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Introduction 

With increasing demands on speed and accuracy of positioning systems, friction and 
compliance, which are present in every mechanical system, have to be actively compensated by 
control. This requires abandoning the widespread classical (PI, PID) control concepts and apply 
approaches that are more advanced. A LQG (linear quadratic Gaussian) control is one method 
that is capable to do active vibration damping and disturbance (friction) compensation, allowing 
a high control bandwidth, strong disturbance rejection and precise positioning with rapid 
changes of speed and acceleration. If properly designed and implemented, a LQG control also 
shows a high robustness against external disturbances, nonlinear system behavior and plant 
parameter variations. Although control engineers have the theoretical background, which is 
well explained in most control design textbooks, e.g. [1,2], one can still hear arguing against 
LQG control with the more demanding theory, the complex computational tasks, the difficulty 
to find appropriate design parameters and the more demanding implementation issues. These 
arguments mostly originate from the lack of knowledge about the systematic procedure for 
design and implementation of a LQG control and about the extensive support given by recent 
development environments [3] for system modelling, analysis, design, simulation and rapid 
prototyping of control systems. In order to at least improve the knowledge about the procedure 
of LQG design and implementation, the aim of this paper is to show a straightforward approach 
for the position control of a compliant positioning system with friction. Since it has already 
been applied to other positioning devices, the approach can be seen as a sample for highly 
dynamical and precise position control design. 

1.   Compliant positioning system with friction 

Fig. 1.1 shows the structure of the electromechanical positioning system (EMPS) which is used 
for experiments with position control at the Cologne Laboratory of Mechatronics (CLM). 
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Fig. 1.1  Electromechanical positioning system (EMPS) 

The EMPS consists of a DC motor with a current-controlled servo amplifier and a linear 
positioning unit. A backlash-free ball screw drive converts the rotatory motion of the motor to 
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the linear carriage displacement. A DC tachometer provides the velocity of the motor shaft, and 
an incremental encoder measures the carriage position. This is a standard configuration of drive 
systems in machine tools and gantry type robots. Compliance causing a mechanical resonance 
at about 100 Hz is added to the system by a flexible coupling between motor and positioning 
unit. The major source of dry friction is the ball screw drive. A pre-loading of the ball screw 
system, which is applied to avoid backlash, causes this friction. This configuration of the EMPS 
forms the plant. 

To set up a mathematical model for control design, the mechanical part of the plant is described 
by a two degree of freedom rotatory system. Motor and tachometer build the drive-side moment 
of inertia Jd and the screw, the encoder as well as the carriage built the load-side moment of 
inertia Jl. The compliance between motor and positioning unit is modelled by a spring with 
stiffness cdl and damping constant bdl for material damping. Viscous friction is allocated to the 
drive and the load side by damping constants bd and bl. The dry friction in the ball screw drive 
is accounted for by an "internal" load-side friction torque Mfrl. External forces Fl acting at the 
carriage, e.g. the cutting forces in a machine tool application, are taken care of by an extra 
torque input Ml = Fl / is , where is is the gear ratio of the ball screw unit. The system is driven 
by the motor torque Md. The drive-side and load-side angular displacements d and l are 
selected as generalized coordinates. Then, the equations of motion for the mechanical part of 
the plant can be formulated as 
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where d = d and l = l. A simple model for the nonlinear dry friction including sticking, 
breakaway and sliding friction is formulated as 
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is a Stribeck characteristic with the maximum static (breakaway) friction Msl, the constant level 
of kinetic friction Mkl (independent of velocity) and an exponential decay from static to kinetic 
friction according to the constant Stribeck velocity ΩStribeck. In addition, the external torque Mextl 
acting at the inertia Jl is described by the equation 

ext l dl d l dl d l l l lM c ( ) b ( ) b M           .     (1.1d) 

A simple first order lag system 

servo d d servo servo servoT M M k (u v )          (1.2) 

with gain kservo and time constant Tservo models the servo amplifier generating the motor torque 
Md from the input voltage uservo. This model also contains a disturbance input vservo for servo 
amplifier noise. 
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The transducer behavior from the motor velocity d to the tachometer voltage utacho and from 
the screw displacement l to the value count of the incremental encoder counter are described 
by the equations 
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where the terms k d and k l model the linear transducer properties. The gain 
kφ = 4 nlines / (2 π) of the incremental encoder is given by the number nlines of encoder lines and 
the line multiplication factor 4 (quadruple evaluation for the encoder lines). Nonlinear 
properties included in this model are an angular position-dependent ripple on the tachometer 
signal and the quantization characteristic of the incremental encoder, which have to be 
considered for precise position control. In equation (1.3a), the factor rripple builds the ripple 
amplitude from the undisturbed linear signal k d, and nripple describes the number of ripples 
per half turn of the tachometer shaft. The factor kcorr recovers the mean value of the ripple-free 
signal. The quantization of the incremental encoder signal is considered in equation (1.3b) by 
truncating the ideal real valued encoder signal to an integer value. Other measurement 
disturbances are the offset voltage tacho and noise wtacho on the tachometer signal. 

Equations (1.1a) to (1.3b) have been implemented in a Simulink block diagram for simulation 
of the nonlinear control system with the LQG compensator described in the following section. 

The linear plant model needed for compensator design has been derived by neglecting the 
nonlinear terms as well as the servo amplifier and measurement disturbances in the above 
equations. Choosing the angular positions d and l, angular velocities d and l as well as the 
motor torque Md as state variables, the state space equations of the linear plant model with the 
state differential equation and measurement output equation become 
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and 
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Another equation needed for compensator design is the output equation 
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  (1.4c) 

for the objective variables of the plant, which are the load-side angular position l, angular 
velocity l and angular acceleration αl. They will be used to formulate the design objectives for 
the carriage motion. 

The subscripts p, c, d, m, o at the above vectors and matrices stand for plant, control, 
disturbance, measurement and objective respectively. 

The above equations are the basis for the design and closed-loop simulation of the LQG 
compensator which shall provide excellent reference behavior in the presence of disturbances 
from noise, external loads and internal friction. The corresponding linear and nonlinear model 
parameters, which are needed for the numerical evaluations, have been properly identified in 
[4]. A more comprehensive model with a detailed nonlinear modelling of the servo amplifier, 
load dependency and delayed friction in the friction model and additional drive-side friction is 
used in [5], which is however not required in the context of this paper. 

2.   LQG design 

Different types of controllers have been designed for the EMPS, from a simple PID controller 
up to an output vector feedback with observer-based friction compensation [5,6]. The topic of 
this paper is the design and implementation of a LQG dynamic compensator for the linear plant 
model from equations (1.4a) to (1.4c). To include the operational environment of the control 
system, these equations are augmented by suitable linear models for reference and disturbance 
excitation. A weighting model is added to take into account engineering objectives in the design 
process. This approach and reasonable design parameters let the compensator outperform all 
the aforementioned control structures. The LQG compensator will be designed following the 
separation principle. First, a linear quadratic regulator (LQR) is designed for reference tracking 
and disturbance rejection, then a linear quadratic estimator (LQE) is added to provide the state 
variables for the regulator. 
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2.1 LQR design 

To include the operational environment and the design objectives in the design process, 
equations (1.4a) and (1.4c) are taken for the linear plant model and are augmented by a reference 
excitation model 
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a disturbance excitation model 
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and a weighting model 
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as shown in Fig. 2.1. 

With the above models, as under real world conditions, the plant is considered to work in a 
mixed deterministic and stochastic environment [7]. 
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Fig. 2.1  Augmented plant model for LQR design 

The deterministic environment of the plant is given by all signals whose shapes are known, but 
whose amplitudes can only be specified for a certain experiment. In Fig. 2.1, these signals are 
the reference and disturbance signals uwr and upd. They are generated by the reference and 
disturbance models from appropriate initial conditions xr0 and xd0 of their state variables. To 
cover all possible experiments including varying initial conditions for the state variables of the 
plant, the initial conditions xr0, xd0 and xp0 are assumed to be unknown random variables with 
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zero mean, given variances and a Gaussian distribution. With this deterministic environment, it 
is easy to find appropriate model dynamics to generate the classes of time functions appearing 
under real operating conditions [7]. The fact that only their shapes have deterministic character 
while their amplitudes are random variables implies that the controlled system shall work for 
any meaningful amplitudes (initial conditions) and not only accurately track a single reference 
or reject a single disturbance torque profile. 

In the following, the models for position control of the EMPS will be discussed. 

A triple pseudo integrator 
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    (2.2a) 

is appropriate to generate step, ramp and parabolic position reference signals and their first and 
second derivatives for the elements of the output vector yr. With Tr   tending to a true triple 
integrator, it provides the same type of output time functions from the initial conditions in the 
vector xr0 as the reference profile generator in the final implementation of the control system. 

If the disturbing torques at the input upd = (Ml + Mfrl) of the plant are assumed to be step 
functions, which exactly models kinetic friction for Ms = Mk in equations (1.1b) to (1.1d) and 
constant external loads, the disturbance model becomes the single pseudo integrator 
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which corresponds to a true integrator for Td   . 

The need of pseudo integrators is imposed by the condition that the integral cost function for 
the LQR design must have a finite value, i.e. stable time responses of the contributing state 
variables for given initial conditions1. Because the above state variables of the excitation models 
are not controllable from the input u = upc = uservo of the plant (see Fig. 2.1) and hence cannot 
be stabilized by feedback, their integral behavior must be approximated by very slow first order 
systems which are called pseudo integrators. Their time constants have to be chosen far beyond 
the desired time constants of the closed-loop transient response. The results achieved from this 
approximation are numerically identical to those from the theoretical exact approach [8]. 

With the above definition of the deterministic environment, the stochastic environment of the 
plant is the remaining rest of all signals whose shapes and amplitudes are unknown. If nothing 

                                           
1 For white noise excitation, the integrand of the LQR cost function must become stationary. 
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is known about their spectral properties, these signals can be modelled as a zero-mean, Gaussian 
white noise vector process v with constant intensity matrix V disturbing the state variables of 
the plant (see Fig. 2.1). Otherwise, the respective signals could be modelled from white noise 
processes by the use of an appropriate linear filter model, which then as a noise disturbance 
model also becomes part of the augmented plant model. With the inclusion of this stochastic 
environment to the design process, it becomes clear that the LQR will be rejective to unknown 
disturbances and, to some extent, even to parameter variations in the real system. This 
rejectiveness is achieved with the design in the way that the influence of the disturbance signals 
to the LQR cost functions (see below) and thus to the corresponding controlled system time 
responses will be kept as small as possible with respect to the given design constraints, e.g. a 
limited control signal range. 

Besides the modelling of the excitation of the plant, the other issue addressed in Fig. 2.1 is the 
formulation of engineering objectives. The weighting model 
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is used to build the design objective variables in the output vector yo of the augmented plant 
model. They are subject to the LQR design procedure. By using the errors e, e and e of the 
load-side angular position φl, angular velocity Ωl and angular acceleration αl from the desired 
variables φr, Ωr and αr in the reference model output vector yr, the LQR design will yield steady-
state accuracy for the considered class of reference and disturbance excitation by feedforward 
of the respective state variables of the reference and disturbance model. 

Since it does not contain a state differential equation and does not contribute a state variable to 
the augmented plant model, the weighting model from equation (2.2c) performs a purely 
proportional weighting. With integral weighting of the position error the weighting model 
would look like 
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which has been investigated for the EMPS position control in [9]. Feedback of the state variable 
xw of the weighting model equals an integral state feedback, which is capable to produce steady-
state accuracy for a constant signal at the disturbance input upd of the plant. Integral feedback 
is suitable for steady-state errors whose sources are not well known or are not easy to model or 
which cannot be compensated by other means. For the compensation of steady-state errors due 
to friction and external torques, the disturbance model and resulting state feedforward is 
preferable. Additional integral feedback may be useful if remaining errors are of the 
aforementioned type. Since for the EMPS the better results have been achieved with the 
disturbance model (2.2b) and the proportional weighting from equation (2.2c), this approach 
has been followed up in this paper. 

With substitution of the input variables by the output variables corresponding to Fig. 2.1, the 
above models can be combined to the following state differential and objective output equation 
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of the augmented plant model for the LQR design [5], where for the general case 
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The LQR design for this model provides the gain matrix K for the optimal linear regulator 
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including feedforward of the state variables of the reference and disturbance model by the gain 
submatrices Kr and Kd as well as feedback of the state variables of the plant and weighting 
model by the matrices Kp and Kw. While the feedforward provides steady-state accuracy for the 
modelled classes of reference and disturbance signals, the feedback of the state variables of the 
plant and weighting model stabilizes unstable modes and produces a fast and well-damped 
decay of the transient errors. 

The optimal regulator minimizes the quadratic cost functions (2.5a) and (2.5b) built by the 
weighted engineering objectives from the output vector yo and the weighted control input u of 
the plant. They are the expected value of the steady-state (t  ) integral 

t
T T

o ot
0

J E{lim (y Q y u R u) d }
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for the system excited from the deterministic environment or the steady-state expected value 

T T

o ot
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
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of the integrand itself for excitation from the stochastic environment, where the symmetric 
weighting matrices Q and R have to be positive semi-definite and positive definite respectively. 
With diagonal weighting matrices Q = diag(qeφ, qeΩ, qeα) and R  ruservo as well as the actual 
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objective variables e, e and e for proportional weighting from (2.2c) and the control input 
uservo, the quadratic forms in the above cost functions become 

servo

T T 2 2 2 2
e e e u servoo o

y Q y u R u q e q e q e r u
           .    (2.5c) 

Consequently, the first cost function can be interpreted as the expected value of the weighted 
sum of the mean square amplitudes of the variables for random initial conditions (only factor 
1 / t before the integral is missing). The second function represents the weighted sum of the 
steady-state covariances for noise excitation. 

It makes no difference for the result of the LQR design which case of environment and 
corresponding cost function is considered. For both cases the optimal gain matrix is given by 

1 TK R B S   ,         (2.5d) 

where the matrix S is the positive definite solution of the algebraic Riccati equation 

T 1 T TSA A S SBR B S C QC 0          (2.5e) 

for the augmented plant model from equation (2.3a) [1,7]. Since the gain matrix and thus the 
optimal regulator does neither depend on the noise injection matrix F nor on the intensity matrix 
V of the white noise process v in equation (2.3a), the control is optimal for any noise excitation 
v of the state variables of the augmented plant model. The LQR design task given by equations 
(2.5d) and (2.5e) can be solved with the MATLAB Control System Toolbox [10]. Due to the 
linearly dependent eigenvectors associated with the pseudo integrator eigenvalues in the 
reference model, a function basing on a Schur algorithm [11] has to be used and modified for 
the cost function with weighted outputs. 

The design parameters still missing for the computation of the optimal gain matrix are the 
weightings qeφ, qeΩ, qeα and ruservo which for deterministic excitation tune the controlled system 

behavior by penalizing large amplitudes and slow decay of the objective variables and too 
extensive use of the control signal. Now, the question is how to determine suitable, physically 
meaningful values. 

If the quadratic terms in (2.5c) are interpreted as variance contributions of the individual time 
functions to the final cost J, one can see that the reciprocal values of the maximum allowed 
variances i

2 for the individual signals are suitable weighting values. Applied to equation (2.5c) 
the quadratic forms become 
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From this equation, it can be concluded that the smaller a maximum allowed variance the higher 
the corresponding weighting, i.e. the penalty on the variance contribution of the respective 
signal to the final cost value. Because the random variables from the design environment are 
assumed to be Gaussian (normally) distributed, this is also valid for the input and output signals 
uservo, e, e and e of the augmented plant model. For zero mean values, this implies that their 
ranges are covered to approximately 99% by three times the individual standard deviations i. 
Therefore, the values i for the weightings in equation (2.6) can be set to one third of the 
maximum allowed absolute signal values. The resulting weightings 1 / i

2 scale the values and 
units of the variance contributions in equation (2.6) for the given constraints of the 
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corresponding time functions. For example, if the control signal uservo has a range of  10 V and 
the EMPS’s rigid body acceleration has a range of  15000 rad / s2, whereas the position error 
e shall stay in a range of  0.15 rad ( 60 m), the respective weightings become 

servo

2 4 2 2
u e er 0.09 / V , q 0.0002sec / rad , q 400 / rad

 
     . 

Following the above rule for the weightings of the cost functions from the equations (2.5a) and 
(2.5b), the LQR design for the EMPS provides good time responses right from the design start. 
Minor fine-tuning of the output weightings is necessary when adding the estimator after the 
second design step in order to improve the final closed-loop system time responses with the 
compensator. 

After having found the LQR gain matrix, one has to consider that not all state variables from 
the augmented plant model in Fig. 2.1 can be measured or computed from feedforward 
commands. The only signals available are the state variables of the reference model, which can 
be taken from the reference profile generator as a standard part of every position control 
application, and the state variables of the weighting model, which can be computed from the 
inputs of the regulator and the given weighting model dynamics (see section 2.3). Therefore, 
an estimator is required for the state variables of the plant and disturbance model. Indeed, the 
state variables d and l of the plant could be computed from the measurement variables 
(equation (1.4b)), but they are affected by quantization as well as noise, and need some filtering 
by the estimator. 

The design of the estimator, which provides smooth and optimum estimates for the state 
variables of the plant and disturbance model, is the topic of the next, second design step. 

2.2 LQE design 

The linear plant model with the state differential equation (1.4a) and measurement output 
equation (1.4b) is needed for the LQE design. The linear disturbance model 

d d d d dd

ddd

x A x B u , x (t 0) 0

y C x

   



       (2.7a) 

with unknown input ud is added as shown in Fig. 2.2 to include the deterministic disturbance 
environment in the estimator. As already discussed for the LQR design, an integrator model 

d d d

d d

x u , x (t 0) 0

y x

  



        (2.7b) 

is suitable to generate step-shaped disturbance signals for the disturbance input upd = (Ml + Mfrl) 
of the EMPS. One can assume Dirac pulses with random pulse weight at the disturbance input 
ud to get a step-shaped output yd, which is equivalent to the initial condition for the state variable 
of the disturbance model used for the LQR design. The fact that this deterministic input cannot 
be measured like the other input and output signals from Fig. 2.2 will be accounted for when 
specifying the corresponding intensity in the LQE design. Contrarily to the LQR design, there 
will be no problem with the pure integrator for the LQE design, if the state of the disturbance 
model in the augmented plant model is observable and controllable (see below). 
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Fig. 2.2  Augmented plant model for LQE design 

The stochastic environment of the plant model is given by the vector process v for process noise 
and the vector process w for measurement noise. 

With substitution of the disturbance input vector upd by the output vector yd of the disturbance 
model from equation (2.7a) and consideration of the noise processes corresponding to Fig. 2.2, 
the augmented plant model for the LQE design becomes [5] 

pm

x A x Bu B v

y y w C x w

  
   


  ,        (2.8a) 

where for the general case 

p pc pc

d d d

u vx
x , u , v

u vx

    
      
     

 

p pd pcd

d d

A B C B 0
A , B

0 A 0 B

   
    
   

  and  pmC C 0      .   (2.8b) 

It is required for the LQE design that all state variables are observable in the measurement 
output vector y of the plant and controllable by the process noise input vector v of the 
augmented plant model. 

Injection of the vector process v of process noise by the same input matrix B as used for the 
input vector u, i.e. directly at the input of the augmented plant model, is in preparation for trying 
to achieve loop transfer recovery (LTR) with the LQE design. 

Considering Fig. 2.3, the objective of the LQE design becomes the following: Find the best 
estimates for the noisy or unknown state variables of the plant and for the unknown state 
variables of the disturbance model contained in the augmented state vector x of the plant in the 
presence of process and measurement noise. Consequently, for a high level of process noise 
and a low level of measurement noise, the estimator has to rely on the measurements rather than 
on the input signals and vice versa. 
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Fig. 2.3  Augmented plant model with linear estimator 

If the vector process v for process noise and the vector process w for measurement noise are 
assumed to be stationary, zero-mean, Gaussian white noise processes with known constant 
symmetric intensity matrices V and W, the optimal estimator for the augmented plant model 
from equation (2.8a) is given by the linear state space equations 

e

ˆ ˆx (A LC) x Bu L y

ˆy x

   




  .        (2.9) 

This optimal estimator minimizes the cost function 

T

t
ˆ ˆJ lim E{(x x) (x x)}


           (2.10a) 

for the estimation error x – x̂, i.e. the sum of the steady-state (t  ) autocovariances of the 
estimation error. Then, the LQE design provides the optimal estimator gain matrix 

T 1L P C W   ,         (2.10b) 

where the optimal steady-state covariance matrix P of the estimation error is the positive 
definite solution of the algebraic Riccati equation 

T T 1 TA P P A P C W C P B V B 0      .      (2.10c) 

However, since the disturbance input ud is not available in reality, the estimator is implemented 
with the state differential equation 

e pcˆ ˆx (A LC) x B u L y      ,       (2.11) 

where Be is the left hyper-column of B from equation (2.8b). 
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The design task given by equations (2.10b) and (2.10c) can be easily solved by using the 
corresponding functions from the MATLAB Control System Toolbox. 

Meaningful intensity matrices V and W are needed as the design parameters for the LQE design 
to compute the estimator gain matrix. These matrices have a similar meaning as the weighting 
matrices from the LQR design, because they penalize the usage of the inputs and outputs of the 
augmented plant model for the estimation of the augmented state vector x (see Fig. 2.2). The 
task of specifying numerical values for the intensity matrices simplifies if the individual 
elements of the vector processes v and w are assumed to be uncorrelated, so that the intensity 
matrices V = diag(Vii) and W = diag(Wii) become diagonal. 

With a closer look at the signals, as the estimator in the later digital implementation will see 
them, one can derive a simple rule to specify values for the remaining diagonal elements. We 
consider that all measurement signals are sampled with the sampling period TS and, if they are 
not already digital like the encoder signal, are converted to digital by A/D-converters. Since the 
A/D-converters and the encoder have a limited resolution (word length or number of lines), the 
values at the sampling instants are subject to quantization. The resulting errors can be modelled 
as uniformly distributed discrete white noise processes that are added to the sampled 
measurement signals [12]. This so-called quantization noise has a variance of 

i

i

2b2 2 2
i i i

b 1
i i

1 1
2 A

12 3

A 2





   

 
  ,        (2.12a) 

where i is the quantization step size, bi the word length and  Ai the analog range of the 
converter. Since it is discrete white noise, the spectral density function Si() of the quantization 
noise has a constant intensity i

2 and is defined in the frequency range of   / TS. The discrete 
white noise approaches the continuous white noise spectral density function in the limit as TS 
approaches zero, if i

2 is set to Wii / TS [2]. 

Thus, if quantization noise is the only noise source for the measurement signals, which is the 
case for the encoder signal, suitable values for intensities of the continuous white noise 
processes for the LQE design are 

2
ii i SW T    .          (2.12b) 

Since a common factor in the intensities does not affect the result of the LQE design, there is 
no need to decide on a sampling period in this stage of the design. Therefore, the LQE design 
parameters can be set to Wii = i

2. 

Following the above rule, the noise intensity for the incremental encoder signal with a 
quantization step size of Δcount = 1 becomes W22 =   = 1/12. Measurement noise not 
resulting from quantization (e.g. from the measurement transducers and amplifiers) can be taken 
into account by an equivalent quantization noise process, i.e. by decreasing the converter word 
length to an effective number of bits b = beff which could be calculated from equation (2.12a) 
with a real noise variance measurement. Of course, a variance measurement could directly be 
used as a design parameter instead. 

A quick way to plug in suitable values for the design parameters is to set the quantization step 
size i to the range of the measured signal noise floor and use equation (2.12a) for the variance. 
With a noise floor of  0.01 V on the tacho signal, tacho becomes 0.02 V, which results in 
W11 = 2

tacho= 3.33 10-5 V2. This value corresponds to an effective number of bits of about 10. 
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A first guess for the intensities Vii of the process noise at the control input of the plant, which 
is caused by the D/A-converter of the compensator at its output, can also be found according 
to equation (2.12a). Again, noise not resulting from D/A-quantization (e.g. from the servo 
amplifier) can be taken into account by appropriately setting the quantization step size i. The 
resulting variance value needs additional increase to improve the robustness of the closed-
loop system with the estimator by trying to achieve loop transfer recovery [1,2,13]. 

With increasing intensities for the process noise, the eigenvalues of the estimator tend to the 
transmission zeros of the augmented plant model from equation (2.8a) and to infinity. Thus, the 
intensities are limited due to the eigenvalues of the estimator becoming too fast for 
implementation or tending to unfavorably located transmission zeros (e.g. near the origin of the 
s-plane) 2. The limiting matter for the EMPS is a transmission zero of equation (2.8a) in the 
origin of the s-plane. If the intensity for process noise is selected too high, the eigenvalue 
tending to zero leads to an unsatisfying disturbance behavior. This becomes visible by a very 
slow mode in the time response of the closed-loop system for a step at the disturbance input Ml 
of the plant. 

Since the disturbance input ud of the augmented plant model is unknown and cannot be 
measured, the intensities of the corresponding noise process have to be selected as high as 
possible to make the estimator robust against the fact that the signal is missing for 
implementation. Again, implementation constraints determine the intensity limits: The 
frequencies of the estimator eigenvalues should be kept about three to ten times below the 
implementation sampling frequency fS = 1 / TS of the compensator. 

After having discussed the proper selection of the noise intensities as LQE design parameters, 
let's have a closer look on the meaning of loop transfer recovery with the illustration given in 
Fig. 2.4. If the control loop is cut directly before the control input of the plant, the estimator 
will receive a wrong input (output yLQG of the compensator instead of input upc of the plant). If 
the compensator is poorly designed, it may even become unstable due to the feedback of its 
output to the input of the estimator. To achieve both robustness to a wrong input and stability, 
the estimator has to be designed in such a way that it does not need the control input of the plant 
or at least is not overly dependent on it. This is achieved by increasing the intensities of the 
process noise at the control input of the plant in the LQE design. As the intensities for the 
process noise are tending towards infinity, the output of the compensator is no longer needed 
as an input of the estimator. The augmented state vector x of the plant is solely reconstructed 
from the measurement output ypm of the plant, so that the estimator inverts the measurement 
output equation of the plant. If this estimator is assumed shifted to the subsystem of the plant, 
it can be recognized that the open-loop transfer path from the control input upc of the plant to 
the output yLQG of the LQG compensator recovers the loop transfer path (LTR) from upc to the 
output yLQR of the static state feedback regulator. This also recovers the very good robustness 
properties of the control system with LQR, i.e. static state feedback only. It has an infinite gain 
margin and a phase margin of at least 60° [2]. For the considered transfer path, the dynamics of 
the estimator are no longer relevant. 

                                           
2 If transmission zeros are located in the right half of the s-plane, the eigenvalues tend to their reflection relative 
to the imaginary axis. 
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Fig. 2.4  Meaning of LTR 

For a single control input of the plant, the grade of LTR can be easily assessed by comparing 
the open-loop frequency response of the systems from Fig. 2.4. Singular value frequency 
responses are required for multiple control inputs. They can be computed with a function from 
the MATLAB Control System Toolbox. 

2.3 Assembly of LQG compensator 

After the design of the optimal regulator and optimal estimator as described in the previous 
sections, the LQG compensator can be assembled as shown in Fig. 2.5 and Fig. 2.6.  

LQG
y

linear 
regulator 

linear 
estimator 

rx  

pm
y

dx̂  

px̂  

LQG
y  

 

Fig. 2.5  Compensator with regulator and estimator 

Since for implementation the reference model from the design structure will be replaced by a 
reference profile generator, the vector xr containing the load-side reference angular position φr, 
angular velocity Ωr and angular acceleration αr (see equation (2.2a)) becomes an input of the 
regulator. These signals will be derived from the corresponding reference signal for the linear 
carriage motion by division by the gear ratio is of the ball screw unit. The other inputs of the 
regulator are the estimate x̂d of the state vector of the disturbance model and the estimate x̂p of 
the state vector of the plant provided by the estimator (see equation (2.9) resp. (2.11)). Since 
the disturbance input ud of the estimator cannot be measured, it has been omitted. As mentioned 
in the LQE design section, the estimator has been designed robust for this. The saturation block 
before the compensator output and in the feedback to the input of the estimator is included to 
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improve the estimates of the state variables when actuator saturations become effective in the 
control input path of the plant [14]. Its bounds are set equal to the maximum current limits of 
the servo amplifier so that the estimator will get a correct input signal if the control input signal 
of the plant is saturated at these bounds. Due to LTR, the estimator and thus the control system 
behave robust when the current limits or the voltage limits are hit inside the amplifier. The 
subsystem of the regulator is assembled according to equation (2.4). It is shown in Fig. 2.6. 

weighting 
model 

WK  

rK  

dK  

pK

LQG
y  

wx  

rx  

dx̂  

px̂  

 

Fig. 2.6  Regulator with weighting model 

If the weighting model in the augmented plant model for the LQR design from Fig. 2.1 
contributes a state vector xw, the corresponding dynamics  

w w w wr r wp p pod dr po dˆ ˆx A x B C x B (C x D C x )         (2.13a) 

and their contribution to the output of the regulator 

w
w wk

y K x           (2.13b) 

have to be added to the block diagram of the regulator as in Fig. 2.6. This would be the case for 
integral weighting with the model from equation (2.2d). For purely proportional weighting with 
the model from equation (2.2c), which has been used for the LQR design, the upper part of Fig. 
2.6 has to be omitted. 

The above compensator has been analyzed with the plant model for iterative fine-tuning of the 
LQR/LQE design parameters to improve the final closed-loop system behavior. One of the 
analysis steps is the assessment of the robustness of the linear control system by comparing the 
frequency responses of the LQR and LQG controlled open-loop systems from Fig. 2.4 for LTR. 
Fig. 2.7 shows these frequency responses for the final compensator design. LTR has been 
sufficiently achieved. 
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Fig. 2.7  Open-loop frequency response for system with LQR (red lines) and LQG 
compensator (blue lines) 

The robustness of the nonlinear control system against nonlinear plant characteristics like 
friction, saturations, tacho ripple as well as quantization, and against plant parameter variations 
has been checked by closed-loop simulation. As will be shown with the experimental results, 
this allowed a very good prediction of the real system behavior. 

3.   Control implementation and results 

Since the above compensator has been designed in the continuous time domain, its differential 
equations have to be discretized for digital implementation. A very straightforward option is to 
discretize the dynamic subsystems of the compensator, i.e. the weighting model in the regulator 
and the state space model of the estimator, by using appropriate discretization methods. To 
check for the discretization and nonlinear implementation effects before starting with the real 
experiment, the discrete compensator has been closed-loop simulated with the continuous 
nonlinear plant model of the EMPS from section 1 which includes additional blocks for the 
signal interfaces. The corresponding Simulink block diagram is shown in Fig. 3.1. To correct 
the offset and gain error in the real tachometer signal, a signal condition subsystem [15] is added 
to the control. The simulation results show a remarkable robustness of the control system 
against process and measurement noise as well as plant uncertainties, like a varying stiffness 
cdl of the coupling between the drive and load side, a varying load-side inertia Jl and changing 
friction characteristic. A sampling rate of 4 kHz turned out to produce satisfying, quasi-
continuous results.  
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Fig. 3.1  Block diagram for nonlinear control system analysis by closed-loop simulation 

For rapid control prototyping, the compensator as well as the signal conditioning, reference 
profile generator and interfacing blocks from Fig. 3.1 have been copied to the block diagram in 
Fig. 3.2 that has been augmented by additional blocks for encoder index search (homing) as 
well as operational and safety provisions. The used total development environment [3] allowed 
a seamless transition to the experiment by automatic code generation, experiment control and 
data acquisition. 

 

Fig. 3.2  Block diagram for control implementation by automatic code generation 

A simulation result for the reference motion of the carriage, which is depicted in Fig. 3.3 and 
commanded to the control, is presented by the position error and control signal measurements 
in Fig. 3.4. 
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Fig. 3.3  Carriage reference position (top), velocity (middle) and acceleration (bottom) from 
reference profile generator 

 

Fig. 3.4  Position error (top) and control signal (bottom) from measurement (red lines) and 
simulation (blue lines) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.01

0.02

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

t / s
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-2

0

2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

-10

0

10

20

t / s
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-10

-5

0

5

10



20/21 

The steps in the acceleration command produce a control signal close to the saturation bounds 
of the servo amplifier of  10 V. Despite this strong reference excitation, due to a high control 
bandwidth, the maximum position error is less than 20 µm and the error settling times are about 
10 ms. Vibrations from the flexible coupling between drive and load side are actively damped 
by the control. The control shows significantly better results than with the simpler compensator 
from [6], standard single-loop PID or P-PI cascade control [5]. Finally, the feedforward of the 
disturbance estimate from the estimator and the high control bandwidth yield a strong rejection 
to external force or torque inputs Fl or Ml, which becomes evident in the experiment when one 
tries to twist the screw manually. 

4.   Conclusions 

As shown for the EMPS, a LQG control provides very good results in high speed and precise 
position control. This is achieved by a systematic approach in the control design including a 
modelling of the deterministic and stochastic reference and disturbance environment of the 
plant and a modelling of the design objectives specified by the control engineer. The objective 
variables used in the LQR cost function, suitable weightings derived from the actual and desired 
variable bounds as well as a rule to determine meaningful noise intensity matrices for the LQE 
design from sensor and signal interface specifications are crucial for a straightforward design 
procedure. Robustness of the linear control system with the resulting LQG compensator can be 
achieved by aspiring LTR with appropriate process noise intensities in the LQE design. Further 
robustness analysis for the nonlinear control system and investigation of implementation effects 
have to be performed by simulation. 

With the contemporary software tools for design and simulation, the above systematic approach 
can be very well guided by design template files and a small graphical user interface [5]. A total 
development environment for rapid control prototyping and experimentation allows a seamless 
transition to the experiment and concept proving. With the knowledge of the basic theory, one 
can easily develop advanced control concepts in a minimum of time. The LQG control design 
for the EMPS can be seen as a sample for this. 
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