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ABSTRACT 

The objective of this thesis is to study the dynamic stability of functionally graded material 

(FGM) plates under parametric excitation. Third order shear deformation theory is used for the 

analysis of the plates. The equations of motion have been derived using finite element method 

in conjunction with Hamilton’s principle. The boundaries of stable and unstable regions in the 

parameter space are determined by using Floquet’s theory. FGMs are microscopically 

inhomogeneous spatial combination of materials, usually made up of ceramic and metal 

constituents. A steel-alumina FGM plate with steel-rich bottom and alumina reach top is 

considered for the analysis. The properties of the functionally graded material plates are 

assumed to vary along the thickness direction, according to a power law distribution in terms 

of the volume fractions of the constituents.  

The effect of power law index on the critical buckling load, natural frequencies and 

dynamic stability of plates is determined. In case of FGM plate, an increase of power law index 

value decreases the natural frequencies. If aspect ratio is increased, the critical buckling load 

decreases for both uniaxial and biaxial loading cases and it is also observed that increase of 

power law index value decreases critical buckling load. With increase of the power index there 

is deteriorating effect on the dynamic stability of the FGM plate.    

The influence of temperature rise on the dynamic stability of the FGM plate in thermal 

environment is investigated. The natural frequencies and dynamic stability behaviour are found 

to be highly sensitive to the temperature change between the bottom and top surfaces. In high 

temperature environment the dynamic stability of the plate deteriorates.  

The effect of foundation stiffness coefficients on the dynamic stability of FGM plates 

are examined in detail through parametric studies. The frequencies of FGM plate resting on 

Pasternak foundation increase with the increase of Winkler foundation constant and shear layer 

constant. The Winkler and shear foundation constants have significant effect on the critical 

buckling load of FGM plates resting on Pasternak foundation. An increase of these constants 

increases the critical buckling load of the plate. Increase of Winker foundation constant and 

shear layer constant improves the dynamic stability of FGM plate. Shear layer constant has got 

more prominent effect compared to the Winkler foundation constant, on the dynamic stability 

of FGM plate resting on Pasternak foundation.   

Parametric investigation is carried out to study thoroughly the effect of the temperature 

rise, hub radius and rotational speed on the vibration and dynamic stability of rotating plate in 
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thermal environment. It is observed that the natural frequencies reduce with an increase in 

temperature rise. The increase in rotational speed and hub radius results in increase of natural 

frequencies. The increase in temperature leads to reduction in the dynamic stability of plate. 

Increase in hub radius and rotational speed improves the stability of the rotating plate.  

The effects of moisture concentration, temperature rise and power law index on the 

dynamic stability of FGM plates in hygrothermal environment are investigated. The 

observations made from the dynamic stability diagrams are: with increase in moisture 

concentration and temperature the instability of the plate is more probable, the combined effect 

of moisture and temperature on the dynamic instability of FGM plates is more severe than the 

effect of individual parameter. 

The effect of skew angle on dynamic stability of FGM plate in thermal environment is 

discussed. The natural frequencies increase with an increase of skew angle. Increase in aspect 

ratio of FGM skew plate increases its instability. The increase in the value of power law index 

is found to have enhancing effect on the parametric instability of the skew FGM plate. The 

increase in skew angle of the plate reduces the chance of dynamic instability of the plate. 

Keywords: FGM plates; Third order shear deformation theory; Power law; Dynamic stability; 

Dynamic load factor; Thermal environment; Foundation constant; Hygrothermal environment; 

Rotating plate; Skew angle.  
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NOMENCLATURE 

Although all the principal symbols used in this thesis are defined in the text as they occur, a 

list of them is presented below for easy reference. 

 

a, b Length and width of the element  

mC , 
cC  Moisture concentration at metal and ceramic side 

kc , 
kd  Coefficients of polynomial  

d Distance between the central plane to neutral plane  

 E z  Effective Young’s modulus 

cE  Young’s modulus of ceramic  

mE   Young’s modulus of metal  

(e)  Element  

 e

cF  Centrifugal force  

h Plate thickness  

I  Moment of inertia of cross-section 

k Power law index  

sk  Shear foundation constant 

wk  Winkler’s foundation constant 

L Length of the plate  

,x yM M  Bending moments about Y and X axis 

N  Critical buckling load parameter  

iN  Shape functions for ith node   

P(t) Dynamic axial load  
crP  Critical buckling load  

sP  Static load component  

tP  Time dependent dynamic load component  

0 1 1 2 3, , , ,P P P P P
 Coefficients of temperature dependent material constants   

,x yQ Q  Shear forces  

11Q , 
22Q , 

21Q , 

44Q  

Stiffness coefficients 

R  Hub radius  

 R z  Effective material property 

cR  Material property at ceramic side layer 

mR  Material property at the metallic side layer 

Tc , Tm  Temperature at ceramic surface and metal surface 

cV  Ceramic volume fraction  

mV  Metal volume fraction  
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Chapter 1 

BACKGROUND AND MOTIVATION 

 

1.1 Introduction  

Structural systems by virtue of their interaction with environmental forces may undergo 

dynamic or parametric instability. In recent years, parametric instability of structural systems 

has gained importance. Parametric resonance can cause a number of catastrophic incidents. 

The environmental interaction with the deformable continuum is complex in nature and is 

usually represented by means of static and dynamic loads. The static loads are dead loads acting 

on the deformable bodies and they don’t change their magnitude as well as their initial 

directions. The forces acting on the body may not always be static loads. In many realistic 

situations, the dynamic loads are time dependent and may change their direction. Also, the 

dynamic loading may go through two forms such as periodic and non-deterministic. Harmonic 

or superposition of several harmonic functions is used in representing periodic loading. 

Propeller force on a ship, unbalanced masses of rotating machinery, wind loading induced by 

vortex shedding on tall slender structures, helicopter blades in forward flight in a free-stream 

that varies periodically and spinning satellites in elliptic orbits passing through a periodically 

varying gravitational field are the examples of periodic forces. Non-periodic loads cannot be 

defined explicitly as functions of time and statistical parameters best describe them. Examples 

are earthquake, wind and ocean waves acting on on-shore and off-shore structures and aircraft 

structures subjected to turbulent flow. The uncoupled flapping motion of rotor blades in 

forward flight under the effect of atmospheric turbulence is an example of system subjected to 

both periodic components and non-deterministic fluctuations.  
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A second order non-homogenous equation generally describes a resonant system. When 

the elastic system under goes normal resonance or forced resonance, the external excitation 

frequency is equal to natural frequency of the system. Normal resonance correspond to the 

oscillatory response of the system in the direction of external excitation and is as shown in 

figure 1.1(a). In normal resonance, systems response amplitude increases linearly with time 

and can be reduced by providing damping. Figures 1.1 (b) and (c) show the normal resonant 

system and its response curve with time.   

 

 

Figure 1.1(a) Cantilever beam with end load  

 

  

Figure 1.1(b) Frequency verses amplitude diagram of 

a normal excited system.  

Figure 1.1(c) Response variation with time of a 

normal system. 

The phenomenon of dynamic stability is analyzed by second order homogenous 

equations. Parametric resonance refer to an oscillatory motion in a mechanical system due to 

time varying external excitation. The external applied loading terms appear as parameters or 

coefficients in the equation of motion of an elastic system. System undergoes parametric 

resonance when the external excitation is equal to an integral multiple of natural frequency of 

the system. The response of the system is orthogonal to the direction of external excitation, as 

shown in figure 1.2(a). In parametric resonance, systems amplitude increases exponentially and 

may grow without limit. This exponential unlimited increase of amplitude is potentially 
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dangerous to the system. Parametric resonance is also known as parametric instability or 

dynamic instability. Damping has little effect on the severity of parametric resonance but may 

only decrease the rate of increase of response.  

 

Figure 1.2 (a) Cantilever beam subjected to axial load 

 

  

Figure 1.2(b) Stability diagram of a parametrically 

excited system. 

Figure 1.2(c) Response variation with time of a 

parametrically excited unstable system.  

The system can experience parametric instability (resonance), when the excitation frequency 

or any integer multiple of it, is twice the natural frequency, that is to say 

mΩ = 2𝜔𝑛  

where m=1, 2, 3 … n. and 𝜔𝑛 natural frequency of the system.  

The case 2 n  is known as to be the most significant in application and is called main 

parametric resonance.  

Main objective of analysis of parametrically excited system is to establish the regions 

in the parameter space in which the system becomes unstable. These areas are known as regions 

of dynamic instability. The boundary separating a stable region from an unstable one is called 

a stability boundary. These boundaries drawn in the parameter space i.e. dynamic load 

amplitude, excitation frequency and static load component is called a stability diagram. Figure 

1.2(b) shows a typical dynamic stability diagram. Parametrically excited unstable system’s 
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response variation with time is as shown in figure 1. 2(c). The dynamic load component is the 

time dependent component of the axial force. It can be seen from the figure 1.2 (b) that the 

instability of the system doesn’t occur at a single excitation frequency rather occurs over a 

range of frequency which makes the parametrically excited systems more dangerous than 

ordinary resonant systems. In addition, as the amplitude of the time dependent component of 

the axial force increases, the range of frequency over which the system becomes unstable 

increases. The location of the unstable region closer to the dynamic load axis indicates that the 

system is more liable to dynamic instability, as the instability occurs at lower excitation 

frequencies. In contrast, if the unstable region is located farther from the dynamic load axis, it 

indicates that the system is less prone to dynamic instability. If the area of the instability region 

is large, it indicates instability over a wider frequency range. If the instability region shifts 

towards the dynamic load axis or there is an increase in its area, the instability of the system is 

said to be enhanced and when contrary to it happens, the stability is said to be improved.  

Structural components like plates are subjected to periodic loads under different 

environmental and operating conditions and this may lead to their parametric resonance. These 

members may have different boundary conditions depending upon their applications. The 

parametric resonance may cause the loss of functionality of plate structures. One of the 

controlling method of parametric resonance is by changing mass/stiffness. To reduce or prevent 

the structural vibration, the designer has to choose better materials with suitable mass/stiffness. 

Alloys and composite materials having high strength to weight ratio have been produced due 

to advancement in material science technology. Laminated composite materials have been 

successfully used in many engineering applications such as aircraft, marine and automotive 

industries. These are of lightweight and high strength. However, large inter-laminar stresses 

are developed due to the mismatch of two different materials properties across the interface. 

Particularly in high temperature environments, debonding and delamination problems occur in 

composite materials. In the materials, a group of metals have high strength and toughness, 

while the ceramics are good in thermal resistance. Hence, to improve the thermal resistance, 

ceramics can be used to mix with metals in order to combine their specific advantages.  

Functionally Graded Materials (FGM) have successfully replaced the debonding and 

delamination problems of composite materials due to their gradual variation of properties. 

FGMs are microscopically heterogeneous advanced composites usually made from a mixture 

of metals and ceramics, mixture properties vary smoothly from one surface to the other. The 

gradual properties change is not observed in traditional composite materials. Our ability to 
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fabricate FGMs appears to be a modern engineering innovation, though FGM is not a new 

concept. These type of materials also occur in nature. Some examples for natural FGMs have 

been shown in figure 1.3. Bamboo and bones have functional grading. Even our skin is also 

graded to provide certain toughness, tactile and elastic qualities as a function of skin depth and 

location on the body.  

The concept of FGM was first introduced in Japan in 1984 during a space plane project, 

where a combination of materials used would serve the purpose of a thermal barrier capable of 

withstanding a surface temperature of 2000K and a temperature gradient of 1000K across a 10 

mm deep section. In recent years, its applications have been extended also to the structural 

components of solar energy generators, chemical plants, high efficiency combustion and heat 

exchangers. In the literature two types of gradation laws have been used for mathematical 

formulation of FGMs for structural analysis.  One is exponential law, in which studies 

concentrate on fracture mechanics and another simple power law, it covers the stress analysis 

of FGM structural components.  

  

Figure 1.3(a) Natural FGMs (a & b) bamboo tree (c) human bone 

FGM structures are designed in such way as to overcome the demerits of ordinary 

materials. These materials have many advantages such as high resistance to temperature 

gradients, high wear resistance, reduction in residual and thermal stresses and an increase in 

strength to weight ratio. Because of these inherent properties, structure’s stability also 

increases. An example of use of FGMs is re-entry vehicle in space. The FGMs can be used to 

produce the shuttle structures. When the space shuttle reenters in to atmosphere of the earth, 

heat source is generated by the air friction of high velocity movement. If the structures of the 

space shuttles are made from FGMs, the hot air flow is blocked by the outside surface of 

ceramic and transfers slightly into the lower surface. Consequently, the temperature at the 

lower surface is much reduced, which therefore avoids or reduces structural damage due to 
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thermal stresses and thermal shock. Due to the outstanding properties of FGMs they are used 

in many engineering applications such as aerospace, aircraft, defense, space shuttle, gas turbine 

blades, rocket engine parts, biomedical and electronic industries. In future the availability and 

production cost of FGMs may be cheap, so that they can be used in helicopter rotor blades, 

turbo machinery parts and automobile parts etc.  

Importance of the present study 

Many structural components can be modelled as plate like structures. These structures 

are often subjected to dynamic loads, among which the periodic in-plane force may cause 

dynamic instability, in which case there is an unbounded exponential built up of the response. 

It is of enormous practical importance to understand the dynamic stability of systems under 

periodic loads. Therefore, a broad understanding of the dynamic stability characteristics of 

structural materials in periodic loading environments is a matter of importance for the design 

against structural failure.  

1.2 Research objective  

The extensive use of FGM plates has generated considerable interests among many researchers 

working in the field of modelling, analysis and design. Accurate prediction of structural 

response characteristics is a demanding problem for the analysis of FGM, due to the anisotropic 

structural behavior and the presence of various types of complicated constituents. This is 

because the material composition of an FGM changes gradually, usually varying through the 

thickness. The present investigation mainly focuses on the study of vibration, buckling and 

dynamic stability of FGM plates under parametric excitation. A third order shear deformation 

theory based finite element model is formulated for studying the buckling, free vibration and 

dynamic instability characteristics of FGM plates in different environments and operating 

conditions. The effect of various environment and operating condition parameters such as index 

value, temperature rise, foundation stiffness, rotational speed, skew angle and dynamic load 

factor on vibration and dynamic stability behavior of FGM plates are examined numerically. 

Comprehensive literature survey uncovers that vibration and dynamic stability of FGM 

structures have been investigated to some extent. In this course, the present work on the 

investigation of dynamic stability of FGM plates is to contribute towards improved 

understanding of parametric resonance phenomenon. Moreover, for predictable applications of 

FGM structures, reliable analysis and results are required and hence in the present work an 

appropriate finite element based mathematical modelling of FGM plates has been attempted.   
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Depending on these guiding concepts, the objectives of present analyses are as follows: 

 Study on the effect of power law property distribution on critical buckling load, natural 

frequencies and dynamic stability of FGM plates.  

 Investigation in to the effect of power law property distribution and temperature rise on 

the buckling load, natural frequencies and dynamic instability of FGM plates in the 

thermal environment. 

 Investigation in to the effect of power law property distribution, foundation properties 

and temperature environment on the critical buckling load, natural frequencies and 

dynamic instability of FGM plate supported on foundation. 

 Study of the effect of power law property distribution, temperature rise and moisture 

concentration on the critical buckling load, natural frequencies and dynamic instability 

of FGM plates in hygrothermal environment. 

 Investigation of the effect of power law property distribution, rotating speed, and hub 

radius on the natural frequencies, critical buckling load and parametric instability of 

rotating FGM plates in high temperature fields. 

 Study on the effect of power law property distribution and skew angle on critical 

buckling load, natural frequencies and dynamic instability of skew FGM plates in high 

temperature thermal environment.  

1.3 Outline of the present work  

The present thesis is composed of eight main chapters including this section. 

 Chapter 2: Literature review   

A detailed survey of the literature, pertinent to the previous works done in this field has 

been reported. A critical discussion of the earlier investigations is done. 

 Chapter 3: Dynamic stability of functionally graded material plates under parametric 

excitation. 

Formulation of the problem based on the third order shear deformation theory is 

described in detail. The plate is modeled using a four node finite element. Effect of 

different system and forcing parameters on buckling load, free vibration and dynamic 

stability of the plate is studied. 

 Chapter 4: Dynamic stability of functionally graded material plates in high temperature 

thermal environment under parametric excitation. 
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This section presents the effect of temperature rise on vibration and dynamic stability 

of functionally graded material plates in uniform, linear and nonlinear thermal 

environments.  

 Chapter 5: Dynamic stability of functionally graded material plates on elastic 

foundations under parametric excitation. 

The effect of Winkler and Pasternak foundation parameters on vibration and dynamic 

stability of functionally graded material plates supported on elastic foundation is 

investigated.  

 Chapter 6: Dynamic stability of functionally graded material plates in hygrothermal 

environment under parametric excitation. 

The influence of temperature and moisture concentration rise on vibration and dynamic 

stability of functionally graded material plates in hygrothermal environment is 

presented in detail. 

 Chapter 7: Dynamic stability of rotating functionally graded material plate under 

parametric excitation. 

The effect of the hub radius and rotational speed on vibration and dynamic stability of 

functionally graded material plates in high temperature environment is explained in 

detail. 

 Chapter 8: Dynamic stability of skew functionally graded plates under parametric 

excitation. 

The influence of skew angle on vibration and dynamic stability of functionally graded 

material plates in thermal environments is investigated.  

 Chapter 9: Conclusion and scope for future work. 

The conclusions drawn from the above studies are described. There is also a brief note 

on the scope for further investigation in this field.  

1.4 Closure 

Present section gives a sustenance to thought about functionally graded material suitable for 

various applications.  

 A material advantageous over composite materials and having tailored properties. 

 A material appropriate for application in extreme working circumstances. 

 A material having enhanced residual stress distribution. 

 A material, the characteristics of constituent phases of which can be completely used 

without any compromise. 
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The above features offer the scope for various prospective applications. To have a knowledge 

of the static and dynamic behavior of these FGM plates, research objectives are presented here. 

The next chapter presents an extensive literature review on the proposed field of research. 
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Chapter 2 

REVIEW OF LITERATURE 

 

2.1 Introduction 

The phenomenon of parametric resonance was discovered way back in the year 1831. Faraday 

[39] was one of the first scientists to study the parametric resonance phenomenon when he 

observed that surface waves in a fluid-filled cylinder under vertical excitation showed half the 

frequency of the container. Melde [120] was the first to observe the phenomenon of parametric 

resonance in structural dynamics. He found that the string could oscillate latterly although the 

excitation force was longitudinal, at twice the natural frequency of the fork, under a number of 

critical conditions. Lord Rayleigh [192-194] provided a theoretical basis for understanding the 

parametric resonance of strings and conducted several experiments. Beliaev [11] studied the 

response of a straight elastic hinged-hinged column subjected to periodic axial load. 

Alexanderson [5] was the first to investigate the use of parametric amplifiers for radio 

telephony from Berlin to Vienna and Moscow. 

A number of review articles on the parametric resonance have been reported. Evan – 

Iwanowski [37], Ibrahim and co-workers [67-73], Ariarathnam [7] and Simitses [185] 

presented a review of researches on vibration and stability of parametrically excited systems. 

Furthermore, books by Bolotin [14], Schmidt [173] and Nayfeh and Mook [131] deal 

comprehensively with the basic theory of dynamic stability of systems under parametric 

excitations. Thorough review work on FGM about its various aspects like stress, stability, 

manufacturing and design, applications, testing, and fracture has been presented by Victor and 

Larry  and his co-workers[209]. A critical review on free, forced vibration analysis and 
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dynamic stability of ordinary and functionally grade material plates was reported by Ramu and 

Mohanty [153]. Review of the thermo-elastic and vibration analyses of functionally graded 

plates with an emphasis on the recent works published since 1998 were discussed by Jha et al. 

[78]. Their review carried out was concerned with deformation, stress, vibration and stability 

problems of FG plates.  

2.2 Types of Parametric Resonance 

Simple resonance, the resonance of sum type or resonance of difference type may be exhibited 

for a system with multi-degrees of freedom depending upon the type of loading, support 

conditions and system parameters.   

Classification of different types of resonances exhibited by a linear periodic system was 

presented by Melde [120]. Iwatsubo et al. [75] and [76] investigated the stability of uniform 

columns with simply supported ends and concluded that combination type resonance would 

not occur for this system. Saito and Otomi [169] from their investigation on stability of 

viscoelastic beams with viscoelastic support showed that this system did not exhibit 

combination resonances of difference type for axial loading, but those did exhibit the above-

mentioned resonance for tangential type of loading. Celep [22] on the basis of his investigation 

on stability of simply supported pre-twisted column found that combination resonances of the 

sum type may exist or disappear depending on the pre-twist angle and rigidity ratio of the cross-

section. Elastic shaft with a disk can exhibit only difference type combination resonances was 

showed by Ishida et al. [74]. Chen and Ku [24] investigated the effect of the gyroscopic moment 

on the principal region of instability of a cantilever shaft disk system. 

2.3 Methods of Stability Analysis of Parametrically Excited Systems 

Parametrically excited system’s governing equations are represented by second order 

differential equation with periodic coefficients. The exact solutions are not available for 

parametrically excited systems. The researchers for a long time have been involved to explore 

different solution methods for this kind of problem. The objectives of these kind of 

investigators are to establish the existence of periodic solutions and their stability. A number 

of methods have been applied for the solutions of the governing equations of parametrically 

excited systems. The most common among them are method proposed by Bolotin based on 

Floquet’s theory, the Galerkin’s method, perturbation and iteration techniques, the Lyapunov 

second method and the asymptotic technique by Krylov, Bogoliubov and Mitroploskii. 
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Satisfactory results can be obtained for simple resonance case using Bolotin [14] 

method based on Floquet’s theory. Burney and Jaeger [20] have used this method to determine 

the region of the dynamic instability of a uniform column for different end conditions. They 

assumed the column to be consisting of different segments, each segment being considered as 

a massless spring with lumped masses. Piovan and Machado [147] used the method to 

determine the dynamic instability regions of a functionally graded thin-walled beam subjected 

to heat conduction. Machado et al. [107] have also used the Bolotin’s method for studying the 

parametric instability of a thin-walled composite beam. This method has been modified by 

Stevens [190] for a system with complex differential equations of motion. Hsu [58] and [59] 

proposed an approximate method of stability analysis of systems having small parameter 

excitations. Hsu’s method can be used to obtain instability zones of main, combination and 

difference types. Later Saito  and Otomi [169] modified Hsu’s method to suit systems with 

complex differential equations of motion. Takahashi [197] has proposed a method free from 

the limitations of small parameter assumption. This technique establishes both the simple and 

combination type instability zones. Lau et al. [96] proposed a variable parameter increment 

method, which is free from limitations of small excitation parameters. It has the advantage of 

treating non-linear systems.  

Several investigators, to study the parametric instability of elastic systems have used 

finite element method (FEM). Brown et al. [18] investigated the dynamic stability of uniform 

bars by using this method. Abbas and Thomas [1] studied the dynamic stability of beams by 

using finite element method for different end conditions. Shastry and Rao [179] and [180] used 

finite element method to plot the stability boundaries of a cantilever column acted upon by an 

intermediate periodic load at different positions. The parametric instability behaviour of a non-

prismatic bar with localized zone of damage and supported on an elastic foundation was studied 

by Dutta and Nagraj [34] using finite element analysis. Öztürk and Sabuncu [139] used finite 

element method to study the dynamic stability of beams on elastic supports. Mohanty [123] 

have used this method to study the effect of localised damage on the dynamic stability of 

beams. Mohanty et al. [124], [125] have investigated the static and dynamic behaviour of 

functionally graded Timoshenko beams using this method also. Ramu and Mohanty [154], 

[155] studied the buckling and free vibration analysis of functionally graded material thin plates 

using finite element method. Lucia and Paolo [94] developed finite element method for static 

analysis of functionally graded Reissner–Mindlin plate. Briseghella et al. [17] studied the 

dynamic stability of elastic structures like beams and frames using finite element method. 
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Kugler et al. [88] proposed an efficient low order shell finite element with six degrees of 

freedom per node. They established its effectiveness and accuracy through numerical 

calculations.  

Patel et al. [143] employed the method of the finite element to study the influence of 

foundation parameters on the dynamic instability of layered anisotropic composite plates. 

Myung-Hyun and Sang-Youl [128] have used finite element method to study the dynamic 

stability of delaminated composite skew plates under combined static and dynamic loads based 

on higher-order shear deformation theory. Desai et al. [32] used a layer-wise mixed finite 

element model for the free vibration analysis of multi-layered thick composite plates. Young 

et al. [230] studied the dynamic stability of skew plates subjected to an aerodynamic force in 

the chordwise direction and a random in-plane force in the spanwise direction using finite 

element analysis.  

2.4.1 Different shear deformation theories  

FGMs are made of ceramic and metal in such a way that the ceramic can resist the thermal 

loading in the high-temperature environment. The material properties of FGMs vary 

continuously from one surface to the other surface and this results in eliminating surface 

problems of composite materials in achieving the smooth stress distribution. Theoretical 

modelling and analysis of FGM plates has become an important topic of discussion at the 

present stage. Static analysis of functionally graded plate using higher-order shear deformation 

theory was performed by Mantari et al. [114]. Gulshan Taj et al. [45] assumed transverse shear 

stresses variation as quadratic through thickness and therefore, no need of shear correction 

factor. Xiang and Kang [217] analyzed the static response of FG plates based on various higher 

order shear deformation theories. Beena and Parvathy [9] proposed spline finite strip method 

for static analysis of FG plates. The static response of functionally graded plates was presented 

by Belabed et al. [10] using an efficient and simple higher order shear and normal deformation 

theory. The concept of the neutral surface for the FGM plates was proposed by Da-Guang and 

You-He [30].  

Free vibration analysis of FGM rectangular plates has been numerically performed by 

number of researchers. Theoretical formulation and finite element models for functionally 

graded plates based on the third-order shear deformation theory was presented by Reddy [163]. 

The finite element model accounts for the thermo-mechanical coupling and geometric non-

linearity. Zhao et al. [236] have studied the free vibration of FGPs with arbitrary boundary 
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conditions using the element free kp-Ritz method. In their analysis, a mesh-free kernel particle 

functions were used to approximate the two-dimensional displacement fields. Refined two-

dimensional shear deformation theory was investigated by Fares et al. [40] for orthotropic FG 

plates. For obtaining this theory, a modified version of the mixed variational principle of 

Reissner was used. This approach does not require any shear correction factor. An exact 

analytical solution was developed by Hasani and Saidi [50] for free vibration analysis of thin 

FG rectangular plates by using the classical plate theory. In their study the effects of inplane 

displacement on the vibration of FG rectangular plates were studied and also a closed-form 

solution for finding the natural frequencies of FG simply supported rectangular plates was 

presented. A 2-D higher order theory was developed by Matsunaga [117] for analyzing natural 

frequencies and buckling stresses of FG plates. They used Hamilton’s principle for the dynamic 

analysis of a rectangular functionally graded plate with two-dimensional higher-order theory. 

A finite element method (FEM) of B-spline wavelet on the interval (BSWI) was used to solve 

the free vibration and buckling analysis of plates by Zhibo Yang et al. [237]. In their analysis 

BSWI functions were considered for structural analysis, the proposed method used to obtain a 

faster convergence and a satisfying numerical accuracy with seven degrees of freedom. Senthil 

and Batra [175] investigated an exact solution for the vibration of simply supported rectangular 

thick plate. They assumed that the plate was made of an isotropic material with material 

properties varying in the thickness direction only.  

In the last few decades, researchers have been investigating the vibration of FGM 

plates. Nguyen et al. [134] modeled functionally graded material plates based on first-order 

shear deformation theory. Hosseini-Hashemi et al. [56] proposed a new exact closedform 

approach for free vibration analysis of thick rectangular FG plates based on the third-order 

shear deformation theory of Reddy [165]. In their study, Hamilton’s principle was used to 

extract the equations of dynamic equilibrium and natural boundary conditions of the plate. 

Ferreira et al. [42] introduced a meshless method for free vibration analysis of functionally 

graded plates with multi-quadric radial basis functions to approximate the trial solution. Suresh 

Kumar et al. [195] presented the free vibration analysis of functionally graded material plates 

without enforcing zero transverse shear stress conditions on the top and bottom surfaces of the 

plate using higher-order displacement model. Hosseini et al. [57] investigated the free vibration 

analysis of functionally graded rectangular plates by considering the first-order shear 

deformation plate theory.  
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Khorramabadi et al. [84] have proposed an analytical approach for the free vibration 

behaviour analysis of simply supported functionally graded plates by using the first-order and 

third-order shear deformation theories. Rastgoftar et al. [159] have proposed a solution for the 

boundary stabilization of an FGM plate in free transverse vibration. Li and Zhang [100] have 

investigated the extended Melnikov method for the global dynamics of a simply supported 

functionally graded materials rectangular plate. In their analysis, the transvers and in-plane 

excitations are considered and the properties are assumed to be temperature-dependent. The 

Hamilton’s principle and the Galerkin’s method were used to derive the governing equation of 

motion of the FGM rectangular plate with two degrees of freedom. Zhu and Liew [240] have 

investigated a Kriging meshless method for free vibration analysis of metal and ceramic 

functionally graded plates. The Kriging technique developed to construct shape functions can 

be derived from Kronecker delta function property and thus make it easy to implement the 

essential boundary conditions. Jha et al. [80] studied the free vibration of FGM plates with 

higher order and normal shear deformation theories. Wu and Li [216] developed a finite prism 

method based on the Reissner’s mixed variational theorem for the three-dimensional free 

vibrational analysis of functionally graded carbon nanotube-reinforced composite plates with 

different boundary conditions. Shariat et al. [177] derived the equilibrium, stability and 

compatibility equations of an imperfect functionally graded plates using classical plate theory. 

Bouazza et al. [16] approached analytically for stability analysis of thick functionally graded 

plates. They assumed first order shear deformation theory for deriving stability and equilibrium 

equations.  

  Hossein et al. [54] have developed a solution for large deflection free transverse 

vibration of FGM plates for boundary stabilization. Fourth order nonlinear partial differential 

equations are used for dynamic analysis of FGM plates. Singh and Kari [186] have carried out 

vibration analysis of the functionally graded material plates and shells using semiloof shell 

element with nonlinear formulation. Singha and Prakash [187] have outlined the nonlinear 

characteristics of functionally graded plates when subjected to transverse distributed load. In 

their analysis, they considered the material properties of the plate varying in the thickness 

direction according to a simple power-law distribution in terms of volume fractions of the 

constituents. Hashemi et al. [51] have developed a new analytical approximation method for 

free vibration analysis of moderately thick rectangular plates with two opposite edges simply 

supported by using Reissner–Mindlin plate theory.  



16 
 

 Abrate [3] has calculated proportionality constant for the natural frequencies of 

functionally graded plates and compared with homogeneous isotropic plates. He also studied 

the free vibrations, buckling, and static deflection of functionally graded plates in which 

material properties vary along the thickness. Altay and Dokmeci [6] have developed a unified 

variational principle from a differential form, which is expressed in variational in the three-

dimensional fundamental equations. Hashemi et al. [56] presented a new exact closedform 

solution for the vibration analysis of FG rectangular plates based on the Reddy’s [165] third-

order shear deformation plate theory. Neves et al. [132] have used an original hyperbolic sine 

shear deformation theory for the bending and free vibration analysis of functionally graded 

plates. Jha et al. [80] performed the free vibration analysis of functionally graded thick plates 

by using higher order shear/shear-normal deformation theories. Huu-Tai and Dong [66] 

presented the bending and free vibration analysis of FG plates by a simple first order shear 

deformation theory. Free vibration analysis of arbitrarily thick functionally graded rectangular 

plates with general boundary conditions was given by Guoyong et al. [47] by using three-

dimensional elasticity theory. Efraim and Eisenberger [35] presented the free vibration analysis 

of annular FGM plates.  

Bodaghi and Saidi [13] have studied a new analytical approach for buckling analysis of 

thick functionally graded rectangular plates. Higher-order shear deformation plate theory was 

adopted for equilibrium and stability equations derivation. Boundary layer functions of two 

uncoupled partial differential equations in terms of transverse displacement are derived from 

the coupled governing stability equations of the functionally graded plate. Mechanical and 

thermal buckling analysis of thick functionally graded plates with closed form solution was 

reported by Samsam and Eslami [170]. Latifi et al. [95] investigated the buckling of rectangular 

FG plates subjected to biaxial compression loadings with different boundary conditions using 

Fourier series expansion. Buckling behaviour of simply supported functionally graded material  

plates under constant and linearly varying periodic loads was investigated by Rohit and Maiti 

[164]. The effect of shear deformation was studied using higher order shear deformation theory 

and first order shear deformation theory for the case of uniform compression loading. They 

concluded that the influence of transverse shear on buckling loads was almost similar for all 

types of FGMs. Xinwei et al. [219] solved the critical buckling problem of thin rectangular 

plates with cosinedistributed load along the two opposite plate edges. This analysis requires 

first the plane elasticity problem to be solved to obtain the distribution of inplane stresses and 

then the buckling problem. Mokhtar et al. [126] investigated the buckling of rectangular thin 
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functionally graded plates under uniaxial and biaxial compression by using classical plate 

theory and Navier’s solution. Buckling of functionally graded material plates was studied by 

Choi [27]; Sidda Reddy et al. [184]. To account for the transverse shear deformation effects, 

Thai et al. [206] employed a refined shear deformation theory for bending, buckling and 

vibration analysis of FG plates resting on elastic foundation.  

2.4.2 Effect of thermal environment 

Most of the researchers have dealt with free, forced vibration and buckling analysis of FGM 

plates with temperature-independent properties by using different theories. Due to the 

increased applicability of functionally graded materials in the diversified field, it is important 

to find out the vibration characteristics of functionally graded plates in thermal environments. 

Praveen and Reddy [148] found non-linear static and dynamic response of functionally graded 

ceramic- metal plates in a steady temperature environment and subjected to lateral dynamic 

loads by using finite element method. Reddy and Chin [163] have investigated a wide range of 

problems on FGM cylinders and plates including thermo-mechanical coupling effects, among 

which transient response of the plate due to heat flux was discussed. Yang and Shen [225] 

explained the vibration characteristics and transient response of FGM plates made of 

temperature dependent materials in thermal environments considering shear deformation. 

Huang and Shen [65] studied the nonlinear vibration and dynamic response of functionally 

graded material plates in thermal environments. For this analysis, the steady state heat 

conduction and temperature dependent material properties were assumed. Li et al. [99] have 

studied the free vibration analysis of functionally graded material rectangular plates in the 

thermal environment. The formulation was based on the three-dimensional linear theory of 

elasticity.  

Talha and Singh [201] developed a higher-order shear deformation theory and it 

provides additional freedom to the displacements through the thickness and thus eliminates the 

over prediction. Bouazza et al. [15] have studied buckling of FGM plate under thermal loads. 

Two types of thermal loads namely; uniform temperature rise and linear temperature rise 

through the thickness were assumed in this analysis. Talha and Singh [199] presented the 

thermo-mechanical buckling behaviour of FGM plate using higher order shear deformation 

theory. The proposed structural kinematics assumed cubically varying in-plane displacement 

and quadratically varying transverse displacement through the thickness. Maziar and Amian 

[119] studied the free vibration of functionally graded non uniform straight-sided plates with 

circular and non-circular cut outs. Moreover, thermal effects on free vibration and the effects 
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of various parameters on natural frequencies of these plates were evaluated. Matsunaga [117] 

studied the thermal buckling of FG plates with 2D higher-order shear deformation theory. 

Nuttawit et al. [137] applied an improved third-order shear deformation theory for free and 

forced vibration response study of functionally graded plates. For this analysis, both 

temperature independent and dependent materials were considered. Leetsch at al. [98] studied 

the 3D thermo-mechanical behavior of functionally graded plates subjected to transverse 

thermal loads by a series of 2D finite plate elements. Shahrjerdi et al. [176] demonstrated the 

analytical solution for the free vibration characteristics of solar functionally graded plates under 

temperature field, using second order shear deformation theory. Yang-Wann [232] found the 

analytical solution for the vibration characteristics of FGM plates under temperature field. The 

frequency equation was obtained using the Rayleigh–Ritz method based on the third-order 

shear deformation plate theory. Malekzadeh et al. [112] have investigated the free vibration of 

functionally graded (FG) thick annular plates subjected to the thermal environment using 3D 

elasticity theory.  

2.4.3 Effect of foundation 

Extensive studies about plates on elastic foundation can be found in the literature. These studies 

were carried out by means of both numerical and analytical approaches. Many of these studies 

were based on classical plate theory namely by Chucheepsakul and Chinnaboon [28], Civalek 

[29], first-order shear deformation theory by Qin [149], Eratll and Akiiz [38], Liew et al. [101], 

Han and Liew [48], Shen et al. [182], Xiang [218], Abdalla and Ibrahim [2], Buczkowski and 

Torbacki [19], Ozgan and Daloglu [138], Ferreira et al. [43], Liu [106], and higher-order shear 

deformation theory by Thai and Choi [203], [204], Zenkour [235].  

Different methods used for free vibration analysis of rectangular plates resting on 

elastic foundation are available in the literature. Huang and Thambiratnam [63] proposed the 

finite strip method for static, free vibration and critical buckling analysis of plate resting on 

elastic foundation. They simulated the spring system as elastic support with different boundary 

conditions. Thai and Kim [205] investigated a simple refined theory for bending, buckling and 

vibration study of thick plate resting on elastic foundation. This theory is based on the 

assumption that in-plane and transverse displacements consist of bending and shear 

components in which the bending components do not contribute towards shear forces and 

similarly, the shear components do not contribute toward bending moments. The most 

interesting feature of simple refined theory is that it contains two unknowns as against three in 

the case of other shear deformation theories. Hasani et al. [49] developed an analytical method 
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for free vibration analysis of FG plate resting on two parameter elastic foundation. They used 

boundary layer function for decoupling the governing equations and solved for the levy type 

boundary conditions. Dehghan and Baradaran [33] proposed a coupled FE-DQ method for 3-

D analysis of thick rectangular plates resting on elastic foundations with various boundary 

conditions. This method benefits the ability of FEM in modeling of complicated geometry and 

at the same time gains the simplicity and accuracy of DQM.  

An outstanding work on the free vibration analysis of Mindlin plate resting on Pasternak 

elastic foundation with different boundary conditions was carried out by Akhavan et al. [4]. 

Exact solutions have been obtained for all possible combinations of boundary conditions along 

the edges in the presence of in-plane loading. Yas and Aragh [227] used the differential 

quadrature method to study the free vibration of continuous grading fiber reinforced plates 

rested on elastic foundations. Jahromi et al. [77] studied the free vibration of Mindlin plates 

partially resting on elastic foundation by generalized differential quadrature method. Sharma 

et al. [178] presented the free vibration analysis of moderately thick antisymmetric cross-ply 

laminated rectangular plates with elastic edge constraints using differential quadrature Method. 

Yaghoobi and Fereidoon [221] analyzed both the mechanical and thermal buckling of FGM 

plates resting on elastic foundation with simply supported boundary conditions by an 

assessment of a simple refined nth-order shear deformation theory. Yang et al. [226] 

investigated the reciprocal theorem method for the theoretical solutions of rectangular plates 

supported on the elastic foundation with free edges. 

Hosseini et al. [56] have carried out analytical solutions for free vibration analysis of 

moderately thick rectangular plates, which were collection of functionally graded materials and 

supported by either Pasternak or Winkler elastic foundations. These rectangular plates had two 

opposite edges simply supported, whereas all possible combinations of free, simply supported 

and clamped boundary conditions were applied to the other two edges. Rashed et al. [157] 

presented the boundary element method for a Reissner plate on a Pasternak foundation. 

Chinnaboon et al. [26] developed a BEM-based meshless method for the analysis of plates on 

a biparametric elastic foundation, in addition to the boundary supports. Zenkour et al. [234] 

investigated the bending response of an orthotropic rectangular plate resting on two-parameter 

elastic foundation. Nobakhti and Aghdam [135] studied the bending of a moderately thick plate 

resting on the elastic foundation by using generalized differential quadrature (GDQ) method. 

They assumed that the plate was resting on two-parameter elastic (Pasternak) foundation or 

strips with a finite width. Malekzadeh [111] used three-dimensional elasticity theory to study 



20 
 

the free vibration analysis of FG plates resting on two parameter elastic foundation with 

different boundary conditions. Sheikholeslami and Saidi [181] analyzed the free vibration of 

FG plates resting on the elastic foundation using higher-order shear and normal deformable 

plate theory. Bahmyari and Khedmati [8] proposed a shear deformable plate theory in 

combination with Element-Free Galerkin Method (EFGM) for vibration analysis of 

nonhomogeneous moderately thick plates with point supports, resting on Pasternak elastic 

foundation. Hsu [60] developed a new version of differential quadrature method for free 

vibration analysis of rectangular plates resting on elastic foundations and carrying any number 

of spring masses. Mantari et al. [116] studied the free vibration of functionally graded plates 

resting on elastic foundation.  

Geoige and Voyiadjis [46] investigated the refined theory for bending of moderately 

thick plates on elastic foundations. This method included the transverse normal strain effect in 

addition to the transverse shear and normal stress effects. The bending problem of rectangular 

plates with free edges on elastic foundations using Galerkin's variational method was presented 

by Cheng Xiang-sheng [25]. Ramesh and Sekhar [158] studied the behavior of flexible 

rectangular plates resting on tensionless elastic foundations by finite-element method (FEM). 

Conical exact solutions using Green’s functions approach was presented by Lam et al. [93] to 

study the bending, buckling and vibration analysis of Levy-plates on two-parameter elastic 

foundations.  

Shen et al. [182] have presented free and forced vibration analysis of Reissner-Mindlin 

plates with four free edges resting on a Pasternak-type elastic foundation. Their approach was 

based on the Reissner-Mindlin first order shear deformation theory. Özdemir [139] developed 

a new fourth order finite element for thick plates resting on a Winkler foundation and the 

element was free from shear locking problem. This new fourth order finite element gave 

excellent results for static and dynamic analyses. Kumar [90] studied a differential transform 

method (DTM) for the free transverse vibration of isotropic rectangular plates resting on a 

Winkler foundation. An exact solution for free vibration analysis of simply supported 

rectangular plates on the elastic foundation has been presented by Dehghany and Farajpour 

[33] employing the three-dimensional elasticity theory. Seyedemad et al. [172] adopted a novel 

mathematical approach for study of free vibration of thin rectangular plates on Winkler and 

Pasternak elastic foundation. The closed form solutions were developed for solving the 

governing differential equations of plates.  
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2.4.4 Effect of hygrothermal environment 

Parhi et al. [144] studied the effect of hygrothermal environment on free vibration and transient 

response of multiple delaminated composite plates and shells. They used finite element method 

based on the first order shear deformation theory for calculating the fundamental frequency of 

composite plates under temperature and moisture effect. Mahato and Maiti [109] have studied 

the capabilities of active fiber composite to control the undesirable response due to 

hygrothermal effect. The effect of delamination on the natural frequencies of delaminated 

woven fiber composite plates in the hygrothermal environment was studied by Panda et al. 

[141] numerically as well as experimentally. Nayak et al. [130] studied the influence of 

environment on the free vibration of laminated composite plates with experimental 

investigation, using frequency response function spectrum and coherences techniques. Rajesh 

and patil [151] have analyzed the hygrothermally induced free vibration of laminated 

composite plates with random material properties using higher-order shear deformation theory. 

Mahapatra et al. [108] presented vibration characteristics of laminated flat panel subjected to 

hygrothermal environment based on higher order shear deformation theory. Lee and Kim [97] 

investigated the effect of hygrothermal environment on post-buckling behavior of FGM plates 

based on first order shear deformation theory and Von Karman strain displacement relations.  

A few works in literature are available on free vibration, critical buckling and static 

instability of composite plates in temperature and moisture environment. Direct and 

straightforward method was used by Benkhedda et al. [12] to determine hygrothermal stresses 

produced in the polymer matrix composite plates with the variation of temperature and 

moisture. Patel et al. [146] proposed a higher-order theory to study the effect of moisture 

concentration and temperature distribution on deflection, buckling and natural frequency of 

composite laminates. The vibration characteristics of laminated composite plates under varying 

temperature and moisture was presented by Rath and Sahu [161]. Sai Ram and Sinha [168] 

studied the moisture and temperature effects on the static instability of laminated composite 

plates. Lal et al. [92] investigated the post buckling response of functionally graded materials 

plate based on higher order shear deformation theory using von-Karman nonlinear strain 

kinematics and nonlinear finite element method.  

2.4.5 Effect of rotation 

Some of the researcher’s works on vibration analysis of rotating cantilever isotropic and 

composite plates are reflected here. Free vibration analysis of rotating composite pretwisted 
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cantilever plate was presented by Karmakar and Singh [81]. They developed a nine node three 

dimensional degenerated composite shell element for modal analysis of composite plate using 

finite element method. Yoo and Kim [229] derived the linear equation of motion for the flapw 

ise bending vibration analysis of rotating plates. Vibration analysis of rotating composite plates 

was presented by Kim [85]. He considered the in-plane and bending motion coupling effects 

for deriving the explicit mass and stiffness matrices. The effect of geometric non linearity on 

free vibration analysis of thin isotropic plates was studied by Saha [166] using numerical 

methodology.  

 Sreenivasamurthy and Ramamurti [188] investigated the Coriolis effect on first bending 

and torsional frequencies of flat rotating low aspect ratio cantilever plates using finite element 

method. Wang et al. [210] studied on the effects of hub size, rotating speed and setting angle 

free vibration of rotating cantilever rectangular plates. Shiaut et al. [183] investigated the 

vibration and optimum design of a rotating laminated blade. They used optimality criterion 

method for optimum design of rotating laminate blade with multiple frequencies. The vibration 

analysis of rotating annular plates has been studied by Liu et al. [105] using finite element 

method. Karmakar and Sinha [82] investigated the failure of pretwisted rotating plates 

subjected to centre point transverse load using finite element method. Hu et al. [62] applied the 

principle of virtual work and the Rayleigh–Ritz method for the vibration analysis of rotating 

cantilever plate with pre-twist. Hashemi et al. [53] used finite element method to determine the 

natural frequencies of a rotating thick plate. Sun et al. [194] investigated the vibration behavior 

of a rotating blade with an arbitrary stagger angle and rotation speed. They derived the 

equations of motion using the Hamilton’s principle, which are discretised by a novel 

application of the fast and efficient collocation method for rotating structures. Farhadi and 

Hosseini [41] studied the aeroelastic behavior of a supersonic rotating rectangular plate in the 

air medium. For modal analysis of the plate, the Mindlin first-order shear deformation plate 

theory along with Von Karman nonlinear terms were used. Kee and Kim [83] investigated the 

vibration of a rotating composite blade. Their analysis included the effect of centrifugal force 

and Coriolis acceleration for an initially twisted rotating shell structure. Carrera et al. [21] 

presented the free-vibrational analysis of rotating beam using Carrera Unified Formulation. 

CUF is a hierarchical formulation which offers a procedure to obtain refined structural theories 

that account for variable kinematic description.  

The exact solution for vibration and buckling of non-uniform plates subjected to in-

plane loads with time-dependent boundary condition was studied by Saeidifar and Ohadi [165]. 
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The nonlinear flutter and thermal buckling behavior of a ceramic-metal functionally graded 

plate subjected to combined thermal and aerodynamic loads were studied by Tawfik [202] 

using nonlinear finite element method based on von Karman strain displacement relations. 

Hosseini et al. [56] proposed an exact closed form solution for free vibration analysis of 

moderately thick FG plates based on first order shear deformation theory. For extracting 

dynamic equilibrium equation, Hamiltonian principle was used. Zarrinzadeh et al. [233] 

studied the free vibration of rotating axially functionally graded tapered beam with different 

boundary conditions using finite element method. A two-node beam element was used in terms 

of basic displacement functions for this analysis.  

2.4.6 Effect of skew angle 

Existing literature show that a lot of studies have been carried out on the free vibration of 

isotropic skew plates. Liew and Han [102] presented the bending analysis of a simply 

supported, thick skew plate based on the first-order shear deformation Reissner/Mindlin plate 

theory. Nair and Durvasula [129] used variational Ritz method for solution of the free vibration 

problems of skew plates with different boundary conditions. This study was approached by 

using the variational method of Ritz, a double series of beam characteristic functions being 

used in an appropriate combination of different boundary conditions. Sathyamoorthy [171] 

using Hamilton’s principle, developed the governing dynamic equations for skew plates and 

also presented numerical results. Mizusawa and Kajita [121] applied the spline finite method 

to analyze the vibration of skew plates with point supports. Rajamohan and Ramachandran 

[150] presented a new fundamental solution in oblique coordinates for the analysis of isotropic 

skew plates subjected to transverse loading. Wang [211] studied the buckling of skew fibre-

reinforced composite laminates using B-spline Rayleigh-Ritz method based on first order shear 

deformation theory. Wang et al. [213] used a new version differential quadrature method for 

buckling of thin anisotropic rectangular and isotropic skew plates. Hu and Tzeng [61] studied 

the buckling of skew composite laminated plates subjected to uniaxial in-plane compressive 

forces. Differential quadrature large amplitude free vibration analysis of laminated skew plates 

was investigated by Malekzadeh [110]. Dey and Singha [145] considered composite skew 

plates to investigate the instability regions subjected to periodic inplane loads. Elastic buckling 

behavior of uniaxially loaded skew plates with openings was presented by Tahmasebi and 

Shanmugam [196]. Krishna and Palaninathan [87] employed a general high precision triangular 

plate bending finite element to study the free vibration of skew laminates. The frequencies were 

calculated for different skew angles of simply supported and clamped conditions. 
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Upadhyay and Shukla [208] presented the large deformation flexural response of 

composite laminated skew plates subjected to uniform transverse pressure. Muhammad and 

Singh [127] proposed an energy method using polynomial for the linear static analysis of skew 

plates with simply supported and clamped boundaries. They assumed first order shear 

deformation theory for analysis of skew plate.  Ganapathi and Prakash [44] have analyzed the 

thermal buckling of simply supported functionally graded skew plates using first-order shear 

deformation theory in conjunction with the finite element approach. Zhou et al. [238] derived 

the three-dimensional elasticity solution for vibration analysis of cantilevered skew plates. 

Zhou and Zheng [239] employed the moving least square Ritz (MLS-Ritz) method to study the 

free vibration of skew plates. Skew plates with various combinations of edge support 

conditions were considered and good convergence and accuracy were demonstrated in their 

study. Liew et al. [102], [103] studied the vibration and buckling of thick skew plate using 

Mindlin shear deformation plate theory. Sengupta [174] studied the skew rhombic plates in 

transverse bending using a simple finite element method. Woo et al. [215] used integrals of 

Legendre polynomials on p-version finite element method to obtain the natural frequencies and 

mode shapes of skew plates with and without cut-outs. Eftekhari and Jafari [36] investigated 

the free vibration of rectangular and skew Mindlin plates with different boundary conditions 

by mixed finite element-differential quadrature method. Combination of these two methods are 

simpler than the case where either the FEM or DQM is individually applied to the problem. 

Xinwei et al. [220] applied the differential quadrature method (DQM) for an accurate free 

vibration analysis of skew plates. Pang-jo and Yun [142] developed the analytical solutions for 

skewed thick plates on elastic foundation. The free vibration of isotropic and laminated 

composite skew plates was studied by Srinivasa et al. [189] with the help of experimental and 

finite element methods. Lai et al. [91] have developed new discrete singular convolution-

element method for free vibration analysis of skew plates using the first-order shear deformable 

plate theory. Recently, accurate vibration analysis of skew plates was done by using the new 

version of the differential quadrature method by Wang et al. [213].  

2.5 Closure 

This chapter delivers the understanding into various past developments in the area of structural 

dynamics, particularly of plates. For the sake of simplicity, it is divided into five main sections. 

In section 2.1, introduction and a review of the literature on parametric resonance are presented. 

Section 2.2 describes a brief classification of parametric resonance. Various methods used by 

several researchers for the analysis of dynamic stability are described in section 2.3. The section 



25 
 

2.4 is devoted to the findings regarding the effect of various system parameters on the vibration 

and stability of plates. The effect of spatial variation of properties on the static, free vibration, 

forced vibration and buckling behavior of FGM plates is discussed in section 2.4.1. The 

vibration and buckling of FGM plates in high thermal environments are presented in section 

2.4.2. The section 2.4.3 presents an exhaustive review of the literature on vibration of isotropic 

and FGM plates on elastic foundation. The section 2.4.4 presents the literature review on the 

vibration and stability of composite plates in the hygrothermal environment. Vibration of 

rotating isotropic and composite plates are discussed in section 2.4.5. Section 2.4.6 describes 

the different aspects of dynamics of skew plates.  

It is observed from the reported literature that a worthy of work have been done on the 

dynamic stability of structural components made of metals, alloys and composites. A review 

of the literature shows that a lot of work have been done on the free, forced vibration and 

buckling of FGM plates. Some works has been done on the dynamic stability of isotropic and 

composite plates. Very little work has been done on the dynamic stability of FGM plates. 

Therefore, it may be concluded in this section that dynamic stability study of FGM plates 

remains an open problem to be taken up.     

Based on the review of the literature, the different problems identified for the present 

investigation are presented as follows.  

 Vibration, buckling and parametric resonance characteristics of FGM plates. 

 Vibration and parametric resonance characteristics of FGM plates in high thermal 

environments. 

 Vibration, buckling and parametric resonance characteristics of FGM plates resting on 

elastic foundation. 

 Vibration, buckling and parametric resonance characteristics of FGM plates in 

hygrothermal environments. 

 Vibration, buckling and parametric resonance characteristics of rotating FGM plates in 

high temperature thermal environments. 

 Vibration, buckling and parametric resonance characteristics of skew FGM plates in 

high temperature thermal environments. 

The influence of various parameter such as index value, boundary conditions, aspect ratio, 

temperature rise, moisture concentration, foundation stiffness, rotational speed and skew angle 

on the parametric instability characteristics of FGM plates are studied numerically.  
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Chapter 3 

DYNAMIC STABILITY OF FUNCTIONALLY GRADED MATERIAL 

PLATES UNDER PARAMETRIC EXCITATION 

 

3.1 Introduction 

In the past the stability analysis of functionally graded material plates have been dealt by some 

of the researchers. Kima and Kim [86] presented the dynamic stability analysis of a plate under 

a follower force by using the finite element method based on the Kirchhoff-Love plate theory 

and Mindlin plate theory. Tylikowski [207] studied the stability of functionally graded 

rectangular plate described by geometrically nonlinear partial differential equations using the 

direct Liapunov method. In their analysis an oscillating temperature caused generation of 

inplane time-dependent forces destabilizing plane state of the plate equilibrium. Ng et al. [133] 

investigated the parametric resonance or dynamic stability of functionally graded cylindrical 

shells under periodic axial loading, using Bolotin’s first approximation.  Chattopadhyay and 

Radu [23] investigated the dynamic instability of laminated composite plates subjected to 

dynamic loads using finite element method. Sahu and Datta [167] investigated the dynamic 

instability of isotropic, cross-ply and angle-ply laminated composite plates subjected to 

uniaxial harmonically varying in plane point or patch loads. Mohanty et al. [122] studied the 

parametric instability of delaminated composite plates under in-plane periodic loads. They 

assumed a first order shear deformation theory.  

Structural components like plates made of FGMs are suitable to apply for aerospace 

structure applications, nuclear plants and semiconductor technology. The present work 

conducts the parametric instability study of functionally graded material plates under uniaxial 

and biaxial in plane time-varying pulsating force. Four node rectangular elements are used for 
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modelling the FGM plate using finite element method. Hamilton’s principle is employed to 

establish the governing equation, which is a linear system of Mathieu–Hill type equation in 

matrix form, from which the boundaries of stable and unstable regions are determined by using 

Floquet’s theory. Free vibration and static stability analyses are also discussed as parting 

problems. Numerical analysis are presented in both dimensionless parameters and graphical 

forms. The influences of various parameters on parametric instability of FGM plate are studied 

in detail.  

3.2 Methodology  

3.2.1 Formulation of the problem  

The plate is of uniform rectangular cross-section having a length L, width W and thickness h. 

The plate is subjected to a pulsating in plane axial force  P t  represented as  

   coss tP t P P t    (3.1) 

where Ω is the excitation frequency of the dynamic load component, Ps is the static and Pt is 

the amplitude of the time dependent component of the load, respectively. A typical FGM plate 

subjected to uniaxial and biaxial in-plane dynamic loads is shown in figures. 3.1and 3.2 

respectively.  

 
 

Figure 3.1 Plate under in-plane uniaxial periodic loads Figure 3.2 Plate under in-plane biaxial periodic loads 

3.2.2The simple power law 

The properties of functionally graded material plate is assumed to vary along the thickness. 

The properties R (z) along the thickness of the functionally graded materials in terms of two 

constituent materials properties can be expressed as   

          c c m mR z R z V z R z V z   (3.2) 
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where  R z  represents the effective material properties with two constituents. cR and mR are 

ceramic and metal properties, cV and mV  are volume fraction of ceramic and metal constituents 

respectively. 

The constituent volume fraction of ceramic Vc (z) and metal Vm (z) at any location z from mid-

plane axis using rule of mixture is represented as  

     1c mV z V z   (3.3) 

 cV z is the volume fraction variation of the ceramic material and it is assumed to follow a 

simple power-law distribution as 
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where -h/ 2≤ z ≤ h/ 2 is the coordinate through the thickness from the middle surface to ceramic 

and metal sides and k is a gradient index. Figure 3.3 shows the working range variation of 

material properties (Young’s modulus) along the thickness, based on a grading index.  

Based on the volume fraction of the constituent materials, the effective material properties such 

as Young’s modulus  E z , Poison’s ratio  z  and mass density  z  of FGM plate material 

properties are obtained using the following expression.  
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 (3.5) 

where the subscripts m and c represent the metallic and ceramic constitutes, k is the power law 

index.  
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Figure 3.3 Variation of Young’s modulus along the thickness of the FGM plate 

 

 

Figure 3.4 Geometry of the FGM plate 

3.2.3 Physical neutral surface of the FGM plate 

In the present work neutral plane concept has been employed in the analysis. For a FGM plate 

due to the variation of the material properties along the thickness, the neutral plane does not 

coincide with the geometrical mid-plane of the plane as shown in figure 3.4. The distance (d) 

of the neutral surface from the geometric mid-surface may be expressed as 
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For homogeneous isotropic or symmetrical composite plates the neutral and geometric middle 

surfaces are same.  

3.2.4 Kinematics 

In the present work, the mechanics of deformation of the plate structure made up of functionally 

graded material is characterized by third order shear deformation theory using Reddy’s 

equations. Figure 3.5 shows the plate cross-section before and after deformation about the 
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neutral axis. In-plane displacements u, v and the normal displacement w are expressed with 

respect to neutral plane and are expressed as 

  
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3
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' ' ,

' '

n x x n x

n y y n y

n
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w w
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 (3.7) 

where nu , nv , nw , x and y are functions of x, y, and t (time). nu , nv  and nw denote the 

displacements of a point on the neutral surface of the plate. Here x and y are the rotations of 

transverse normal about the y and x axes, respectively.  

 

Figure 3.5 Plate structure before and after deformation 

Inplane and transverse plane strain-displacement constitutive relations with respect to neutral 

plane can written as  
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where 
1 2

4

3
c

h
 and 2 13c c .   

The stress-strain relationships of the functionally graded material plate in the global x, y and 

z coordinate system can be written as  
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The stress resultants are expressed as follows 
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Substitution of equation (3.12) in equations (3.15) and (3.16) yields the following relations 
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For all of the stiffness components are expressed as: 
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3.2.5 Energy equations  

The total strain energy   e

PU  of the plate element due to vibratory stresses according to the 

third order shear deformation theory can expressed as,  
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The kinetic energy of the plate element is given by 
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The work done by the plate element due to in-plane loads is:  
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where  P t  represents the applied in-plane load along the x and y axes respectively. 

3.2.6 FE formulation of a 4-noded rectangular element 

A rectangular four node element having one node at each corner as shown in figure 3.6 is 

considered. There are seven degrees of freedom at each node, two in plane displacements u and 

v along x and y axes, one transverse displacement w along the thickness direction, two rotations 

and two slopes about x and y directions in terms of the (𝑥 ,𝑦) coordinates.  

The element displacement vector   n
q is written as  

   
1

,
k

n

i i

i

q N q


  (3.23) 

where 
   , , , , , ,
n

x y

w w
q u v w

x y
 

  
  

  
, iq is the displacement vector corresponding to node i, 

iN  is the shape function associated with node i and k is the number of nodes per element, which 

is four in the present analysis.  

 

Figure 3.6 Geometry of the rectangular element. 
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The element nodal displacement vector  

 
  

1,2,3,4

, , , , , ,
e

i i i xi yi

i i i

w w
q u v w

x y
 



     
    

     
 (3.24) 
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w ww w
N N

x x y y 

  
 

   
   

(3.25) 

N is the shape functions matrix 

   =
n n n x y

T

u v w w w
x y

N N N N N N N N   
 

                            
 

              
4

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
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0 0 0 0 0 0
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0 0 0 0 0 0

i

i

i

i

i

i

i

i

N

N
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N N

N

N

N



 
 


 
 
 

  
 
 

 
  

  (3.26) 

      

     

1 2

3 4

1 1 1 1
,

4 4

1 1 1 1
,

4 4

N N

N N

   

   

   
 

   
 

 (3.27) 

where / , /x a y b   , a and b are the element length and width.  

The strain vector can be expressed in terms of nodal displacement vector   as  

       eb

bB q    (3.28) 

       es

sB q   (3.29) 

where,        3

0 1 2bB B z B z B     and  

                 2

3 4sB B z B   

where,           0 1 2 3 4, , ,B B B B and B  are defined as follows 
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   3

0 0 0 1 0 0

0 0 1 0 0 0

x
B N

x

 
 

  
 

  

,     4 2
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B c N

 
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Substituting equation (3.28) and equation (3.29) in equation (3.20), the element strain energy 

can be expressed as  

             1

2

T
e e e e e

p b sU q K K q     
     

 (3.30) 

The element stiffness matrix is expressed as 

      e e e

b sK K K      
     

 (3.31) 

 where,              
00 01 11 02 12 22

e e e e e e e

bK K K K K K K                  
             

 (3.32) 
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(3.33) 

        
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(3.35) 

Reproducing equation (3.21), the kinetic energy of the plate element is expressed as 

    2 2 21

2

e

A

T u v w dA    (3.36) 

The velocities ,u vand w  can be written in terms of shape functions and nodal velocity vector 

as 
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                      

   

 (3.37) 

Substituting equation (3.37) in equation (3.36) the element kinetic energy,  e
T  can be 

expressed as  
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(3.38) 
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(3.40) 

where     
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Using expressions for 
w

x




 and 

w

y




 from equation (3.25) in equation (3.22) the elemental 

work done can be written in terms of nodal displacement vector as   
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           

        
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1
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TTT
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   
   
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
 

 

(3.41) 
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e
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   

                           
   (3.42) 

where  

g

e
K 
 

is the element geometric stiffness matrix and it contains the  terms with axial 

forces only. 

3.3 Governing Equations of Motion  

The element equation of motion subjected to axial force is obtained by using Hamilton’s 

principle. 

 
      

2

1

0

t

e e e

p

t

U T W dt     (3.43) 

where 
 e

pU is the element strain energy, 
 e

T is kinetic energy of element and 
 e

W  is work done 

by the plate element.  

By dividing the plate in to a number of elements and using equations (3.30), (3.39) and (3.41) 

in equation (3.43), the equation of motion of plate element in matrix form for the axially loaded 

discretized system is obtained as follows   

                  0
e e e e e e

gM q K q P t K q       
       (3.44) 

The governing equation of motion of plate in terms of global displacement matrix obtained as 

follows. 

           0gM q K q P t K q      (3.45) 

where  K ,  M  and gK    are global stiffness, global mass and global geometric stiffness 

matrices respectively.   

          cos 0s t gM q K q P P t K q        (3.46) 

where sP is the static and tP  is the amplitude of time dependent component of the load, can be 

represented as a function of the fundamental static buckling load 
crP  of a reference plate, 
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having required boundary conditions. Hence substituting,   coscr crP t P P t     with   

and ,  called static and dynamic load factors respectively, equation (3.46) can be written as 

         cos 0cr cr

g gs t
M q K P K q P t K q             (3.47) 

where 
g s

K  
and 

g t
K  

 reflect the influence of sP and tP respectively. If the static and time 

dependent components of the load are applied in the same manner then.  

 g g gt s
K K K             

3.3.1 Parametric instability regions 

The above equation (3.47) represents a system of second order differential equations with 

periodic coefficients of Mathieu-Hill type. From the theory of Mathieu function it is evident 

that the nature of solution is dependent on the choice of load frequency and load amplitude. 

The frequency amplitude domain is divided in two regions, which give raise to stable solutions 

and to regions, which cause unstable solutions. According to the Floquet’s theory the periodic 

solutions characterize the boundary conditions between the dynamic stability and instability 

zones.  

The equation does not change its form on addition of the period 
2

T





 to t . 

This follows from the fact that  cos cost T t     therefore if  q t  is a solution of the 

equation (3.47), and then  q t T  is also its solution.  

According to the Floquet’s solutions the thm  solution of equation (3.47) can be written as,  

    m m mq t T q t   (3.48) 

where 
m  is the characteristic constant  

These solutions which acquire a constant multiplier by the addition of the period T to t can be 

represented in the form 

    
  m

t In
T

m mq t t e


  (3.49) 

where  m t  is a periodic function of period T.  

It follows from the equation (3.49) that the behaviour of the solutions as t   depends on 

the value of the characteristic roots, more precisely, on the value of its moduli. 

Taking in to account that argm m mIn In i     
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    
  m

t In
T

m mq t t e


  (3.50) 

where  
 arg m
it

T
m m t e


    

If the characteristic number 
m  is greater than unity, then the corresponding solution, equation 

will have an unbounded exponential multiplier, hence the solution is unlimited. If the same 

characteristic number is less than unity, then the corresponding solution is damped as t 

increases. Finally, if the characteristic number is equal to unity then the solution is periodic, 

i.e. it will be bounded in time. These are the conclusions of the Floquet’s theory.  

So the periodic solution can be expressed as Fourier series. 

The boundaries of the principal instability regions with period 2T are of practical importance. 

A solution with period 2T is represented by:  

 
     

1,3,..

sin cos
2 2

n n

n

n t n t
q t c d





  
  

 
  (3.51) 

A solution with period T is represented by: 

 
       0

2,4,..

sin cos
2 2

n n

n

n t n t
q t c c d





  
   

 
  (3.52) 

If the series expansions of eq. (3.51), term wise comparisons of the sine and cosine coefficients 

will give infinite system of homogeneous algebraic equations for the vectors  nc  and  nd  for 

the solutions on the stability borders. Non-trivial solutions exist if the determinant of the 

coefficient matrices of these equation systems of infinite order vanishes. When looking for 

numerical solutions, systems of finite order are required and as it is revealed in reference 

Bolotin [17], a sufficiently close approximation of the infinite Eigen value problem is obtained 

by taking 1n  in the expansion in equation (3.51) and putting the determinant of the 

coefficient matrices of the first order equal to zero. The first order expansion of equation (3.51) 

gives 

 
     1 1sin cos

2 2

t t
q t c d

 
   (3.53) 

Substituting the first order (n=1) Fourier series expansion of equation (3.53) in equation (3.47) 

and comparing the coefficients of cos
2

t
 and sin

2

t
 terms, the condition for existence of 

these boundary solutions with period 2T is given by 
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     

2

0
2 4

cr

gK P K M q



  

         
  

 (3.54) 

The above equation represents an eigenvalue problem for known values of  , and crP . This 

equation gives two sets of eigenvalues of   bounding the regions of instability due to the 

presence of plus and minus sign. The instability boundaries can be determined from the solution 

of the equation. 

 
   

2

0
2 4

cr

gK P K M



 

        
 

 (3.55) 

Also the equation (3.55) represents the solution to a number of related problems 

(1) For natural frequencies:  

0  , 0  and 
2




 ,   represents the natural frequencies of the plate. 

The equation becomes  

    2 0K M   (3.56) 

(2) For static stability or buckling analysis: 

1  , 0  and 0   

 The equation becomes 

   0cr

gK P K      (3.57) 

(3) For dynamic instability, when all terms are present 

 
   

2

1 0
2 4

cr

gK P K M


 
 

        
 

 (3.58) 

where 
2

1




 
  
 

 

The solution of equation (3.58) gives two sets of values of 
1

 
 
 

 forgiven values of  ,  , crP

, and 1 . The plot between   and 
1

 
 
 

 gives the regions of dynamic instability.  

3.4 Results and Discussion 

To study the vibration and dynamic instability of the FGM plates the numerical results are 

computed using the proposed numerical model. A computer code has been developed in 

MATLAB environment. The element stiffness, geometric stiffness and mass matrices are 

derived using the standard procedure. Numerical integration technique, Gaussian quadrature is 
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used for the element matrices calculation. The global matrices  K ,
gK    and  M  are obtained 

by assembling the corresponding element matrices. The boundary conditions are applied by 

restraining the generalized displacements in different nodes of the discretized structure. The 

validation of the proposed program is observed by comparing the results with those available 

in published literature.  

3.4.1 Validation of results  

The results for FGM plate free vibration and buckling analysis obtained by applying third order 

shear deformation theory in this study are compared with the available literature results of 

Hosseini et al. [56] (Exact closedform procedure); Hosseini et al. [57] (Analytical approach); 

Zhao et al. [236] (Element-free kp-Ritz method). The natural frequencies are obtained by 

considering a combination of Al/Al2O3 FGM, where the top surface is ceramic rich and the 

bottom surface is metal rich.  

The dimensionless frequency parameter ̂ considered as defined by Hosseini et al [56]:

ˆ /c ch E   , where cE  and c  are Young’s modulus and mass density of ceramic material. 

The plate is discretized in to 10X10 elements. Validation has been done by considering the 

values of length L=1 m, width W=1m, and thickness h=0.05 m, respectively. Poisson’s ratio, 

mass density and Young’s modulus of the ceramic and metal Zhao et al. [236]:  

𝐴𝑙, 32702 /kg m  , 970X10E Pa , 0.3  , SUS304, 38166 /kg m   , 9207.78X10E Pa

, 0.3177  , Al2O3, 
32707 /kg m  , 9380X10E Pa , 0.3   

Table 3.1 Comparison of the natural frequency parameter for simply supported FGM (Al/Al2O3) square plates.  

h/a Mode  

Number 

 Power law index (k) 

Method  0 0.5 1 4 10 

0.05 (1,1) Present  0.0146 0.0127 0.0118 0.0102 0.0091 

Hosseini [57]  0.0148 0.0128 0.0115 0.0098 0.0094 

Hosseini [56]  0.0148 0.0125 0.0113 0.0101 0.0096 

0.1 (1,1) Present  0.0566 0.0491 0.0453 0.0392 0.0350 

Hosseini [57]  0.0577 0.0492 0.0445 0.0383 0.0363 

Hosseini [56]  0.0577  0.0490  0.0442  0.0382  0.0366 

(1,2), 

(2,1) 

Present  0.1365 0.1172 0.1074 0.0928 0.0835 

Zhao [236]  0.1354 0.1154 0.1042 - 0.0850 

Hosseini [56]  0.1376 0.1173 0.1059 0.0911 0.0867 

(2,2) Present  0.2095 0.1784 0.1624 0.1453 0.1271 

Zhao [236]  0.2063 0.1764 0.1594 0.1397  0.1324 

Hosseini [56]  0.2112 0.1805 0.1631  - 0.1289  

0.2 (1,1) Present  0.2072 0.1766 0.1608 0.1390 0.1258 

Zhao [236]  0.2055 0.1757 0.1587 0.1356 0.1284 

Hosseini [56]  0.2112 0.1805 0.1631 0.1397 0.1324 
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Table 3.1 shows the natural frequency parameter obtained from the present study using 

third order shear deformation theory and reference results. There is a good agreement between 

the presented results and those from  Hosseini et al. [56]; Hosseini et al. [57]; Zhao et al. [236].  

Buckling analysis has been performed for FGM rectangular plates with different values 

of power law index. To validate the present calculation method, comparison of critical buckling 

loads for simply supported FGM plates is shown in table 3.2 (a-b). There is good agreement 

between the present and results of Choi [27]; Sidda Reddy et al. [184] for uniaxial and biaxial 

loading cases with different power law index.  

Non-dimensional critical buckling load parameter by Choi [27] is:  (  2 3/cr mN N L E h )  

Table 3.2(a) Comparison of non-dimensional critical buckling load of simply supported FGM (Al/Al2O3) plate 

subjected to uniaxial loading.  

 Loading  L/h 

 

 Power law index (k) 

 0 0.5 1 5 10 

 

 

Uniaxial  

10 Present  18.49 11.99 9.58 6.43 5.22 

Choi [27] 18.57 12.12 9.33 6.03 5.45 

Sidda Reddy [184] 18.54 12.08 9.299 5.99 5.42 

20 Present  19.52 12.72 10.35 7.29 5.59 

Choi [27] 19.57 12.56 9.66 6.34 5.76 

Sidda Reddy [184] 19.35 12.53 9.649 6.32 5.75 

50 Present  19.83 12.97 10.35 7.47 5.70 

Choi [27] 19.58 12.69 9.763 6.42 5.84 

Sidda Reddy [184] 19.54 12.67 9.743 6.45 5.87 

100 Present  19.88 12.79 10.45 7.49 5.72 

Choi [27] 19.61 12.71 9.77 6.45 5.87 

Sidda Reddy [184] 19.57 12.69 9.75  6.43 5.86 

Table 3.3(b) Comparison of non-dimensional critical buckling load of simply supported FGM (Al/Al2O3) plate 

subjected biaxial loading 

Loading  L/h 

 

 Power law index (k) 

 0 0.5 1 5 10 

 

 

 

 

Biaxial 

10 Present  9.102 6.009 4.717 3.322 2.572 

Choi [27] 9.289 6.062 4.670 3.018 2.726 

Sidda Reddy [184] 9.273 6.045 4.650 2.998 2.715 

20 Present  9.610 6.257 5.091 3.589 2.753 

Choi [27] 9.676 6.283 4.834 3.172 2.883 

Sidda Reddy [184] 9.658 6.270 4.821 3.162 2.876 

50 Present  9.762 6.380 5.208 3.589 2.753 

Choi [27] 9.791 6.349 4.882 3.219 2.931 

Sidda Reddy [184] 9.772 6.336 4.872 3.212 2.825 

100 Present  9.787 6.398 5.223 3.685 2.805 

Choi [27]  9.807 6.358 4.889 3.225 2.938 

Sidda Reddy [184] 9.788 6.345 4.879 3.219 2.932 

3.4.2 Natural frequency and buckling analysis 
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The following numerical results are obtained by considering the steel (SUS304) as the bottom 

surface and alumina (Al2O3) as the top surface in the FGM plate. The geometry of the plate is 

as follows: length L=1 m, width W=1 m, thickness h=0.1 m. 

The frequency parameter ( ) as defined by Talha and Singh [199] has been adopted for this 

numerical analysis and is expressed as  

 2 2 2 4 212 1 /c cL W E h        

The variation of natural frequency parameter in FGM (SUS304/Al2O3) plate with 

different boundary conditions are shown in figures 3.7-3.10. The effect of power law index k 

on the frequencies can be seen for different boundary conditions. Increasing index value leads 

to reduce the natural frequencies. These plots, 3.7-3.10 reveal that the effect of power law index 

value from k=0 to 3 is more prominent than the higher values of k. The increase in power law 

index reduces the ceramic content and increases the metal content, hence there is a reduction 

in effective Young’s modulus, so the frequencies decrease.  

  

Figure 3.7 First five frequency parameters verses 

index value with SFSF boundary conditions.  

Figure 3.8 First five frequency parameters verses 

index value with SSSS boundary conditions. 

  

Figure 3.9 First five frequency parameters verses 

index value with SCSC boundary conditions. 

Figure 3.10 First five frequency parameters verses 

index value with CCCC boundary conditions. 

The effect of aspect ratio on the first five natural frequencies of FGM (k=1) plate is 

investigated and is presented in figure 3.11 and 3.12 for SSSS and CCCC boundary conditions 
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respectively. It is observed from the figures that the increase in aspect ratio decreases the first 

five natural frequencies.  

  

Figure 3.11 Variation of first five frequency 

parameters verses aspect ratio with SSSS boundary 

condition.  

Figure 3.12 Variation of first five frequency 

parameters verses index value with CCCC boundary 

condition. 

Figures 3.13 and 3.14 show the results of critical buckling load of simply supported 

FGM rectangular plate. The critical buckling load decreases when the power law index value 

increases, both in uniaxial and biaxial compression cases. This happens due to the reduction in 

effective Young’s modulus of the FGM with increasing power law index value. 

  

Figure 3.13 Variation of critical buckling load verses 

index value under uniaxial compression. 

Figure 3.14 Variation of critical buckling load verses 

index value under biaxial compression. 

3.4.3 Dynamic stability analysis 

The dynamic stability of FGM plates under parametric excitation has been investigated. The 

power law index value, the length, the width and the thickness of the FGM plates are varied to 

assess their effects on the parametric instability behaviour. For dynamic stability study the first, 

second and third mode instability regions are represented through key as

.   
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Figure 3.15 Dynamic stability of simply supported FGM plate under uniaxial loading with different aspect 

ratios, k=1, . 

Figures 3.15-3.17 show the dynamic stability regions of simply supported FGM plate 

with aspect ratio L/W=0.5, 1, 1.5 and plate thickness h=0.1m. Figures 3.15-3.17 reveal that for 

plate under uniaxial loading with increasing aspect ratio, the instability regions shift to lower 

frequencies of excitation. Structural plates are usually subjected to low frequency vibration. So 

when the instability regions shift to lower frequencies of excitation, the chance of occurrence 

of instability is more. Hence with increase in aspect ratio of the FGM plate the instability is 

enhanced. 

 

Figure 3.16 Dynamic stability of simply supported FGM plate under uniaxial loading with different aspect 

ratios, k=2, key as in fig. 3.15. 

 

Figure 3.17 Dynamic stability of simply supported FGM plate under uniaxial loading with different aspect 

ratios, k=5, key as in fig. 3.15. 
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Figure 3.18-3.20 show that increase in power law index value (k=1, 2 and 5) reduces 

stability of FGM plate under uniaxial periodic loads. It can be seen that the instability regions 

are shifted towards the dynamic load axis with increase in power law index value, thus 

occurring at lower excitation frequencies. The effect is more significant on higher mode 

instability regions than on the first mode region. Hence, increase in power law index increases 

the dynamic instability of the FGM plate.  

 

Figure 3.18 Stability regions for simply supported FGM plate under uniaxial loading with different index 

values, L/W=0.5, key as in fig. 3.15. 

 

 

Figure 3.19 Stability regions for simply supported FGM plate under uniaxial loading with different index 

values, L/W=1, key as in fig. 3.15.  
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Figure 3.20 Stability regions for simply supported FGM plate under uniaxial loading with different index 

values, L/W=1.5, key as in fig. 3.15.  

The effect of aspect ratio on the first three instability regions of simply supported plate 

subjected to biaxial loading are presented in figures 3.21-3.23. The unstable regions are 

relocated nearer to the dynamic load axis with increase of aspect ratio L/W. So increase of 

aspect ratio increases the probability of dynamic instability of FGM plate under biaxial periodic 

loads.  

 

Figure 3.21 Stability regions for simply supported FGM plate under biaxial loading, k=1, key as in fig. 3.15.  

 

Figure 3.22 Dynamic stability regions for simply supported FGM plate under biaxial loading, k=2, key as in 

fig. 3.15. 
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Figure 3.23 Dynamic stability regions for simply supported FGM plate under biaxial loading, k=5, key as in 

fig. 3.15.  

The first three principal parametric instability regions of FGM plate of rectangular 

cross-section with various index values and aspect ratio under biaxial dynamic loading is 

examined through figures 3.24-3.26. The first three principal instability regions are shifted 

towards the dynamic load factor axis as the power law index increases from 1, 2 to 5, thereby 

enhancing the chance of parametric instability. As the value of power law index increases, the 

stiffness of the plate reduces and hence the excitation frequency to cause instability decreases, 

making the plate more prone to instability. 

 

Figure 3.24 Dynamic stability of simply supported FGM plate under biaxial loading, L/W=0.5, key as in fig. 

3.15. 
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Figure 3.25 Dynamic stability of simply supported FGM plate under biaxial loading, L/W=1,

.     

 

Figure 3.26 Dynamic stability of simply supported FGM plate under biaxial loading, L/W=1.5, key as in fig. 

3.15. 

 

Figure 3.27 Dynamic stability diagram of simply supported FGM plate subjected to uniaxial loading for α=0 

and 0.5, key as in fig. 3.15. 
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Figures 3.27 and 3.28 show the dynamic stability diagrams of simply supported FGM 

plate subjected to uniaxial and biaxial loading case respectively. Here the first two principal 

instability regions shift towards the dynamic load axis with an increase of static load factor α. 

The increasing static load factor reduces the stability of the FGM plate subjected to both 

uniaxial and biaxial loading case.     

 

Figure 3.28 Dynamic stability diagram of simply supported FGM plate subjected to biaxial loading for α=0 

and 0.5, key as in fig. 3.25. 

 

3.5 Conclusion  

Finite element modelling of rectangular FGM plate has been developed using third order shear 

deformation theory. Based on the above formulation various types of analyses i.e. free 

vibration, buckling and dynamic stability have been carried out.  

In case of FGM plate with increase of power law index value, the first five natural 

frequencies decrease. If aspect ratio is increased the critical buckling load decreases for 

uniaxial and biaxial loading and it is also observed that as the power law index value increases 

critical buckling load decreases.  

Increase in aspect ratio of rectangular plate results in decrease of the stability of FGM 

plate for both uniaxial and biaxial loading cases. With increase of the power index value, 

instability regions moves closer to dynamic load axis with the different aspect ratios, it shows 

that there is deterioration of the dynamic stability. This happen both for uniaxial and biaxial 

dynamic loading. Increasing static load factor reduces the stability of simply supported FGM 

plate for both uniaxial and biaxial loading case.  
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Chapter 4 

DYNAMIC STABILITY OF FUNCTIONALLY GRADED MATERIAL 

PLATES IN HIGH THERMAL ENVIRONMENT UNDER 

PARAMETRIC EXCITATION 

  

4.1 Introduction  

Functionally graded materials are advanced composite microscopically heterogeneous 

materials in which the mechanical properties vary smoothly and continuously along certain 

direction. This is achieved by gradually changing the volume fraction of the constituent 

materials. The main advantages of FGMs are diminished cracks and removal of the large inter 

laminar stresses at intersections between interfaces. The material properties of the FGM can be 

tailored to attain the specific requirements in different engineering applications in order to get 

the advantages of the properties of individual material. This is possible because the material 

composition of the FGM changes continuously in a preferred direction. In recent years, 

functionally graded material has become increasingly important especially in high temperature 

applications such as aerospace, nuclear reactors and power generation industries. FGM plate 

like structures may be subjected to periodically time-varying in-plane force, it may cause 

parametric resonance. Therefore understanding of the dynamic stability characteristics of FGM 

plates in thermal environments is important for the design of the structures.  

Bouazza et al. [15] have studied buckling of FGM plate under thermal loads. Two types 

of thermal loads were assumed in this analysis namely; uniform temperature rise and linear 

temperature rise through the thickness. Talha and Singh [201] presented the thermo-mechanical 

buckling behaviour of FGM plate using higher order shear deformation theory. The proposed 
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structural kinematics assumed cubically varying in-plane displacement and quadratically 

varying transverse displacement through the thickness. Matsunaga [117] has presented the 

thermal buckling of temperature independent FG plates using a 2D higher-order shear 

deformation theory. Nuttawit et al. [137] investigated an improved third-order shear 

deformation theory for free and forced vibration response analysis of functionally graded 

plates. For this analysis, both temperature independent and dependent materials were 

considered. Leetsch et al. [98] studied the 3D thermo-mechanical behavior of functionally 

graded plates subjected to transverse thermal loads by a series of 2D finite plate elements. 

Young-Wann [232] found the analytical solution for the vibration characteristics of FGM plates 

under temperature field. The frequency equation was obtained using the Rayleigh–Ritz method 

based on the third-order shear deformation plate theory. Malekzadeh et al. [113] have 

investigated the free vibration of functionally graded thick annular plates subjected to thermal 

environment using the 3D elasticity theory.  

As the importance of thermal resistance and strength in high temperature environment 

grows, the study on vibration and dynamic stability of FGM structures have actively progressed 

recently. Yang et al. [223] studied the dynamic stability of symmetrically laminated FGM 

rectangular plates with general out-of-plane supporting conditions subjected to a uniaxial 

periodic in-plane load and undergoing uniform temperature change. Previous studies on the 

dynamic stability of functionally graded material plates subjected to time-dependent 

compressive axial loads were mainly based on temperature independent material. It is evident 

from the available literature that the dynamic stability of temperature dependent FGM plate 

has not been thoroughly studied. In the present study, the dynamic stability behaviour of all 

side clamped and simply supported FGM plate in high temperature environment subjected to 

harmonically time-dependent in-plane force has been presented. Finite element method using 

four node rectangular elements has been used to model the FGM plate. Based on Bolotin’s 

method the boundary frequencies of instability regions were determined. Also the free vibration 

and the buckling of the FGM plate were investigated as related problems.   

4.2 Mathematical Modelling  

4.2.1 Formulation of the Problem 

Figure 4.1 shows the FGM plate subjected to thermal loading. The temperature of the plate 

varies along the thickness direction only as per certain rules, namely uniform, linear and non-

linear temperature rise.   
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Figure 4. 1 FGM plate subjected to thermal loads 

4.2.2 Functionally graded material plate constitutive law  

 A functionally graded material plate is made of metal and ceramic mixtures. The material 

composition is varied from the bottom surface to the top surface along thickness direction. The 

bottom surface (z =−h/2) of the plate is metal, whereas the top surface (z =h/2) is ceramic. The 

effective material property of FGM plate is needed for thermo-mechanical analysis. The 

effective material properties are calculated using a simple power law.  

The effective material properties assumed to vary along the thickness direction of the plate can 

be expressed as  

          c c m mR z R z V z R z V z   (4.1) 

where  R z  represents the Young’s modulus E, mass density ρ, Poisons ratio v, coefficient of 

thermal expansion  , moisture expansion coefficient   and thermal conductivity  of the 

temperature dependent FGM plate.  

The volume fractions of the constituent materials, ceramic Vc (z) and metal Vm (z) at any 

location z from mid- plane are related as follows:  

     1c mV z V z   (4.2) 

The volume fraction of the ceramic constituent material as per power law distribution can be 

written as 

 1
,0
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k
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V k

h

 
     
 

  (4.3) 

where k is the power law index, which prescribes the ceramic constituent material variation 

along the thickness direction of the plate.  

The temperature dependent material properties are obtained using the following expression.  
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    1 2 3

0 1 1 2 31R T P P T PT PT PT

      (4.4) 

where P0, P−1, P2, and P3 are the coefficients of temperature T in Kelvin and are unique to each 

constituent.  

 0T T T z   , where T(z) is temperature rise through the thickness direction and T0 is room 

temperature.  

From the above equations the effective material properties with two constituents for 

functionally graded material plates can be expressed as fallows  
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(4.5) 

where the subscripts c and m represent ceramic and metal properties respectively. For the 

analysis, the temperature field is applied in the thickness direction only and the temperature 

field is assumed to be constant in the X Y plane of the plate. 

4.2.3 Physical neutral surface of the FGM plate  

In the present work neutral plane concept has been employed for the analysis. The distance (d) 

between the neutral plane to geometric mid-surface can be expressed by equation (3.6).  

4.2.4 Thermal analysis  

The behavior of FGM plate in thermal environments is considered for this study. The one 

dimensional temperature distribution through the thickness direction is assumed. In this case 

three thermal environments are considered: uniform, linear and nonlinear temperature 

distribution.  

4.2.4.1 Uniform temperature distribution 

In uniform temperature field, the temperature rise through the thickness is given as 
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    0' 'T z T T z    (4.6) 

where ΔT (z’) =Tc-Tm denotes the temperature gradient and T0 =300K is room temperature. 

Tc and Tm are temperature at ceramic surface and at metal surface respectively. 

4.2.4.2 Linear temperature distribution 

The variation of temperature distribution under linear rise through the thickness can be 

expressed as  
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 (4.7) 

4.2.4.3 Nonlinear temperature distribution  

The one dimensional temperature distribution through the thickness direction is considered 

with T=T (z’). In order to obtain the temperature distribution along the thickness a steady-state 

heat transfer equation can be represented as  
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 (4.8) 

where  'z is the effective thermal conductive of the FGM. 

This equation is solved by prescribing temperature at top and bottom surfaces such as 

 T = Tc at z’ = h/2−d and T = Tm at z’ = −h/2−d.  

The temperature rise through the thickness direction can be expressed as  
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 (4.9) 

4.2.5 Constitutive relations  

The stress-strain relationships of the FGM plate in the global x, y and z coordinate system, 

when there is a temperature change by T can be written as  
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  (4.10) 



57 
 

where   
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c mT T T    , here mT and cT  are reference temperature at metal surface and ceramic surface 

respectively.  Also,  is the thermal expansion coefficient.  

The in-plane force resultants, moments and higher order moments due to temperature rise are 

defined as  
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 (4.11) 

Substituting equation (4.10) in equation (4.11) yields the following relations 
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The stiffness components are expressed as: 
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The inplane strain-displacement relationship due to temperature change about neutral axis can 

written as  
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The strain vector can be expressed in terms of nodal displacement vector   e
q as  

     ebT T

bB q    
 (4.15) 
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4.2.6. Finite Element Analysis  

The element strain energy   e

TU  of the plate duo to thermal stresses is expressed as  
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Substituting equation (4.11) and (4.14) in equation (4.16), the element strain energy due to 

thermal stresses can be expressed as 
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The element thermal stiffness matrix is expressed as 
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Work done by the plate element due to external load is discussed in section 3.2. The geometric 

stiffness matrix  e

gK 
 

 considered for this analysis is given by equation (3.42).  
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4.3 Governing Equations of Motion 

 The equations of motion for a FGM plate element in thermo-mechanical environment is 

established by applying Hamilton’s principle.  
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The potential energy and the kinetic energy for plate element can be written in terms of 

displacement vector as 
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are given by equations (3.31), 

(3.40) and (3.42) respectively in chapter 3.  

The governing equation of motion of the axially loaded FGM plate element in matrix form can 

written as 
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The governing equation of motion of the plate in terms of global displacement matrix can be 

obtained as follows  

          0ef gM q K q P t K q          (4.23) 

where  P t is the time dependent dynamic load, can be represented in terms of static critical 

buckling load crP of metallic plate having similar applied boundary conditions. Hence 

substituting,    coscrP t P t     with  and  as static and dynamic load factors 

respectively in equation (4.23). Equation (4.23) becomes 
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where    ef TK K K      

efK    is the global effective stiffness matrix and  K , TK , M  and 
gK   are global elastic 

stiffness matrix, thermal matrix, mass matrix and geometric stiffness matrix respectively and 

 q  is global displacement vector.  

Referring to equation (3.54) of chapter 3, the condition for existence of the boundary solutions 

with period 2T is given by 

 
   

2

0
2 4

cr

ef gK P K M q



  
            

  
 (4.25) 

The instability boundaries can be determined from the solution of the equation 

 
 

2

0
2 4

cr

ef gK P K M



 

           
 

 (4.26) 

Following the procedure described in section 3.3.1, the natural frequencies,  

critical buckling load and instability regions of FGM plate in high temperature thermal 

environment are determined.   

4.4 Results and Discussion  

4.4.1 Comparison study  

To verify the present calculation method, the numerical results of clamped FGM 

(Si3N4/SUS304) square plates are compared with the available results in the literature.          
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Table 4.1 shows the temperature dependent material properties for this analysis. The plate has 

been discretized by 10X10 elements.   

Table 4.1 Temperature dependent material properties [Reddy and Chin, [163]]  

Materials   P-1 P0 P1 P2 P3 

 

 

Al2O3 

E (Pa) 0 349.55X109
 -3.853x10-4 4.027x10-7 -1.67310-11 

 (/K) 0 6.8269x10-6 1.838x10-4 0 0 

 ѵ 0 0.26 0 0 0 

ρ(kg/m3) 0 2700 0 0 0 

  

 

Si3N4 

E (Pa) 0 348.43X109
 -3.070x10-4 2.160x10-7 -8.94610-11 

 (/K) 0 5.872x10-6 9.065x10-4 0 0 

 ѵ 0 0.24 0 0 0 

ρ(kg/m3) 0 2370 0 0 0 

  

 

SUS304 

E (Pa) 0 201.04x109 3.079x10-4 -6.534x10-7 0 

 (/K) 0 2.33x10-6 8.086x10-4 0 0 

ѵ 0 0.3262 -2.002x10-4 3.797x10-7 0 

ρ(kg/m3)  0 8166 0 0 0 

The dimensionless natural frequency parameter is defined as: 
2

0

2

o

IL

D





  

where  3 2

0 0, /12 1I h D Eh    . The material properties,  , E, and    are chosen to be 

the values of stainless steel (SUS304) at the reference temperature T0 = 300K. 

Table 4.2 shows the first five natural frequency parameters of clamped FGM 

(Si3N4/SUS304) plate. Present numerical experiment results are compared with the results of 

reference researchers Yang [222], Young [232] and Li et al. [99]. For this analysis the square 

plate with thickness to side ratio h/W=0.1 and power law index value k=2 is subjected to 

different uniform temperature distribution ( 0 ,300 ,500T  K). Table 4.2 shows that present 

method results agree well with those of Yang [222], Young [232] and Li et al. [99].  

Table 4. 2 Comparisons of first five natural frequency parameters for CCCC (Si3N4/SUS304) FGM plates under 

uniform temperature distribution (L=0.2 m, h/W=0.1, k=2, T0=3000 K).  

T (K) Source  
1  2  3  4  5   

0 Yang [222]  4.1062 7.8902 7.8902 11.1834 12.5881 

Young[232] 4.1165 7.9696 7.9696 11.2198 13.1060 

Li et al.[99] 4.1658 7.9389 7.9389 11.1212 13.0973 

Present  4.0792 8.0195 8.0195 11.1770 13.8933 

300 Yang [222]  3.6636 7.2544 7.2544 10.3924 11.7054 

Young [232] 3.6593 7.3098 7.3098 10.4021 12.1982 

Li et al.[99] 3.7202 7.3010 7.3010 10.3348 12.2256 

Present  3.6196 7.3580 7.3580 10.3559 12.9624 

500 Yang [222]  3.2335 6.6281 6.6281 9.5900 10.8285 

Young [232] 3.2147 6.6561 6.6561 9.5761 11.2708 

Li et al.[99] 3.2741 6.6509 6.6509 9.5192 11.3126 

Present  3.1825 6.7173 6.7173 9.5450 11.5914 
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Figure 4.2(a) Variation of first mode dimensionless 

frequency parameter of FGM plate in uniform 

temperature field for different boundary conditions, 

k=1. 

Figure 4.2(b) Variation of second mode dimensionless 

frequency parameters of FGM plate in uniform 

temperature field for different boundary conditions, 

k=1. 

 

  
Figure 4.3(a) Variation of first mode dimensionless 

frequency parameter of FGM plate in linear 

temperature field for different boundary conditions, 

k=1.  

Figure 4.3(b) Variation of second mode dimensionless 

frequency parameter of FGM plate in linear 

temperature field for different boundary conditions, 

k=1. 

4.4.2 Natural frequency Analysis  

For vibration and dynamic stability study a functionally graded material plate of 

(Al2O3/SUS304) of length 0.2 m, width 0.2 m and thickness ratio 0.025 m has been considered.  

Figures 4.2 (a) and (b) depict the variation of dimensionless natural frequency 

parameters of FGM plate under uniform temperature environment for first and second mode 

respectively, with different boundary condition as mentioned in the figures. The effect of 

temperature rise on first and second mode dimensionless frequencies of FGM plates in linear 

temperature field are shown in figures 4.3 (a) and (b), respectively. Figure 4.4 (a) and (b) 

illustrate the effect of nonlinear temperature field on first and second mode dimensionless 

frequency parameters, respectively. It can be observed from these plots that increase in 

temperature decreases the first two mode frequencies in uniform, linear and nonlinear 
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temperature environments. It is also observed that the first two mode dimensionless frequencies 

of fully clamped FGM plate is the highest and that of SSSS plate is the lowest, in between is 

the SCSC corresponding to any thermal environment.  

  
Figure 4.4(a) Variation of first dimensionless 

frequency parameters of FGM plate in nonlinear 

temperature field for different boundary conditions, 

k=1.  

Figure4.4(b) Variation of second dimensionless 

frequency parameters of FGM plate in nonlinear 

temperature field for different boundary conditions, 

k=1. 

Figures 4.5 (a) and (b) display the first and second mode dimensionless frequency 

parameters versus temperature rise for SSSS (Al2O3/SUS304) FGM plates in different thermal 

environments respectively. The power law index is taken to be k=1, FGM plate subjected to 

uniform, linear, and nonlinear temperature distribution environments is considered. The 

uniform temperature change affects the natural frequencies considerably more than the linear 

and nonlinear temperature changes.  

  

Figure 4.5(a) Variation of first mode frequency 

parameter of simply supported FGM plate with 

different temperature fields, k=1.  

Figure 4.5(b) Variation of second mode frequency 

parameters of simply supported FGM plate with 

different temperature fields, k=1. 

The variation of first and second mode dimensionless frequency parameters with 

temperature rise for a simply supported (SSSS) FGM plate in nonlinear thermal field for k=1 

and 5 are plotted in figures 4.6 (a) and (b) respectively. It can be observed that the frequency 

for first two modes decrease with increase of index value and temperature also.  
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Figure 4.6(a) Variation of first frequency parameter of 

simply supported FGM plate for index values k=1 and 

k=5.  

Figure 4.6(b) Variation of second frequency 

parameter of simply supported FGM plate for index 

values k=1 and k=5. 

4.4.3 Dynamic stability analysis 

Figures 4.7-4.9 display the dynamic stability behaviour of simply supported FGM plate under 

uniform temperature, linear temperature and nonlinear temperature distribution. The 

temperature rise causes the shitting of the stability regions towards the dynamic load factor 

axis, this indicates that the chances of system instability at lower excitation frequency is more 

and hence the dynamic stability is said to be deteriorated.  

 

Figure 4.7 Dynamic stability diagram of simply supported FGM plate in uniform temperature field, k=5, 
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Figure 4.8 Dynamic stability diagram of simply supported FGM plate in linear temperature field, k=5, key as 

in fig. 4.7.  

 

 

Figure 4.9 Dynamic stability diagram of simply supported FGM plate in nonlinear temperature field, k=5, key 

as in fig. 4.7.  

Figures 4.10-4.12 illustrate the first two mode instability regions of all sides clamped 

FGM plate (k=5) for different temperature changes 0, 200 and 400 K. It is observed that in the 

presence of high temperature fields and increase in temperature, instability regions shift to 

lower excitation frequencies. When instability occurs at lower excitation frequency, the chance 

of occurrence of instability is more, hence with increase in environment temperature the 

instability of the plate increases. The increasing temperature degrades the structural strength of 

FGM plates, hence natural frequencies decrease. The reduced frequencies cause the shift of 

inability regions towards the lower excitation frequencies.    
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Figure 4.10 Dynamic stability diagram of fully clamped FGM plate in uniform temperature field, k=5, key as 

in fig. 4.7.  

 

Figure 4.11 Dynamic stability diagram of fully clamped FGM plate in linear temperature field, k=5, key as in 

fig. 4.7.  

 

Figure 4.12 Dynamic stability diagram of fully clamped FGM plate in nonlinear temperature field, k=5, key as 

in fig. 4.7.   

Figures 4.13 and 4.14 show the principal dynamic instability regions of simply 

supported and clamped FGM plates in thermal environments with uniform, linear and nonlinear 

temperature distribution respectively. The FGM plate with power law index k=5 and 

temperature change 200K is considered. The dynamic stability regions of FGM plate from 

Figures 4.13 and 4.14 illustrate that the temperature variation of uniform temperature type is 

more dominant than those of linear and nonlinear temperature distribution environments. It can 
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be observed that the effect of temperature rise on first principal instability region is less 

compared with the second principal instability region.   

 

Figure 4.13 Dynamic stability diagram FGM plate with simply supported boundary conditions, k=5. 

200T K  , key as in fig. 4.7 

 

Figure 4.14 Dynamic stability diagram of FGM plate with fully clamped boundary conditions, k=5. 

200T K  , key as in fig. 4.7. 

Figure 4.15 shows the first two principal instability regions of simply supported FGM 

plate (k=1) and temperature rise 200K. It is observed that increase in thickness ratio (h/W) from 

0.05 to 0.1 increases the stability of FGM plate in thermal environment. The first two instability 

regions shift away from the dynamic load axis when the thickness ratio increases. When 

instability regions shift to higher excitation frequencies, the dynamic stability is said to be 

enhanced, so increase of thickness of the plate enhances its dynamic stability.  
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Figure 4.15 Dynamic stability diagram of simply supported FGM plate with thickness ratio h/W=0.05, 0.1, key 

as in fig. 4.7.   

 

Figure 4.16 Dynamic stability diagram of simply supported FGM plate for different index values k=1, 5 and 

10, key as in fig. 4.7.  

The first two instability regions for temperature change 200K of a simply supported 

FGM plate with different index values k=1, 5 and 10 are shown in figure 4.16. The instability 

regions of FGM plate k=1 occur at higher excitation frequency. With increase of index value 

k=5 and 10, the instability regions move closer to the dynamic load factor axis. So with increase 

of index value the instability of the plate occurs at lower excitation frequencies and hence the 

stability of the FGM plate deteriorates with increase of power law index. With increase of 

power law index the natural frequencies of the plate reduce, this leads to the occurrence of 

instability at lower frequencies.  

Figure 4.17 represents the first two mode instability regions of clamped FGM plate in 

thermal environment for different power law index values k=1, 5 and 10. The plate is exposed 

to an environment temperature change of 200K. It is seen that the increase in power law index 

value reduces the stability of the FGM plate. The instability regions of FGM plate k=1 are 

located farthest from the dynamic load factor axis. Hence, it is most stable among the three 

cases. Similarly, the FGM plate k=5 and k=10 are respectively the intermediate and least stable 

plates. 
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Figure 4.17 Dynamic stability diagram of clamped FGM plate for different index values k=1, 5 and 10, key as 

in fig. 4.7.   

Figure 4.18 displays the first and second mode instability regions of FGM plate with 

simply supported and all sides clamped boundary conditions, k=1 and temperature change is 

200 K. Plate with all sides clamped is more stable than simply supported condition. This is due 

to the fact that clamped end condition increases the rigidity of the plate compared to simply 

supported condition.  

 

Figure 4.18 Dynamic stability FGM plate with simply supported and fully clamped boundary conditions. k=1, 

key as in fig. 4.7.   

4.5 Conclusion  

The free vibration and parametric instability characteristics of temperature dependent FGM 

plates in high temperature environment is investigated using finite element approach. Finite 

element model of a rectangular FGM plate has been developed using four node rectangular 

elements. The results are presented for FGM plates with different boundary conditions. 

The FGM plate under uniform temperature, linear temperature and nonlinear 

temperature environment are considered. FGM plates in high temperature environment with 

the increase in temperature, the first two natural frequencies decrease. Increased temperature 

reduces the natural frequencies both for CCCC and SSSS plates. The natural frequencies are 
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found to be more sensitive to the uniform temperature change. The increase in index value 

reduces the natural frequencies of FGM plates in thermal environment.  

Increase in environment temperature enhances the instability of simply supported and 

all sides clamped FGM plates. Lower values of power law index ensure better stability of FGM 

plates with simply supported and clamped boundary conditions compared to higher index 

values. The increase in index value reduces the stability of FGM plate for uniform, linear and 

nonlinear temperature distribution. The temperature rise reduces the stability of FGM plate in 

all the three thermal environments. All these factors contribute combinedly to the deterioration 

of dynamic stability of FGM plate under thermal environment.   
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Chapter 5 

DYNAMIC STABILITY OF FUNCTIONALLY GRADED MATERIAL 

PLATES ON ELASTIC FOUNDATIONS UNDER PARAMETRIC 

EXCITATION 

 

5.1 Introduction  

Functionally graded material (FGM) plate structures resting on elastic foundation are 

extensively used in many engineering applications. Due to smooth distribution of material 

constituents, there is no abrupt change of stresses. These structural components like plates 

supported on an elastic foundation often find applications in the construction of nuclear, 

mechanical, aerospace, and civil engineering structures. These FGM plates can be subjected to 

external in plane periodic excitations, which may cause parametric resonance.  

A few research papers have reported the dynamic stability of plates on elastic 

foundation. Hiroyuki [64] examined the two-dimensional higher-order theory for natural 

frequencies and buckling stresses of thick elastic plates resting on elastic foundations. Patel et 

al. [143] investigated the dynamic instability of laminated composite plates supported on elastic 

foundations, subjected to periodic inplane loads, using C1 eight-noded shear-flexible plate 

element. Recent research works on vibration and buckling analysis, focus on the functionally 

graded material structures. Özdemir [140] developed a new fourth order finite element for thick 

plates resting on a Winkler foundation and the element was free from shear locking problem. 

A study of the literature reveals the existence of virtuous researches on buckling and free 

vibration analysis of FGM plates supported on elastic foundation.  
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From the literature review it seems that the dynamic stability of temperature dependent 

FGM plate supported on elastic foundation has not been studied. In the present work the 

dynamic stability of a FGM plate supported on Winkler and Pasternak foundations and 

subjected to uniform, linear and nonlinear thermal environment has been investigated. A four 

node finite element with seven degrees of freedom per node has been adopted to model the 

plate. Finite element method in conjunction with Hamilton’s principle has been used to 

establish the governing equation. Third order shear deformation theory has been considered in 

the analysis. Floquet’s theory has been used to establish the stability boundaries. Effects of 

different system parameters like foundation elastic constants, thickness ratio and power law 

index etc. on the dynamic stability behaviour of the FGM plate have been investigated.  

5.2 Mathematical Formulation  

The FGM plate of length L, width W, and thickness h, resting on elastic foundation and 

subjected to in-plane dynamic load is shown in figure 5.1. The plate is assumed to be subjected 

to biaxial in plane dynamic loading. The time varying load is   coss tP t P P t   . Ps is the 

static load component and Pt is the dynamic load component.  

The plate with seven degrees of freedom assumed in this case is same as that shown in 

figure 3.4 and described in chapter 3. Neutral plane concept adopted and described in chapter 

3 has also been adopted here. The element stiffness matrix, mass matrix and thermal stiffness 

matrix for FGM plate element derived in section 4.2 are also applicable in this case.  

 The effect of elastic foundation is introduced as elastic foundation stiffness matrix which is 

derived from the work done by the elastic foundation and is obtained as described below.  
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Figure 5.1 FGM plate resting on elastic foundation. 

5.2.1 Energy equations  

The strain energy of the foundation of plate element can be expressed as: 

 
 

22

2

0 0

1

2

a b
e

F w s

w w
U k w k dxdy

x y

     
             

   (5.1) 

where kw is the Winkler foundation constant and ks is the  foundation shear layer constant.  

5.2.2 Elastic foundation stiffness matrix  

 The Pasternak foundation element stiffness matrix e

FK   is derived from the strain energy
e

FU

of the foundation  

 
           

0 0

1

2

Ta b TT Te e e

F w w w s w w w w
x x y y

U q k N N k N N N N q dx dy   
   

                               
   (5.2) 

                         1 1

2 2

T T
e e e e e e

wk slq K q q K q       
         

 

The element Winkler foundation stiffness  e

wkK 
 

and shear foundation stiffness matrices 

 e

slK 
 

are expressed as  

 
     

0 0

a b
Te

wk w w wK k N N dx dy  
     (5.3) 

 
 

0 0

Ta b T
e

sl s w w w w
x x y y

K k N N N N dx dy   
   

                           
   (5.4) 

The element foundation stiffness matrix is  
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      e e e

F wk slK K K      
     

 (5.5) 

5.3 Governing Equation of Motion 

In order to derive the equations of motion of a plate element, section 3.3 can be suitably 

modified for the present case. Using equations (3.30), (3.39), (5.5) and (3.41) in equation (3.43) 

element equation of motion can be written as, 

                  0
e e e e e e

ef gM q K q P t K q       
       (5.6) 

where        e e e e

ef F TK K K K         
       

 

efK   is effective stiffness matrix and  e
K 
 

,  e

FK 
 

 and  e

TK 
 

are element stiffness matrix, 

Pasternak foundation stiffness matrix  and element thermal matrix respectively.  P t  can be 

written in terms of crP , here the fundamental static buckling load of an isotropic metallic plate, 

having same dimensions of the FGM plate considered.   coscr crP t P P t     with   and 

 as static and dynamic load factors respectively.  

The equation of motion of the plate on elastic foundation in global matrix form can be 

expressed as 

       cos 0cr

ef gM q K P t K q                (5.7) 

where 
ef F TK K K K                  

efK    is the effective global stiffness matrix and  K , TK ,
FK   , M  and 

gK   are global 

elastic stiffness matrix, thermal stiffness matrix, Pasternak foundation stiffness matrix, mass 

matrix and geometric stiffness matrix respectively and  q  is global displacement vector.  

The condition for existence of the boundary solutions with period 2T is given by 

 
   
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cr
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
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  
            

  
 (5.8) 

The instability boundaries can be determined from the solution of the equation 

 
 
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ef gK P K M



 

           
 

 (5.9) 
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Following the procedure described in section 3.3.1, the natural frequencies,  

critical buckling load and instability regions of FGM plate resting on elastic foundation can be 

determined.  

5.4 Results and Discussion  

5.4.1 Validation of the formulation 

In this section, the validation of the present method is established using available results in the 

literature for fully simply supported FGM plates. For a square FGM (Al/Al2O3) plate, the 

natural frequency parameter ( ) values from the present work are compared with those of 

Baferani et al. [49], and are listed in Table 5.1. The result shows good agreement achieved 

between these works. The small variation may be due to the different shear deformation 

theories considered. Then, the results for free vibration analysis of FGM thick plates with 

SCSC boundary conditions supported on Pasternak foundation are presented in Table 5.2. The 

present numerical experiment results are verified with the results of the higher-order theory of 

Baferani et al. [49]. 

Table 5.1 The natural frequency parameter of FG square plate versus the shear and Winkler parameters, power 

law index and thickness–length ratio for simply supported boundary conditions. /m mh E    

Kw Ks h/L   

k=0 k=1 k=2 

Present Baferani et 

al.[49] 

Present Baferani et 

al.[49] 

Present Baferani et 

al.[49] 

0 0 0.05 0.0292 0.0291 0.0243 0.0227 0.0219 0.0209 

0.1 0.1137 0.1134 0.0946 0.0891 0.0855 0.0819 

100 0.05 0.0407 0.0406 0.0391 0.0382 0.0384 0.0380 

0.1 0.1602 0.1599 0.1543 0.1517 0.1518 0.1508 

100 

 

0 0.05 0.0299 0.0298 0.0252 0.0238 0.0230 0.0221 

0.1 0.1166 0.1162 0.0985 0.0933 0.0901 0.0867 

100 0.05 0.0412 0.0411 0.0397 0.0388 0.0391 0.0386 

0.1 0.1622 0.1619 0.1568 0.1542 0.1545 0.1535 
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Table 5.2 The natural frequency parameter of FG square plate versus the shear and Winkler parameters, power 

law index and thickness–length ratio for SCSC boundary conditions. 

Kw  Ks h/L   

k=0 k=1 k=2 

Present  Baferani et 

al.[49] 

Present  Baferani et 

al.[49] 

Present  Baferani et 

al.[49]  

0 0 0.05 0.0423 0.0421 0.0352 0.0324 0.0318 0.0295 

0.1 0.1594 0.1589 0.1326 0.1239 0.1198 0.1125 

100 0.05 0.0517 0.0515 0.0476 0.0457 0.0458 0.0443 

0.1 0.1977 0.1972 0.1829 0.1777 0.1764 0.1729 

100 

 

0 0.05 0.0428 0.0426 0.0359 0.0332 0.0326 0.0304 

0.1 0.1615 0.1609 0.1354 0.1268 0.1231 0.1161 

100 0.05 0.0521 0.0519 0.0481 0.0462 0.0463 0.0449 

0.1 0.1993 0.1988 0.1850 0.1799 0.1787 0.1751 

5.4.2 Natural Frequency and buckling analysis 

The side and thickness of square (SUS304/Al2O3) FGM plate are L=1 and h=0.1m, and the 

Winkler and shear layer constants are kw=50 and ks=50, respectively. Figures 5.2-5.4 illustrate 

the effect of temperature rise on the first two dimensionless natural frequency of simply 

supported FGM plate on elastic foundation for uniform, linear and nonlinear temperature 

thermal environments. It is perceived that the first and second mode dimensionless natural 

frequencies have decreasing tendency with increase in temperature and it is different for 

different thermal environments. A distinct decrease is observed for increase in index value, 

k=1, 2 and 5.   

  

Figure 5.2(a) First mode natural frequency vs. 

temperature rise with uniform temperature field for 

various index values (k=1, 2 and 5, kw=50, ks=50).  

Figure 5.2(b) Second mode natural frequency vs. 

temperature rise with uniform temperature field for 

various index values (k=1, 2 and 5, kw=50, ks=50).  
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Figure 5.3(a) First mode natural frequency vs. linear 

temperature rise for various index values (k=1, 2 and 

5, kw=50, ks=50).  

Figure 5.3(b) Second mode natural frequency vs. 

linear temperature rise for various index values (k=1, 

2 and 5, kw=50, ks=50). 

  

Figure 5.4(a) First mode natural frequency vs. 

nonlinear temperature rise for various index values 

(k=1, 2 and 5, kw=50, ks=50). 

Figure 5.4(b) Second mode natural frequency vs. 

nonlinear temperature rise for various index values 

(k=1, 2 and 5, kw=50, ks=50). 

Figures 5.5 (a) and (b) display the effect of temperature rise on first and second mode 

dimensionless natural frequency for FGM plate k=5 on elastic foundation for different thermal 

environments, respectively. It is observed that the effect of temperature variation of uniform 

type on natural frequencies is more pronounced than linear and nonlinear temperature 

distribution.  

  

Figure 5.5(a) First mode natural frequency vs. 

temperature rise for different thermal environments 

uniform, linear and nonlinear temperature fields (k= 

5, kw=50, ks=50).  

Figure 5.5(b) Second mode natural frequency vs. 

temperature rise for different thermal environments 

uniform, linear and nonlinear temperature fields (k= 

5, kw=50, ks=50). 
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The first and second mode natural frequency parameter variation with the thickness 

ratio (h/L) for different values of Winkler foundation constant is shown in figures 5.6 (a) and 

(b), respectively. It can be seen that with increase in thickness ratio, the natural frequencies 

increase. With the increase in thickness of the plate there is relative increase in stiffness of the 

plate, which results in higher natural frequencies.  

  

Figure 5.6(a) First mode natural frequency vs. 

thickness ratio for different Winkler coefficients 

(kw=0, 100 and 500, ks=50, k=1). 

Figure 5.6(b) Second mode natural frequency vs. 

thickness ratio for different Winkler coefficients 

(kw=0, 100 and 500, ks=50, k=1). 

Figure 5.7 (a) illustrates the variation of first mode natural frequency with thickness 

ratio for the Winkler foundation constant (kw=50) and different values of shear layer constant 

(ks=0, 100 and 500). It can be observed that the frequency increase with increase in thickness 

ratio for various shear layer constant values. Figure 5.7 (b) represents the effect of thickness 

ratio on second mode natural frequency of FGM plate. The second mode natural frequency also 

exhibits an increasing tendency with increase in thickness ratio.   

  
Figure 5.7(a) First mode natural frequency vs. 

thickness ratio for different Winkler coefficients 

(ks=0, 100 and 500, kw=50, k=1). 

Figure 5.7(b) Second mode natural frequency vs. 

thickness ratio for different Winkler coefficients 

(ks=0, 100 and 500, kw=50, k=1). 

Figure 5.8(a) and (b) show the effect of Winkler foundation constant on natural 

frequency of FGM plate for first and second mode, respectively. The Winkler foundation 
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constant varies from 0 to 500. It can be observed that the first two mode natural frequencies 

increase as the Winkler foundation constant increases. The increase of index value reduces the 

frequency parameter.  

  
Figure 5.8 (a) Effect of Winkler constant on first mode 

frequency parameters (ks=50, T =200 K).  
Figure 5.8(b) Effect of Winkler constant on second 

mode frequency parameters (ks=50, T =200 K). 

Figures 5.9(a) and (b) describe the effect of shear layer constant on the first two mode 

natural frequencies for different values of power law index k=1, 2 and 5, respectively. Figure 

5.9, depicts that the natural frequency of FGM plate increases with the increase in the value of 

shear layer constant. This tendency is observed because effective stiffness becomes higher as 

the shear layer constant increases and consequently, the larger effective stiffness increases the 

natural frequencies. 

  

Figure 5.9(a) Effect of shear layer constant on first 

mode frequency parameters (kw=50, T =200 K). 

Figure 5.9(b) Effect of shear layer constant on second 

mode frequency parameters (kw=50, T =200 K). 
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Figure 5.10(a) Effect of Winkler constant on critical 

buckling load for various index values (k=1, 2 and 5, 

T =200K). (ks=50) 

Figure 5.10(b) Effect of shear layer constant on 

critical buckling load for various index values (k=1, 2 

and 5, T =200K). (kw=50)  

The effect of elastic foundation parameters on critical buckling load of biaxially loaded 

simply supported FGM plate under nonlinear temperature rise is depicted in figure 5.10. It can 

be observed that increasing the Winkler foundation constant increases the critical buckling load 

of the FGM plate for various index values k=1, 2 and 5 as shown in figure 5.10 (a). The 

buckling load increases by increasing the shear layer constant as illustrated in figure 5.10(b). 

It is observed that the increase in power law index value reduces the critical buckling load.  

5.4.3 Dynamic stability analysis  

The fundamental natural frequency and the critical buckling load of simply supported steel 

plates are calculated from equations (3.39) and (3.40) respectively without considering 

foundation. For the dynamic stability study of FGM plate on elastic foundation these 

parameters are considered as reference frequency 
1  and reference buckling load crP .  

 

Figure 5.11 Regions of instability for first and second mode of FGM plates with steel-rich bottom resting on 

Pasternak foundation (kw=50, ks=50),     

The first and second mode primary instability regions of FGM plate resting on 

Pasternak foundation (kw=50, ks=50) for different index values k=1, 2 and 5 is shown in figure 
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5.11. It is observed that the first and second mode instability regions shift towards the dynamic 

load axis with increase in index value k=1, 2 and 5. So the increase in power law index value 

increases the instability of FGM plate supported on elastic foundation.  

Figure 5.12 illustrates the influence of the temperature rise on the first two mode 

instability regions of FGM plate on Pasternak foundation (kw=50, ks=50). The first and second 

mode instability regions are farthest from the dynamic load axis for the temperature 0K case. 

The increase in temperature to 300 K and 600 K increases the instability of FGM plate. Because 

with increase in temperature the instability regions occur at lower excitation frequencies. 

Hence, chance of occurrence of instability is more. The effect of temperature rise on second 

mode instability regions is found to be more prominent than on the first mode which can be 

noticed from figure 5.12.  

 

Figure 5.12 Dynamic instability regions of FGM plate resting on Pasternak foundation ((kw=50, ks=50)) for 

temperature changes 0K, 300K and 600K. (k=1), key as in fig. 5.11.  

Figure 5.13 represents the effect of thickness ratio on first and second mode instability 

regions of FGM plate resting on Pasternak foundation. It can be seen that with increase in 

thickness ratio the instability regions shift to higher frequencies of excitation. Which means 

increase in thickness ratio ensures better dynamic stability. When the thickness of the plate 

increases its natural frequencies increase and this leads to occurrence of instability at higher 

excitation frequencies. The effect is more pronounced on the second principal instability 

regions than on the first principal instability regions.  

Figures 5.14(a) and (b) show the first two mode instability regions of FGM plate 

supported on Winkler foundation (kw=0, 200 and 400) and shear layer constant (ks=50) for 

index values k=1 and 5 respectively. It is also found that increase in Winkler foundation 

constant value increases the stability of plate. It is also observed that the effect of kw is more 
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prominent on first mode instability regions than on the second mode instability regions of the 

plate.  

 

Figure 5.13 Effect of thickness ratio on first and second mode instability of FGM plate resting on Pasternak 

foundation (kw=50, ks=50), 200T  K, key as in fig. 5.11. 

 

 

Figure 5.14(a) Effect of Winkler foundation constant on first and second mode instability of FGM plate for 

index value k=1, 50sk  , 200T  K, key as in fig. 5.11.   

 

Figure 5.14(b) Effect of Winkler foundation constant on first and second mode instability of FGM plate for 

index value k=5, 50sk  , 200T  K, key as in fig. 5.11.  
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Figure 5.15(a) Effect of Shear layer constant on first and second mode instability of FGM plate with index 

value k=1, 50wk  , 200T  K, key as in fig. 5.11.  

 

Figure 5.15(b) Effect of Shear layer constant on first and second mode instability of FGM plate with index 

value k=5, 50wk  , 200T  K , key as in fig. 5.11.  

The first two mode instability regions of FGM plate, k=1 and k=5 resting on Winkler 

foundation (kw=50) and shear layer constant (ks=0, 100 and 200) are shown in figures 5.15 (a) 

and (b) respectively. Here the instability regions are relocated farther from the dynamic load 

factor axis with increase in shear layer constant of the Pasternak foundation. So increase of 

shear layer constant value increases the stability of the FGM plate.  

Figure 5.16 (a) and (b) display the effect of Winkler’s foundation constant and shear 

layer constant on the dynamic stability of FGM plate with index value k=1 and 5, respectively. 

It can be observed that increase of Winkler foundation constant (kw=50 to 100) slightly 

increases the stability of the FGM plate. Similarly, with an increase of shear layer constant 

(ks=50 to 100) increases the stability of FGM plate significantly. So it is evident that foundation 

shear layer constant has got more enhancing effect on the stability of plate as compared to 

Winkler foundation constant. It is because higher excitation frequency occurs with an increase 

of shear layer constant.    
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Figure 5.16(a) Effect of Pasternak foundation constants on first and second mode instability of FGM plate for 

index value k=1, 200T  K, key as in fig. 5.11.  

 

Figure 5.16(b) Effect of Pasternak foundation constants on first and second mode instability of FGM plate for 

index value k=5, 200T  K, key as in fig. 5.11.   

 

5.5 Conclusion  

A rigorous numerical work has been carried out to study the effects of the elastic foundation 

constants on the vibration, critical buckling as well as the dynamic stability of FGM plate in 

uniform, linear and nonlinear thermal environments. Increase of temperature and power law 

index value reduces the first two natural frequencies of simply supported FGM plate resting on 

elastic foundation. With an increase of Winkler foundation constant there is increase of the first 

two natural frequencies of FGM plate. With Pasternak foundation, increase of shear layer 

constant increases the first two natural frequencies of FGM plate.  An increase of Winkler 

foundation constant and shear layer constant increases the critical buckling load of the simply 

supported FGM plate under biaxial loading condition. 

The instability of FGM plate increases with the rise in environment temperature. The 

dynamic stability of FGM plate increases with a rise of Winkler foundation constant. Increase 

of shear layer constant increases the dynamic stability of FGM plate resting on the elastic 
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foundation. Increase of shear layer constant and Winkler foundation constant has a combined 

effect of enhancing the stability of the plate. However the effect of shear layer constant is more 

pronounced than the Winkler elastic constant.  
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Chapter 6 

DYNAMIC STABILITY OF FUNCTIONALLY GRADED MATERIAL 

PLATES IN HYGROTHERMAL ENVIRONMENT UNDER 

PARAMETRIC EXCITATION 

 

6.1 Introduction  

Functionally graded material plates are extensively used in the high performance application 

such as aerospace, gas turbine blades, automobile parts and other application areas in high 

temperature environment which can affect the overall strength. During their service life, they 

may be exposed to moisture and temperature environment. Temperature and moisture have 

significant effects on the stiffness of the plates and hence on its vibration and dynamic stability. 

It is important to understand their dynamic characteristics under different loading conditions. 

The FGM plate structures may be subjected to periodic in-plane load. These periodic loads may 

cause the system to become unstable for certain combinations of dynamic load amplitude and 

excitation frequency. This phenomenon is called as dynamic instability or parametric 

resonance of elastic structures. Thus the dynamic stability characteristics of FGM plate 

subjected to hygrothermal loads are of a great significance for understanding the dynamic 

system under periodic loads.  

Parhi et al. [144] developed a finite element method for free vibration and transient 

response analysis of multiple delaminated composite plates and shells under uniform moisture 

content and temperature separately. B-spline finite strip method (FSM) by Wanga and Dawe 

[214] was based on the first-order shear deformation plate theory in the analysis of the dynamic 

instability of composite laminated rectangular plates and prismatic plate structures. Rao and 
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Sinha [156] investigated the free vibration and transient response of multidirectional 

composites, where the effects of temperature and moisture concentration were also included. 

The parametric instability of woven fiber laminated composite plates subjected to in-plane 

periodic loadings in hygrothermal environment was studied by Rath and Dash [160]. Ramu 

and Mohanty [152] studied the dynamic instability of FGM plates in high temperature 

environment. Lee and Kim [97] investigated the effect of hygrothermal environment on post-

buckling behavior of FGM plates based on first order shear deformation theory and Von 

Karman strain displacement relations.   

Though, in most of the above literature, studies on dynamic instability of composite 

plate in hygrothermal environment are reported, there is no reported work on dynamic stability 

of a FGM plate in hygrothermal environment. The change of temperature and moisture 

concentration affects the natural frequencies and critical buckling load of the FGM plates. The 

following work investigates the effects of the moisture content, temperature difference and 

power law index on the parametric resonance characteristics of FGM plate under high 

temperature and moisture environment. 

6.2 Mathematical Modelling  

A typical four noded rectangular element with 7-degrees of freedom per node as described in 

chapter-3 is chosen for the analysis. 

FGM plate experiences hygrothermal stresses and strains when exposed to temperature and 

moisture. Such stresses can be expressed as 
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where m cC C C   in here 
mC and 

cC are the reference moisture concentration at metal and 

ceramic side. Also is moisture expansion coefficient.  

Hygrothermal stresses and strains relationship can be expressed as  
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The thermal stress concept assumed and described in chapter 4 by equation (4.10) has also 

been adopted here.  
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  (4.10) 

When there is a moisture concentration by C , the stress-strain relationships of the FGM plate 

in the global x, y and z coordinates system can be written as  
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The force resultants, moments and higher order moments due to moisture concentration are 

expressed as 
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Substituting equation (6.4) in equation (6.3) yields the following relations 
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The stiffness components are expressed as: 
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The strain-displacement relationship about the neutral plane due to moisture presence can be 

written as  
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The strain vector can be expressed in terms of nodal displacement vector   e
q as  
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6.2.1 Finite Element Analysis  

The element strain energy 
 e

HU of the plate duo to moisture concentration is expressed as  
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Substituting equation (6.5) and (6.8) in equation (6.10), the element strain energy due to 

moisture concentration can be expressed as 
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The element moisture stiffness matrix is derived as 
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6.3 Governing Equations of Motion 

The total work done on the plate is due to axial force as given in equation (3.42) and strain 

energy due to thermal load is as given in equation (4.16). The elastic stiffness and mass matrices 

of the FGM plate element derived in section 3.2.6 are also applicable in this case and hence 

have not been repeated.  

The equations of motion for a FGM plate element, referring section 3.3 can be modified for 

hygrothermal environment case and is given as  

                  0
e e e e e e

ef gM q K q P t K q       
       (6.13) 

where 
       e e e e

ef T HK K K K         
          

 e

efK 
 

is effective stiffness matrix and  e
K 
 

,  e

TK 
 

 and  e

HK 
 

are element stiffness 

matrix, thermal stiffness matrix  and moisture stiffness matrix.  

The governing equation of motion of FGM plate in terms of global displacement matrix is 

obtained as follows  

          0ef gM q K q P t K q          (6.14) 

where  P t is the time dependent dynamic load, which can be represented in terms of static 

critical buckling load crP  of metallic plate having similar applied boundary conditions. Hence 

substituting,   coscr crP t P P t     with  and   called as static and dynamic load factors 

respectively, equation (6.14) can be expressed as 
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      cos 0cr

ef gM q K P t K q                (6.15) 

where ef T HK K K K                  

efK    is the effective stiffness matrix and  K , TK , 
TK   , M  and 

gK   are global elastic 

stiffness matrix , thermal matrix, moisture matrix, mass matrix and geometric stiffness matrix 

respectively and  q  is global displacement vector.  

The condition for existence of the boundary solutions with period 2T is given by 

 
   

2

0
2 4

cr

ef gK P K M q



  
            

  
 (6.16) 

The instability boundaries can be determined from the solution of the equation 

 
 

2

0
2 4

cr

ef gK P K M



 

           
 

 (6.17) 

Following the procedure described in section 3.3.1, the natural frequencies,  

critical buckling load and instability regions of FGM plate in hygrothermal 

environment are determined.  

6.4 Results and Discussion  

6.4.1 Comparison study   

Validation of the present computational method has been carried out by considering a 

(Si3N4/SUS304) FGM plate in uniform temperature environment with clamped boundary 

condition. For this numerical study the typical values of temperature-dependent material 

property coefficients are adopted from table 4.1 shown in chapter 4.  

For simplicity, the non-dimensional natural frequency parameter is expressed as: 

2

0

2

IW

D





  

where,  3 2

0 , /12 1mI h D E h    . The material properties m  , m  and mE are 

chosen to be the values of metal at T = 300K.  

The numerical results of natural frequency parameters of first six modes of clamped 

FGM (Si3N4/SUS304) rectangular plates are obtained by applying third order shear deformation 

theory. The obtained numerical results are compared with the available literature results of 
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Senthil and Batra [175] and Yang and Shen [222]. The following non-dimensional natural 

frequencies presented in table 6.1 are obtained by considering a combination of Si3N4/SUS304, 

where the upper surface is ceramic-rich and the lower surface is metal-rich. The FGM plates, 

subjected to the uniform temperature rise condition is considered for aspect ratios L/W = 1.0 

and 1.5, and power law index k = 2 and 10. There is good agreement between the results 

predicted by present method and the results of Senthil and Batra [175] and Yang and Shen 

[222]. 

Table 6. 1 Comparisons of first six natural frequency parameters for CCCC (Si3N4/SUS304) FGM rectangular 

plates subjected to uniform temperature rise (L=0.2m, h/W =0.1, Tm = 300K, T  = 300K).  

L/W k Source  Frequency parameters 

1  2  3  4  5  6  

1 2 Yang [222] 3.6636  7.2544 7.2544 10.3924 11.7054 12.3175 

 Senthil [175] 3.7202  7.3010  7.3010  10.3348  12.2256  12.3563  

  Present  3.6618 7.2832 7.2832 10.2549 12.5202 12.6552 

 10 Yang [222] 3.1835 6.3001 6.3001 9.0171 10.2372 10.6781 

 Senthil [175] 3.1398 6.1857 6.1857 8.7653 10.3727 10.4866 

 Present  3.1032 6.2780 6.2780 8.8216 10.5657 10.6823 

1.5 2 Yang [222] 2.7373 4.2236 6.6331 6.6331 7.9088 9.8122 

 Senthil [175] 2.7904 4.2839 6.6401 6.7227 7.8941 9.8528 

 Present  2.7572 4.2212 6.6635 6.6775 7.8474 9.8760 

10 Yang [222] 2.3753 3.6672 5.7618  5.7618 6.8690  8.5206 

 Senthil [175] 2.3470 3.6147 5.6234 5.6910 6.6888 8.3553 

 Present  2.3058 3.5409 5.6113 5.6198 6.6110 8.3264 

6.4.2 Free vibration and buckling analysis  

Numerical analysis has been performed using FGM square plate made up of Al2O3/SUS305; 

with length of 0.2m and thickness of 0.02m. Natural frequencies of FGM plates are obtained 

from numerical experiments for different thermal environments. Figures 6.1-6.3 display the 

first two frequency parameters vs temperature rise of FGM plate in thermal environments with 

simply supported boundary conditions. Figures 6.1 (a), 6.2 (a) and 6.3 (a) show the variation 

of fundamental frequency parameter for power law indices k=1 and 5 subjected to uniform, 

linear and nonlinear temperature rise conditions. Similarly, the figures 6.1 (b), 6.2 (b) and 6.3 

(b) illustrate the variation of second mode frequency parameters of simply supported FGM 

plate under uniform, linear and nonlinear temperature rise conditions for volume fraction 

indices k=1 and 5. Observations from these plots show that increase of temperature change 

reduces the first two mode frequency parameters. This happens due to the decrease of plate 

stiffness at increased temperature.  
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Figure 6.1(a) Temperature rise verses first mode 

natural frequency parameter of FGM plates with 

uniform temperature field for k=1 and k=5. 
 1%C   

Figure 6.1(b) Temperature rise verses second mode 

natural frequency parameter of FGM plates with 

uniform temperature field for k=1 and k=5,. 
 1%C   

 

  

Figure 6.2(a) Temperature rise verses first mode 

natural frequency parameter of FGM plates with linear 

temperature field for k=1 and k=5,  1%C  . 

Figure 6.2(b) Temperature rise verses natural 

frequency parameter of FGM plates with linear 

temperature field for k=1 and k=5,  1%C  . 

 

  

Figure 6.3(a) Temperature rise verses first mode 

natural frequency parameter of FGM plates with 

nonlinear temperature field for k=1 and k=5, 

 1%C   

 Figure 6.3(b) Temperature rise verses second mode 

natural frequency parameter of FGM plates with 

nonlinear temperature field for k=1 and k=5, 

 1%C    
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The uniform temperature environment affects the natural frequency parameters more 

significantly than the linear and nonlinear temperature fields. It can be explained by figure 6.4 

where the temperature rise of the uniform temperature environment is more intensive than those 

of linear and nonlinear temperature environments.  

 

Figure 6.4 Variation of fundamental frequency parameter verses temperature change for uniform, linear and 

nonlinear thermal environments,  1, 1%k C   .  

The natural frequencies of the FGM plate are shown in figures 6.5 (a) and (b) against 

moisture concentration for different power law index values (k=1, k=5, 200T K  ) with 

simply supported boundary condition. It is observed that the first and second mode frequency 

parameters reduce with increase in moisture concentration. Increase of moisture concentration 

reduces the effective stiffness of the plate, so the natural frequencies drop.  

  

Figure 6.5(a) Moisture concentration verses first 

mode natural frequency parameter of FGM plates in 

hygrothermal environment,  200T K  . 

Figure 6.5(b) Moisture concentration verses second 

mode natural frequency parameter of FGM plates in 

hygrothermal environment,  200T K  . 

Figures 6.6 (a) and 6.6 (b) depict natural frequencies variation with increase in moisture 

concentration (%) for simply supported FGM plate with power law index k=2 and 10 and with

500T K  . The first and second mode natural frequencies of the FGM plates are reduced 
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with rise in moisture concentration from 0% to 1.5%. There is significant reduction in natural 

frequency parameters of FGM plate in hygrothermal environment with increasing moisture 

concentration. The reason behind this reduction of natural frequencies is that the presence of 

moisture concentration in hygrothermal environment reduces the stiffness of the FGM plate. 

The first and second mode natural frequencies decrease with increase in power law index, due 

to the fact that the effective modulus of elasticity is decreased. 

Figures 6.7 (a) and (b) illustrate the effect of moisture concentration on the critical 

buckling load of the FGM plates in hygrothermal environment for k=1 and 5. The moisture 

concentration is varied from 0% to 1.5%. The increased moisture concentration reduces the 

critical buckling load. The critical buckling load results show that the FGM plate is sensitive 

to the amount of moisture concentration and then moisture may cause to degrade the structural 

characteristics.  

  

Figure 6.6(a) First mode natural frequency parameter 

variation with respective moisture concentration. 

 500T K   

Figure 6.6(b) Second mode natural frequency 

parameter variation with respective moisture 

concentration.  500T K   

 

  

 Figure 6.7(a) Variation of critical buckling load of 

FGM plate with moisture concentration (%),

200T K  , k=1 and 5. 

Figure 6.7(b) Variation of critical buckling load of 

FGM plate with moisture concentration (%),

500T K  , k=2 and 10 
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6.4.3 Dynamic stability analysis  

The effects of temperature rise on the dynamic stability of FGM plates are illustrated in figures 

6.8-6.9 for power law indices k=1 and k=5. It is observed that the parametric instability regions 

are shifted towards the dynamic load axis with increase in temperature change in the order of 

0K, 200K and 400K. Increase in temperature reduces the structural stiffness causing the 

reduction in the excitation frequency of parametric resonance, hence the probability of 

instability increases.  

 

Figure 6.8 Effects of temperature change on dynamic stability of FGM plate with simply supported boundary 

condition at power law index (k=1),  

 

 

Figure 6.9 Effects of temperature change on dynamic stability of FGM plate with simply supported boundary 

condition at power law index (k=5), key as in fig. 6.8.  

Figures 6.10 and 6.11 show the effect of moisture on dynamic stability of FGM plate 

in hygrothermal environment keeping temperature change (100K) constant. Increase in 

moisture concentration (0%, 0.75% and 1.5%) increases the dynamic instability of FGM plate 

with k=1 and k=5. The increasing moisture concentration lowers the excitation frequency and 

the first two stability regions shift towards the dynamic load axis, so the chance of instability 

becomes more.   
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Figure 6.10(a) Effect of moisture concentration on 

first mode instability region of FGM plate in 

hygrothermal environment, (100 K, k=1) 

Figure 6.10(b) Effect of moisture concentration on 

second mode instability region of FGM plate in 

hygrothermal environment, (100 K, k=1) 

  

Figure 6.11(a) Effect of moisture concentration on 

first mode instability region of FGM plate in 

hygrothermal environment, (100 K, k=5) 

Figure 6.11(b) Effect of moisture concentration on 

second mode instability region of FGM plate in 

hygrothermal environment, (100 K, k=5) 

Figures 6.12(a) and (b) present the dynamic stability of FGM plates in hygrothermal 

environment for different combination of temperature change and moisture concentration (100, 

0.5%), (300, 1%) and (500, 1.5%) with power law index value, k=1. In this case increase of 

both the temperature rise and moisture concentration degrades the overall structural stiffness. 

The reduced structural stiffness decreases the excitation frequency and the dynamic instability 

regions shift towards the dynamic load axis.  

The effects of increasing both temperature rise and moisture concentration on the 

excitation frequencies are analyzed for FGM plates and shown in figures 6.13 (a) and (b) with 

power law index k=5. In this case also the combined effect of increase of temperature and 

moisture concentration is same as that observed in figures 6.12(a) and (b) only difference is 

that the instability occurs at further lower excitation frequencies, this is due to increased value 

of k.  
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Figure 6.12(a) First mode principal instability region 

of FGM plate in hygrothermal environment at 

temperature change (100 K) with power law index 

values (k=1). 

Figure 6.12(b) Second mode principal instability 

region of FGM plate in hygrothermal environment at 

temperature change (100 K) with power law index 

values (k=1). 

  

Figure 6.13(a) First mode dynamic instability region 

of FGM plate in hygrothermal environment at 

temperature change (100K) with power law index 

values (k=5). 

Figure 6.13(b) Second mode dynamic instability 

region of FGM plate in hygrothermal environment at 

temperature change (100K) with power law index 

values (k=5).  

 

6.5 Conclusion  

Vibration and parametric instability study of FGM plates with power law property distribution 

along the thickness in hygrothermal environments has been carried out based on third order 

shear deformation theory using finite element method in conjunction with Hamilton’s 

principle. The first two natural frequencies of FGM plate in uniform, linear and nonlinear 

temperature environments are reduced by increase of temperature difference. With increase in 

power law index value, the natural frequencies are decreased. The natural frequencies of FGM 

plates decrease with increase of temperature and moisture concentration. The FGM plates in 

hygrothermal environment with higher values of power law index are more responsive to 

change of the temperature rise than those with lower values of index. The moisture 

concentration reduces the critical buckling load of FGM plate in hygrothermal environment. 

Specifically, the effect of moisture is considerably more for higher values of power law index.   
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The parametric instability of FGM plates subjected to biaxial periodic in-plane loads in 

hygrothermal environment is studied. FGM plates are less stable with increased temperature in 

hygrothermal environment. The increasing moisture concentration increases the dynamic 

instability of FGM plate. The combined effect of both moisture and temperature rise reduces 

the excitation frequency, the dynamic stability region shift towards lower excitation 

frequencies.  
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Chapter 7 

DYNAMIC STABILITY OF ROTATING FUNCTIONALLY GRADED 
MATERIAL PLATES UNDER PARAMETRIC EXCITATION 

 

7.1 Introduction  

Advanced composite materials, especially functionally graded materials (FGMs) have been 

widely used for specific applications for aerospace, aircrafts and other engineering structures 

under high temperature environment. Now FGMs are developed for general use as structural 

elements. Dynamic characteristics of rotating structures are more significant than non-rotating 

structures. Many industrial structures such as turbine blades, turbo-machinery, helicopter rotor 

blades, aircraft engine, impeller and fan blades etc., can be modeled as rotating plate. 

Acquaintance with the natural frequencies of these structures is important in the design stages 

for studying their parametric resonance. The variation of natural frequencies is significant when 

the plate rotates. As the rotational speed of the structure increases so does the centrifugal inertia 

force, which can affect the transverse bending vibration of the rotating plates. This change will 

affect the dynamic characteristics of rotating plates.  

Most of the studies introduced in literature are based on rotating isotropic and 

composite plates. This work is aimed to present the bending vibration and dynamic stability of 

rotating FGM plate in high temperature environment. For this purpose, the rotating structure is 

modeled as a cantilever thick plate using third order shear deformation theory. The finite 

element method presented in the previous chapters can be easily used for vibration and stability 

analysis of rotating plates. The effects of different parameters such as temperature change, hub 

radius ratio and rotational speed on vibration and dynamic stability of rotating plates are 

discussed.  
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7.2 Mathematical Formulation  

Figure 7.1 shows a rotating cantilever FGM plate of a length L, width B, and thickness h, which 

is fixed to a rigid hub with a radius R. The cantilever FGM plate is subjected to a dynamic load 

  coss tP t P P t    acting along neutral axis as shown in figure 7.1. Where sP and tP  are the 

static and dynamic components of the axial force. The frequency of the dynamic component of 

the force is   and t  is time. The coordinate system of the typical four noded rectangular 

element used to derive the governing equations of motion is shown in figure 4.4 of chapter 4. 

The neutral plane is preferred as the reference plane for expressing the displacements.  

The elastic stiffness matrix, thermal stiffness matrix and mass matrix for the FGM plate 

element derived in section 3.2 are also applicable in this case and hence the expressions have 

not been repeated.  

The effect of rotation is introduced as centrifugal stiffness matrix which is derived from 

the work done by the centrifugal force and presented as follows. 

 

Figure 7.1 Schematic description of a rotating cantilever FGM plate  

7.2.1 Temperature field along the thickness of FGM plate 

According to power law graded change in temperature along the thickness of the FGM plate is 

assumed. Let us consider that the temperature of the ceramic surface is Tc and according to a 

power law along the thickness to the pure metal surface temperature it varies from Tc to Tm. 

The variation of power law temperature distribution is as shown in figure 7.2. 

The temperature across the thickness is expressed as  

 
   

1

2

n

m c m

z
T z T T T

h

 
    

 
 (7.1) 
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Figure 7.2 variation of temperature distribution along the thickness direction 

7.2.2 Element centrifugal stiffness matrix  

As the FGM plate is rotating it is subjected to centrifugal forces. Hence, the work done by the 

plate due to rotation is expressed as 

            21 1

2 2

T
e e e e e

c c c

A

W F w dxdy q K q  
   (7.2) 

The centrifugal force on an element of the FGM plate can be expressed as 

 
     

/ 2

2

/ 2

' '
i

i

x l h d
e

c r

x h d

F b z H x dz dx 

 

 

    (7.3) 

where xi is the distance of ith node from axis of rotation, r  (rad/s) is angular speed of plate 

element and H is the radius of hub. 

Element centrifugal stiffness matrix 

      
Te

c c w wK F N N dxdy  
    (7.4) 

7.3 Governing Equations of Motion  

The elastic stiffness, mass matrix and geometric stiffness matrix of the FGM plate element 

derived in section 3.2.6 are also applicable in this case, hence have not been repeated. The 

strain energy due to thermal load is given in equation (4.16). Work done by plate element due 

to rotation is given in equation (7.2).  

The equation of motion for FGM plate element referring section 3.3 can be modified for the 

present case and is given as  

                  0
e e e e e e

ef gM q K q P t K q       
     

 (7.5) 
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where        e e e e

ef T CK K K K         
       

  

 e

efK 
 

is effective element stiffness matrix,  e
K 
 

,  e

TK 
 

 and  e

CK 
 

are element stiffness 

matrix, thermal matrix  and centrifugal stiffness matrix respectively.  

Assembling the element matrices in equation (7.5), the equation in terms of global matrices 

which is the equation of motion for the rotating plate, can be expressed as  

          0ef gM q K q P t K q          (7.6) 

where  P t is the time dependent dynamic load, which can be represented in terms of static 

critical buckling load crP  of metallic plate having applied boundary conditions. Hence 

substituting,   coscr crP t P P t     with  and  as called static and dynamic load 

factors respectively, equation (7.6) can be expressed as  

       cos 0cr

ef gM q K P t K q             
  (7.7) 

where 
ef T CK K K K                  

efK    is the effective stiffness matrix and  K , TK , 
CK   , M  and 

gK   are global elastic 

stiffness, thermal matrix, centrifugal matrix, mass matrix and geometric stiffness matrix 

respectively and  q  is global displacement vector.  

The condition for existence of the boundary solutions with period 2T is given by 

 
   

2

0
2 4

cr

ef gK P K M q



  
            

  
 (7.8) 

The instability boundaries can be determined from the solution of the equation 

 
 

2

0
2 4

cr

ef gK P K M



 

           
 

 (7.9) 

Following the procedure described in section 3.3.1, the natural frequencies,  

critical buckling load and instability regions of FGM plate in hygrothermal 

environment are determined.  
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7.4 Results and Discussion 

7.4.1 Validation  

In all presented tables and figures, ,  ,  ,   and   represent aspect ratio, thickness ratio, 

hub radius ratio, dimensionless natural frequency and dimensionless rotation speed, 

respectively, and are defined as: /L W  , /h L  , /R L  , 
2 /L h D   , T   , 

  3 2/ 12 1D Eh   , 4 /T hL D  

where E and   are Young’s modulus of elasticity and Poisson’s ratio of the metal phase, 

respectively.  is constant angular speed.  

The plate is discretized into 10X10 elements. First of all, the numerical results obtained 

by using the present method are compared to those of Yoo and Kim [229] and Hashemi et al. 

[53] for rotating isotropic material plate frequency parameters. As shown in tables 7.1 and 7.2, 

the lowest five natural frequencies obtained by the present modeling method agree well with 

those of Yoo and Kim [229] and Hashemi et al. [53].   

Table 7. 1 Comparison of lowest five natural frequencies by the present and by the Yoo and Kim [229] and 
Hashemi et al. [53].  1, 0    

 1   2   

Hashemi et 

al. [53] 

Yoo and 

Kim[229] 

Present  Hashemi et 

al. [53] 

Yoo and 

Kim[229] 

 Present  

1  
3.6437 3.6528 3.5421 4.1051 4.1131 3.9487 

2  
8.6289 8.6459 8.5109 8.9790 9.0031 9.0739 

3  
21.4378 21.5337 21.4160 21.8630 21.9664 21.9660 

4  
27.2592 27.3847 27.0952 27.4993 27.6231 27.7049 

5  
31.0695 31.2185 30.8993 31.4258 31.5854 31.3487 

Table 7. 2 Comparison of lowest five natural frequencies by the present and by the Yoo and Kim [229] and 
Hashemi et al. [53].  1, 1    

 1   2   

 Hashemi et 

al. [53] 

Yoo and 

Kim[229] 

Present  Hashemi et 

al. [53] 

Yoo and 

Kim[229] 

 Present  

1  
3.8532 3.8618 3.8195 4.8069 4.8138 4.8176 

2  
8.7157 8.7358 8.8905 9.3079 9.3435 10.3977 

3  
21.6205 21.7196 21.7848 22.5615 22.6798 23.0773 

4  
27.3009 27.4257 27.5030 27.6713 27.7901 29.0710 

5  
31.2101 31.3624 31.1998 31.9771 32.1493 32.1498 
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7.4.2 Vibration and buckling analysis  

The following numerical results are obtained by considering the combination of steel (SUS304) 

and Alumina (Al2O3) for the FGM. The geometry of the rotating square FGM plate is as 

follows: side to thickness ratio L/h=0.01, hub radius ratio R/L=0, rotational speed=100 rpm.   

Figures 7.3-7.6 illustrate the natural frequencies versus temperature variation of 

rotating cantilever FGM (SUS304/Al2O3) plate for first and second mode. For all thermal 

conditions the metallic side (bottom) temperature is kept as constant 300K. The ceramic (upper) 

surface temperature varies from 300K to 800K in all thermal conditions. FGM plates of three 

volume fraction indices k=0, 0.5 and 2 subjected to temperature environments n=0, 1, 5 and 10 

are considered. It is observed that increase in temperature reduces the first two natural 

frequencies of rotating FGM plate. Also, the increase in power law index value reduces the 

first two natural frequencies of rotating plate.  

  
Figure 7.3(a) First mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=0). 

Figure 7.3(b) Second mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=0). 

 

  
Figure 7.4(a) First mode frequency verses temperature 

variation for different power law index values at 

thermal field (n=1). 

Figure 7.4(b) Second mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=1).  
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Figure 7.5(a) First mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=5). 

Figure 7.5(b) Second mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=5). 

 

  
Figure 7.6(a) First mode frequency verses temperature 

variation for different power law index values at 

thermal field (n=10). 

Figure 7.6(b) Second mode frequency verses 

temperature variation for different power law index 

values at thermal field (n=10). 

The figure 7.7 is a plot of natural frequency versus temperature variation for four 

thermal environment conditions namely n=0, 1, 5, 10. The effect of temperature rise on 

fundamental frequency is most severe for the case n=0, i.e. uniform temperature case. With 

increase in the index value, the reduction in fundamental natural frequency diminishes. The 

effect of increase of index becomes very insignificant for high values of n, say above n=5.  The 

temperature rise decreases the effective Young’s modulus which leads to reduction in the 

stiffness of the plate. The reduced stiffness decreases the natural frequencies of the rotating 

plate.  
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Figure 7.7 Variation of fundamental frequency of rotating FGM plate in for thermal environments (n=0, 1, 5 

and 10). 

Figure 7.8-7.9 show the effect of hub radius on the rotating cantilever FGM plate 

natural frequencies in nonlinear (n=10) thermal condition for power law index values k=0, 1 

and 5. It can be observed from the figures that with the increase of hub radius the first two 

natural frequencies increase.   
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Figure 7.8 Variation of first mode frequency with hub 

radius ratio at thermal field (n=10) for power law 

index k=0, 1 and 5. 

Figure 7.9 Variation of second mode frequency with 

hub radius ratio at thermal field (n=10) for power law 

index k=0, 1 and 5. 

Figure 7.10(a) and (b) describe the effect of rotational speed on natural frequencies of 

cantilever FGM plate in nonlinear (n=10) thermal environment. The increased rotational speed 

increases the first two natural frequencies and it is due to the centrifugal stiffening of the plate.   
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Figure 7.10(a) First mode frequency variation with 

respect to rotational speed at thermal environment 

(n=10) for power law index k=0, 1 and 5. 

Figure 7.10(b) Second mode frequency variation with 

respect to rotational speed at thermal environment 

(n=10) for power law index k=0, 1 and 5. 

 

  

Figure 7.11(a) Critical buckling load variation with 

respect to rotational speed k=1 

Figure 7.11(b) Critical buckling load variation with 

respect to rotational speed k=5 

Figure 7.11(a) and (b) show the variation of critical buckling load with respect to 

rotational speed of the plate. It can be seen that increase in rotational speed increases the critical 

buckling load of FGM plate for power law index values, k=1 and k=5.  

 

Figure 7.12 Effect of temperature distribution on first three instability region of rotating FGM plate with 

thermal environment (n=0),   
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7.4.3 Dynamic stability analysis  

Figure 7.12 shows the effect of temperature rise on the principal instability regions of first three 

modes of FGM plate in thermal environment (n=0) for temperature difference of 100K and 

400K.  It can been seen from the figure that with increase in temperature, the instability regions 

shift to lower frequencies of excitation, thereby increasing the probability of occurrence of 

instability. The effect of change in temperature is more for higher modes compared to 

fundamental mode. With increase in temperature the strength of the plate decreases that leads 

to decrease in natural frequencies. Hence instability occurs at lower excitation frequencies.  

  

Figure 7.13(a) Effect of temperature distribution on 

first mode instability region of rotating FGM plate 

with thermal environment (n=1).  

Figure 7.13(b) Effect of temperature distribution on 

second mode instability region of rotating FGM plate 

with thermal environment (n=1).  

Figure 7.13 presents the diagrams of dynamic instability of first two modes of FGM 

plate in linear temperature distribution thermal environment (n=1). The temperature rises 

considered are 0, 200 and 400 K. When temperature difference is 0K the plate is most stable, 

the increased temperature rise decreases the stability, in terms of shifting of the instability 

regions to lower excitation frequencies.  

  
Figure 7.14(a) Effect of temperature distribution on 

first mode instability region of rotating FGM plate 

with thermal environment (n=5).   

Figure 7.14(b) Effect of temperature distribution on 

second mode instability region of rotating FGM plate 

with thermal environment (n=5).   

The first and second principal instability regions of rotating FGM plates in thermal 

environment (n=5) and thermal environment (n=10) are shown in figures 7.14(a, b) and 7.15(a, 
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b) respectively. As expected when there is no temperature rise (0 K) the instability regions 

occur at highest excitation frequencies, with increase in environment temperature the instability 

regions occurs at lower excitation frequencies. This indicates, with increase in temperature, the 

stability of the plate deteriorates. The increase of temperature rise reduces the Young’s 

modulus which causes the reduction in the overall stiffness of rotating plate and decrease in 

natural frequencies. So instability occurs at lower excitation frequencies.  

  
Figure 7.15(a) Effect of temperature distribution on 

first mode instability region of rotating FGM plate 

with thermal environment (n=10), key as in fig. 3.25.  

Figure 7.15(b) Effect of temperature distribution on 

second mode instability region of rotating FGM plate 

with thermal environment (n=10), key as in fig. 3.25.  

 

  

Figure 7.16(a) Effect of hub radius ratio on first 

mode instability region of rotating FGM plate, 

key as in fig. 3.25.   

Figure 7.16(b) Effect of hub radius ratio on 

second mode instability region of rotating FGM 

plate, key as in fig. 3.25.   

The effect of hub radius on dynamic stability of rotating FGM plate in thermal 

environment is presented in figures 7.16(a) and 7.16(b) for first and second mode respectively. 

The hub radius ratio is varied from 0 to 1. From the figures it is found that for first and second 

mode the stability increases appreciably with the increase in hub radius. This happens due to 

increased centrifugal stiffening of the plate with increased hub radius.   
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Figure 7.17(a) Effect of rotational speed on first three instability regions of FGM plate for h=0.05m, and 

temperature rise 1000 K, k=1, key as in fig. 3.15.  

 

Figure 7.17(b) Effect of rotational speed on first three instability regions of FGM plate for h=0.05m, and 

temperature rise 1000 K, k=10, key as in fig. 3.15.  

Figures 7.17(a) and 7.17(b) show the effect of rotational speed on the first three mode 

instabilities of FGM plate with k=1 and k=10, respectively. It is found that for the first three 

modes stability increases with the increase in rotational speed of plates. When the rotational 

speed increases the centrifugal force increases. Increased centrifugal force causes centrifugal 

stiffening of the plate, hence the natural frequencies increase. Due to the increase in natural 

frequencies the instability occurs at higher excitation frequencies.  

7.5 Conclusion  

Flapwise bending vibration and dynamic stability of rotating FGM plates with different 

temperature environments are investigated by using finite element method. The third order 

shear deformation theory is used for theoretical formulation. The temperature dependent 

material properties are considered and vary along the thickness direction of the plate following 

a power law distribution of constituent’s volume fraction. Based on the numerical results, the 

following conclusions are reached.  
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Increase in power law index value reduces the first two natural frequencies of rotating 

FGM plate. Rise in temperature reduces the first two mode natural frequencies of rotating plate 

in thermal environment. The first two natural frequencies increase with an increase of the hub 

radius and the rotational speed of FGM plates. The critical buckling load increases with an 

increase of the rotational speed of FGM plate.  

It is observed that dynamic stability of rotating plate in thermal environment reduces as 

the temperature increases. The dynamic instability increases with increase in hub radius. 

Increase in rotational speed has a stabilizing effect on the plate.  
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Chapter 8 

DYNAMIC STABILITY OF SKEW FUNCTIONALLY GRADED 

PLATES UNDER PARAMETRIC EXCITATION  

 

8.1 Introduction 

A novel model material which combines the finest properties such as high strength, high 

stiffness, toughness, and temperature resistance of both metals and ceramics has been 

developed for structural applications. By varying the constituents of two or more materials 

spatially, new materials of desired property progression in preferred directions may be formed 

and is termed as functionally graded material (FGM). This material property gradation can 

reduce the stresses such as residual and thermal. The increased use of FGM in various 

applications such as skew plate structural components of tails, panels in skew bridges, wings 

and fins of swept wing missile have required a robust necessity to understand their dynamic 

stability characteristics under different thermo-mechanical loading conditions. The skew plate 

structures are sometimes subjected to inplane pulsating load and become dynamically unstable 

i.e. transverse vibration grows without bound for certain combinations of dynamic load 

amplitude and excitation frequency. This phenomenon is termed as parametric resonance or 

dynamic instability.  Bolotin [14] studied the theory of dynamic stability of elastic structures. 

Young and Chen [230] investigated the stability of skew plates under aerodynamic and inplane 

forces. Noh and Lee [136] used higher order shear deformation theory along with finite element 
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method for the dynamic instability study of delaminated composite skew plates under various 

periodic in-plane loads. Young et al. [231] examined the dynamic stability of skew plates 

subjected to an aerodynamic force in the chordwise direction and a random in-plane force in 

the spanwise direction.  

Previous studies on the dynamic stability of FGM plates subjected to time-dependent 

compressive axial loads are mainly based on temperature independent material. It is evident 

from the available literature that the dynamic instability of temperature dependent FGM skew 

plates has not been thoroughly studied. The present work attempts to study the dynamic 

stability of a skew plate under high temperature environment. Based on Bolotin’s method the 

boundary frequencies of instability regions are plotted. The dynamic instability of FGM skew 

plate is affected by power law index, skew angle, aspect ratio, and thermal load. The 

fundamental frequency and critical buckling of FGM skew plate have been studied in detail for 

all sides simply supported (SSSS) and all sides clamped (CCCC) boundary conditions.  

8.2 Mathematıcal Formulatıon  

8.2.1 Oblique boundary transformation 

Figure 8.1 shows that the thick skew plate edges are not parallel to global axes X and Y, 

therefore it is required to define the boundary conditions in terms of the displacements u, v, w, 

ϴx ,ϴy, 
w

x




 and 

w

y




. The local reference plane edge displacements Su , Tv , w, T , S , 

w

S




 and 

w

T




 are tangential and normal to the oblique edge. Here, ϴT and ϴs represent the average 

rotations of the normal to the reference plane and normal to the oblique edge. So it is necessary 

to transform the element matrices along the oblique coordinates corresponding to x-axis and y-

axis. The oblique boundary transformation displacement for ih node is given by  

 

cos sin 0 0 0 0 0

sin cos 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 cos sin 0 0

0 0 0 sin cos 0 0

0 0 0 0 0 cos sin

0 0 0 0 0 sin cos

x S

y T

x T

y s

u u

v v

w w

w w

x S

w w

y T

 

 

 
  
 

 

 

   
    
    
    
    
        

     
        

    
       

    







 
(8.1) 

The relationship of transformation can be written as  
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        e e

i i iq T q   (8.2) 

        e e
q T q  (8.3) 

where  iT  is the transform matrix for the ith node. 

For the complete element, the complete element transformation matrix ( )eT    is written as 

        ( )e

i i i iT diag T T T T         (8.4) 

  

Figure 8.1(a) Geometry of the plate in the skew co-

ordinate system. 

Figure 8.1(b) Inplane periodic loading of the plate in 

the skew co-ordinate system. 

8.2.2 Finite Element Analysis  

 The skew FGM plate in thermal environment is as shown in figure 8.1. A four node rectangular 

element is considered for the analysis of skew FGM plate in thermal environment. The 

stiffness, thermal stiffness and mass matrices can be computed in skew coordinates as follows.  

The strain energy 
 e

U and kinetic energy  e
T  of the skew FGM plate element can be expressed 

as   

      e e e

p TU U U   (8.5) 

  
                 ( ) ( ) (1) (3) ( ) (2) ( )

0 0

1

2

b a
T T TT T Te e n s n s e

PU T N M P Q R T dxdy                            (8.6) 

        ( ) ( ) (1) (3) ( )

0 0

1

2

b a
T T T Te e T n T T T T T e

TU T N M P T dxdy                            (8.7) 

    2 2 21

2

e

A

T u v w dA    (3.21) 

Following the procedure described in chapter 3and 4 the skew element stiffness matrix  se
K 
 

is derived as  
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          ( ) ( )1

2

T Te e e ee e

pU q T K T q            
 (8.8) 

    ( ) ( )
Tse ee eK T K T             

 (8.9) 

       e e e

b sK K K      
     

 (3.31) 

              
00 01 11 02 12 22

e e e e e e e

bK K K K K K K                  
             

 (3.32) 

        
33 34 44

e e e e

sK K K K         
       

   (3.34) 

Similarly the element mass matrix is expressed as  

Element kinetic energy 

 

 

 

         

     
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The element strain energy due to thermal stresses can be expressed as 
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The skew element thermal stresses stiffness matrix  se

TK 
 

is derived as  
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(4.18) 

Work done by the skew plate due to the in-plane loads can be expressed as  
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The skew element geometric stiffness matrix  se

gK 
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is derived as 
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8.3 Governing Equations of Motion  

The equation of motion for the element subjected to axial force P(t) can be expressed in terms 

of nodal degrees of freedom as  

                  0
e e se e se e

ef gM q K q P t K q       
     

  (8.16) 

where      se se se

ef TK K K      
     

effective element stiffness matrix, which is sum of element 

stiffness matrix  se
K 
 

 and element thermal stiffness matrix  se

TK 
 

. 
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The governing equation of motion of skew plate in terms of global displacement matrix 

obtained as follows  

          0ef gM q K q P t K q          (8.17) 

where    se

ef TK K K      
 

efK    is global effective stiffness matrix. M and 
gK    are global mass and geometric stiffness 

matrix respectively.   coscr crP t P P t     with   and  as static and dynamic load 

factors  respectively. Equation (8.16) can be expressed as 

       cos 0cr
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where 
ef TK K K             

efK    is the effective stiffness matrix and  K , TK , M  and 
gK   are global elastic stiffness 

matrix , thermal stiffness matrix,  mass matrix and geometric stiffness matrix respectively and 

 q  is global displacement vector.  

The condition for existence of the boundary solutions with period 2T is given by 
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The instability boundaries can be determined from the solution of the equation 
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Following the procedure described in section 3.3.1, the natural frequencies, critical buckling load and 

instability regions of the skew FGM plate  in high thermal environment are determined. 

8.4 Numerıcal Results and Dıscussıon 

8.4.1 Comparison studies 

The natural frequencies of an ordinary plate is calculated with the present computational 

program and compared with those of Liew [103]. The results are found to be in very good 

agreement. The results are presented in Table-8.1, S represents simply supported, F represents 

the free end and C denotes clamped end condition as shown in all tables and figures. The results 
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of the present numerical model has also been validated in terms of critical buckling load 

parameter for skew plates with different boundary conditions. Isotropic material properties are 

considered for comparison with results available in Liew et al. [103], the results are shown in 

Table-8.2. The results are seen to be in very good agreement.  

Table 8.1 Comparison of frequency parameters,  of skew plates having different boundary condition and 

W/L=1, h=0.1 m, Poison’s ratio 0.3  .  

SSSS Mode sequence number 

Deg.   1  2 3 4 5 6 7 8 

0 Liew [103] 1.931 4.605 4.605 7.064 8.605 8.605 10.793 10.793 

Present  1.952 4.699 4.699 7.182 8.862 8.862 11.038 11.038 

15 Liew [103] 2.037 4.506 5.184 7.071 9.007 9.374 10.227 11.894 

Present  2.089 4.560 5.247 7.141 9.068 9.634 10.402 12.033 

30 Liew [103] 2.419 4.888 6.489 7.453 10.398 10.398 11.665 13.611 

Present  2.620 4.668 6.505 7.220 9.487 10.053 11.713 13.165 

45 Liew [103] 3.354 6.034 8.733 9.304 11.677 13.548 14.656 16.795 

Present  4.062 5.810 8.537 9.991 11.753 12.01 15.232 15.975 

SCSC 

0 Liew [103] 2.699 4.971 5.990 7.973 8.787 10.250 11.338 12.024 

Present  2.735 5.041 6.095 8.085 8.971 10.485 11.523 12.245 

15 Liew [103] 2.848 5.122 6.395 7.968 9.444 10.867 11.070 12.860 

Present  2.940 5.221 6.738 8.293 9.702 11.613 11.728 13.551 

30 Liew [103] 3.370 5.708 7.738 8.444 11.174 11.373 12.994 14.564 

Present  3.361 5.322 7.933 8.301 10.424 11.417 13.776 14.774 

45 Liew [103] 4.596 7.152 9.953 10.701 12.885 14.627 15.801 18.061 

Present  4.412 5.772 8.257 10.447 11.334 12.149 14.405 15.409 

CCCC 

0 Liew [103] 3.292 6.276 6.276 8.793 10.357 10.456 12.524 12.524 

Present  3.339 6.385 6.385 8.929 10.594 10.694 12.759 12.759 

15 Liew [103] 3.474 6.223 6.959 8.870 10.818 11.282 12.037 13.643 

Present  3.470 6.275 7.010 8.972 10.961 11.575 12.290 13.881 

30 Liew [103] 4.114 6.829 8.531 9.471 12.395 12.413  13.743 15.543 

Present  3.892 6.554 8.325 9.388 11.843 12.590 14.031 15.737 

45 Liew [103] 5.604 8.477 9.471 11.785 14.104 15.872 16.989 19.059 

Present  5.311 8.113 11.99 12.069 15.165 16.315 20.674 21.089 

8.4.2 Free vibration and buckling analysis 

For this analysis, FGM plate composed of steel (SUS304) and alumina (Al2O3) has been 

considered. The properties of each constituent such as Young’s modulus, coefficient of linear 

thermal expansion, Poisson’s ratio and thermal conductivity which have been considered for 

this analysis are adapted from chapter 4. The plate has been discretized into 10X10 elements. 

For all the cases thickness ratio b/h has been taken as 0.15. Five values of skew angle in degrees 

(0, 15, 30, 45, and 60) have been considered for the analysis.  



121 
 

Table 8. 2 Critical buckling load factors,
bK ; for skew plates with various boundary conditions and under 

uniaxial loads. 

Boundary condition h/W Skew angle Liew et al. [103] Present 

SSSS 0.1 0 3.7870 3.8030 

15 4.1412 4.0472 

30 4.9324 4.9969 

45 7.7236 7.4012 

FCFC 0.1 0 3.5077 3.560 

15 3.7937 3.881 

30 4.8043 4.812 

45 6.3311 6.0399 

CCCC 0.1 0 8.2917 8.3875 

15 8.7741 8.8102 

30 10.3760 10.4869 

45 13.6909 13.0740 

Variation of the fundamental frequency parameter of the skew FGM plate versus power 

law index for uniform, linear and nonlinear temperature distribution through thickness are 

shown in figures 8.2-8.7. The obtained results in figures 8.2-8.4 indicate the frequency 

parameter variation with the index value for simply supported FGM skew plates. It can be seen 

that the frequency parameter reduces with the increase of index value and on the contrary 

increasing the skew angle increases the fundamental frequency parameter with UTD, LTD and 

NTD. Figures 8.5-8.7 show the frequency parameter variation of a fully clamped skew FGM 

plate for different skew angles and thermal environments. It is observed that the increase in 

power law index value reduces the first five natural frequencies of skew FGM plate. Increase 

of skew angle increases the five natural frequencies of FGM plate. From figures 8.2 -8.7 it is 

clearly observed that variation of frequency parameter drastically changes with respect to 

power law index value from 0 to 3. The volume fraction of metal increases with increase of 

index value, and the effective stiffness of the plate is reduced.  With higher values of index the 

metal and ceramic content of the FGM becomes saturated, so there is not much variation in 

effective Young’s modulus and hence of the frequencies.  
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Figure 8.2 Fundamental frequency parameter for 

Al2O3/ SUS304 (SSSS) plate in thermal environment 

(UTD).  

Figure 8.3 Fundamental frequency parameter for 

Al2O3/SUS304 (SSSS) plate in thermal 

environment (LTD). 

  

Figure 8.4 Fundamental frequency parameter for 

Al2O3/ SUS304 (SSSS) plate in thermal environment 

(NTD).  

Figure 8.5 Fundamental frequency parameter for 

Al2O3/SUS304 (CCCC) plate in thermal 

environment (UTD). 

 

  

Figure 8.6 Fundamental frequency parameter for 

Al2O3/ SUS304 (CCCC) plate in thermal 

environment (LTD). 

Figure 8.7 Fundamental frequency parameter for 

Al2O3/SUS304 (CCCC) plate in thermal 

environment (NTD). 

The variation of the frequency parameter versus temperature difference is plotted in 

figures 8.8-8.10 for a simply supported FGM skew plate with uniform, linear and nonlinear 

temperature distribution. From these plots it is observed that the first five natural frequencies 

reduce with increase in temperature, but with increase in skew angle there is increase in the 

natural frequencies.  
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Figure 8.8 Variation of frequency parameter of a 

simply supported (SSSS) FGM skew plate for 

temperature change (UTD).k=1 

Figure 8.9 Variation of frequency parameter of a 

simply supported (SSSS) FGM skew plate for 

temperature change (LTD). k=1 

Figures 8.11-8.13 show the variation of frequency parameters with respect to 

temperature change of FGM skew plate with CCCC boundary.  It is observed that increase of 

temperature rise reduces the first five natural frequencies, also increase in skew angle increases 

the first five natural frequencies of FGM plate. 

  

Figure 8.10 Variation of frequency parameter of a 

clamped FGM skew plate with temperature change 

(NTD). k=1 

Figure 8.11 Variation of frequency parameter of a 

clamped FGM skew plate with temperature change 

(UTD). k=1 

 
 

Figure 8.12 Variation of frequency parameter of a 

clamped FGM skew plate with linear temperature 

distribution. k=1 

Figure 8.13 Variation of frequency parameter of a 

clamped FGM skew plate with nonlinear temperature 

distribution. k=1  

The variation of critical buckling load with respect to power law index values for SSSS 

and CCCC skew FGM plate are shown in figures 8.14 and 8.15, respectively.  It can be 
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observed that the critical buckling load parameter is reduced with increase of power law index 

value and is increased with the increase of skew angle.  

  

Figure 8.14 Variation of critical buckling 

parameter of the SSSS FGM skew plate. 

Figure 8.15 Variation of critical buckling parameter 

of the CCCC FGM skew plate. 

8.4.3 Parametric instability study  

The effect of power law index on the dynamic stability of simply supported FGM skew plate 

is shown in figures 8.16, 8.17 and 8.18 with skew angles 150, 300 and 450, respectively. Thermal 

environment UTD is considered for this analysis with temperature difference of 100K. From 

the figures it is observed that with increase power law index, instability occurs at lower 

excitation frequency. Hence increase in power law index enhances the dynamic instability.  

 

Figure 8.16 Dynamic stability regions for simply supported FGM skew plate with different index values k=1, 

5. (L/W=1, h/L=0.15, Φ =150),   
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Figure 8.17 Dynamic stability regions for simply supported FGM skew plate with different index values k=1, 5. 

(L/W=1, h/L=0.15, Φ=300), key as in fig. 8.16. 

 

 

Figure 8.18 Dynamic stability regions for simply supported FGM skew plate with different index values k=0, 

1, 5. (L/W=1, h/L=0.15, Φ=450), key as in fig. 8.16. 

 

 

Figure 8.19 Dynamic stability regions for simply supported FGM plate with various aspect ratios L/W=0.5, 1, 

1.5. (h/L=0.15, Φ=150), key as in fig. 8.16.  

Figure 8.19 shows the effect of increase in aspect ratio on dynamic stability of skew 

plate. Here the nonlinear temperature distribution with temperature change of 100K and power 

law index k =1 is considered.  Figure 8.19 displays, increase in aspect ratio L/W=0.5, 1 and 1.5 
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of FGM skew  015   plate results in the increase of the dynamic instability, since the 

instability region move to lower excitation frequencies with increase in aspect ratio.  

 

Figure 8.20 Dynamic stability of simply supported FGM skew plate with UTD thermal condition (L/W=1, k=1, 

h/L=0.15), key as in fig. 8.16.  

Figures 8.20-8.22 show the dynamic stability diagrams of FGM skew plate with 

uniform, linear and nonlinear thermal environments. Geometrical properties considered are 

aspect ratio L/W = 1, thickness ratio is h/L = 0.15 and the power law index k = 1. When the 

skew angle increases the stability regions shift from low excitation frequency to high excitation 

frequency in dynamic stability diagram, this indicates increase in stability of the plate. 

 

Figure 8.21 Dynamic stability of simply supported FGM skew plate with LTD thermal condition (L/W=1, k=1, 

h/L=0.15), key as in fig. 8.16.  
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Figure 8.22 Dynamic stability of simply supported FGM skew plate with NTD thermal condition (L/W=1, k=1, 

h/L=0.15), key as in fig. 8.16.  

Figures 8.23 (a) and (b) show the effect of type of temperature distribution on the 

dynamic stability of skew plate for temperature rise of 100K and 300K respectively. It can be 

seen that UTD has more prominent effect than compared to linear and nonlinear temperature 

distribution. The UTD shifts the instability regions to lower excitation frequencies more than 

compared to linear and nonlinear temperature distribution for the same temperature rise.  

  

Figure 8.23(a) First principal instability region of 

simply supported FGM skew plate with uniform, 

linear and nonlinear thermal environments. (L/W=1, 

Φ=150, k=2). 100T K   

Figure 8.23(b) First principal instability region of 

simply supported FGM skew plate with uniform, 

linear and nonlinear thermal environments. (L/W=1, 

Φ=150, k=2). 300T K   

Figures 8.24-8.26 show the effect of temperature rise on first three principal instability 

regions of a simply supported skew FGM plate with uniform, linear and nonlinear temperature 

distribution. It can be observed that increase in temperature reduces the stability of skew plate 

for all thermal conditions.   
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Figure 8.24 First three mode principal instability regions of simply supported FGM skew plate with uniform 

thermal environments. (L/W=1, Φ=150, k=5), key as in fig. 8.16 

 

Figure 8.25 First three mode principal instability regions of simply supported FGM skew plate with linear 

thermal environments. (L/W=1, Φ=150, k=2), key as in fig. 8.16 

 

Figure 8.26 First three mode principal instability region of simply supported FGM skew plate with nonlinear 

thermal environments. (L/W=1, Φ=150, k=2). key as in fig. 8.16  

8.5 Conclusion  

The free vibration, buckling and dynamic stability of FGM skew plate under thermal field is 

studied in this work. The material properties are assumed to be temperature dependent and the 

effective material properties are calculated by using a simple power law. An efficient finite 

element model which is based on the third order shear deformation theory is used for this study. 

The fundamental natural frequency and critical buckling load of the FGM skew plate are 
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affected by skew angle, power law index and temperature change. In high temperature 

environment with the increase in power law index value there is decrease in the fundamental 

frequency and critical buckling load. Whereas with increase in skew angle there is increase of 

fundamental frequency and buckling load.   

The dynamic stability of FGM skew plate is found to be highly sensitive to changes in 

the temperature between the bottom and top surfaces. By increasing the power law index value 

the instability regions move from higher excitation frequency to lower excitation frequency. It 

shows that there is deterioration of the dynamic stability. Similarly with increase in aspect ratio 

of FGM skew plate results in overall enhancement of instability of the plate. The stability of 

the plate is enhanced with increase of skew angle.   
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Chapter 9 

CONCLUSION AND SCOPE FOR FUTURE WORK 

 

9.1 Introduction  

The FGMs have many advantages over traditional/regular composite material and those are 

classified as new composite materials. These advanced composite materials are used in 

aerospace, automotive, optical, biomechanical, electronic, chemical, nuclear, civil, mechanical, 

and shipbuilding industries. FGMs possess a number of advantages such as high resistance to 

temperature gradients, significant reduction in residual and thermal stresses. In the present 

work, an attempt has been made to study the dynamic stability of FGM plates for different 

environments and operating conditions such as in the thermal environment, on elastic 

foundation, hygrothermal environment, under rotation and with a skew angle.  

9.2 Summary Report of Key Findings 

In this work, finite element method is used to investigate the vibration, buckling and dynamic 

stability of functionally graded material plates. Finite element modeling technique is applied 

to carry out the theoretical formulations based on third-order shear deformation theory of FGM 

plates, with different boundary conditions and various operating conditions. Floquet’s theory 

has been used to establish the dynamic instability regions. The effect of various parameters like 

boundary conditions, power law index value, temperature rise, angular speed, skew angle and 

dynamic load factor on the vibration and dynamic instability characteristics of FGM plate under 



131 
 

parametric excitation have been investigated. The conclusions drawn with respect to different 

studies are presented below.  

9.2.1 FGM plates  

 The first five natural frequencies decrease with an increase of the power law index for 

SFSF, SSSS and CCCC boundary conditions. 

 The critical buckling load of SSSS FGM plate decreases with the increase of the power 

law index value for both uniaxial and biaxial compression loadings.  

 Increase in aspect ratio (width to length) reduces the critical buckling load of FGM 

plate.  

 Increase in the power law index value enhances the parametric instability of FGM plates 

for both uniaxial and biaxial loadings.  

 Increase in aspect ratio enhances the dynamic instability of FGM plates. 

9.2.2 FGM plates in high temperature thermal environments  

 Increase in temperature reduces the first two natural frequencies of FGM plates under 

uniform, linear and nonlinear temperature fields.  

 In high temperature thermal environment, increase of the power law index reduces the 

dynamic stability of the FGM plate.  

 Increase in temperature enhances the chance of parametric instability of FGM plates. 

9.2.3 FGM plate resting on elastic foundation 

 Increase in the power law index value reduces the first two mode frequencies of FGM 

plate on elastic foundation. 

 The first two natural frequencies of FGM plates increase with an increase of foundation 

Winkler and shear layer constants.  

 Increase in the Winkler foundation constant increases the critical buckling load of the 

FGM plate, the increase in index value reduces the critical buckling load of FGM plate.  

 The dynamic stability of FGM plates is improved with an increase of Winkler 

foundation constant.   

 With increase in shear layer constant the dynamic stability of FGM plate is also 

improved.  

9.2.4 FGM plate in hygrothermal environment  

 Increase in the value of the power law index reduces the first two natural frequencies 

and critical buckling load. 
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 The natural frequencies of FGM plates decrease with an increase of temperature and 

moisture concentration.  

 The critical buckling load decrease with an increase of moisture concentration of FGM 

plate in hygrothermal environment.  

 The dynamic instability of FGM plate is enhanced with an increase in moisture 

concentration as well as increase in temperature.  

 The combined effect of both temperature and moisture concentration on the dynamic 

instability of FGM plates is more severe than the individual effects. 

9.2.5 Rotating FGM plates 

 Increase in the power law index reduces the first two-mode natural frequencies of 

rotating FGM plates. 

 Increase in temperature reduces the first two natural frequencies of rotating FGM plates. 

 The first two natural frequencies of FGM plates increases with an increase of hub radius 

and rotational speed.  

 Increase in rotational speed of FGM plates increases their stability.  

 With increase in hub radius, the dynamic stability of rotating FGM plate increases. 

 Increase in environment temperature enhances the chance of dynamic instability of 

rotating FGM plate.  

9.2.6 Skew FGM plates 

 Increase of the power law index value reduces the natural frequencies. 

 The critical buckling load of the FGM skew plate decreases with an increase in the 

power law index value.  

 The first five natural frequencies increase with an increase in skew angle of the plate.  

 Parametric instability enhances with increase of power law index.  

 Increase in skew angle of the plate, enhances the dynamic stability of first and second 

mode regions.  

9.3 Important conclusions with respect to dynamic stability of FGM plates 

 There is an enhanced dynamic instability of FGM plates with an increase of power law 

index value.  

 In high thermal environment increase in the power law index value increases the 

dynamic instability of the FGM plate.  
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 The dynamic instability of FGM plate increases with an increase of environment 

temperature.  

 In increase of Winkler’s foundation constant improves the dynamic stability of FGM 

plate.  

 The dynamic stability of FGM plate resting on Pasternak foundation is enhanced with 

increase of shear layer constant.    

 The instability increases with an increase of moisture concentration and temperature of 

FGM plate in hygrothermal environment.  

 Increase in hub radius and rotational speed of FGM plates enhance the dynamic stability 

of the rotating plate.  

 Increase of skew angle improves the dynamic stability of FGM plate in the thermal 

environment.  

9.4 Some design guidelines with respect to dynamic stability of FGM plates. 

 The designer has to look at power law distribution features along the thickness. Smaller 

value of the power law index should be selected to ensure better dynamic stability of 

the FGM plate.  

 For FGM plates with the power law property distribution used at higher temperature, 

uniform temperature distribution may be assumed to have safer design.  

 For FGM plates resting on elastic foundation, higher Pasternak foundation constant 

should be preferred to Winkler’s foundation constant, to ensure better dynamic stability.  

 Increased radius of the hub, enhances the dynamic stability of rotating FGM plate. 

Hence, the rotating plate should be designed for least hub radius, which will ensure 

better dynamic stability for larger hub radius.  

 For rotating FGM plate dynamic stability enhances with centrifugal stiffening. The 

design of rotating plates should be done for the minimum speed and this will ensure the 

further enhancement of the dynamic stability at higher speeds.  

 For skew FGM plates, increase of skew angle increases the dynamic stability. Hence, 

the optimum skew angle taking in to other design requirement should be decided to 

ensure better dynamic stability.  
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9.5 Scope for Future Work  

Present research examines some main reasons of the dynamic instability of functionally graded 

material plates. There are some other factors of the plates that stay as start problems. The works 

those can be performed later on are provided as follows. 

The particular resistances of elastic foundation in existing research are supposed to be 

constant. But in practice these resistances may be different along the length of the plates. The 

effect of a variable foundation on dynamic stability of functionally graded material plate may 

be taken up as a future problem of research.  

In the present analysis, the dynamic stability analysis of rotating functionally graded 

material un-twisted plates are conducted. Since, turbomachinery blades are pre-twisted rotating 

rotor blades, the dynamic stability analysis of rotating pre-twisted plates can be carried out.  

Sometimes the loading may be such that the structural parts are focused on beyond the 

elastic limit. At that point, the structure carries on nonlinearly. In the present study, the plates 

are considered to be concentrated within the elastic limit. The investigation of dynamic stability 

of FGM plates considering geometrical nonlinearity may be embraced in a future work of 

exploration. So also material non-linearity may be included.  

The effects of high temperature environment on the dynamic stability of plates have 

been studied in the present work. But in space applications, FGMs are subjected low 

temperature environment. Hence vibration and dynamic stability of FGM plates subjected to 

low temperature thermal environment can be taken up for future study.  

The outcomes need to be confirmed by experimental results. Hence, experimental 

investigation of dynamic stability of functionally graded material plates may be taken as a 

future work to approve the utilized computational method and experimentally validate the 

obtained theoretical results.  
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Flow chart of program in MATLAB for calculating the lower and upper boundary limits of 

instability regions based on Floquet’s theory. 

 

 

Start 

Read plate geometry and material properties   

 

Generate nodal connectivity and mesh 

 

Generate Element stiffness matrix, Element mass matrix and 

Element geometric stiffness matrix due to mechanical loads and 

thermo-mechanical loads of FGM plates 

 

Assemble element matrices to global 

matrices  

 
Apply boundary conditions and generate reduced 

global matrices 

Read Natural frequency, Critical buckling load α, β   

Determine the lower limit of bounding the 

instability region, solving the eigenvalue 

problem 

Determine the upper limit of bounding the 

instability region, solving the eigenvalue 

problem 

End 
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