Celebrating 20 Years of CERES Observations

"Denn in **der steten Wechselwirkung zwischen experimenteller und theoretischer Forschung**, die immer zugleich Antrieb und Kontrolle ist, wird auch in Zukunft die sicherste, die einzige Gewähr liegen für den gedeihlichen Fortschritt der physikalischen Wissenschaft ." — Max Planck

"Because **the constant interaction between experimental and theoretical research**, which is always inspiration and control, is the safest, the only guarantee of the prosperous progress of physical science." — Max Planck

KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN. Vorsitzender Secretar: Hr. PLANCK. Uber Diffusion und Absorption in der Sonnenatmosphäre. Von K. Schwarzschild. (Vorgelegt von Hrn. EINSTEIN am 5. November 1914 [s. oben S. 979].) Diffusion and Absorption in the Sun's Atmosphere by K. Schwarzschild

(read by Mr. Einstein at the meeting of the Berlin Academy of Sciences on November 5, 1914)

Einstein read a paper at the meeting of the Berlin Academy of Sciences on November 5, 1914 (chair: Max Planck) in the absence of the author, Karl Schwarzschild, who served as a soldier in World War I. The paper introduced the equation of radiation transfer:

Schw (1914, Eq. 3)

in Liou (1980) An Introduction to Atmospheric Radiation:

1.4.3 Schwarzschild's Equation and Its Solution

Hence, the equation of transfer may be written as

$$\frac{dI_{\lambda}}{k_{\lambda}\rho\,ds} = -I_{\lambda} + B_{\lambda}(T). \tag{1.55}$$

This equation is called Schwarzschild's equation. The first term in the righthand side of Eq. (1.55) denotes the reduction of the radiant intensity due to absorption, whereas the second term represents the increase of the radiant intensity arising from blackbody emission of the material. To seek a solution

in Goody and Yung (1989) Atmospheric Radiation:

$$-\frac{1}{e_{v,v}}\frac{dI_v(P, s)}{ds} = I_v(P, s) - J_v(P, s).$$
(2.17)

Equation (2.17) is known as the *equation of transfer*, and was first given in this form by Schwarzschild.

Schwarzschild (1906, Eq. 11): Two-stream approximation to the same problem

Ueber das Gleichgewicht der Sonnenatmosphäre

Von

K. Schwarzschild.

Vorgelegt in der Sitzung vom 13. Januar 1906.

(11)
$$E = \frac{A_0}{2}(1+m), \quad A = \frac{A_0}{2}(2+m), \quad B = \frac{A_0}{2}m.$$

 $A - E = A_0/2$ constant net flux independent of *m*. On Earth, in radiative-convective equilibrium: surface net radiation (non-radiative fluxes: latent + sensible) constrained to OLR/2.

 $B_g - B_0 = \frac{\phi}{2\pi}$

Houghton (2002, Eq. 2.13) *The Physics of Atmospheres, Cambridge University Press* m optische Masse, τ

Houghton (2002)

$$B = \frac{\phi}{2\pi} (\chi^* + 1)$$
 (2.12)

At the bottom of the atmosphere where $\chi^* = \chi_0^*$, $F^{\uparrow} = \pi B_g$, B_g being the black-body function at the temperature of the ground. It is easy to show that there must be a temperature discontinuity at the lower boundary, the black-body function for the air close to the ground being B_0 , and

$$B_{g} - B_{0} = \frac{\phi}{2\pi}$$
 Eq.(1) $B_{g} - B_{0} = B_{eff}/2$ (2.13)

given in every RT textbook

2.5 The greenhouse effect

B

Combining (2.12) and (2.13) we find that for the radiative equilibrium atmosphere:

$$B_g = \frac{\phi}{2\pi} (\chi_0^* + 2) \tag{2.15}$$

In the specific case of optical depth $\chi^*_0 = 2$,

My Eq.(3) Surface gross (total) absorption: $B_g = 2B_{eff}$

But why optical depth $\chi^*_0 = 2$? Can it be real? A first check:

Rose et al (2017) Global Means(Mar2000-Feb2016) CERES 27th STM

All Sky	Ed4	Ed2.8	Ed4 –Ed2.8
TOA SW Insolation	340.04	339.87	0.17
TOA SW Up	99.23	99.62	-0.39
TOA LW Up	240.14	239.60	0.54
SFC SW Down	187.04	186.47	0.57
SFC SW Up	23.37	24.13	-0.76 (3.1%)
SFC LW Down	344.97	345.15	-0.18
SFC LW Up	398.34	398.27	0.07
Clear Sky	Ed4	Ed2.8	Ed4 –Ed2.8
Clear Sky TOA SW Insolation	Ed4 340.04	Ed2.8 339.87	Ed4 –Ed2.8 0.17
Clear Sky TOA SW Insolation TOA SW Up	Ed4 340.04 53.41	Ed2.8 339.87 52.50	Ed4 –Ed2.8 0.17 0.91 (1.73%)
Clear SkyTOA SW InsolationTOA SW UpTOA LW Up	Ed4 340.04 53.41 268.13	Ed2.8 339.87 52.50 265.59	Ed4 –Ed2.8 0.17 0.91 (1.73%) 2.54
Clear SkyTOA SW InsolationTOA SW UpTOA LW UpSFC SW Down	Ed4 340.04 53.41 268.13 243.72	Ed2.8 339.87 52.50 265.59 244.06	Ed4 –Ed2.8 0.17 0.91 (1.73%) 2.54 -0.33
Clear SkyTOA SW InsolationTOA SW UpTOA LW UpSFC SW DownSFC SW Up	Ed4 340.04 53.41 268.13 243.72 29.81	Ed2.8339.8752.50265.59244.0629.74	Ed4 –Ed2.8 0.17 0.91 (1.73%) 2.54 -0.33 0.07
Clear SkyTOA SW InsolationTOA SW UpTOA LW UpSFC SW DownSFC SW UpSFC LW Down	Ed4 340.04 53.41 268.13 243.72 29.81 314.07	Ed2.8339.8752.50265.59244.0629.74316.27	Ed4Ed2.8 0.17 0.91 (1.73%) 2.54 -0.33 0.07 -2.20

Data from Rose et al (2017, Ed2.8)

- TOA LW up (clear) = 265.59
- SFC SW down (clear) = 244.06
- SFC SW up (clear) = 29.74
- SFC SW net (clear) = 214.32
- SFC LW down (clear) = 316.27
- SFC LW up (clear) = 398.40

Eq.(3) Surface gross (total) absorption = 20LR SFC SW net + LW down = 214.32 + 316.27 = 2 × 265.59 – 0.59 Wm⁻²

Loeb et al. (2013):

 $\Delta Eq.(1) = -0.60$

 $\Delta Eq.(3) = -0.59$

=> Net planetary imbalance for July 2005-June 2010: 0.58±0.43 Wm⁻²

What does Eq. (3) mean ? (A theory / explanation / interpretation)

The simplest greenhouse model Marshall and Plumb (2008)

2.3. THE GREENHOUSE EFFECT

FIGURE 2.7. The simplest greenhouse model, comprising a surface at temperature T_s , and an atmospheric layer at temperature T_a , subject to incoming solar radiation $S_0/4$. The terrestrial radiation upwelling from the ground is assumed to be completely absorbed by the atmospheric layer.

Further, $G = S - A = A = S_0(1 - \alpha)/4$, solar absorbed surface

Hartmann (1994, Fig. 2.3)

Global Physical Climatology

Fig. 2.3 Diagram of the energy fluxes for a planet with an atmosphere that is transparent for solar radiation but opaque to terrestrial radiation.

$$\sigma T_{S}^{4} = 2\sigma T_{A}^{4}$$
 (Eq3)
and, of course,

 $G = \sigma(T_S^4 - T_A^4) = \sigma T_A^4 = S_0(1 - \alpha_p)/4$ solar absorbed surface

Liou (1980)

In the case of A = 0 and $\varepsilon = 1$, it follows that $\sigma T^4 = 2\sigma T_a^4$, and

$$\mathbf{G} = \boldsymbol{\sigma} \mathbf{T}^4 - (\boldsymbol{\epsilon} \boldsymbol{\sigma} \mathbf{T}_a^4 + (\mathbf{1} - \boldsymbol{\epsilon}) \boldsymbol{\sigma} \mathbf{T}^4) = \mathbf{Q}(\mathbf{1} - \mathbf{r} - \mathbf{A}) \text{ even if } \mathbf{A} \neq \mathbf{0}$$

Fig. 2.3 Diagram of the energy fluxes for a planet with an atmosphere that is transparent for solar radiation but opaque to terrestrial radiation.

If (hypothesis) on Earth we have LWCRE ≈ WIN(all), clouds might compensate for the lost energy. K. Shine (2012): WIN (clear) = 66 Wm⁻²

Their computed WIN(all) = 22 Wm⁻² with β_{obs} = 0.67 and IR-opaque clouds WIN(all) = WIN(clear) × (1 – β_{eff}) = 26.4 Wm⁻² with β_{eff} = 0.6 At least, not impossible. Further details in Zagoni EGU 2020 and forthcoming AGU2020. What does it follow from Eq. (1) and Eq. (3)?

Theory: clear-sky, net and gross Eq. (1) $B_g - B_0 = B_{eff}/2$ Eq. (3) $B_g = 2B_{eff}$

$=>B_g: B_0: B_{eff}: B_{Green} = 4 = 3 = 2 = 1$ where $B_{Green} = B_0 - B_{eff}$ (G = ULW - OLR)

=> 4 : 3 : 2 : 1 = 20 : 15 : 10 : 5, "all-sky units" Theory:

=> g normalized greenhouse effect (greenhouse factor) =

 $= B_{Green} / B_0 = (ULW - OLR) / ULW = 5/15 = 1/3.$

Creating the all-sky version (Eq2) from Eq1 Houghton (2002, Fig. 2.4)

Separating atmospheric radiation from longwave cloud effect (L):

Eq2
$$B_g - B_0 = (B_{eff} - L)/2$$
 (surface net, all-sky)

Creating the all-sky version (Eq4) from Eq3 Hartmann (1994, Fig. 2.3)

Fig. 2.3 Diagram of the energy fluxes for a planet with an atmosphere that is transparent for solar radiation but opaque to terrestrial radiation.

atmosphere and the surface. The atmospheric energy balance gives

$$\sigma T_s^4 = 2 \sigma T_A^4 \quad \Rightarrow \quad \sigma T_s^4 = 2 \sigma T_e^4 \tag{2.12}$$

and the surface energy balance is consistent:

$$\frac{S_0}{4} (1 - \alpha_p) + \sigma T_A^4 = \sigma T_s^4 \implies \sigma T_s^4 = 2 \sigma T_e^4$$
(2.13)

Eq3 Surface total (gross) SW + LW energy income: $B_g = 2B_{eff}$ Eq4 Adding cloud effect, the surface absorption is: $B_g = 2B_{eff} + L$

The equations and their integer solution

Global mean $F = F_0 + \Delta F$, where $F_0 = \mathbb{N} \times \text{UNIT}$; UNIT = 1 = LWCRE ΔF = observation uncertainty + natural fluctuation + systematic deviation

- Eq. (1) Surface SW net + LW net (clear) = TOA LW(clear)/2
- Eq. (2) Surface SW net + LW net (all) = (TOA LW(all) LWCRE)/2
- Eq. (3) Surface SW net + LW down (clear) = 2TOA LW(clear)
- Eq. (4) Surface SW net + LW down (all) = 2TOA LW(all) + LWCRE

Surface LW up, clear-sky = 15 Surface LW up, all-sky - 15 Surface SW net, clear-sky = 8 Surface SW net, all-sky 6 =Surface LW net, clear-sky = -3Surface LW net, all-sky **– –2** Surface SW+LW net, clr-sky =- 5 - 4 Surface SW+LW net, all-sky = Surface SW+LW gross, clear = 2019 Surface SW+LW gross, all = Surface LW down, clear-sky = 12 Surface LW down, all-sky 13 = = 10 OLR clear-sky OLR all-sky 9 = G greenhouse effect, clear-sky = 5 G greenhouse effect, all-sky =6 SWCRE (surface) **– –2** 1 LWCRE (surface, TOA) = g(all-sky) = 6/15g(clear-sky) = 5/15 = 1/3**= 0.4**. Best fit $1 = 26.68 \text{ Wm}^{-2}$

So much about theory. And now, the experimental research.

Data from Rose et al (2017, Ed2.8)

265.59 Wm⁻²

398.40 Wm⁻²

- TOA LW up(clear)=
- SFC LW up(clear) =
- G (clear) = 132.81 Wm^{-2}
- g(clear) = G(clear) / SFC LW up = = 132.81 / 398.40
 - = 0.3333
- g(clear, theory) = 1/3.

Celebrating 20 years of CERES Data EBAF Ed4.1, April 2000 — March 2020 Eq. (1) SFC SW+LW net (clear-sky) = OLR(clear-sky)/2

Schwarzschild (1906, Eq. 11), net, clear-sky

CERES 20-yr	F	N × UNIT	Fo	ΔF
SFC SW net	211.73	<mark>8</mark> × 26.68	213.44	-1.71
SFC LW down	317.44	12 × 26.68	320.16	-2.72
SFC LW up	398.44	15 × 26.68	400.20	-1.76
TOA LW up	266.02	10 × 26.68	266.80	-0.78
SW+LW net	130.73	5 × 26.68	133.40	-2.67
G	132.42	5 × 26.68	133.40	-0.98
Eq. (1) 8 + 12 g(clear-sky, the g(clear-sky)	= 1/3. = 0.3323	- 2.28		

Eq. (2) SFC SW+LW net = (OLR – LWCRE)/2, all-sky

CERES 20-yr	F	N × UNIT	Fo	ΔF				
SFC SW net	163.57	<mark>6</mark> × 26.68	160.08	3.49				
SFC LW down	345.13	13 × 26.68	346.84	-1.71				
SFC LW up	398.66	15 × 26.68	400.20	-1.54				
TOA LW up	240.21	9 × 26.68	240.12	0.09				
LWCRE	25.81	1 × 26.68	26.68	-0.87				
SW+LW net	110.04	4 × 26.68	106.72	3.32				
(OLR – LWCRE)/2	107.20	4 × 26.68	106.72	0.48				
G	158.45	<mark>6</mark> × 26.68	160.08	-1.63				
Eq. (2) $6 + 13 - 15 = 4 = (9 - 1)/2$ 2.84 g(all-sky, theory) = $6/15 = 0.4$.								
g(all-sky)	g(all-sky) = 0/15 = 0.4. g(all-sky) = (398.66 - 240.21)/398.66 = 0.3975							
ACCO ON mot 0.40 M/m 2 the langest individual biss on the such also date act								

\DeltaSFC SW net = 3.49 Wm⁻² the largest individual bias on the whole data set

Eq. (3) SFC SW net + LW down (clear) = 20LR(clear)

CERES 20-yr	F	N × UNIT	Fo	ΔF
SFC SW net	211.73	8 × 26.68	213.44	-1.71
SFC LW down	317.44	12 × 26.68	320.16	-2.72
SW net + LW down	529.17	20 × 26.68	533.60	-4.43
TOA LW up	266.02	10 × 26.68	266.80	-0.72

-2.88

Eq. (3) $8 + 12 = 20 = 2 \times 10$

 Δ SFC SW net + LW down = -4.43 Wm⁻² the largest composite bias on the whole data set

CERES 20-yr	F	N × UNIT	Fo	ΔF				
SFC SW net	163.57	6 × 26.68	160.08	3.49				
SFC LW down	345.13	13 × 26.68	346.84	-1.71				
TOA LW up	240.21	9 × 26.68	240.12	0.09				
LWCRE	25.81	1 × 26.68	26.68	-0.87				
SW net + LW down	508.70	19 × 26.68	506.92	1.78				
20LR + LWCRE	506.23	19 × 26.68	506.92	-0.69				
Eq. (4) $6 + 13 = 19 = 2 \times 9 + 1$ 24								

Mean bias of the four equations

- Net (clear-sky)
- Net (all-sky)
- Gross (clear-sky)
- Gross (all-sky)

$$\Delta Eq1 = -2.28 \ \Delta Eq2 = 2.84 \ \Delta Eq3 = -2.88 \ \Delta Eq3 = -2.88 \ \Delta Eq4 = 2.46 \ -0.21$$

mean = 0.035 Wm⁻²

- Clear-sky (net)
- Clear-sky (gross)
- All-sky (net)
- All-sky (gross)

$$\Delta Eq1 = -2.28 \\ \Delta Eq3 = -2.88 \\ \Delta Eq2 = 2.84 \\ \Delta Eq4 = 2.46 \\ \end{pmatrix} -2.58 \\ 2.65$$

mean = 0.035 Wm⁻²

Extension to Total Solar Irradiance

S. Gupta, D. Kratz, P. Stackhouse, A Wilber: On Continuation of the Use of Daily TSI for CERES Processing

CERES 33rd Science Team Meeting, April 28, 2020

Straight Line Fit to SORCE TSI - Jan2018-Dec2019

Accuracy of TOA Fluxes

clear-sky for total area, EBAF Ed4.1, 04/2000 – 03/2020

Flux name, F	N	$F = F_0 + \Delta F$	$F_0 = N \times UNIT$	ΔF	1360.68
SW clear-sky	8 / 4	53.76	53.36	0.40	$\pm 0.5 \text{ VVm}^{-4}$
LW clear-sky	40 / 4	266.02	266.80	-0.78	
SW all-sky	15 / 4	99.04	100.05	-1.01	
LW all-sky	36 / 4	240.21	240.12	0.09]↓↓↓↓↓ Disk
TOA LW CRE	4 / 4	25.81	26.68	-0.87	
TOA SW CRE	-7 / 4	-45.28	-46.69	1.41	
TOA Net CRE	-3 / 4	-19.47	-20.01	0.54	
Albedo, clear	8 / 51	0.158	0.157	0.001	Sphere
Albedo, all	15 / 51	0.291	0.294	-0.003	

Each flux is an **integer** on the intercepting cross-section disk

Mean TSI = $51 = 1360.68 \pm 0.5$ Wm⁻² => UNIT = $1 = 26.68 \pm 0.01$ Wm⁻² Clear-sky: SW up = 8 SW in = 43 LW up = 40 Net CRE = -3All-sky: SW up = 15 SW in = 36 LW up = 36

The Clear-Sky Greenhouse Effect at GFDL

SORCE TSI = $51 = 1360.68 \pm 0.5 \text{ Wm}^{-2}$

= G(clear-sky) = 5 = 133.40 ± 0.05 Wm⁻²

G(GFDL AM4) = $133.4 \pm 0.6 \text{ Wm}^{-2} \Delta F = 0.0$

Quantifying the Drivers of the Clear Sky Greenhouse Effect, 2000–2016 Shiv Priyam Raghuraman¹, David Paynter², and V. Ramaswamy² (2019)

¹Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA, ²Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA

Table 2

Global Mean and Time Mean G Comparison Between Observational, Reanalysis, and Modeling Data Sets Over March 2000 to August 2016

Quantity	ERBE	CE 4.1 "c"	CE 4.1 " <i>t</i> "	ERA-Interim	GFDL AM4
G _{Oceans}	146 ± 7	131.3 ± 0.5	134.1 ± 0.5	134.8 ± 0.6	135.0 ± 0.5
G	-	129.7 ± 0.6	132.4 ± 0.6	133.1 ± 0.7	133.4 ± 0.6

The Greenhouse Effect of Clouds, ΔF(CERES) = 0.06 Wm⁻²

Stephens et al. (2012) LWCRE mean = 26.65 Wm⁻²

 $\Delta F(\text{Stephens})$ = -0.03 Wm⁻²

LWCRE Theory

- **1** = TSI/51
 - = 1360.68/51
 - = 26.68 Wm⁻²

CERES – Theory: 0.06 Wm⁻²

Wild (2020)

The global energy balance as represented in CMIP6 climate models, Clim Dyn

Your recent approach to imbalance: EEI = f(GHG, LW)

Understanding 20 Years of CERES Data									
	Clear-sky								
Flux	ISR	TOA SW up	TOA LW up	Net CRE	SFC SWnet	SFC LW dn	SFC LW up	g clear	albedo clear
F	340.02	53.76	266.02	-19.47	211.73	317.44	398.44	0.3323	0.158
Fo	340.17	53.36	266.80	-20.01	213.44	320.16	400.20	1/3	0.157
ΔF	-0.15	0.40	-0.78	0.54	-1.71	-2.72	-1.76	-0.001	0.001
Ν	51 /4	<mark>8</mark> /4	40 /4	<mark>3</mark> /4	8	12	15	5/15	8/51
∆Eq1	(clear, r	net) =	-2.28		ΔE	q3 (cl	ear, gro	oss) = -	2.88
				All	-sky				
Flux	TOA SW up	TOA LW up	SFC SW dn	SFC SWnet	SFC LW dn	SFC LW up	ATM LW cooling	g all-sky	albedo all-sky
F	99.04	240.21	186.76	163.57	345.13	398.66	-186.68	0.3974	0.291
Fo	100.05	240.12	186.76	160.08	346.84	400.20	-186.76	0.4	0.294
ΔF	-1.01	0.09	0.00	3.49	-1.71	-1.54	0.08	-0.003	-0.003
Ν	15 /4	36 /4	7	6	13	15	-7	6/15	15/51
$\Delta Eq2 (all, net) = 2.84$ $\Delta Eq4 (all, gross) = 2.46$									

Conclusions / 1

- **Eq1** is a standard textbook formula; it may be derived from first principles; its validity was expected, and proved by CERES within 2.3 Wm⁻². It constrains the global hydrological cycle to OLR/2.
- Yet it is missing from the Charney Report's "principal premises". It is missing from the climate models, sensitivity studies, forcing and feedback estimates, imbalance computations and climate change assessments.
- **Eq2** is its evident all-sky extension, valid within the same range of uncertainty.
- **Eq3** and **Eq4** describe a particular state with specific determinations, justified within the same difference.
- The **g** greenhouse factors come from the equations without reference to the atmospheric trace-gas composition. They do not show any enhancement or deviation from their theoretical position during these 20 years.
- The extension of the N system to TSI is unexpected but extremely accurate, providing us with the correct albedos. Identifying the all-sky unit as the greenhouse effect of clouds gives 1 = LWCRE, with a best fit of 26.68 Wm⁻²
- We can see variations in the F values during these two decades, but they might be fluctuations around, rather than permanent deviations from the F_0 positions, where for each flux ΔF is within the known observation uncertainty.
- I expect $\Delta LW < \pm 3 Wm^{-2}$ for the next decades as well.

Conclusions / 2

As the last speaker of this conference, I took the liberty of concluding from my point of view.

I wish to say thank you to the CERES Science Team for their endless effort for better and better accuracy.

Without that high level of data quality, my theoretical considerations would not have been possible.

I hope my theory justified your data and your data verified my theory, for the benefit of both of us.