
 
 
 

Universitatea "POLITEHNICA" Bucuresti 
Facultatea de Electronica si Telecomunicatii 

Catedra de Electronica Aplicata si Ingineria Informatiei 

 
 
 

 
 

AdvancedTCA Backplane Tester 
 

referat de doctorat 
 
 
 
 
 
 

Doctorand: ing. Alexandra Dana OLTEAN 
Conducator stiintic: prof. dr. ing. Vasile BUZULOIU 

 
 
 
 

August 2004 
 

 1

C
E

R
N

-O
PE

N
-2

00
5-

01
6

01
/

07
/

20
04



Content 
 
1 Introduction...................................................................................................................... 4 

1.1 Advanced Telecommunications Computing Architecture........................................ 4 

1.2  Inside PICMG specifications for AdvancedTCA .................................................... 5 

1.3 Context and Motivation ............................................................................................ 7 

2 Traffic generation within the AdvancedTCA Fabric Interface...................................... 10 

2.1 Dual Star AdvancedTCA Fabric Interface.............................................................. 10 

2.2 Traffic generation on Fabric Channels ................................................................... 12 

2.3 Marvell SERDES on the Backplane Tester boards................................................. 14 

3 Control issues within the AdvancedTCA Base Interface .............................................. 16 

3.1 MDIO interface....................................................................................................... 16 

3.2 Issues related to the control of Marvell SERDES................................................... 17 

3.3 Control processor .................................................................................................... 18 

3.4 AdvancedTCA Base Interface Functionality .......................................................... 20 

3.5 Control signals ........................................................................................................ 22 

3.6 Control architecture ................................................................................................ 25 

3.6 Controller implementation ...................................................................................... 27 

3.7 Testboards architecture ........................................................................................... 28 

3.8 Testboards PCB design ........................................................................................... 29 

4 Control Software............................................................................................................ 32 

4.1 Software architecture model ................................................................................... 32 

4.2 Software architecture design issues ........................................................................ 33 

4.3 User interface .......................................................................................................... 35 

4.4 Client application.................................................................................................... 39 

4.5 Server application ................................................................................................... 42 

4.6 Client- Server validation ......................................................................................... 43 

WRITEMDIO validation .......................................................................................... 45 

READMDIO validation ............................................................................................ 47 

WRITEMDIO and READMDIO validation............................................................. 48 

 2



5 Conclusions.................................................................................................................... 49 

Appendix1 - SETUP Macros ............................................................................................ 52 

Appendix2 - RESET COUNTERS Macros ...................................................................... 57 

Appendix3 - READ  Macros............................................................................................. 58 

Appendix 4 - Parameters setup by the user in EXCEL..................................................... 59 

 3



1 Introduction 

 

1.1 Advanced Telecommunications Computing Architecture  
 

During 2002 the PICMG (PCI Industrial Computer Manufacturer Group) group of over 

100 participating companies had to address the fact that the Compact PCI market had 

fallen between two targets. It had been too late to capture a significant portion of the 

embedded VME market and it was too slow, from a technical point of view, to capture 

the future telecoms infrastructure market. They realized that traditional bus-based 

architectures would never be able to deliver the required bandwidth and adopted a point-

to-point switching architecture instead. 

The result was the specification of Advanced Telecommunications Computing 

Architecture, known as AdvancedTCA or ATCA, the largest specification effort in 

PICMG’s history. These new specifications, called PICMG® 3.0, incorporate the latest 

trends in high speed interconnect technologies, next generation processors and improved 

reliability, manageability and serviceability. The AdvancedTCA standard was aimed as a 

modular approach, which enables the use of the same chassis/backplane, with different 

modules, for multiple types of equipments. The standard attempts to meet the following 

requirements: 

• Scalable Capacity of up to 2.5 Tbits/s (per chassis) with a centralized switching 

hub interconnected to all module slots in a star or a full mesh configuration  

• Modularity and configurability to enable multiple modules with various interfaces 

and different technologies and storage media to be mixed and matched for diverse 

applications in the same platform  

• Redundancy  

• Advanced power distribution and cooling concepts  

• Support for multiple types of Switching Fabrics (the core of the platform), such as 

Ethernet (GbE), PCI Express and others   

 4



The base specifications for the new AdvancedTCA family are defined in the PICMG 3.0 

standard and were adopted in January 2003. PICMG 3.0 provides specifications for 

electromechanical issues (rack and chassis form factors), interconnect topology and 

electrical characteristics (backplane connectivity, power, cooling, management 

interfaces) for modular shelves. Subsequent specs in the PICMG 3.x series define 

standards for different kinds of protocols to be used with PICMG 3.0 backplane, such as 

PICMG 3.1 (Ethernet and Fibre Channel), PICMG3.2 (InfiniBand), PICMG3.3 

(StarFabric), PICMG3.4 (PCI-Express and Advanced Switching) and PICMG3.5 

(Advanced Fabric Interconnect and RapidIO).  

The AdvancedTCA standard provides rapid development time, economies of scale 

coupled with scalability and the ablity to mix different types of modules and technologies 

in one platform. At the time when we started using AdvancedTCA standard (middle 

2003), early availability products were undergoing lab trials by early adopters, and 

multiple interoperability workshops were held by the PICMG members to ensure multi-

vendor compatibility. 

 

1.2  Inside PICMG specifications for AdvancedTCA 
 

The key feature of the AdvancedTCA standard is its very high bandwidth architecture. 

The base interface defined in PICMG 3.0 specification accommodates essential 

interoperability over a switched fabric supporting 10/100/1000BASE-T Ethernet always 

in a Dual Star configuration with redundant hubs. The fabric interface, defined in the 

PICMG 3.1 specification, is the main channel through which the serial data stream 

passes, in order to support higher-speed signaling technologies. Its specification supports 

many different topologies, from Dual Star to Full Mesh, making it a very flexible 

architecture. For our application (the 10 Gigabit Ethernet switch), a Dual Star Fabric 

Interface topology has been selected because it offers redundant backplane fabric scheme. 

This topology requires two dedicated slots for Hub1 and Hub2 boards to be inserted 

(Figure 1.1). 

 5



 
Figure 1.1: Dual Star topology 

As defined under the PICMG 3.0 spec, the AdvancedTCA backplane has a maximum of 

16 slots within 2 slots are dedicated to the redundant hubs and the rest are used for the 

Node cards. The backplane is populated with high-speed connectors which are disposed 

over three zones to interface with ATCA cards, as shown in Figure 1.2. Zone 1 is for 

power and system management. Zone 3 is for rear I/O access. Zone 2 is the primary data 

transport interface which contains five ZD connectors for four separate interfaces: (1) 

base interface, (2) fabric interface, (3) update channel interface, and (4) synchronization 

clock interface. The figure below illustrates the three connector zones on the ATCA 

backplane and on the matching board to be plugged in. 

 
Figure 1.2: AdvancedTCA backplane and board interface 

 6



A complete rack may consume up to 3.2kW and to cope with this, the power is 

distributed with redundant 48V feeds through a 34-pin power connector designed by 

Positronic Industries. The high-speed switching fabric backplane is accessed, in Zone2, 

from a node board through a ZD signal connector (Erni [ERmetZD] or Tyco [Z-PACK 

HM-Zd]), having 10 rows of 4 differential pairs. The Zone2 is populated with high-speed 

connectors, capable of speeds up to 5 Gbps, and implements the required connectivity, as 

defined in the PICMG specifications, to support the Dual Star topology for the fabric and 

the base interface. The base interface uses 2 such connectors (P23 and P24) on any of the 

hub slots to support up to 14 base channels for the connectivity to every Node slot of the 

ATCA. On the other side, the dual-star fabric interface uses four connectors (P20, P21, 

P22, P23) in every hub slot of the ATCA chassis to ensure the communication to all 

nodes and to the other hub. In any node slot, the fabric interface uses always the P23 

connector to receive the interconnection coming from the primary and the redundant hub. 

A base channel supports four differential signal pairs per link (node - hub), corresponding 

to a row in any of the ZD connectors. Each fabric interface channel, between any hub and 

any node slot, defines eight differential pairs per link suitable for enabling speeds of at 

least 10 Gbps. Such a fabric channel occupies 2 rows in any ZD connector.  

In addition to the specifications for the Data Transport interfaces, their topology, slots 

interconnectivity and well-defined connectors, the AdvancedTCA standard includes 

specification for the cabling, shelf management, layout and trace routing etc., in order to 

ensure proper functionality over FR4.  

 

1.3 Context and Motivation 
 

The implementation of the Switch Fabric for the 10 Gigabit Ethernet switch is based on a 

passive backplane on which multiple 10 Gigabit Ethernet Line cards and one or two 

switch fabric cards are plugged. An Advanced Telecom Computing Architecture 

(AdvancedTCA) has been selected for the design of the T6Pro 10 Gigabit Ethernet 

Switch. The ATCA backplane is well specified and it has been the object of extensive 

and professional simulation, testing and demonstration for showing that it delivers in 

 7



practice what has been predicted in theory. It remains however a high end product, a 

combination of quality printed circuit and well characterized connectors, without any past 

history of application successes. 

The AdvancedTCA standard defines the passive backplane, power sources, the chassis 

and also provides a set of necessary guidelines to assist with the development of the 

boards which will be accommodated within the chassis slots. However, implementation 

issues for prototype PCB designs and the quality maintenance over a production run are 

classical problems for any high performance product. At the logical level, the 

functionality of a prototype PCB can be affected by the system design and by the 

components functionality, which in the case of the digital circuits used in the state of the 

art boards, are also usually prototypes. For production boards, quality control is an issue 

because controlled impedance has to been maintained over a very large area and standard 

checks are usually only made on test coupons at the edges of the boards, where the tests 

are performed only in the low frequency domain. To maintain a competitive position, 

companies often have to introduce in their final systems prototype silicon, mounted on 

prototype PCBs, running high speed signals across a prototype backplane. This in turn 

gives rise to great difficulty in determining the source of any problems: are they in the 

silicon or in the backplane? The worst case scenario is one in which marginal silicon 

performance that escaped attention in the qualification phase results in low level errors 

when combined with transmission line characteristics that are just sufficiently out of the 

spec not to have been detected by traditional coupon tests. Tracking down those kinds of 

problems, and fixing them, can sometimes take as long as the original design cycle. To 

avoid that possible nightmare scenario, it would be preferable to characterize first the 

backplane and to remove it from the list of error sources. 

At first, we considered specific test systems existing on the market for backplane 

validation. However, it turned out that such available testers are essentially checking only 

the connectivity and they work either at low frequencies or DC. More performing testing 

system are of course available, in terms of high end controllable data streams, from 

companies who address the prototype system characterization and test issues, but their 

price position excludes them from the production testing market. It was therefore decided 

to design and build an AdvancedTCA Backplane Tester, able to address the most critical 

 8



situations possible to meet in the specified ATCA backplane. Our Backplane Tester 

system will be not only a simple continuity tester, but a real high-speed data traffic 

generator over the Dual Star fabric interface for a fully populated ATCA backplane. 

Some of the high-level requirements we have for the ATCA Backplane Tester system 

are:  

• the possibility to provide a relatively inexpensive AdvancedTCA backplane 

validation tool that goes beyond connectivity testers or limited test coupons 

• the possibility to demonstrate that any given AdvancedTCA backplane assembly 

can sustain full bandwidth error free communication across all links of the Dual 

Star fabric simultaneously  

• the possibility to easily identify fault conditions to assist in the manufacturing 

process 

The AdvancedTCA Backplane Tester design consists of a set of high speed Serdes 

devices mounted on hub and node boards that approach as closely as possible typical 

implementations on production modules. The Serdes of choice use the same transmission 

technology as the switch and node chips in a typical design and they can be programmed 

to simultaneously drive every interconnection link with pseudo-random bit sequences. 

In the next chapters, detailed information will be provided about the hardware and the 

software design of the AdvancedTCA Backplane Tester. The chapter 2 presents the 

traffic generation over the Dual Star Fabric Interface of the AdvancedTCA backplane. 

The chapter 3 discuss the control issues of the Backplane Tester system and shows the 

final architecture and the PCB layout. The software structure is presented in chapter 4. 

The chapter 5 contains the conclusions. 

 

 

 

 

 9



2 Traffic generation within the AdvancedTCA Fabric 
Interface 

 

2.1 Dual Star AdvancedTCA Fabric Interface 
 
The AdvancedTCA backplane is tested in order to provide a suitable degree of 

confidence of its integral functionality, by providing ‘real’ traffic over every link in the 

Dual Star fabric interface. The active Backplane Tester system provides the Hub and 

Node boards to be plugged in an ATCA backplane to be tested during or after the 

manufacturing process.  

Even though the AdvancedTCA standard specifies a maximum of 16 slots in the chassis, 

the target ATCA design has a total of 14 slots, so our active Backplane Tester system was 

designed in order to fully-saturate with traffic any of the fabric channels within these 14 

available slots. Within the ATCA backplane, logical slot1 and 2 are dedicated for the Hub 

boards (primary and redundant) and they are connected to all the other slots of the Nodes 

across the ATCA backplane using the Dual Star fabric interface. Each Node board has 

two Fabric channels, one Fabric Channel connecting Hub1 and one Fabric Channel 

connecting Hub2. As a consequence, each Hub board has twelve Fabric Channels to 

connect all the Node boards plus one Fabric Channel to connect Hub boards together. 

The next figure shows the topology of the Dual Star fabric interface for an ATCA chassis 

implementing 12 Node cards and redundant hubs. Each arrow corresponds to one fabric 

channel. 

 10



 
Figure 2.1: Fabric interface Dual Star topology 

The PICMG® 3.0 specifications define the physical implementation of each Fabric 

Channel in terms of pin assignment on backplane connectors. It is based on four 

differential pairs per direction. In our application, each differential pair routing over the 

T6 Pro (10Gbps Ethernet switch) backplane operates at 3.125 GBaud, leading to a raw 

throughput of 12.5 GBaud per Fabric Channel. Signal encoding is 8B/10B so that the 

effective throughput is 10 Gbit/s per Fabric Channel. In the T6 Pro design, the each 

Fabric Channel has been enlarged beyond the requirement of the PICMG® 3.0. This 

extension is based on two extra differential pairs per direction so that the raw and 

effective throughputs of each Fabric Channel become respectively 18.75 GBaud and 15 

Gbit/s. This extension is achieved by adding extra backplane and an extra connector 

(P19) in the rear I/O area Zone3 of the ATCA chassis. In this way, the fabric channel in 

the Backplane Tester system is composed of six differential pairs per direction. The 

fabric interface routing assignment is reported in Table 2.1. Each of the fabric channels is 

routed across the ATCA backplane from the connector P23 row1-2 on the node board to 

the matching connector in the Hub1, and from the same connector P23 row 3-4 on the 

node to the matching connector on Hub2. 

 11



 

 Physical slot # 
Channel # Connector Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

P20 9-10 Fabric 
Channel 13 P19 2 

14-1 14-2 

P21 1-2 Fabric 
Channel 12 P19 3 

13-1 13-2 

P21 3-4 Fabric 
Channel 11 P19 4 

12-1 12-2 

P21 5-6 Fabric 
Channel 10 P19 5 

11-1 11-2 

P21 7-8 Fabric 
Channel 9 P19 6 

10-1 10-2 

P21 9-10 Fabric 
Channel 8 P19 7 

9-1 9-2 

P22 1-2 Fabric 
Channel 7 P19 8 

8-1 8-2 

P22 3-4 Fabric 
Channel 6 P19 9 

7-1 7-2 

P22 5-6 Fabric 
Channel 5 P19 10 

6-1 6-2 

P22 7-8 Fabric 
Channel 4 P20 5 

5-1 5-2 

P22 9-10 Fabric 
Channel 3 P20 6 

4-1 4-2 

 
 
 
 
 
 
 
 
 
 
 

Not implemented on backplane 

P23 1-2 Fabric 
Channel 2 P20 7 

3-1 3-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 

P23 3-4 Fabric 
Channel 1 P20 8 

2-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 

Table 2.1: Fabric interface routing assignment 

The total of 25 Fabric Channels, 12 differential pairs each, occupies 300differential pairs 

on the ATCA backplane. 

 

2.2 Traffic generation on Fabric Channels 
 
 
In order to support the high-speeds for the serial data streams within the fabric channel, 

PICMG specifications recommend the use of ‘SERDES’ interfaces. There are several 

standard commercial SERDES devices available on the market, which are relatively 

cheap, small and able to transmit and receive a high-speed controllable pseudo-random 

bit sequence (PRBS). The basic idea is to use such devices on each of the hub and the 

node boards of the active Backplane Tester system, in order to fully-load with PRBS 

traffic any interconnection within the dual-star fabric interface.  

In order to provide traffic for saturating all the Fabric Channels, Marvell Alaska 88X2040 

transceiver has been selected because its built-in Bit Error Rate (BER) circuitry permits 

to generate and check traffic without external devices, which makes the design more 

 12



trivial. The Alaska transceiver is a fully integrated SERDES (serialization/deserialization) 

device that incorporates four independent lanes and delivers high-speed bi-directional 

point-to-point transmission at 10Gbps using eight differential pairs. The self test circuitry 

in each of those four lanes typically generates a 3.125Gbps PRBS data stream per 

direction, which is sent out via a set of four differential output pins of its eXtended 

Attachment Unit Interface (XAUI) interface. The 88X2040 functional block diagram is 

reported in Figure 2.2.  

 
Figure 2.2: 88X2040 transceiver functional block diagram 

In the Backplane Tester application, the 10 Gigabit Media Independent Interface 

(XGMII) is not used. Valid 8B/10B patterns are generated within the 10GBASE-X 

Transmit Physical Coding Sublayer (PCS), serialized and sent to the differential pairs 

using a high-speed interface. On the end of each differential pair, data are de-serialized, 

aligned, de-skewed, decoded and finally checked within the 10GBASE-X Receive PCS. 

Pseudo-Random Bit Sequence (PRBS) generators and checkers are also supported by the 

88X2040 transceiver. At the Serdes receiver, the incoming PRBS data stream is CRC 

checked and five 32-bit counters are implemented – one error counter per each lane, plus 

a master counter register.  

 13



As the PRBS data stream on the ATCA backplane can be driven over long distances of 

PCB (FR4) trace, different levels of programmable pre-emphasis can be used in every 

lane of the transmitter serdes to compensate for the high frequency loss (e.g. skin effect). 

The control of the pre-emphasis is a very important feature, with significant influence 

over the signal integrity aspects studied during testing the AdvancedTCA backplane. The 

BER feature also permits to test independently each differential pair connection in order 

to isolate source of errors in a given Fabric Channel. 

 

2.3 Marvell SERDES on the Backplane Tester boards 
 

Since each Serdes device embeds four differential drivers and four differential receivers 

operating at 3.125 GBaud each, three of them are required to saturate the Fabric Channels 

of each Node board. A hub board supports a maximum of twelve fabric channels for all 

the Node slots and one fabric channel for the other hub; this corresponds to a need of 20 

Marvell devices (in fact 19.5!) on a hub. The figure 2.3 shows the placement on the hub 

and the node boards of the Marvell serdes, used as PRBS traffic generators in the Dual 

Star fabric interface. For simplicity reasons, we highlighted only the star which emanates 

from the hub1; a similar star starts from hub2 towards all the slots. 

 
Figure 2.3: Marvell Serdes as traffic generators in the active ATCA BP Tester system 

 14



The figure above reports the implementation of the Serdes devices in the Backplane 

Tester system. The ‘green’ rectangles correspond to the Serdes devices assuring the 

communication with the primary Hub1 and the ‘purple’ color highlights the devices used 

for the communication with the redundant Hub2. The implementation of the Serdes 

devices in the Backplane Tester system is reported in Figure 2.4. In the full system, 76 

devices are involved to saturate with traffic the total 300 differential pairs in the Fabric 

Interface: 20 for each Hub board and 3 for each Node board.  

U7 U7 U7

HUB 1

HUB 2

NODE 3

U4

U4

U7U20

U20 U7

U19U20 U19U20 U19U20 U7U19U20 U7U19U20 U7U19U20

U19 U18

U19 U18 U17 U16

U17 U16 U15 U14

U15 U14

U5U6

U5U6

NODE 4 NODE 5 NODE 6 NODE 7 NODE 8

 
 

U7 U7 U7 U7

HUB 1

HUB 2

U1

U1

U19U20 U19U20 U19U20 U19U20 U7U19U20 U7U19U20

U13 U12U3 U11 U10U2 U9 U8

U13 U12U3 U11 U10U2 U9 U8

NODE 9 NODE 10 NODE 11 NODE 12 NODE 13 NODE 14

 
 
Figure 2.4: 88X2040 transceivers implementation in the Backplane Tester system 

Thick lines represent four differential pairs per direction. Thin lines represent 

two differential pairs per direction. 

 15



3 Control issues within the AdvancedTCA Base Interface 
 

3.1 MDIO interface 
 

The chips handling 10Gbps functions have a standardized control path (MDIO), defined 

by the P802.3ae 10Gb/s standard. The Serdes chips used for generating the test traffic are 

no exception, and so, the MDIO control needs to be fully understood in order to 

implement it on the test board. The 10 Gigabit standard defines the Management Data 

Input/Output (MDIO) interface between a Station Management (STA) and a managed 

physical layer device (PHY) entity, in order to allow the access to the internal registers of 

the PHY device. The MDIO is a slow serial interface that supports three types of frames - 

address, write and read frame as shown in the figure 3.1. Within these, the address 

(access type) and the write frame are driven by the STA to the PHY device, 

synchronously with the management data clock (MDC), while the read frame is driven by 

the PHY device. 

 
Figure 3.1: MDIO address, write and address frame as defined in 10 Gigabit standard  

The MDIO control bus is a slow (0 to 10MHz) two wire bussed connection. One wire 

carries the common clock from the master (STA) to the bus slaves (PHY devices). The 

other wire is bi-directional. It carries address information during the start of the 

transaction and then data ‘out’ for a write or ‘in’ for a read typical MDIO frame. A 

typical write and read MDIO sequence is shown in the figure 3.2. 

 16



 
Figure 3.2: Typical MDIO sequence 

Due to the 5 bits limitation in the PHYAD field, a single STA can access a maximum of 

32PHYs through a single MDIO interface. For writing data to a PHY internal register, the 

STA first send on the MDIO bus, synchronously with the MDC, the ‘MDIO address 

frame’ which contains the physical address of the PHY and its register address to be 

access for a write operation. Secondly, the STA send on the MDIO bus the ‘MDIO write 

frame’ containing the data to be written at the address of the previous specified register in 

the PHY. Even though can be up to 32 such PHYs located on the same MDIO bus, only 

the device which recognizes its physical address will take the data sent by STA and found 

at that moment on the MDIO bus. For the MDIO read operation, STA is also first sending 

on the MDIO bus the ‘MDIO address frame’, followed by the ‘MDIO read frame’, 

containing the physical address of the PHY whose register we want to read. Only the 

PHY device which recognizes its address will answer by placing on the MDIO bus the 

content of the register previously specified in the ‘MDIO address frame’. 

 

3.2 Issues related to the control of Marvell SERDES  
 

In the figure below we have a look inside the transmission path between two Marvel 

Serdes across the ATCA backplane and consider, for simplicity reasons, only a single 

lane in the device. 

 
Figure 3.3: Single test channel between two serdes devices 

 17



The typical configuration phase for every Marvel Serdes includes device initialization, 

the pre-emphasis settings for every serdes lane and the setup of the device for driving 

PRBS or Jitter traffic. All this set of operations is realized by writing the internal serdes 

registers, as follows: Control Register, Pre-emphasis Registers for Lane0, 1, 2 and 3 and 

Random Sequence Control Register. Results monitoring means gathering information 

about the status of the device and statistics of the error counters, by reading the device 

Status Registers and the 32-bit error counter registers implemented for every lane. 

A very important issue that will be discussed in more details in the next paragraph is the 

controlling of the PRBS data stream (generation and monitoring) within the ATCA 

Backplane Tester system.  

 

3.3 Control processor  
 

The STA within the MDIO interface can be any processor or microcontroller used to 

emulate the MDIO interface by generating the address, write and read MDIO frames 

synchronously with the MDC clock, in order to get the access to the Marvel serdes 

control and status internal registers.  

It was not an easy job to choose a relatively cheap micro-controller to do this job (MDIO 

interface emulation) for the BP Tester system. A controller with a lot of embedded 

functionality was required to reduce to a minimum the hardware design of the hub and 

the node boards, the final test of these boards and the programming effort. One of the 

functionalities required is an Ethernet interface to connect to a computer from where an 

user to be able to specify and control the tests of the ATCA backplane. In addition, a 

reference platform was request to allow for software development and testing in advance 

of the board production. 

The requirements are met by the Lantronix DSTni-LX-001. It is a 16-bit microprocessor, 

Intel 80186 compatible, with on-chip memory and all required communication 

peripherals as illustrated in the figure. It supports a real-time operating system (RTOS), 

 18



an embedded TCPIP stack and it is designed to use standard Intel/AMD x86 development 

tools.  

 
Figure 3.4: DSTNI-1 System Block Diagram 

One of the attractions of the Lantronix is that is quite simple to integrate in the design: 

• it already includes 256KB on-chip SRAM memory 

• it has additional features, which allows to connect external RAM and non-volatile 

Flash memory, up to 1MB in the standard 80x86 address mode (20-bit), 

respectively 16MB in the extended address mode (24-bit)  

• it drives a set of industrial field bus ports and it supports total of 32 programmable 

I/O pins 

• it has an integrated Ethernet 10/100 Mbps controller with Media Independent 

Interface (MII), for connection to an external physical layer device (PHY) 

The basic idea is to use the Lantronix controller to emulate the MDIO interface for all 

serdes devices in the BP Tester system, through its 32 I/O programmable pins. The 

control signals generated from the controller will be spread-out over the backplane using 

the ATCA Base Interface. 

 

 19



3.4 AdvancedTCA Base Interface Functionality 
 
 

All PICMG 3.0 compliant backplanes support a Base Interface in a Dual Star topology. 

Each Base Interface Channel is composed of four differential pairs per direction and is 

designed to support 10/100BASE-TX or 10/100/1000 BASE-T Ethernet. Control data is 

fanned out over the Dual Star Base Interface in the ATCA backplane. Once the 

correspondence between the MDIO control signals and the BP connectors pins has been 

decided, the control data can be transmitted/received across the ATCA backplane using 

the base interface in a similar way as the Fabric Interface was used to fan-out the PRBS 

data streams. Even though a similar (Dual) Star emanates from the redundant Hub2, only 

Base Interface Channels connecting primary Hub1 are used. 

Each link in the above Dual Star base interface defines a base channel, starting in the 

primary Hub1 and having the end point in any other slot (node or hub2) of the backplane. 

Each base channel has four differential pairs, in which two pairs are use to transmit the 

signal while the other two are used to receive that signal. When mapped into connectors, 

a base channel occupies an entire row in one of any of the connectors on Hub1, Hub2 or 

node board, as shown below.  

Figure 3.5: The base channel layout 

On the entire ATCA backplane, there is a total of 25 Base Channels, eight differential 

pairs each, which occupy 200 differential pairs. Similar as we did for the Dual Star fabric 

interface, we studied the mapping of the base channels into the backplane connectors 

depending on the slot position. The Table 3.1 shows the Base Interface routing 

assignment.  

 20



 Physical slot # 
Channel # Connector Row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Base 
Channel 1 

P23 5 Not used 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 

Base 
Channel 2 

P23 6 2-1 1-2 Not used 

Base 
Channel 3 

P23 7 3-1 

Base 
Channel 4 

P23 8 4-1 

Base 
Channel 5 

P23 9 5-1 

Base 
Channel 5 

P23 10 6-1 

Base 
Channel 7 

P24 1 7-1 

Base 
Channel 8 

P24 2 8-1 

Base 
Channel 9 

P24 3 9-1 

Base 
Channel 10 

P24 4 10-1 

Base 
Channel 11 

P24 5 11-1 

Base 
Channel 12 

P24 6 12-1 

Base 
Channel 13 

P24 7 13-1 

Base 
Channel 14 

P24 8 14-1 

Not 
used 

 
 
 
 
 
 
 
 
 
 
 

Not implemented on backplane 

Table 3.1: Base Interface routing assignment  

Both P23 and P24 connectors are used on the Hub1 to support connections to all slots in 

the ATCA chassis. The node boards are always using only row 5 in the connector P23 for 

the connectivity to Hub1. The base channel starting in Hub1 is received in Hub2 at 

connector P23 row 6, a different point as in any node board, due to the presence of Shelf 

Management Controls (SHMC) which already occupies row 5 in Hub2. It is an 

asymmetry in the system between the Hub2 and the Node boards caused by the presence 

of the Shelf Management Controls (SHMC): the Base Channel from Hub1 is received in 

Row 6 of Hub2 and in Row 5 in any of the Node card. 

For example, a set of signals sent from Hub1 connector P23 row 7, will be received on 

the Node card situated in the logical slot3 at the connector P23 row 5. If the same set of 

signals is sent from Hub1 connector P23 row 6, it will be received by the Hub2 at the 

connector P23 row 6. 

 

 21



3.5 Control signals 
 
 
This microcontroller chip (Lantronix) is implemented in Hub1 which is the single point 

of control for the whole backplane tester system. The control structure uses the Base 

Interface Channels issued from Hub1 to distribute control signals to all Node boards and 

to Hub2. 

Since 88X2040 transceivers are controlled with a Management Data Input/Output 

(MDIO) serial link, the microcontroller has to emulate MDIO protocol through its 32 I/O 

lines. Moreover, some fan-out is required because there aren’t enough lines to give every 

88X2040 transceiver an individual control pair. For controlling each 88X2040 

transceiver, three lines are used: a MDIO bi-directional data line, a Management Data 

Clock (MDC) and a reset line (RESET). Each differential pair on the backplane has 

controlled impedance tracks designed for carrying 10/100/1000 Mbit/s Ethernet signaling 

so control signal integrity is not a problem. However, the control port lines need to be 

buffered to drive differentially the Base Interface Channels. Since the MDIO lines are 

bidirectional, the direction the data line buffers are driving is specified by a READIO 

signal provided by the microcontroller. It is then sent on the fourth signal pair. 

As the AdvancedTCA standard already defines the differential connectivity across the 

backplane, our job was to find the best way to assign the four control lines to the 

differential pairs of the ATCA backplane connectors. This was quite easy as the base 

channel represents a row in the ZD connector with four differential pairs, and there are 

exactly four control signals (MDC, RESET, MDIO and READIO). So, it is enough to use 

one base channel per each link starting from the Hub1 to fan-out the control data towards 

the populated slots. Based on the base channel layout for Hub1/2 and Nodes presented 

Figure.3.5, we decided to use the following assignment of the MDIO control lines to the 

backplane connector pins. 

 22



 

Diff. Pair HUB1 
Connector Pair 

HUB2/NODE 
Connector Pair 

MDIO a-b c-d 
READIO c-d a-b 

MDC e-f g-h 
RESET g-h e-f 

Table 3.2: Differential Control Pair Assignments 

There is further complication in that a fully-populated Backplane Tester system is 

controlled by only one STA (Lantronix controller) who needs to manage all 76 serdes 

devices and that the MDIO interface only supports five bits of addressing, which gives a 

maximum of 32 Serdes possible to be accesses by a single STA. In these conditions, the 

Lantronix controller needs to manage more than one MDIO chain. We decided for the 

following partitioning of the MDIO chains within the system: 

• Chain A: Node boards located in slots 3:8 with 18 serdes devices 

• Chain B: Node boards located in slots 9:14 with 18 serdes devices 

• Chain C: Hub 2 with 20 Serdes devices 

• Chain D: Hub 1 with 20 Serdes devices 

The MDC clock can be a common signal for all these 4 chains, buffered at the Lantronix 

level. A common signal for all the boards will be as well the RESET and the READIO. 

However, the MDIO signals have to be differently generated and spread-out on the 

backplane, according to their corresponding chain and their directions (MDIO write or 

read). Below, we will cover in details the description of the control signals.   

For each MDIO channel, one pin (within the 32 I/O Lantronix pins) is defined as an 

output (MDO). One output pin is enough to control all Serdes devices existing on one 

channel, as only the device who recognizes its physical address takes data from the 

MDIO bus. In conclusion, four pins within 32 I/O pins of the Lantronix will be used as 

MDIO output pins (defined as MDO_A, MDO_B, MDO_C and MDO_D) to support the 

MDIO write operation synchronously to the MDC. 

 23



• 1 LTRX output pins as MDO_A 

• 1 LTRX output pins as MDO_B 

• 1 LTRX output pins as MDO_C 

• 1 LTRX output pins as MDO_D 

Similarly, at the controller level I/O pins are defined as input (MDI) for the data available 

on the MDIO bus at a certain moment. They are used for the MDIO read operations. 

However, there is further complication for the MDIO read in the case when Serdes-es 

within one chain are located on several PCBs, as it maybe possible that previously write 

operations (MDIO address or beginning of the MDIO read frame) let some data on the 

bus. Therefore, we will consider at the LTRX level one input pin (MDI) per each Node 

slot in the system, as follows: 

• 6 LTRX input pins as MDI_A from 3:8  

• 6 LTRX input pins as MDI_B from 9:14  

• 1 LTRX input pin as MDI_C 

• 1 LTRX output pins as MDO_D 

Both - write and read operations - can be managed by using a single pin at the Lantronix 

level for generating the MDC signal, which will be buffered and then spread out to all the 

slots.  Similarly, one pin defined as output is used for RESET and another one for 

READIO. 

• 1 LTRX output pins as MDC 

• 1 LTRX output pins as RESET 

• 1 LTRX output pins as READIO 

Finally, the Figure 3.6 show the use of the I/O pins in the Lantronix controller in order to 

achieve the distribution of all control signals (within four MDIO chains) on a fully-

populated AdvancedTCA chassis. In addition to these, fan-out and single to differential 

buffering is required to distribute the generated signals from Lantronix on Hub1 towards 

all other slots in the chassis. 

 24



 
Figure 3.6: I/O pins in the Lantronix used to generate the control signals 

 

3.6 Control architecture 

 
The control architecture has been defined so that a single PCB can be used either for 

Node boards either for Hub boards. Hub boards are fully populated with 88X2040 

transceivers whereas Node boards are partially populated with only three of them to 

handle two Fabric Channels. The control architecture is reported in Figure 3.7. The 

control signals MDIO, MDC, READIO and RESET are sent from Hub1 and received on 

Base Channel 1 of Node boards (P23 connector, row 5) and on Base Channel 2 of Hub2 

(P23 connector, row 6). Due to this asymmetry in the system caused by the presence of 

the Shelf Management Controls (SHMC), the Base Channel from Hub1 to Hub2 starts in 

row 6 of Hub1 and is received in Row 6 of Hub2. This explains the array of jumpers 

shown in Figure 3.7, which are used to achieve a different functionality for each board 

(e.g. board used as Hub1 or as Hub2 or as a Node board). 

Let us just take the RESET signal as an example to explain the control architecture. 

When the board is placed in the Hub 1 position, RESET is generated and fanned out to all 

other slots. The fan-out to Hub2 however uses pair Row 6 g-h. Now, when this design is 

placed in the Hub2 position, Row 6 g-h is used to receive the clock MDC so there is a 

first level of jumpers to cover this double usage of pair Row 6 g-h. Now when the board 

is placed in any of the Node slots, MDC is received from Row 5 g-h. There is therefore a 

second layer of jumpers to distinguish between double sources of this control signal. Note 

 25



that when the board is being used in the Hub1 position, there are no jumpers installed at 

all on this second layer since all the control signals to the on-board 88X2040 transceiver 

are generated on the board. When being used as Hub2 or Node card, the microcontroller 

and MDIO buffers are not mounted so there is no driving conflict on the control lines. 

 
Figure 3.7: Control architecture 
 
Taking the overall design now we cover the details on a block by block basis.  

The MDIO line is split into In and Out at the level of the controller because of a pin 

limitation. This is to avoid the problem of individually enabling every input buffer. By 

splitting the Input and Output, we can bus together the outputs according to which chain 

they are on and we can receive all the inputs together and choose the one of interest with 

software. The one exception to this is the internal MDIO to the Hub1 88X2040 

transceiver. The data line is buffered since the Controller pin does not have much drive 

capacity and there are twenty loads to be served. 

 26



The twenty 88X2040 transceivers on each Hub board are split into two groups presenting 

10 loads each to the buffered control signals RESET and MDC. 

READIO, MDC and RESET are also buffered at the level of the microcontroller chip 

since there are twelve line drivers to serve as well as the internal loads. Double buffering 

on the data line is not required because the line has a long time to settle in between 

clocks, the delay can even be extended by software if needed. MDC and RESET lines 

were buffered however to ensure that the edges are rapid and not likely to create false 

triggering inside the 88X2040 transceiver logic. Serial termination is included to avoid 

overshoot. Note that in the case of a Node card, there are only three 88X2040 transceiver 

ports present. For Hub2 or Node cards, all the logic shown in yellow is absent, having not 

been mounted. In this case, there must be some jumpers to select the function as being 

either a Hub2 or a Node card and the appropriate settings for rows 5 and 6 must also be 

selected. 

 
 

3.6 Controller implementation 
 
 
As shown in Figure 3.8, the microcontroller is implemented with two key interfaces to 

access a remote PC: 

• a RS-232 serial link used to load compiled server application from the remote PC 

to the micro-controller 

• an Ethernet interface for communications between the server application 

operating on the micro-controller and the client application operating on a remote 

PC. 

 

 27



Point of control: Hub 1 board

RS-232 port

10/100 Mbit/s
Ethernet port Lantronix

DSTni-LX001

micro-controller

Remote PC

Serial 
Flash 

memory

Parallel 
Flash 

memory

RAM

 
Figure 3.8: Microcontroller implementation 

The microcontroller is associated with on-board parallel and serial flash memories, 

respectively 1M x 16-bit and 264 KByte, for storing the server application. It operated 

with 256KByte on-chip and 1MByte on-board RAM. 

  
 

 3.7 Testboards architecture  
 
 
The hardware design goal of the Backplane Tester system was to finally have a single 

printed circuit board that can be used in every slot position: either as a hub or as a node 

board. This was not an original goal, but seeing that one was almost the subset of the 

other gave the incentive to try.  

The single PCB requirement is achieved by having a single hardware design and 

mounting only the digital circuits required by the final board functionality during the 

manufacturing process. The figure below shows how there can be achieved three 

different functionalities with the same PCB, by only de-populating the Node and the 

Hub2 board. 

 28



 
Figure 3.9: Test board architecture 

Both hub boards carry the Serdes for all the links in the Dual Star fabric interface, but 

only the primary hub board (in logical slot 1) contains the Lantronix controller 

implementation and the control logic. In addition, the Node boards just have the Serdes 

devices required for the links coming from the two hub cards. The implementation of the 

Serdes devices in the Backplane Tester system is reported in Figure 2.4. In the full 

system, 76 devices are involved to saturate with traffic the total 300 differential pairs in 

the Fabric Interface: 20 for each Hub board and 3 for each Node board.  

 
 

3.8 Testboards PCB design 
 

The Backplane Tester boards have the dimensions 322.5 mm x 280 mm. The 14-layers 

stack-up is reported in Figure 3.10. 

 

 29



 

Layer Name Copper thickness 
(mils) 

Dielectric thickness 
(mils) 

1 (coated microstrip) Sig-1 2.1(1)  
Pre-preg   7.5 

2 (ref. plane) P1V5/GND 1.4  
Core   8 

3 (ref. plane) P1V8/P2V5/GND 1.4  
Pre-preg   7.5 

4 (ref. plane) P3V3/GND 1.4  
Core   8 

5 (ref. plane) GND 1.4  
Pre-preg   8.5 

6 (stripline) Sig-2 0.7  
Core   8 

7 (ref. plane) GND 1.4  
Pre-preg   8.5 

8 (stripline) Sig-3 0.7  
Core   8 

9 (ref. plane) GND 1.4  
Pre-preg   8.5 

10 (stripline) Sig-4 0.7  
Core   8 

11 (ref. plane) GND 1.4  
Pre-preg   8.5 

12 (stripline) Sig-5 0.7  
Core   8 

13 (ref. plane) GND 1.4  
Pre-preg   7.5 

14 (coated microstrip) Sig-6 2.1(1)  
Total thickness 

(including plating) +/- 10%  3.1 mm  

Figure 3.10: Backplane tester PCB stack-up  
(1) 1.5 OZ Cu Finish. 

The key design challenge in this PCB design is the routing strategy for the differential 

pairs related to Fabric Interface Channels and the routing of the differential pairs related 

to Base Interface Channels. Among the six signal layers reported in Figure 3.11, four of 

them are dedicated for routing those signals. One of those layers is displayed on Figure 

3.11. 

 30



 
Figure 3.11: Routing on layer Sig-2. 

 

 

 

 31



4 Control Software 

 

4.1 Software architecture model 
 
 
The most commonly used paradigm in constructing distributed applications is the client-

server model. In this scheme, the client application request services from the server 

process, which normally listens at a well known address (port) for service requests. When 

a connection is requested by a client to the server's address, this one services it, by 

performing whatever appropriate actions the client requests. The second task performed 

by the server is to supply information regarding the status of its host. The client and 

server require a well known set of conventions, known as a ‘protocol’, which must be 

implemented at both ends of a connection.  

This client-server model suits quite well our Backplane Tester application and we 

decided to develop the software based on it. From a remote PC, which is connected to the 

Backplane Tester system, the user can completely define the test to be performed over the 

backplane. The controller task is to set-up the traffic across the backplane according to 

the user-defined test, and to maintain the statistics to the remote PC. It comes then 

naturally the distribution of the client tasks for the remote PC and the server task to the 

controller, as shown in Figure 4.1. The connection between the client and the server, 

through which the client requests and the server statistics are sent, is made via TCP/IP 

over a 100Mbps Ethernet link.  

 

 

 

 

 

 

 32



 
Figure 4.1: Client-Server model for the Backplane Tester system 

In this chapter we will consider some of the problems in developing client and server 

applications and look more closely how the user interacts with the tester system for 

defining and performing a test of the ATCA backplane. 

 

4.2 Software architecture design issues 
 

 

The user interface for the Backplane Tester is represented by an Excel spreadsheet 

(see paragraph 4.3), to which the user interacts directly on the remote PC, by defining 

the test to be performed over the backplane.  

A first design issue is related to the place where the conversion of the Excel data into a 

valid request for the server can be done. There are two possibilities: 

• to download the Excel table over an FTP connection on the controller and to 

convert the data there, at the server level; 

• to convert the Excel table on the remote PC into a client request and to sent it to 

the controller. 

We have decided to keep the software on the controller (the server!) simpler as possible, 

in order to debug it easier in case of failure. In addition, we would like to have a direct 

access to the conversion result on the remote PC. For these reasons, the Excel data are 

converted locally, on the remote PC into a valid request to be sent to the server. 

 33



A second design issue is about the format in which the user specifications given in Excel 

are transformed. It is known that in order to program a typical PHY device (serdes) to 

perform certain operations, several serdes registers has to be written with certain values, 

which corresponds to a succession of WRITEMDIO commands. On the other hand, a 

certain succession of WRITEMDIO commands corresponds to a certain task, for which a 

macro can be created (e.g. the initialization of a Marvell serdes device needs 3 registers 

to be written –> 3 WRITEMDIO commands). Similar, reading the error counters registers 

of a serdes devices contains several (8) READMDIO commands, which can be included 

into a macro. Therefore, we have two possibilities of conversion: 

• Convert Excel table into a succession of command lines (macros); 

• Convert Excel table into a succession of WRITEMDIO/READMDIO commands. 

We chose to convert the Excel spreadsheet into a sequence of macros. In order to achieve 

that, the Excel data is converted into three configuration files, containing a succession of 

macros for each defined test. This conversion in pure Excel is impossible. However, it 

can be done by programming or scripting. C programming, here is heavy and difficult to 

manage, but the Visual Basic scripting has the advantage of being managed without 

compilation. We used Visual Basic scripting for converting the Excel spreadsheet into the 

sequence of macros contained in the configuration files. 

A third design issue, very close related to the second one, is about how should look the 

client request sent to the server. As the Excel data is transformed into a sequence of 

macros, we have two possibilities: 

• Send the client request as a succession of macros; 

• Send the client request as a succession of WRITEMDIO/READMDIO commands 

corresponding to a certain macro. 

If we chose to send the request in terms of macros, this would mean that the server has to 

expand each macro in its corresponding sequence of WRITE/READMDIO commands. 

As mentioned above, we want to keep the server application simpler as possible. Also, 

we prefer to expand the macro into a sequence of corresponding WRITE/READMDIO 

commands at the client level, on the remote PC. Therefore, the configuration files are 

 34



considered as input to the client application, which expands each macro into its 

corresponding sequence of WRITE/READMDIO commands and sends it as a request to 

the server. 

A fourth design issue is related to the communication protocol between the client and the 

server. The client request can be send to the server: 

• MDIO command-by-command;  

• One single packet, which encapsulates all MDIO commands corresponding to a 

macro. 

The acknowledge from the server can be received: 

• for each MDIO command separately;  

• one acknowledge packet for all the MDIO commands corresponding to a macro. 

Bandwidth economy reasons determine the choice of the second possibility. Only one 

packet will be sent in request to the server for each macro and in replay to this packet, an 

acknowledge packet will be received back to the client. 

Based on these four architectural decisions, the conversion of the user request (paragraph 

4.3), the client (paragraph 4.4) and the server (paragraph 4.5) applications have been 

created and their descriptions is given in the next paragraphs. 

 

4.3 User interface 
 
 

The user interacts directly with the remote PC where the backplane test is decided via an 

Excel spreadsheet, which represents the user interface. In this Excel spreadsheet, the user 

defines for any given test which set of total available differential pairs to be activated on 

the backplane, the type of bit sequence (PRBS or Jitter) to be sent on these pairs, the level 

of pre-emphasis on the drivers and the duration of the test. The spreadsheet contains 3 

different sheets, but for defining a test the user interacts only by modifying the areas in 

the sheet1 and then by running a macro in Visual Basic over the whole spreadsheet. All 

 35



the rest of the operations, including the processing done in Excel for filling-in the second 

sheet2 and third sheet3, and Visual Basic coding, are completely transparent for the user. 

As result of their execution three different configuration files are automatically generated 

and they will be further used as inputs by the client application.  

Now, we will describe the sheet1 areas of the Excel spreadsheet (ATCA_BP_Tester.xls), 

to which the user is directly interacting and which can be seen in the figure 4.2. There are 

three areas highlighted with different colors (dark yellow, light yellow and light green 

area) where the user defines a test. Every entry in the dark and light yellow shaded area 

can be modified to fully define the active differential pairs for testing over the backplane. 

The dark yellow, represented by the columns C to J, defines the standard1 differential 

pair connections and the light yellow area (columns K to N) defines the extended2 

differential pair links within the Dual Star Fabric Interface between a node and a hub 

board. In the light green zone, the user can set the pre-emphasis level at the transmitter, 

the type of the traffic to be run (PRBS or Jitter), and the time (in seconds) to run the test. 

In the dark red area below, there are given the existent possibilities for PRBS or Jitter 

traffic to choose between. 

                                                 
1  Four differential pairs per direction within a Fabric Channel 
2  Two extra differential pairs per direction in addition to the standard Fabric Channel 

 36



 
Figure 4.2: View of the user interface 

In the second sheet2 of the same spreadsheet, the developer already defined the standard 

and the extended connectivity between the Hubs and the Node boards on the backplane 

for all the existent devices. For the standard connectivity, there is implied one device in 

each of the hubs for serving the connectivity to a corresponding device existent on every 

node board. In the case of extended links, one single device on the node card serves both 

hubs and on each hub one device handles extended links from two node cards. The 

connectivity between a chosen Node and a Hub is defined in terms of MDIO bus (A, B, 

C, and D) that is controlled by the Lantronix, and the device number of the serdes on that 

MDIO bus. For example, the standard link between Node3 and Hub1 is controlled by the 

Serdes#0 on MDIO bus A (A0 – device U20) in Node3 and by the Serdes#6 on MDIO 

bus D (D6 – device U19) in Hub1. Equally, the extended links from Node3 run from 

 37



Serdes#12 MDIO bus A (A12 – device U7) to Serdes#12 on the MDIO bus D (D12 – 

device U7) in the Hub1. Note that Serdes D12 also handles the extended links from C12 

(device U7) in Hub2. MDIO bus A serves nodes 3 to 8, B serves nodes 9 to 14, C serves 

Hub2 and D serves Hub1.The mapping is derived from the diagrams showing the serdes 

device attribution in the Figure 2.5. 

The third sheet3 of the spreadsheet is automatically filled-in, in a totally transparent mode 

from the user point of view. The test information are extracted and manipulated in the 

Excel format at the developer level from the information supplied by the user in the 

sheet1 and the defined connectivity on the backplane in the sheet2. At the Excel level, the 

spreasheet3 defined the test by the mean of each lane, on which MDIO bus, in each 

device to be transmitting, receiving or inactive. So for example, if at least one lane is 

active in the communication between the Node3 and Hub1, A0-D6 (device U20 on the 

Node – device U19 on the Hub1) are automatically considered as drivers/receivers for the 

standard and A12-D12 (U7-U7) for the extended interface. The status of each lane as 

TX/RX, active/inactive is automatically determined from the user test setup in the sheet1. 

For example, in the current test between the Node3 and the Hub1 (see Figure 1) all the 

TX and RX standard differential pairs, the RX pairs and the first TX extended differential 

pair are active, while the second extended TX pair is inactive/disabled. 

Once the user enters the desired test setup in the sheet1 of the Excel spreadsheet 

(ATCA_BP_Tester.xls), the filling-in of the sheet3 with the complete test definition is 

automatically performed. The user just has to run on the Excel spreadsheet a Visual Basic 

macro, which automatically extracts three configuration text files (setup.txt, 

reset_counters.txt and read.txt). These files will be further used as input to the Client 

application for defining the current test over the ATCA backplane (setup.txt) and for 

reading the error statistics for the active links over the ATCA backplane (read.txt).  

 
Figure 4.3: User interface overview 

 38



The data processing in Excel and in Visual Basic is simpler than C programming and we 

manage to obtain without compilation, though a simple and automatic process, the 

configuration files used by the client application. 

 

 

4.4 Client application 
 
 

The location of the client in our Backplane Tester application has been chosen on the 

remote PC, to which the user interacts directly by defining the test via the Excel user 

interface above presented. One main task of the client is to take the user specifications for 

the test, to transform and send them at the server, according to a well-defined client-

server communication protocol. The second task of the client is to get statistics back from 

the server (based on the same communication protocol) and to report these statistics in 

real-time to the user. 

For achieving the first task, the client application takes as input parameters the 

configuration files, which have been created based on the user specifications in Excel. 

There are 3 different configuration text files: <setup.txt>, <reset_counters.txt> and 

<read.txt>, used for achieving specific tasks in the current backplane test. For example, 

<setup.txt> is used to configure each individual lane, defined as active in the serdes 

device, in order to make it able to transmit and/or receive traffic. The 

<reset_counters.txt> configuration file is used to perform the reset of the error counters 

of each active serdes at an interval of 100seconds, as it is recommended in the serdes 

datasheet. The third configuration file, <read.txt>, is used every 60seconds when the 

client requests the server to read the status and the values of the error counters for each 

active serdes device in the test. Each of these three configuration files contains a series of 

command line sequences (macros), shown in the figure below.  

Config. file  Macro Name 

<setup.txt> reset_global 
initialization & initialization_ext 

 39



led_control 
Pre_Emphasis_Setup 
Lanes_Dezactivation & 
Lanes_Dezactivation_ext 
Set_Traffic & Set_Traffic_ext 
 

<reset_counters.txt> Reset_counters 
<read.txt> Read_Status 

Read 
Table 4.1: List of available macros 

The server running on the Lantronix controller only can execute commands, which 

allow a low level WRITE or READ access to the MDIO bus. Therefore the client 

application has to interpret and ‘expand’ each macro into an equivalent sequence of 

WRITE/READ MDIO commands and send this sequence to the server. All the macros 

in the <setup.txt> and <reset_counter.txt> configuration files are transformed in an 

equivalent sequence of WRITE MDIO commands. The macros in the <read.txt> file 

are converted into several READ MDIO instructions. For a more detailed description 

of each macro, see Appendix1, 2 and 3. 

Once achieved the expansion of a macro, the next step is to encapsulate its 

corresponding MDIO commands into a packet, and send it as a request to the server 

application, via the TCP/IP connection. In the communication protocol we defined 

between the client and the server, a packet request has the following format: 

MACRO_Name\\MDIOinstr[1]\\MDIOinstr[2]\\…\\MDIOinstr[n]

Figure 4.4: Format of the client request to the server 

Note1: MDIOinstr[i] can be either a WRITE MDIO command (for any of the macros in 

the <setup.txt> or <reset_counters.txt>), or a READ MDIO instruction (for the macros in 

the <read.txt> configuration file).  

After the client request has been sent, it is the server application task to execute command 

by command and to return back an acknowledge packet. The ACK packet contains the 

execution results of each command from the previously sent request together with the 

client request itself. The ACK package format as defined by the client-server 

communication protocol is the following: 

 40



MACRO_Name\\ACK[1]:…:ACK[n]\\MDIOinstr[1]\\…\\MDIOinstr[n] 

Figure 4.5: ACK received from the server 

Note2: ACK[i] contains the result of the MDIOinstr[i] execution. If it is a WRITE 

command, then a positive +1 value in the ACK[i] confirms that the MDIOintrs[i] has 

been executed successfully in the server, while a negative -1 value shows a failure in the 

execution at the server level. In the case of a READ MDIO instruction, the ACK[i] value 

contains the read value itself on the MDIO bus.  

The received ACK packet is analyzed at the client to determine if all the WRITE 

operations inside one packet have been successfully executed on the server, or to get 

(READ) inquired information about serdes devices (status and/or error counter values). 

On the remote PC, the client displays in real-time on the terminal console all received 

information (ACK packets) from server and the results obtained after the ACK 

processing. For allowing later access to the user, all the displayed information is also 

stored in corresponding LOG files (<setup_LOG.txt>, <reset_counters_LOG.txt> and 

<read_LOG.txt>). A brief overview of the client-server inter-operability is given in the 

figure 4.6. 

Figure 4.6: Client-server inter-operability overview 

An important high-level task performed by the client application is the periodical reading 

and counters resetting for all active serdes devices in the current test. The client sends 

each minute reading request to the server and gets back from this one the information 

about the serdes status and their error counters. Also, the client sends requests for 

resetting the counters each 100seconds, interval recommended by the serdes datasheet. 

The current test is stopped either when the user-defined duration of the test is achieved or 

 41



when the user press <Ctrl^C> buttons. At the end of the test, the LOG files contains the 

results of the setup execution, the latest counters reset and the results of the latest reading 

operation. For any given test, the read values of the counters are showing accumulated 

errors from the beginning of the test. 

 

4.5 Server application 
 
 
The server is running on the Lantronix controller. The application is downloaded via the 

RS-232 serial port from the remote PC and it is stored into the RAM memory, the serial 

flash or the parallel flash on the Hub1 board.  

The Lantronix processor controls the traffic on the backplane, monitoring the state 

registers of the serdes devices, through four MDIO control chains. The control, by the 

mean of write and/or read access to the internal registers, is emulated through the I/O pins 

of the Lantronix, by implementing at the server level the commands for the MDIO write 

and read operations. The MDIO commands permit a low level access to the MDIO bus, 

by allowing to write, respectively read data to/from the bus in a synchronously to a 

locally generated clock. The format of the WRITE and READ MDIO commands send 

from the client and received by the server can be seen in the figure 4.7.  

write_mdio:MDIO_BUS:PHY_ADR:REG_ADR:REG_DATA
read_mdio:MDIO_BUS:PHY_ADR:REG_ADR 
Figure 4.7: Format of the WRITE MDIO and READ MDIO commands 

Note3: MDIO_BUS can any value between A, B, C or D. The values for the device 

physical address (PHY_ADR), the register address (REG_ADR), respectively the register 

data (REG_DATA) are given in hexadecimal. PHY_ADR can have any value between 0 

and 19 for the Hubs (MDIO_BUS C or D) and values between 0 and 2 for the Nodes 

(MDIO_BUS A or B). The REG_ADR can have any value available as a register address 

in the serdes datasheet. 

The request from the client is received as MDIO commands, encapsulated and formatted 

according to the client-server communication protocol into a packet as presented in figure 

4.7. According to the client-server protocol, the server unpacks the client request into 

 42



low-level MDIO commands, which then it solves and gets an ACK for each of them 

individually. For example, in the case of a packet containing MDIO write commands, 

every instruction in the packet is acknowledged with a positive (+1) in the case of 

success, or a negative (-1) ACK in the case of failure. In the case when the package 

contains a sequence of MDIO READ instructions, every operation performed at the 

server returns the value read on the MDIO bus. The ACK package sent to the client is 

formatted according to the client-server protocol and contains an individual value (either 

ACK or read value) for each executed MDIO command in the received packet. 

 

4.6 Client- Server validation 

 
 
For evaluating the control software for the Backplane Tester system before the actual 

Hub and Node boards are coming from the manufacturing process, we used the 

evaluation board of the Lantronix DSTni-LX microcontroller. The DSTni-LX evaluation 

platform is the equivalent of the primary Hub card, having the Lantronix controller on it, 

adjacent memory (RAM, serial flash and parallel flash) and Ethernet interface. The 

evaluation board implements some other interfaces available in the controller, such as 

CAN, Profibus etc., which are not of interest for us. The next figure 4.8 shows a view of 

this evaluation platform. 

 43



 
 
Figure 4.8: DSTni-LX evaluation platform 
 
As in the case of the Backplane Tester system with the primary Hub1, the remote PC 

connects to the evaluation board using the Ethernet interface. The Server application is 

downloaded from the remote PC, via the serial port, and it can be stored in any of the 

memories existent on the evaluation board (RAM memory, the serial flash or the parallel 

flash). However, once the server application is downloaded and starts executing, the 

Ethernet connection with the client (on the remote PC) is established and the server stays 

in an infinite loop, waiting to serve the client requests.  

The server application can treat only those requests from the client who contains low-

level MDIO commands, such as write or read MDIO. The client used by the Backplane 

Tester application sends requests in terms of packets with write or read MDIO 

commands, which are handled by the server and acknowledged back.  

 44



For the purposes of the client-server validation, a simple client has been created, which 

allows the user to send simple ‘writemdio’ and ‘readmdio’ commands from a terminal 

prompt, or to execute a script containing write-read MDIO commands. The client 

application created for the validation purposes is called ‘MDIO_Client’. The server 

application is the same as for the final Backplane Tester system. The evaluation platform 

does not contain the serdes devices required by the Backplane Tester application. As we 

cannot write or read any value to or from serdes registers, we validate our software by 

scoping the corresponding MDIO outputs or inputs at the controller level, to see if the 

software generated MDIO frames are looking as expected (see figure 3.1). 

 

WRITEMDIO validation 
 

For validating the write MDIO command, the user sends the following WRITEMDIO  

command (see figure 4.7) from the remote PC terminal: 

writemdio:A:0x0:0x802a:0x0 
Figure 4.9: WRITEMDIO command used for client-server validation 
 

The oscilloscope is used for probing the signals at the Lantronix pins - MDC and 

MDO_A - where the MDIO (Address and Write) frames, corresponding to the above 

WRITEMDIO command are sent. According to MDIO frames description in figure 3.1, 

we would expect the following content for the MDIO Address and MDIO Write frame, 

for the WRITEMDIO command in figure 4.9. 

MDIO Address frame 
 PRE | ST | OP | PhyAdr |  RegAdr | TA | REG_ADR             | 
[1...1  | 01  | 00  | 00000     | 11111     | 10   | 1000000000101010] 
MDIO Write frame 
PRE | ST | OP | PhyAdr |  RegAdr | TA | REG_DATA             | 
[1...1 | 01  | 10  | 00000     | 11111     | 10  | 0000000000000000 ] 
Figure 4.10: Address and Write MDIO frames corresponding to WRITEMDIO command  
 

Probing MDC and MDO_A, we obtain the MDIO frames at the Lantronix for the 

WRITEMDIO instruction above, shown in the figure 4.11. In that figure four signals can 

 45



be seen: the first is the clock (MDC), while the second corresponds to a zoom on the 

clock, the third signal is the MDO_A, while the fourth is the zoom of the MDO_A. On 

the first signal, MDC, a gap can be distinguished in the middle of the signal. This 

corresponds with the end of the MDIO Address frame and the beginning of the MDIO 

Write frame. 

-  
Figure 4.11: Oscilloscope probes on MDC and MDO_A pins at the Lantronix 
 

On the zoom of the MDC (second signal), I have measured the clock period, which 

appears to be equal to 25us. This corresponds to a clock frequency of 0.4MHz, a low 

speed clock signal in the limits of the MDIO specifications.  

I have checked in details, bit-by-bit, the content of the above MDIO Address and MDIO 

Write frame and they are as expected. The WRITEMDIO command compatibility with a 

real PHY device (Marvell serdes) cannot be checked until the Backplane Tester boards 

will come from the manufacturer. However, until then it is not much more to do about the 

WRITEMDIO validation than the present test. We concluded that the WRITEMDIO 

command has been properly executed and that the validation of the WRITEMDIO has 

been successfully passed.  

 46



 

READMDIO validation 
 

A second step for validating the server application is to send a READMDIO command 

from the client and to probe the generated frames (MDIO Address and MDIO Read) at 

the Lantronix level. 

Concerning the READMDIO validation, we are in the same situation as in the previous 

WRITEMDIO test: no PHY device existent on the board, whose register value to read. 

Therefore, we connect one of the Lantronix input pins (MDI_A3) to GND and we 

performed the READMDIO of thgis pin. Then, we connect the same pin to the 3.3V 

power and we read again its status.  

For validating the READMDIO command, the user sends the following command from 

the remote PC terminal: 

readmdio:A:0x3:0x0 

Figure 4.12: READMDIO command used for client-server validation 

The oscilloscope is used for probing the signals at the Lantronix pins - MDC and 

MDI_A3 - where the MDIO (Address and Read) frames, corresponding to the above 

READMDIO instruction are sent. According to MDIO frames description in figure 3.1 

and 3.2, we would expect the following content for the MDIO Address and MDIO Read 

frame for the above READMDIO command. 

MDIO Address frame 

 PRE | ST | OP | PhyAdr |  RegAdr | TA | REG_ADR             | 

[1...1  | 01  | 00  | 00000     | 11111     | 10   | 1000000000101010] 

MDIO Read frame 

PRE | ST | OP | PhyAdr |  RegAdr | TA |   REG_DATA           |  

[1...1 | 01  |  01  | 00000     | 11111     | z    |  

Figure 4.13: Address and Read MDIO frames corresponding to WRITEMDIO command  

 47



For the MDIO Read frame, the second bit of the TA field and the REG_DATA is sourecd 

by the PHY device. In out case, the value will be determined by the pull-down 

(connection to Ground) or by the pull-up (connection to 3.3V power source) at the 

Lantronix level. 

At the remote PC terminal, the following acknowledge is received from the server, when 

the MDI_A3 is connected to the Ground: 

ACK COMMAND=ACK\READMDIO:A:0x3:0x0\0x0 

Read Register DATA=0x0 

Figure 4.14: READMDIO when the read pin is connected to the Ground 

Now, when the MDI_A3 pin is connected to the power source, the acknowledge received 

from the server looks as below: 

ACK COMMAND=ACK\READMDIO:A:0x3:0x0\0xffff 

Read Register DATA=0xFFFF 

Figure 4.15: READMDIO when the read pin is connected to the Power Source 

Due to the read values obtained for the two situations presented above, we concluded that 

the present validation test of the READMDIO command is successfully passed and that 

the READMDIO command is corrected executed at the server level.  

 

WRITEMDIO and READMDIO validation 

 
Even the validation of both WRITEMDIO and READMDIO commands went as 

expected, modifications can appear when the Lantronix is driving the MDIO bus to write 

or to read the register contents of a ‘real’ PHY device. However, this behavior cannot be 

predicted with the present evaluation board and a complete functionality of the client-

server application can only be demonstrated when the Backplane Tester boards will be 

received from the manufacturers. 

 48



5 Conclusions 
 
 
The implementation of the Switch Fabric for the 10 Gigabit Ethernet switch is based on a 

passive backplane on which multiple 10 Gigabit Ethernet Line cards and one or two 

switch fabric cards are plugged. An Advanced Telecom Computing Architecture 

(AdvancedTCA) has been selected for the design of the T6Pro 10 Gigabit Ethernet 

Switch. This standard has been defined by the PCI Industrial Computer Manufacturers 

Group (PICMG) to provide solution for the next generation of carrier grade 

communications equipment. With more than 100 companies participating, PICMG 

collaboratively developed open specifications for AdvancedTCA®, which is the largest 

specification effort in PICMG's history. These new specifications, called PICMG 3.0, 

incorporate the latest trends in high speed interconnect technologies, next generation 

processors and improved reliability, manageability and serviceability. 

The Switch Fabric relies on prototype silicon from Marvell mounted on prototype Printed 

Circuits Boards (PCB), running high speed signals across a prototype passive backplane. 

We are fairly confident in the performance of the Marvell Serializer/Deserializer (Serdes) 

chips if they perform as well in practice as they do in simulation. On the other hand, we 

are less confident in our prototype PCB manufacture because experience shows that it 

can take a couple of iterations with any given manufacturer to obtain the specified 

performance. We have confidence in the design simulation work done within the 

AdvancedTCA consortium. It is obviously extensive and professional but the actual 

backplane construction is subject to those PCB manufacturing control problems. The 

nightmare scenario is the following: the line card and switch fabric chips work properly, 

one or two line cards in a system show no errors but a fully populated chassis gets some 

low random error rate. Finding the precise cause of those errors and fixing them could 

consume as much effort as the original design cycle. The errors could be in the silicon or 

in the backplane. 

In order to be able to subtract the backplane from the set of things to worry about, an 

AdvancedTCA Backplane Tester system has been designed and manufactured. The idea 

is to use transceiver chips embedding Serdes, pattern generators and checkers to fully 

 49



saturate every interconnection simultaneously for a long period of time to establish a 

degree of confidence to a suitable order of magnitude. 

In Chapter 2, we described how the Marvell 88X2040 transceivers are used to provide 

10Gbps traffic for saturating all the Fabric Channel in the Dual Star AdvancedTCA 

Fabric Interface. 

In Chapter 3, we presented the choice we made for the Lantronix microcontroller, which 

is used to control the Backplane Tester system. An important design decision is that a 

single control point (on the primary Hub) is used for the whole Backplane Tester system. 

Since Marvell transceivers are controlled with a Management Data Input/Output (MDIO) 

serial link, the controller has to emulate the MDIO protocol through its 32 I/O pins. All 

the architectural decisions concerning the serdes devices control over MDIO, the 

generation of the control signals at the controller level and their distribution over the 

backplane using the AdvancedTCA Base Interface are presented. At the end of Chapter3, 

the final control architecture for the Backplane Tester boards is brought up. An important 

aspect (especially from the cost point of view) is that the control architecture has been 

defined so that a single PCB can be used either for Node boards either for Hub boards in 

the Backplane Tester. At the moment when the present report is been written, not only 

the architectural decisions but also the boards design have been finished. To prove this, 

the last figure in Chapter 3 shows the layout of such a board. 

Chapter 4 is exclusively dedicated to the software architecture. Details are given, related 

to how the software application is built, based on the client-server model, and how the 

user interacts with the system for defining a given test over the AdvancedTCA backplane. 

The client-server application is built and validated using the reference platform of the 

Lantronix controller. All the possible software tests for the validation of the client-server 

application have been performed with the existing evaluation platform and considered 

successful.   

In the present report, we present in details the hardware designs of the Backplane Tester 

system and its associated software applications. The hardware design phase is completely 

finished and the boards are launched for production. The software applications have been 

validated using the existing resources (Lantronix evaluation platform). The complete 

 50



functionality of the Backplane Tester system will be demonstrated as soon as the Hub and 

the Node boards will be received from the manufacturers and a detailed report about the 

AdvancedTCA backplane tests will be provided. 

 

 51



Appendix1 - SETUP Macros 

 
The SETUP sequence requires a succession of macros for setting-up the serdes devices, 

situated at both ends of each communication link over the backplane. The serdes are 

setup to send or/and receive for a certain amount of time, a certain type of traffic over 

each link of the standard (4 differential pair) or the extended (2 differential pairs) data 

transport interface. The connectivity scheme for the standard interface implies node-hub 

connection over 4 pairs and the extended connectivity contains the connections over 2 

differential pairs between 2 adjacent slots and the 2 hubs (primary and the redundant). 

The following sequence of macros (each of the macro repeated several times) is required 

for setting up the traffic over the standard and the extended links between available nodes 

and the primary hub1 or the redundant hub2: 

• reset_global – reset all the system, once, at the beginning 

• initialization – serdes reset & clock re-timing (for the standard link) 

• initialization_ext – as above (for the extended link) 

• led_control – programming the LEDs (corresponding to U0, U7, U12) on the 

node card to show the status of the link 

• Pre_Emphasis_Setup – setup of the PE level at the transmitter 

• Lanes_Dezactivation – power-down TX and/or RX corresponding to the 

differential pairs selected to be non-active in the standard link (standard link) 

• Lanes_Dezactivation_ext – as above (extended link) 

• Set_Traffic – setup the type of the bit sequence (PRBS or Jitter) to be send on the 

standard link 

• Set_Traffic_ext – as above (extended link) 

 
The test configuration setup (contained in the <setup.txt> configuration file) is performed 

at the beginning and the information (ACK) from the server is displayed in real-time to 

the client terminal console and it is also stored for later access in the <setup_LOG.txt>.  

 
 

 52



1.1. reset_global 
Macro: reset_global 
 
1.2. initialization 
Macro: initialization:slot:hub 
Excel:  - slot (Sheet2.G) 
 - hub (Sheet2.H) 
Functionality: - expansion in 6 write_mdio instructions (3 for a slot and 3 for a hub) 
 
Reg ADDRESS Reg DATA 
0XFF2C 0X377 
0X0 0Xa040 
0XFF39 0X8000 
Table 1: write MDIO for the ‘initialization’ macro 
1.3. initialization_ext 
Macro: initialization_ext:slot1:hub1:slot2:hub2 
Excel:  - slot1 / slot2 (Sheet2.I) 
 - hub1 / hub2 (Sheet2.J) 
Functionality: - expansion in 12 write_mdio instructions (3 instruction for each slot1, 
slot2, hub1 and hub2), as in Table2. 
 
1.4. led_control 
Macro: led_control:slot1:slot2 
Functionality: - macro expanded in 2 write_mdio instructions (1 instruction for slot and 
1 for hub) 
Reg ADDRESS Reg DATA 
0x8004 0x4819 
Table 2: write MDIO for the ‘led_control’ macro 
 
1.5. Pre_Emphasis_Setup 
Macro: Pre_Emphasis_Setup:slot:hub:param_PE 
Excel:  - slot (Sheet2.G) 

- hub (Sheet2.H) 
- param_PE (Sheet1.O) – see Appendix4 

Functionality: - expansion in 16 write_mdio instructions (8 instruction for slot and 8 for 
hub) 
Reg ADDRESS Reg DATA 
0XFF28 0XFF03 (twice) 
0XFF29 0XFF03 (twice) 
0XFF2A 0XFF03 (twice) 
0XFF2B 0XFF03 (twice) 
Table 3: write MDIO for the ‘Pre_Emphasis_Setup’ macro 
 
1.6. Lanes_Dezactivation 
Macro: Lanes_Dezactivation:slot:slot2hub:hub:hub2slot 
Excel:  - slot (Sheet2.G) 

 53



 - hub (Sheet2.H) 
 - slot2hub (Sheet1.C/D/E/F) 

o 4 numbers defining the lanes status (Lane0-Lane3) for the links from 
NODE to the HUB 

- hub2slot (Sheet1.G/H/I/J) 
o 4 numbers defining the lanes status (Lane0-Lane3) from HUB to the 

NODE) 
Functionality:  

- Deactivate a specific lane (Lane0-Lane3) in the SERDES, by powering off its 
corresponding transmitter/receiver in the node/hub (see Table5)  

- expansion in 8 write_mdio instructions (4 instructions for slot and 4 for hub) 
 
slot2hub 
(L0-L3) 

hub2slot 
(L0-L3) 

NODE HUB 

0 0 Power off TX and RX Power off TX and RX 
0 1 Power off TX  

 
Power off RX 

1 0 Power off RX Power off TX 
1 1 Default (see Table6) Default (see Table6) 
Table 4: Disabling lanes 
 
The default values for every lane from L0 to L3 are: 
Lane_i_Control_Reg_ADR Lane_i_Control_Reg_DATA 
Lane(0)0x8000 0x0730 
Lane(1)0x8001 0x0030 
Lane(2)0x8002 0x0030 
Lane(3)0x8003 0x0030 
Table 5: Default Lane[i] value when the link is enabled 
 
To disable the TX or the RX in a lane (conform to Table5), it is applied on the default 
Lane[i] value (in Table6) a corresponding mask (Mask_TX or Marsk_RX). 
Mask_TX = 0x0800 - Power off TX in HUB or NODE 
Mask_RX = 0x0080 - Power off RX in HUB or NODE  
 
 
1.7. Lanes_Dezactivation_ext 
Macro: Lanes_Dezactivation_ext:slot:slot2hub:hub:hub2slot:slot_num 
Excel:  - slot (Sheet2.I) 
 - hub (Sheet2.J) 
 - slot2hub (Sheet1.K/L) 

o 2 numbers defining the lanes status (Lane0-Lane1 or Lane2-Lane3) for 
an extended link from NODE to the HUB 

- hub2slot (Sheet1.M/N) 
o 2 numbers defining the lanes status (Lane0-Lane1 or Lane2-Lane3) for 

an extended link from HUB to the NODE 
- slot_num = 0 (if slot1) / 1 (if slot2) 

 54



Functionality:  
- deactivate a specific lane (Lane0-Lane1 or Lane2-Lane3) in the SERDES, by powering 
off its corresponding transmitter/receiver in the node/hub, as presented in Table1 
Note: Special attention should be taken as it is not necessary anymore a Lane[i] to 
Lane[i] communication between the node and the hub. The possible scenarios are 
presented in Table7.  
- expansion in 4 write_mdio instructions (2 instructions for slot and 2 for hub) 
 
HUB SLOT Lanes in the HUB Lanes in the SLOT 

Slot1 Lane0-Lane1 Hub1 
 Slot2 Lane2-Lane3 

Lane0-Lane1 
 

Hub2 
 

Slot1 Lane0-Lane1 Lane2-Lane3 
 

 Slot2 Lane2-Lane3  
Table 6: Extended lanes mapping between a Node and a Hub 
 

1.8. Set_Traffic 
Macro: Set_Traffic:slot:hub:param_prbs_or_jitter:param_PRBS:param_Jitter 
Excel:  - slot (Sheet2.G) 

- hub (Sheet2.H) 
- param_PRBS (Sheet1.P) - see Appendix4 
- param_Jitter (Sheet1.Q) - see Appendix4 

Functionality: - expansion in 2 write_mdio instructions (1 instruction for slot and 1 for 
hub), depending on the user-defined parameters, as follows: 
 
- PRBS traffic – user defined parameter in the Excel table  
 - param_prbs_or_jitter=1 
 - param_PRBS = 0 (2^23-1) // 1 (2^31-1) // 2 (2^7-1) 
Reg ADDRESS Reg DATA (2^23-1) Reg DATA (2^31-1) Reg DATA (2^7-1) 
0x802A 0x000A 0x000F 0x006A 
Table 7: write MDIO command for ‘Set_Traffic’ macro when PRBS traffic defined 
 
- JITTER traffic – user defined parameter in the Excel table  
 - param_prbs_or_jitter=0 
 - param_Jitter = 0 (48A.1) // 1 (48A.2) // 2 (48A.3) // 3 (48A.4) // 4 (48A.5) 
Reg 
ADDRESS 

Reg DATA 
(48A.1) 

Reg DATA 
(48A.2) 

Reg DATA 
(48A.3) 

Reg DATA 
(48A.4) 

Reg DATA 
(48A.5) 

0x802A 0x0C00 0x1C00 0x2C00 0x3C00 0x4C00 
Table 8: write MDIO command for ‘Set_Traffic’ macro when Jitter traffic defined 
 

1.9. Set_Traffic_ext 
Macro: 
Set_Traffic_ext:slot1:hub1:slot2_hub2:param_prbs_or_jitter:param_PRBS:param_Jitter 
Excel:  - Slot1 / slot2 (Sheet2.I) 
 - Hub1 / hub2 (Sheet2.J) 
 - param_PRBS (Sheet1.P)  

 55



 - param_Jitter (Sheet1.Q)  
Functionality: 
- expansion in 4 write_mdio instructions (1 instruction for each slot1, slot2, hub1 and 
hub2) as in 1.8. 

 56



Appendix2 - RESET COUNTERS Macros 
 
The RESET COUNTERS sequence is necessary to be performed every 100seconds for 

all active serdes devices in the test (indication from the Marvell 88X2040 datasheet). At 

this interval, the error counters are read, their value is stored at the server level and then 

they are reset. Before getting out of reset, the traffic is setup again. Corresponding macro 

in <reset_counters.txt> configuration file: 

• reset_counters 

The counters reset is performed every 100seconds and the information (ACK from the 

server) is displayed in real-time to the terminal console and it is also stored in the 

<reset_LOG.txt>.  

 
2.1. reset_counters 
Macro: reset_counters:slot:param_PRBS:param_Jitter 
Excel:  - slot (Sheet2.G/H/I/J) 
 - param_PRBS (Sheet1.P)  
 - param_Jitter (Sheet1.Q)  
Functionality: 
- expansion in 2 write_mdio instructions: 

o 1st instruction for resetting the error counters 
o 2nd instruction for setting the traffic as PRBS or Jitter 

Reg ADDRESS Reg DATA Reg DATA 
0X802A 0x0010 
0X802A PRBS Jitter 
Table 9: write MDIO commands for the ‘reset_counters’ macro 

 57



Appendix3 - READ  Macros 
 
During the READ sequence, contained in the <read.txt> configuration file, there are 

gathered statistics in terms of serdes status (macro read_status) and error counters (macro 

read) from all the serdes devices actively implied in the defined test: 

• Read_status 

• Read 

 The reading is performed every 60seconds and the information are displayed in real-time 

to the terminal console and they are also stored in the <read_LOG.txt>.  

3.1. Read_Status 
Macro: Read_Status:slot:hub:print 
Excel:  - slot (Sheet2.G) 
 - hub (Sheet2.H) 
 - print – 0 (don’t print) / 1 (do print read statistics) 
Functionality: - expansion in 6 read_mdio instructions (3 instructions for slot and 3 for 
hub) 
Register Reg ADDRESS 
Status Register 1 0x0001 
Status Register 2 0X0008 
PCS Status Register 0X0018 
Table 10: MDIO READ commands for the ‘read_status’ macro 
 
3.2. Read 
Macro: Read:slot:param_prbs_or_jitter:print:param_PRBS:param_Jitter 
Excel:  - slot (Sheet2.G/H/I/J) 
 - param_PRBS (Sheet1.P)  

- param_Jitter (Sheet1.Q)  
Functionality:  
- expanded in 10 read_mdio instructions for PRBS traffic 
- expanded in 12 read_mdio instructions for Jitter traffic 
 
Register Reg ADDRESS Type of traffic 
Random_Jitter_Seq_Error_Counter_LSB[0] & MSB[0] 0x8020 & 0x8021 PRBS & Jitter 
Random_Jitter_Seq_Error_Counter_LSB[1] & MSB[1] 0x8022 & 0x8023 PRBS & Jitter 
Random_Jitter_Seq_Error_Counter_LSB[2] & MSB[2] 0x8024 & 0x8025 PRBS & Jitter 
Random_Jitter_Seq_Error_Counter_LSB[3] & MSB[3] 0x8026 & 0x8027 PRBS & Jitter 
Random_Jitter_Seq_Timer_ ADR_LSB & MSB 0x8028 & 0x8029 PRBS & Jitter 
Jitter_Packet_Transmit_Counter_ ADR_LSB & MSB 0x802C & 0x802D Jitter 
Table 11: MDIO READ commands for the ‘read’ macro 

 58



Appendix 4 - Parameters setup by the user in EXCEL 
 

• param_PE 
(Sheet1.O) - see the ‘Legacy PE support’ (datasheet 88X2040) 

• param_PRBS 
(Sheet1.P) – possible values are: 2^23-1 // 2^31-1 // 2^7-2 

• param_Jitter 
(Sheet1.Q) – possible values are: 48A.1 // 48A.2 // 48A.3 // 48A.4 // 48A.5  

• t_def_test 
(Sheet1.R) – duration of the test in seconds 
 
 

 59



References 

 
“PICMG 3.0 – Advanced Telecommunication Computing Architecture”, Version 0.91, 
December 2002 
 
“P802.3ae - Media Access Control (MAC) Parameters, Physical Layer, and Management 
Parameters for 10 Gb/s Operation”, IEEE, 2001 
 
“88X2040-Alaska X Integrated Single Chip Quad 3.125/3.1875 Gbps Transceiver”, 
Revision D, Marvell datasheet 
 
“DSTni-LX Lantronix Evaluation Board Schematics” 
 
“DSTni-LX Lantronix Data Book”, Revision D, Part Number 900-252 
 
“High Performance Backplane Design Using the Marvell Alaska X Quad 3.125Gb/s 
SERDES”, Kamal Dalmia, Nov.2001, Marvell White Paper,  
 
“Intel LXT971A – 3.3V Dual-Speed Ethernet PHY Transceiver” 
 
“Using Decoupling Capacitors”, San Jose, March 1999, Cypress Semiconductor 
Corporation 
 
“MC100LVE111 – 3.3V ECL 1:9 Differential Clock Driver”, ON Semiconductor 
 
 

 60


