Umc{@.«a‘:&d&bd&v

Today ‘

Undecidable Problems
Proving undecidabillity

Using reductions to prove more undecidability

CS 374

A Puzzle

Program Collatz (n:integer)
whilen > 1 {
if Even(n) thenn =n/2
else n = 3n+l

)

CS 374

Q: Is there n that makes this program run forever?

Conjecture: Collatz(n) halts for every n > 0

We know that up to numbers with several
hundred digits (10729) it halts.

=)
™\
8*'

\°/

7

J
) 7\
\H—{ N
/
()
)\

~

N
F <N

(%)

A

-

o]
o
o

N

\

O\

_/
I/_\|
@)

/

(o)

o
_/

(o)

w/}'ﬂ\

~—

(o

-

o

)
_/

"

7

e

N
o

_/
N\)

|

e

—
o

_/

-
_/

()
/H—i 2)

~

W
N

\

~

N\
o
_/

~
\

p

400)1{

_/}' \.

N\

/M
[

C

CS 374

Can we write a program?

Could ask: isn’t there a program that can help us
decide if it is possible that is gets stuck in infinite

loop”

‘here Is no program that takes input an arbitrary

P
Th

ilece of code and report correctly it it halts or not!

ere IS No automatic/systematic way to answer that

guestion in general, but maybe that question has a

particular answer.

CS 374

Another Puzzle

Three stacks of cards, all cards in a stack
iIdentical. Two strings written on each card,
one in green and one In red.

0 01 110
100 00 11

| want to choose a seqguence of cards, each from a different
stack so that when | line up the strings in green and red they
are the same string.

Another Puzzle

0 O 110
There is 100 00 11
solution!
110 O 110 0
11 00 11 100

CS 374

| want to choose a seqguence of cards, each from a different

stack so that when | line up the strings in green and red they
are the same string.

CS 374

Another Puzzle

0 0 10 1111
000 0101] 10

There Is solution that uses 451 cards!

| want to choose a seqguence of cards, each from a different

stack so that when | line up the strings in green and red they
are the same string.

CS 374

Can we write a program?

Could ask: isn’t there a program that can help us
decide if there is solution?

Input is finite set of pairs of strings (2n)
Yes/No Question
There Is no such algorithm!

Post correspondance problem has no solution!

CS 374

How to show there Is no algorithm?*

. A TM on input a string w can : accept w, reject w,
diverge on w (run forever)

Language of a TM T:

ACCEPT(T) ={ w| T accepts w |
REJECT(T) ={ w| T rejects w |}

HALT(T) = { w
DIVERGE(T) = | w

I haltson w}
I divergeson w}

. We say T accepts L iff L=ACCEPT(T)
. What happens to the strings that are not accepted?
e \We say T decides L iff L=ACCEPT(T) and DIVERGE(T)=g

CS 374

10

Decidability

A language L Is decidable iff some TM T decides L

A language L is acceptable iff some TM T accepts L

A language L is undecidable iff no TM T decides L

A language L is unacceptable itt no TM T accepts L
TM decides a language = algorithm

if TM does not halt in some inputs its not really an
algorithm

Getting the YES answers right is not enough!

CS 374

11

No algorithm for a problem?

There is no algorithm for a problem means the language
associated with this problem is undecidable.

E.g. Post correspondence problem: input is a string.
Output is YES/NO. Language of all the instances where
the answer Is yes Is a language L. No solution means L

IS not decidable.

Same for the language L of programs that never enter
an infinite loop. L is undecidable.

Not hard to show that there are undecidable languages

(uncountable number of languages, countable number
of TM).

Example of Undecidable Languag ®
SELFREJECT = { <M> | M rejects <M> }
M =Turing Machine (piece of executable code)

<M> = encoding of M as a string (source code for M)

<M> is what you would feed to a universal TM, that would
allow It to simulate M.

(e.g. TM that rejects everything. TM that rejects every
description of a TM are in that language)

CS 374

12

CS 374

13

Example of Undecidable Languages

SELFREJECT = { <M> | M rejects <M> }

Claim: SELFREJECT is undecidable

Proot:
Suppose (towards contradiction) that there is a TM SR that
decides SELFREJECT.
What happens if we feed <SR> to SR?
SR accepts <SR>
SR rejects <SR>
* SR diverges on <SR>

Example of Undecidable Languag ®

SELFREJECT = { <M> | M rejects <M> }

Claim: SELFREJECT is undecidable

Proof:
Suppose (towards contradiction) that there is a TM SR that
decides SELFREJECT.
What happens if we feed <SR> to SR?
o SR accepts <SR> : <SR> is in SELFREJECT = SR rejects <SR>!

SR rejects <SR> : <SR> not in SELFREJECT = SR accepts or
diverges

o SR diverges on <SR> : impossible because this TM makes
decisions about every string!

CS 374

14

CS 374

15

Russel’s barbers paradox

On a small town, on a certain day everyone gets a
haircut

Everyone either cuts their own hair or has their hair cut
by someone else.

Barber = cuts your hair iff you don't

You get a barber’s license it you can prove that
everyone In town either cuts their own hair or you cut it

There Is no barber

CS 374

16

Russel’s barbers paradox

On a small town, on a certain day everyone gets a
haircut

Everyone either cuts their own hair or has their hair cut
i by someone else.

Barber = cuts your hair iff you don't

You get a barber’s license it you can prove that
everyone in town either cuts their own hair or you cut it

There I1s no barber

CS 374

17

Cantor

Let X be any set and 2" its powerset (Set of subsets)
f. X =»2%is NOT onto
Meaning there is a set S in 2" that has no preimage.
X i1s SAD if x is not in f(x)
Y = {xin X | xis SAD}
There is noy in X such that f(y)=Y

maps to barber paradox (X is the set of people, f(x) is the set of people
whose hair x cuts). A person is sad if they don't cut their own hair

maps to SELFREJECT : X is the set of TM that halt on all inputs. f(x) is the
set of all TM that x accepts. A TM is sad if is rejects its own encoding

CS 374

18

Cantor’s Dlagonal Slash

s the set of all infinitely long
binary strings countable?

Suppose it was: consider
enumerating them in a table

Consider the string
corresponding to the
“flipped diagonal”

It doesn’t appear In this
table!

CS 374

19

Showing Undecidability

To show L Is undecidable, reduce some undecidable
language to L

SELFHALT = { <M> | M halts on <M>}

Claim: SELFHALT is undecidable

More general looking problem:
HALT ={ <M,w>| M halts on w }

Claim: HALT is acceptable
The halting problem
Claim: HALT is undecidable

