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ABSTRACT
Achieving high code reuse in physical design flows is challenging
but increasingly necessary to build complex systems. Unfortunately,
existing approaches based on parameterized Tcl generators sup-
port very limited reuse as designers customize flows for specific
designs and technologies, preventing their reuse in future flows. We
present a vision and framework based on modular flow generators
that encapsulates coarse-grained and fine-grained reusable code in
modular nodes and assembles them into complete flows. The key
feature is a flow consistency and instrumentation layer embedded
in Python, which supports mechanisms for rapid and early feed-
back on inconsistent composition. We evaluate the design flows
of successive generations of silicon prototypes built in TSMC16,
TSMC28, TSMC40, SKY130, and IBM180 technologies, showing how
our approach can enable significant code reuse in future flows.

Keywords: physical design, ASIC flows, VLSI, modularity, reuse

1 INTRODUCTION
Rising non-recurring engineering costs in advanced technology
nodes are motivating the hardware community to adopt agile devel-
opment principles and new methodologies to reduce design effort.
Code reuse is particularly important to reduce the effort to build
complex physical design flows. The physical design community
has been slow to adopt agile principles for a few key reasons. First,
physical design is culturally characterized by the “one big release”
operating model with high stakes and strict annual schedules. Op-
portunities for code reuse disappear quickly as risk-averse teams
customize scripts aggressively for their specific design and tech-
nology. Existing approaches offered by commercial EDA vendors
typically exploit reuse by leveraging parameterized Tcl templates
and generators to create initial design- and technology-agnostic
flows [2, 4]. These flows enable efficient reuse until a need arises
for which no parameter exists. As flows are inevitably customized,
these frameworks do not support propagating reusable code to
different designs and technologies. Second, the Tcl language contin-
ues to dominate commercial EDA toolflows, but it lacks language
features that can help compose reusable code from different sources
(e.g., introspection, gradual typing). Furthermore, modern machine
learning CAD solutions are emerging that may not leverage Tcl at
all but must still compose with existing flows [3, 5]. Future physical
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Figure 1: AModular Approach to Physical Design Flows – Flow code
can be difficult to reuse. Modularity enables reuse, and flow assembly in high-
level languages (e.g., Python) enables checking for consistent composition.

design flows seeking to reduce design effort must aggressively pre-
serve reusable code as codebases are specialized while supporting
a heterogeneous mixture of Tcl and non-Tcl code.

We explore a vision and framework to enable reusable physical
design flows based on modular flow generators coupled with a flow
consistency and instrumentation (FCI) layer embedded in Python.
Unlike existing parameterized Tcl generators, the goal of a modu-
lar flow generator is not to emit Tcl but to provide the necessary
abstractions to compose and reuse code. Figure 1 shows how a mod-
ular flow generator composes modular nodes from both generic
sources and custom sources (i.e., design- or technology-specific)
into a graph representing the assembled flow. Since nodes from
different projects can be inconsistent with each other, we introduce
a Python-embedded FCI layer that allows designers to express and
annotate the properties required for a node’s composition and reuse,
and the mechanisms to lift and statically check these properties
across a distributed code base. The layer can also instrument each
modular node to extend its reuse to different scenarios.

Modular flow generators provide the interfaces and tools to sepa-
rate concerns and can enable an ecosystem of nodes for community-
driven physical design. Our work contributes (1)mflowgen, an open-
source (m)odular (flow) (gen)erator with a flow consistency and
instrumentation layer and mechanisms to reuse code across differ-
ent designs and technologies, as well as rapid and early feedback
on inconsistent composition; (2) a common reusable library of over
forty technology- and design-agnostic modular nodes for both com-
mercial and open-source tool flows1 ; and (3) a detailed evaluation
of physical design flows for silicon prototypes in TSMC16, TSMC28,
TSMC40, SKY130, and IBM180 technologies, demonstrating the
potential for significant code reuse in future physical design flows.

1https://github.com/mflowgen/mflowgen
This work is funded by the DARPA Domain-Specific System on Chip (DSSoC) program
and Stanford’s Agile Hardware Center and SystemX Alliance.

https://doi.org/10.1145/3489517.3530633


DAC ’22, July 10–14, 2022, San Francisco, CA, USA A. Carsello et al.

2 SYSTEM GOALS
In this section, we overview the overarching design goals and prin-
ciples that motivate our approach and to maximize the potential
for significantly reducing design effort in physical design.

Goal 1: Must achieve significant code reuse – Complex phys-
ical design flows require a tremendous effort to build. Building a dif-
ferent but similarly complex designwill again require a similar effort.
As a result, meaningfully reducing design effort will likely require
that most of the physical design flow be reused (e.g., 90%+). Three
key design principles follow from this requirement for significant
code reuse. First, it is important to capture not only coarse-grained
code reuse like most existing approaches (e.g., synthesis, place,
route) [2, 4], but also fine-grained reuse (e.g., glue scripts, report-
ing and analysis, generator wrappers). Second, we must support a
mechanism to tweak reusable code since small changes should not
preclude reuse. Third, the friction to design for reuse must be low
to encourage the widespread adoption necessary for success.

Goal 2: Composition must support code from different de-
signs and technologies – Physical design flows are aggressively
specialized, and there is no avoiding this fundamental need. How-
ever, design-specific flow code can feasibly be reused across tech-
nologies (e.g., a tile-based array floorplan). Technology-specific flow
code (e.g., design-for-manufacture rules) can similarly be reused in
neighboring blocks of the same design. Two key design principles
follow from the requirement to support such reuse. First, our ap-
proach must support a mechanism for checking composability and
consistency across nodes and a shared language for expressing re-
quirements. Second, we must require a static code analysis approach
because code fragments in a physical design flow are distributed
across tools and files and not in memory at the same time.

Goal 3: Feedback on inconsistent composition must be
both rapid and early – Physical design flows have long run times,
with RTL-to-GDS iterations often consuming days of compute on
powerful server farms. Run-time assertions late in the flow execute
after long waits, and control flow must reach problematic code
to trigger errors. This can result in flows that fail intermittently,
breaking trust in a reusable approach. We make the key observation
that it is possible and reasonable to separate two aspects of flows:
(1) running the tools to physically construct the design, (2) running
the tools to evaluate variables which turn out to be inconsistent
in a composed flow. We hypothesize that generating feedback on
inconsistent composition does not require the former, and we need
not pay the run time penalty. The key takeaway reinforces a static
code analysis approach and formal property checks, which enables
rapid and early feedback without waiting for physical construction.

3 MODULAR FLOW GENERATORS
Our system goals motivate a flexible modular node abstraction
capable of capturing both coarse- and fine-grained opportunities
for reuse. Specific examples of captured code reuse may include a
bump routing methodology for flip chip packages, an approach for
design for manufacture (DFM) structures, adding power domains,
ECO timing fixes, or a hierarchical power distribution strategy.

3.1 Modular Node Abstraction
We illustrate the schema for a sufficiently flexible modular node
abstraction in Figure 2 which resembles a function signature with
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Figure 2: Modular Node Abstraction – Schema for the configuration of
a modular node. Graph edges are file-based. The commands in each node
consume inputs and optional parameters and produce the outputs.

file-based inputs and outputs. The schema differs from a traditional
software function because physical design depends heavily on files
(e.g., netlists, databases, cell libraries), but is also higher than a low-
level build system (e.g., make) since nodes are self-contained with
internal scripts that access parameters defined in the configuration.
The example node synthesizes a gate-level netlist from a technology
package and RTL design. There is no built-in support to ensure
that nodes produce the expected results. Section 4 will explore
mechanisms for stronger guarantees.

3.2 Categorization of Nodes that Capture Reuse
Figure 2 also shows two axes of reuse for technology- or design-
agnostic code. Code agnostic to both is most reusable and often
least performant, but many reusable code blocks have little impact
on performance (e.g., converting libs-to-db). Code agnostic along
only one axis can be challenging but still feasible to reuse (e.g.,
design-specific tile-based array floorplan, technology-specific DFM
tasks). Code in the lower-left region has no opportunity for reuse.

Representing the upper-right region, we have built a common
library of technology- and design-agnostic modular nodes2 with a
wide range of common functions (e.g., synthesis, floorplan, DRC)
that can be assembled into basic flows that are functional out-of-the-
box in many modern technologies (see Section 5). This capability
is similar to existing work [1, 2, 4] but is designed for our system
vision. Each common library node is parameterized (e.g., hierarchy
flattening, clock gating, target slack), technology-independent (e.g.,
distances are multiples of metal track pitch), may be swappable
between vendors (e.g., synthesis with Cadence Genus, Synopsys DC,
or open-source yosys), and can be replaced entirely or decomposed
into finer-grained nodes to more precisely capture reuse.

3.3 Flow Assembly
We provide a Python-based DSL for programmatically connecting
modular nodes into graphs that represent assembled flows (see
Figure 3). The DSL supports a basic graph structure and can add or
modify each node’s parameters. This approach satisfies Goal 1 from
Section 2 by providing an environment to rapidly assemble coarse-
grained and fine-grained code fragments using the same modular
abstraction (in contrast to existing approaches built from coarse-
grained steps and Tcl hooks that are more difficult to modify).

2https://mflowgen.readthedocs.io/en/latest



INVITED: mflowgen: A Modular Flow Generator and Ecosystem for Community-Driven Physical Design DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Modular Flow
Generator

Python Graph-Building
DSL Elaboration

User
DSL
Code

Elaborated Graph
Representing Assembled

Physical Design Flow

Codebase Extraction

Live Code Base
(includes Tcl and
other languages)

Reports - Pass/Fail
Flow Consistency and
Instrumentation Layer

Elaborated and
Instrumented Graph

Supports Assertions and
Stashing Pre-Built Nodes

Build System
Code Generator

(e.g., make)

User-Facing
Physical 

Design Flow
and supporting
build system

Assertion Instrumentation
(from node configuration spec)

Stash Instrumentation
(disable edges for pre-built nodes)

Technology
Interface Node

Common NodesCustom NodesUser
Custom
Nodes

Static Analysis Engine

Annotation Templates
(built-in / user-defined)

Lift variables
and properties

Check individual
and relational
properties

Lift annotations

Example Annotation Template

equal_height_triple( X )
- Relational check with triple equality ( = )
- Must appear in exactly three locations

- Lift three variables from code base

Figure 3: Complete Toolflow Block Diagram – mflowgen assembles
the physical design flow from user DSL code. The flow is checked for
consistency and instrumented before producing the final flow.

A modular flow generator enables physical design engineers to
productively assemble flows of varying complexity including basic
flows for initial prototyping and partial flows for test. In academia,
simple teaching flows can be assembled from common library nodes
and individual nodes can be incrementally swapped or added for
educational purposes. The Python DSL also opens opportunities for
graph transformations, for example unrolling a loop and sweeping
a parameter (e.g., clock period) for design-space exploration.

4 FLOW CONSISTENCY & INSTRUMENTATION
The goal of the FCI layer is to rapidly detect inconsistencies and
to provide stronger guarantees on node functionality. For example,
an otherwise reusable node for adding power domains may use
a specific power switch cell that is not composable in a different
technology. Our approach pulls these checks forward using static
code analysis to detect inconsistencies at graph elaboration time.

4.1 Consistency Checks
Figure 3 shows how the modular flow generator feeds the FCI layer
by elaborating the user DSL code into a detailed in-memory graph
model representing the assembled flow. The FCI layer introspects
the graph model to assemble the live code base of modular nodes.

Our tool flow provides the infrastructure to add property-check
annotation templates to the static analysis engine. The first role of
these templates is to translate between the node’s programming
language (e.g., Tcl) and the host language (e.g., Python) to unify all
property checks under the same language. Through this translation,
templates identify the variables that are relationally connected and
their properties across the distributed code base.

The simple example in Figure 3 shows a template that enforces
equality across three annotated variables. This may be used to
enforce height-matching of three floorplan layouts such that they
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Figure 4: FCI Layer Transformations for Pre-Built Nodes – The FCI
layer enables building and stashing modular nodes, and sharing them as
vendor packages across a team (with input edges removed).

can be tiled together side by side. Mismatched values, or having
only two of three annotations, would fail the property check.

4.2 Flow Instrumentation
Figure 3 also illustrates how the FCI layer can instrument all modu-
lar nodes with additional functionality. For example, modular nodes
are natural checkpoints to share pre-built collateral across a team.
Figure 4 shows how built nodes can be stashed into a shared team
space from which other team members can pull into their graphs.
On a stash pull, the FCI layer transforms the graph in-place to
break input dependency edges, resulting in a static vendor pack-
age that simply supplies outputs and is never re-built regardless
of the build state of prior nodes (unlike Makefiles), enabling agile
team workflows. The FCI layer can also extend the modular node
configuration schema to insert run-time assertions before and after
each node (e.g., in Figure 1), addressing scenarios where a desired
check is data-dependent (e.g., parsing and flagging unexpectedly
poor-quality results). Pre- and post-conditions are Python snippets
and can be run with full-featured software testing tools (i.e., pytest).

5 EVALUATION
Wehave built silicon prototypes inmultiple technologies to evaluate
code reuse with a modular flow generator approach. Our primary
indication of success will be (1) achieving significant code reuse for
custom code reused to build 2nd+ generation designs, because we
expect existing frameworks [1, 2, 4] to perform similarly to build
1st generation designs, and (2) the speed of static property checks
running on large complex codebases. Table 1 lists the high-level
specifications of six chips. At a glance, total code reuse for each chip
was high (totals of 80%+ lines of code reused), with 2nd+ generation
designs achieving good code reuse from previous designs. All chips
were completed with very short timelines of six months or less.

5.1 Benefit of Modularity
We evaluate the benefit of modularity against existing approaches
based on parameterized Tcl generators [2, 4], which encourage im-
plementing custom features in Tcl hooks (e.g., injected pre- and post-
each step), rather than directly composing both fine-grained and
coarse-grained code fragments with the same modular abstraction.

We consider DenseAccel16 and its evolution from two previous it-
erations of the same design (less complex) in the same 16nm technol-
ogy and metallization. We refer to the iterations as DenseAccel16-1
to DenseAccel16-3. All three iterations instantiated a 2D tile array
of processing elements with a per-tile power domains feature. The
first iteration integrated the feature monolithically into the Tcl
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Table 1: Chips Built and Fabricated with mflowgen

DenseAccel16 MiniCGRA CryptoAccel DenseAccel40 RVMulticore BaseSynch

Application Domain Image Processing/ML Image Processing Cryptography ML General Purpose Wireless
Technology TSMC 16nm SKY 130nm SKY 130nm TSMC 40nm TSMC 28nm IBM 180nm
Area (mm2) / Frequency (MHz) 25 / 750 10 / 60 10 / 325 29.2 / 200 1.25 / 500 2.31 / 20
Number of Cores 384 PE, 128 MEM 24 PE, 8 MEM 1 256 PE 4 2
# of Power/Clock Domains 513 / 3 1 / 1 1 / 1 1 / 4 1 / 1 1 / 4
% reused from common lib 30% 58% 94% over 80% 86% 84%
% reused from prev. designs 50% 24% First design First design First design First design
Months to tapeout 6 2.5 2.5 6 2 1.5
Static check run time 2.2 sec 0.8 sec 0.2 sec 0.6 sec <1 sec <1 sec

floorplan code mixed with other features. The second/third were
built as modular nodes. The time to port power domains code
from DenseAccel16-1 to DenseAccel16-2 was two months,
while the time from DenseAccel16-2 to DenseAccel16-3 was
two days, both for a single student of high expertise, repre-
senting a 30x improvement. We attribute the difference to the
tangling of features in monolithic Tcl scripts, requiring our designer
to spend weeks understanding every line of code to decide which
lines affect power domains and which lines also break other fea-
tures (e.g., place blockages with multiple purposes). Effort went to
gathering relevant code into one place and debugging the port over
time with other features. In contrast, moving from DenseAccel16-2
to DenseAccel16-3 was far simpler. A single node captured all code
related to power domains, and the node was designed as a vendor
package supplying code fragments across the flow.

5.2 Evaluating Static Property Checks
We break down flow tool spin times for a task that involves port-
ing the power domains feature from the DenseAccel16 processing
element tile to a memory processing tile of similar complexity. Fig-
ure 5 shows timelines with and without static property checks. The
entire synthesis-to-DRC flow completes in 120 minutes.

Impact on debug loop – In the baseline flowwithout static prop-
erty checks in Figure 5(a), our physical design engineer attempted
an initial port (with multiple undiscovered bugs interacting with
code downstream) and ran the entire flow before finding a latch-up
DRC violation two hours later. They root-caused the bug (orange
bar split in first debug timeline, this could span minutes, hours, or
days). After proposing a fix for this bug in isolation, which included
understanding the DRC report, the purpose of all code statements,
and filtering lines for blame, they attempted the full flow again,
discovered the second bug, and began the next debug timeline.
This debug loop repeated. In the second flow with static property
checks in Figure 5(b), the initial designer not only implemented
the feature but also captured properties expressing their design
intent (e.g., align the placement of an always-on power region to
the standard-cell row height, to avoid latch-up DRCs). A 2nd+ gen-
eration designer no longer needs to rediscover these properties, and
the FCI layer executes these checks statically within a few seconds
at graph elaboration time (before any physical design tools are run).
The entire debug loop reduces by about 3x, simply passing the
property checks.

Static property check run times – Table 1 quantifies the FCI
layer run time to inspect the entire codebase for each chip. We sum
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Figure 5: Debug Loop Timelines with Static Property Checks

the times for hierarchical sub-designs, with each number collected
over five trials on a 2.4GHz Quad-Core Intel Core i5-8279U laptop-
class CPU. The static check run times are quick, ranging from 0.2s
to 2.2s for the largest codebase. We ran a study scaling up to 1000
property checks, which still completes quickly in under 20s.

6 CONCLUSION
Modern physical design approaches lead to aggressively tuned flows
that prevent code reuse. We present a system vision and framework
based on modular flow generators to maximize the potential for
significantly reducing design effort. We use the same modular ab-
straction to compose both coarse-grained and fine-grained code
fragments to capture greater reuse, and we provide infrastructure
to annotate static property checks for flow consistency. Our evalua-
tion demonstrates potential for modular flow generators to support
a future of community-driven, reusable physical design.
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