

by a covariant derivative.

As before. the requirement of local gauge invariance forces one to replace the ordinary derivative

(5.28)no — (M:) = e*¤****¢<¤=i.

field 0 may transform under local phase transformations according to

It is easy to repeat the above construction for other fields. For example. a complex scalar

xictly speaking not part of Maxwell`s equations.

.3Zhe field equations (5.25) and (5.26) describe the dynamics of the charged fermion. and are

tioned above. the Bianchi identity (5.21) coincides with the homogeneous Maxwell equations.

Clearly (5.24) corresponds to the inhomogeneous Maxwell equation (1.29), while. as was men

(5.27)Ju = iqtpyuib.

where the right-hand side of (5.24) is equal to

(5.26)MQ —m) : —iqz;}A,

(5.25)(0-+m)u>= iqA ub.

(5.24)6"F,,, = .1.,,

To derive the field equations corresponding to (5.23) is straightforward. They read

and FL., is the electromagnetic field strength.

familiar gauge transformation i. which couples to the fermion field via the minimal substitution.

coincides with electrodynamics: the gauge field Au is just the vector potential (subject to its
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the particle. so that the helicity is equal to ;l;s. Consequently massless particles have only

spin of massless spin-s particles must be parallel or anti-parallel to the direction of motion of

detail. we recall that massless particles have fewer polarization states than massive ones. The

already observed this in one particular example in section 3. To explain this aspect in more

interactions of the massless spin·1 particle associated with A, are Lorentz invariant. We have

The fact that Au couples to a conserved current is essential in order to establish that

identities.

In the context of quantum electrodynamics these identities are usually called Ward-Takahashi

which have a more complicated structure than (6.4). Such identities are called Ward identities.

theories. If all external lines are taken off shell one obtains relations between Green`s functions.

but we should already caution the reader that this result does not hold for nonabelian gauge

mass shell. Therefore it is possible to exploit (6.4) for amplitudes with several off-shell photons.

sufficient to require that only the external lines associated with charged particles are on the

Actually, the mass-shell condition for the external lines can be somewhat relaxed: it is ...

equation in (6.2).

condition can be understood as a consequence of the fact that we had to impose the matter field

provided that all external lines other than that of the photon are on the mass shell. The latter

k,,M“(k, - ··) = 0, (6.4)

servation now impli& that

where k and s(l<) denote the momentum and polarization vector of the photon. Current con

M(k, - - ·) = e,,(k)M“(k, - - ·), (6.3)

and several other incoming and outgoing lines takes the form

invariant amplitudes that involve external photon lines. Such an amplitude with one photon

The fact that photons must couple to a conserved current has direct consequences for

virtue of the field equation (5.32) and its complex conjugate.

by virtue of (5.25) and (5.26). Similarly on can show that the current (5.31) is conserved by

= O. (6.2)

= i¢1¤l>(D·J¤) + i<1(¢¤ DW

@..-7** = 6,.(iqr/ri"¢)

for a fermion field one has

Another way to derive the same result is to make use of the matter held equations. For instance.

(6.1)6,,J" = O.

fact that Fu,. is antisymmetric in p and u. It then follows that Ju must be conserved. i.e.

equation must satisfy an obvious restriction. To see this contract (5.24) with O" and use the

The four-vector current Ju that appears on the right·hand side ofthe inhomogeneous Maxwell

6. Current conservation
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couple to a conserved amplitude.

calculate in the new frame. Therefore relativistic invariance is ensured provided that the photons

The first term on the right-hand side corresponds precisely to the amplitude that one would

(6.9)6,,(k) M“(k. ···) —— sL(k')M'“(k', ·· -) + ok;) ,M'“(/c', ·· -).

(6.3) transforms under Lorentz transformations as

where we have used (6.5) and k'° = 0. Using (6.7) one easily establishes that the amplitude

(6-8)= €"‘(l<')6L(k').

c"(k)s,.(k) = (s"‘(k') + o k"‘) (sL(k') + 0

normalization as e(k). This is indeed the case. since

momentum k'. What remains to be shown is that the transverse vector s'(k') has the same

be decomposed into a transverse vector satisfying (6.5) (but now in the new frame) and the

side of (6.7) should vanish when contracted with k'; therefore it follows that this vector can

it is sufficient to note that the condition k ·e(k) : 0 is Lorentz invariant. so that the right-hand

with or some unknown coefficient which depends on the Lorentz transformation. To derive (6.7}

(6.7)£,,(k)— sL(k')·+-ok;).

momentum k'. More precisely,

and the transformed photon momentum k’_ where s'(k') is transverse with respect to the new

isfying (6.5) with ki = O, transforms into a linear combination of a transverse vector s’(k')

vector transforms under Lorentz transformations. What we intend to prove is that s,,(k), sat·

To examine this question in more detail let us first derive how a transverse polarization

lrame.

will in general no longer coincide with the expression (6.6) when calculated directly in the new

form. but since s(k) will not remain transverse after a Lorentz transformation. the amplitude

indicate the other particle momenta that are relevant. Obviously. (6.6) has a Lorentz invariant

where s(k) is the photon polarization vector. ku the photon momentum (kg = 0) and the dots

(6.6)M = €,,(k)M“(k, ...),

tude takes the form

this more precise. consider a physical process involving a photon. for which the invariant ampli

whether the interactions of massless spin-1 particles will be relativistically invariant. To make

The second condition in (6.5) is obviously not Lorentz invariant. and one may question

corresponding to two linearly independent polarization vectors.

lc-s(k):() . ` s0(k)=O.

iielicity zi. and are described by transverse polarization vectors Elk) that satisfy the condition

two polarization states. irrespective of the value of their spin. Physical photons have therefore
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a Coulomb field.

Thomson scattering) for this purpose. Another process is the elastic scattering of a particle by ,

not measured in this way. It is more feasible to use low-energy Compton scattering (also called

probability for absorbing or emitting a zero·frequency photon, so that the charge of a particle is

measures the strength of the photon coupling. Experimentally it is not possible to measure the

one finds F2(k2) = 0 and Fl(k’) = c, where e is the coupling constant in the Lagrangian that

electric charge of the particle in question. For a pointlike particle this is easily verified, and

charge form factor, and as, we have been alluding to above, its value at k2 = 0 defines the

follows, as we will mainly be dealing with physical photons. The function Fl(k2) is called the

The simplification resulting from this assumption will not imply a loss of generality in what

ln order to obtain (7.3) it is essential that we assume current conservation for off-shell photons.

F2(k')=0. (7.3)

are left with

Since the incoming and outgoing particles have the same mass, F1 drops out from (7.2) and we

Fi(k)(P- P) + iFz(k)k= 0 (7-2)2'2 22°

vanish. so

where F; and F; are called form factors. Current conservation implies that k,,M“(p’,p) should

(7-1)M»(P'·P)= Fi(k2)(pL+p»)+iFz(k2)ka

can generally be decomposed into two terms

refer to physical particles of the same mass. so that pi = p'2 = —m*. The invariant amplitude

and outgoing particles are denoted by p and p', respectively, so that k = p' — p. Both p and p'

spinless particle. The corresponding diagram is shown in Fig. 3. The momenta of the incoming

definition consider the amplitude for the absorption of a virtual photon with momentum k by a

invariant amplitude for a particle to emit or absorb a zero-frequency photon. To elucidate this

is indeed the case and to establish that the charge of a particle can be defined in terms of the

to the total charge of the outgoing particles. lt is the purpose of this section to prove that this

that charge conservation should imply that the total charge of the incoming particles is equal

is locally conserved. For scattering and decay reactions of elementary particles it seems obvious

In classical field theory current conservation implies that the charge associated with the current

7. Conserved charges

Fig. 3. The absorption of a virtual photon by a spinless particle

/p
/ l

Q 3 3
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(p.—k> +m; (pr—<2> +m:
= -1 (7;) OCR Output2 k U k 2 _ 2

factors

the momentum factors in the Born approximation amplitude with lc, leads to the following

amplitude vanishes when the photon polarization vector e,,(k) is replaced by ku. Contracting

We now use current conservation on the full amplitude (7.5), i.e.. we require that the

in the soft-photon limit.

terms are thus contained in the second part of (7.5) which is assumed to exhibit no singularities

which the propagator pole cancels, and which are therefore regular if k approaches zero. Those

are measured for real particles, since the deviation from their on-shell value leads to terms in

Therefore we are entitled to restrict ourselves to the charge form factors F,(k2) or Fj(k2) as they

momentum lc tends to zero because the propagator of the virtual particle diverges in that limit.

approximation diagrams of Fig. 4 separately is that they become singular when the photon

outgoing line with momentum pj + k and pg = -m§. The reason why we consider the Born

labels the off—shell incoming line with momentum pi — k and pf = —m$, whereas j labels the

·-. in which one of the external lines is shifted from its mass shell by an amount ku. The index i

where M(A(i] — B) and M(A —- B[j]) denote the invariant amplitude for the process A -— B

3 . ————+F·(k lM(A—· BlJl) (pi + k)’ + m; ’
l2Pj + kly

- (Pi 3 MB=£ k .M(Az-~B)-—-—-————-wF·(k2’ klu

approximation diagrams have the form

to one of the external lines, as shown in Fig. 4, and MH represents the remainder. The Born

where NIB consists of all the Born approximation diagrams in which the photon is attached

(7.5),\A(A-—B-+-7)=.M“(A—·B+·y)+/Vl“(A——·B+·7),

possible to divide the amplitude for this process into two terms

where A and B denote an arbitrary configuration of incoming and outgoing particles. It is

(7.4)A -• B + 7

which a soft photon is being emitted or absorbed; for instance

any possible elementary particle reaction. The derivation starts from considering a process in

We will now show that. with the above definition of charge, one has charge conservation in

Fig. 4. Born approximation diagrams corresponding to (7.6)

.~i + B
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can be parametrized in an analytic fashion in terms of a finite number of parameters. Such

The relevant gauge groups consist of transformations, usually represented by matrices. that

vein as in section 5. assuming invariance under nonabelian transformations.

direct interactions with themselves. However, we will proceed differently and start in the same

then establish that the corresponding amplitudes are only conserved if the gauge fields have

Feynman diagrams with several external lines associated with nonabelian gauge fields. One can

way to discover the need for selfinteractions of nonabelian gauge fields follows from analyzing

for the gauge fields will be considerably more complicated than the Lagrangian (5.14). One

selfinteractions (in other words, they are not neutral as the photon), so that the Lagrangian

these matrices will not commute either. This requires that the nonabelian gauge fields exhibit

be defined along the same lines as in section 7. If the gauge transformations do not commute.

will involve certain matrices, which will appear in the expressions for the charges. Charges can

form among themselves under the group of rotations. The coupling of the gauge fields to matter

which transform among themselves, just as the components of a three·dimensions vector trans- - _,

according to representations of the gauge group. Each representation consists of a set of fields

transformations can act on them. In more mathematical terms. the fields should transform

gauge fields. Also the matter fields must have a certain multiplicity in order that the gauge

gauge transformations depend on several parameters forces us to introduce several independent

parameter f and are obviously commuting (and therefore called abelian). The fact that the

nonabelian. This in contradistinction with phase transformations. which depend on a single

also that they are not always commuting. Groups of noncommuting transformations are called

formations. One distinctive feature of the latter is that they depend on several parameters and

framework can be applied to theories that are invariant under more complicated gauge trans

as electrodynamics that are invariant under local phase transformations. However. the same

demonstrate the essential ingredients we stayed primarily within the context of theories such

ln the previous chapter we have introduced theories with local gauge invariance. In order to

8. Nonabelian gauge fields

definition of electric charge as the charge form factor taken at zero momentum transfer.

particles should equal the sum of the charges of the outgoing particles. This result justifies the

of (7.10) should be obvious. In every possible process the sum of the charges of the incoming

where .M(A —· B) is now the full on—shell amplitude for the process A — B. The implication

(7.10)(Fj(0)—F,(0))M(A— 8):0.Z Z

or. in the soft-photon limit

M(A[il —· B) HU?) + Fj(k2)M(A —· Blfl) = O<k)·

Using the fact that the remaining diagrams in (7.5) are regular for vanishing k. we thus find

"<pj+k>2+m;ip.+k>=+mg
.- M8):"l‘(2pj+k)“ lP;+kll·P€ ='
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of transformations that leave a theory invariant. forms a group.

the product of transformations is associative. It is usually rather obvious that the complete set

formations. the identity and the inverse of each transformation is contained in the set. and if

Mathematically. a set of transformations forms a group if the product of every two trans

on the matrices tu, which can already be derived by considering a product of two infinitesimal

of these matrices must be of the same exponential form. This leads to an important condition

Because the matrices U defined in (8.2) constitute a representation of the group. products

the parameters §“ are small. so that U = 1+ {°t,, + O(E2).

To verify these properties it is usually sufficient to consider infinitesimal transformations, where

independent antihermitean traceless matrices so that the dimension of SU(N) is equal to N2 - 1.

determinant it is necessary that these antihermitean matrices tg are traceless. There are N2 — l

erators tu to be antihermitean N x N matrices. Furthermore. to have a matrix (8.2) with unit

is equal to §N(N - 1). For the SU(N) group. the defining relation Ul = U" requires the gen

are %i\’(N - 1) independent real and antisymmetric matrices the dimension of the .5`O(N) group

antisymmetric matrices. in order that (8.2) defines an orthogonal matrix: UT = U". As there

group. For example. the generators of the 50(N) group must consist of the N >< N real and

of the matrices U and tu. It is usually straightforward to determine the generators for a given

pendent parameters §° and therefore to dimension of the group. is unrelated to the dimension

can be described. The number of generators, which is obviously equal Qto the number of inde

priate to rp, and the §° constitute a set of realparameters in terms of which the group elements

where the matrices tc are called the generators of the group defined in the representation appro

U = ·¤><r>(E°i¤). (82)

For most groups the matrices U can generally be written in exponential form

wx) —- ¤`*f(¢) = U.) vj(¢)· (8-I')

write

A where w denotes an array of different fields written as a column vector. More explicitly. we may

(8-1)w(¤¤) —· ~1»’(=) = Uu>(z).

group transformation the fields rotate as follows

matrices U satisfy the same multiplication rules as the corresponding elements of G. Under a

Lie group G. This means that. for every element of the group G, we have a matrix U; these

Let us generally consider fields that transform according to a representation of a certain

respectively.

(N > 1). As we shall seein a moment the dimension of these groups is %r\'(N — 1) and N2 — 1.

.\' dimensions (N > 2). and the groups SU(N) of N >< N unitary matrices with unit determinant

commute. Two important classes of nonabelian groups are the groups 50(N ) of real rotations in

of dimension one. As mentioned above. this group is abelian because phase transformations

of the group} For instance. phase transformations constitute the group U(1). which is clearly

groups are called Lie groups. The number of independent parameters defines the dimensron
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decomposed into the generators tu,

means that Wu takes values in the Lie-algebra corresponding to the group G, i.e.,W,, can be

where W, is a matrix of the type generated by an infinitesimal gauge transformation. This

Duvji E Burl: - W, tb, (8.7)

latter define the nonabelian gauge fields. Hence

an ordinary derivative and an infinitesimal gauge transformation. where the parameters of the

to the covariant derivative for an arbitrary group. Namely, we take the linear combination of

placement was called a covariant translation. Its form suggests an immediate generalization

derivative and a field·dependent infinitesimal gauge transformation. Such an infinitesimal dis

result of a particular combination of an infinitesimal displacement generated by the ordinary

abelian transformations, where it was noted that a covariant derivative can be viewed as the

The construction of a covariant derivative has been discussed in the previous chapter for

D,,1/:(x)-· (D,ib(z))' = U(z) D,,tl·(1:).

quantity when applied on w.

attempts to replace By by a so·ca.lled covariant derivative Du, which constitutes a covariant

(8.5) this type of behaviour under symmetry variations is difficult to work with. Therefore one

Although the action of the space-time dependent extension of G is still correctly realized by

presence of the second term on the right·hand side of (8.5), Built does not transform coyariantly.

representation of the group G at the same space-time point. are called covariant. Due to the

Just as in section 5 local quantities such as the vector tt; which transform according to a

(8.5)Owl:) —<0,i¢(¤=ll’ = U(r)<9,r¢l=rl + l0,tU(¤¤))¤·(¤¤>

(8.4)zl:(:r)— u»'(x)= U(z)w(:).

relevant when considering the effect of local transformations on derivatives of the fields. i.e.,

becomes important when comparing changes at different space-time points. In particular this is

single point in space-time this extension is trivial. but the local character of the transformations

functions of the space-time coordinates :r“. As long as one considers variations of the field at a

G to a group of local gauge transformations. This means that the parameters of G will become

Let us now follow the same approach as in section 5 and consider the extension of the group

plays a central role in what follows.

the multiplication properties of the Lie group. As we shall see the Lic algebra relation (8.3)

where the proportionality constants fof are called the structure constants. because they define

(8.3)[tart] = faftc.

algebra g corresponding to the Lie group G.

can be decomposed into the same set of generators. These commutation relations define the Lic

transformations: the matrices t., generate a group representation ifand only if their commutators
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This result leads to the definition of a covariant antisymmetric tensor GW,

= —(6,,W,, — 6,,W, — [Wu, li',,])1,/». (8.13)

lD,,.D.,l1i¤ = D,.(D..w) - D.,(D,i¤l¤)

a covariant quantity, is given by

It is easy to see that the commutator of two covariant derivatives Du and D,,, which is obviously

Unlike ordinary differentiations, two covariant differentiations do not necessarily commute.

contain a different representation for the generators (see the simple abelian example in (5.12)).

it acts through the choice of the generators t,. Hence each of the three terms in (8.12) may

Note that the covariant derivative always depends on the representation of the fields on which

(8-12)D.r(<Pvl = (D.i¢>)w + <1>(D,.c‘¤l

o(6tL»), we have Leibnitz’ rule for covariant derivatives,

the translated quantity. Since both these inhnitesimal transformations satisfy 6(étb) = (6¢)1l¤+

infinitesimal field-dependent gauge transformations in order to restore the covariant character of

of covariant translations. which `consist of infinitesimal space-time translations combined with

We have already made use of the observation that the Du can be viewed as the generators

term fbc°f"H’j.

This result differs from the transformation law of abelian gauge fields by the presence of the

(8.11)PV: —· (Wj)' = PV: + f,,,,°§°VVj + 6uf° + O(f2).

evaluate (8.10) for infinitesimal transformations by using (8.3) and we find

econd noncovariant term is a modification that is characteristic for gauge fields. It is easy to

gauge fields W: transform according to the so-called adjoint representation of the group: the

Clearly the gauge fields do not transform covariantly. The first term in (8.10) indicates that the

(8.10)Wu —· WL = uw,,U·* + (6,,U)U

This implies the following transformation rule for Wu,

= {UWHU" +(8,,U)U"l}t,b'.

= U(@,i¢> + (6,rU)¢— (/'(Dwl

(Wn¢’)' = 6,.r£*' - (Dwi'),

must transform under gauge transformations as

Let us now examine the consequences of (8.7). Combining (8.5) and 18.6) shows that li’,p;—

she group from one space-time point to another.

Indeed Wu has the characteristic feature of a gauge held. as it can carry information regarding
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sponds to the homogeneous Maxwell equations.

The relation (8.21) is called the Bianchi identity; in the abelian case the Bianchi identity corre

(8.23)D,,G$P = 0,,Ggp - fbc“VV:Gf,p.

or, in components,

DUGVP = HHGVP _ [HIHY GVPii

where, acording to (8.18), the covariant derivative of Gu., equals

D,,G,,,, + D,,G,,,, + D,,G,,,, = 0, (8.21)

which vanishes identically because of the Jacobi identity. Inserting (8.20) we obtain the result

lD.·lD~- Dpll + lD»lDp· Dall + lD»[D»·D~ll

case we may apply further covariant derivatives to (8.20). In particular we consider

transformation with —Gz,, as parameters. This is the Ricci identity. Precisely as for the abelian

implying that the commutator of two covariant derivatives is equal to an infinitesimal gauge

(8.20)[D,,,D,,] = —G,,,,,

The result (8.13) can now be expressed in a representation independent form

an abelian group), so that the field strengths are invariant in that case.

For abelian groups the structure constants vanish (i.e., the adjoint representation is trivial for

(819)GZ., -— (6`Z..)' = GZ., + f¤s°£°’Gf,..

or, equivalently, as

GHV 1 GL]; = Gnu + [€¤t¤$G[lV]Y

Under an infinitesimal transformation G ,,,, transforms as

term quadratic in the gauge fields.

Note that(8.1T) differs from the abelian field strength derived in section 5 by the presence of the

(8.17)Gi, = Gull'; - OVW: -— fbc“W:Vl’f.

with

(8.16)Gu, : Gfwtu,

generators 1,,,

strength is also Lie·algebra valued. i.e., Gu., can also be decomposed in terms of the group

Because VIQ, is Lie—algebra valued and the quadratic term in (8.14) is a commutator. the field

(8.15)Gu., —-GLU = UG,,,,L'

transformations the held strength must transform covariantly according to

which is called the field strength. As w and D,,D,¢ transform identically under the gauge
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is necessary and sufficient in order that the nonabelian gauge transformations form a group.

commutation relation for these charges is a consequence of the Lie algebra relation (9.3) which

matrices (t¤),·,- can be regarded as nonabelian charges (up to a proportionality factor i). The

shall see in the next section how this coupling constant can be extracted from the fields VV:. The

unitary. The reader will have noticed that there is no obvious coupling constant in (9.7), but we

Observe that the matrices t,, are antihermitean in order that the gauge transformations be

where tu are the parameters of the gauge group G in the representation appropriate to ub.

(9-7)Cam = W§¤J*·r"¢¤w.

Hence the gauge field interactions are given by

where Wu : H’:ta is the Lie-algebra valued gauge field introduced in the previous section.

(9-6)= —wi7¢— m ww + w*r"ll’i.¢.

C = ·-vfiw — mww

forth we will suppress indices i,j, etc.),

this we simply replace the ordinary derivative in (9.5) by a covariant derivative (here and hence

We now require that the Lagrangian be invariant under locnlG transformations. To achieve

is invariant under G. This Lagrangian thus describes N spin·§ (anti)particles of equal mass m.

(9-5)C = —5i01l1{ - miliiwr,

Obviously. if U is unitary. i.e.. if Ul = U"'. the massive Dirac Lagrangian.

wm$—$=Ew.

or. regarding w as a row vector and again suppressing indices. as

- Uk "‘ U'; = UU iZ’j» (9-3)
¢- .¤[ 1

Conjugate spinors ui, then transform as

(9.2)di —· v.(·’ = Utb.

or. suppressing indices i.j, and writing ui as an N-dimensional column vector.

(91)wi — wf = Uijwj.

to a certain group G according to (i.j = l. --·,N)

strate this. consider a set of N spinor fields wi transforming under transformations U belonging

straightforward to construct gauge invariant Lagrangians for spin-0 and spin-§ fields. To demon

liv making use of the covariant derivatives constructed in the previous section it is rather

Q. Gauge invariant Lagrangians for spin-0 and spin··} fields
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Dutb = . N n — -1llaulbv 1 ibHTG 6..w.. 2 w.

Starting from (9.13) it is straightforward to construct the covariant derivative on tk.

construction of the gauge theory of SU(2))

transformations (this is the heuristic argument that motivated Yang and Mills to attempt the

point separately, then one is led to the construction ofa gauge field theory based on local isospin

which one to the neutron. If one insists on being able to define this convention at any space-time

then it is a matter of convention which component of 11: would correspond to the proton and

where U is an SU(2) matrix as defined in (9.8). Ifisospin invariance would be an exact symmetry

(9.13). __w—d·'=UzZ¤.

of invariance under isospin rotations

analogous to the s = -} doublet of ordinary spin. Conservation of isospin is just the requirement

(9.12)(pp), wh

as an isospin doublet. Therefore one introduces a doublet field

to the notion of isospin (or isobaric spin) invariance the proton and the neutron can be regarded

and was motivated by the existence of the approximate isospin invariance in Nature. According

Historically the first construction of a nonabelian gauge field theory was based on .5`U(2)

ensuring that the matrices (9.8) form a group.

[td? L- ”€abc tC1

As can be explicitly verified the generators tu satisfy the commutation relations

TI= 0 1 0 —-i 1 0 (10>¤ T2=(i 0>s T3=(0 -1)*

which coincide with the Pauli matrices used in the context of ordinary spin.

ta = im.

where the three generators of SU(2) are expressed in terms of the isotopic spin matrices ru,

(9.8)U(£)=exp(f°t,,), (a= 1.2.3)

unitary matrices with unit determinant. Such matrices can be written in exponentiated form

for fermions transforming as doublets under the group SU(‘2). This group consists of all 2 >·; 2

To illustrate the above construction. let us explicitly construct a gauge invariant Lagrangian



33
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= -1v,.¢F — m2|¢1° - A1¢»1*

L` = - (8,,q5' + ¢1>'tuWL'f)(8,,¢ - H’fft,,¢) — m°l¢>|°—»\lqbl‘

where we have used a complex inner product lolz E ¢»fd>,. Substituting (9.19) leads to

(9-20)L = —|D.r¢I°— m’l¢1* —»\i¢1*

following Lagrangian is gauge invariant

Provided that the transformation matrices U in (9.18) are unitary ( so that tl = -tG) the

(9.19)D,,¢' = é),,¢>‘ - ¢'tQlVj.

D,,¢> = c'),,¢> - Wjtuo,

`ovariant derivatives read

(9.18)¢>'·-·(d>')'=<1>'U*.

di —· d>' = UQ}

we mav write

(9.1). if we regard ab a.s a column vector and the complex conjugate fields as a row vector ¢1>'.

stance. consider an array of complex scalar fields transforming under transformations lj as in

Gauge invariant Lagrangians with spin-0 fields are constructed in the same way. For in

the weak interactions.

of the 5l`(2) doublet (9.12). Theories based on SU(2) gauge transformations are relevant for

quarks transform as triplets under SU(3) and can thus be viewed as a straightforward extension

are assumed to bind the elementary hadronic constituents. called quarks. into hadrons. The

ransforming under SU(3). The corresponding gauge fields are called gluon fields because they

iantum chromodynamics because one has introduced the term colourfor the degrees of freedom

in the strong interactions. Instead these forces are governed by an SU(3) gauge theory called

However. contrary to initial expectations, local SU(2) transformations have no role to play

W: —- (Wl‘])' = W: + e,,bc)·i’j§° + 8),5*.

while under infinitesimal SU(2) transformations the gauge fields transform according to

(9.16)GZ., : Gulf')? — 0,,W: + ea,,cl¤V:1·l’j,

in (9.1.1)

The held strength tensors follow straightforwardly from the SU(2) structure constants exhibited

(9.15)= Jaw- 11151,4;-)- giwg Zyme.

C = —u·lDw — mww

.i covariant one in the Lagrangian of a degenerate doublet of spin} fields.

fi locally 5l’(2) invariant Lagrangian is then obtained by replacing the ordinary derivative by
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W3- and W‘-interaction terms. which depend on the structure constants of the gauge group.

where one may distinguish a kinetic term. which resembles the abelian Lagrangian (5.12), and

-· yf¤¤°lV§WS@iJ’l’£ + iff¤¤°f¤;°l4-’,$l1’,$)4’,i’lf’{ (10-5)

LW = Tr(t,t,,) ( }(0,,W§— 0,,W:)(8,,Wf - 0,,)*V:)

After rescaling HQ, to gW,,, the gauge field Lagrangian (10.4) acquires the form

is equal to a total divergence).

of Guy. and the second one is not parity conserving (in fact one can show that the second term

alternative forms GM, and G',,,,G',,c,,,,,, are excluded: the first one vanishes by antisymmetry

where we have introduced (4g2)" as an arbitrary normalization constant. Notice that two

(10.4)LW = ;-§;Tr(G,,,,G“"),

conserving Lagrangian can therefore be expressed as a quadratic form in GW,

by virtue of the cyclicity of the trace operation. The simplest Lorentz invariant and parity

(10-3)Tr(G',.,, ···Gi,) —· Tr(UG,,., · - ·Gi,U'l) = Tr(G,,., ·· -GiT).

Consequently the trace of arbitrary products of the form (10.2) is gauge invariant. i.e..

(10-2)G»~G»¤···GM -· GLVGLU WGS. = U(Gi»~Gi»···G»)U

so that for any product of these tensors we have

(10.1)G,,,,—G'LV= UG,.,,U

transforms according to (cf. (8.15)),

construction of such invariants make use of the field strength tensor Gu,. Let us recall that Gu.,

Lagrangian for the gauge fields. which must be separately locally gauge invariant. A transparent

not yet treated as new dynamical degrees of freedom. For that purpose one must also specify a

tions. one replaces ordinary derivatives by covariant ones. Until that point the gauge fields are

fields. Starting from a Lagrangian that is invariant under the corresponding rigid transforma

In the preceding section we discussed how to construct locally invariant Lagrangians for matter

10. The gauge field Lagrangian

where we have used ·r¤·rb + TbT¤ = 1 6.,;,.

(9.22)- giwg (aw., a,,¢) - g (wg)‘ iw,
zz = — |@,.¢1- m•¢n— A1-$1*’ 2’

that case (9.21) reads

charge. Using (9.9) it is easy to give the corresponding Lagrangian invariant under SW2). ln

result once more exhibits the role played by the generators t, as matrix generalizations of the

where in the gauge field interaction terms cz>’ and a> are written as row and column vectors. This
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imaginary parts of ai. Hence the groups U(1) and O(2) are equivalent.

Such U( 1) transformations can also be represented as two-dimensional rotations of the real and

(11.2)d>(:r) — d>'(z) = e’“¢(:z).

This Lagrangian is invariant under constant phase transformations of d>

(U-1)C = ·l@..¢>Iz · V(l¢I)

complex spinless field ¢ :

We now discuss these phenomena in the context of a field·theoretic model based on a

magnet.

spins aligned in a given direction, one obtains an infinite set of ground states by rotations of the

system still commutes with all symmetry transformations. Indeed for the ferromagnet with all

same energy as the original one. because of the symmetry of the theory; the hamiltonian of the

the symmetry transformations on the ground state. All these different states must have the

From a nonsymmetric ground state one may construct an infinite number of states by applying

of a spontaneously broken realization is that the ground state must be infinitely degenerate.

the most obvious implications of having a symmetric theory are absent. One important aspect

broken way. This does not mean that rotational symmetry has no consequences anymore. but

the manifest rotational symmetry; thus the rotational symmetry is realized in a spontaneously

state of lowest energy all spins are aligned. This gives rise to a Finite magnetization which breaks

magnetization is zero. However. in a ferromagnet the spin-spin interactions are such that in the

symmetric ground state in which the atomic spins are randomly oriented. Therefore the gross

state is not symmetric. is the ferromagnet. Nonferromagnetic materials have a rotationally

An example of a rotationally invariant system which is realized in such a way that the ground

momentum. and is thus rotationally symmetric.

lar momentum are not inert under rotations. Nevertheless its ground state has zero angular

by a hamiltonian that is rotationally invariant, while its eigenstates with nonvanishing angu

can give rise to nonsymmetric states: take. for instance, the hydrogen atom which is described

solution does not exhibit this symmetry. In itself it is not surprising that a symmetric theory

It is possible for a theory to be exactly invariant under a symmetry, while its ground-state

11. Spontaneously broken symmetries

included in order to define charges that are conserved.

The reason is obviously that the gauge fields are not neutral. Their contributions must be

constant. According to (10.15) the charges associated with the current are not quite conserved.

This result implies that gauge fields can only couple consistently to currents that are covariantly

, (10.16)8,J°“— fi,c° W: J°“ = 0.
or. explicitly.

r10.15)D.,J°“ = 0.

vanishes. Therefore the current satisfies a covariant divergence equation

OCR Outputwhere we have used the Ricci identity (10.28). Because fb,° is antisymmetric in b and c. 110.14)
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the field about some nonvanishing value. it is convenient to make a decomposition

We now consider the Goldstone mode in somewhat more detail. Since we are expanding

complicated examples of spontaneously broken symmetries are possible.

a scalar parameter. which shifts the phase of d> . the particle is a scalar particle. But more

causes the degeneracy of the potential. Because the symmetry in this case is generated by

degrees of freedom are related to the symmetry that is broken. since it is this symmetry that

spontaneously broken realization is called the Goldstone mode. One recognizes that the massless

there corresponds a massless particle. This particle is called the Goldstone particle. and the

which states that to every generator of the symmetry group that is spontaneously broken.

the ground state value of eb is massless. This is in accordance with the Goldstone theorem.

constant when expanding about the minimum. Consequently, one of the excita.tions about

nplication. Because of the degeneracy there is one direction in which the potential remains

io longer manifest. However. further inspection shows that the symmetry still has an important

to consider the theory for nonvanishing vacuum expectation value means that the symmetry is

a spontaneously broken realization of the symmetry (11.2), because the fact that we are forced

a circle (see Fig. 5), and each of them represents a possible ground state. This situation describes

symmetry (11.2). In the plane of real and imaginary components of d> these minima are located on

that case one immediately realizes that there must be an inhnite set of minima because of the

We now consider the case where the minimum is acquired for a non-zero held value. In

Wigner-Weyl mode.

real and imaginary parts of the field. Such a symmetric realization of the theory is called the

the same mass. which can be understood on the basis of the symmetry (11.2) which rotates the

distinguish two kinds of particles. corresponding to the real and imaginary part of 0. Both have

ll: must be positive because we have expanded the potential about a minimum. We may thus

i his shows that the excitations described by GJ correspond to particles with mass ti: note that

(11.3)LZ = —|O,,d>l- ;i2|d>|+.2 2

expanding the Lagrangian about o = 0 gives rise to

The first possibility is that the potential acquires its minimum at G5 = 0. In that case

than working this out in detail, we give a systematic description of the various possibilities.

describe particles with a mass determined by the second derivative of I/(lol) at m = v. Rather

obtain a Lagrangian of the Klein-Gordon type for the two field components contained in o. which

is determined by the Lagrangian. Expanding the field about its vacuum expectation value v. we

energy is called the vacuum expectation value. The nature of the fluctuations about this value

with particles; the constant field value which represents the field configuration with minimal

corresponding to dynamical degrees of freedom. Such degrees of freedom can be associated

such effects will not concern us here. The field cb will have fluctuations about this classical value

its ground state. Of course. the actual value changes when quantum corrections are included. but

the ground state of the system. iii the same way as the magnetization ofthe ferromagnet specifies

which the potential (and thus the energy) has an absolute minimum. This value characterizes

ln theories such as (11.1) the fields are usually expanded about some constant value for
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the result of our heuristic considerations. and is in agreement with Goldstone’s theorem.

kinetic term for a massless scalar field with some additional derivative interactions. This confirms

But the angular degrees of freedom related to 6 do not have a mass, and we find a standard

p:vp
umif = §%V(p/~/§)l = ;v"<p/t/5i.

Clearly the radial degrees of freedom describe a particle with a mass given by

<u.¤>c = -g<¢>.p>°— gp°<em>* — Vlp/~/5)

which is inserted into the Lagrangian (11.1)

(11.5). 8,.d> = ?e(8,,p + 1;:6,,9),1 - ‘°l"

This leads to

Fig. 5. The potential V(|d>l)

Re eb

`A __ f z

Im eb
° T 1- `

Vi l¢>\)
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(12.7) describes a massive spin—1 field Bu, with a mass given by

If we now expand the field p about its vacuum expectation value v. we find that the Lagrangian

(12-7)C = ·}FZ..(B) - %(@uP)°— %q°.¤°BZ — V(p/x/2)

invariant.

the Lagrangian can be expressed entirely in terms of the fields p and Bu, which are both gauge

we can Simply replace the field strength F“,,(A) by the corresponding tensor F“,,(B). Therefore

Since the relation between B, and Au takes the form ofa (field·dependent) gauge transformation.

(12.6)D,,¢= %e'° (8,_,p-— z`qpB,,).

which is inert under the gauge transformations. The covariant derivative can then be written as

(12.5)B,=A,)—q`l8,,€,

We now define a new field B,) by

(124)Dm = %¢'° (Gm - i¢1p(A,. —<1"6.l9))·

and the covariant derivative takes the form

9(¢)—·0'(¢)=0(=)+<1£(=¤). (12-3)

is expressed by

therefore we adopt the decomposition (11.4). In this parametrization the phase transformation

We assume that the potential acquires an absolute minimum for nonvanishing field values:

Duo : Ono — iqA,q>.

F,,,,(A) = OMA, — 0,A,,

2 » L = ‘TFi1..(A) — lD»¢\ -1·(l¢>l).
1 ")

the derivatives of 05 bv covariant derivatives

under these transformations. We add a kinetic term for the gauge field to (12.1), and replace

Following the rules of the previous sections. it is easy to write down a Lagrangian invariant

(12.1)r1»(¢) ·- -·1i,(¤¤) = AAI) + @,.E(¢)

@(1:)- o'(:r) = el°€1")d>(x),

local U(1) transformations. The combined transformation rules thus read

the previous section by introducing an abelian gauge field Au and by requiring invariance under

generation of a mass term for the gauge fields. To analyse this in detail we extend the model of

case: there exists a second realization of theories with local gauge invariance. which causes the

a similar phenomenon exists for local gauge symmetries. We will see that this is indeed the

Phe existence of two possible realizations of a symmetry naturally raises the question whether

12. The Brout·Englert—Higgs mechanism
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mass of the gauge field. In fact this phenomenon is well known in superconductivity.

forces will be screened. The characteristic screening length is then inversely proportional to the

medium may polarize under the influence of an electromagnetic field, so that the electromagnetic

generated in a medium, it is not obvious that it will still manifest itselfas a long-range force. The

Au mediates a force between charged particles which is of long range. However. when this field is

It is possible to understand the above phenomenon in more physical terms. The gauge field

that we count again four physical degrees of freedom.

one scalar and one massive spin-1 particle. Massive spin-1 particles have three polarizations, so

number of physical degrees of freedom is four. In the spontaneously broken realization we have

and a massless spin-1 particle: since the latter has two physical degrees of freedom, the total

number of physical degrees of freedom has not changed. Originally we had two scalar particles

field. but no gauge invariance. Hence we still count I + 4 = 5 degrees of freedom. Also the

2 + 3 = 5 degrees of freedom: in this realization we have only one spinless field and a vector g___

not been changed in this way. Previously we had a complex field and a gauge field representing

without the necessity of making nonlocal field redefinitions. The number of field components has

and the gauge field remains massless. the decoupling takes place in a purely algebraic manner

degrees of freedom. Unlike in the realization where the potential acquires a minimum at da = 0

for this decoupling is rather obvious, since a gauge invariant theory does not depend on gauge

degrees of freedom. which effectively reside in the phase 0, decouple from the theory. The reason

Hence we have discovered that in the spontaneously broken mode the gauge-dependent

value and the infinite degeneracy of the ground state.

be invariant under the symmetry, which leads to the connection between a nonzero expectation

does represent a physical degree of freedom. In that case the physical states are not required to

a crucial difference with the situation described in the previous section where the phase of cb

quantity is the expectation value of |d>[, while the phase of cb is not relevant. This represents

expectation values for quantities that are not gauge invariant. Strictly speaking the only relevant

this context. Since the physical states are gauge invariant it is not possible to have nonvanishing

vacuum expectation of :15. Actually the term vacuum expectation value is somewhat misleading in

of freedom. which is gauge invariant. has physical significance. The same remark applies to the

have no physical content. Hence the phase of dz becomes irrelevant and only the radial degree

degrees of freedom that are affected by the gauge transformations: these degrees of freedom

case without local gauge invariance, has disappeared. The degeneracy is related to the fictitious

It is important to realize that the degeneracy of the ground state that was present in the

the so-called renormalizable gauge conditions.

for calculating quatum corrections. because it leads to many more ultraviolet divergences than

physical content of the model is immediately clear. However. this gauge is extremely inconvenient

condition cv = P/x/5. which is called the unitary gauge. The advantage of this gauge is that the

invariance in order to put 9(.z·) = 0 from the beginning. This amounts to choosing a gauge

At this point we realize that we could have derived (12.7) directly. by exploiting the gauge

has simply disappeared. while the massive spinless field remains.

The massless held that corresponds to the Goldstone particle in the model of the previous section
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while the W-masses follow from substituting p2 = 1:2 into the last term in the Lagrangian (13.3).

(13.5)mg = zm.

The mass of the so-called Higgs particle. which is associated with p, equals

/,12

p = 0 we have a local maximum. while the minima are at p = tv with

acquires a minimum. The derivative of V(p) vanishes whenever p = 0 or —;f + »\p2 = O. At

Let us now determine the values p = tv for which the potential V(p) = —%;i°p2 + {-»\p*

—°——°‘%(6.i¤)‘ + %up" iw if p(W;)“

- }g°e,,bce.,,. wg wg wg W;

5 = - 1(auwg - 0),M":)2 - 9%,,11*; wg auwg

(0.p/\/2). The Lagrangian then takes the form

gauge: owing to the local SU(2) invariance we can simply ignore the matrix <I> and replace ep by

factor <I> disappears from the Lagrangian. However, it is more convenient to adopt the unitary

define the gauge fields in a way analogous to (12.5), and observe that the generalized phase

In principle, we could now substitute the parametrization (13.2) into the Lagrangian. re

p is gauge invariant and represents the invariant length of the doublet field d>.

doublet 0 can be brought into the form (0,p/\/2) by a suitable gauge transformation. The field

( which is a U(1) "matrix") used in the previous sections. Here we make use of the fact that the

where @(1) is an :z:—dependent SU(2) matrix. which is a generalization of the phase factor exp i6

(13.2)¢(=¤) = ¢i(I) 1 0 ( = -—‘I>(=r) ¢2(¤¤) ~/5 p(==)
the example of the previous section we decompose ¢ according to

With pg. A > 0 the potential acquires a minimum for a nonzero value of the field d>. Following

(13-1)1igw;:¢·T. 6.. ¢) - if (WZ); l<1>l°.(

’’·*mf + pl¢l— M¢

- §g2c,i,ce,d, W: Wg Wg W;

L` = — }(0,,W§—é),,W:)’— ge,,,ciV"} wg 8,,Wf

Lagrangians were already given in the previous sections (cf. (10.6) and (9.22)) and we find

J`C’(2) gauge fields li': coupled to a doublet of splnless fields denoted by cp. The relevant

'»\'e will now apply the Brout·Englert·Higgs mechanism to an SU(2) gauge theory. Consider

13. Massive SL'('2l gauge fields
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(14.5) OCR Outputng - ny. = e%‘¤=€ np;

(14.4)pg — ph = Elluf pg,

and the singlets as

(14.3)in-¢g=e%*··<¢·L,

¢, (14.2)¢-·¢'=e%*¤<

Under the additional U(l) group the doublet fields transform as

quark. respectively.

as a free field. For liadrons. p and n may for instance correspond to the ”up" and the "down"

respectively. The right·handed neutrino was chosen to decouple i11 that case. and only occurs

ln thc original leptonic version of this model p and n correspond to the neutrino and the electron.

¢’1.=(P1..¤1.): PR; nn (14-ll

sentation of SU(2); their right-handed counterparts are singlets:

projection operators §(l rt 75). Their left—handed components are assigned to a doublet repre

formations. To that order we decompose the fields in chiral components with the help of the

Let us first comment on the way in which the fermions transform under the gauge trans

field is associated with a nontrivial subgroup of 5U(2) ® U(l) and will describe the photon.

turns out that there is one nontrivial mixture of the gauge fields which remains massless. This

are massless and have no direct interactions. After the emergence of a mass term. however. it

introduces a novel feature. Initially the three gauge fields of .S`U(2) and the gauge field of U(l)

by M": and the U(l) gauge field by Bu. However. the Brout·Englert-Higgs mechanism now

of dimension 4. there will be four gauge fields: the three gauge fields of SU(2) will be denoted

model for electroweak interactions. which is based on this gauge group. As the gauge group is

a way that we will specify shortly. Our goal is to exhibit the essential features of the standard

two fermions denoted by p and n. which will also transform under the combined gauge group in ,..

U(l) gauge group. so that the resulting gauge group is .S`U(2) ® U(1). Secondly we introduce

We will now extend the model of the previous section in two respects. First we introduce an extra

14. The prototype model for .5`U(2) ® U(l) electroweak interactions

according to the Brout-Englert-Higgs recipe.

is no longer manifest in (13.3) anyway, forms the prime motivation for constructing theories

renormalizable. This aspect. and not so much the gauge invariance of the original theory which

scalar Held has a smoothening effect on the the quantum corrections and makes the theory

so that there is no way to obtain sensible predictions. As it turns out the presence of the extra

at least for the nonabelian case. With an explicit mass term the theory is not renormalizable.

cannot drop the Higgs field. However. for the quantum theory. the situation is quite different.

extra mass term. At the classical level this procedure is harmless and there is no reason why one

p are suppressed. and one is left with the standard Lagrangian for 5U(2) gauge fields with an

pitt': interaction. In the limit A — oo. keeping v fixed. the degrees of freedom associated with

The field p seems to play a minor role. lt only interacts with the gauge fields through the
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6Bri = fini.
(14.11) OCR Output

6W: = 6,,§° + ge§C§°Wj,

terms of the original parameters of SU(2) ® U(1),

parametrized by {and {. Using the infinitesimal gauge transformations of Wg and B,. inEM Z

Let us now examine how the various gauge fields transform under the two U(1) transformations

Bu = cosGw A, — sinGw Zn.

M]; : QQSGW Z“+SIn0IV Ap,

We now redefine the gauge fields wg and B, in accordance with the decomposition (14.8),

would obtain a different mass spectrum for the gauge fields.

gauge field is a consequence of choosing a doublet field. For other sca.Iar field configurations one

content of the scalar fields. The fact that the model of this section has precisely one massless

symmetry structure of the model is already to a large extent determined by the representation

gauge group .S`U(2)®U(1). Observe that. although we have not yet considered a Lagrangian. the

this model. and the weak mixing angle gw characterizes the embedding of U(1)into the fullEM

value of the field o. Hence U(1)M corresponds to the electromagnetic gauge transformations inE

henceforth. thus remains a manifest local gauge symmetry and is not affected by the nonzero

transformations (14.7) with fz = 0. The group generated by {, which we denote by U(1)EM EM

substitute (14.8) into (14.7). Using (14.9) it is then obvious that (14.6) is left invariant under

such that the U(1) subgroup generated by the parameter (EM leaves (14.6) invariant. To see this,

(14.9)tanGw = 1,

where the weak mixing angle Ow satisfies the condition

5: essvwg- san gw ge,m
(14.8)

{J = cos gw £‘ + sin Gw {EM
motivates the following decomposition of (3 and f,

be left invariant under the transformations (14.7). we must obviously have —gf3 + qi = O. This

accordance with the procedure outlined for the gauge fields in section 10. In order that (14.6)

where we have rescaled the SU(2) parameter fa with the .S`U(2) gauge coupling constant g in

0 €&(-y€"+¤£)
(14-7)U(£°»€)=

€i=(y€°+ri€) 0

SU(2) ® U(1) consisting of the diagonal matrices. They are parametrized as

of SU(2) ® U(1). To identify this subgroup. consider first a somewhat larger subgroup of

with p(:z) a real scalar field. The form of (14.6) is left invariant under a nontrivial U( 1) subgroup

(14-6)¢(=¤)=(0.p(1)/~/5).

choosing the unitary gauge. gives

In that case we can decompose cv according to (13.2). Ignoring the matrix Q. which amounts to

We now assume that the potential is such that the potential acquires a minimum for cn ;= 0.

arbitrarv numbers.

where { is the parameter of the U(1) transformations and. for the moment. q. ql, qg and qq are
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gy/5W; —gcos0wZ,—e/4,,
, (14.18) OCR OutputgW,, = glV:(%i·r,,) : gi

gcos0wZ,,+eA, gy/gif'}
form

The Lagrangian for the gauge fields can now be presented. We define the Lie algebra valued

(14.17)J-(T, - sin0WQCOS aw
’ E'·’

= —§·qsin0wY + gcos0wT;,,

Q Z = —§q. sin Fw + gcos 6wT;i,

Z,) to the other fields. which we denote by QZ,

we can also derive a similar expression for the lowest·order coupling of the neutral vector boson

(14.16) charge dijerences within SU(2) multiplets are necessarily multiples of e. Using (14.10)

in units of the coupling constant q of the field d>. Hence ¢ has Y = 1 by definition. According to

The operator Y. which is often called the "weak hypercharge". measures the U(1) "charges" q,

(14.16)= e(T3 + gi').

= ¢(Ta + éqi/4)

eQ= §q; cos gw + gsin 0wT;EM

or doublets, T;) is equal to zero or to the matrix {rg. The charge QEM is thus given by

denote this generator by i times the hermitean matrix T;. Since we are only dealing with singlets

defined in (14.2-5), and the latter is given by the 5U(2) generator associated with {3. We will

lowest-order coupling of the fields Bu and WE. The former is determined by the constants q,

of the photon field A),. From (14.10) we can determine the photon coupling in terms of the

The electric charge QEM, measured in units of e, is defined by the lowest-order coupling

e=gsin6w =qcos0w.

This charge will be denoted by e, so that we have

which shows that the W bosons associated with wg carry an electric charge equal to i:(g sin gw ).

(14.14)
E”swf = ¢e(gsin0w)5w§,

Under infinitesimal electromagnetic gauge transformations wg transform as

(14.13)wg = g`/§`(VVl} ; iW3)

electromagnetic gauge transformations. It is convenient to decompose them according to

electroweak-mixing effects. The fields W:] are electrically charged since they transform under

massive vector boson. whose mass will be different from that of the fields l’l"j·2 because of the

which identifies Au as the physical photon field. The other field Z, corresponds to a neutral

6Zu = aufdv
( 14.12)

6A), = 0,,5EM.

it follows that the fields .4,, and Z, transform according to
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(14.28) OCR Output-%igVV:'p 9 1 L ‘; =‘/i (‘°~"+ Zlcosélw Zupl
—g\/25gW;

D,,d> = (pl 6,, + ·}igcos'l 6wZ,, $2
3,, — icA,, — %igcos'l9w(1— sing 0w)Zu --l-\/2igW:

where the explicit form for the covariant derivative on c5 is equal to

(14.27)5,), = —{D,,¢|2,

field d>.

To find the masses of the wg and Z), bosons we examine the Lagrangian for the scalar

(14.26)£'“" = ic(6,,A,, — 6,,A“)W+“ W'".

to

invariant and follows from (14.22). lt gives rise to a magnetic moment for the W. and is equal

_,,_ defined above. ln addition there is an interaction with the photon field wich is separately gauge

Mfollow from replacing the derivatives on the charged fields I/Vf by the covariant derivatives BE
In addition there are cubic and quartic gauge field interactions. The electromagnetic interactions

normalization convention for real and complex fields was already discussed in sections 1 and 2.

Note that the normalization factor for the W-fields is different. because, wg is complex. The

LO = —§(3,,Wf -— 8,,WIj`)(8,,W[ — 8,,W;) — }(8,,Z,, — 3,,Z,,):' - }(8#A,, — 0,,A,,)°. (14.25)

The quadratic terms in (14.24) read

C4; = —§G‘[[,,G[., - }Gi,G?W — }G?WG‘;U.

ln terms of the above field strengths the gauge field Lagrangian is equal to

(14.23)= cos 9w(0,,A,, — 0,,A,,) - sin 9w(6,,Z,, — 3,,2,,).

G2, EGHB, - 0.,8,,

where 65MH’f = (8,, ; ieA,.)Wf. The U(1) field strength becomes

Gi., = cos0w(8,.Z,, - 3.,2,,) + sin6w(0,,A,, — ELA,) - ig(W:’W[ — Wj’W;), (14.22)

,) (14.21)= a§Mw3= - 0§’*'wg= 4 iycosvwuvjz, - wiz

lt is convenient to decompose the SU(2) field strengths according to

(14.20)GZ, = 0,.l’V§— 3,,VV: + gem, lV;’W§.

or. in component form.

(14.19)GH., = Gull'., — 0,l·V,, — g[Wu, WL.],

and its corresponding field strength
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¢’2 = ··€°°¢¤1l¤1.., = ··¢i WL + ¢>:· PL
(14.35) OCR Output

’= .'°°" =¢` +¢§¤. Vi ¢> M., iP1. L

the invariant products of dm with ¢>,

necessary Yukawa couplings we first form two left·handed $U(2) singlets, wl and wz, by taking

field. Expanding qb about v will then lead to fermionic mass terms. In order to construct the

is via a Yukawa coupling of the scalar doublet d> to products of a right- and a left—handed fermion

invariant mass term is excluded. Therefore the only way for the fermions have to acquire masses

handed fermions belong to different SU(2) representations. so that a direct construction of an

from the product ofa right-handed and a left-handed fermion field. However, the right- and left

We now discuss the generation of fermion masses in this model. Mass terms are constructed

SMW sin' gw
.. ?.q

2v2

(/5 ` 4 MQ,
Gp i (tt/59)*

transfer. In this model its value is given by

caused by the exchange of a charged intermediate W-boson in the limit of zero momentum

The Fermi coupling constant Gp is defined by the strength of the four-fermion coupling

CCSHW6,,-8,,—z(cA,,-gZ,, )Q

where we have used (14.17) and the definition

*9 - .. · ?;*7'LL°}'un[_) ,

_ + %~/2¤y(W,T Ft·r“pt + WJ 171.'7“”L
(14.32) -·

= ‘ $1.5ibL ·· T>n5PR — Wnfjnn

J = ‘ '4?1.D¢1. · FRWPR · HFPDHR

tives into the free massless Dirac Lagrangians.

The gauge boson couplings to the fermions follow directly from substituting covariant deriva

z

(14.31)M f = cos0w.

This leads to the well~known relation

(14.30)Mw = §gv, Mz = §—£——. · cos gw
and substituting p : v.

We can now read off the masses of the W and the Z bosons after combining (14.25) with (14.29)

(14.29)IJ, = -Q-(6,,p)° - §g°cos`2 9wp°Zg — }g’p2(Wlf‘|’.

Substituting this result into (14.27) we find
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As follows from (14.17) the requirement that the (left-handed) neutrino is electrically neutral

qg = 0. The model then depends on three independent gauge coupling constants q,,8w, and 9

one ignores the Yukawa coupling L, and the corresponding restriction (14.38a), and chooses

neutrino is assumed to decouple from the other particles as a free massless field. Therefore

and n correspond to the neutrino and its corresponding lepton. respectively. The right-handed

Let us now briefly discuss the two versions of this prototype model. ln its leptonic version p

strongly to heavy flavours.

is proportional to the fermion mass. Consequently Higgs bosons are expected to couple more

which shows that the Higgs field p couples weakly to the fermions and also that its coupling

(14.41)G,_,, = (/~/:2-Gp m,,_,,,

Combining (14.3) and (14.40) it follows that.

(14.40)mp = Gpv. m,. = Gnu.

expression for the masses

definition of PR and np;. Expanding p(z) about the constant v then gives rise to the following

The coupling constants Gp and G., can be chosen real by absorbing possible phases into the

(14.394:)C,. : —G,, pHRnL + h.c.

(14.38c)£,, = —G, pimp; + h.c..

which. using (14.6), can be written as

(14-395)LZ., = —»/EG., Haw] + hc-.

(14.38b)Ep = —x/EGMUR1/1;» + h.c..

The corresponding invariants are. respectively,

q3 = fh — q. (14.39G)

qi = qi + q. (14-3%)

among the U(1) coupling constants.

We can now construct two invariant Yukawa couplings. if we assume the following relations

_ U,2 _, U); = e%¤(qi+q1£d.2_
(14.37)

];•‘—, uy; = c%i(qI"ql€ Lf,1

Under U(1) tb, and wz transform as

mlm) = -%;p(=)pti¢>
(14.36)

<~‘il1)= :p(xl¤tl1)

Using the parametrization ( 14.6) these singlets take the following form
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<¤»44>
“3°““2<-1)+¤<4>=(—2)+4((4)+<—4>

(14.43) is satisfied.

tions are 2(§)° and ($5):* + (—§)°, respectively. With these values it is easy to verify that also

and (-2)3 to the right-hand side of (14.43). For each quark colour, the corresponding contribu

According to the hypercharge assignments. the leptons contribute 2 ( -1);* to the left-hand side

.. ..:....*·&;:::::··’ *‘·¤?‘‘::z‘;*°"

(14.43)E Y3 = Z Y

the sum of Y3 for all right-handed fermions.

The second condition states that the sum of YB for all the left-handed fermions must equal

agreement with (14.42).

Y = Since a generation contains three quark doublets. the hypercharges add up to zero in

According to the discussion above, a lepton doublet has Y = -1. and a quark doublet has

imst.

(14.42)Z Y = 0.

of the right-handed doublets. Since there are only left-handed doublets. we must have

of the hypercharges of the left-handed fermion doublets must equal the sum of the hypercharges

to eliminate the anomaly, we must satisfy two conditions. According to the first one. the sum

the model at hand. it is only the U(1) gauge field coupling that may lead to difficulties. In order

renormalizability of the theory. are absent (or. at least. their leading divergence cancels). For

diagrams. consisting of fermion loops with external gauge fields. that are known to spoil the

above. this model is anomaly-free. By anomaly-free we mean that cert_ain divergent Feynman

that. provided we make the weak-hypercharge assignments for leptons and quarks that we found

three (because of colour) quark pairs. An important property of this fermion configuration is

Let us now consider this model coupled to a full generation. i.e. to a lepton pair and

—=the right·handed quarks have Y = Q and Y =

lie, and also implies q; = §q,q;) = —§q. Therefore the left·handed quarks have Y = and

%e(q(/q + 1) and §e(ql/q — 1). The choice ql = §q leads to the desired quark charges and

explicitly by using (14.16). (14.38a) and (14.39a). The charges of the two quarks are equal to

transformations the coupling of the photon must be purely vectorlike. This can be verified

and g. Since the mass terms (14.40) and (14.41) are invariant under electromagnetic gauge

(14.38a) and (14.39a) we have again three independent gauge coupling constants. say. q) ,0w.

to generate masses for both the quarks corresponding to p and n. Because of the two restrictions

The hadronic version of the model requires the presence of both Yukawa couplings in order

the left-handed leptons have Y : -1 and the right-haded lepton has Y = 2.

forces one to choose qr = —q. The condition (14.3921) then leads to qg = -2q. Consequently.


