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A B S T R A C T

To investigate possible pathways to reduce greenhouse gas emis-
sions in the electricity sector, researchers build optimisation mod-
els that typically minimise the total system costs such that all tech-
nical and physical constraints are met. For systems based on re-
newable energy, whose greatest expansion potentials are found for
wind and solar generation, the chief challenge is dealing with their
variability. To tackle this challenge, the optimisation models typ-
ically include large transmission networks to smooth renewable
feed-in in space or storage technologies to smooth the variability
in time. However, all aspects of the energy system at all levels
of detail cannot currently be contained in a single model because
of computational constraints. Instead, one must make simplifica-
tions and compromises that affect the optimality of the result from
the point of view of the complete system. While reductions on the
temporal scale and linearisation approaches of the model formula-
tion have been previously analysed, in this thesis we focus on the
quantification of the impact of the spatial scale. This is important
because it is scientific practice to simplify models spatially while
only little is known on the error made by the aggregation.

The contents of this dissertations spatial scale analysis are three-
fold and build upon one another: (i) A novel clustering methodol-
ogy enables us to disentangle and quantify the error that is made
by spatially aggregating generation sites where renewable electric-
ity can be sourced versus the error made by aggregating transmis-
sion lines and, thus, electricity interactions between spatially dis-
tributed substations. By clustering the network on both features
in tandem, we can verify the results and learn which of these two
effects dominates the optimisation. (ii) Insights from (i) are used
to improve existing spatial aggregation methods and to develop
novel similarity measures to be applied for clustering electricity
system models such that the spatially simplified model can bet-
ter approximate the original, highly-resolved model with respect
to renewable generation sites and the transmission grid. (iii) The
prevailing best clustering method is applied on optimisation mod-
els with high shares of renewable generation to investigate if the
spatially clustered low-resolved solutions are feasible with regard
to the full, spatially highly-resolved model. To this end we pro-
pose novel inverse methods to spatially disaggregate the coarse
optimisation solution in terms of the resulting, aggregated vari-
ables across the highly dimensioned model.
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Table 1: Notation.

Abbrev. Description

general abbreviations

r technology type (storage)
R set of all storage technologies
s technology type (generators)
S set of all generating technologies
Sre subset of renewable technologies, Sre ⊆ S

Scon subset of conventional technologies, Scon ⊆ S

t time discretisation
T set of all time-steps t

α year, optional. If missing, we indicate a generic setting, or α = 2018.
z synchronous zone or country
Z set of all countries included in the model
v, w (highly-resolved) nodes
dz
t temporally resolved electricity demand t for country z

V set of all original nodes in the network graph G

(v,w) (highly-resolved) line connecting nodes v,w ∈ V

E set of all original lines in the network graph G

G original, fully-resolved network graph, G = (V,E)
K number of clusters
Kz number of clusters for the country-zone z

c, d clusters, or (low-resolved) nodes
Vc set of nodes v ∈ V, aggregated to form cluster c
VK set of K clusters in the network graph GK

cv cluster c ∈ VK that node v ∈ V is assigned to
(c,d) (low-resolved) line connecting clusters c,d ∈ VK

E(c,d) set of lines (v,w) ∈ E, aggregated to form new line (c,d)

EK set of all aggregated lines of the network graph GK

GK reduced network graph GK = (VK,EK) to approximate G

xvii
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Table 1: Notation (cont.).

Abbrev. Description

line attributes

rα(v,w) resistance of transmission line (v,w) in year α

xα(v,w) reactance of transmission line (v,w) in year α

vα(v,w) voltage applied at transmission line (v,w) in year α

l(v,w) length of transmission line (v,w)

c(v,w) capital costs of line (v,w)

u(v,w) underwater fraction (∈ [0, 1]) of line (v,w)

Fα(v,w) capacity of transmission line (v,w) in year α

f(v,w),t electricity flow of transmission line (v,w) at time t

nodal attributes

gdpv gross domestic product in node v

popv population in node v

zv country of node v

xv,yv coordinates of node v

lvv boolean, 1 indicates a grid connection to low voltage (LV)
Gα

v,s cost-optimal capacity of technology s in node v and year α
Gmin

v,s minimal capacity of technology s in node v

Gmax
v,s maximal install-able capacity of technology s in node v

Hα
v,r cost-optimal capacity of technology r in node v and year α

Hmin
v,r minimal capacity of technology r in node v

Hmax
v,r maximal install-able capacity of technology r in node v

cv,s capital costs of technology s in node v

cv,r capital costs of technology r in node v

ov,s,t variable costs of technology s in node v and time t

η storage losses or efficiencies for technology
dv,t demand in node v and time t

ḡv,s,t capacity factor for renewable technology s in time t

gv,s,t dispatch in node v of generator s in time t

graph related attributes

Av,w (weighted) adjacency matrix of the network graph G

kv (weighted) degree of node v ∈ V

Cα cycle basis for graph G in year α
Kα

v,(v,w) incidence matrix of graph G in year α

Lα
(v,w),c cycle matrix in year α; here c is a cylce



1
I N T R O D U C T I O N

This dissertation thesis investigates the role of spatial granularity
in European electricity system optimisation models at transmis-
sion level with a high share of renewable generation. Although we
investigate only the European grid, results and concepts are gen-
eralisable to subsets of the European transmission network and
other world regions. But let us first take a step back to understand
how and when grid planning became relevant, and what the chal-
lenges to the grid are that are induced by the energy transition -
particularly in regard to the integration renewable sources.

Figure 1: First European Electricity System Network Plan, as suggested
by Oskar Oliven in 1930 [9].

In the early days of commercial electricity, transmission at the
same LV as used in private households restricted the distance be-
tween generating plant and consumers because power lost from
heat is proportional to the square of the current traveling in the
cable. In contrast, according to Joule’s Law, the same amount of
power can be transmitted with relatively small losses at high volt-
age (HV). Therefore, in the early days of electric history, it seemed
that the industry would develop into what is known today as a

1



2 introduction

distributed generation system with a large number of small genera-
tors with low capacity located near their loads [10]. But small local
electricity generation was regarded as inefficient, thus LV to HV
transformation was of interest to solve the problem of transmis-
sion over distance.

The invention of electrical transformers legitimised the construc-
tion of large power plants outside the direct vicinity of the area of
electricity consumption and were connected by first long-distance
transmission lines in the 1920s. Simultaneously, ideas to maximise
the utilization of cheap energy sources across country borders
emerged. A first ‘general plan’ for the creation of a European elec-
tricity system was suggested by Oskar Oliven at the World Power
Conference in Berlin (1930). He envisioned a transmission grid ex-
tending from Norway to Italy and from Poland to Portugal [9].
The main objectives were to bring together the hydro power in
Scandinavia and the Alps, together with coal sites in northern
France, Belgium, Germany, Poland and the South of Russia to re-
duce costs for electricity [11]. The outline and routing of lines was
mainly planned to connect major generators to major electrical
loads (see Figure 1).

After several political and economical disruptions, forging an
European electricity network referred back to the idea of 1930. In
1951, eight western European countries1 forged an initiative2 to
foster economic development by efficient utilisation of primary
energy sources through the construction of an interconnected net-
work. Thus, the construction of the 380 kV transmission grid pro-
ceeded in the mid 1950s, with the main motivation to prevent the
event of supply shortfalls. The initiative also provided an informa-
tion system between member states, where they informed about
water resources, energy storage reserves, the availability of ther-
mal power stations or planned power plants. In this way, there
progressively emerged a technical code for the expansion and op-
eration of the bulk power system [12], allowing the electricity grid
to expand in tandem with large coal, lignite, nuclear, oil and gas
power stations to meet the growing demand for electricity that
annually increased by significant rates [13] (see also Figure 2).

Plans to move away from these so-called conventional gener-
ators repeatedly came up through the course of history and for
different motivations. A first concrete worked-out proposal to de-
carbonise the electricity grid came up only in 1975, suggested by
Bent Sørensen. He issued the warning that extracting resources
from lower-grade deposits will continue to sustain industrial ex-

1 Belgium, Federal Republic of Germany, France, Italy, Luxembourg, Nether-
lands, Austria and Switzerland

2 The Union for the Coordination of Production and Transmission of Electricity
(UCPTE)
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Figure 2: Global energy consumption by source since 1800 (left axis) [13]
and global median temperature anomaly from 1961-1990 aver-
age since 1850 (right axis) [14].

pansion until either the environmental impacts become unaccept-
able or ultimate limits, such as climate disruptions, put an end to
such growth. To prevent this outcome, he suggested an electricity
grid that was fully powered by solar or wind energy on the sample
region of Denmark that could be feasible by 2050 [15]. This first
fully renewable electricity system plan contains many assump-
tions that are regarded important in energy system model(ling)
(ESM) today, for example land-use restrictions3, the variability of
renewable sources or the orientation and cost assumptions for so-
lar panels and windmills in order to incorporate economical con-
siderations such as the cost of electricity. Nevertheless, climate
change mitigation did not become an important goal of global
politics until the 1990s.

In 1997, based on the scientific consensus that global warming
is occurring and that human-made carbon dioxide (CO2) emis-
sions are driving it, the first legally binding commitments for de-
veloped countries to limit their greenhouse gas emissions were
adopted in the Kyoto Protocol. In order to use the same bench-
mark, most modern studies refer to reductions of CO2 compared
to 1990, following the protocol4. The commitment periods of the
Kyoto Protocol ended in 2020, and it was effectively replaced by
the adoption of the Paris Agreement in 2015. The Agreement’s
long-term goal is to keep the rise in mean global temperature to
well below 2

◦C above pre-industrial levels, and preferably limit
the increase to 1.5◦C, recognizing that this would substantially re-
duce the effects of climate change. Emissions should be reduced

3 He chose a ceiling such that only a small fraction of land area must be used for
energy-collecting systems, in total less than 1% of the land.

4 We utilise the same convention in this dissertation.
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Figure 3: History of the expansion of the electricity grid.

as soon as possible and reach net-zero by the middle of the 21st
century [16, 17].

Ever since the political anchoring of the energy transition, en-
vironmental topics gained increasing attention. For example, in
the course of the third legislative package on the gas and elec-
tricity markets in the European Union (EU) in the year 2008 [18]
all regional transmission grid associations were united as the Eu-
ropean Network of Transmission System Operators for Electricity
(ENTSO-E), effectively dissolving its predecessors5. ENTSO-E pro-
motes closer cooperation across Europe to support the implemen-
tation of the EU energy policy and achieve Europe’s energy and
climate policy objectives [19], which are changing the intended
nature of the power system to connect few large, predictable gen-
erators to major electricity demand.

To comply with various governmental regulations to achieve
ambitious climate change mitigation policies, the carbon-intensive
bulk electricity supply of the past decades must be replaced by
either low or CO2 neutral technologies. Currently the greatest ex-
pansion potentials are found for wind and solar generation be-
cause of their low emissions and cost-competitiveness with other
electricity generation facilities. Moreover, their expansion has the
potential to cover worldwide energy demands [20]. But for sys-
tems that are based on renewable energy (RE) whose generation
yield is highly weather-dependent, the chief challenge is dealing
with their variability. For example, the rising share of variable re-
newable energy (VRE) in recent years, whose layout is naturally
designed as a distributed generation system, strains the transmission
grid in a way that it was not constructed for, resulting in high
levels of curtailment [21].

To tackle the challenge of replacing the plannable conventional
generators by RE sources in the electricity grid, a growing number
of scientific publications were issued that utilise electricity system
optimisation models, for example [22–26]. Typically, the goal of the

5 such as the Union for the Co-ordination of Transmission of Electricity (UCTE)
that has replaced the UCPTE in 1999
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optimisation is to simulate how the integration of RE sources into
the the transmission grid could be cost-efficiently implemented to
achieve CO2 neutrality while providing a secure and stable elec-
tricity supply. But modelling electricity systems with high shares
of wind and solar photovoltaic (PV) generation is fundamentally
different to modelling conventional power systems with plannable
dispatchable generation [27]. While investments in conventional
power plants can be dimensioned according to simple heuristics
like screening curves [28], reliable investment recommendations
for renewable generator, storage and transmission installations
must accurately portray renewable potentials and capture the vari-
ability of wind and solar PV generation [29].

In order to manage the natural variability of the RE sources, the
optimisation models are typically embedded with large transmis-
sion networks to smooth renewable feed-in in space or storage
technologies to smooth the variability in time. Ideally, the optimi-
sation model is allowed to jointly expand the transmission grid
and the generation fleet such that the benefits of exploiting sites
with the best renewable resources can be balanced against the net-
work expansion costs [30].

But the assessment of wind and solar resources requires a high
temporal and spatial resolution to capture their weather-driven
variability. The need to assess investments in generation, trans-
mission and flexibility options over thousands of representative
weather and demand situations, as well as over thousands of po-
tential locations, means that balancing model accuracy against
computational resources has become a critical challenge. This bal-
ancing is the main topic of this dissertation.

1.1 state of the art

To reduce the computational burden with regard to capacity plan-
ning optimisation models, a basic management option is to reduce
the complexity of the model at hand. A general guide to handle
model complexity in energy system optimisation models with a
high share of RE is provided in [31], where the general approach
is to reduce the number of variables and interdependencies. For
capacity planning models, there are three main classes where we
can reduce model complexity and gain computational advantages.

(i) The numerical description of the physical processes that are
simulated by the optimisation model. To circumvent the need for
large computational resources on this matter, there exists a broad
range of methods to simplify the underlying mathematical de-
scription of, for example, non-linear and non-convex power flow
calculations or unit commitment. Computational trade-offs with
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respect to the model formulation of electricity system optimisa-
tion models, such as modelling losses, linearization approaches
for electricity transmission [32] or efficiency curves for individual
technologies [33], have already been carefully discussed in prior
research.

(ii) The temporal resolution of the model that is needed to em-
bed the variability of the weather and RE into the optimisation.
For a high share of VRE in the model, the temporal resolution
strongly impacts the resulting electricity yield. Effects of the tem-
poral resolution have also been well examined in the electricity
system planning literature for the integration of VRE carriers into
the grid [20], including the need for at least hourly modelling
resolution [27], the consequences of clustering representative con-
ditions [34], and the need to include extreme weather events [35].

(iii) The spatial resolution of the model. At highest spatial res-
olution for models at transmission level, every substation is rep-
resented and interconnected to other substations via transmission
lines. To circumvent computational limitations when modelling
at such detailed spatial granularity, many studies pursue the ap-
proach to represent large political regions such as countries by a
single region [36–39], use the full electricity substation level reso-
lution for the transmission grid but only in selected regions [40],
or reduce the full model to a smaller equivalent using spatial clus-
tering methods [1, 22, 41–43]. They often make suggestions for
the future energy system or the modelling process based on the
results obtained by their reduced models. For models with a high
share of VRE carriers, integrating renewable resources on a con-
tinental scale can smooth large-scale weather variations, particu-
larly from wind [44], and avoid the need for temporal balancing.
This smoothing effect has been found in studies of the benefits
of grid expansion both in Europe, where the impact on balanc-
ing needs [45] and storage requirements [43, 46] has been anal-
ysed. Similar results have been found for modelling the United
States [47]. When it comes to clustering, or, in other words, the
representation of multiple regions of the model as a single one,
there has been little research on the effects of spatial resolutions
on planning results. This is partly due to the fact that collecting
high-resolution spatial data is challenging, but mostly because of
the fact that optimisation at a high spatial resolution over large
areas is computationally demanding.
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1.2 research questions and contributions to the sci-
entific community

We provide a systematic approach to close the research gap pre-
sented in Section 1.1 and analyse the impacts of spatial resolution
on the electricity system optimisation results. We focus on conti-
nental Europe and answer the following research questions:

• Is there a level of spatial resolution that is computationally
tractable but also captures relevant detail? (Chapters 3 and
5)

• What are the main spatial quantities that drive the model
results, and how strong is their respective impact? (Chapter
3)

• How do new transmission and new storage affect the spatial
resolution discussions? (mainly Chapter 3, and Chapter 4 for
storage)

• How can energy system models be aggregated in space and
best preserve the properties that have the largest effect on
investment optimisation results (e.g. grid bottlenecks, quan-
tification of resource variation)? (Chapter 4)

• How well can a spatially reduced electricity system model at
transmission level reproduce relevant quantities of the grid,
such as historical transmission congestion, the generation-
mix and curtailment? (Chapter 5)

• If a model is optimised at low resolution, how can the results
be disaggregated into a highly-resolved model? (Chapter 6)

• Is the disaggregated, spatially highly-resolved model feasi-
ble with respect to the optimal low-resolved model solution?
(Chapter 6)

1.3 structure of the thesis

Individual Chapters of this thesis are stand-alone but build upon
one another as follows:

In Chapter 2 we first introduce the European dataset that is used
throughout the whole dissertation. Then, we focus on foundations
in graph theory and mathematical optimisation. These topics are
fundamental for this thesis because they serve as key tools to turn
the described dataset into a mathematical model of the (European)
electricity grid. From this groundwork we derive the challenge of
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Methods Results

Chapter 3

Chapter 4

Results from Chapter 3 help to...

Chapter 2

Spatially highly-resolved
optimisation models lead to

computational burdens

Disentangle and quantify
the spatial impacts of
renewable feed-in versus
network constraints in
spatially clustered models

... derive similarity measures
to improve resulting optimi-
sation variables (renewable
generation, powerflows) in
energy planning models

Resolution of the
electricity grid is
more constraining
than the resolution of
generation sites

Clustering highly re-
newable models should
incorporate both the
topology of the network
& renewable potentials

Chapter 6

Novel inverse methods to spatially disaggregate
low-resolved results into higher model resolution

computational burden, which in turn leads to the topic of cluster
analysis.

After understanding why spatial clustering is required when
modelling the European electricity grid, we analyse the main driv-
ing effects of the clustering on the planning results of the optimi-
sation in Chapter 3. We examine the implications of the cluster-
ing on the European capacity expansion model or, in other words,
analyse how the grouping of multiple renewable sites to a repre-
sentative one affects the optimal solution of the model. We do this
in three different scenarios: (i) We analyse the compound impact
of all aggregation variables on the optimal results of the network.
But as we are interested how certain isolated attributes impact the
results of the aggregated model, we additionally examine (ii) how
varying the resolution of renewable sites with a fixed number of
transmission constraints affects the optimal solution. In contrast,
in (iii), we examine how varying the resolution of transmission
constraints with a fixed number of renewable sites affects the op-
timal solution.

Then we incorporate the lessons from the three scenarios of
Chapter 3 to improve existing clustering algorithms and design
novel aggregation methods or new functions to measure distance
between nodes in Chapter 4 to improve the clustering. The im-
proved and novel methods mainly focus on accurately portraying
the connectivity of the network, or on accurately representing re-
newable potentials. We benchmark the results against established
methods from previous studies.

In Chapter 5, we analyse if newly embedded data of renew-
able power stations into the European electricity grid model can
reproduce historical numbers of curtailment. This purely opera-
tional case-study is carried out only for Germany. This choice of
region allows us to overcome computational burdens that arise
when modelling a larger geographical area. We can then examine
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how modelling results behave when the spatial resolution of the
model is varied6. We evaluate the spatially fully-resolved trans-
mission grid results, and reduce the resolution of the graph that
represents the grid in evenly-sized steps. Numbers of curtailment
are statistically evaluated on a spatial and temporal scale. More
specifically, we test if the model can capture curtailment in the
right locations and during the right times, benchmarking against
official numbers published by the German transmission system
operators (TSOs). In this analysis we cover the historical years
2013-2018 (in total 6 years).

Finally, we test the feasibility of spatially low-resolved capacity
planning results in Chapter 6. Here, feasibility means that spa-
tially low-resolved modelling results are fed back into a model
with a higher spatial resolution. The spatially higher dimensioned
model is then carefully examined if electricity demand can be met
in all places at all times with the additionally invoked constraints
from modelling at higher resolution. From previous findings, we
pick the clustering method that performed best, and examine how
the low-resolved results perform when they are disaggregated at
a high resolution. However, as there exist no evaluated disaggre-
gated methods, we first need to research potential inverse func-
tions. Here, we settle for three different options: (i) uniform distri-
bution of the optimal result for the whole region across all nodes
that are represented by the region, (ii) re-running a local opti-
misation problem on a subset of nodes with the full model for-
mulation and additional constraints to incorporate results from
the low-resolved optimisation variables and (iii) a novel approach
that is based on a new objective function that is derived from
prior research in Chapter 5. We compare the performance of these
three methods in terms of computational resources and accuracy
of modelling results. Model fidelity is measured in terms of fea-
sibility of the spatially highly-resolved operational model. From
this comparison and analysis we make implications on how well
spatially low-resolved modelling results can approximate the orig-
inal, highly-resolved system.

Conclusions are drawn in Chapter 7.

1.4 contributions to the open source community

As a by-product of the methods of this dissertation, we have de-
veloped and contributed to open-source licensed models, datasets,
toolboxes and packages. All novel packages and improvements to
previously existing ones that are related to the methods of this dis-

6 A full European model would not be computationally feasible with our given
computational resources, as we will learn in Chapter 2.
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sertation are documented in the following alphabetically ordered
Sections. Details on the contribution and further information can
be found in Annex A.

1.4.1 GridKit

GridKit [48] is a power grid extraction toolkit, initially published
in 2016. It processes the interactive map of the European transmis-
sion system, that is hosted online by the ENTSO-E to form com-
plete topological connections. In its initial publication, the package
included an error where lines that were provided in series were
aggregated to a single representative line, such that certain sub-
stations were lost in the aggregation. This improvement mainly
affects Chapter 5 of this thesis.

1.4.2 Interannual Demand Calculator

The Interannual Electricity Demand Calculator [49] was developed
to account for the symbiosis of variations in weather conditions
and electricity demand patterns. While electricity consumption
time-series are scarce in the open-source community, records of
weather information can be retrieved for a many historical years.
To complete the dataset needed for ESM, we have developed the
Interannual Demand Calculator to process weather data into an
electricity consumption time-series. This novel tool can be utilised
to show that all results of Chapters 3 - 6 are stable with respect to
given weather conditions.

1.4.3 Invers-E

The invers-e is a novel package to disaggregate spatially low-resolved
optimisation variables that represent regionalized results back at
higher or full spatial resolution. At the current stage, it consists of
three different disaggregation methods that we propose in Chap-
ter 6, and is restricted to disaggregating only the aggregated low-
resolved capacities of generators and storage units. Optimised
transmission expansion results are currently not processed.

1.4.4 NetworkX

NetworkX is a package for the creation, manipulation, and study of
the structure, dynamics, and functions of complex networks. The
main contribution here is the generalization of an existing function
to process weighted graphs (i.e. graphs with edge weights), and
a customization of the objective, such that all interim solutions
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can be returned, not only the optimal one. We utilise these new
features in Chapter 4.

1.4.5 Powerplantmatching

Powerplantmatching is a toolset for cleaning, standardizing and
combining multiple power plant databases. As the transition in
the electricity system is taking on, it becomes increasingly im-
portant for open-source packages to include renewable assets in
their datasets, next to the existing database of conventional power
plants such as coal, lignite or nuclear. We have contributed to
this target by integrating a dataset of renewable generators pro-
vided Open Power System Data (OPSD) [50] to Powerplantmatch-
ing. These results are used in Chapter 5.

1.4.6 Python for Power System Analysis (PyPSA)

Python for Power System Analysis (PyPSA) is an open source
modelling framework for simulating and optimising modern power
systems. It is designed to scale well with large networks and long
time series. The original functionality of the framework to spa-
tially cluster a given network to a smaller approximation included
only a weighted variation of the k-means partitioning algorithm.
All novel spatial clustering methods developed during the course
of this thesis have been contributed to PyPSA. We introduce and
evaluate them in Chapter 4.

1.4.7 Python for Power System Analysis in Europe (PyPSA-Eur)

Python for Power System Analysis in Europe (PyPSA-Eur) is an
open model dataset of the European power system at the trans-
mission network level that covers the full ENTSO-E area. It is built
upon PyPSA (section 1.4.6) to run today’s or future electricity sys-
tem simulations. Due to the coupling, the methods on spatially
reducing the complexity of the model were initially limited. We
have integrated a possibility to import and utilise the novel clus-
tering methods and apply them in Chapter 4 and 6.





2
F O U N D AT I O N S I N M AT H E M AT I C A L
M O D E L L I N G F O R E L E C T R I C I T Y S Y S T E M
O P T I M I S AT I O N S

There are several recurring theoretical subjects throughout this dis-
sertation that we introduce in this Chapter before we move to the
research content. They include topics from graph theory, mathe-
matical co-optimisation tools and clustering algorithms. We dis-
cuss all topics from the point of view that is necessary for renew-
able investment planning applications at transmission level.

Graph theory is relevant in this thesis as the whole electricity
grid can be interpreted as a graph. The main motivation to bor-
row definitions from graph theory is mainly for a consistent and
coherent notation, but also to comprehensibly define physical and
mathematical formulations.

The concept of mathematical optimisation is fundamental in
this thesis because we analyse how the spatial representation of
the underlying dataset of the European electricity grid impacts the
optimisation results. We typically examine the optimal solution in
terms of accurately representing the electricity system. This can
be done by interpreting the optimisation result as a function of
the spatial resolution of the model formulation. More specifically,
we compare differences in the optimal solution of model runs at
varying spatial resolutions against each other, and analyse model
feasibility of a spatially low-resolved optimal solution with respect
to a spatially highly-resolved modelling result. Understanding the
mathematical optimisation also helps to improve the spatial repre-
sentation of the dataset that is then fed into the model formulation.
Thus, it is vital to provide a detailed description of the mathemat-
ical concepts prior to the research content.

Clustering algorithms are essential for this thesis, because they
are the cornerstone of the spatial representation for the model. The
data of the European electricity grid is given exogenous at a cer-
tain spatial resolution. However, as we explain later on, it is at too
high spatial granularity to be processed by the mathematical op-
timisation formulation due to computational constraints. In sum,
the mathematical problem at high spatial detail is too complex to
be processed by modern computers with an appropriate amount
of computational power in a reasonable time. To overcome this
burden, we can spatially reduce, or cluster, the input data before
feeding it into the mathematical model. But there are many pos-
sibilities how the given data can be clustered to a smaller, ideally

13
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equivalent, data record. Therefore we discuss the general theory
of clustering algorithms.

The remains of this chapter are structured as follows: First, we
present the underlying datasets that we use for all modelling and
research purposes of this thesis in section 2.1. Then we explain
how the dataset can be mathematically interpreted to form a com-
prehensive model in section 2.2. Here, we introduce fundamentals
of graph theory that serve as a basis for the notation that we use
throughout the whole dissertation. From the formal definitions
and mathematical model description, we can finally formulate an
mathematical optimisation problem in section 2.3. Approaches to
solve the resulting problem are discussed in section 2.4, where we
reveal the resulting computational burden of modelling the whole
European electricity grid. This big data induced difficulty leads
us directly to the topic of clustering methods which we discuss in
section 2.5.

2.1 a dataset of the european electricity grid

Figure 4: Visualisation of the topology of the European transmission
grid at and above 220 kV.
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Figure 5: An exemplary cutout of the corine land-cover maps for the area
around Karlruhe city and the disctrict of Karlsruhe.

All data used in this thesis for all modelling purposes is pre-
sented in this section. It is provided by the open-source model
PyPSA-Eur [51], that bundles various sources of open data. The
dataset contains more data than presented in the following, but
we focus here on the part that is used in this dissertation. It con-
tains:

• Information of the topology of the transmission grid cover-
ing the full ENTSO-E area at and above 220kV . This data is
originally extracted from the ENTSO-E interactive map us-
ing GridKit [48]. See Figure 4 for a visualisation. In total, it
contains 5399 substations, joints or locations of power plants,
6693 high voltage aternating current (HVAC) transmission
lines, 70 high voltage direct current (HVDC) lines and 628

transformers.

• Data on conventional generators and storage units such as
lignite or coal-fired power stations, nuclear power plants,
open cycle gas turbines, biomass plants, geothermal power
generators, pumped-storage hydroelectricity or run-of-river
hydroelectricity. The dataset includes geospatial information
on the locations of every plant, its capacity, commissioning
dates, CO2 intensity, efficiencies and whether the plants are
in active use or not.

• Records of renewable generators, such as onshore or off-
shore wind assets or solar panels, extracted from the OPSD
Project [50]. These records include geospatial information,
capacity per asset, commissioning years and the expected
lifetime.

• Time-series of the electricity consumption in hourly resolu-
tion for every country covered by the electricity grid, origi-
nally provided by OPSD [52] for the years 2010− 2018. See
Figure 7a for an exemplary visualisation of the total electric-
ity demand of Germany, Poland and Italy for two exemplary
weeks in 2013.
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• Hourly resolved time-series of renewable potentials, given as
so-called “capacity factors”. They indicate how much electric-
ity can be produced in every hour if capacity was installed
in a certain. They are derived using the open-source package
atlite [53], are given in percent, and can be calculated for the
years 1951-today.

• Classification of spatial data consisting of land cover maps of
Europe that provide the land use status of 2012. This dataset
is provided by the European Environment Agency (EEA) un-
der the framework of the Copernicus programme. See Fig-
ure 5 for an exemplary cutout covering the area of Karlruhe
city and the district of Karlsruhe.

• Geospatial information of protected areas, set up to ensure
the survival of Europe’s most valuable species and habitats.
It includes bird sanctuaries and other landscape protection
areas. It is updated on an annual basis. This dataset is origi-
nally provided by the EEA.

• Cost assumptions for a set of technologies for electricity gen-
eration. They are based on projections for the year 2030 and
are derived according to suggestions from the Danish En-
ergy Agency (DEA) [54] (wind), the German Institute for
Economic Research [55] (conventional technologies, pumped
hydro storage, hydro, run-of-river), Budischak et al. [56] (stor-
age) and the European Technology and Innovation Platform
(ETIP) for solar PV [57]. 2030 is chosen for the cost projec-
tions since this is the earliest possible time that such a sys-
tem transformation might be feasible, and because the cost
assumptions are conservative compared to projections for a
later year. The projections for the cost assumptions are dis-
played in Table 2.

Some of the features, such as renewable potentials, of this dataset
are visualised in Figure 6.

2.2 dataset to model : some topics from mathematics

Here we formulate the mathematical model with conventions that
are based on graph theory. First, let us provide some basic defini-
tions:
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Table 2: Technology investment cost assumptions.

asset cost unit

onshore wind 1110 e
kW

offshore wind 1640 e
kW

(HVAC/HVDC grid connections separately)
solar PV utility 425 e

kW
solar PV rooftop 725 e

kW
open cycle gas turbine 400 e

kW
run of river 3000 e

kW

pumped hydro storage 2000 e
kW

hydro storage 2000 e
kW

battery storage 192 $
kW

battery power conversion 411 $
kWel

hydrogen storage 11.3 $
kWh

hydrogen power conversion 689 e
kWel

HVAC overhead transmission 400 e
MWkm

HVAC underground transmission 1342 e
MWkm

HVAC subsea transmission 2685 e
MWkm

HVDC underground transmission 1000 e
MWkm

HVDC subsea transmission 2000 e
MWkm
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(a) Landuse potentials (left) and full load hours (FLH) (right) for solar PV.

(b) Landuse potentials (left) and FLH (right) for on- and offshore wind.
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(c) Electricity demand (left) and network topology (right).

Figure 6: Visualisation of the PyPSA-Eur dataset.
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Definition

A graph is a pair G = (V,E), where V is a set whose ele-
ments are called vertices or nodes v ∈ V, and E is a set of
paired vertices (v,w) ∈ E, whole elements are called edges,
sometimes also links or lines.

Using this definition, we can formulate the grid data derived
from the ENTSO-E interactive map, as visualised in Figure 4, as a
graph where every substation, location of power plant or storage
unit, converter station or joint is represented as a node v. The set
of all nodes is denoted as V.

Similarly, all transmission lines of the network graph G are given
as the graph’s edges (v,w) connecting the nodes v,w ∈ V. We de-
note the set of all transmission lines as E. However, as the lines are
directed, the simple definition of G, as given above, is too vague. We
need a specification for G to provide directions of the edges. This
is critical to define the direction of electricity power flows.

Definition

A directed graph or digraph is a graph in which the edges
have orientations.

In this definition, the order of nodes in the notation of an edge
is meaningful, i.e. (v,w) ̸= (w, v).

To supplement the formal mathematical description of the model,
we assign characteristic attributes to every node v ∈ V in the
graph, such as its geographical locations given as latitude xv ∈
[−180, 180] and longitude yv ∈ [−180, 180], the country zv it is
assigned to or a switch lvv ∈ {0, 1} to denote whether it is a sub-
station, i.e. connected to the lower-voltage distribution grid. Every
node with lvv = 1 is assigned a temporally resolved electricity
demand dv,t ∈ R+

0 , given in in MWh. However, as the electricity
demand is exogenous only given per country z (see section 2.2),
we first need to disaggregate dz

t spatially to every substation. This
is a challenge because as of today there exists no open-source spa-
tially resolved data. We pursue a heuristic approach and disaggre-
gate the electricity consumption proportional to local population
(popv) and gross domestic product (gdpv). Mathematically, the
disaggregation can be written as:

dv,t = dzv
t ·
(
0.6 · ∥gdpv∥max + 0.4 · ∥popv∥max

)
(1)

[58] has shown on a sample region in Italy, that this heuristic pro-
vides a good correlation with actual consumption. A visualisation
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(a) Electricity demand retrieved from the OPSD [52] for three
exemplary countries (Germany, Poland and Italy) and two
exemplary weeks.
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(b) Disaggregated electricity demand on five exemplary substations in
Germany for the same two exemplary weeks.

Figure 7: Exemplary visualisation of the disaggregation of electricity de-
mand that is given exogenous per country.

of the disaggregation of the electicity demand time-series is pro-
vided in Figure 7: Figure 7a shows exemplary electricity consump-
tion profiles for Germany, Poland and Italy and Figure 7b shows
the disaggregation of cumulative time-series for five sample nodes
in Germany.

Further, every node is assigned a renewable installation poten-
tial Gmax

v,s ∈ [0,∞) that is given in MW and is based on land cover
maps, excluding for example nature reserves, cities or streets us-
ing the geospatial land availability toolkits “GLAES” [59] and
“atlite” [53]. They calculate the share of land per region that can be
used for the deployment of renewables either in % or in km2. For
onshore wind installations, we then assume a minimum distance
of 1000m from streets or buildings, and for offshore installations a
maximal water depth of 50m. The resulting renewable installation
potentials are derived based on the resulting eligible area within
the associated so-called Voronoi region of every node v ∈ V and the
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different technology assumptions. We assume a capacity density
of 1.7MW

km2 for solar PV installations, 3MW
km2 for onshore wind tur-

bines and 2MW
km2 for offshore wind assets. Initial land use assump-

tions are taken from [60]. We then additionally assume that only
1% of the the already restricted area is available for solar PV pan-
els, 20% for installations of offshore wind generators and 20% for
onshore wind generators. We perform this additional fractioning
due to competing land use and likely low public acceptance. An
exemplary visualisation of the Voronoi regions to the associated
nodes in Karlruhe city and the district of Karlsruhe is presented in
Figure 8a. The resulting eligible area for onshore wind and solar
PV deployment within these Voronoi regions is shown in Figure
8b.

Definition

The Voronoi region of a node v ∈ V is defined as the area
that is closest to the node in the sense of a pre-defined met-
ric. Here, we use the euclidean distance metric d(v,w) :=

∥v − w∥2. Thus, the Voronoi region of v ∈ V is formally
given as the set:

{x ∈ R2 : d((xv,yv)T , x) ⩽ d((xw,yw)T , x) ∀w ∈ V}.

Finally, every node v is assigned a per unit RE generation time-
series ḡv,s,t ∈ [0, 1] for its renewable carriers s ∈ {solar PV, on-
shore wind, offshore wind}. The factors ḡv,s,t are derived from
historical weather data, taking into account the solar irradiation
and the wind speeds as well as technical properties of the assets,
such as the orientation of solar panels (here: south orientation, tilt
angle 35◦) or the hub height of wind turbines (here: 80m). The ca-
pacity factors for wind are obtained from the ERA5 dataset with
a spatial resolution of 0.281◦ × 0.281◦ [61], and for solar from the
SARAH-2 dataset [62], with a spatial resolution of 0.05◦ × 0.05◦.
Finally, ḡv,s,t is derived from the Voronoi region of a node (exclud-
ing the one that is reserved for woodlands, rivers, streets etc.) by
heuristically placing wind turbines and solar panels. The capacity
factors for each location are taken from the characteristic power
curves of the assets and are then averaged for the corresponding
Voronoi region.

Similar as for the network nodes v ∈ V, every transmission line
(v,w) ∈ E - or edge of the network graph G - has associated at-
tributes that are relevant for the modelling. They include the lines
individual resistance r(v,w) ∈ R+

0 and reactance x(v,w) ∈ R+
0 , both

given in Ω, as well as its transmission capacity F(v,w) ∈ R+
0 given
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(a) Exemplary Voronoi regions of nodes that lie in Karl-
sruhe city or the district of Karlsruhe. Nodes are de-
picted with black dots, and the corresponding Voronoi
region of every node is depicted with a black boundary
enclosing the associated node.

Eligible area for onshore wind deployment 
 (marked in purple): 25.18%

Eligible area for solar pv deployment 
 (marked in purple): 49.42%

(b) Visualisation of land-use eligibility on the example of the Voronoi cells (outer
black boundary) that contain Karlruhe city and the district of Karlruhe (in-
ner black boundary). Area that is eligible for onshore wind (left) and solar
PV (right) deployment is shaded in purple. Eligible land is derived from in-
formation provided by the EEA, which is displayed in Figure 5 for the same
region.

Figure 8: Visualisation of how land-use restrictions are derived based on
Voronoi regions and land cover maps.
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in MW. Finally, the length l(v,w) of every line (v,w) ∈ E is given
in km.

In the context of transmission lines and power flows, we also
need the definition of an incidence matrix.

Definition

The incidence matrix of a directed graph G = (V,E) is a
matrix K ∈ {−1, 0, 1}|V|×|E|. Its entries are defined as

Ku,(v,w) =


−1 if w = u

1 if v = u

0 if u ̸= v, u ̸= w

∀u ∈ V, (v,w) ∈ E

(2)

When deriving equations for electric circuits, cycle bases are a
relevant term. They are useful for example to derive Kirchhoff’s
Laws. We need a couple of definitions to finally derive a cycle
basis C and its associated cycle matrix L. First, we need to under-
stand what the term cycle means.

Definition

A walk of length n ∈ N\{0} of a graph G = (V,E) is a finite
sequence of n edges {(v0, v1), (v1, v2), . . . , (vn−1, vn)} with
(vi−1, vi) ∈ E, i = 1, . . . ,n and vi=1,...,n ∈ V.
A directed trail is a directed walk where all edges are dis-
tinct.
A directed circuit is a non-empty directed trail with v0 =

vn.
A directed cycle is a directed circuit with vi ̸= vj ∀i, j ∈
{1, . . . ,n− 1}, i ̸= j.

Definition

A cycle basis of a network is a minimal collection of cycles
c, such that any cycle in the network can be written as a
sum of cycles in the basis. We denote the cycle basis with
the letter C.
Here, summation of cycles is defined as an exclusive or of
the edges.
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We note that the cycle basis of the Graph G that portrays the
European transmission grid (see Figure 4) is a set C of length 1722.
In other words, the basis consists of 1722 cycles, where every cycle
in the basis is an own set of nodes. 50% of the cycles in the basis
consist of 7 nodes or less (median), while the average length of a
cycle in the basis consists of 50 nodes (mean). The shortest cycle
contains 3 nodes, the longest one 561.

Definition

The cycle basis C of a graph G = (V,E) can be used to define
the graph’s cycle matrix L ∈ {0, 1}|E|×C|. For every cycle
c ∈ C its entries are defined as:

L(v,w),c =

 1 if (v,w) ∈ c

0 else

Notation introduced in this section is summarised in Table 1.

2.3 mathematical optimisation methods for electric-
ity system investment planning

In this Section, we focus on representing the dataset described in
Section 2.1 using the methods and notation introduced in Section
2.2 to formulate a mathematical co-optimisation model suited for
renewable investment planning applications at transmission level
[63].

The aim of the optimisation formulation is to minimise the
yearly system costs. This can be achieved by formulating an ade-
quate objective function that describes their composition. We pro-
pose to formulate it as a sum, that consists of various terms where
each one accounts for a different part of the total system:

(i) The sum of capacity Gv,s (given in MW) per node v ∈ V and
technology s ∈ S multiplied by their annualised specific nodal and
technological capital investment costs cv,s (given in e

MW ), over all
nodes v ∈ V and technologies s ∈ S. This sum represents the total
investment costs in new technologies.

(ii) To account for variable costs, such as costs for fuels and
maintenance costs (ov,s,t, given in e

MWh ), the sum of (i) must also
span over the time-dependent operation of every unit gv,s,t (given
in MWh).

(iii) A similar sum must be taken into account for investments in
new storage capacity Hv,r (given in MW) for every node v ∈ V and
storage technology r ∈ R. To deduce the resulting system costs,
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the capacity must again be multiplied with the technology and
node specific costs cv,r (given in e

MW ) for every unit of capacity.
(iv) Finally, we must consider investments into new transmis-

sion line projects. Their total annualised costs can be calculated
as the sum of all transmission lines (v,w) ∈ E over the capacity
F(v,w) (given in MW) of every line, multiplied by the line-specific
costs c(v,w) (given in e

MW ).
Thus, the whole objective function can be formally written as

min
Gv,s,Hv,r
gv,s,t,h±

v,r,t
f(v,w),t

[ ∑
v∈V,s∈S

(
cv,sGv,s +

∑
t∈T

wtov,sgv,s,t

)
+ (3)

∑
v∈V, r∈R

cv,rHv,r +
∑

(v,w)∈E

c(v,w)F(v,w)

]
where wt is without units and accounts for the time-weighting.

The objective function (3) is embedded with various constraints
to account for socio-economic, electrical and physical aspects as
well as weather-related uncertainty of the system we seek to model.

The total installable capacities Gv,s for generators, Hv,r for stor-
age units and F(v,w) for transmission lines are constrained by up-
per and lower bounds, mathematically given as

Gmin
v,s ⩽ Gv,s ⩽ Gmax

v,s ∀v ∈ V, s ∈ Sre (4)

Hmin
v,r ⩽ Hv,r ⩽ Hmax

v,r ∀v ∈ V, r ∈ R (5)

Fmin
(v,w) ⩽ F(v,w) ∀(v,w) ∈ E (6)

The lower bounds Gmin
v,s , Hmin

v,r and Fmin
(v,w) are set to the existing

capacities of the year 2018, which was the most up-to-date open-
source database at the time when this dissertation was written.
The derivation of the upper bound Gmax

v,s is explained in section 2.2
and visualised in Figure 8. An upper bound for the transmission
lines is not provided on a basis of individual lines. Instead it is
given as a cumulative cap F̄ given in percent of the volume of
the existing grid, where the optimisation can freely distribute the
extra capacity across the existing grid:∑

(v,w)∈E

l(v,w)F(v,w) ⩽
(
1+ F̄max) ∑

(v,w)∈E

l(v,w) · F̄min
(v,w) (7)

By this setting, no new transmission lines are considered and only
the existing ones can be strengthened.
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The nodal dispatch gv,s,t of generators has to be non-negative,
and is constrained by the installed capacity Gv,s for every conven-
tional technology s ∈ Scon. and in each snapshot t ∈ T:

0 ⩽ gv,s,t ⩽ Gv,s ∀v ∈ V, s ∈ Scon., t ∈ T (8)

To account for weather-related uncertainty, we constrain the up-
per limit of renewable generators by an additional weather-related
availability factor ḡv,s,t ∈ [0, 1]:

0 ⩽ gv,s,t ⩽ ḡv,s,tGv,s ∀v ∈ V, s ∈ Sre, t ∈ T (9)

The factors ḡv,s,t ∈ [0, 1] are derived from historical weather data
(see section 2.2) and, thus, account for the availability of renewable
resources. For example, for solar PV generation, ḡv,solar,t = 0 ∀t ∈
Nv ⊂ T, where Nv is a subset of T that contains only snapshots t

where there is no solar radiation in the Voronoi region of v. Simi-
larly, ḡv,wind,t = 0 ∀t ∈ Pv, where Pv is a subset of T that contains
only snapshots t where there is either too little or too strong wind
for a wind turbine to generate electricity in the Voronoi region of
v ∈ V.

Similar constraints are defined for electricity storage. The charg-
ing h+

v,r,t and discharging h−
v,r,t process is constrained by the ther-

mal rating of the storage unit Hv,r.

0 ⩽ h+
v,r,t, h−

v,r,t ⩽ Hv,r ∀v ∈ V, r ∈ R, t ∈ T (10)

To prevent simultaneous charging and discharging, a small artifi-
cial cost can be added as an additional constraint for the discharg-
ing h+

v,s,t.
In contrast to generating units, we must embed additional con-

straints to account for consistency of the storage levels ev,r,t. The
storage level at snapshot t ∈ T\{0} must equal to the amount that
is charged h+

v,r,t plus the amount that naturally flows into the unit
hinflow
v,s,t minus the amount that is discharged h−

v,r,t and the amount

that is naturally spilled h
spill
v,s,t plus the storage level at the previ-

ous snapshot ev,r,t−1. All these individual processes are weighted
with their respective efficiencies, such as the standing loss of the
unit ηv,r,0 or the units charging ηv,r,+ and discharging ηv,r,− effi-
ciency.

ev,r,t =wt ·
(
ηv,r,+ · h+

v,r,t − η−1
v,r,− · h−

v,r,t

)
+wt ·

(
hinflow
v,r,t − h

spill
v,r,t

)
+ ηwt

v,r,0 · ev,r,t−1 (11)

∀v ∈ V, r ∈ R, t ∈ T\{0}
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The state of charge at the initial snapshot of the simulation t = 0

must be given exogenous. We additionally assume that all storage
units must have the same final condition at the end of the simula-
tion, i.e.

ev,r,0 = ev,r,|T| ∀v ∈ V, r ∈ R (12)

The state of charge is bound by the capacity of the storage unit
which is equal to the units technology-specific maximal duration
to discharge power Tr multiplied with its power rating Hv,r.

0 ⩽ ev,r,t ⩽ TrHv,r,t ∀v ∈ V, r ∈ R, t ∈ T (13)

Now that all nodal constraints are defined, let us have a look
at the power flow constraints of the network. Similar as the gener-
ation and storage charging and discharging, the power flows are
constrained by the transmission line capacities. However, we allow
the power flows to exploit only a certain margin of the full capac-
ity in order to account for the so-called (N− 1)-security. We apply
a concrete 70% margin on all lines, following suggestions from
previous literature, see [64, 65]. This additional margin is imple-
mented as a measure to ensure that the grid has enough available
capacity for reactive power flows in case a single circuit fails.

|f(v,w),t| ⩽ 0.7 · F(v,w) ∀(v,w) ∈ E, t ∈ T (14)

The sign of the power flow indicates its direction. If positive, elec-
tricity flows from node v ∈ V to node w ∈ V. If negative, electricity
flows in the opposite direction.

To account for a physical plausibility of the grid, we embed
Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL)
laws into the optimisation problem. KCL essentially formulates a
nodal power balance stating that the sum of all electricity flows
into and out of a node must equal the amount that is locally con-
sumed and charged minus the amounts that are locally discharged
or generated at the node.∑

w∈V: (v,w)∈E

Kv,(v,w)f(v,w),t = (15)

dv,t +
∑
r∈R

(
h+
v,r,t − h−

v,r,t

)
−
∑
s∈S

gv,s,t ∀v ∈ V, t ∈ T

KVL on the other hand states that the directed sum of potential
differences around any closed cycle is zero. The implementation
of this rule is more challenging. A linearised formulation of it can
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Figure 9: Simplified illustration of the simplex algorithm (left) and inte-
rior point method (IPM) (right).

be implemented using a cycle basis C of the network graph and
its associated cycle matrix L as∑

(v,w)∈c

L(v,w),cx(v,w)f(v,w),t = 0 ∀t ∈ T, c ∈ C

Finally, we include a constraint to cap the CO2 emissions of the
system. ∑

v∈V,s∈S, t∈T

1

ηv,s
ρswtgv,s,t ⩽ ΓCO2

·
∑
z∈Z

γz (16)

Following the Kyoto protocol, this cap is given in percent of the
emissions of the year 1990, i.e. ΓCO2

∈ [0, 1].

2.4 numerical solving algorithms

The electricity system model for capacity planning derived in sec-
tion 2.3 results in a linear convex optimisation problem. Currently,
the standard state-of-the-art solving algorithms for this kind of
problem are either the simplex algorithm or the class of interior
point methods, which we have chosen for this dissertation.

The simplex algorithm generally performs efficiently in prac-
tice, but its worst-case efficiency has proven to be exponential [66],
and it remains an open question if there is a variation of the algo-
rithm that performs in polynomial time. The idea of the simplex
algorithm is to explore the feasible space by descending along its
edges, gradually approaching the optimal value. Guaranteed by
the convexity of the feasible space, the so-found local minimum is
also the global one and, thus, the solution of the problem at hand.
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(a) Comparison of open-source solvers coin-or branch and cut (Cbc), GNU Lin-
ear Programming Kit (GLPK) and high performance software for linear op-
timisation (HiGHS) to the commercial solver Gurobi on small, modest sized
PyPSA models [68].
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(b) Experimental visualisation of time and space complexity of the Gurobi solv-
ing algorithm on model formulations as derived in the previous Section.

Figure 10: Complexity of solving algorithms.

IPMs are a group of algorithms that are efficient for solving lin-
ear and non-linear convex optimisation problems in polynomial
complexity [67]. In contrast to the simplex method, here the main
idea is to approach the optimal solution from the interior of the
feasible set by an iterative search into the direction of the mini-
mum1. An iteration that has diverged from the optimum or that
has approached the boundary of the feasible space is penalised by
the modification of the objective function with a barrier term.

For a simplified graphical illustration of the simplex algorithm
and IPM see Figure 9.

software Although it is not in the spirit of open-source, we
employ the highly efficient commercial solver Gurobi [69]. This

1 or maximum
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choice of solver is mainly due to strong computational needs that
incur by the aim of this dissertation to understand the dynamics
of a spatially highly-resolved European grid. For academic pur-
poses, the software provides a free license. For other, such as com-
mercial, political, or non-profit applications, there exists a range
of free and open-source solvers, such as Cbc [70] and the GLPK
package [71]. However, for large modelling applications that are
typical in the energy landscape, they scale badly and are wholly
noncompetitive with commercial solutions. Fortunately, current
efforts focus on developing the fully open-source solver HiGHS
[72] that is competitive with the commercial solver Gurobi. While
initial benchmarks show promising results (see Figure 10a), prob-
lems of practical interest are larger. For example, solving original
electricity models currently results in 60-100 times slower solving
times, compared to Gurobi. Considering that even Gurobi requires
multiple days to solve huge practical problems (see Figure 10b) il-
lustrates that the use of current open-source solvers is impractical
[68].

complexity Let us now have a look on the time and space com-
plexity of the Gurobi solver algorithm applied on the optimisation
model that we have derived in Section 2.3, where we focus on the
two most commonly analysed resources: time and memory. While
we do not analyse the algorithms in detail in this dissertation, we
can approximately determine the algorithms complexity based on
experiments.

Our experimental data consists of 77 samples and motivates the
hypothesis that the algorithm is of polynomial space and time
complexity; mainly driven by the number of nodes in the model,
see Figure 10b. From the Figure we can also see how much ab-
solute resources we have needed on our High Performance Clus-
ter (HPC) to solve the optimisation problem as a function of the
number of nodes in the graph. We can see, that already a model
with 1000 nodes requires approximately 120 GB RAM and solved
within 3− 7 days, depending on the transmission expansion limit.
Therefore, solving the spatially fully-resolved model that consists
of more than 5000 nodes is computationally too challenging for
most applications, even for our HPC. Therefore, we are in need
of methods to reduce the European electricity system model to a
lower complexity while retaining high accuracy of the results of
the optimisation. This can be achieved by grouping nodes together
and aggregating them to clusters.
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2.5 clustering algorithms

Clustering is the task of grouping a set of nodes in a way that
nodes that are assigned to the same cluster are more similar to
each other than to those in other clusters, where the notion of
similarity needs to be defined in a case-to-case basis.

Popular notions of clusters include grouping objects that are
geographically close, dense areas of the data space, intervals or
particular statistical distributions. But as the notion of cluster can-
not be precisely defined, there exists a variety clustering algorithms
or clustering models that vary significantly in their respective prop-
erties and the representation of a cluster [73]. In general, we can
differentiate between three main categories of clustering. Within
every category, there are multiple clustering models available.

hard clustering In hard clustering, every node is either as-
signed to one unique cluster, or it is not assigned at all. A finer
distinctions can be the strict partitioning, where every node must
have an assignment and outliers with no assignment are not al-
lowed. In contrast, strict partitioning with outliers allows nodes that
do not belong to any cluster. Probably the most famous exam-
ples of hard clustering are the k-means algorithm [74] that aims
to partition a set of observations into k clusters in which each ob-
servation belongs to the cluster with the nearest mean, or spectral
clustering methods [75, 76] that make use of the eigenvalues (or,
in other words, the spectrum) of the similarity matrix of the data.

soft clustering In soft (also called fuzzy) clustering, every
node belongs to a cluster to a certain degree. The degree can be for
example described by a probability or likelihood. Such approaches
are considered effective when the data space is very homogeneous
and the clusters are interpreted as the centers of higher density of
nodes. One example of soft clustering is the fuzzy-c-means algo-
rithm. The degree to which a sample belongs to a cluster increases
as the distance to the cluster center decreases [77]. Another pop-
ular soft clustering method is the expectation–maximisation algo-
rithm which uses iterative statistical methods to derive the clusters
[78].

overlapping clustering Overlapping clustering means that
objects from a dataset can be assigned to more than one cluster.
This category of node assignment usually involves hard clusters
and is particularly relevant in medical datasets that inherently con-
tain overlapping information [79]. One of the simplest and most
efficient overlapping clustering methods is known as overlapping
k-means, which is an extension of the traditional k-means algo-
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rithm.

In the context of ESM, the dataset that is spatially clustered
is the set of substations. Note that they are interpreted as the
nodes of a network graph and connected by transmission lines
that are interpreted as the edges the graph (see Section 2.2). When
it comes to clustering this set, it is impractical to pursue a prob-
abilistic approach on the location of a substation that can draw
and feed electricity into the grid, or to assume it on multiple lo-
cations simultaneously. Therefore it is common practice to choose
one of the hard clustering methods. But which clustering model
performs best in approximating the complexity of the spatially
highly-resolved electricity grid is still subject to contemporary re-
search. Another challenge is to define a useful term of similarity,
because of the many features that are associated with a network
node (such as electricity demand, renewable potential, grid con-
gestion between nodes, connectivity of a node to other nodes, the
topology of the graph, etc. See Section 2.2).

We visualise possible clustering results using the exemplary
clustering method k-means (more details can be found in Chap-
ter 3), where we cluster the original network to 512 nodes (Figure
11), 128 nodes (Figure 12) and to 64 nodes (Figure 13). As we
can see from the Figures, an application of clustering on the orig-
inal dataset leads to clusters that are similar in one attribute, but
dissimilar in a different one, with respect to the chosen measure.
Inevitably, the resulting renewable potentials and electricity de-
mands lead to different solutions of the optimisation problem de-
scribed in Section 2.3, particularly equation (3) and all associated
constraints. We analyse these differences in the following Chapter.
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(a) Landuse potentials (left) and FLH (right) for solar PV.

(b) Landuse potentials (left) and FLH (right) for on- and offshore wind.

(c) Electricity demand (left) and network topology (right).

Figure 11: Visualisation of the clustered PyPSA-Eur dataset to an exem-
plary resolution of 512 nodes.
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(a) Landuse potentials (left) and FLH (right) for solar PV.

(b) Landuse potentials (left) and FLH (right) for on- and offshore wind.

(c) Electricity demand (left) and network topology (right).

Figure 12: Visualisation of the clustered PyPSA-Eur dataset to an exem-
plary resolution of 128 nodes.
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(a) Landuse potentials (left) and FLH (right) for solar PV.

(b) Landuse potentials (left) and FLH (right) for on- and offshore wind.

(c) Electricity demand (left) and network topology (right).

Figure 13: Visualisation of the clustered PyPSA-Eur dataset to an exem-
plary resolution of 64 nodes.
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E F F E C T S O F R E S O U R C E G R A N U L A R I T Y A N D
T R A N S M I S S I O N G R I D R E S O L U T I O N

Contents of this chapter are based on

Martha Maria Frysztacki et al. “The strong effect of network
resolution on electricity system models with high shares of
wind and solar.” In: Applied Energy 291 (2021), p. 116726.
issn: 0306-2619. doi: https : / / doi . org / 10 . 1016 / j .

apenergy.2021.116726

3.1 introduction

In this Chapter we analyse the distinct implications of clustering
VRE resources and the transmission grid. We do that by intro-
ducing a novel methodology to disentangle these two competing
spatial effects of resource and network resolution, so that for the
first time their different impacts on system costs and technology
choices can be quantified.

The common approach from the literature to cluster the model
based on administrative boundaries such as country borders [36,
44, 45] fails to account for the variation of resources inside large
countries like Germany or France because of two contrasting rea-
sons: (i) Aggregating sites with low-yield together with sites that
have high-yield takes away the opportunity to optimise genera-
tion placement, which distorts investment decisions and drives up
costs. (ii) Aggregating diverse resources to single nodes tends to
underestimate network-related costs, since the models are blind
to network bottlenecks that might hinder the welfare-enhancing
integration of renewable resources located far from demand cen-
ters. The effects of network restrictions are all the more important
given the apparent low public acceptance for new overhead trans-
mission lines, observed in Germany [80] and across Europe [81],
and the long planning and construction times for new grid infras-
tructure [23].

Our novel methodology allows us to separate the effects of (i)
and (ii) and to analyse their individual impacts on the compound
optimisation. We demonstrate the methodology by running simu-
lations in the proposed European electricity system of Chapter 2

with a higher spatial resolution than has previously been achieved
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in the literature. Investments and operation of generation, storage
and transmission is jointly optimised under a 95% reduction in
CO2 emissions compared to 1990, which is consistent with Euro-
pean targets for 2050 [82]. The European electricity system model
is sequentially clustered from 1024 nodes down to 37 nodes in or-
der to examine the effects on optimal investments in generation,
transmission and storage.

state of the art Previous work in the engineering literature
has focused on the effect of different network clustering algo-
rithms [83], on the flows in single power flow simulations [84,
85], or used clustering algorithms that are dependent on specific
dispatch situations [86–88] and therefore unsuitable when making
large changes to generation and transmission capacities.

In the planning literature that considers a high share of renew-
ables in the future energy system, the effects of clustering applied
separately to wind, solar and demand were investigated in [89,
90], but neglected potential transmission line congestion within
large regions. [91] extended the study by including a synthesised
grid and renewable profiles, but it ignored the existing topology
of the transmission grid. Effects of varying the resolution were
not considered in either of the studies. Recent work has examined
regional solutions for the European power system, but did not
take into account existing transmission lines, potential low pub-
lic acceptance for grid reinforcement or the grid flow physics [43].
Other studies have examined transmission grid expansion at sub-
station resolution, but either the temporal resolution was too low
to account for wind and solar variability [92, 93], only single coun-
tries were considered [93–95], or transmission expansion was not
co-optimised with generation and storage [92, 96, 97]. The compet-
ing effect of clustering transmission lines versus variable resource
sites on the share of renewables was also discussed in [98], but the
report did not provide an analysis of how strongly the respective
clustering impacts modelling and planning results. The effects of
model resolution on system planning results were considered for
the United States in [99], where a cost-benefit was seen for higher
wind and solar resolution, but the resource resolution was not sep-
arated from the network resolution, and only a small number of
time slices were considered to represent weather variations.

research contributions Advances in solver algorithms and
code optimisation in the modelling framework PyPSA [63], as
well as hardware improvements, allow us to achieve what was
previously not possible in the literature: the co-optimisation of
transmission, generation and storage at high temporal and spatial
resolution across the whole of Europe, while taking into account
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linearised grid physics, existing transmission lines and realistic
restrictions on grid reinforcement. In previous work large effects
of spatial resolution on investment results were seen [100, 101],
but because the resource and network resolution were changed
in tandem, it was not possible to analyse which effect dominates
the results. Here, we present a novel study design that separates
the effects of resource and network resolution, and demonstrate
the substantial differences between the two effects using the high-
resolution simulations enabled by recent software and hardware
advances.

3.2 methods

In this Section we present an overview of the study design, partic-
ularly details on the clustering methodology.

3.2.1 Clustering Study Design

The nodes of the model introduced in Section 2.3 are successively
clustered in space into a smaller number of representative nodes
using the k-means algorithm [74]. This groups close-by nodes to-
gether, so that, for example, multiple nodes representing a single
city are merged into one node. Nodes from different countries
or different synchronous zones are not allowed to be merged; to
achieve this, the overall number of desired nodes is partitioned
between the countries and synchronous zones before the k-means
algorithm is applied in each partition separately. In total there are
37 ‘country-zones’ in the model, i.e. regions of countries belonging
to separate synchronous zones.

Figure 14, Case 1 shows exemplary clustering results for Ireland
and the United Kingdom (where Northern Ireland is in a separate
synchronous zone to Great Britain). Once the nodes have been
clustered, they are reconnected with transmission corridors rep-
resenting the major transmission lines from the high-resolution
model. Electricity demand, conventional generation and storage
options are also aggregated to the nearest network node. More
technical details on the clustering can be found in Subsection 3.2.4.
An analysis of the effects of clustering on the network flows can
be found in Annex B.1.

3.2.2 Resource Versus Network Resolution Case Studies

To separate the effects of the spatial resolution on the RE resources
and the network, we consider three cases in which they are clus-
tered differently. The three cases are summarised in Table 3 and
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generation site transmission node site connection transmission line

Figure 14: Clustering of network nodes (red, v) and renewable sites (grey,
s) in each of the cases (rows) for Ireland and the United King-
dom at different levels of clustering (columns).

shown graphically in Figure 14 for each case (rows) and for each
level of clustering (columns).

In Case 1 the wind and solar sites are clustered to the same reso-
lution as the network. The number of clusters is varied between 37,
the number of country-zones, and 1024, which represents the max-
imum resolution for which generation, transmission and storage
investment can be co-optimised in reasonable time. The number
of nodes is increased in half-powers of 2, so that eleven different
resolutions are considered: B := {37}∪

{
⌊
√
2i⌋

}
i=11,...,20.

In Case 2 network bottlenecks inside each country-zone are re-
moved so that there are only 37 transmission nodes, and only the
resolution of the wind and solar generation is varied. Inside each
country-zone, all wind and solar generators are connected to the
central node. This allows the optimisation to exploit the best wind
and solar sites available.

Finally in Case 3 we fix a high resolution of renewable sites
and vary the number of network nodes, in order to explore the
effects of network bottlenecks. Each renewable site is connected to
the nearest network node, where the transmission lines, electricity
demand, conventional generators and storage are also connected.

For each case we optimise investments and operation for wind
and solar power, as well as open cycle gas turbines, batteries, hy-
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Case Short name Description

1

Simultaneous
clustering

Successive increase in number of gen-
eration sites s and transmission nodes
v. Every node v has exactly |Sre| RE
sites.

2

Clustering on
siting resolution

Fix the transmission network to one-
node-per-country-zone, i.e. |V| = 37
and increase the number of genera-
tion and storage sites s ∈ B.

3

Clustering on
network nodes

Maintain a high resolution of genera-
tion sites s = 1024 and successively
increase the number of transmission
nodes, |VK| = K ∈ B

Table 3: Case descriptions. (B = {37} ∪
{
⌊
√
2i⌋

}
i=11,...,20 =

{37, 45, 64, 90, 128, . . . 1024})

drogen storage and transmission. Flexibility from existing hydro-
electric power plants is also taken into account. The model is run
with perfect foresight at a 3-hourly temporal resolution over a
historical year of load and weather data from 2013, assuming a
95% reduction in CO2 emissions compared to 1990. The temporal
resolution is 3-hourly to capture changes in solar generation and
electricity demand while allowing reasonable computation times.
The technology selection is also limited for computational reasons.
More details on the investment optimisation can be found in sec-
tion 2.3 of the foundations chapter.

For each simulation we also vary the amount of new transmis-
sion that can be built, in order to understand the effect of possi-
ble grid reinforcements on the results. The model is allowed to
optimise new transmission reinforcements to the grid as it was in
2018, up to a limit on the sum over new capacity multiplied by line
length measured relative to the grid capacity in 2018. For example,
a transmission expansion of 25% means that on top of 2018’s grid,
new lines corresponding to a quarter of 2018’s grid can be added
to the network. The exact constraint is given in equation (7).

3.2.3 Network Preparation

Before the clustering algorithm can be applied to the network, sev-
eral simplifications are applied to the data.

In order to avoid the difficulty of keeping track of different volt-
age levels as the network is clustered, all lines are mapped to their
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electrical equivalents at 380 kV, the most prevalent voltage in the
European transmission system. If the original reactance of line
(v,w) was x(v,w) at its original voltage v(v,w), the new equivalent
reactance becomes

x ′
(v,w) = x(v,w)

(
380 kV
v(v,w)

)2

(17)

This guarantees that the per unit reactance is preserved after the
equivalencing.

The impedances and thermal ratings of all transformers are ne-
glected, since they are small and cannot be consistently included
with the mapping of all voltage levels to 380 kV.

Univalent nodes, also known as dead-ends, are removed sequen-
tially until no univalent nodes exist. That is, if node v has no other
neighbor than node w, then node v is merged to node w. We re-
peat the process until each node is multi-valent and update the
merged node attributes and its attached assets (electricity demand,
generators and storage units) according to the rules in Table 14.

HVDC lines in series or parallel are simplified to a single line
(v,w) using the rules in Tables 15 and 16. Capital costs per MW of
capacity for HVDC lines (v,w) with length l(v,w) and a fraction
u(v,w) ∈ [0, 1] underwater are given by

c(v,w) = 1.25 · l(v,w)

(
u(v,w) cmarine + (1− u(v,w)) cground

)
where cmarine is the capital cost for a submarine connection and
cground for an underground connection. The factor of 1.25 accounts
for indirect routing and height fluctuations.

3.2.4 Clustering Methodology

Different methods have been used to cluster electricity system net-
works in the literature. Because k-means clustering [74] is one of
the most commonly used algorithms to group objects, we have
chosen a variant of it that is based on the geographical location of
the original nodes in the Graph. We weight every node by its aver-
age load and conventional capacity, since this represents how the
topology of the network was historically planned to connect ma-
jor generators to major loads, see Chapter 1 (particularly Figure
1). It leaves the long transmission lines between regions, which
are expensive to upgrade and are more likely to encounter low
local acceptance, unaggregated, so that these lines can be opti-
mised in the model. Regions with a high density of nodes, for
example around cities, are aggregated together, since the short
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lines between these nodes are inexpensive to upgrade and rarely
present bottlenecks. Geographical k-means clustering has the ad-
vantage over other clustering methods of not making any assump-
tions about the future generation, storage and network capacity
expansion.

Other clustering methods applied in the literature are not suit-
able for the co-optimisation of supply and grid technologies: these
include clustering based on electrical distance using k-medoids
[84, 102], a modified version of k-medoids to avoid assigning both
end nodes of a critical branch to the same zone [22], hierarchical
clustering [103], or k-decomposition and eigenvector partitioning
[104] (which we do not use because we want to optimise new grid
reinforcements that alter electrical distances), spectral partitioning
of the graph Laplacian matrix [85] (avoided for same reason), an
adaptation of k-means called k-means++ combined with a max-p
regions algorithm applied to aggregate contiguous sites with simi-
lar wind, solar and electricity demand [89] (avoided since we want
a coherent clustering of all network nodes and assets), hierarchical
clustering based on a database of electricity demand, conventional
generation and renewable profiles including a synthesised grid
[91] (avoided for the same reason and because we do not want
to alter the topology of the existing transmission grid), k-means
clustering based on renewable resources as well as economic, so-
ciodemographic and geographical features [105] (avoided because
we need a clustering focused on network reduction), as well as
clustering based on the zonal power transfer distribution factor
(PTDF) to detect congestion zones [86], to yield the same flow pat-
terns as the original network [106] or to analyse policy options and
emissions [107] (avoided because they encode electrical parame-
ters that change with reinforcement), available transfer capacity
(ATC) [88] (avoided because they depend on pre-defined dispatch
patterns) and locational marginal price (LMP) [87] (again avoided
because they depend on pre-defined dispatch patterns).

We do not allow nodes in different countries or different syn-
chronous zones to be clustered together, so that we can still ob-
tain country-specific results and so that all HVDC between syn-
chronous zones are preserved during the aggregation. This results
in a minimum number of 37 clustered nodes for the country-zones.
First we partition the desired total number K of clusters between
the 37 country-zones, then we apply the k-means clustering algo-
rithm within each country-zone.
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In order to partition the K nodes between the 37 country-zones,
the following minimisation problem is solved

argmin{Kz}∈N37

37∑
z=1

(
Kz −

dz∑37
y=1 dy

K

)2

(18)

s.t.
37∑
z=1

Kz = K

Then the k-means algorithm is applied to partition all nodes
inside each country-zone z into Kz clusters. The algorithm finds
the partition that minimises the sum of squared distances from
the mean position of each cluster (xc,yc)T ∈ R2 to the positions
(xv,yv)T ∈ R2 of its members v ∈ Vc

min{(xc,yc)T∈R2}

Kz∑
c=1

∑
v∈Vc

wv

∥∥∥∥∥
(
xc

yc

)
−

(
xv

yv

)∥∥∥∥∥
2

(19)

The original formulation of k-means is designed without weight-
ing wv. However, we choose a weight proportional to nominal
power Gv,s for conventional generators s and averaged electricity
demand ⟨dv,t⟩t:

wv =

∑
s∈Sconv.

Gv,s∑
v∈V,s∈Sconv.

Gv,s
+

⟨dv,t⟩t∑
v∈V

dc,T
, ∀v ∈ V (20)

Then, wv is normalised according to:

wv 7→ ⌊100 ·wv

∥w∥max
⌋ (21)

The weight wv is chosen such that it incorporates an approxima-
tion of the transmission system. It essentially represents how the
topology of the network was historically planned to connect major
generators to major loads, as we have outlined in the introduction
of the thesis (see Chapter 1, particularly Figure 1).

The optimisation is run with 103 different centroid seeds, a max-
imum number of iterations for a single run of 3 · 104 and a relative
tolerance with regards to inertia to declare convergence of 10−6 .

Attributes of the nodes in Vc and their attached assets are ag-
gregated to the clustered node c according to the rules in Table
14.
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Lines connecting nodes v ∈ Vc in cluster c with nodes w ∈ Vd

in cluster d, given by the set E(c,d)

E(c,d) = {(v,w) : v ∈ Vc, w ∈ Vd} , ∀c,d ∈ VK, c ̸= d (22)

are aggregated to a single representative line. The length of the
representative line is determined using the haversine formula1

multiplied by a factor of 1.25 to take indirect routing into account.
The representative line inherits the attributes of the lines E(c,d)

as described in Table 16. If any of the replaced lines in E(c,d) had
the attribute that their capacity was extendable, then the aggre-
gated line inherits this extendability. An analysis of the effects of
clustering on the network flows can be found in Annex B.1.

For Case 1, generators are clustered to the same resolution as
the network. Time-series containing hourly resolved capacity fac-
tors ḡv,s,t ∈ [0, 1] for VRE generation are aggregated using a
weighted average

ḡc,s,t =
1∑

v∈Vc

wv,s

∑
v∈Vc

wv,sḡv,s,t (23)

∀c ∈ VK, s ∈ Sre, t ∈ T

The resulting capacity factor ḡc,s,t is in [0, 1] by definition. For
renewables, the weighting wv,s is proportional to the maximal
yearly yield for technology s at node v, found by multiplying the
maximal install-able capacity Gmax

v,s with the average capacity fac-
tor. In the case of conventional technologies the weightings are
distributed equally, i.e wv,s = 1. Note that there is per-se no re-
lation between the weightings wv,s and the bus weightings wv in
equation (20).

For Case 2, the network is fixed at 37 nodes, and the wind and
solar generators are merged in the aggregation step. Time series
for VRE availability are aggregated according to equation (23) to
their respective resolution.

For Case 3, the network is clustered, but wind and solar gen-
erators are not merged in the aggregation step. Their time series
remain fixed at high resolution of 1024 nodes.
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Figure 15: Total annual system costs as a function of the number of clus-
ters for Cases 1, 2 and 3.
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Figure 16: Breakdown of the annual system costs for generation (top)
and flexibility options (bottom) as a function of the number of
clusters for Cases 1, 2 and 3 when there is no grid expansion.
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Figure 17: Costs as a function of the transmission expansion level for 256

nodes in Case 1.
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3.3 results

3.3.1 Increasing Number of both Generation Sites and Transmission
Nodes

If the resource and network resolutions increase in tandem ac-
cording to Case 1 without grid expansion, the total annual system
costs in Figure 15 rise gently with the increasing number of nodes,
reaching a maximum of 273 billion euros per year at 1024 nodes,
which is 10% more expensive than the solution with 37 nodes.
This corresponds to an average system cost of 87 €/MWh. If some
transmission expansion is allowed, costs are lower, and there is
almost no change in total system costs as the number of nodes is
varied.

However, the fact that costs are flat does not mean that the so-
lutions are similar: a large shift from offshore wind at low resolu-
tion to onshore wind at high resolution can be observed in the left
graph of Figure 16 (Case 1). This is an indication that spatial res-
olution can have a very strong effect on energy modelling results.
To understand what causes this effect, we must examine Cases 2

and 3.

3.3.2 Importance of Wind and Solar Resource Granularity

In Case 2 we use the lowest network resolution of 37 nodes, corre-
sponding to one-node-per-country-zone, and investigate the effect
of changing the number of wind and solar sites on the results. As
the resolution increases, total costs without grid expansion in Fig-
ure 15 drop by 10% from 248 to 222 billion euro per year. Although
the slope of the cost curve appears constant, note that the x-axis is
logarithmic, so that the rate of cost decrease slows as the number
of sites increases.

The cost reduction is driven by strong changes in the investment
between generation technologies, particularly the ratio between
offshore and onshore wind (see Figure 16). At low spatial reso-
lution, good and bad onshore sites are mixed together, diluting
onshore capacity factors and making onshore a less attractive in-
vestment. Figure 6 or Figures 42a and 42b in Annex B.2 show how
the capacity factors for wind and solar vary across the continent.
While offshore is spatially concentrated and solar capacity factors
are relatively evenly spread in each country-zone, onshore wind
is stronger near coastlines. At high spatial resolution the model
can choose to put onshore wind only at the best sites (within land

1 the haversine formula computes the great-circle distance between two points
on a sphere
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restrictions), increasing average capacity factors and thus lower
the per-MWh-cost. (The increasing average capacity factors are
plotted in Figure 44 in Annex B.4.) As a result, onshore wind in-
vestments more than double from 24 to 54 billion euros per year,
while offshore investments drop 37% from 100 to 64 billion per
year and solar by 23%. The biggest effect on the technology mix
is when going from 37 to around 181 clusters; beyond that the
changes are smaller.

3.3.3 Impact of Transmission Bottlenecks

In Case 3 we fix a high resolution of wind and solar generators
(1024 sites) and vary the resolution of the transmission network
to gauge the impact of transmission bottlenecks. With 37 network
nodes many bottlenecks are not visible, so costs are lower, but as
the resolution increases to 1024 nodes it drives up the costs by
23%. Note that because the x-axis is logarithmic, the highest rate
of cost increase is when the number of nodes is small.

As can be seen from the breakdown in Figure 16, the rising
transmission investments from the higher resolution only have a
small contribution to the result. Instead, rising costs are driven by
generation and storage. Unlike Cases 1 and 2, the ratio between
the generation technologies does not change dramatically with the
number of clusters, but the capacities for onshore wind, solar, bat-
teries and hydrogen storage all rise.

The transmission bottlenecks limit the transfer of power from
the best sites to the load, forcing the model to build onshore wind
and solar more locally at sites with lower capacity factors. Average
capacity factors of onshore wind and solar sink by 11% and 6%
respectively with no grid expansion (see Figure 44 in Annex B.4),
meaning that more capacity is needed for the same energy yield.
Curtailment is generally low in the optimal solution (around 3%
of available wind and solar energy) and has less of an effect on
costs (see Figure 45 in Annex B.5).

Investment in battery and hydrogen storage rises with the num-
ber of network nodes since the storage is used to balance local
wind and solar variations in order to avoid overloading the grid
bottlenecks.

3.3.4 Comparison of the Three Cases

Separating the effects of resource resolution from network reso-
lution reveals that the apparent stability of total system costs in
Case 1 in Figure 15 as the number of clusters changes, as reported
in [100], is deceptive. In fact, the sinking costs from the higher
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Figure 18: Example of investments with 25% grid expansion and 256
nodes in Case 1.

resource resolution are counter-acted by the rising costs from net-
work bottlenecks. With no grid expansion, the system cost of net-
work bottlenecks is double the benefit of the higher resource reso-
lution.

While these two effects offset each other at the level of total
system costs, they have very different effects on the technology
mix. Resource resolution leads to much stronger investment in
onshore wind, once good sites are revealed. Network bottlenecks
have only a weak effect on the ratio of generation technologies,
but lead to lower average capacity factors and drive up storage
requirements.

3.3.5 Benefits of Grid Expansion

Grid expansion does not affect the main qualitative features of the
different Cases, but it does have the overall effect of lowering total
system costs. In Case 1, the total cost-benefit of grid expansion is
highest at around 16% for a 50% increase in grid capacity, with the
marginal benefit still increasing, but it is subject to diminishing re-
turns (see Figure 47 in Annex B.7 for a comparison of the marginal
benefit to the cost of transmission). The first 9% of additional grid
capacity brings total cost savings of up to 8%, but for each extra
increment of grid expansion, the benefit is weaker. There is more
benefit from grid expansion at a higher number of nodes, since
the higher network resolution reveals more critical bottlenecks in
the transmission system.
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The total savings from 25% and 50% grid expansion are around
36 and 44 billion euros per year respectively. In a 2018 study
ENTSO-E examined scenarios with up to 75% renewable electric-
ity in Europe in 2040 with and without planned ten year network
development plan (TYNDP) grid expansions (corresponding to
around 25% grid expansion), given fixed demand and a fixed gen-
eration fleet. They found that the grid reinforcements reduce gen-
eration costs by 43 billion euros per year. This is higher than our
cost-benefit for 25% grid expansion, despite their study’s lower
level of renewable electricity, because in our simulations the gen-
eration and storage fleet can be re-optimised to accommodate the
lower level of grid capacity, and because we subtract the costs of
new grid reinforcement from the cost-benefit (a contribution of
around 3.5 billion euros per year).

The breakdown of system cost as the grid is expanded for a
fixed number of clusters (256), plotted in Figure 17, reveals how
costs are reduced. Although the investment in transmission lines
rises, generation and storage costs reduce faster as investment
shifts from solar and onshore wind to offshore wind. Offshore
wind reduces costs because of its high capacity factors and more
regular generation pattern in time. It can be transported around
the continent more easily with more transmission, and benefits
from the smoothing effects over a large, continental area that grid
expansion enables. The map of investments in Figure 18 shows
how offshore wind is balanced by new transmission around the
North Sea, which smooths out weather systems that roll across the
continent from the Atlantic. Further transmission reinforcements
bring energy inland from the coastlines to load centers. With more
transmission, there is less investment in battery and hydrogen stor-
age, as a result of the better balancing of weather-driven variability
in space.

Turning to Case 3, we see that grid expansion mitigates the ef-
fect of network resolution by allowing bottlenecks to be allevi-
ated. For a 50% increase in transmission capacity, total costs rise
by only 4% from 90 nodes up to 1024 nodes. The distribution of in-
vestments between technologies also barely changes in this range
(see Figure 43 in Annex B.3). This means that a grid resolution
of around 90 nodes can give acceptable solutions for grid expan-
sion scenarios if computational resources are limited, as long as
the wind and solar resolution is high enough (as in Case 2, 181
generation sites would suffice). Without grid expansion, a higher
grid resolution is needed to capture the effects of bottlenecks and
achieve reliable results.
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3.3.6 Computation Times and Memory

Besides the poor availability of data at high resolution, one of the
main motivations for clustering the network is to reduce the num-
ber of variables and thus the computation time of the optimisation.
In Annex B.8 Figure 48 the memory and solving time require-
ments for each Case are displayed as a function of the number
of clusters. Both memory and solving time become limiting fac-
tors in Cases 1 and 3, with random access memory (RAM) usage
peaking at around 115 GB and solving time at around 6 days for
1024 clusters. Beyond this number of clusters no consistent con-
vergence in the solutions was seen.

Case 2, where the network resolution is left low and the re-
source resolution is increased, shows seven times lower memory
consumption and up to thirteen times faster solving times com-
pared to Cases 1 and 3 for the same number of clusters. It is there-
fore the network resolution rather than the resource resolution
that drives up computational requirements, which it does by in-
troducing many new variables and possible spatial trade-offs into
the optimisation. Since Case 2 proved relatively reliable for esti-
mating the ratio between technologies, if not their total capacity,
it may prove attractive to increase the resource resolution rather
than the network resolution if computational resources are lim-
ited.

3.3.7 Further results

Further results on curtailment, average capacity factors, the dis-
tribution of technologies between countries, maps, network flows
and shadow prices can be found in Annex B.

3.4 conclusions

From these investigations we can draw several conclusions. Mod-
elers need to take account of spatial resolution, since it can have a
strong effect on modelling results. In our co-optimisation of gener-
ation, storage and network capacities, higher network resolution
can drive up total system costs by as much as 23%. Higher costs
are driven by the network bottlenecks revealed at higher resolu-
tion that limit access to wind and solar sites with high capacity fac-
tors. On the other hand, resource resolution affects the balance of
technologies by revealing more advantageous onshore wind sites.
In both cases the system costs are driven more by the usable gen-
eration resources than investments in the grid or storage.



52 effects of resource granularity and grid resolution

If grid expansion can be assumed, a grid resolution of 90 nodes
for Europe is sufficient to capture costs and technology invest-
ments as long as the solar and onshore wind resolution is at least
around 181 nodes. If grid expansion is not possible, a higher spa-
tial resolution for the grid is required for reliable results on tech-
nology choices. Since grid expansion is likely to be limited in the
future by low public acceptance, more attention will have to be
paid to the computational challenge of optimising investments at
high spatial granularity.

3.5 critical appraisal

The need to solve the models at high spatial resolution and 3-
hourly temporal resolution in reasonable time means that com-
promises have been made elsewhere: the conventional generation
technologies are limited to hydroelectricity and gas turbines, the
storage is limited to batteries and hydrogen storage, only a single
weather year is modeled, and ancillary services, grid losses, dis-
cretisation of new grid capacities, distribution grids and forecast
error are not modeled. This allows us to focus on the main inter-
actions between wind, solar and the transmission grid; the effects
of the other factors are expected to be small [20] since wind and
solar investment dominates system costs. If it were cost-effective
to build dispatchable low-carbon generators like nuclear or fossil
generators with carbon capture and sequestration, then the effects
of resource and network resolution would be dampened, since
there would be less wind and solar investment.

Some of the quantitative conclusions may depend on the tech-
nology assumptions, such as the relative cost of solar PV, onshore
wind and offshore wind. However, investigations of the sensitiv-
ities of similar models to generation costs [108] and of the near-
optimal space of solutions [109] have shown that a large share of
wind in low-cost scenarios for Europe is robust across many sce-
narios because of the seasonal matching of wind to demand in
Europe. It is the interactions between wind and the transmission
grid that drive the results in this paper.

The results may also change as additional energy sectors are
coupled to the power sector, such as building heating, transport
and non-electric industry demand. While extra flexibility from
these sectors might offer an alternative to grid expansion, grid ex-
pansion is still expected to be cost-effective [110], while the effects
of resource resolution on the optimal solution remain the same.

In the present paper different market structures to today’s are
assumed, namely nodal pricing to manage grid congestion, and a
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high CO2 price to obtain a 95% CO2 reduction compared to 1990

levels.
We weighted the distribution of wind and solar inside each

nodal region (Voronoi cell) proportional to the installable capac-
ity and capacity factor at each weather grid cell [51]. This means
good and bad sites are not mixed evenly, but skewed slightly to-
wards good sites. This effect disappears at high resolution, where
the capacity factor is more uniform inside each Voronoi cell.

Another approach would be to keep a low one-node-per-country
network resolution and then have multiple resource classes de-
fined not by region, like our Case 2, but by capacity factor [46, 111,
112] (e.g. a good class with sites with FLHs above 2000, a medium
class between 1500 and 2000, and a bad class below 1500). This
would also be beneficial but would not be compatible with the in-
creasing grid resolution, since the generators in each class would
be spread non-contiguously over the country.





4
I M P R O V I N G S PAT I A L LY L O W- R E S O LV E D
E L E C T R I C I T Y S Y S T E M M O D E L S

Contents of this chapter are based on

Martha Maria Frysztacki, Gereon Recht, and Tom Brown.
“A comparison of clustering methods for the spatial re-
duction of renewable electricity optimisation models of Eu-
rope.” In: Energy Informatics 5.4 (2022). issn: 2520-8942. doi:
https://doi.org/10.1186/s42162-022-00187-7

4.1 introduction

In this Chapter we dedicate towards improving the representa-
tion of spatially aggregated ESM. The overall aim is to develop
clustering methods such that the result obtained from a spatially
clustered model as introduced in Chapter 2 can approximate the
solution of an highly-resolved model with an error in the optimal
solution as small as possible. To this end, we focus on improv-
ing existing clustering methods from the literature and introduce
novel ones by incorporating the lessons from Chapter 3 into suit-
able distance measures and choosing appropriate clustering mod-
els. The choice of clustering model is mainly driven by options
to account for the network topology and electrical connectivity of
substations. The distance (or similarity) measures are mainly cho-
sen such that the spatio-temporal availability of VRE resources is
incorporated into the optimisation considerations.

To compare the performance of the novel methods, we compare
results obtained from the clustered models based on the different
aggregation algorithms to each other and to established reduction
methods from the literature. The obtained low-resolution optimal
solutions are benchmarked against the optimal solution obtained
from a spatially higher-resolved simulation. We explicitly devote
significant attention towards an accurate power flow and the sit-
ing of renewable capacities and flexibility options, particularly so-
lar PV, onshore and offshore wind, battery storage and hydrogen
storage.

state of the art In the recent ESM literature, suggested solu-
tions to spatially reduce high-resolution models to smaller equiv-
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alents include different techniques that focus on individual fea-
tures of the system. These solutions can essentially be categorised
by whether they focus on (i) representing the network or (ii) the
variability of renewable resources.

(i) Approaches that focus on the network representation and
therefore on accurately approximating power flows include the
following methods: the Ward equivalent [113], a hybrid method
consisting of k-means and an evolutionary algorithm [102], clus-
tering into zones based on the similarity of the PTDFs [107], k-
medoids operating on a combination of electrical parameters of
the grid as well as their geographical length [22], spectral parti-
tioning taking into account the available transfer capability (ATC)
[88] or density-based hierarchical clustering operating on the lines
reactance [103]. All these approaches use distance or similarity
measures on electrical parameters of the transmission grid, of-
ten referred to as electrical distance. These methods are designed
for a good approximation of power flows and are mostly evalu-
ated by comparing the power flows of a highly resolved model to
power flows in a reduced model without changing the generation
fleet. However, power flows are strongly impacted when moving
away from conventional generation to other resources as shown in
[114] (a study conducted with the Ward equivalent) for the exam-
ple of switching from coal fired electricity generation to natural
gas. Therefore it remains unclear if these methods are applicable
when moving towards high shares of renewables as they are not
designed to precisely approximate the spatio-temporal variability
of wind and solar. This is especially true for models where the
final installed capacity as well as its spatial distribution is subject
to optimisation, such that no a-priori estimate of power flows can
be made.

(ii) On the other hand, techniques that focus on an accurate rep-
resentation of renewables include hierarchical clustering applied
on a database of electricity demand, conventional generation and
renewable profiles [91], max-p-regions applied on a database of
wind and solar potential [115] or a combination of k-means++
with the max-p-regions algorithm applied separately on the FLH
of wind, solar and electricity demand [89]. [116] proposes a novel
screening routine that identifies relevant generation sites to be
passed to a capacity expansion problem. All these methods in-
clude either a synthesised transmission grid or one at very low
resolution. The downside of such approaches is that transmission
bottlenecks within large regions cannot be identified, and there-
fore power flows within large regions are not considered at all. By
ignoring the grid, transmission congestion within these large re-
gions could hinder the exploitation of the best available resource
sites and results of these models may not be feasible in reality.
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In the most recent literature, hybrid approaches have been de-
veloped where both the representation of the grid as well as the
representation of renewables was taken into account in the clus-
tering. This was implemented by applying k-means on two stages:
first on the renewable generation sites and second on the network
nodes, such that every node can access multiple generation sites
[2]. However, location-wise clustering has no inevitable correla-
tion with either the transmission grid nor the renewable resources,
hence requiring relatively large spatial resolutions to yield good
results. Furthermore, using k-means on locations ignores the con-
nectivity of the grid, and could end up aggregating two nodes that
were previously disconnected, resulting in strong distortion of the
network representation. In a second hybrid approach, the network
was clustered using k-medoids equipped with an additional spa-
tial contiguity constrained introduced by [117]. Here, on the first
stage, the cumulative distance of all parameters of the network
were considered in a distance measure (all 1 and 2-dimensional
regional attributes and all 2-dimensional connection attributes be-
tween regions indicating how strongly they are connected). On the
second stage the number of generation technologies within each
region were clustered using a hierarchical clustering based on the
similarity in their temporal profiles [118]. However, embedding
all parameters of the network in the first stage does not highlight
which ones are most important in terms of the network representa-
tion. Further, renewable profiles are double-weighted as they are
included in the distance measure on both stages. Therefore, the
question concerning the choice of an appropriate metric remains
unresolved.

research contributions We focus on improvements in the
clustering process to capture both renewable generation accurately
as well as the transmission network. We then evaluate the pro-
posed methods on both the representation of renewable genera-
tion and power flows. For this task we define metrics to deter-
mine if good renewable generation sites after the clustering are
maintained while incorporating the electricity grid by aggregat-
ing only nodes connected by an existing transmission line using
Ward’s method, an hierarchical agglomerative clustering (HAC)
model. This focus on the combination of renewable sites and the
transmission network for the clustering is completely novel in the
context of ESM. For this method, we distinguish between two fea-
tures: The aggregated quantity of FLH (similar to [89] with the
adaptation of incorporating the grid), and the full time series of
renewables (a novel metric employed in the context of ESM). Us-
ing the full time series to define regions is motivated by the fact
that regions with similar capacity factors may have very differ-
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Figure 19: Graphical representation of the workflow of this Chapter (left
to right).

ent time profiles, depending on how their generation is correlated
over space; by using the full time series, we avoid aggregating
sites with very different profiles.

We compare all results obtained by the same model using the
same experimental setup and input data. This increases trans-
parency and guarantees that differences in the results occur be-
cause of the clustering process, not because of differences in the
data, the model formulation or other parameters of the model.
To complete the comparison, we include two common reduction
methods from the literature: k-means clustering on the coordi-
nates of the network and clustering based on country borders.

remainder In Section 4.2 we introduce a novel pre-aggregation
method of the data-set introduced in Chapter 2, that operates on
a subset of network nodes and reduces the initial network size by
a factor of approximately two. Then we present the application of
the following clustering methods to energy system models for fur-
ther model reduction: k-means, a benchmark clustering technique
based on the coordinates of the network nodes that was used
in several publications in the past (see also Chapter 3); Ward’s
method, for which we adapt the metric to a time-aggregated an-
nual and on a time-resolved hourly feature of the system; and
Modularity Maximisation, that involves considerations of electri-
cal parameters of the model.

Results of the presented methods are presented in Chapter 4.3
and are divided into two main categories: In an a-priori analysis
we show resulting regions obtained from the presented cluster-
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ing algorithms before solving the optimisation problem. In an a-
posteriori analysis we show the convergence of each method in a
capacity expansion brownfield approach under a 60% and 100%
CO2 emission cap.

We draw conclusions in Section 4.4.
A visualisation of the outline is provided in Figure 19 using the

abbreviations of Table 5. Table 5 additionally outlines the novelty
of every proposed method.

4.2 methods

This study is performed using the ESM PyPSA-Eur [51], which
is explained in in Chapter 2, particularly Sections 2.1, where we
provide an overview of the underlying data, Section 2.2, where we
introduce notation and finally Section 2.3 where we define the full
optimisation problem.

4.2.1 Clustering Methodology

pre-aggregation Before applying a clustering method on the
nodes of the model, several preparation steps are conducted to
simplify the process. First, all lines are mapped to the voltage level
of 380 kV, the prevalent level of the European transmission sys-
tem. Second, all one-valent nodes are aggregated to their unique
neighbors. This has only a weak effect on renewable generators be-
cause of the small cluster sizes, and power flows are not affected
strongly because there is only one way for the power to flow from
or to one-valent nodes. These two steps were described in higher
detail in Chapter 3, Section 3.2.

In a final - and novel - pre-aggregation step, a shortest-path
problem is solved using Dijkstra’s algorithm D((V,E), l : E → R+

0 )

on the nodes that are not substations (i.e. lvv = 0, see Section
2.2 for Notation). Such nodes have no electricity demand, storage
units or generators attached. Hence, the same amount of power
that flows into such node must flow out as well, due to the fact that
no power can be absorbed or generated. This follows directly from
KCL (see equation (15)). Therefore, neither the power flows nor
the generating assets are affected significantly when aggregating
them to their electrically closest substations.

All these initial steps reduce the network by approximately a
factor of 2 to 2435 nodes, 3673 HVAC and 42 HVDC lines. To fur-
ther reduce the network size down to a desired number of clusters
37 ⩽ K ⩽ 2435, a clustering method is applied. The lower bound
represents the 37 countries and synchronous zones covered by the
model. We therefore divide K into 37 integer summands Kz, each
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representing the number of nodes within a unique associated syn-
chronous zone or country. The clustering methods are respectively
applied within each “country-zone“ z. A formula to mathemat-
ically derive the summands Kz is provided in equation (18) in
Section 3.2.

The lowest model resolution of 37 nodes represents the bench-
mark clustering method where every political region (here: every
country-zone) is represented by one single node, regardless of the
applied clustering method. Thus, each of the methods has the
same properties at lowest resolution. When increasing the network
resolution beyond 37 nodes, model results start to converge to-
wards the solution at full resolution, where all the methods again
yield the same solution, because no clustering is applied. At a res-
olution of 1250 nodes, the solutions of all discussed methods have
sufficiently converged and are therefore taken as a benchmark to
compare the low resolution solutions to. A detailed discussion on
why 1250 nodes are a sufficient benchmark is conducted in Annex
C.1.

k-means clustering Mathematical and technical details for
the k-means clustering are already provided in Section 3.2. Note,
that our k-means formulation of equation (19) is weighted with a
nodal weighting wv given in (20)-(21) to account for the original
layout of the transmission grid to connect major generators and
major electricity consumption (see Chapter 1, particularly Figure
1).

The average complexity of k-means is O(K|V|i), with number of

iterations i. In the worst case, i = 2
Ω
(√

|V|
)
, resulting in a super-

polynomial complexity [119].
A drawback of k-means is that it is not possible to enforce a

strict connectivity constraint based on the transmission grid. For
example, two nodes that are close in space but not electrically
connected can be aggregated to a single node, which can have
a significant distorting effect on the power flows. Therefore, the
other clustering methods are HAC models because it incorporates
a connectivity constraint while clustering based a given feature of
the data.

ward’s method HAC is a bottom-up approach, initially treat-
ing each node as a singleton cluster. In each iteration two adjacent
clusters are aggregated that have the most similar feature(s) with
respect to a given similarity measure. Then, the aggregated clus-
ter’s feature is updated. HAC has greedy characteristics, as after
the aggregation of the best suited clusters the decision is perma-
nent, and has a running time of O(|V|2log2|V|) [120].
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As a distance measure we invoke a variance-minimising ap-
proach, similar to k-means. The distance d : V×V → R+

0 between
two clusters Vc and Vd states how much the sum of squares will
increase when merging:

d(Vc,Vd) =
|Vc||Vd|

|Vc|+ |Vd|
∥V̄c − V̄d∥22

where

V̄c =
1

|Vc|

∑
v∈Vc

f(v)

with f : V → Rn being the feature of a node that can be of arbitrary
dimension n ∈ N. This choice of similarity measure is also known
as Ward’s method [121]. Recall that initially each node is treated as
a single cluster, hence in the first iteration the distance between
two nodes is

1

2
∥f(v) − f(w)∥2 (24)

In this work, we consider two related, yet different features of the
network: The renewable annual capacity factors ḡv,s and the time-
series ḡv,s,t of each node, that we briefly present in the following
and visualise in Figure 20.

Figure 20: Examples of the different features for solar (orange) and
wind (blue). All illustrations show a model resolution of 2435
nodes.

capacity factor aggregation The annual capacity factor
ḡv,s ∈ [0, 1] is a unit-less ratio of the average actual energy output
of an asset over its nominal capacity, i.e.

ḡv,s =
⟨gv,s,t⟩t
Gv,s
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where gv,s,t is the energy dispatch of asset s in node v at time t.
The average is taken over one year, as the name already suggests.

For Ward’s method, we refer to the feature f in this case as fcap,
and define it as

fcap(v) := ḡv,s∈{solar, wind} =

(
ḡv, solar

ḡv, wind

)
∈ [0, 1]2 (25)

time series aggregation Resolved capacity factors in time
form a series, in this case with a two-hourly resolution over an his-
torical weather year. Without averaging the feed-in over the year,
the variability of renewables is evident. For example, the energy
production of a solar panel at night is typically zero, while dur-
ing day time the power output is positive. While the annual ca-
pacity factor averages this fact and remains strictly positive for
every region, a highly resolved time series captures fluctuations.
Thus, additionally to a north-south gradient of the annual capacity
factor for solar (higher irradiation in the south) an east-west gra-
dient can be captured (day-night variation). In general, it holds
ḡv,s = ⟨ḡv,s,t⟩t ∀v ∈ V , ∀s ∈ Sre.

The feature f for Ward’s method in this case is of high dimen-
sion, as every resolved time step has to be considered. We refer to
it as ftime and define it via

ftime(v) : = ḡv,s∈{solar, wind}, t∈T (26)

=



ḡv, solar,1

. . .
ḡv, solar, |T|

ḡv, wind,1

. . .

ḡv, wind, |T|


∈ [0, 1]2|T|

In this study, |T| = 1
2 · 8760, because we resolve our model with

a temporal resolution of two hours and run the optimisation over
one year (2013).

It is no curse of dimensionality to apply ftime(v), because we
solely measure the (high-dimensional) distance between two points;
but we do not sample from this high-dimensional space to approx-
imate it with insufficiently many data points.

clauset-newman-moore greedy modularity maximisation

The modularity maximisation approach aims to find community
structures in large networks. It is a HAC method with approxi-
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mately linear running time, O(|V|log2|V|) [122]. In each iteration,
it greedily aggregates the two nodes v and w that increase modu-
larity Q the most and continues to do so until the desired number
of clusters is reached or until Q can not be further improved.

Q is formally defined as

Q =
1

2m

∑
v,w∈V

(
Av,w −

kvkw

2m

)
δ(cv, cw) (27)

with the weighted adjacency matrix Av,w of the network graph G

Av,w :=

w(v,w) if (v,w) ∈ E

0 otherwise

the sum of all edge weights in the graph m

m :=
1

2

∑
v,w

Av,w

the weighted degree of node v kv

kv :=
∑
w

Av,w

and the Kronecker-Delta function, given as

δ(cv, cw) :=

1 if cv = cw

0 otherwise

From the formal definition of modularity in equation (27), we
can deduce that the sum in Q is only non-zero, if v and w belong
to the same cluster. In its original publication [122], modularity
was introduced without weights, i.e. w(v,w) = 1, but we choose a
different weighting to adapt the method to the network topology,
similar to the suggestion in [103], but accounting for both the reac-
tive and resistive components of the grid. We choose the absolute
value of the admittance |y(v,w)| of each line (v,w), a measure of
electrical distance that describes how easily a circuit allows power
to flow. Admittance is defined as the inverse impedance, i.e.

y(v,w) =
1

z(v,w)
(28)

Regarding the values of Q, Av,w is large and positive for a good
division, i.e. when aggregating electrically close nodes v and w,
and small or zero for a bad division, i.e. when the impedance is
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G1 : A0,2 ≈ 0.067 > k0k2
2m ≈ 0.022 G2 : A0,1 = 0.05 > k0k1

2m ≈ 0.018
G3 : A1,5 = 0 < k1k5

2m ≈ 0.018 G4 : A2,3 = 0.005 < k2k3
2m ≈ 0.026

Table 4: Exemplary inital iterations of the Clauset-Newman-Moore
Greedy Modularity Maximisation Algorithm associated with
Figure 21.

high, or if the nodes are not connected at all. kvkw
2m is a measure

of (electrical) centrality: it tells us, how well the nodes v and w

are interconnected in the graph, independent of each other. If the
value is large, v and w are nodes with either many connections or
they are connected by lines with low impedance. A small value
indicates a sparse connection, i.e. either few edges or connections
with high impedance. Thus, a (large) positive value of the differ-
ence Av,w− kvkw

2m marks v and w to be electrically closer than they
are on average from other nodes in the network. Their aggregation
therefore suggests a good grouping.

Consider an exemplary symmetric graph G0, such as given in
Figure 21. All edges are weighted with a line reactance x(v,w) and
without resistance. The four panels of Figure 21 show different
first iteration choices of the weighted Clauset-Newman-Moore Al-
gorithm into graphs Gi, i ∈ {1, 2, 3, 4} marked in red. Due to the
symmetry of G0, other than the displayed choices for the fist it-
eration are equivalent. Without clustering, each node in G0 can
be interpreted as a singleton cluster, yielding the initial modular-
ity of Q0 ≈ −0.1677. For the four displayed cases, we can calcu-
late the increase of modularity if the marked nodes were merged,
see Table 4. Hence, both G1 and G2 would improve the modular-
ity, but G1 is the better choice, as A0,2 − k0k2

2m > A0,1 − k0k1
2m . G3

and G4 are bad choices, reducing modularity and deteriorate the
network community. However, if x(2,3) was much smaller, for ex-
ample x(2,3) = 1, then G4 would be the best choice for the first
iteration.

4.2.2 Overview of Studied Clustering Algorithms

We summarise the metrics and methods that are subject to our
analysis in Table 5.

4.2.3 Copperplate Aggregation

After mapping every node v to a cluster Vc, i.e. v 7→ Vc, all nodes
within Vc are replaced by a single equivalent node, where the at-
tributes of all nodes within Vc are aggregated to one equivalent.
For example, demand and generation potentials are summed up,
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Abbrev. Clustering on ... Novelty

‘country-
zones‘

... political borders
and synchronous
zones.

benchmark (no novelty). The
spatial resolution of 37 nodes
is not variable and the lower
bound for all other presented
methods.

k-
means

... geographic loca-
tions (coordinates)
of graph nodes.
Formulated in eq.
(19)

Pre-Aggregation to substa-
tions (Dijkstra); otherwise
benchmark (no novelty)

fcap(v)

... annual capacity
factors of nodes.
Formulated in eq.
(24) and (25). Hier-
archical clustering.

Pre-Aggregation to substa-
tions (Dijkstra); thereafter
similar to [89] with the fol-
lowing differences: considers
network topology using HAC,
simultaneous consideration of
wind and solar capacity fac-
tors in each aggregation step,
varying spatial resolution (27

nodes in [89])

ftime(v)

... hourly capacity
factors (time-series)
of nodes. Formu-
lated in eq. (24)
and (26). Hierarchi-
cal clustering.

Fully novel in the context of
ESM.

Q

... electrical dis-
tance between two
nodes. Formulated
in eq. (24) and
(27). Hierarchical
clustering.

Pre-Aggregation to substa-
tions (Dijkstra); thereafter
similar to [103], with the
difference of accounting for
both reactive and resistive
parts of transmission lines and
considering whole Europe not
only Germany to make results
comparable.

Table 5: Abbreviations and novelty declaration for the applied clustering
methods. Each one is discussed in the methods Section 6.2.
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Figure 21: Example graph to illustrate the concept of the Clauset-
Newman-Moore Greedy Modularity Maximisation Algo-
rithm.

and capacity factors are averaged. This replacement is referred to
as copperplate approach because it is equivalent to all nodes in-
side Vc being connected to a lossless copper plate. Finally, all lines
(v,w) that connect nodes within the same cluster, i.e. v,w ∈ Vc,
are removed from the model, while lines connecting nodes in dif-
ferent clusters, i.e. v ∈ Vc ∧w ∈ Vd where c ̸= d, are aggregated
to an equivalent line.

4.2.4 Capacity expansion problem

We perform a brownfield capacity optimisation that builds on a
system that exists as of 2018 for both the generating fleet accord-
ing to the data-set introduced in Chapter 2, particularly the exist-
ing renewable generator fleet of [50], and the planned transmis-
sion grid in the TYNDP 2018 [23]. The optimisation is subject to
two decarbonisation goals of 60% and 100% lower emissions com-
pared to 1990. Missing capacities of renewables for the system to
be feasible with respect to the decarbonisation goals are optimised
in the sense that the total system costs are minimised.

4.3 results

4.3.1 Evaluation of the Regions

First of all we present resulting regions in Figure 22 for an exem-
plary spatial resolution of 67 nodes. Additionally, the ranges of
cluster sizes are shown in Figure 23, displaying how many nodes
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Figure 22: Resulting regions respective clustering method discussed in
this Chapter at a resolution of 67 nodes.
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Figure 23: Resulting distribution of cluster-sizes respective clustering
method as a function of the number of clusters.

were aggregated into one cluster for varying numbers of clusters
in steps of 30. Results on the community structure, i.e. modularity
Q given in equation (27), are shown in Figure 24 for all possible
model resolutions starting at 37 and up to 2435 nodes.
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Figure 24: Resulting modularity respective clustering method as a func-
tion of the number of clusters.
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Figure 25: Resulting quantiles of capacity factors for wind (top) and so-
lar (bottom) respective clustering method as a function of the
number of clusters.
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Figure 26: Average FLH of existing wind (left) and solar (right) assets
according to equation (29) respective clustering method.

Capacity factors are evaluated in Figure 25 on a quantile base,
because the optimisation places renewable capacity at its best avail-
able site whenever possible as more power can be generated there
with the same cost penalty in the objective function, according to
constraint (9). For a second perspective, we also present the aver-
age FLH of the renewable assets installed by 2018 in Figure 26:∑

t∈T

〈
ḡv,s,t

∣∣
G2018

v,s >0

〉
v

s ∈ Sre (29)

4.3.2 Evaluation of the Capacity Expansion model

The main objective of applying different clustering techniques to
the model is to reduce the model size for it to be computation-
ally tractable. But at the same time, we want to obtain good esti-
mates for all the optimization variables introduced in Chapter 2

(particularly Section 2.3), especially those of the model formula-
tion in equation (3). It is desired that the low-resolved results (es-
timates) resemble the highly-resolved modelling results. For the
power flow this means that the sum of flows f of highly-resolved
lines (v,w) that are aggregated to the new line (c,d)

f(c,d),t :=
∑

(v,w)∈E:
v∈Vc∧w∈Vd

f(v,w),t ∀c,d ∈ VK, t ∈ T, K ∈ N⩾37

in the low-resolved model (estimate f̂) is the same:

f̂(c,d),t
!
= f(c,d),t ∀c,d ∈ VK, t ∈ T, K ∈ N⩾37 (30)

Note that we slightly deviate the notation in this Section from
the remaining dissertation, where we do not interpret the low-
resolved modelling results as estimates and do not mark them
with a hat f̂.
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We proceed in a similar manner in case of the generation and
storage capacities. The sum of optimised capacities G at nodes
within a cluster v ∈ Vc should equal the one at the clustered node
c at the low-resolved model (here, interpreted as estimated value
Ĝ):

Ĝc,s
!
= Gc,s :=

∑
v∈Vc

Gv,s ∀c ∈ VK, s ∈ Sre, K ∈ N⩾37 (31)

The same is desired for the dispatch (or charging/discharging)
of all generating (or storing) assets. But we restrict the discus-
sion to those two samples of optimisation variables, as there ex-
ists a strong correlation between generation and capacity. This is
because exploiting installed resources whenever possible is cheap-
est according to constraint (9) due to the low operational costs for
renewables, ov,s ≈ 0.

Figure 27: Normalised mapping of optimal power flows, additionally
displaying the 95% and 85% percentiles of the corresponding
probability density function (PDF) using contour plots.

As the model cannot be solved at full resolution for any of the
clustering methods, the highly-resolved optimised capacities Gv,s
and power flows f(v,w),t are taken from a model resolution of 1250
nodes (see Annex C.1 for a justification why this benchmark reso-
lution is sufficient), and the estimator quantities Ĝc,s and f̂(v,w),t
from a model with 97 nodes, the same resolution as in Figure
25 for the capacity factors. Analysing model results at the spatial
resolution of 97 is because many studies choose a resolution of
approximately 100 nodes for their research, such as the final re-
port of the e-Highway 2050 project [22]. The mappings of optimal
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Figure 28: Normalised mapping of optimal capacities for wind (blue)
and solar (yellow) including a linear fit to the respective data.

power flows in equation (30) and optimal capacities in equation
(31) are shown in Figures 27 and 28 respectively.

Finally, Figures 29a and 29b display the resulting objective of
the optimisation in equation (3) for the two considered carbon
reduction targets of 60% and 100% for different model resolutions
in steps of 30 nodes up to a model resolution of 397 nodes.

discussion of the results

4.3.3 Discussion on the resulting clusters

In Figure 22 it can be seen that k-means clustering and Ward’s
method with hourly capacity factors (ftime(v)) favor regions with
similar size. For k-means this results from the objective to min-
imise geographical distances, see eq. (19), while for ftime(v) the
reason are spatially and temporally varying features that favor
this outcome: There exists a north-south gradient for the solar ca-
pacity factors that constrains the clusters vertically, and the day-
night variation of solar irradiation prevents clusters from being
elongated from east to west by adding a high penalty in equa-
tion (24) when trying to merge "day"-nodes with "night"-nodes.
This is visible in the east-west elongated clusters as well as large
coastal regions that can be observed for fcap(v) because the annual
capacity factors do not see these temporal variations. The cluster
structure related to modularity Q is similar to fcap(v), resulting in
some very small or elongated thin clusters. The structure of clus-
ters continues so for higher resolutions, as can be seen in Figure
23. The outcome of long thin clusters is common for single-linkage
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Figure 29: Resulting total system costs for the two CO2 scenarios respec-
tive clustering method.

HAC methods [123], but can be overcome with a profound choice
of feature, as we demonstrate using ftime(v).

In Figure 25 it can be seen that every of the three presented HAC
techniques with different similarity/distance measures can cap-
ture annual capacity factors better than k-means clustering with
respect to the same model resolution. Applying HAC with the
similarity measure f = fcap(v) finds and maintains the best gen-
eration sites with an annual capacity factor of 53.3% for wind at
a model resolution of 97 nodes. The competing clustering tech-
niques are behind: The best generation site is reached at a model
resolution of 247 when invoking hourly capacity factors ftime(v) or
modularity Q as a similarity or distance measure and 517 nodes
for k-means. For Q as well as for k-means, the best generation site
has a lower annual capacity factor of only 51.6% and 49.7% respec-
tively. However, when siting solar assets, the behavior is different:
The best site is available earliest for f = ftime(v) and f = Q for a
model resolution of 487 nodes and capacity factors of 16.48% and
16.42%. Both k-means and f = fcap(v) perform worse, with lower
capacity factors even at a model resolution of 512 nodes. This re-
flects also in the full load hours of existing assets G2018

v,s of the
respective clustering methods (Figure 26).
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Regarding the community structure of the resulting reduced
graph, only HAC based on modularity performs significantly bet-
ter than the competing methods. Although Ward’s method takes
into account the structure of the transmission grid by considering
only adjacent neighbors, both algorithms perform slightly worse
in terms of community structure than k-means, see Figure 24. Re-
gardless of the method, when reducing the model resolution be-
low a threshold of approximately 40 nodes, modularity suddenly
drops to zero.

4.3.4 Discussion of the Optimal Modelling Results

First, we consider the power flow estimates introduced in equa-
tion (30). As we expect the low-resolved flow estimates f̂(c,d),t to
equal the aggregated optimal flow f(c,d),t derived from the highly-
resolved system, the associated random variable should be dis-
tributed proportional to a two dimensional normal distribution:(

f̂(c,d),t

f(c,d),t

)
∼ N2(µ,Σ)

where the covariance matrix Σ, and in particular the confidence
ellipses provide insight of the correlation between the estimated
and the optimal power flow. The length of the axes of the ellipses
can be derived form the eigenvalues σi of the covariance matrix
Σ, namely ri =

√
σi. This approximately corresponds to the 40th

percentile, i.e. 40% of the data points lie within the ellipse and
60% outside of it. The narrower the minor axis r2 is, the more
data points are close to the origin. The major axis r1 gives insight
of the magnitude of the power flows. The larger the major axis,
the more large power flows can be observed. Information on the
relation between the actual power flow f and its estimate f̂ can be
gained from from the bivariate correlation coefficient ρ:

ρ =
Σ01

Σ00Σ11
=

COV(f̂(c,d),t, f(c,d),t)

V(f̂(c,d),t) · V(f(c,d),t)
(32)

It is a measure of correlation between the two variables. It is 1 for
a perfect correlation, 0 for no correlation and −1 for a negative cor-
relation. Resulting correlation factors ρ and minor axes r2 can be
taken from Table 6 (or Tables 17 and 18 in Annex C.3 for different
low-resolved modelling results).

For the 60% carbon reduction target, fcap(v) as a similarity mea-
sure for Ward’s method yields the best correlation factor ρ, but the
features of annual capacity factors ftime(v) and modularity Q de-
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CO2 reduction 60% 100%

ρ r2 ρ r2

k-means 0.746 0.165 0.755 0.175
fcap(v) 0.769 0.160 0.768 0.173
ftime(v) 0.767 0.160 0.781 0.169

Q 0.757 0.164 0.757 0.179

Table 6: Bivariate correlation factor ρ and radius of the minor axis rn of
the PDF of power flows for each respective clustering method at
a spatial resolution of 97 nodes.

viate from fcap(v) by only 0.26% and 1.56% respectively in terms
of ρ. The minor axis of the confidence ellipses is also most nar-
row for the features ftime(v) and fcap(v), but only 2.5% wider for
Q. The distribution of k-means has an approximately 3% lower
correlation factor of 0.746 and a 3.13% wider spread in terms of
the minor axis of the confidence ellipse compared to fcap(v) and
ftime(v). These variations are clearly visible in Figure 27. With a
higher carbon reduction target of 100%, the trend that clustering
on siting capacity prevails over electrical distance when consid-
ering the power flow estimates. ftime(v) yields a 3% better corre-
lation ρ and fcap(v) a 1.45% better one than Q. In terms of the
spread (r2) the same can be observed: The distribution of power
flows of ftime(v) is 5.59% narrower than for Q and fcaps distribu-
tion is 3.35% slimer than the one of Q. k-means performs similar
as in the 60% reduction target. To make sure these results are not
artificial for the resolution of 97 nodes, we provide the same table
for a spatial resolution of 67 and 127 nodes in Annex C.3. These
results are in-line with the ones we found for a resolution of 97

nodes, where it becomes even more evident that the error made
by k-means is much larger than the one made by the competing
methods.

Considering the mapping of optimal capacity according to equa-
tion (31), we could pursue the same approach as for the power
flows, i.e. assuming a normal distribution, but due to the relatively
low amount of data points, such an analysis would be inaccurate.
Instead, we provide the mean squared error (MSE) in Table 7:

MSE =
1

K

K∑
c=1

(
Gc,s − Ĝc,s

)2
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CO2 reduction 60% 100%
technology wind solar wind solar

k-means 0.37+ 3.82 0.01+ 2.80 0.51+ 3.33 0.12+ 1.23
fcap(v) 0.21+ 0.60 0.03+ 1.00 0.01+ 2.22 0.11+ 0.15
ftime(v) 0.04+ 3.17 0.08+ 0.79 0.55+ 1.94 0.26+ 0.28

Q 0.36+ 1.31 0.47+ 1.17 0.25+ 1.98 0.17+ 0.78

Table 7: MSE presented as a sum of over- and underestimated optimal
estimates (MSE+ +MSE−) for a spatial resolution of 97 nodes.

We distinguish between the over- and underestimated optimal
capacities to be able to make better judgement which clustering
method is more conservative than another; i.e.

MSE = MSE+ +MSE− (33)

where MSE+ is defined to capture the error of all overestimated
capacities, i.e. those of K+ := {c ∈ {1, . . . ,K} s.t. Ĝc,s > Gc,s}

MSE+ :=

 1

|K+|

∑
c∈K+

(
Gc,s − Ĝc,s

)2
and analogously MSE− is defined to capture the error of all under-
estimated capacities, i.e. those of K− := {c ∈ {1, . . . ,K} s.t. Ĝc,s <

Gc,s}

MSE− :=

 1

|K−|

∑
c∈K−

(
Gc,s − Ĝc,s

)2
While the clustered models tend to underestimate the need of

renewable generation and storage capacity (MSE+ ≪ MSE−) for
any of the clustering methods, according to the resulting values
presented in Table 7 and Figure 28, clustering based on fcap per-
forms best in the optimal placement of simultaneously placing
wind and solar assets for every carbon reduction target. How-
ever, the methods of ftime and Q are not significantly worse and
yield errors in the same order of magnitude. On the other hand,
k-means performs significantly worse with an at least 0.21− 2.39
times higher MSE− value compared to the competing methods.
To make sure these results are not artificial for the resolution of
97 nodes, we provide the same Table for a spatial resolution of 67
and 127 nodes in Annex C.3. Results presented there are in-line
with the ones we found for a resolution of 97 nodes.
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In terms of storage technologies, no clear tendency can be de-
rived. All methods equally under- and overestimate the need for
storage technology (O(MSE+) ≈ O(MSE−)) and all clustering
methods perform equally well. Values for the MSE can be found
in Table 21 in Annex C.2.

Regarding the total system costs presented in Figures 29a (60%
reduction of carbon emissions) and 29b (100% reduction), we can
observe substantially different convergence behaviors of the in-
vestment in different technologies and the total system costs. In
all of the applied methods a big swing from offshore wind at low
resolution of 37 nodes (‘country-zones‘) to onshore wind can be
observed, and all methods yield similar results in terms of gener-
ation capacity at a spatial resolution of approximately 320 nodes.
Ward’s method applied with f = fcap(v) converges fastest, where
the total costs do not change substantially after reaching a model
resolution of 157 nodes (60% reduction) and 67 nodes (100% re-
duction). At the side of flexibility options, the results need higher
spatial resolution than provided to reach an equilibrium as they
deviate from one another even at the highest spatial resolution.
For the 60% reduction target, the investment in transmission lines
is highest for fcap(v) and almost 25% cheaper for Q, because the
assets are sourced more locally where demand is high, not exploit-
ing the good sites as they are not available for this clustering. This
can be taken from Figure 28. The same trend continues for the
100% reduction target, but here, for Q, it is clearly visible that 12%
more hydrogen storage is needed compared to fcap(v), 8% more
compared to k-means and 6% more compared to ftime(v). This
is because the transmission bottlenecks are better portrayed in Q

than in the competing clustering techniques, while the good gen-
eration sites are not available to cover demand. This reflects well
with Figure 27.

4.4 conclusions

From this analysis several conclusions can be drawn. First of all,
the choice of spatial resolution is crucial to obtain accurate model
results, particularly to the ratio and distribution of renewable car-
riers. A model that is based on political borders such as countries
is not advisable, as important transmission bottlenecks are ne-
glected and good generation sites of onshore carriers are underes-
timated. When moving towards a higher spatial resolution where
each country is represented by multiple nodes, modelers should
consider carefully how the aggregation is conducted. For mod-
els that consist of conventional carriers (such as coal or lignite),
an accurate estimate of power flows is more important than ac-
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curately portraying renewable generation sites. Therefore, in this
case we suggest a model reduction based on electrical distance
such as the Clauset-Newman-Moore greedy modularity maximi-
sation. However, modelling is mostly conducted to simulate fu-
ture green scenarios that have high shares of renewable energy. In
this case, Ward’s method applied on the full time series prevails
in terms of accurate siting of capacity and in terms of a good ap-
proximation of power flows. It is advisable not to choose annual
capacity factors because it ignores correlations in time and leads
to very elongated clusters. This tends to underestimate transmis-
sion bottlenecks within regions and, therefore, underestimates the
need of renewable capacity. Inter-regional power flows in a model
where Ward’s method based on the full time series was applied for
equivalencing are similarly well estimated as those obtained from
a reduced model based on electrical distance. For higher shares of
renewables the power flow approximation of the reduced model
using Ward’s method on the time-series is even more precise com-
pared to results obtained from the reduced model based on electri-
cal distance. Therefore, when modelling a highly renewable elec-
tricity system, we recommend using a hierarchical method with a
similarity measure that entails spatio-temporal features of renew-
ables, such as the renewable time-series. Model results obtained
from clustering on the geographical locations of the nodes are less
accurate than those from any of the three hierarchical methods
both in terms of siting renewable capacities and an accurate esti-
mate of power flows, so we advise against using this method in
future.

4.5 critical appraisal

Comparing modelling results retrieved from varying spatial reso-
lutions is a computationally challenging task, meaning that addi-
tional simplifications had to be made to the model. This includes
the bottleneck that we were able to compare low model results
only to those obtained from a resolution of 1250 nodes, not the
full network size. If more computational power or more efficient
solvers become available, the low resolved solutions could be com-
pared to the solved network at full model resolution.

Regarding our results on the network representation, we ignore
the positive impacts that dynamic line rating could impose on the
ampacity of the overhead transmission grid. In our simulations,
we model severe high summer weather conditions such that the
results are conservative. However, the ampacity of lines can be sig-
nificantly increased, which might impair on our results conducted
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on the electrical distance of the network, where the cooling effects
of wind are not considered in the metric (27).

On the other hand, in terms of modelling renewables and par-
ticularly offshore wind, we did not model wake effects of wind
turbines such that capacity factors for offshore wind are being
overestimated. This might impact the strong preference towards
offshore wind, particularly for models at low spatial resolution
(see Figures 29a and 29b at low model resultion, particlularly 37

nodes). Another point on the representation of renewables is mod-
elling only one technology per carrier, for example the model can
build only wind turbines at a hub-height of 80m and place solar
panels oriented only south with a specific tilt-angle of 35◦. More
technology options could be included in such study, particularly
as including more technologies per node is not driving the com-
putational complexity. It is the total number of nodes included in
the model, as shown in [2].

Further simplifications include that the optimisation is run for
a single weather year, only those technologies that are consid-
ered most substantial in the energy transition are included in the
model, only a single set of cost assumptions is considered and the
scope of the model is limited to the electricity system. The latter
lacks the coupling of different sectors such as building heating,
transport and non-electric industry demand, but including them
might offer additional flexibility and interactions and change the
results substantially. Nevertheless, a lot of research is conducted
based on electricity-only models, such that our results are still
valuable. A follow-up study could consider the interactions of
spatial scale under different clustering methods in sector-coupled
systems.

Finally, allowing grid-expansion relaxes many of the constraints
imposed by the upper bound of line-capacities (14), which in turn
will effect the results of this study. However, as found in [2], grid
expansion does not affect the main qualitative features of the re-
sults, but it does have the overall effect of lowering the total sys-
tem costs. Nevertheless, this study could be expanded upon which
clustering method captures most of the congested lines and per-
forms best in a planning transmission expansion study.
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I N T E R M E Z Z O : C A N S PAT I A L LY L O W- R E S O LV E D
M O D E L S C A P T U R E C U RTA I L M E N T ? A G E R M A N
C A S E - S T U D Y.

Contents of this chapter are based on

Martha Frysztacki and Tom Brown. “Modeling Curtailment
in Germany: How Spatial Resolution Impacts Line Conges-
tion.” In: 2020 17th International Conference on the European
Energy Market (EEM). 2020, pp. 1–7. doi: https://doi.org/
10.1109/EEM49802.2020.9221886

5.1 introduction

In the previous Chapters we have seen how spatial clustering af-
fects the optimality of planning results for systems with a high
share of VRE supply. These models and mathematical optimisa-
tion formulations were always subject to optimising the genera-
tion fleet and flexibility options such as the transmission grid or
dimensioning storage capacity to simulate possible future renew-
able grid scenarios. They were not aiming to model the operation
of the electricity grid or to reproduce historical events, but it is
important to ensure that the models utilised for planning appli-
cations are a good approximation of the real world, particularly
after applying spatial reductions to the models.

The initial release of PyPSA-Eur [51] (see Chapter 2) provides
a limited model validation, mainly focusing on the network total
line lengths, the grid topology, the potentials for expansion of re-
newables and the linear optimal power flow. It was not analysed
if the model is able to reproduce the feed-in or the curtailment of
the existing fleet of renewable assets. But as the share of renewable
generators is increasing considerably and expected to continue to
do so, we want to ensure that the model can capture these dom-
inant effects of the system. Using an evaluated model on curtail-
ment for future planning studies has the advantage of more reli-
able investment decisions, because curtailing renewable electricity
results in high costs for transmission grid operators due to politi-
cal incentives for the expansion of renewable energy in Germany.
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background Incentives for renewable energy in Germany are
regulated by the Renewable Energy Sources Act [124–127] that
is a key driving force for the expansion of renewable energy. It
enforces that if the feed-in of electricity from an installation classi-
fied as a renewable energy source is reduced due to a grid system
bottleneck, grid system operators must compensate operators af-
fected by their measure for 95% of the lost revenues1 [126]. Com-
pensation payments for the curtailed energy in 2013 were 43.7 mil-
lion euros and have increased ever since, reaching a maximum of
718.7 million euros in 2018 [21, 128]. The reason is that in the last
few years significant amounts of wind have been curtailed because
of congestion in the German transmission system.

At the same time, the German government has set a target that
the share of renewables must be increased from 40% in 2019 to
65% by 2030. By 2050 the capacities of today must at least quin-
tuple even in optimistic scenarios to meet the ambitious CO2 re-
duction targets [129]. Thus, congestion is likely to continue to be
present as shares of wind and solar rise, particularly given the
delays in building new transmission projects. Various solutions
have been proposed to mitigate congestion: flexibility from sector-
coupling [110], the production of green hydrogen [130], innovative
new technologies such as dynamic line rating [131] or fast-acting
storage [132] could be introduced to the market to increase avail-
able green energy from existing assets.

research contributions In this Chapter we dedicate to val-
idating historical curtailment in the German network in PyPSA-
Eur [51] (see Chapter 2). We perform this exercise to demonstrate
that the model at hand is capable to represent the existing electric-
ity grid in terms of line congestion and curtailment. Particularly as
the share of VRE carriers will increase over the decades to come,
openly-available, validated models should increase transparency
in testing new flexibility strategies and innovation in managing
congestion [133]. Therefore, accurate modelling of the interactions
between renewables and the grid is critical to assess future scenar-
ios for the energy system. Within the validation, we particularly
examine the spatial representation of the model by varying its res-
olution to understand at what granularity the most important bot-
tlenecks are still captured. Results are validated against published
feed-in management numbers by the German Federal Network
Agency [134, 135] in time and space. Note that in this case, the
model optimisation is performed as a pure operational dispatch,
where no new transmission, generation or storage facilities can be
built.

1 according to the version of the Act that was in force during the years we evalu-
ate in this Chapter
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remainder This Chapter is arranged as follows: In Section 5.2
we present adaptations made to the full optimisation problem
with respect to all its constraints to model curtailment in Germany.
In Section 5.3, we present our results of curtailment with respect to
different spatial resolutions of the model. Based on these findings,
results are discussed on an annual scale for the years 2013-2018,
a spatial scale for the four distinct TSO regions in Germany and
on a temporal scale discussing results per quarter of two of the
considered years where curtailment rates are highest.

5.2 methods

5.2.1 Optimisation problem

While the original model formulation of PyPSA-Eur [51, 63] as
presented in Chapter 2 (particularly Section 2.3) is capable of co-
optimising investment in generation and transmission, this case-
study aims to reproduce historical events of the past. Therefore,
the objective function minimises solely the operational costs for a
fixed generation and storage fleet and fixed transmission capac-
ities. Historic capacities are given exogenously for each year, la-
beled by an index α. Thus, the initial objective function given in
equation (3) simplifies to

min
gv,s,t, h±

v,r,t,
f(v,w),t

[ ∑
v∈V,s∈S, t∈T

wtov,sgv,s,t

]
(34)

in this Chapter.
As we have also already discussed in Section 2.3, electricity

flows in the transmission grid are constrained by their respective
line capacity multiplied by a factor of 0.7. By re-formulating the
constrained optimisation formulation as a Lagrangian function,
each constraint is associated with dual variable, also known as
Karush-Kuhn-Tucker (KKT) multiplier.

|f(v,w),t| ⩽ 0.7 · Fα(v,w) (35)

↔

 µα
(v,w),t ⩾ 0

µα
(v,w),t ⩾ 0

∀(v,w) ∈ E, t ∈ T

The KKT multipliers µα
(v,w),t and µα

(v,w),t [€/MW] are zero, if the
flow f(v,w),t is less or equal to 70% of its capacity, and strictly pos-
itive, if constraint (14) is binding, meaning that a better optimum
of the overall annual costs according to the objective in equation
(34) could be reached by increasing f(v,w),t beyond 0.7 · Fα(v,w).
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5.2.2 Data Classification

We model Germany with a maximum of 306 nodes, including
all transmission lines from the ENTSO-E Interactive Transmission
Map [136]. The network is adjusted according to annual reports
from local TSOs [132, 137–140]. All manual adaptations to the
lines are described in Annex D.1. Lines that were not build by
the time of e.g. 2014, are removed from the optimisation for the
simulations of later years. Lines that have been strengthened were
reduced in capacity for the optimisation. Electricity demand data
is derived from the OPSD [52] for the respective year and gener-
ation time series for hydroelectricity (run of river) are included
and fixed. Capacities for conventional and renewable generators
are taken from the new database provided by the German Federal
Network Agency, the Marktstammdatenregister [141], see Figure 30

for their spatial distribution. Fuel costs, variable operation and
maintenance costs per technology are based on historical market
prices [55] and remain untouched compared to simulation results
from different Chapters of this dissertation. Renewables have no
marginal costs, but were given very small ones to set the curtail-
ment order for wind and solar: 0 ct/MWhel for run of river and
geothermal, 1 ct/MWhel for solar, 2 ct/MWhel for onshore wind
and 3 ct/MWhel for offshore wind.

The dataset [141] contains geographic coordinates or equivalent
information of all generators, where each one lies within a Voronoi
cell. These cells are defined by a center point and cover the space
that is closest in the sense of the euclidean metric, see Section 2.2.
Therefore, we assign each generator to the Voronoi cell in which
it lies which is represented by its central node v:

argminv∈V

√
(xv − xg)2 + (yv − yg)2 (36)

The data is filtered such, that the commissioning year of each gen-
erator matches the one of the demand time series. This is a simpli-
fication in the sense, that the register does not provide substations
where the respective generator is attached to, only its geographi-
cal coordinates xg and yg, such that this assignment comes with
errors.

To assess the assignment errors of both electricity demand and
the generation fleet, we can quantify the amount of renewable en-
ergy available at the node which cannot be consumed locally or
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Figure 30: Original network model for Germany including all HVAC
and HVDC transmission lines and powerplants (2018).

exported due to the constraint (35), i.e. the excess which necessar-
ily must be curtailed:∑

v∈V,s∈Sre, t∈T

[
Av,s,t − dv,t −

∑
(u,w)∈E:
u=v∨w=v

0.7 · Fα(u,w)

]+
(37)

The bracket [·]+ denotes the positive part of a value; max(0, ·).
Equation (37) captures an assignment imbalance in quantities of
excess TWh: If the result is positive, it indicates that the installed
potential at a local substation n is higher than local demand and
higher than the transmission capacity. Building such a power plant
is uneconomical, because it is known in advance that its power out-
put cannot be used. Therefore, we assume either the assignment of
g to v or the heuristic of spatially distributing electricity demand
given in equation (1) to be inaccurate. Evaluation of (37) can be
done a priori, i.e. without solving the optimisation problem (34)
with its corresponding constraints (see Section 2.3).
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2015 2017
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Figure 31: Clustered networks displaying the amount of curtailment for
the years 2015 and 2017 for three exemplary network resolu-
tions.
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5.2.3 Network Aggregation

For this Chapter we chose the same version of k-means cluster-
ing as introduced in Chapter 3 of this dissertation that is based
on the geographical location of the original substations in the net-
work and weighted by the average electricity demand and conven-
tional capacity at the substations, see Section 3.2. We also conduct
the same network preparation where we map all voltage levels
to 380 kV and aggregate univalent nodes. This method was as ini-
tially introduced in [100] and was used in many prior ESM studies
conducted with PyPSA. We visualise three exemplary resolutions
of the resulting clustering for two different years of the network
in Figure 31.

For the remainder of this Chapter, we progressively cluster our
highly-resolved German model with 306 nodes and 406-411 lines
(2013/2018) in steps of 5 down to a 6 node network and compare
the distinct results.

5.3 results

The original fully-resolved network model with assigned power
plants is shown in Figure 30 and can be compared to three clus-
tered down networks for the years 2015 and 2017 in Figure 31, that
also shows additional spatial information of curtailment. Annual
curtailment results for different network resolutions for the year
2017 are displayed in Figure 32.

Historical model results on curtailment in Germany are vali-
dated in three separate validation steps. First, on a cumulative
scale where we present the total annual curtailment results in Fig-
ure 33. Second, on a spatial scale, where results per distinct control
zone of the German TSOs are presented in Table 8. On the tempo-
ral scale we validate curtailment results per quarter of every year,
see Table 9.

Finally, Figure 34 presents memory consumption and the du-
ration to solve the simplified optimisation problem (34) with the
same constraints as introduced in Section 2.3 as a function of the
network nodes.

We have tested all results for stability by perturbing the assign-
ment of generators g according to equation (36) with a probability
of 5% to a node that is within the radius of 31km of the closest
node v. 31km account for 5% of the longest east-west extension of
Germany. The results are stable with deviations of below 5%.
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5.3.1 The Impact of Spatial Resolution on Curtailment

Figure 32 displays the impact of clustering on curtailment results
in Germany in the year 2017. The total amount of curtailment ex-
periences four distinct stages, where in each stage the cumulative
annual value is approximately steady, deviating from the mean by
only 5%.

Those four stages can be distinguished by applying the excess
energy measure discussed in (37): (i) First, at high model reso-
lution, results are highly overestimated by more than 100% on
average. Both curtailment and excess energy results are relatively
stable with minor deviations of up to 5%. This is because both the
assignment of electricity demand and power plants according to
equations (1) and (36) in some cases is not precise, hence a mis-
match emerges between low demand and high generation with
lacking transmission capacities to transport the excess. (ii) Second,
at intermediate model resolution between 250 and 150 nodes, cur-
tailment results match the historical ones by on average 128%, i.e.
deviating from historical numbers by 28%. At this stage, the effect
of clustering overcomes the errors made by assigning electricity
demand and generators to nodes, but at the same time, cluster-
ing preserves major transmission bottlenecks. Excess energy is still
available due to the uncertainty of weather conditions, but is low
at 0− 1% of available renewable energy. (iii) The third stage ranges
from an intermediate to low resolution network (150 to 80 nodes)
where both curtailment and excess results have large fluctuations.
This high variance is because the probability to cluster important
transmission lines becomes higher as fewer clusters are available
for aggregation: Similar resolutions of plus or minus 10 nodes
result in different minima of the k-means objective (19), and the
choice of Vc to preserve major bottlenecks is crucial. (iv) In the
final stage, the clustering technique overcomes the transmission
constraints (15)-(35) and hence curtailment is highly underrated
by 95% ± 5%: Without transmission constraints, all renewable en-
ergy is consumed because of its low marginal cost.

5.3.2 Annual Curtailment Rates of a Spatially Aggregated Model

Model results to simulate historical curtailment are shown in Fig-
ure 33, presenting a breakdown per carrier. It also displays the
installed capacity of renewables.

Although the marginal costs of renewables were artificially as-
signed for the optimisation in (34) to fix the curtailment order, the
energy-mix deviates from the historical mix only by 2.5% on aver-
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Table 8: Curtailment per control zone. Results are extracted from models
at a resolution of 246 nodes. The error compares model results
to historical data of [134]

Year TSO zone Hist. share [%] Model share [%] Error [%]

2017 50Hertz 17.7 20.1 +1.6
TenneT 81.6 80.0 −1.6

Transnet 0.1 0 −0.1
amprion 0.7 0 −0.7

2018 50Hertz 12 21.6 +9.6
TenneT 87 78.4 −8.6

Transnet 0.3 0 −0.3
amprion 0.7 0 −0.7

age. We differentiate between solar, wind (onshore and offshore)
and hydroelectricity.

The chosen resolution to model historical curtailment takes into
account the analysis of the previous Section 5.3.1 to balance the
mismatch of assigning input data to nodes versus clustering the
transmission grid and overcoming important transmission bottle-
necks. We choose a resolution of 246 nodes as the excess according
to (37) is in the range of 0− 10% of the annual available renewable
energy. Minor fluctuations are tolerated as they might not be com-
pensated due to uncertain weather conditions. However, if excess
energy accounts for more than 50% of the annual available energy,
it would be a highly uneconomical location of the power plant,
because it is known in advance that a large amount of the years
energy can not be used.

A trend is seen that before 2017, the model tends to underesti-
mate the total curtailment, with only 80% of the historical curtail-
ment captured in 2016. However as wind generation grows, the
model overestimates the congestion and therefore the curtailment,
reaching 50% more than the historical numbers in 2018.

5.3.3 Historical Curtailment Rates of a Spatially Aggregated Model
per TSO Area

To investigate the spatial distribution of curtailment across Ger-
many, results per control area are presented in Table 8 for the
years 2017 and 2018 in percent of annual curtailment. For con-
sistency, the model resolution is chosen such as in Section 5.3.2.
Results indicate, that curtailment numbers in our model deviate
by up to 9% from historical values, and by 3.6% on average.
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Table 9: Curtailment per quarter. Results are extracted from networks at
a resolution of 246 nodes. The error compares simulation results
to historical data from [135].

Year Quarter Historical share Model share Error

2015 I 24.0 33.4 +9.4
II 15.6 10.6 -5.0
III 17.3 14.2 -3.1
IV 43.1 41.8 -1.3

2016 I 40.7 48.2 +7.5
II 14.3 6.3 -8.0
III 14.7 8.3 -6.4
IV 30.3 37.2 +7.2

2017 I 25.6 23.3 -2.3
II 24.7 19.7 -4.0
III 7.9 8.7 +0.8
IV 41.8 48.3 +6.5

2018 I 36.5 39.6 +3.1
II 17.5 13.0 -4.5
III 13.4 11.1 -2.3
IV 32.6 36.3 +3.7

A validation of how these result change with the number of
nodes representing the model show the same four stages as dis-
cussed in Section 5.3.1: In stage (i), where curtailment results are
highly overestimated and electricity demand and generators were
assigned to incorrect nodes, curtailment in 2017 is split 92 : 8 be-
tween TenneT and 50Hertz, 87 : 12 in 2018. These numbers deviate
in both years by ±1% as the network resolution changes. The bal-
ancing of stage (ii) results in a stable 80 : 20 split between TenneT
and 50Hertz in 2017, and 78 : 22 in 2018 with deviations of up
to 2% in both years as the network resolution changes. Stage (iii)
remains relatively random, which is true for stage (iv) as well, but
in the latter, total annual curtailment is so low, such that the pro-
portionality has no meaning.

5.3.4 Historical Curtailment Rates of a Spatially Aggregated Model
per Quarter

Finally, we consider curtailment per quarter in the years 2015-2018.
Results are displayed in Table 9 in percent of annual curtailment.
The model resolution is chosen the same as in Section 5.3.2 for
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reasons of consistency. Results indicate that the distribution of
curtailment at an hourly resolution model reflect the historical
distribution with an error of 4.7% on average.

Again, these results are validated on how they change with the
cluster size. Here, a positive trend can be observed as the cluster-
ing happens mainly in space and not in time, such that results are
stable for stages (i)-(iii). The average share reflects the number in
Table 9, while it starts fluctuating towards stage (iv), where we
know that the overall curtailment tends to 0, such that the propor-
tionality has no meaning.

5.3.5 Memory Consumption and Solving times

Solving the full optimisation problem with a full resolution net-
work of 306 nodes and more than 400 HVAC or HVDC lines re-
quires approximately 20 GB RAM on our HPC and runs for almost
an hour, while a clustered network of only 156 nodes is twice as
fast and needs about 30% less RAM, while providing more accu-
rate results.

Further results can be found in Annex D.

5.4 conclusions

We have shown that historic curtailment in Germany can be repro-
duced in the open model PyPSA-Eur using the latest database for
the locations of existing RE generators. Results agree well in time
(curtailment per quarter) and space (curtailment per TSO region),
provided a balancing resolution is used that is low enough to over-
come assignment-errors and high enough to account for impor-
tant transmission routes. We suggest to cluster the 306 node Ger-
man network to well below 280 nodes, but not below 150 nodes.
In this range, curtailment in the model provides the best match
with historical data. A resolution below 100 nodes for Germany
using a weighted k-means clustering scheme is not advisable.

5.5 critical appraisal

This case-study covers Germany only, neglecting the fact that power
can also be exchanged with bordering countries, such as France,
Denmark, Poland, the Czech Republic, Austria or Switzerland, re-
ducing the overall curtailment of renewables in Germany. Previ-
ous studies have pointed out, that international cooperation bene-
fits renewable electricity markets [46].

Further, to avoid the difficulty of keeping track of different volt-
age levels as the network is reduced, all lines are mapped to their
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electrical equivalents at 380 kV, the most prevalent voltage in the
German transmission system. The electrical parameters and ca-
pacities of the lines use standard assumptions for 380 kV circuits
whereas in reality they vary from line to line. In addition, we use
constant summer thermal ratings for an outside temperature of 20
Celsius throughout the year and do not adapt them for lower tem-
peratures or wind conditions. The use of winter ratings as well as
dynamic line rating [131] on some congested lines today may ac-
count for the lower historical curtailment compared to our model.

Finally, the capacity factors for wind and solar from weather
data overestimate historical production, so we linearly reduced
them by a factor of 0.9 for wind and 0.8 for solar for each point in
time and space.
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network size.
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H O W F E A S I B L E A R E S PAT I A L LY
L O W- R E S O LV E D M O D E L L I N G R E S U LT S ?

Contents of this chapter are based on

Martha Maria Frysztacki, Veit Hagenmeyer, and Tom Brown.
“Inverse methods: How feasible are spatially low-resolved
capacity expansion modeling results when dis-aggregated
at high resolution?” In: submitted to Energy (under review).
doi: https://doi.org/10.48550/arXiv.2209.02364

6.1 introduction

In the previous Chapters, we have identified that a high spatial
resolution is required for the modelling to produce an accurate
representation of renewable generation. We know that modelling
a large geographical area at the scale of Europe allows the model
to exploit very good continental renewable potentials and strongly
impacts the composition of the generation and storage fleet of indi-
vidual regions [46] while, in the same time, it is relevant to include
a high spatial granularity into models with heterogeneous regions
[142]. This is particularly relevant for models with a high share of
renewable generation. We have seen that the necessity for the mod-
els to include a high spatial resolution is essential to detect bottle-
necks in the transmission grid [143], assess renewable potentials
based on local weather conditions and to identify regional vari-
ations in electricity demand. The granularity of this data-driven
information significantly improves the design and composition of
the electricity mix and the routing of new grid infrastructure pre-
dicted by the model.

In Chapter 3, we have disentangled the effects of sourcing re-
newable generation versus routing the electricity to locations of
high demand, revealing that routing dominates the system effects
and forces the model to build renewable assets closer to demand
centers at potentially worse capacity factors at a high spatial res-
olution. But the downside of higher resolution is that process-
ing large data volumes inevitably results in a computational bur-
den that arises from solving the associated mathematical formu-
lation in the model, see Chapter 2, particularly Section 2.4. To
obtain more reliable investment decisions, more effective cluster-
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ing methods must be developed so that the spatially aggregated
models can better represent the highly-resolved system. We have
contributed to this target by using the lessons from Chapter 3 to
design novel clustering methods in Chapter 4. To this end, we have
focused on HAC methods that are based on different features of
the model, such as VRE generation or electrical parameters of the
grid, because these clustering methods can better approximate the
topology of the transmission grid.

The overall consensus of the previous Chapters and most other
studies is to model the European electricity system that scatters
across an area of 10 million square kilometers and contains more
than 5000 substations at and above 220 kV at a spatial model res-
olution of 100 − 200 nodes. An exact recommendation depends
on the model configuration, such as the technology-mix or the
allowed amount for transmission reinforcements. It is therefore
subject to an individual analysis of the set-up of the model.

state of the art All these previous efforts were dedicated to
understanding and improving spatially low-resolved models. As
of now, no study provided insights whether the spatial resolution
of the models impacts only the optimal found solution, or whether
these spatially simplified modelling results are feasible with re-
spect to the original, spatially highly-resolved model. Moreover,
approaches to disaggregate the simplified modelling results back
into its original highly-resolved set-up are not well represented
in previously published research. There exist only a few publica-
tions, such as from [144] who disaggregate simplified modelling
results into higher spatial detail. But this approach was conducted
only as means to distribute the resulting optimal dispatch from
transmission level down to substation level in order to be pro-
cessed at distribution level. Capacity expansion was not allowed,
neither for generation or flexibility options. The study also did not
analyse the overall feasibility at a higher spatial resolution. Thus,
neither the assumptions on the disaggregation, or the resulting
highly-resolved systems were analysed in detail with respect to
their plausibility. Another disaggregation method is presented by
[145], who propose an iterative spatial disaggregation process and
allow transmission grid expansion in the final iteration, such that
the highly-resolved model becomes feasible. Here, it remains un-
clear how feasible the disaggregated model is when omitting the
final transmission reinforcements. Finally, [146] propose three dis-
aggregation methods. However, in their case-study they pursue
an iterative aggregation and disaggregation with the overall aim
that their resulting model is designed to be feasible at any spatial
resolution.
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research contributions In this Chapter, we look back at the
spatially highly-resolved electricity model and disaggregate the
spatially coarse optimisation variables at higher resolution. To this
end, we present three different disaggregation methods in our
continent-scale model at hand. Two of them are adapted inverse
methods from the literature, where both of them are very intuitive
approaches. One of them provides a very vague estimation of how
the low-resolved variables can be distributed, and the other one is
potentially very demanding from a computational point of view.
The third method is a completely novel algorithm that builds on
a metric derived in Chapter 5 of this dissertation. It provides a
compromise between the previously proposed methods where it
makes use of a novel metric that describes the system by balanc-
ing the distribution of renewable yield with electricity consump-
tion and existing grid infrastructure. In the same time, the method
is considerably less computationally demanding. These inverse
methods can be used to analyse if the spatially low-resolved opti-
misation models are suit for reliable investment decisions. For this
analyis, we use the spatially disaggregated, highly-resolved model
results to examine if the solution derived from the simplified mod-
els can solve the spatially more complex operational optimisation.
Because now the optimisation is reduced by the investment deci-
sions, we can solve it at higher granularity. This study design is
completely novel in the ESM literature, as none of the disaggre-
gation methods was previously analysed with respect to model
fidelity.

remainder The remainder of this Chapter is organised as fol-
lows. We present a detailed description of three methods to dis-
aggregate coarse model results in Section 6.2. Two of the disag-
gregations are improved methods that were proposed in earlier
research, and one of them is completely novel. Results from the
disaggregation are presented in section 6.3, where we test if the
disaggregated highly-resolved models are feasible from a techni-
cal point of view. Conclusions are drawn in section 6.4. Limita-
tions of this study are discussed in Section 6.5.

6.2 methods

We present the overall modelling process in Section 6.2.1, where
we also highlight the novelty of this research. The three inverse
methods on how spatially low-resolved capacity expansion model
results can be disaggregated back into higher spatial detail are pre-
sented in sections 6.2.3-6.2.5 and are summarised Table 10. Treat-
ment of inter-cluster power flows is discussed in Section 6.2.6.
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Figure 35: Illustration of the disaggregation study design of this Chapter.

The study design and evaluation of results is presented in Section
6.2.7.

6.2.1 Modelling Overview

Figure 35 displays the overall approach of electricity system mod-
elling. It typically executes in the following order: (i) Creating the
model. This includes collecting data of the system to be analysed
(as we did in Section 2.1), for example the network topology of
the transmission system, capacities of generators that are to be
included in the model, land-use constraints, time-series of electric-
ity demand, wind speeds, solar radiation, etc. and assigning the
data to the correct locations. (ii) Formulating a set of mathemat-
ical equations associated with the problem at hand (Section 2.3),
clustering the spatially highly-resolved network down to a smaller
approximation to gain computational advantages and (iii) solving
it.

Here, we introduce an additional fourth and fifth step to this
queue: (iv) Disaggregating the low-resolved results (i.e. the result-
ing coarse renewable capacities Gc,s) back into high spatial res-
olution (i.e. the set {Gv,s : v ∈ V}). (v) Running an optimisation
with fixed capacity that is derived from step (iii). This is also re-
ferred to as operational optimisation. It allows to gain insight into
the dynamics of the electricity system, and particularly analyse its
feasibility.
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But as the clustering

f : Rm → Rn with n < m, often even n ≪ m

reduces the (spatial) dimension of the data, the mapping is sur-
jective but not injective, hence not bijective. Therefore, finding an
inverse in step (iv) that maps the results back into high dimension

f−1 : Rn → Rm

is a challenging task and the inverse is not unique. We propose
three different approaches to tackle the disaggregation of the gen-
eration and storage capacities for each technology from the low-
resolved model to the highly-resolved model and suggest ade-
quate inverse methods. The proposed methods are summarised
in Table 10 and are explained in detail in the following three Sec-
tions.

6.2.2 Model and Input Data

As continuously done in this dissertation, we again employ the
openly available European Electricity System Model at transmis-
sion substation level, PyPSA-Eur [51], as introduced in Chapter 2,
particularly Sections 2.1 and 2.3. Variables appearing in this Chap-
ter are listed in Table 1.

All simulations in this Chapter are carried out with a two-hourly
resolution in time, i.e. the weight wt is fixed to 2 in our applica-
tion (wt ≡ 2 in equation (3)). This approach has shown to yield
good results compared to full temporal resolution while reducing
the model size by a factor of 2 [108].

To enable computational feasibility, the whole model with more
than 5000 nodes must be reduced to a computationally tractable
size by spatially clustering the nodes. Then, the reduced optimi-
sation problem given in equation (3), now with a smaller set of
nodes V, can be solved. As we have seen, there exist many ap-
proaches to spatially reduce the size of an ESM. We have demon-
strated in Chapter 4 (see also [3, 89, 103]) that the best suited
clustering method for capacity expansion models with highly re-
newable scenarios are of hierarchical nature. Therefore, we choose
an HAC method for clustering the model spatially in this Chapter
and apply the same similarity measure as previously analysed in
Section 4.2.1. It is defined such that the aggregated nodes have the
most similar renewable time-series ḡv,s,t throughout the whole
year, see equation (26).
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Table 10: Summary of the proposed disaggregation methods.

Short name Method description

Optimal capacities retrieved from an optimised low-
resolved model are distributed ...

uniform ... uniformly across all nodes within a cluster of the
highly-resolved network while accounting for land-
use restrictions by imposing an upper bound.

re-optimise ... anew by re-optimising capacities within each clus-
ter with full formulation, while enforcing the same
build-out capacity totals per technology as in the
clustered model.

min excess ... according to a local optimisation which seeks
to concentrate generation at nodes with higher de-
mand and grid capacity and thus to minimise load-
shedding.

6.2.3 Uniform Disaggregation

The first approach to disaggregate low-resolved modelling results
is simple and computationally inexpensive. For each generation
and storage technology, we distribute the capacity retrieved from
the coarse model within every cluster uniformly across all highly-
resolved nodes:

Gc,s 7→ 1

|Vc|

Gc,s

...
Gc,s

 ∈ R|Vc| ∀c ∈ VK, K ∈ N⩾37 (38)

An additional constraint is formulated to account for land-use con-
straints, see equation (4). To enforce the inequality, we select those
generators where (4) is not satisfied and uniformly distribute the
residual capacity over the remaining nodes within the cluster, i.e.
across the following set of generators:

{G(v,s) : v ∈ Vc ∧Gv,s < Gmax
v,s } (39)

The last step is repeated until all nodes satisfy equation (4).

6.2.4 Regional Re-Optimisation

The second considered method may be computationally challeng-
ing. Within each cluster, we re-optimise at high resolution the orig-
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inal objective function (3) with all associated mathematical con-
straints. Additionally, we impose another set of constraints to in-
corporate the spatially low-resolved modelling results:∑

v∈Vc

Gv,s = Gc,s ∀c ∈ VK, s ∈ S (40)

This set of constraints ensures that the amount of installed capac-
ity is the same for every technology in every region.

Depending on the size of the cluster, the disaggregation may
blow up the problem beyond the computational capacity of the
machine and can result in an even larger problem than the clus-
tered one. On the positive side, the re-optimisations for each clus-
ter can be run in parallel.

6.2.5 Minimal Excess Electricity

Our third Ansatz for disaggregation is motivated by finding a
compromise in terms of computational resources. It is not evi-
dent that solving the full optimisation problem is necessary to
distribute renewable capacity. Instead, we define a simpler objec-
tive function that minimises (renewable) excess electricity. It is de-
signed to spatially align renewable generation with demand and
possible flexibility options inside the cluster and has proven in
Chapter 5 (see also [1]), that it can determine a priori, meaning be-
fore solving the optimisation, if there is excess capacity in a node.
The optimisation is formally defined as

min
Gv,s

∑
v∈Vc,

s∈S, t∈T

[
ḡv,s,tGv,s − dv,t − 0.7

∑
l(v,w)∈E:

v=c∨w=c

F(v,w)

]+
(41)

in alignment with the excess defined in equation (37). The bracket[
x
]+

:= max{0, x} yields the positive part of the sum. Compared
to the regional re-optimisation introduced in Section 6.2.4, the
set of additional constraints to the optimisation problem is much
smaller. We only impose the constraints (4) and (40).

Similarly to the previous methods, this disaggregation method
can be run in parallel for each cluster.

6.2.6 Modelling Power Flows between Clusters

For two out of the three proposed disaggregation methods (‘re-
optimise’ and ‘min excess’), we add additional boundary constraints
on the inter-cluster transmission lines to simulate electricity im-
and exports. This can be done by extracting the optimal power
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flows of the low-resoled network f(c,d),t and distributing them
proportional to the capacities of the inter-cluster highly-resolved
transmission lines F(v,w), following

f(v,w),t =
F(v,w)

F(c,d)
f(c,d),t ∀(v,w) ∈ E(c,d) (42)

where the resulting power flow f(v,w),t is in the interval
[
−F(v,w), F(v,w)

]
by definition. A formal definition of the set E(c,d) is given in equa-
tion (22). The resulting power flow f(v,w),t at the spatially highly-
resolved line (v,w) is modeled as additional demand imposed on
all nodes v ∈ Vc and w ∈ Vd that are connected by a transmission
line (v,w) ∈ E, with c ̸= d, i.e.

dv,t 7→ dv,t + f(v,w),t ∀v ∈ Vc ,

dw,t 7→ dw,t − f(v,w),t ∀w ∈ Vd (c ̸= d)

where positive power flows represent electricity imports and neg-
ative ones electricity exports. These results do not deviate strongly
from those where each region is treated as an island, meaning that
no power flows retrieved from the coarse model are considered in
the disaggregation. However it is plausible to include them when
inverting modelling results, therefore in this article we focus on
this approach. Islanded results can be found in Annex E.1.

6.2.7 Study Design

To investigate the quality of the proposed disaggregation methods,
the model is solved as a pure operational problem, where no fur-
ther capacity can be built. This is equivalent to solving equation
(3) with its associated constraints, however the technology capac-
ities Gv,s are removed from the set of optimisation variables and
replaced by a fixed number. We have solved the same operational
optimisation in Chapter 5, see equation (34) that simplifies the
originally introduced objective to a purely operational dispatch
problem. Loadshedding generators with high but non-extendable
capacity are added to the network to guarantee physical feasibility.
The operational problem is computationally less extensive to solve
because the capacity expansion has been removed from the prob-
lem. Therefore, solving a spatially highly-resolved model becomes
feasible.

As main quality measures we consider the amount of loadshed-
ding in the highly-resolved network with the disaggregated re-
sults and the amount of renewable curtailment. Curtailment de-
scribes how much abundant electricity the low-resolved model
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Table 11: Investigated intra-cluster scenarios for each of the disaggre-
gation methods. This means we additionally formulate con-
straints on the transmission lines within each cluster.

Short name Scenario description

The highly-resolved network with disaggregated
capacities is solved as an operational problem
where ...

regular ... no further adaptations are made.
copperplate ... the intra-cluster transmission capacity is in-

finitely high. Note, that the inter-cluster transmis-
sion capacity is still bound.

chooses to generate which, when highly resolved, cannot be trans-
ported to locations with high electricity demand. This is mostly
due to an inaccurate choice of siting capacity due to missing infor-
mation about possible transmission bottlenecks in the low-resolved
model. Loadshedding is chosen because it indicates how much
capacity is underestimated by the low-resolved model due to av-
eraging capacity factors and removing grid bottlenecks from the
network. Loadshedding could stem from different reasons: i) the
disaggregation of solar and wind capacities to multiple sites with
different capacity factors could result in a lower overall yield com-
pared to the aggregated site, or ii) the grid bottlenecks inside the
clusters could cause congestion, such that power generated at loca-
tions with surplus of electricity can not be transported to locations
with high net load.

As loadshedding is a greater risk in terms of energy security,
we design a test to better understand its origin. To rule out reason
ii), we run a second operational scenario (which we refer to as
‘copper-plate’), where the capacity of all transmission lines that
have vanished in the low-resolved network due to aggregation
are set to ∞, i.e.

F(v,w) → ∞ ∀(v,w) : v,w ∈ Vc, c ∈ VK, K ∈ N⩾37 (43)

This modification is only applied to solve the operational problem,
not for the disaggregation of results.

Note that all inter-cluster transmission capacity is still finite,
meaning

F(v,w) ≪ ∞ ∀(v,w) ∈ E(c,d). (44)

A summary of the two considered scenarios (‘regular’ and ‘cop-
perplate’) is provided in Table 11.
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Figure 36: Amounts of annual loadshedding and curtailment of the
highly-resolved operational problem. Transmission capacity
within every cluster is not adjusted.

6.3 results

We first present the feasibility of low-resolved modelling results
when disaggregated into high spatial resolution in section 6.3.1
using the three proposed disaggregation methods. We distinguish
between the ‘regular’ set-up where the intra-cluster transmission
capacity is not changed (section 6.3.1.1) where we additionally
analyse where the curtailment and loadshedding measures are
spatially located (section 6.3.1.2) and the ‘copperplate’ one, where
the transmission capacity within clusters of the spatially highly-
resolved model is set to infinity to approximate the clustered cop-
perplate optimisation model (section 6.3.1.3). Finally, we discuss
computational Trade-Offs of the presented disaggregation meth-
ods in section 6.3.2.

6.3.1 Feasibility Considerations

6.3.1.1 Regular Intra-Cluster Transmission Capacity

The results presented here are derived from the ‘regular’ set-up,
meaning with no adjustment to the intra-cluster grid capacities in
the high resolved optimisation model (see Table 11). The resulting
amounts of loadshedding and curtailment are presented in Figure
36.

For any of the three proposed disaggregation methods we can
see that the amount of both curtailment and loadshedding de-
creases as the resolution of the underlying low-resolved model
increases. However, there are substantial differences in the perfor-
mance of the disaggregation methods.

Curtailment rates of the different methods deviate by 1 − 3%
from one another on average, depending on the reference resolu-
tion. Distributing coarse investment variables across the spatially
highly-resolved operational model results following the ‘min ex-
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cess’ approach yields the highest curtailment rates of 11% − 22%
of annual electricity demand, depending on the coarse reference
resolution and the disaggregation method. The lowest reference
resolution has the highest curtailment. Uniformly distributing re-
sults performs similar to the ‘min excess’ method at a very low
reference resolution of 37 nodes (one node per country), result-
ing in 22% of curtailed electricity. The ‘re-optimise’ method per-
forms better in this regard, resulting only in 19% of curtailed elec-
tricity. But the curtailment rates decrease to approximately 14.5%
(‘min excess’), 13% (‘uniform’) and 11% (‘re-optimised’) of annual
electricity demand, as the reference model resolution increases.
Re-optimising the local problem yields the lowest curtailment for
every reference model resolution, which is approximately 2− 3%
lower compared to the results of the ‘uniform’ approach.

Regarding loadshedding, for a low-resolved network where ev-
ery country is represented by a single node (37 clusters in Figure
36), ‘re-optimise’ performs best as it results in the lowest loadshed-
ding rates. Re-optimising yields approximately 265 TWh or 8.2%
of the annual electricity demand that can not be covered by renew-
able generation. If this gap were filled with gas to satisfy electric-
ity demand, annual carbon emissions would rise from 0% to 3.2%
of 1990s levels. Compensating the unmet demand when disaggre-
gating results with the ‘min excess’ method yields approximately
400 TWh of loadshedding, resulting in 4.8% of carbon emissions of
1990 (1.6% more compared to ‘re-optimised’) if gas is dispatched
for the loadshedding measure. When uniformly disaggregating
renewable capacity within the clusters, the operational problem
returns 500 TWh of loadshedding measures. Compensating with
gas would result in 6% of carbon emissions of 1990, 1.2% more
compared to ‘min excess’.

When increasing the reference model resolution, the amount
of loadshedding decreases for all the disaggregation methods. It
can be seen that at a model resolution of 67 or more nodes, the
amount of loadshedding is in the same range for the methods
‘re-optimised’ and ‘min excess’ deviating by only 0.5% on aver-
age. When uniformly distributing the retrieved coarse capacities,
loadshedding measures are higher than those of the competing
disaggregation methods by initially 2.8% at a reference resolution
of 37 nodes and linearly decreases as the resolution of the ref-
erence model increases. At around 187 nodes, the difference for
all three methods is below 0.5% in terms of necessary loadshed-
ding measures. At an underlying reference model resolution of
217 nodes, the amount of loadshedding is always within the range
94− 110 TWh, corresponding to 3− 3.5% of annual electricity de-
mand in Europe.
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6.3.1.2 Localisation of Loadshedding and Curtailment

In this section we analyse where curtailment and loadshedding
is spatially localised. Recall that the highly-resolved model yields
loadshedding measures because of i) disaggregating capacity fac-
tors results in a different overall yield of renewable electricity or
ii) grid bottlenecks that did not occur in the low-resolved model,
as described in detail in section 6.2.7.

Figure 37 displays the regions of curtailment and loadshedding
spatially distributed after running the operational highly-resolved
1250 node model for all three disaggregation methods for a refer-
ence model resolution of 97 nodes. In all three cases it can be seen
that the loadshedding is scattered in central Europe such as south-
ern Poland, central and southern Germany, Switzerland and Aus-
tria and thus far from coastal areas and southern locations, such
as e.g. northern Germany and France, Italy and Spain. In the same
time, these locations have high amounts of curtailment. Transmis-
sion lines connecting regions with high amounts of curtailment
and regions with high loadshedding show high congestion rates.
Thus, the resulting network suggests that the low-resolved model
favors investments in wind turbines at locations with good wind
conditions at coastal areas, and in solar panels in the southern re-
gions with good solar radiation, while it is blind to transmission
bottlenecks that prohibit transporting the electricity to demand
centers.

6.3.1.3 Infinite Intra-Cluster Transmission Capacity

To verify why loadshedding measures are necessary as well as to
better understand the high curtailment rates, we now consider a
setting where within each cluster the transmission capacity is set
to infinity, following the description provided in the beginning of
section 6.2.7, see equations (43)-(44). This means that in the highly-
resolved model, only the capacity between clusters is limited. Re-
sults on loadshedding and curtailment are presented in Figure 38.

It can be seen that the amounts of renewable curtailment de-
viate by less than 5% from the curtailment rates of the reference
model. They can mainly be explained by varying capacity factors.
In the highly-resolved models, larger deviations of capacity fac-
tors within each clustered region become available compared to
the reference model.

As the reference resolution increases, the amount of curtailment
also tends to increase slightly. This can be explained by the fact
that more total capacity is installed for a higher resolved reference
resolution.
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Technology
Solar
Onshore Wind
Offshore Wind (AC)
Offshore Wind (DC)
Load-Shedding

Amounts of Curtailment 
 and Load-Shedding

10 TWh / a
3 TWh / a

Line Congestion
50  / MWkm / a
10  / MWkm / a

Line Congestion
50  / MWkm / a
10  / MWkm / a

Figure 37: Spatial distribution of curtailment and loadshedding across
Europe in the disaggregated, highly-resolved model. Capacity
installations are taken from a reference model resolution of 97
nodes.
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Figure 38: Amounts of annual loadshedding and curtailment of the dis-
aggregated highly-resolved operational problem. Transmis-
sion capacity within every cluster is set to infinity.

Regarding loadshedding, the amount for uniformly disaggre-
gating renewable capacity drops to 0 for a reference model resolu-
tion above 100 nodes. For a one-node-per-country reference model
(37 nodes), there remains a relatively low amount of loadshedding
of approximately 50 TWh, resembling about 1.5% of annual elec-
tricity demand. In case the ‘re-optimise’ disaggregation Ansatz is
invoked, loadshedding decreases to 0% of annual electricity de-
mand for every low-resolved reference model. ‘min excess’ yields
less than 5 TWh (< 0.5%) of loadshedding measures for any refer-
ence low-resolved model. At peak (97 nodes) this amount of gas
would emit around 800 kg of CO2 (0.05% of 1990s emissions). We
conclude that these results are consistent with the main cause of
loadshedding being the transmission restrictions within the clus-
ters.

6.3.2 Trade-Offs of the Disaggregation Approaches

There are four main qualities that we consider when evaluating
trade-offs of the different disaggregation methods. First, the qual-
ity of results: How well do the proposed methods solve the prob-
lem at hand? Second and third, we consider the computational ef-
forts. These mainly focus on the question: Are the proposed meth-
ods computationally legitimate for the considered problem? This
consideration includes not only the memory requirements needed
to solve the problem, but also the time it takes to solve. Fourth,
depending on the results of the methods or the problem formula-
tion, it might also be worth considering the efforts to implement
a solver.

For the proposed methods in this Chapter, a summary of these
four qualities is provided in Table 12.

The performance with respect to the quality of results of the pro-
posed disaggregation methods was already discussed in section



6.3 results 107

Table 12: Trade-Offs of the three proposed approaches to disaggregate
results. A ✓ indicates a reasonable trade-off, a ✗ indicates an
inadequate compromise.
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Figure 39: Memory requirements (left) and solving times (right) for ex-
ecuting the proposed disaggregation methods for individual
regions.

6.3.1. Now, we analyse the performance of the proposed methods
from a computational point of view. Rating the efforts of imple-
mentation is a subjective task, we therefore solely relate to the
fact that uniformly distributing a number across a set of nodes
does not involve mathematical optimisation. Therefore applying
an uniform distribution is rated ‘easier’ than formulating a math-
ematical constraint to an existing optimisation problem as pro-
posed in ‘re-optimise’, or a whole optimisation problem including
both objective function and associated constraints, as proposed in
‘min-excess’.

Computational resources and solving times for disaggregating
low-resolved model results back into high spatial resolution are
presented in Figure 39 for every proposed method.

Resource-wise, re-optimising the local model consumes up to
13 times (1.7 times in average) the amount of resources compared
to minimising a simpler objective in ‘min excess’, and up to 26
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times (2.7 times in average) compared to uniformly distributing
the capacity obtained from the low-resolved model (‘uniform’).
In absolute numbers, the method ‘re-optimise’ consumes up to
22.2 GB RAM at peak, compared to 2.2 GB RAM for ‘min excess’
and only 1.5 GB RAM in case of ‘uniform’. Today‘s average state-
of-the-art personal computers are able to solve both the ‘uniform’
and ‘min excess’ problem formulations for any model resolutions,
while solving the ‘re-optimise’ approach needs more computa-
tional power and, therefore, requires a more advanced machine
or even a high-computational cluster access. All local disaggrega-
tion runs were carried out in parallel.

Considering the computational times, these trade-offs are simi-
lar. The method ‘uniform’ is up to 4000 times faster at peak than
‘min excess’ and 70 times faster in average. In turn, ‘min excess’
is up to 20 times faster than ‘re-optimise’ and 11 times faster in
average. Note that computational times might change when al-
lowing a lower accuracy of the results. Here, we choose a barrier
convergence tolerance of 10−9 and a feasibility tolerance of 10−6,
which is not necessarily required. A tolerance of 10−3 might suf-
fice in most applications. Lowering the tolerance of the solver will
reduce solving times, but the memory consumption is likely to
persist.

All experiments presented in this article were carried out on
a HPC with 5 nodes, each having an allocatable capacity of 48

central processing units (CPUs) and 256 GB RAM memory.

6.4 conclusions

From these results, we can draw conclusions on the methodology
of the disaggregation methods as well as on the insights of disag-
gregating coarse modelling results into a higher spatial detail.

The presented methods to disaggregate optimal infrastructure
investment of renewable generation technologies and flexibility
options have significant differences in their quality of results, sim-
plicity of implementation and computational resource consump-
tion. We have shown that it is not necessary to locally solve the
a full optimisation problem to disaggregate coarse results into
higher spatial detail, as it was conducted in previous research. In-
stead, it can be sufficient to formulate a suitable alternative objec-
tive which reduces computational cost and is able to preserve the
quality of the disaggregation. We have suggested a function ‘min
excess’ that performs just as well, for lower computational burden.
Further inverse functions could be considered in future research.

Regarding the insights of the disaggregated results, we formu-
late only conclusions retrieved from the method that performs
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best as the presented disaggregation methods have deviations in
their quantitative results. The ‘best’ method is considered the one
which yields the lowest amount of loadshedding. From the find-
ings presented in this Chapter, we can stress that modelling Eu-
rope at a resolution of one node per country is insufficient to re-
trieve reliable capacity expansion suggestions. Moreover, results
retrieved from models clustered to a spatial resolution of around
100-200 nodes using state-of-the-art evaluated aggregation meth-
ods fail to cover approximately 100 TWh of Europe’s electricity de-
mand, approximating 3− 5% of its annual consumption. Instead
of consuming the excess electricity, curtailment rates rise by ap-
proximately the shed amount, additional to what would have been
expected from an economic optimum. Our analysis reveals that
the electricity shortage is due to local transmission constraints.
Spatially low-resolved models assume that power can be trans-
ferred without limit to all locations that are represented within a
single node. Therefore, intra-nodal transmission constraints are ig-
nored in the constraints of the aggregated model. Thus, disaggre-
gated results into higher spatial detail are confronted with power
flow restrictions, resulting in transmission congestion and imply
necessary loadshedding measures, making the investment deci-
sions retrieved from a coarse model technically infeasible. How-
ever, the insight from studies dealing with spatial clustering and
disaggregation provide insights that might help improve mod-
elling results by developing methods to calibrate the low-resolved
models.

6.5 critical appraisal

Removing the set of optimisation variables that accounts for the
capacity expansion allows solving an operational dispatch model
at a higher model resolution. Nevertheless, the presented opera-
tional model results are based on model runs retrieved from a
model resolution of 1250 nodes, i.e. approximately 25% of the orig-
inal network size, due to a persisting computational burden. The
results presented in this Chapter are likely to intensify if the oper-
ational model was spatially highly-resolved and, thus, strengthen
our main argument.

While we have analysed methods to disaggregate the suggested
optimal generation fleet, this study did not investigate methods to
disaggregate transmission capacity expansion modelling results,
or how additional transfer capacity obtained from a transmission
expansion problem could improve the overall results. Such an
analysis could build on our presented methods and extend them
on additional optimisation variables. Moreover, all results presented
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in this Chapter carried out for a fully self-sufficient and fully re-
newable Europe. Lowering the carbon emission target could relax
the findings and would not make as strong implications. There-
fore, in a future study, different carbon emission targets could be
analysed more carefully.

Results of this study are all based on the MIT-licenced models
PyPSA v0.18.0 and PyPSA-Eur v0.3.0. Therefore, nearly all of the
limitations that apply for this version of the model also apply for
this study. These include for example retrieving optimal capacities
that rely on weather data from a single weather year, applying
only a linearised power flow model or neglecting dynamic line
rating. Some of these simplifications might improve in the future.
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C O N C L U S I O N S

Electricity system optimisation models at transmission level for
planning applications are laborious to build due to many com-
plex aspects of the system. This is partly because of the prob-
lem of (open-source) data-collection at high spatial and tempo-
ral granularity. But even after the formal model is built, computa-
tional restrictions hinder the modelling to be conducted at a scale
that is desirable. To circumvent this difficulty with respect to the
models spatial resolution, researchers often model large regions
coarsely, meaning at a low spatial granularity to reduce the num-
ber of mathematical constraints on the computational side. How-
ever, spatial aggregation is a compromise whose impacts we have
analysed in this dissertation.

research contributions

In Chapter 3 we have studied the effects of spatial resolution on
two dominating attributes of the electricity optimisation model:
variable renewable resource sites and transmission lines. We have
introduced a novel methodology together with a study-design
that allowed us to disentangle and to quantify these individual
effects on the compound system. This approach allows us to un-
derstand their simultaneous effect on the simulation results. We
have learned that allowing the model to site renewable capacity
at a highly-resolved model significantly reduces the resulting sys-
tem costs by approximately 10%. This is because sites with good
yield can be better saturated with renewable generators. On the
other hand, when the model is spatially higher resolved at trans-
mission level and is thus subject to more transmission constraints,
system costs increase more strongly by approximately 20%. This
is because in this setting the high-yield sites can not be saturated
anymore due to congestion in the grid. When global expansion of
the grid is allowed, some of the effects are less dominant and total
system costs de-crease by approximately 15%.

Based on these findings, we have improved existing spatial clus-
tering methods and developed novel ones. We have benchmarked
them respectively against commonly used methods from the lit-
erature in Chapter 4. Our results indicate that applying the com-
monly used k-means algorithm performs significantly worse than
methods that are tailored specifically to the electricity system model

111
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at hand. Clustering methods that are better suited to represent the
system at a lower spatial level are of hierarchical nature because
they can better represent the topology of the network grid. With re-
spect to a high carbon reduction target, we have seen that models
that were clustered based on a feature that incorporates renewable
potentials, such as wind speeds or solar radiation, perform better
than models that were clustered based on a measure on electrical
distance. When a model is built to simulate a system dominated
by conventional generation, the clustering based on electrical pa-
rameters of the grid prevailed.

We have used the findings of the previous chapters to show that
spatially low-resolved modelling results are infeasible when disag-
gregated at a high spatial resolution in Chapter 6. This is even true
when we apply the most effective spatial clustering method. We
measure infeasibilites as missing renewable electricity to cover de-
mand. In other words, in a fully renewable electricity model, an
infeasibility is defined as power generated from a gas turbine be-
cause no renewable asset (either generation or storage) is available
to meet the consumption needs at any point in time of the simu-
lation. This is although the same amount of installed renewable
capacity was sufficient to cover demands in the spatially coarse
model. In agreement with the results found in Chapters 3 and 4,
the amount of the infeasibility strongly depends on the spatially
low-resolved reference result and is mainly induced by the addi-
tional transmission constraints in the highly-resolved model for-
mulation. As model resolution increases, the infeasibility rapidly
decreases, but stabilises for European planning simulations at an
approximate range of 90 to 150 nodes, depending on the simulated
decarbonisation goal. When further increasing the spatial model
resolution, the trade-off between additional accuracy of the mod-
elling results and increased computational complexity becomes
marginal. However, the spatially low-resolved results must still be
treated with caution, as they indicate that 5 − 10% of electricity
consumption needs can not be covered in a spatially more com-
plex system.

informatics contributions

We have learned that spatially low-resolved electricity system opti-
misation models for capacity planning applications imply a signifi-
cant error. Particularly a model resolution of one node per country
is incapable to deduce plausible, feasible and implementable solu-
tions if no subsequent a posteriori adaptations, such as additional
transmission expansion, can be assumed. To improve the spatially
low-resolved modelling results, we have designed a novel clus-
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tering design than can be applied on electricity system planning
models to allow different resolutions on siting renewable capacity
and the transmission grid. This novel design builds on existing
clustering methods that are interchangeable on a case to case ba-
sis. We have contributed the code to the widely used open source
modelling frameworks PyPSA and PyPSA-eur. First spin-off appli-
cations have been adopted in the affiliated modelling framework
PyPSA-Earth. The novel clustering design allowed us to study dom-
inant features of the electricity grid which we used to develop
novel and improved clustering methods, specifically tailored for
capacity planning applications. We contributed these novel meth-
ods again to the code basis of PyPSA, and have improved the
functionalities of established methods of the free software library
NetworkX. Finally, we have released a stand-alone spin-off python
framework InversE to disaggregate spatially low-resolved mod-
elling results derived from clustered networks using any cluster-
ing method. The framework provides methods that were previ-
ously introduced in the engineering literature, but that were never
released in form of open source, reproduceable code. The frame-
work also provides a completely novel disaggregation method that
compromises computational resources and accuracy in the solu-
tion of the hihgly-resolved objective function, compared to previ-
ously presented inverse methods.

outlook and future work

Moving away from spatially simplified and clustered models is
implausible because of the persisting computational burden. This
is particularly true if open-source solvers remain unfunded and
scarce. But even if there will be advances in open-source solv-
ing algorithms, we have seen that even highly effective commer-
cial solvers limit us from solving spatially highly-resolved mod-
els at a desirable spatial granularity due to high requirements
of direct access storage and the time intensive solving process.
But as shares of renewable generation will continue to rise over
the years to come, more accurate investment decisions must be
made to circumvent high and unnecessary expenses due to cur-
tailment or redispatch measures, that in the worst case must use
carbon intensive fuels to perform the management. Therefore, fur-
ther investigation is necessary to derive a reliable future design
of the grid. This could be achieved by improving modelling at
a low spatial resolution using calibration methods to incorporate
the lessons from, for example, this thesis into the spatially low-
resolved model formulation.
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To evaluate spatially low-resolved modelling results, we have
proposed first suggestions of disaggregation methods for capacity
planning models, but have omitted the disaggregation of coarse
transmission expansion projects. Extended methods to invert the
coarsely derived transmission reinforcements could be investigated
in a follow-up study. Particularly if novel methods to calibrate the
spatially low-resolved models emerge, because the disaggregation
can be highly effective for model evaluation purposes.

In addition to model calibration and disaggregation methods
for electricity system planning, similar approaches could be pur-
sued for sector coupled models. It is likely that the conclusions
derived in this dissertation also hold true for different sectors,
particularly when decarbonisation is achieved through the electri-
fication of other sectors. In the transportation sector, for example,
decarbonisation could be achieved by switching from combustion
engines to electric cars, or, in the heating sector, central heating
that is mainly fueled by coal, oil, or natural gas could be replaced
with electric heat pumps. Electrification of the different sectors
have impacts on the patterns of electricity demand, and might
consolidate peaks in the inelastic electricity demand, smooth them
over time, for example if we can assume bidirectional charging of
electric vehicles, or seasonally intensify particularly with respect
to the heating sector. This changing behavior can have implica-
tions on the spatial resolution in the modelling process and call
for detailed analyses to better quantify the impact.



The psychological profiling [of a programmer] is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the small

and to see something in the large. — Donald E. Knuth
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A
A N N E X

This Annex provides additional information on the contents of Chapter 1. We
present details on contribution to open source packages in the following alpha-
betically ordered Sections.

gridkit

We have fixed the GridKit error described in Section 1.4.1 by returning every
single line. In total, the error affected approximately 30 transmission lines that
are now provided separately. The new functionality is publicly available1.

Example

A representative set of lines that were affected by the described error
includes the substation Diele, close to the North Sea in Germany. The
correct set of transmission lines provided by ENTSO-E contains the two
walks (Meeden, Diele), (Diele, Rhede), and (Meeden, Diele), (Diele, Con-
neforde). These lines are provided in series. Therefore, GridKit extracted
the lines (Meeden, Rhede) and (Rhede, Conneforde), omitting the sub-
station in Diele. As a result, the substation in Diele remains with no
connection to the grid. Moreover, when taking only the subset of Ger-
man substations from the GridKit extract, it completely misses a con-
nection between Conneforde and Rhede, as Meeden is a dutch village
in the municipality of Midden-Groningen. For electricity system mod-
elling this missing transmission line is significant, because it connects
the north sea region with many offshore wind sites to onshore regions
in North Rhine-Westphalia, the largest urban area in Germany.

interannual demand calculator

Most electricity system optimisation models rely on limited historical electricity
consumption data. While there exist a long record of weather data from 1950

to today [61] that provides e.g. wind speeds and temperature in at least hourly
resolution per grid cell, hourly electricity demand time-series in [52] are limited
to the years 2010-2018. The Interannual Electricity Demand Calculator is build to
generate aligned electricity consumption time-series to account for the missing
years.

The Interannual Demand Calculator is based on a previously developed pack-
age and analysis [147] that correlates daily historical electricity demand to tem-
perature using a regression model. [147] was validated against data reported
on the ENTSO-E transparancy platform. Subsequently, we dis-aggregate the cu-
mulative daily electricity demands to an hourly profile that is sampled from a
random historical day (that is the same weekday) from OPSD [52]. This is a
novel package, currently at v0.1.

1 https://github.com/martacki/GridKit
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networkx

All contributions regarding NetworkX pertain functions that cluster a graph G

such, that it maximises its modularity Q by using the Clauset-Newman-Moore
greedy modularity maximisation that we use in Chapter 4. In each iteration of
the algorithm, it greedily aggregates the two nods v and w that increase Q the
most and continues to do so until Q cannot be further improved. Q is a benefit
function that measures the quality of a particular division of G into clusters.
Contributions are both on functionality and implementation style.

functionality Originally, the integrated functionality of modularity max
neglected the edge weights of G. Instead of taking into account the edge weight,
the algorithm always assumed the graph to be unweighted, where every edge
had the same weight 1. The improved functionality was released in v2.6.

Later, we adapted the algorithm such that it terminates when a given num-
ber of clusters is reached, even when Q can still be further improved (v2.7)
and, moreover, such that it continues iterating after the maximal modularity is
reached. However, as dQ becomes negative, the process merges those nodes v

and w that decrease Q the least (v2.8).

style The original function switched from a regular python function to
a generator interface. The generator interface provides a larger flexibility for
additional functionalities of the method. The switch to a generator interface re-
tained the original signature of the function. However, we introduced the novel
iterator to construct its return value. That way, we get the iterator functionality
through the generator interface, but we keep the old interface for ease of use
and backward compatibility. These improvements were released in v2.8.

powerplantmatching

Contributed changes were released in v0.5.

pypsa

Major improvements were released in v0.19.0, where the input network can
now be spatially clustered on a custom feature using hierarchical clustering,
and in v0.19.3, allowing the greedy modularity maximisation to be applied on
the network. The latter one builds on previously contributed code to NetworkX,
see Section 1.4.4.

pypsa-eur

An initial attempt to allow more flexibility on spatial aggregation included a
customised mapping of nodes, released in v0.3.0. After that, all contributions
that I have made to PyPSA were also applied to PyPSA-Eur, such that the
European grid can now be clustered used evaluated and modern methods. Both
the hierarchical clustering as well as greedy modularity maximisation were
released in v0.5.0. For the hierarchical clustering, I have provided two features,
one on the so-called FLH of renewable power generators, and another on the
full year-long renewable time-series of capacity factors. More details on the
methods and similarity measures can be found in Chapter 4 of this dissertation.
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B
A N N E X

This Annex provides additional information on the contents of Chapter 3.

b.1 preservation of flow patterns with clustering

To understand how well the k-means clustering preserves flow patterns, we
took a fixed dispatch pattern for the assets in Europe at high resolution and
examined how the network flows changed as the network was clustered.

The fixed dispatch was determined by solving the linearised optimal power
flow problem for a 1024-node representation of today’s European electricity
system. The asset dispatch was then mapped into the clustered networks, and
a regular linearised power flow was solved in the clustered network.

If lines ℓ ∈ Nc,d in the 1024-node network were mapped to a single represen-
tative line ℓc,d in the clustered network, the summed flows from the original
network f̂c,d,t =

∑
ℓ∈Nc,d

fℓ,t (‘microscopic flows’) were then compared to the
flow fc,d,t in line ℓc,d of the clustered network (‘macroscopic flows’).

Figure 40 shows the Pearson correlation coefficient between the flows fc,d,t
of aggregated lines ℓc,d in the lower resolution network and the summed flows
f̂c,d,t of all lines in Nc,d in the full resolution network. Red is a linear fit through
the points. The distortion from linearity is due to a non-linear scale in the x-axis.
Even at 37 nodes the correlation between the flows is good (Pearson correlation
coefficient above 0.90) and shows an improving trend until at full 1024-node
resolution the flows are once again perfectly equal.

Example density plots of the f̂c,d,t against the fc,d,t for all lines and all times
are plotted for different clustering levels in Figure 41. The match between the
flows is better for higher resolution networks, with a near-diagonal line already
for 362 nodes.

For a more probabilistic approach, we perform a kernel density estimation
(KDE) by applying a fast Fourier transformation of aggregated flows of the
higher resolved network versus the flows of the low resolution network. Aggre-
gated flows f̂c,d,t are considered an estimator for the flow fc,d,t in the represen-
tative lower resolution network. The resulting density functions from the KDE
are displayed in Figure 41. For the low resolution network, the probability distri-
bution has two different modes, while a higher resolution network approaches
a Gaussian distribution. The variance of the probability density function for a
low resolution network is higher than for a high resolution network, as each of
the quantile isolines are broader.

b.2 maps of capacity factors for wind and solar

Figures 42a and 42b present average capacity factors over the weather year 2013

for solar, wind on- and off-shore respectively, mathematically

ḡv,s = ⟨ḡv,s,t⟩t ∀v ∈ V, s ∈ Sre

where s ∈ {solar, wind onshore, wind offshore}. The capacity factors are shown
in the Voronoi cells around each of the 1024 node of the original network, i.e.
the set of points closest to each node.
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Figure 40: Pearson’s correlation coefficient of mapped flows (blue). Note
that the x-axis is non-linear, therefore we mark a linear fit to
the data (red).
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The graphics show that capacity factors for solar are decreasing from South
to North while those for wind are increasing towards the North and Baltic Sea.
The average capacity factors are spatially correlated, but as they are aggregated
over larger and larger areas using the weighted average from the clustering
approach in equation (23), they decline as bad sites are mixed with good sites.
This is reflected in Figure 44, which shows how the average capacity factors per
technology for the generation fleet optimised over the whole of Europe change
with the clustering.

b.3 breakdowns for transmission expansion scenarios

Figure 43 shows an extension of the cost breakdowns in Figure 16 from the
scenario with no transmission to scenarios with 25% and 50% grid expansion.
The general trends are the same as for the scenario without grid expansion,
but grid expansion generally allows more wind capacity to be built, resulting
in lower investment in solar, batteries and hydrogen storage, as was seen in
Figure 17.

b.4 average capacity factors per technology

To understand how the model exploits the best available resource sites per
node, we examine a time-averaged technology-specific capacity factor ḡc,s. The
clustered capacity factor is weighted by how much capacity

∑
v∈Vc

Gv,s of
technology s was built within each cluster c with the time-averaged capacity
factor ḡc,s = ⟨ḡc,s,t⟩t:

ḡc,s :=

∑
v∈Vc

ḡv,sGv,s∑
v∈Vc

Gv,s
∀c ∈ VK, s ∈ Sre

We present this technology-specific capacity factor in Figure 44 for all three
cases with the no-expansion transmission scenario, i.e. where F(v,w) = F2018(v,w).

As the number of clusters increases, Case 2 has a larger variety of sites per
node to choose where capacity should be installed optimally and is not re-
stricted by transmission constraints beyond country-zones. Therefore, the more
sites are available, the higher the weighted capacity factor is because it is not
mixed with lower capacity factor sites in equation (23). The highest resolution
of Case 2 is also the lowest resolution of Case 3: many resource sites and only
one node per country-zone. As the number of nodes in Case 3 increases while
the same sites are available, transmission bottlenecks force the model to build
more capacity in locations of worse capacity factors. Therefore, the capacity fac-
tors drop again. For Case 1, where resource resolution and network resolution
change in tandem, the resource resolution dominates and we see increasing
capacity factors like in Case 2.

b.5 curtailment per technology

Curtailment is the amount of energy that is available in theory but cannot be
injected into the grid because of transmission constraints or a lack of demand:

ḡv,s,t ·Gv,s − gv,s,t ∀v ∈ V, s ∈ Sre, t ∈ T

Figure 45 shows total curtailment per technology in all Cases. Curtailment in
all situations is low (less than 4% of total demand). Curtailment increases with
higher network resolution in both the Cases 1 and 3 that incorporate transmis-
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(a) Solar capacity factors in Europe for the weather year
2013 at full resolution.

(b) Wind on- and offshore capacity factors in Europe for
the weather year 2013 at full resolution.

Figure 42: Solar (top) and wind (bottom, 42b) capacity factors in Europe
for the weather year 2013 at full resolution.
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Case 3: clustering on transmission nodes

Figure 43: Technology breakdown of the annual system costs for genera-
tion (top) and flexibility options (bottom) as a function of the
number of clusters.
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Figure 44: Average capacity factors for each technology for the no trans-
mission expansion scenario in all three cases.
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Figure 45: Curtailment for the no transmission expansion scenario in all
three cases.
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Figure 46: Capacities per country for the no transmission expansion sce-
nario in all three cases.

sion constraints, while it is gently decreasing with resource resolution in Case
2 where there are only transmission constraints at the boundaries of country-
zones.

b.6 breakdowns by country

Figures 16 and 43 show the breakdown of total costs by technology for the
whole of Europe. However, it could be that for each technology, the spatial
distribution is unstable, moving from country to country with the clustering
changes.

For a better understanding of the spatial distribution of installed capacity,
we examine the total installed renewable capacity per country in all Cases in
Figure 46 with no transmission expansion. The general trend is that the total
installed capacity per country is relatively stable with cluster resolution. In Case
2 capacity decreases with resolution, since the exploitation of better resource
sites means that less capacity is needed for a given energy yield. The opposite
effect is seen in Case 3, while Case 1 reveals a mix of the effects of Case 2 and
3.
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Figure 48: Memory consumption and solving time.

b.7 shadow price of line volume constraint

The shadow price µtrans of the transmission expansion constraint in equation
(14) corresponds to the system cost benefit of an incremental MWkm of line
volume. Read another way, it is the line cost required to obtain the same so-
lution with the constraint removed (i.e. lifting the constraint into the objective
function as a Lagrangian relaxation).

We present the resulting shadow prices in Figure 47, where they are com-
pared with the annuity for underground and overhead lines. Using the cost of
underground cables, the cost-optimal solution would give a grid expansion of
25-50% at high resolution. For overhead transmission, the cost optimum would
be over 50%.

b.8 resource requirements

Memory consumptions and solving times for the three cases discussed in the
main body of this dissertation are displayed in Figure 48

b.9 capacity factors within each cluster

In this subsection we analyse the homogeneity of time-average capacity factors
for wind and solar within each cluster region as the number of clusters changes.
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n clusters solar wind onshore wind offshore

1024 1.9 · 10−3 2.2 · 10−2 4.3 · 10−2

724 2.3 · 10−3 2.5 · 10−2 4.5 · 10−2

512 2.7 · 10−3 2.8 · 10−2 4.9 · 10−2

362 3.2 · 10−3 3.3 · 10−2 5.1 · 10−2

256 3.7 · 10−3 3.6 · 10−2 5.3 · 10−2

181 4.2 · 10−3 3.9 · 10−2 5.7 · 10−2

128 4.5 · 10−3 4.3 · 10−2 5.8 · 10−2

90 5.0 · 10−3 4.6 · 10−2 5.9 · 10−2

64 6.1 · 10−3 4.9 · 10−2 6.2 · 10−2

45 6.1 · 10−3 4.9 · 10−2 6.2 · 10−2

37 6.2 · 10−3 4.9 · 10−2 6.2 · 10−2

Table 13: average standard deviation of the capacity factor (per unit) per
region for a network resolution of 1024, 256 and 37 sites.

Duration curves of the capacity factors in each of the 0.3◦ × 0.3◦ weather pixels
of the original ERA5 reanalysis dataset [61] for the European area (‘cutout’)
are plotted in blue in Figure 49. In addition, the duration curves for the pixels
in each cluster are plotted in orange, with the median for each cluster in red.
This reveals how much the capacity factors of wind and solar vary within each
cluster region, compared to the whole of Europe. Table 13 presents the average
standard deviation with each cluster region for each technology and resolution.

For a high resolution of 1024 clusters, we observe that the median values
(red dots) for solar lie very close to the representative values of Europe (black
line) with a relatively small average standard deviation of 1.9 · 10−3 inside each
cluster region (scattering of the orange dots). In the case of onshore wind, the
high capacity factors are underestimated by the median value, while interme-
diate and low capacity factors are represented with a minor difference between
median and representative European value. For onshore wind, the average stan-
dard deviation of the capacity factors within each region is larger than for solar
by one magnitude (O(10−2), represented by the scattering of orange dots). The
largest variance can be observed in offshore regions, where the average stan-
dard deviation is 4.3 · 10−2, twice as large as for onshore regions, and the low
capacity factors are overestimated by their representative median values.

In the case of 256 clusters, the standard deviation per region (scattered or-
ange dots) doubles compared to a resolution of 1024 sites for solar and increases
by ∼ 50% for onshore and offshore wind. However, the median values (red dots)
per site do not change much compared to the higher resolution case. Only at
very low resolutions or, in the extreme, one site representing one country-zone,
the median values (red dots) do not agree with the European curve (black line),
and the capacity values per site (orange scattered dots) cover a wide range of
values (for example 0− 0.5 for wind onshore, or 0.11− 0.0.18 for solar). At 37

nodes, the average standard deviation is three times larger for solar compared
to a resolution of 1024 sites and twice as large for onshore wind.

From this analysis we can conclude that a resource resolution of at least
several hundred nodes is required to adequately capture the resource variation
within Europe, with a higher resolution required for wind than for solar.
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(a) Breakdown of capacity factors per technology for the weather cutout pixels
inside each of the 1024 clusters presented as a duration curve (orange), with
the median marked in red. The overall duration curve for the whole of
Europe is plotted in blue.
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(b) The same breakdown as in 49a but for 256 clusters.
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(c) The same breakdown as in 49a but for 37 clusters.

Figure 49: Duration curves for three exemplary network resolutions of
1024 nodes (top), 256 nodes (middle) and 37 nodes (bottom).
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Table 14: Aggregation rules for attributes of nodes and attached assets

attribute
aggregated
attribute

mapping
values
or units

latitude & longitude (xc,yc)
T 1

|Vc|

∑
v∈Vc

(xv,yv)
T

R2

power capacity Gc,s
∑

v∈Vc

Gv,s MW

installable potential Gmax
c,s

∑
v∈Vc

Gmax
v,s MW

Table 15: Aggregation rules for attributes of lines in series

attribute
agg.
attribute

mapping
values
or units

length
(HVDC lines)

l(c,d) min
(v,w)∈E(c,d)

l(v,w) km

power capacity F(c,d)
∑

(v,w)∈E(c,d)

F(v,w) MVA

length
underwater

u(c,d)
1

l(c,d)

∑
(v,w)∈E(c,d)

(l · u)(v,w) p.u.

b.10 aggregation rules

Aggregation rules for nodal attributes are shown in Table 14, for lines in series
in Table 15 and for lines in parallel in Table 16.
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Table 16: Aggregation rules for attributes of lines in parallel

attribute
agg.
attribute

mapping
values
or units

power capacity snom
(c,d)

∑
(v,w)∈E(c,d)

snom
(v,w)

MVA

power capacity
maximum

smin
(c,d)

∑
(v,w)∈E(c,d)

smin
(v,w) MVA

power capacity
minimum

smax
(c,d)

∑
(v,w)∈E(c,d)

smax
(v,w) MVA

number of parallel
lines

n
parallel
(c,d)

∑
(v,w)∈E(c,d)

n
parallel
(v,w)

R

terrain factor for
capital costs

t(c,d) |E(c,d)|
−1

∑
(v,w)∈E(c,d)

t(v,w) p.u.
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C
A N N E X

This Annex provides additional information on the contents of Chapter 4.

c.1 sufficient benchmark resolution at 1250 nodes

Computational model feasibility remains a problem even after applying lin-
earisation to the model formulation and spatial/temporal aggregation. There-
fore all low-resoltuion model results were compared against a higher resolved
model with a spatial resolution of 1250 nodes. Requirements for solving this
model size were a runtime of up to 24 days and 240 GB of RAM capacity.

1250 nodes portray approximately 51% of the pre-aggregated model size and
24% of the original full-resolution problem. Results in [1] indicate that model re-
sults are stable when the spatial resolution is at least 49% of the pre-aggregated
model and 26% of the original model. At this or higher resolutions only minor
fluctuations of 4− 6% occur in terms of optimal dispatch and power flows. As
this could potentially be wrong for a capacity expansion problem, we make fur-
ther justifications for this benchmark by providing the average deviation from
the mean as well as the correlation factors for every considered carrier (solar,
wind, battery and hydrogen) evaluated on the lowest common region size and
power flows between these regions in a 4 × 4 correlation-matrix. The lowest
common regions turn out to be the countries and synchronous zones, which is
in line with the benchmark-setting of equation (18).

For the 60% carbon reduction target, optimal investments have small devia-
tions from the mean of up to 5% for offshore wind. Onshore wind and solar
installations are more stable with lower cross-deviations. However, optimal in-
stallation for battery storage deviates by more than 10% when comparing the
1250 node results of the clustered model with Q to the other clustered model
results. But as battery storage for this carbon level is low in general (only 2%
of total installed capacity), the relative deviation gives the wrong impression
of having strong impact on the optimal result. These results are graphically
illustrated in Figure 50 (50a and 50b). It shall also be noted that shifting capac-
ity from one carrier to another might have only small impacts on the objective
function, see [109].

For the 100% carbon reduction target the worst deviation from the mean can
be observed for the optimal investment in offshore wind assets with deviations
of up to 8%; other technologies as well as power flows have smaller deviations.
These results are graphically illustrated in Figure 51 (51a and 51b).

In both scenarios, the Pearson’s correlation coefficients are ≈ 1 except for
power flows where the coefficients are lower but still > 0.9, indicating a linear
correlation between the results.

c.2 mean squared error values for storage

We provide the mean squared error values MSE = MSE+ +MSE− for storage
technologies for a spatial resolution of 97 nodes in Table 21, and additionally
for 67 nodes in Table 22 and 127 nodes in Table 23.
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Figure 50: Correlation factors and average deviations from the mean for
modelling results at 1250 nodes and 60% CO2 reduction com-
pared to 1990.
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Figure 51: Correlation factors and average deviations from the mean for
modelling results at 1250 nodes and 100% CO2 reduction com-
pared to 1990.
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c.3 more comparison results

To show that the results of Tables 6 and 7 are no artifacts of a resolution of 97
nodes and change substantially when varying the spatial resolution, we addi-
tionally provide the equivalent tables for modelling results at 67 nodes (Tables
17 and 19) and 127 nodes (Tables 18 and 19).

Table 17: Analogous to Table 6 but with a spatial resolution of 67 nodes.

CO2 reduction 60% 100%
ρ r2 ρ r2

k-means 0.704 0.188 0.725 0.195
fcap(v) 0.754 0.174 0.759 0.187
ftime(v) 0.749 0.173 0.765 0.181

Q 0.739 0.173 0.740 0.187

Table 18: Analogous to Table 6 but with a spatial resolution of 127 nodes.

CO2 reduction 60% 100%
ρ r2 ρ r2

k-means 0.735 0.164 0.772 0.166
fcap(v) 0.802 0.144 0.786 0.163
ftime(v) 0.782 0.147 0.808 0.152

Q 0.789 0.152 0.792 0.165

Table 19: Analogous to Table 7 but with a spatial resolution of 67 nodes.

CO2 reduction 60% 100%
technology wind solar wind solar

k-means 0.33+ 2.65 0.01+ 2.34 0.22+ 2.43 0.25+ 0.71
fcap(v) 0.23+ 0.79 0.05+ 0.31 0.14+ 1.12 0.05+ 0.12
ftime(v) 0.02+ 2.26 0.07+ 0.99 0.51+ 1.63 0.06+ 0.24

Q 0.42+ 1.45 0.16+ 0.71 0.61+ 1.76 0.07+ 0.48
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Table 20: Analogous to Table 7 but with a spatial resolution of 127 nodes.

CO2 reduction 60% 100%
technology wind solar wind solar

k-means 0.42+ 5.34 0.06+ 2.17 0.51+ 2.22 0.21+ 1.03
fcap(v) 0.79+ 0.86 0.02+ 0.82 0.2+ 1.14 0.11+ 0.15
ftime(v) 0.81+ 2.74 0.02+ 1.45 0.14+ 2.38 0.24+ 0.75

Q 0.36+ 1.31 0.47+ 1.17 0.24+ 2.2 0.36+ 1.07

Table 21: MSE presented as a sum of over- and underestimated opti-
mal estimates according to equation (33) respective clustering
method, storage technology and CO2 reduction target for a
spatial resolution of 97 nodes. Graphically presented in Figure
28.

CO2 reduction 60% 100%
technology hydrogen battery hydrogen battery

k-means 0.62+ 0.28 1.0+ 0.76 0.74+ 1.54 0.28+ 0.32
fcap(v) 1.37+ 0.04 0.41+ 1.39 0.24+ 0.68 2.29+ 0.67
ftime(v) 0.64+ 0.51 0.57+ 0.28 0.51+ 2.76 0.99+ 0.37

Q 0.58+ 0.07 0.82+ 1.45 0.08+ 2.8 0.09+ 0.26

Table 22: Analogous to Table 21 but with a spatial resolution of 67 nodes.

CO2 reduction 60% 100%
technology hydrogen battery hydrogen battery

k-means 0.81+ 0.47 0.34+ 0.26 0.44+ 0.64 0.58+ 0.52
fcap(v) 0.89+ 0.33 1.18+ 1.03 0.13+ 0.86 0.43+ 0.01
ftime(v) 0.16+ 0.19 0.46+ 0.26 0.52+ 0.65 0.3+ 0.08

Q 0.0+ 0.1 0.75+ 0.44 0.12+ 0.78 0.02+ 0.19
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Table 23: Analogous to Table 21 but with a spatial resolution of 127
nodes.

CO2 reduction 60% 100%
technology hydrogen battery hydrogen battery

k-means 0.23+ 1.55 0.62+ 1.09 0.34+ 2.75 0.17+ 0.69
fcap(v) 0.24+ 0.96 0.24+ 1.07 2.1+ 1.29 1.92+ 0.96
ftime(v) 0.23+ 0.38 0.27+ 0.61 0.94+ 1.93 0.75+ 0.69

Q 0.94+ 0.06 0.34+ 1.59 0.35+ 1.35 0.52+ 0.67
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D
A N N E X

This Annex provides additional information on the contents of Chapter 5.

d.1 adaptions of the transmission network

The transmission network for the model was extracted from the 2018 interactive
ENTSO-E map [136], such that the final simulation for 2018 uses the unmodified
transmission grid. For all other years, the following adaptions were made:

⩽ 2013
strengthened lines: Ackerstraße - Matterbusch, Mengede - Wanne, Goldshöfe -
Niederstotzingen, Dellmensingen - Niederstotzingen

⩽ 2014
strengthened lines: Gütersloh-Friedrichsdorf, Sechtem-Neuenahr, Großgartach-
Hüffenhardt;
new lines: Kriftel-Eschborn, Bruchsal-Forst

⩽ 2015
strenghtened lines: Dellmensingen - Niederstrotzingen, Bärwalde - Schmölln,
Mittelbexbach - St.Barbara Westerkappeln - Hambüren, Friedrichsdorf - Biele-
feld;
new lines: Vieselbach - Altenfeld (Thüringer Strombrücke Part I), Abzweig
Förderstedt, Görries - Parchim/Lübz

⩽ 2017
strenghtened lines: Audorf/Süd - Hamburg/Nord, Hoheneck - Rommelsbach,
Niederrhein - Lackhausen, Herne - Wanne;
new lines: Altenfeld - Redwitz, (Thüringer Strombrücke Part II), Kriftel - Ober-
erlenbach

Strenghtened lines were reduced in capacity by a factor 2, new lines were re-
moved from the grid.

d.2 line congestion

We shortly discuss which lines were historically subject to redispatch measures
with a duration of more than 500 hours according to [134, 148–150] and how
these lines are affected by our model simulations. Lines affected by our simula-
tion are filered wherever the shadow prices in equation 35 are positive.

Affected lines in 2015 were: (RR) Remptendorf - Redwitz, (NV) Neuenhagen
- Vierraden, (NP) Neuenhagen - Pasewalk, (MLGGG) Mehrum - Lehrte - Go-
denau - Göttingen, (CU) Conneforde - Unterweser, (CH) Conneforde-Huntdorf
and (BH) Brunsbüttel-Hamburg Nord. Our model captures congestion with a
duration of (RR) 5446 hours, (NP) 730 hours, (MLGGG) 46 hours and (BH) 1344

hours. (CU) and (CH) are not overloaded at any time, however a neighboring
lines are congested for 14 and 24 hours respectively and (NV) is lost due to
aggregation.

In 2016, redispatch measures affected (RR), (NV), (NP) and (BH). Model
congestion affects (RR) with a duration of 7225 hours, (NP) with 526 hours and
(BH) with 1235 hours. (NV) is lost due to aggregation

Routes affected in 2017 include (RR), (BH), (SAP) Sittling - Altheim - St. Peter,
(PP) Pleiting - St. Peter and (DNMH) Dörpen West - Niederlangen - Meppen
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- Hanekenfähr. These lines were congested in our simulations for a duration
of (RR) 7487 hours, (BH) 1017 hours and (DNMH) 2591 hours. (SAP) is not
affected by congestion, however a neighboring line is congested for 1766 hours
and (PP) is lost due to aggregation.

Reports for 2018 list (DG) Dipperz - Großkrotzenburg, (SW) Scottrum - We-
chold, (SL) Scottum - Landesbergen, (DNMH), and (SAP). There lines are con-
gested in our model simulations for a duration of (SW)17 hours, (SL) 440 hours
and (DNMH) 744 hours. (DG) and (SAP) are never subject to congestion, how-
ever neighbouring lines are congested with 139 and 1359 hours respectively.

Note that all these lines underlie clustering inaccuracies that include both
routing and available capacity. Hence a line mapping from the original grid to
the model grid is inaccurate.

d.3 loadshedding

As the generation and transmission fleet of the model problem is fixed in for
the optimisation (34), the conditions (35) and (15) might be too constraining
to satisfy demand everywhere at any time. For this reason, an auxiliary gener-
ator with infinite capacity is added to each node v ∈ V to fill up for lacking
generation and flow capacities. The goal of course is, to keep its dispatch to
a low amount, 0 kWh in the best case, therefore its operation is penalised by
extremely high costs of 103 e/kWh.

Results indicate, that the amount this auxiliary generator is required, is less
than 0.2% in any simulation. The year with its highest total dispatch is 2013

with a total of 1214 GWh at a model resolution of 306 nodes, portraying 0.13%
of the annual demand. For all other years and network resolutions, the dispatch
of this generator is even lower, see Figure 52. As the installed capacity increases
over the years, loadshedding decreases from its peak at a resolution of 266

nodes with approximately 1200 GWh in 2013 to below 2 GWh in 2018 at the
same resolution. In both cases, the mismatch between electricity demand and
generation is well below 1%.

d.4 additional evaluation results

d.4.1 Cumulative Results

Analogous results on clustering as for 2017 in section 5.2.3 in Figure 32 are
displayed in Figures 53, 54 and 55 for the years 2013-2018.

d.4.2 Curtailment per TSO area

Stability of the results of section 5.3.3 as the network resolution changes are
displayed in Figure 56.

d.4.3 Curtailment per Quarter

Stability of the results of section 5.3.4 as the network resolution changes are
displayed in Figure 57.
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Figure 52: Model results on loadshedding for the years 2013-2018 and
different cluster sizes.

d.4.4 Sensitivity of the results

Stability of the results of sections 5.3.1-5.3.4 as the generators are assigned with
a probability of 5% to node that lies within a radius of 43km of its closest one,
are displayed in Figures 58 and 59.
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Figure 53: Cumulative historical results on curtailment for the years 2013

(left) and 2014 (right) as the network resolution changes.
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Figure 54: Cumulative historical results on curtailment for the years 2015

(left) and 2016 (right) as the network resolution changes.

LI



0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Curtailment [GWh]

306

301

296

291

286

281

276

271

266

261

256

251

246

241

236

231

226

221

216

211

206

201

196

191

186

181

176

171

166

161

156

151

146

141

136

131

126

121

116

111

106

96

91

86

81

76

71

66

61

56

51

46

41

36

31

26

21

16

11

6

10832
(222%)

10800
(221%)

10830
(222%)

6263.
(128%)

6296.
(129%)

6271.
(128%)

6350.
(130%)

6222.
(127%)

5939.
(121%)

5781.
(118%)

6052.
(124%)

5984.
(122%)

5751.
(118%)

5738.
(117%)

6032.
(123%)

6117.
(125%)

4778.
(98.%)

6477.
(132%)

4791.
(98.%)

6229.
(127%)

5229.
(107%)

3373.
(69.%)

1569.
(32.%)

1391.
(28.%)

558.0
(11.%)

1588.
(32.%)

576.4
(11.%)

413.1
(8.4%)

173.6
(3.5%)

134.4
(2.7%) onshore wind

offshore wind
solar
run of river

0
20

0
40

0
60

0
Excess energy [GWh]

306
301
296
291
286
281
276
271
266
261
256
251
246
241
236
231
226
221
216
211
206
201
196
191
186
181
176
171
166
161
156
151
146
141
136
131
126
121
116
111
106

96
91
86
81
76
71
66
61
56
51
46
41
36
31
26
21
16
11

6
nu

m
be

r o
f n

od
es

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

Curtailment [GWh]

306

301

296

291

286

281

276

271

266

261

256

251

246

241

236

231

226

221

216

211

206

201

196

191

186

181

176

171

166

161

156

151

146

141

136

131

126

121

116

111

106

96

91

86

81

76

71

66

61

56

51

46

41

36

31

26

21

16

11

6

11286
(242%)

11202
(240%)

7504.
(161%)

7141.
(153%)

7224.
(155%)

6991.
(150%)

7088.
(152%)

6984.
(149%)

6717.
(144%)

6488.
(139%)

7027.
(150%)

6479.
(139%)

6598.
(141%)

6427.
(138%)

6689.
(143%)

6643.
(142%)

5294.
(113%)

6723.
(144%)

7209.
(154%)

7301.
(156%)

6087.
(130%)

4935.
(105%)

1362.
(29.%)

1564.
(33.%)

1296.
(27.%)

510.1
(10.%)

601.6
(12.%)

441.3
(9.4%)

482.4
(10.%)

220.0
(4.7%) onshore wind

offshore wind
solar
run of river

0
50

0
10

00

Excess energy [GWh]

306
301
296
291
286
281
276
271
266
261
256
251
246
241
236
231
226
221
216
211
206
201
196
191
186
181
176
171
166
161
156
151
146
141
136
131
126
121
116
111
106

96
91
86
81
76
71
66
61
56
51
46
41
36
31
26
21
16
11

6

nu
m

be
r o

f n
od

es

Figure 55: Cumulative historical results on curtailment for the years 2017

(left) and 2018 (right) as the network resolution changes.
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Figure 56: Model results of curtailment in in percent per control zone of
German TSOs for the years 2015-2018.
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Figure 57: Model results of curtailment distributed per quarter for the
years 2015-2018 as the network resolution changes.
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Figure 58: Model results of curtailment distributed per control zone of
German TSOs for the years 2017 as the network resolution
changes with a 5%-randomness in the assignment of genera-
tors.
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Figure 59: Model results of curtailment distributed per quarter for the
year 2017 as the network resolution changes with a 5%-
randomness in the assignment of generators.
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E
A N N E X

This Annex provides additional information on the contents of Chapter 6.

e.1 results of the islanded disaggregation method

In this setting each cluster is treated as an island, meaning that no electricity
trade between other clusters is considered for the dis-aggregation. Results on
loadshedding and curtailment for this scenario are displayed in Figure 60.

The overall trend of the results is similar to the simulations where inter-
cluster power flows were considered in the simulations. However, there are
minor differences mainly affecting the “re-optimise” results. These result in an
overall higher curtailment of 2− 3%, and lower loadshedding of 1− 2%.

e.2 analysing the source for loadshedding

Figure 62 additionally displays if loadshedding measures occur at times where
the curtailment of the high-resolution model is higher compared to the lower
resolved reference results. If true, this indicates that the loadshedding measures
are due to underestimated within-cluster transmission bottlenecks. To precisely
evaluate this statement, the Figure displays the following hypothesis:

δ{t:(ΥV−ΥC)(t)>0} · (ΥV −ΥC)(t) ⩾ 0.5 ·∆V (t) (45)

δ{t:(ΥV−ΥC)(t)<0} · (ΥC −ΥV )(t) ⩽ 0.5 ·∆V (t) (46)

where ∆V (t) represents the amount of loadshedding measures in the high-
resolution dis-aggregated model at snapshot t, and

ΥV (t) :=
∑
s∈S
v∈V

(ḡv,s,tGv,s − gv,s,t)

the amount of curtailment in the high-resolution dis-aggregated model at snap-
shot t. Accordingly, ΥC(t) represents the amount of curtailment in the lower
resolved reference model.
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Figure 60: Results as displayed in Figure 36 of an island model, meaning
that no inter-cluster electricity imports or exports are consid-
ered for the dis-aggregation.

LVII



37 67 97 127 157 187 217

number of clusters

200

300

400

500

600

ab
so

lu
te

 v
al

ue
 [T

W
h/

a]

curtailment

6

8

10

12

14

16

18

20

[%
 o

f 
to

ta
l d

em
an

d
]

37 67 97 127 157 187 217

number of clusters

0

10

20

30

40

ab
so

lu
te

 v
al

ue
 [T

W
h/

a]

loadshedding

uniform

min excess

re-optimized

reference (low resolution)

0

0

0

0

0

1

1

1

[%
 o

f 
to

ta
l d

em
an

d
]

uniform

min excess

re-optimized

reference (low resolution)

Figure 61: Results as displayed in Figure 61 of an island model, meaning
that no inter-cluster electricity imports or exports are consid-
ered for the dis-aggregation.
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Figure 62: Evaluation if loadshedding measures of the dis-aggregated
high-resolution models occur at times with higher curtailment
compared to the lower resolved reference model, see equa-
tions (45)-(46).
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It can be seen that, as the reference model resolution increases, there are
more and more times t where the hypothesis is wrong. The amount of cur-
tailed electricity is higher than loadshedding in 85% of the times on average
for all of the three dis-aggregation methods for a very low-resolved reference
model of 37 nodes. As the reference model resolution increases to 217 nodes,
the statement is only true in average for 65% of the times for all three dis-
aggregation methods. This indicates that transmission resolution is starting to
saturate, however is still the major bottleneck preventing to feed-in the extra
green electricity that is being curtailed.
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