

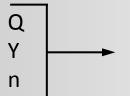
Dr. Gero Kreuzfeld

CFturbo Software & Engineering GmbH Dresden, München

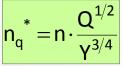
gero.kreuzfeld@cfturbo.de

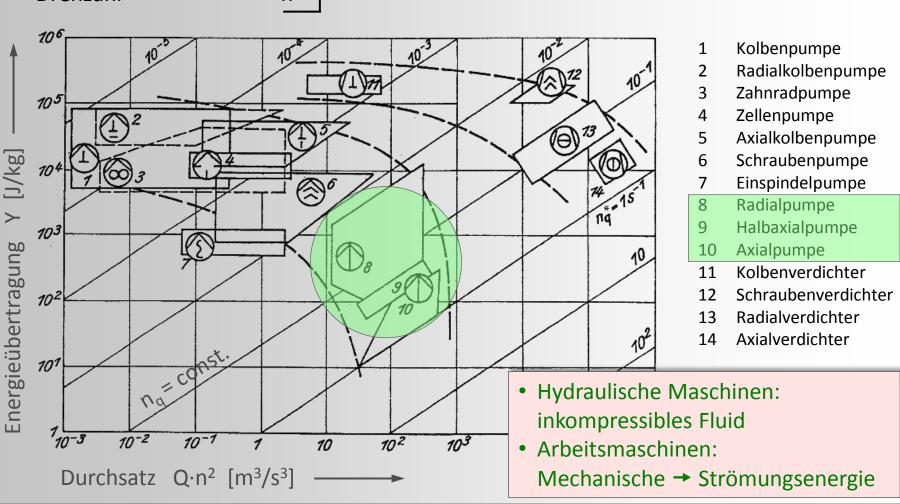
Inhalt

1.	Klassifizierung der Turbomaschinen • spezifische Drehzahl • Bauformen	3 5	Strömungsmaschinen, Bd. 1, 2 Fister Fluidenergiemaschinen, Bd. 1, 2 Pfleiderer, Petermann Strömungsmaschinen Raabe
2.	Strömungstechnische Grundlagen • Absolut- und Relativströmung • Erhaltungssätze	6 8	Hydraulische Maschinen und Anlagen Sigloch Strömungsmaschinen Whitfield, Baines Design of Radial Turbomachines
3.	KenndatenArbeit, FörderhöheSchaufelaustrittswinkelLeistung, WirkungsgradSaugfähigkeit	11 12 14 17	Gülich Kreiselpumpen Holzenberger Auslegung von Kreiselpumpen Holzenberger, Jung Kreiselpumpen Lexikon Japikse, Marscher, Furst Centrifugal Pump Design and Performance
4.	KennlinienAnlagenkennliniePumpenkennlinieBetriebspunkt	20 21 25	Lobanoff, Ross Centrifugal Pumps: Design & Application Tuzson Centrifugal Pump Design Wagner Kreiselpumpen und Kreiselpumpenanlagen Will


Bohl, Elmendorf

Kreiselpumpen (Taschenbuch Maschinenbau, Bd. 5)

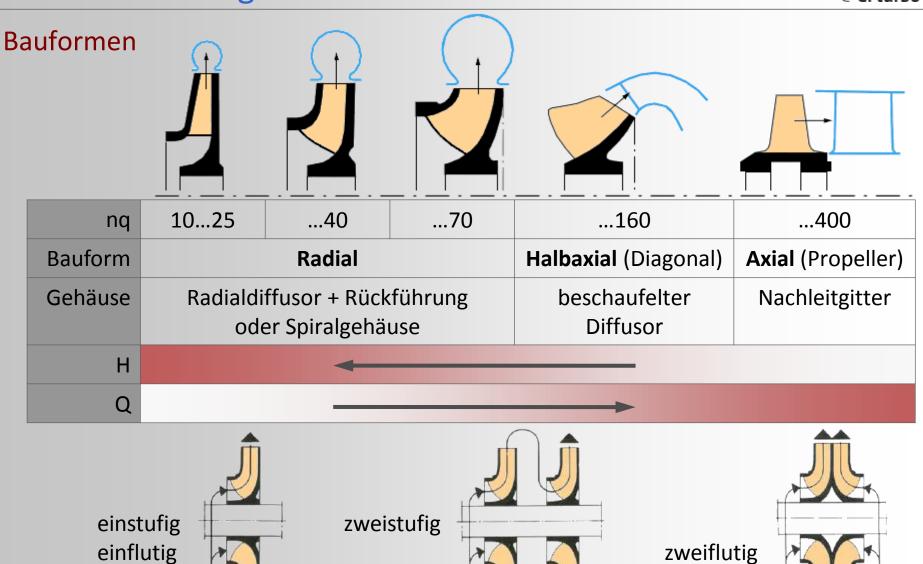

1. Klassifizierung der Turbomaschinen



Volumenstrom Spezifische Arbeit Drehzahl

Allgemeine spezifische Drehzahl

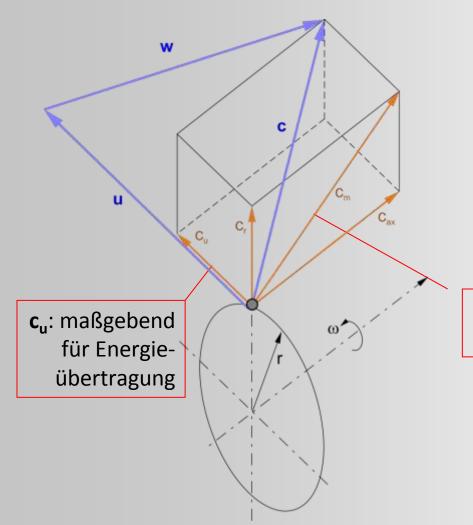
1. Klassifizierung der Turbomaschinen



Spezifische Drehzahl

Definition	Gleichung	Umrechnung	Bereich
Allgemein dimensionslos	$n_q^* = n \frac{Q^{1/2}}{Y^{3/4}}$	-	0.03 1.2
Type number (ISO) dimensionslos	$\omega_s = 2\pi n \frac{Q^{1/2}}{Y^{3/4}}$	$\omega_{\rm s} = 6.283 \cdot {\sf n_q}^*$	0.2 7.5
USA	$N_s = n[rpm] \frac{Q[gpm]^{1/2}}{H[ft]^{3/4}}$	$N_s = 17177 \cdot n_q^*$	500 20 000
Asien	$n_q = n[min^{-1}] \frac{Q[m^3/min]^{1/2}}{H[m]^{3/4}}$	$n_{q} = 2576.2 \cdot n_{q}^{*}$	80 3 000
Europa	$n_q = n[min^{-1}] \frac{Q[m^3/s]^{1/2}}{H[m]^{3/4}}$	$n_{q} = 332.6 \cdot n_{q}^{*}$	10 400
Schnelllaufzahl	$\sigma = \frac{\phi^{1/2}}{\psi^{3/4}} = 2.11 \cdot n \frac{Q^{1/2}}{Y^{3/4}}$	$\sigma = 2.11 \cdot n_q^*$	0.06 2.5

1. Klassifizierung der Turbomaschinen



2. Strömungstechnische Grundlagen

Absolut- und Relativströmung

Absolutgeschwindigkeit

 $\vec{\mathsf{c}}$

Relativgeschwindigkeit

 $\vec{\mathsf{w}}$

Umfangsgeschwindigkeit

 $\vec{u} = \omega \cdot \vec{r}$

 $\vec{c} = \vec{u} + \vec{w}$

Kinematische Grundgleichung der Turbomaschinen

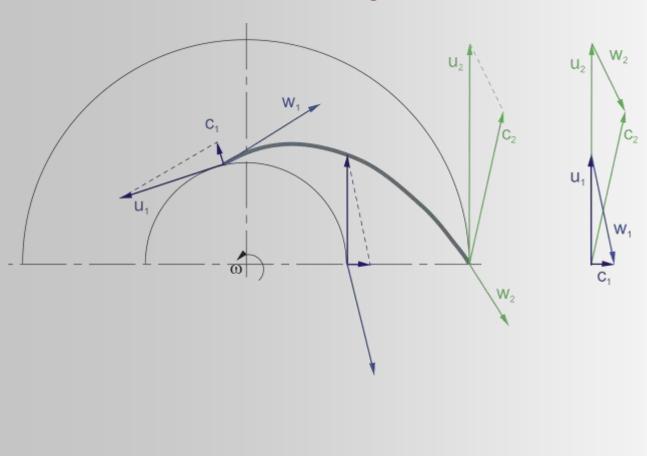
c_m: maßgebend für Durchfluss

Radialrad

 $c_m \approx c_r$

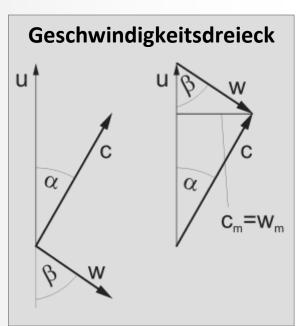
Axialrad

 $C_{\rm m} \approx C_{\rm ax}$


Halbaxialrad

$$c_{m} = \sqrt{c_{ax}^2 + c_{r}^2}$$

2. Strömungstechnische Grundlagen



Absolut- und Relativströmung

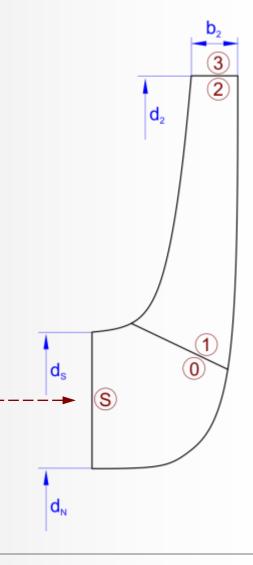
lpha : Winkel der Absolutströmung

 β : Winkel der Relativströmung

2. Strömungstechnische Grundlagen

Erhaltungssätze

Reale Strömung im Laufrad:


- Dreidimensional
- Turbulent
- Sekundärströmung
- Ablösung
- Grenzschichten
- Kavitation
- Transiente Rezirkulationsgebiete

Vereinfachte Strömung:

- Stationär, reibungsfrei
- Repräsentative Stromlinien (1D-Stromfadentheorie)
- Empirische Koeffizienten
- Definition signifikanter Querschnitte

Basis:

- Kontinuität
- Impulserhaltung
- Energieerhaltung

2. Strömungstechnische Grundlagen

Erhaltungssätze

a) Masseerhaltung (Kontinuität)

Allgemein: $\dot{m} = \rho \cdot A \cdot c = const.$

Inkompressibel: $Q = A \cdot c = const.$

Laufrad: $Q = \pi/4 \left(d_S^2 - d_N^2\right) \cdot c_{mS} = \pi d_2 b_2 \cdot c_{m2}$

b) Impulserhaltung

Allgemein: $\dot{m}c + \sum F = 0$

Inkompressibel: $\Delta(\rho c^2 A) + F_p + F_G + F_W + F_\tau = 0$

Impuls | Wandreibung | Wanddruck

statischer Druck Gravitation

Laufrad: $F_u = \dot{m} \cdot \Delta c_u$ $M = F_u \cdot r = \dot{m} \cdot \Delta (c_u r)$

(Umfangsrichtung)

 $P = M\omega = \dot{m} \cdot \Delta(c_u u)$

Eulersche Hauptgleichung der Turbomaschinen

2. Strömungstechnische Grundlagen

Erhaltungssätze

c) Energieerhaltung

Erster Hauptsatz der Thermodynamik:

$$\Delta(\dot{m}h_{t}) + P_{Th} + P_{Me} = 0$$
Enthalpie- mechanisch strom thermisch

mit $h_t = U + \frac{p}{\rho} + \frac{c^2}{2} + gz$ innere | | | | | | | | | | | potentiell dynamisch statisch

Annahmen: $P_{th} = 0$, $z \approx konst.$, $\dot{m} = konst.$

$$ightharpoonup P_{Me} = \dot{m} \cdot \Delta h_t = \dot{m} \left(h_2 - h_1 + \frac{{c_2}^2 - {c_1}^2}{2} \right)$$

Inkompressibel: $\rho = \text{konst.}$, T = konst.

$$P_{Me} = \dot{m} \cdot \Delta h_{t} = \dot{m} \left(\frac{p_{2} - p_{1}}{\rho} + \frac{{c_{2}}^{2} - {c_{1}}^{2}}{2} \right)$$

$$Y = \Delta h_{t} = gH = \frac{\Delta p_{t}}{\rho} = \frac{p_{2} - p_{1}}{\rho} + \frac{{c_{2}}^{2} - {c_{1}}^{2}}{2}$$

$$Y = \Delta h_t = gH = \frac{\Delta p_t}{\rho} = \frac{p_2 - p_1}{\rho} + \frac{{c_2}^2 - {c_1}^2}{2}$$

Arbeit, Förderhöhe

Spezifische **Förderarbeit**

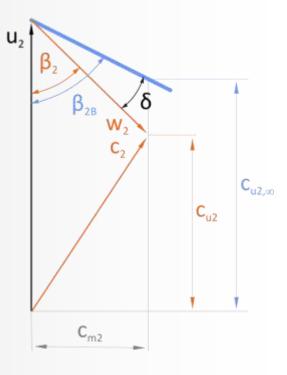
$$Y = gH = \frac{\Delta p_t}{\rho}$$
 (Energieerhaltung)
 $Y = \Delta(c_u u)$ (Impulserhaltung)

$$Y = \Delta(c_u u)$$
 (Impulserhaltung)

Y, H
$$\neq$$
 f(ρ) unabhängig vom Fördermedium
 Δp , F, τ , P \sim ρ abhängig von Dichte des Fördermediums

$$Y = \frac{u_2^2 - u_1^2}{2} + \frac{w_1^2 - w_2^2}{2} + \frac{c_2^2 - c_1^2}{2}$$
Zentrifugal- Relativ- Absolut-
anteil verzögerung verzögerung
$$Y_p = gH_p = \frac{\Delta p}{\rho}$$
 statische Druckerhöhung

$$R = \frac{Y_p}{Y} \approx 0.6...0.75$$
 Reaktionsgrad

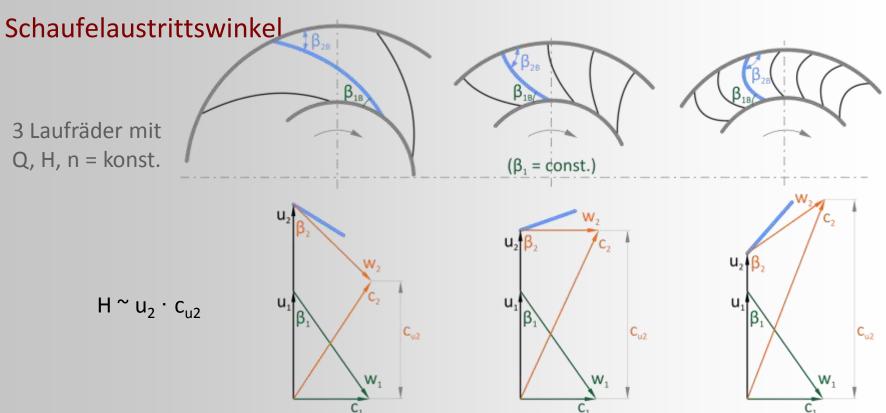


Schaufelaustrittswinkel

Minderumlenkung

Abweichung der realen von der schaufelkongruenten Strömung durch:

- Geschwindigkeitsunterschiede auf Schaufeldruck- und -saugseite
- Sekundärströmung durch
 Corioliskraft entgegen Drehrichtung


Abströmbeiwert y

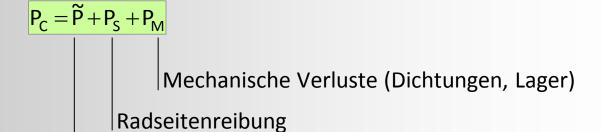
$$c_{u2,\infty} - c_{u2} = (1 - \gamma)u_2$$
 (y=1: schaufelkongruente Strömung)

Empirische Modelle

- Wiesner (Busemann)
- Pfleiderer

Schaufelform
Schaufelaustritt
Reaktionsgrad
Wirkungsgrad

		*
Rückwärts gekrümmt	Radial endend	Vorwärts gekrümmt
β_2 < 90°, c_{u2} < u_2	$\beta_2 = 90^{\circ}, c_{u2} = u_2$	$\beta_2 > 90^\circ$, $c_{u2} > u_2$
R > 1/2	R = 1/2	R < 1/2
hoch	mittel	niedrig

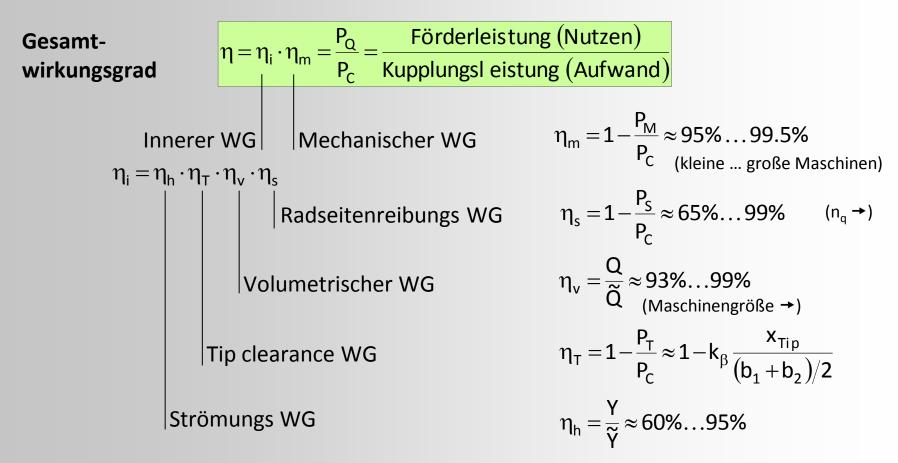


Leistung

Förderleistung

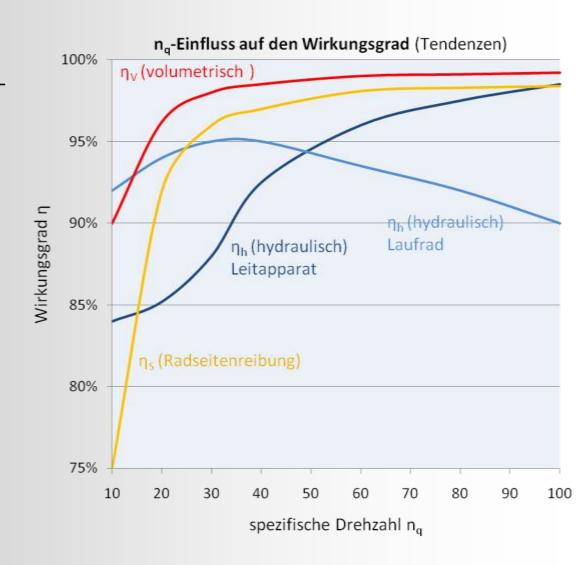
$$P_{Q} = \dot{m} \cdot Y = \rho Q \cdot gH = Q \cdot \Delta p_{t}$$

Kupplungsleistung


Schaufelleistung (inkl. Strömungsverluste und Leckage)

$$\widetilde{P} = \widetilde{\dot{m}} \cdot \widetilde{Y} = \frac{\dot{m} \cdot Y}{\eta_{v} \eta_{h} \eta_{T}} = \frac{P_{Q}}{\eta_{v} \eta_{h} \eta_{T}}$$
Interne Arbeit
Interner Massestrom

Entwurfswirkungsgrad


Wirkungsgrad

Wirkungsgrad

- - strömung) steigen wegen
 hoher Druckdifferenz
 - → Radseitenreibung steigt wegen großer Reibungsfläche
 - → steigende Leitapparat-Verluste wegen hoher Absolutgeschwindigkeit
 - \rightarrow n_a \geq 10 (8)
- bei kleineren n_q sorgfältige Auslegung des Leitapparates wichtig
- bei höherem n_q Laufrad-Auslegung entscheidend

Saugfähigkeit

Problem: Unterschreiten des Dampfdruckes der Förderflüssigkeit führt zu Kavitation

- → Dampfblasen beeinflussen Strömung
- → Kondensation (Implosion) bei ansteigendem Druck
- → Einfluss auf Förderhöhe und Wirkungsgrad
- → Lärm, Schwingungen, Erosion

Haltedruckhöhe

(Net Positive Suction Head)

$$\frac{NPSH = H_S - p_V/(\rho g)}{|}$$
 Abstand zur Verdampfung

Dampfdruck des Fluids Energiehöhe am Saugstutzen

Verfügbare Haltedruckhöhe (NPSH Available) Anlage

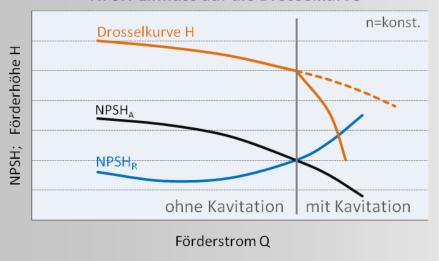
$$NPSH_{A} = \frac{p_{In,abs} - p_{V}}{\rho g} + \frac{c_{In}^{2}}{2g} + z_{In} - H_{V,S}$$

Energie am Zulauf (Bernoulli)

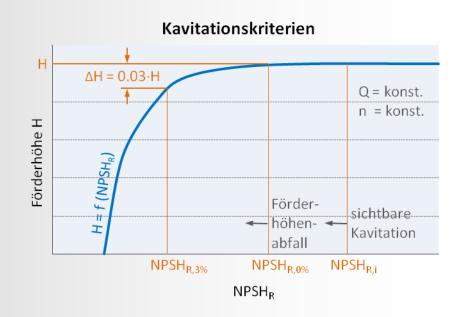
Erforderliche Haltedruckhöhe (NPSH Required) Pumpe

$$NPSH_{R} = \left(\frac{p_{t,S} - p_{V}}{\rho g}\right)_{min}$$

 $\frac{\text{NPSH}_{R} = \left(\frac{p_{t,S} - p_{V}}{\rho g}\right)_{min}}{\rho g}$ Druckabsenkung Eintritt \rightarrow Schaufel (Reibung, Stoß, Beschleunigung, Überwindung Höhendifferenz)



Saugfähigkeit


Vermeidung von Kavitation:

 $NPSH_A > NPSH_R$

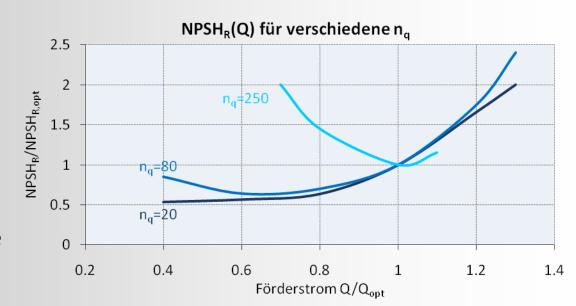
NPSH-Einfluss auf die Drosselkurve

übliches Kavitationskriterium: $NPSH_{R.3\%} = NPSH_A$ bei 3% Förderhöhenabfall

Verbesserung der Saugfähigkeit

- Vergrößerung Saugmunddurchmesser d_s
- Verringerung Schaufelzahl

- Doppelflutige Laufräder
- vorgezogene Schaufel-Eintrittskante
- vorgeschalteter Inducer


3. Kenndaten

Saugfähigkeit

Kavitation abhängig von:

- Laufradgeometrie
- Zuströmbedingungen
- ⇒ empirische Berechnung kaum möglich
- ⇒ experimentelle/ numerische Ermittlung notwendig

Empirische Ansätze für NPSH_R

Pfleiderer: NPSH_R = $\lambda_c \frac{c_1^2}{2g} + \lambda_w \frac{w_1^2}{2g}$

Verlustkoeffizienten $\lambda_c = 1.1 \dots 1.35$; $\lambda_w = 0.1 \dots 0.3$

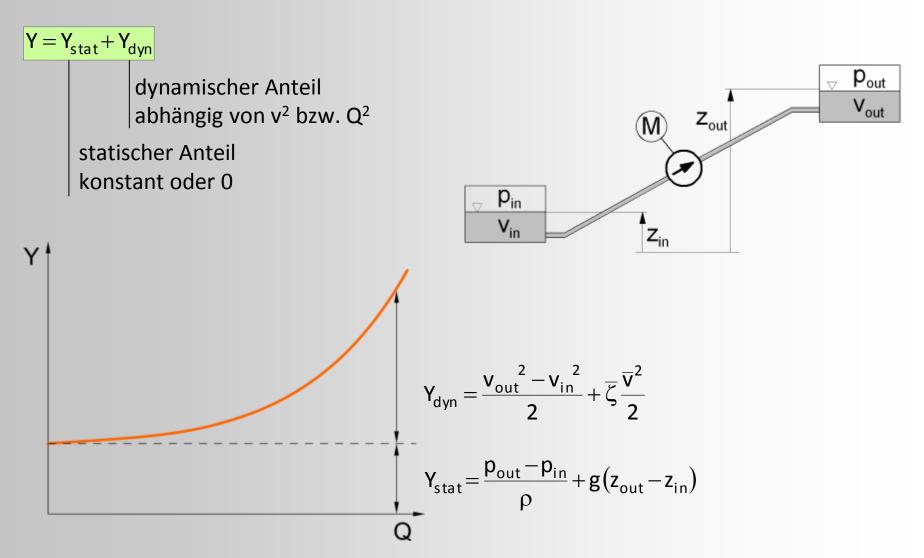
Petermann: NPSH_R = $1/g(n\sqrt{Q}/S_q)^{4/3}$

Saugkennzahl $S_q = 0.4...0.45$

Stepanoff: $NPSH_R = Th \cdot H$

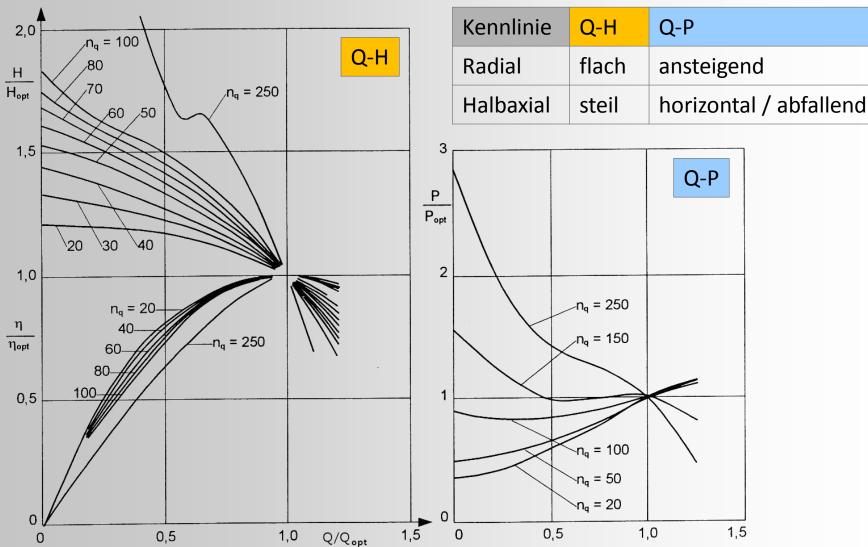
Thoma-Zahl Th = $1.22 \cdot 10^{-3} \cdot n_q^{4/3}$

Gülich: NPSH_R = $\left(n\sqrt{Q}/n_{SS}\right)^{4/3}$


Spezifische Saugzahl $n_{SS} = 160...260$

Europump: NPSH_R = (0.3...0.5)n \sqrt{Q}

4. Kennlinien

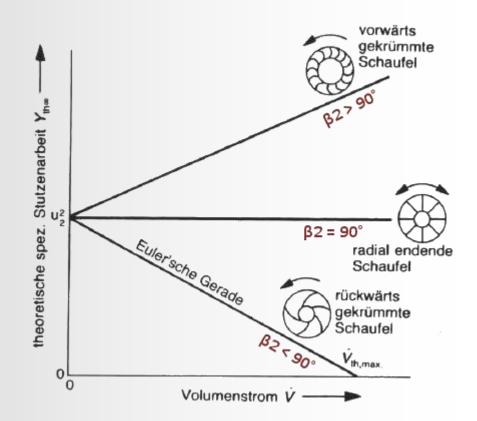

Anlagenkennlinie

4. Kennlinien

Pumpenkennlinie

4. Kennlinien

Pumpenkennlinie


Euler-Gerade

- maximal mögliche Energieübertragung:
 - verlustlos ("th")
 - schaufelkongruent ("∞")
- entsprechend Eulerscher Hauptgleichung:

$$Y_{th,\infty} = u_2 c_{u2} - u_1 c_{u1}$$

$$Y_{th,\infty} = u_2 \left(u_2 - \frac{Q \tau_2}{\pi d_2 b_2 \tan \beta_2} \right) - u_1 c_{u1}$$

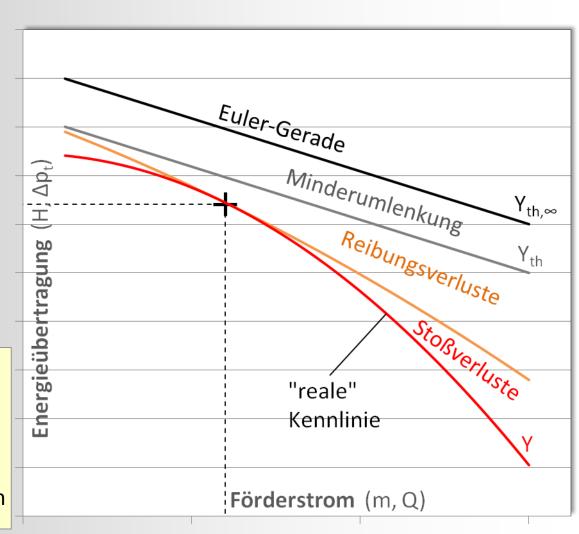
→ steilere Kennlinie durch Verringerung von b₂ oder β₂

rückwärts gekrümmte Schaufeln:

$$Q_{th,max} = \frac{\pi d_2 b_2 \tan \beta_2}{\tau_2} \left(u_2 - \frac{u_1}{u_2} c_{u1} \right)$$

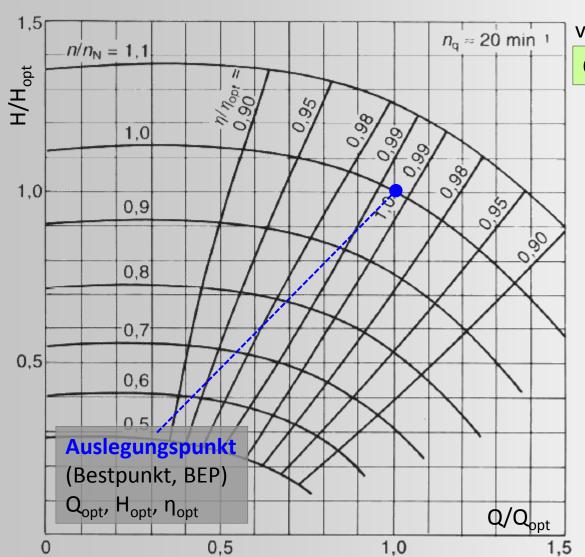
real deutlich geringer durch

- hohe Verluste bei hohen Geschwindigkeiten
- Kavitation bei hohen Geschwindigkeiten

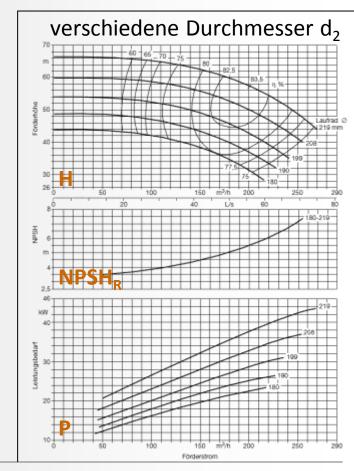

4. Kennlinien

Pumpenkennlinie

verminderte Energieübertragung

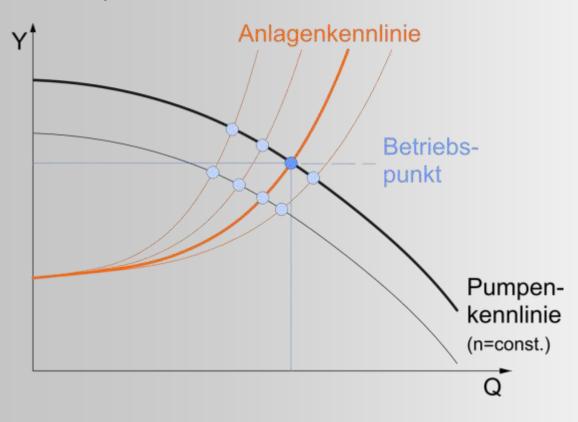

- Minderumlenkung durch endliche Schaufelzahl
 Minderleistungsfaktor y
- Reibungsverluste an Kanalwänden
 - ~ Verlustbeiwert ζ
- Stoßverluste am Schaufeleintritt
 - ~ Stoßbeiwert c_t
- ⇒ begrenzte Genauigkeit durch empirische Basis
- ⇒ starke Abweichung der gemessenen Kennlinie möglich durch Ablösungen, Rezirkulation

4. Kennlinien



Kennfeld

verschiedene Drehzahlen n


 Q^n H^n^2 P^n^3 $NPSH_R^{1.3...2}$

4. Kennlinien

Betriebspunkt

Ziel:

Betriebspunkt = Auslegungspunkt

Betriebspunkt-Anpassung

- a) Anlage
 - Drosselung
 - Bypass
- b) Pumpe
 - Drehzahl
 - Durchmesser-Reduzierung
 - Laufschaufelverstellung
 - Leitschaufelverstellung (Vor-, Nachdrall)
 - Kavitation
 - Parallelschaltung
 - Reihenschaltung