

Sample &

Buy

SLES198A-DECEMBER 2006-REVISED MAY 2015

DIR9001 96-kHz, 24-Bit Digital Audio Interface Receiver

Technical

Documents

1 Features

- One-Chip Digital Audio Interface Receiver (DIR) Including Low-Jitter Clock-Recovery System
- Compliant With Digital Audio Interface Standards: IEC60958 (former IEC958), JEITA CPR-1205 (former EIAJ CP-1201, CP-340), AES3, EBU tech3250
- Clock Recovery and Data Decode From Biphase Input Signal, Generally Called S/PDIF, EIAJ CP-1201, IEC60958, AES/EBU
- Biphase Input Signal Sampling Frequency (f_S) Range: 28 kHz to 108 kHz
- Low-Jitter Recovered System Clock: 50 ps
- Jitter Tolerance Compliant With IEC60958-3
- Selectable Recovered System Clock: 128 f_S, 256 f_S, 384 f_S, 512 f_S
- Serial Audio Data Output Formats: 24-Bit I²S; MSB-First, 24-Bit Left-Justified; MSB-First 16-, 24-Bit Right-Justified
- User Data, Channel-Status Data Outputs Synchronized With Decoded Serial Audio Data
- No External Clock Required for Decode
- Includes Actual Sampling Frequency Calculator (Needs External 24.576-MHz Clock)
- Function Control: Parallel (Hardware)
- Functions Similar and Pin Assignments Equivalent to Those of DIR1703
- Single Power Supply: 3.3 V (2.7 V to 3.6 V)
- Wide Operating Temperature Range: -40°C to • 85°C
- **5 V-Tolerant Digital Inputs**
- Package: 28-pin TSSOP, Pin Pitch: 0,65 mm

Applications 2

- AV/DVD Receiver, AV Amplifier
- Car or Mobile Audio System
- **Digital Television**
- **Musical Instruments**
- Recording Systems
- High-End Audio/Sound Card for PC
- Replacement of DIR1703
- Other Applications Requiring S/PDIF Receiver

3 Description

Tools &

Software

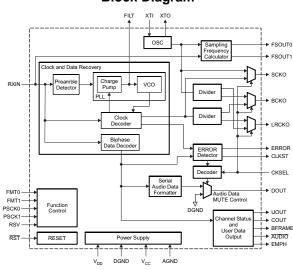
The DIR9001 is a digital audio interface receiver that can receive a 28-kHz to 108-kHz samplingfrequency, 24-bit-data-word, biphase-encoded signal. The DIR9001 complies with IEC60958-3, JEITA CPR-1205 (Revised version of EIAJ CP-1201), AES3, EBUtech3250, and it can be used in various applications that require a digital audio interface.

Support &

Community

....

The DIR9001 supports many output system clock and output data formats and can be used flexibly in many application systems. As the all functions which the DIR9001 provides can be controlled directly through control pins, it can be used easily in an application system that does not have a microcontroller. Also, as dedicated pins are provided for the channel-status bit and user-data bit, processing of their information can be easily accomplished by connecting with a microcontroller, DSP, or others.


The DIR9001 does not require an external clock source or resonator for decode operation if the internal actual-sampling-frequency calculator is not used. Therefore, it is possible to reduce the cost of a system.

The operating temperature range of the DIR9001 is specified as -40°C to 85°C, which makes it suitable for automotive applications.

Device Information

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DIR9001	TSSOP (28)	4.40 mm × 9.70 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Block Diagram

. .

Table of Contents

9

1	rea	tures 1					
2	Арр	Applications 1					
3	Des	cription 1					
4	Rev	ision History 2					
5	Dev	ice Comparison Table 3					
	5.1	Differences From DIR1703 3					
6	Pin	Configuration and Functions 4					
7	Spe	cifications6					
	7.1	Absolute Maximum Ratings 6					
	7.2	ESD Ratings6					
	7.3	Recommended Operating Conditions 6					
	7.4	Thermal Information7					
	7.5	Electrical Characteristics7					
	7.6	Timing Requirements 8					
	7.7	Switching Characteristics					
	7.8	Typical Characteristics 10					
8	Deta	ailed Description 11					
	8.1	Overview 11					

4 Revision History

Changes from Original (Dec 2006) to Revision A

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device

- 8.2 Functional Block Diagram 11 8.3 Feature Description..... 12 8.4 8.5 Programming...... 23 Application and Information 26 9.1 9.2 Typical Application 27 10 Power Supply Recommendations 29 11.1 Layout Guidelines 29 11.2 Layout Example 30 Trademarks 31 12.2 12.3 Electrostatic Discharge Caution 31 13 Mechanical, Packaging, and Orderable
 - Information 31

Page

2

5 Device Comparison Table

5.1 Differences From DIR1703

The DIR9001 has many improved functions compared to the DIR1703.

The DIR9001 functions are similar to those of the DIR1703.

The DIR9001 pin assignment is equivalent to that of the DIR1703.

The DIR9001 biphase input signal decoding function is almost equivalent to that of the DIR1703.

The differences between the DIR9001 and DIR1703 are shown in Table 1.

DIFFERENCE	DIR1703	DIR9001
Operational supply-voltage range	3 V to 3.6 V	2.7 V to 3.6 V
Operation temperature range	–25°C to 85°C	-40°C to 85°C
Package	SSOP-28P, pin pitch: 0.65 mm	TSSOP-28P, pin pitch: 0.65 mm
Clock recovery architecture	SpAct™ feature	Conventional PLL
IEC60958-3 jitter tolerance	Not compliant	Compliant
IEC60958 sampling frequency accuracy	Level II (±1000 ppm)	Level III (±12.5%)
Acceptable sampling frequency	32/44.1/48/88.2/96 kHz, ±1500 ppm	28 kHz to 108 kHz continuous
Biphase input signal level	CMOS level	5-V tolerant TTL level
Connection of loop filter	Between FILT pin and VCC	Between FILT pin and AGND
XTI source clock frequency	One of the following clock sources or resonators must be connected to the XTI pin: 4.069/5.6448/6.144/ 8.192/11.2896/12.288/ 16.384/16.9344/18.432/ 22.5792/24.576-MHz	Optional 24.576-MHz (24.576-MHz clock is only required to use the internal actual- sampling-frequency calculator or use the DIR9001 as a 24.576-MHz clock generator.)
BFRAME H period	32/f _S	8/f _S
Channel status and user data	Synchronous with LRCK transition	17-BCK delay from LRCK transition
Latest tracked frequency hold	Available	Not available
PLL mode clock at error	Latest tracked frequency	VCO free-running frequency
Clock transition signal out	CKTRNS pin, active H	CLKST pin, active-high
Oscillation amplifier	External feedback resistor (typ. 1 MΩ)	Internal feedback resistor

The differences between the DIR1703 and DIR9001 I/O pins are shown in Table 2.

Table 2. The Differences Between DIR1703 and DIR9001 in All I/O Pin

PIN NO.	DIR1703	DIR9001	DIFFERENCES	DESCRIPTIONS OF DIR9001
1	ADFLG	AUDIO	Pin name only	Channel-status data information of non-audio sample word, active-low
2	BRATE0	FSOUT0	Pin name only	Actual-sampling-frequency calculated result output 0
3	BRATE1	FSOUT1	Pin name only	Actual-sampling-frequency calculated result output 1
4	SCKO	SCKO	Same function	System clock output
5	V _{DD}	V _{DD}	Same function	Digital power supply, 3.3-V
6	DGND	DGND	Same function	Digital ground
7	XTO	XTO	Same function	Oscillation amplifier output
8	XTI	XTI	Same function	Oscillation amplifier input, or external XTI source clock input
9	CKTRNS	CLKST	CLKST is active-high	Clock change/transition signal output
10	LRCKO	LRCKO	Same function	Audio data latch enable output
11	BCKO	BCKO	Same function	Audio data bit clock output
12	DOUT	DOUT	Same function	16 bit-24 bit decoded serial digital audio data output
13	SCF0	PSCK0	Pin name only	SCKO output frequency selection 0
14	SCF1	PSCK1	Pin name only	SCKO output frequency selection 1
15	CSBIT	COUT	Pin name only	Channel-status data serial output synchronized with LRCKO

Copyright © 2006–2015, Texas Instruments Incorporated

STRUMENTS

EXAS

Table 2. The Differences Between DIR1703 and DIR9001 in All I/O Pin (continued)

PIN NO.	DIR1703	DIR9001	DIFFERENCES	DESCRIPTIONS OF DIR9001
16	URBIT	UOUT	Pin name only	User data serial output synchronized with LRCKO
17	EMFLG	EMPH	Pin name only	Channel-status data Information of pre-emphasis (50 µs/15 µs)
18	BFRAME	BFRAME	Same function	Indication of top block of biphase input signal
19	BRSEL	RSV	Reserved	Reserved, must be connected to DGND
20	DIN	RXIN	Pin name only	Biphase digital data input
21	RST	RST	Same function	Reset control input, active-low
22	FILT	FILT	Same function	External filter connection terminal. Recommended filter must be connected.
23	AGND	AGND	Same function	Analog ground
24	V _{CC}	V _{CC}	Same function	Analog power supply, 3.3-V
25	FMT0	FMT0	Same function	Decoded serial digital audio data output format selection 0
26	FMT1	FMT1	Same function	Decoded serial digital audio data output format selection 1
27	UNLOCK	ERROR	Pin name only	Indication of internal PLL or data parity error
28	CKSEL	CKSEL	Same function	Selection of system clock source, Low: PLL (VCO) clock, High: XTI clock

6 Pin Configuration and Functions

DIR9001 (TOP VIEW)					
1	AUDIO	CKSEL	28		
2	FSOUT0	ERROR	27		
3	FSOUT1	FMT1	26		
4	SCKO	FMT0	25		
5	V _{DD}	V_{CC}	24		
6	DGND	AGND	23		
7	хто	FILT	22		
8	ХТІ	RST	21		
9	CLKST	RXIN	20		
10	LRCKO	RSV	19		
11	вско	BFRAME	18		
12	DOUT	EMPH	17		
13	PSCK0	UOUT	16		
14	PSCK1	COUT	15		

DIR9001 SLES198A-DECEMBER 2006-REVISED MAY 2015

www.ti.com

	Pin Functions							
PIN //O PULL REMARKS			PULL	DEMARKS	DESCRIPTION			
NAME	NO.	10	UP/DOWN	REWARKS	DESCRIPTION			
AGND	23	-			Analog ground			
AUDIO	1	OUT		CMOS	Channel-status data information of non-audio sample word, active-low			
BCKO	11	OUT		CMOS	Audio data bit clock output			
BFRAME	18	OUT		CMOS	Indication of top block of biphase input signal			
CKSEL	28	IN	Pulldown	5-V tolerant TTL	Selection of system clock source, Low: PLL (VCO) clock, High: XTI clock ⁽¹⁾			
CLKST	9	OUT		CMOS	Clock change/transition signal output			
COUT	15	OUT		CMOS	Channel-status data serial output synchronized with LRCKO			
DGND	6	-			Digital ground			
DOUT	12	OUT		CMOS	16-bit/24-bit decoded serial digital audio data output			
EMPH	17	OUT		CMOS	Channel-status data information of pre-emphasis (50 µs/15 µs)			
ERROR	27	OUT		CMOS	Indication of internal PLL or data parity error			
FILT	22	-			External filter connection terminal; must connect recommended filter.			
FMT0	25	IN	Pulldown	5-V tolerant TTL	Decoded serial digital audio data output format selection 0 ⁽¹⁾			
FMT1	26	IN	Pulldown	5-V tolerant TTL	Decoded serial digital audio data output format selection 1 ⁽¹⁾			
FSOUT0	2	OUT		CMOS	Actual sampling frequency calculated result output 0			
FSOUT1	3	OUT		CMOS	Actual sampling frequency calculated result output 1			
LRCKO	10	OUT		CMOS	Audio data latch enable output			
PSCK0	13	IN	Pulldown	5-V tolerant TTL	PLL source SCKO output frequency selection 0 ⁽¹⁾			
PSCK1	14	IN	Pulldown	5-V tolerant TTL	PLL source SCKO output frequency selection 1 ⁽¹⁾			
RST	21	IN	Pullup	5-V tolerant TTL	Reset control input, active-low (2)			
RSV	19	IN	Pulldown		Reserved, must be connected to DGND ⁽¹⁾			
RXIN	20	IN		5-V tolerant TTL	Biphase digital data input ⁽³⁾			
SCKO	4	OUT		CMOS	System clock output			
UOUT	16	OUT		CMOS	User data serial output synchronized with LRCKO			
V _{CC}	24	-			Analog power supply, 3.3-V			
V _{DD}	5	-			Digital power supply, 3.3-V			
ХТІ	8	IN		CMOS Schmitt-trigger	Oscillation amplifier input, or external XTI source clock input			
ХТО	7	OUT		CMOS	Oscillation amplifier output			

(1) TTL Schmitt-trigger input with internal pulldown (51 k Ω typical), 5-V tolerant (2) TTL Schmitt-trigger input with internal pullup (51 k Ω typical), 5-V tolerant (3) TTL Schmitt-trigger input, 5-V tolerant.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

			MIN	MAX	UNIT	
V _{CC} V _{DD}	Supply voltage		-0.3	4	V	
V _{CC} to V _{DD}	Supply voltage d	ifferences	-0.1	0.1	V	
AGND to DGND	Ground voltage differences		-0.1	0.1	V	
	Digital input	Digital input	-0.3	6.5	N/	
	voltage	Digital output	-0.3	$(V_{DD} + 0.3) < 4$	V	
	Analog input	ΧΤΙ, ΧΤΟ	-0.3	$(V_{CC} + 0.3) < 4$		
	voltage	FILT	-0.3	$(V_{CC} + 0.3) < 4$	V	
	Input current (an	y pins except supplies)	-10	10	mA	
	Ambient temperature under bias		-40	125	°C	
	Junction tempera	Junction temperature		150	°C	
	Lead temperature (soldering)			260	°C	
	Package temper	ature (reflow, peak)		260	°C	
T _{stg}	Storage tempera	ture	-55	150	°C	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±250	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V_{CC}	Analog supply voltage		2.7	3.3	3.6	VDC
V_{DD}	Digital supply voltage		2.7	3.3	3.6	VDC
	Disital issue als als fragmanses	XTI is connected to clock source		24.576		MHz
	Digital input clock frequency	XTI is connected to DGND	N	ot required		MHz
	Digital output load capacitance	, except SCKO			20	pF
	Digital output load capacitance	(SCKO)			10	pF
T _A	Operating free-air temperature	-	-40		85	°C

7.4 Thermal Information

		DR9001	
	THERMAL METRIC ⁽¹⁾	TSSOP (PW)	UNIT
		28 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	81.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	22.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	40	°C/W
ΨJT	Junction-to-top characterization parameter	0.7	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	39.4	°C/W

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

All specifications at $T_A = 25^{\circ}$ C, $V_{DD} = V_{CC} = 3.3$ V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DIGIT	AL INPUT/OUTPUT CHARACTERISTI	cs					
VIH			0.7 V _{DD}		V _{DD}		
VIL	— Input logic level ⁽¹⁾				0.3 V _{DD}	VDC	
VIH	Input logic level ⁽²⁾		2		5.5		
V _{IL}					0.8	VDC	
V _{OH}	Output logic level ⁽³⁾	$I_{O} = 4 \text{ mA}$	$0.85 V_{DD}$			VDC	
V _{OL}		$I_{O} = -4 \text{ mA}$		0.15 V _{DE}		VDC	
I _{IH}	Input leakage current ⁽⁴⁾	$V_{IN} = V_{DD}$		65	100	μA	
IIL	input leakage current **	V _{IN} = 0 V	-10		10	μΑ	
I _{IH}	Input leakage current ⁽⁵⁾	$V_{IN} = V_{DD}$	-10		10	μA	
IIL	input leakage current **	$V_{IN} = 0 V$	-100	-65		μΑ	
I _{IH}	Input leakage current ⁽⁶⁾	$V_{IN} = V_{DD}$	-10		10	μA	
IIL	input leakage current V	$V_{IN} = 0 V$	-10		10	μΑ	
BIPHA	SE SIGNAL INPUT AND PLL						
	Jitter tolerance — (IEC60958-3)	IEC60958-3 (2003-01)		Compliant			
RECO	VERED CLOCK AND DATA						
	Serial audio data width		16		24	Bit	
	SCKO jitter	f_{S} = 48 kHz, SCKO = 256 f_{S} , measured periodic		50	100	ps rms	
XTI SC	OURCE CLOCK						
	Frequency accuracy	XTI is connected to clock source	-100		100	ppm	
POWE	R SUPPLY AND SUPPLY CURRENT						
V _{CC}	Operation voltage range		2.7	3.3	3.6	VDC	
V_{DD}	Operation voltage range		2.7	3.3	3.6	VDC	
		f_{S} = 96 kHz, PLL locked, XTI connected to DGND		6	8.3	mA	
I _{CC}	Supply current ⁽⁷⁾	f_{S} = 96 kHz, PLL locked, XTI connected to 24.576-MHz resonator		6	8.3	mA	
		RXIN = H or L, XTI = L, \overline{RST} = L		130		μA	

CMOS compatible input: XTI (not 5-V tolerant) (1)

(2)

5-V tolerant TTL inputs: RXIN, FMT0, FMT1, PSCK0, PSCK1, CKSEL, RST, RSV CMOS outputs: XTO, SCKO, BCKO, LRCKO, DOUT, UOUT, COUT, BFRAME, ERROR, CLKST, AUDIO, EMPH, FSOUT0, FSOUT1 (3)

Internal pulldowns: FMT0, FMT1, PSCK0, PSCK1, CKSEL, RSV Internal pullup: RST (4)

(5)

No internal pullup and pulldown: RXIN, XTI (6)

No load connected to SCKO, BCKO, LRCKO, DOUT, COUT, VOUT, BFRAME, FSOUT0, FSOUT1, CLKST, ERROR, EMPH, AUDIO (7)

Copyright © 2006-2015, Texas Instruments Incorporated

TEXAS INSTRUMENTS

www.ti.com

Electrical Characteristics (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		f_{S} = 96 kHz, PLL locked, XTI connected to DGND		6	8.3	mA
I _{DD}	Supply current ⁽⁷⁾	f_{S} = 96 kHz, PLL locked, XTI connected to 24.576-MHz resonator		9	12.4	mA
		$RXIN = H \text{ or } L, XTI = L, \overline{RST} = L$		72		μA
		f_{S} = 96 kHz, PLL locked, XTI connected to DGND		40	55	mW
P _D	Power dissipation ⁽⁷⁾	f_{S} = 96 kHz, PLL locked, XTI connected to 24.576-MHz resonator		50	68	mW
		$RXIN = H \text{ or } L, XTI = L, \overline{RST} = L$		0.67		mW
TEMP	ERATURE RANGE					
T _A	Operation temperature range		-40		85	°C
θ_{JA}	Thermal resistance	28-pin T-SSOP		105		°C/W

7.6 Timing Requirements

All specifications at $T_A = 25^{\circ}C$, $V_{DD} = V_{CC} = 3.3$ V (unless otherwise noted)

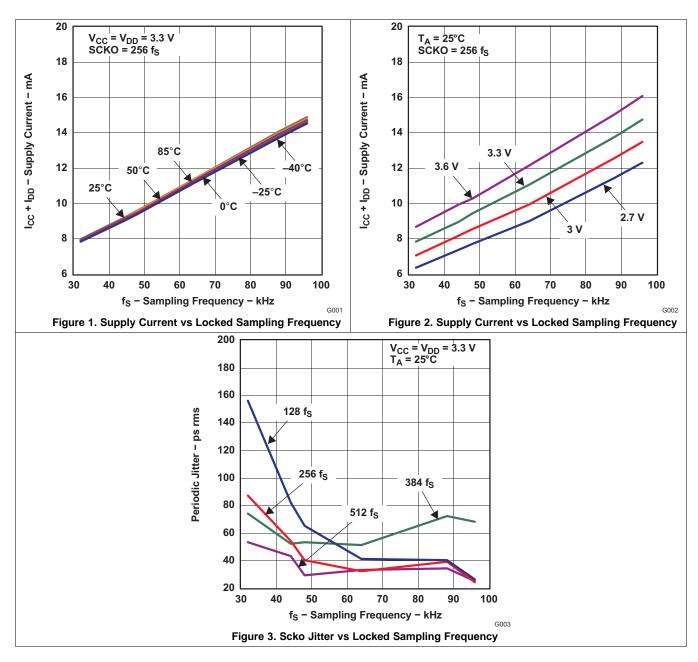
			MIN	NOM	MAX	UNIT
BIPHAS	E SIGNAL INPUT AND PLL					
	Input sampling frequency range		28		108	kHz
XTI SOU	IRCE CLOCK					
		XTI is connected to clock source	24.576 Not required		N 41 1-	
	XTI source clock frequency	XTI is connected to DGND				MHz
	XTI input-clock duty cycle	XTI is connected to clock source	45%		55%	
CLKST						
t _{CLKST}	CLKST pulse duration, high		4		20	μs
LATENC	ΣΥ					
t _{LATE}	LRCKO/DOUT latency	See Figure 14		3/f _S		s
DATA O	UTPUT ⁽¹⁾	•				
t _{SCY}	System clock pulse cycle time		18			ns
t _{SCBC}	Delay time of SCK rising edge to BCK rising edge		4	8	15	ns
t _{CKLR}	Delay time of BCKO falling edge to LRCKO valid		-5	0.5	0.5	ns
t _{BCY}	BCKO pulse cycle time	See Figure 16		1/64f _S		S
t _{BCH}	BCKO pulse duration, HIGH		60			ns
t _{BCL}	BCKO pulse duration, LOW		60			ns
t _{BCDO}	Delay time of BCKO falling edge to DOUT valid		-5	1	5	ns
t _r	Rising time of all signals	·			10	ns
t _f	Falling time of all signals				10	ns

(1) Load capacitance of the LRCKO, BCKO, and DOUT pins is 20 pF. DOUT, LRCKO, and BCKO are synchronized with SCKO.

7.7 Switching Characteristics

All specifications at T_{A} = 25°C, V_{DD} = V_{CC} = 3.3 V (unless otherwise noted)

PARAMETER TEST CONDITIONS		MIN	TYP MAX	UNIT
BIPHASE SIGNAL INPUT AND PLL				
PLL lock-up time	From biphase signal detection to error-out release (ERROR = L)		100	ms
RECOVERED CLOCK AND DATA				
	128 f _S	3.584	13.824	MHz
	256 f _S	7.168	27.648	
SCKO frequency	384 f _S	10.752	41.472	
	512 f _S	14.336	55.296	
BCKO frequency	64 f _S	1.792	6.912	MHz
LRCKO frequency	f _S	28	108	kHz
SCKO duty cycle		45%	55%	

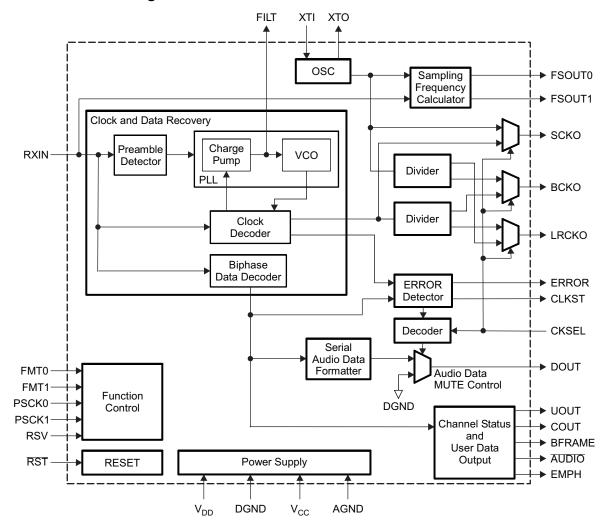

DIR9001 SLES198A – DECEMBER 2006 – REVISED MAY 2015

www.ti.com

7.8 Typical Characteristics

Oscillation amplifier operating with crystal; 1-kHz, 0-dB, sine-wave data; no load

8 Detailed Description


8.1 Overview

The DIR9001 is a digital audio interface receiver that can receive a 28-kHz to 108-kHz sampling frequency, 24bit-data-word, biphase-encoded signal and output a serial audio signal. The DIR9001 complies with the jitter specification IEC60958-3, JEITA CPR1205 (Revised version of EIAJ CP-1201), AES3, EBUtech3250, and it can be used in various applications that require a digital audio interface.

The DIR9001 supports MSB-first PCM data output in 24-bit I2S, 24-bit left justified, 24-bit right justified, or 16-bit right justified form. Sampling rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz are supported on the serial audio data output when in PLL mode. All functions which the DIR9001 provides can be controlled directly through control pins. This means that they can be pulled high or low for full operation of the DIR9001 without a microcontroller. A microcontroller can also be used to drive the function pins to provide an adaptable system. Also, as dedicated pins are provided for the channel-status bit and user-data bit, processing of their information can be easily accomplished by connecting with a microcontroller, DSP, and so on.

The DIR9001 can derive a system clock by recovering the source's clock from the biphase input signal. Therefore, the DIR9001 does not require an external clock source or resonator for decode operation if the internal actual-sampling-frequency calculator is not used which in turn can reduce the system cost. The serial audio data output can also be driven by an external source such as a crystal or ceramic resonator.

The operating temperature range of the DIR9001 is specified as -40°C to 85°C, which makes it suitable for automotive applications.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Acceptable Biphase Input Signal and Biphase Input Pin (RXIN)

The DIR9001 can decode the biphase signal format which is specified in one of the following standards. Generally, these following standards may be called Sony/Philips digital interface format (S/PDIF) or AES/EBU.

- IEC60958 (revised edition of former IEC958)
- JEITA CPR-1205 (revised edition of former EIAJ CP-1201, CP-340)
- AES3
- EBU tech3250

The sampling frequency range and data word length which DIR9001 can decode is as follows:

- Sampling frequency range is 28 kHz to 108 kHz.
- Maximum audio sample word length is 24-bit.

Note of others about the biphase input signal.

- The capture ratio of the built-in PLL complies with level III of sampling frequency accuracy (±12.5%), which is specified in IEC60958-3.
- The jitter tolerance of the DIR9001 complies with IEC60958-3.
- The PLL may also lock in outside of the specified sampling-frequency range, but extended range is not assured.

Notice about the signal level and transmission line of the biphase input signal.

- The signal level and the transmission line (optical, differential, single-ended) are different in each standard.
- The biphase input signal is connected to the RXIN pin of the DIR9001.
- The RXIN pin has a 5-V tolerant TTL-level input.
- An optical receiver module (optical to electric converter) such as TOSLINK, which is generally used in consumer applications, is connected directly to the RXIN pin without added external components.
- The output waveform of the optical receiver module varies depending on the characteristics of each product type, so a dumping resistor or buffer amplifier might be required between the optical receiver module output and the DIR9001 input. Careful handling is required if the optical receiver module and the DIR9001 are separated by a long distance.
- The DIR9001 needs an external amplifier if it is connected to a coaxial transmission line.
- The DIR9001 needs an external differential to single-ended converter, attenuator, etc., for general consumer applications if non-optical transmission line is used.

8.3.2 System Reset

The DIR9001 reset function is controlled by and external reset pin, RST.

The reset operation must be performed during the power-up sequence as shown in Figure 4. Specifically, the DIR9001 requires reset operation with a 100-ns period after the supply voltage rises above 2.7 V.

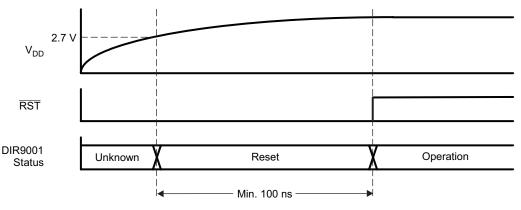


Figure 4. Required System Reset Timing

Feature Description (continued)

The state of each output pins during reset is shown in Table 3.

CLASSIFICATION	PIN NAME	WHILE RST = L				
	ВСКО	L				
Clock	LRCKO	L				
_	SCKO	L				
Data	DOUT	L				
	AUDIO	L				
_	BFRAME	L				
_	CLKST	L				
_	COUT	L				
Flag and status	EMPH	L				
_	ERROR	Н				
_	FSOUT0	L				
	FSOUT1	L				
_	UOUT	L				
Oscillation amplifier	XTO	Output				

8.3.3 Clock Description

8.3.3.1 System Clock Source

DIR9001 has the following two clock sources for the system clock.

- PLL source (128 f_S, 256 f_S, 384 f_S, 512 f_S are available, recovered by built-in PLL)
- XTI source (One 24.576-MHz resonator or external clock source is required.)

Two clock sources are used for the following purpose.

- PLL source: Recovered system clock from the biphase input signal
- XTI source: Clock source for peripheral devices (for example, A/D converter, microcontroller, etc.) Measurement reference clock for the internal actual-sampling-frequency calculator

Description of PLL clock source

- The PLL clock source is the output clock of built-in PLL (including VCO).
- The PLL clock source frequency is selectable from 128 f_S, 256 f_S, 384 f_S, 512 f_S by PSCK[1:0].
- When the PLL is in the locked condition, the PLL clock source is the clock recovered from the biphase input signal.
- When PLL is in the unlocked condition, the PLL clock source is the built-in free-running clock of the VCO.
- The frequency of the PLL clock source in the unlocked condition is not constant. (The VCO free-running frequency is dependent on supply voltage, temperature, and variations in the die's wafer.)

Description of XTI clock source

- The XTI clock source is not used to recover the clock and decode data from the biphase input signal.
- Therefore, if the DIR9001 is used only for recovering the clock and decoding data from the biphase input signal, an XTI clock source is not required. In this case, the XTI pin must be connected to the DGND pin. (The DIR9001 does not have a selection pin for using an XTI clock source or not using one.)

The selection method of clock source

- The output clock is selected from two clock sources by the level of the CKSEL pin.
- The selection of the system clock source depends only on the input level of CKSEL pin.
- CKSEL = L setting is required for recovering the clock and decoding data from biphase input.
- CKSEL = H setting is required for XTI clock source output.
- The continuity of clock during the clock source transition between the XTI source and the PLL source is not

DIR9001 SLES198A – DECEMBER 2006 – REVISED MAY 2015

www.ti.com

assured.

Method of automatic clock source selection (CLOCK SOURCE MODE: AUTO)

- This method enables selection of the clock source automatically, using the DIR9001 ERROR status. The PLL source clock is output when ERROR = L; the XTI source is output when ERROR = H.
- To enable automatic clock source selection, the CKSEL pin must be connected to the ERROR pin.
- If XTI clock source is needed during the ERROR period, this method is recommended.
- Because the clock source during ERROR status is XTI, if an XTI clock source is not provided to the XTI pin, then SCKO, BCKO, and LRCKO are not output during the ERROR period.

The relationship between the clock/data source and the combination of CKSEL pin and PLL status inputs is shown in Table 12.

The clock tree system is shown in Figure 5.

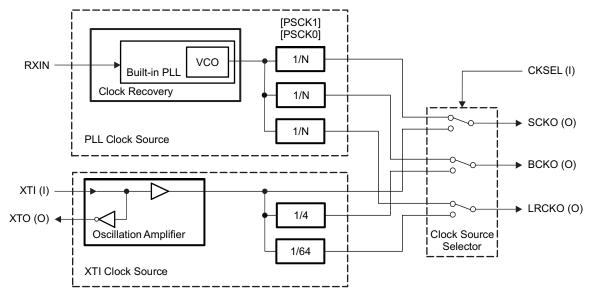


Figure 5. Clock Tree Diagram

8.3.4 PLL Clock Source (Built-In PLL and VCO) Description

The DIR9001 has on-chip PLL (including VCO) for recovering the clock from the biphase input signal.

The clock that is output from the built-in VCO is defined as the PLL clock source.

In the locked state, the built-in PLL generates a system clock that synchronizes with the biphase input signal.

In the unlocked state, the built-in PLL (VCO) generates a free-running clock. (The frequency is not constant.)

The PLL can support a system clock of 128 f_S , 256 f_S , 384 f_S , or 512 f_S , where f_S is the sampling frequency of the biphase input signal.

The system clock frequency of the PLL is selected by PSCK[1:0].

The DIR9001 can decode a biphase input signal through its sampling-frequency range of 28 kHz to 108 kHz, independent of the setting of PSCK[1:0].

Therefore, the DIR9001 can decode a biphase input signal with a sampling frequency from 28 kHz to 108 kHz at all settings of PSCK[1:0]

The relationship between the PSCK[1:0] selection and the output clock (SCKO, BCKO, LRCKO) from the PLL source is shown in Table 4.

Table 4. Socie, Boke, and Ekoko Trequencies Set by Tock[1.0]					
PSCK[1:0	PSCK[1:0] SETTING		OUTPUT CLOCK FROM PLL SOURCE		
PSCK1	PSCK0	SCKO	ВСКО	LRCKO	
L	L	128 f _S	64 f _S	f _S	
L	Н	256 f _S	64 f _S	f _S	
Н	L	384 f _S	64 f _S	f _S	
Н	Н	512 f _S	64 f _S	f _S	

Table 4. SCKO, BCKO, and LRCKO Frequencies Set by PSCK[1:0]

In PLL mode (CKSEL = L), output clocks (SCKO, BCKO, LRCKO) are generated from the PLL source clock.

The relationship between frequencies of LRCKO, BCKO, and SCKO at different sampling frequencies f_S of the biphase input signal are shown in Table 5.

······ ·······························						
LRCKO	ВСКО	SCKO (DEPENDING ON PSCK[1:0] SETTING)				
f _S	64 f _S	128 f _S	256 f _S	384 f _S	512 f _S	
32 kHz	2.048 MHz	4.096 MHz	8.192 MHz	12.288 MHz	16.384 MHz	
44.1 kHz	2.8224 MHz	5.6448 MHz	11.2896 MHz	16.9344 MHz	22.5792 MHz	
48 kHz	3.072 MHz	6.144 MHz	12.288 MHz	18.432 MHz	24.576 MHz	
88.2 kHz	5.6448 MHz	11.2896 MHz	22.5792 MHz	33.8688 MHz	45.1584 MHz	
96 kHz	6.144 MHz	12.288 MHz	24.576 MHz	36.864 MHz	49.152 MHz	

Table 5. Output Clock Frequency in PLL Locked State (CKSEL = L)

8.3.5 Required PLL Loop Filter Description

The DIR9001 incorporates a PLL for generating a clock synchronized with the biphase input signal.

The built-in PLL requires an external loop filter, which is specified as follows.

Operation and performance is assured for recommended filter components R1, C1, and C2.

Notes about Loop Filter Components and Layout

- The resistor and capacitors which comprise the filter should be located and routed as close as possible to the DIR9001.
- A carbon film resistor or metal film resistor, with tolerance less than 5%, is recommended.
- Film capacitors, with tolerance is less than 5%, is recommended.
- If ceramic capacitors are used for C1 and C2, parts with a low voltage coefficient and low temperature coefficient, such as CH or C0G, are recommended.
- The external loop filter must be placed on FILT pins.
- The GND node of the external loop filter must be directly connected with the AGND pin of the DIR9001; it must be not combined with other signals.

The configuration of external loop filter and the connection with the DIR9001 is shown in Figure 6.

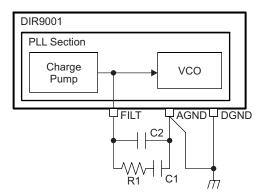


Figure 6. Loop Filter Connection

≤5%

C2

www.ti.com

The recommended values of loop filter components is shown in Table 6.

Table 6. Recommended value of Loop Filter Components						
REF. NO.	RECOMMENDED VALUE	PARTS TYPE	TOLERANCE			
R1	680 Ω	Metal film or carbon	≤5%			
C1	0.068 µF	Film or ceramic (CH or C0G)	≤5%			

Table 6. Recommended Value of Loop Filter Components

8.3.6 XTI Clock Source and Oscillation Amplifier Description

This clock, driven by the built-in oscillation amplifier or input into the XTI pin from an external clock, is defined as the XTI source. A 24.576-MHz fundamental resonator or external 24.576-MHz clock is used as the XTI source.

Film or ceramic (CH or C0G)

The DIR9001 requires an XTI source for following purposes:

- The measurement reference clock of actual-sampling-frequency calculator
- The clock source for the XTI source mode (CKSEL = H setting) (That is, the DIR9001 does not require an XTI source if it is only decoding the biphase input signal.)

The XTI clock source is supplied in one of the following two ways; the details are described in Figure 7.

· Setting up an oscillation circuit by connecting a resonator with the built-in amplifier

0.0047 µF

• Applying a clock from an external oscillator circuit or oscillator module

To set up an oscillation circuit by connecting a resonator with the built-in amplifier:

- Connect a 24.576-MHz resonator between the XTI pin and XTO pin.
- The resonator should be a fundamental-mode type.
- A crystal resonator or ceramic resonator can be used.
- The load capacitor C_{L1}, C_{L2}, and the current-limiting resistor R_d depend on the characteristics of the resonator.
- No external feedback resistor between the XTI pin and XTO pin is required, as an appropriate resistor is incorporated in the device.
- No load other than the resonator is allowed on the XTO pin.

To connect an external oscillator circuit or oscillator module:

- Provide a 24.576-MHz clock on the XTI pin
- Note that the XTI pin is not 5-V tolerant; it is simple CMOS input.
- The XTO pin must be open.

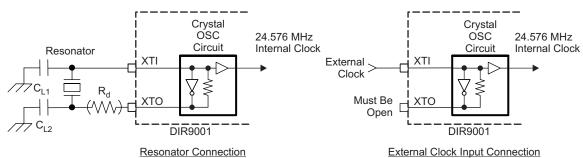


Figure 7. XTI and XTO Connection Diagram

Description of oscillation amplifier operation:

- The built-in oscillation amplifier is always working.
- If the XTI source clock is not used, then the XTI pin must be connected to DGND.
- For reducing power dissipation, it is recommended to not use the XTI source clock.

In XTI mode (CKSEL = H), output clocks (SCKO, BCKO, LRCKO) are generated from XTI source clock.

The relation between output clock frequency (SCKO, BCKO, LRCKO) and the XSCK pin setting in XTI source mode is shown in Table 7.

Table 7. SCKO, BCKO, LRCKO Output Frequency at XTI Mode

XTI FREQUENCY	OUTPUT CLOCK FREQUENCY IN XTI SOURCE MODE (CKSEL = H)				
	SCKO	ВСКО	LRCKO		
24.576 MHz	24.576 MHz	6.144 MHz	96 kHz		

8.3.7 Channel-Status Data and User Data Serial Outputs

The DIR9001 can output channel-status data and user data synchronized with audio data from the biphase input signal.

Each output data has its own dedicated output pin.

Channel-status data (C, hereinafter) is output through COUT pin.

User data (U, hereinafter) is output through UOUT pin.

The C and U outputs are synchronized with LRCKO recovered from the biphase input signal.

The polarity of LRCKO recovered from the biphase input signal depends on FMT[1:0] setting.

For detecting the top of the block of channel-status data or user data, the BFRAME pin is provided.

The BFRAME pin outputs a high level for an 8-LRCK period if the preamble *B* is detected in the received biphase signal.

In processing these data by a microcontroller or register circuit, LRCKO is used as the data input clock, and the output pulse on the BFRAME pin is used as the top-of-block signal.

The relationship among LRCKO, BFRAME, DOUT, COUT, and UOUT is shown in Figure 8.

When in the XTI mode and the PLL-locked state, COUT and UOUT output L.

NOTE: The numbers 0 through 191 of DOUT, COUT, and UOUT indicate frame numbers of the biphase input.

Figure 8. LRCKO, DOUT, BFRAME, COUT, UOUT Output Timing

8.3.8 Channel-Status Data Information Output Terminal

The DIR9001 can output part of the channel-status information (bit 1, bit 3) through two dedicated pins, AUDIO and EMPH.

The channel-status information which can be output from dedicated pins is limited to information from the L-channel.

If channel-status information other than AUDIO or EMPH is required, or information from the R-channel, then the channel-status data on the COUT pin, which is synchronized with biphase input signal, can be used.

These outputs are synchronized with the top of block.

The information that can be output through the dedicated pins is shown as follows.

8.3.8.1 **AUDIO** Pin

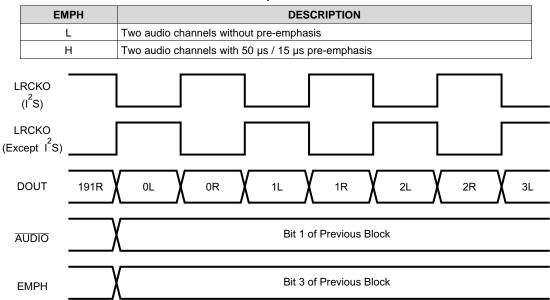

This is the output pin for the audio sample word information of the channel-status data bit 1.

Table 8. Audio Sample Word Information

AUDIO	DESCRIPTION			
L	L Audio sample word represents linear PCM samples.			
H Audio sample word is used for other purposes.				

8.3.8.2 EMPH Pin

This is the output pin for the emphasis information of the channel-status data bit 3.

Table 9. Pre-Emphasis Information

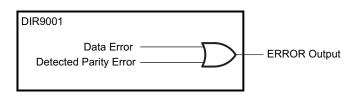
NOTE: The numbers 0 through 191 of DOUT indicate frame numbers of the biphase input.

Figure 9. AUDIO and EMPH Output Timing

8.3.9 Errors And Error Processing

8.3.9.1 Error Output Description

Error detection and data error processing for PLL errors


- PLL responds with unlock for data in which the rule of biphase encoding is lost (biphase error and framelength error).
- PLL responds with unlock for data in which the preamble B, M, W can not be detected.

Error processing function and error output pins

- The DIR9001 has a data error detect function and an error output pin, ERROR.
- The ERROR pin is defined as the logical OR of data error and parity error detection.
- The ERROR rising edge is synchronized with CLKST.
- The ERROR falling edge is synchronized with LRCK.

The relationship between data error and detected parity error is shown in Figure 10.

Figure 10. ERROR Output

The state of the ERROR pin and the details of error are shown in Table 10.

Table 10. State of ERROR Output Pin

ERROR	DESCRIPTION						
L	Lock state of PLL and nondetection of parity error						
Н	Unlock state of PLL or detection of parity error						

8.3.9.2 Parity Error Processing

Error detection and error processing for parity errors

- For PCM data, interpolation processing by previous data is performed.
- For non-PCM data, interpolation is not performed and data is directly output with no processing. (Non-PCM data is data with channel-status data bit 1 = 1.)

The processing for parity error occurrence is shown in Figure 11.

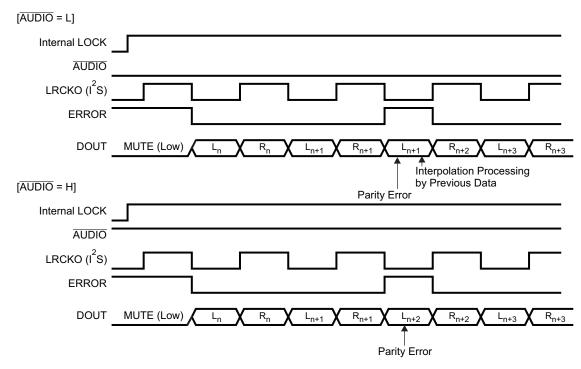


Figure 11. Processing for Parity Error Occurrence

8.3.9.3 Other Error

Error for sampling frequency change: A rapid continuous change or a discontinuous change of the input sampling frequency causes the PLL to lose lock.

8.3.10 Calculation of Actual Sampling Frequency

The DIR9001 calculates the actual sampling frequency of the biphase input signal and outputs its result through dedicated pins.

To use this function, a 24.576-MHz clock source must be supplied to the XTI pin. The 24.576-MHz clock is used as a measurement reference clock to calculate the actual sampling frequency.

If the XTI pin is connected to DGND, calculation of the actual sampling frequency is not performed.

If there is an error in the XTI clock frequency, the calculation result and range are shifted correspondingly.

This output is the result of calculating the sampling frequency, it is not the sampling frequency information of the channel-status data (bit 24–bit 27).

The sampling frequency information of the channel-status data (bit 24-bit 27) is not output through these pins.

The calculation result is decoded into 2-bit data, which is output on the FSOUT[1:0] pins.

If the PLL is locked but the sampling frequency is out-of-range, or if the PLL is unlocked, FSOUT[1:0] = HL is output to indicate an abnormality.

When the XTI source clock is not supplied before power on, FSOUT [1:0] always outputs LL.

When the XTI source clock is stopped, the f_S calculator holds the last value of the f_S calculator result.

If XTI source clock is supplied, the f_S calculator resumes operation.

The calculated value is held until reset.

The relationship between the FSOUT[1:0] outputs and the range of sampling frequencies is shown in Table 11.

	ACTUAL SAMPLING FREQUENCY	CALCULATED SAMPLING FREQUENCY OUTPUT				
NOMINAL f _S	RANGE	FSOUT1	FSOUT0			
Out of range	Out of range or PLL unlocked	Н	L			
32 kHz	31.2 kHz–32.8 kHz	Н	Н			
44.1 kHz	43 kHz–45.2 kHz	L	L			
48 kHz	46.8 kHz–49.2 kHz	L	Н			

Table 11. Calculated Sampling Frequency Output

8.4 Device Functional Modes

8.4.1 Operation Mode and Clock Transition Signal Out

8.4.1.1 Operation Mode

The DIR9001 has the following three operation modes.

These modes are selected by the connection of the CKSEL pin.

- PLL MODE: For demodulating a biphase input signal; always outputs PLL source clock
- XTI MODE: For clock generator; always outputs XTI source clock
- AUTO MODE: Automatic clock source selection; output source depends on ERROR pin.

Notes about operation mode selection:

- Normally, the PLL mode: CKSEL = L is selected to decode a biphase input signal.
- The XTI mode is a mode that supplies the XTI source clock to peripheral devices (A/D converters, etc); therefore, recovered clock and decoded data is not output.
- When the XTI source is not used, an XTI source is not required. In this case, clocks are not output in the XTI mode.
- At the time of XTI mode selection, biphase decode function continues to operate. Therefore, the biphase input status (ERROR) and the result of the sampling frequency calculator (a required XTI source for operation), are always monitored. That is, the following output pins: ERROR, BFRAME, FSOUT[1:0], CLKST, AUDIO and EMPH are always enabled.

FXAS

ISTRUMENTS

www.ti.com

Device Functional Modes (continued)

The details of these three modes are given in Table 12.

OPERATION MODE	CKSEL PIN SETTING	ERROR PIN STATUS	SCKO, BCKO, LRCKO CLOCK SOURCE	DOUT DATA	AUDIO EMPH	FSOUT [1:0]	BFRAME	COUT UOUT	
PLL	L	L	Н	PLL (VCO) free-running clock ⁽¹⁾	MUTE (Low)	LOW	HL	LOW	LOW
		L	PLL recovered clock	Decoded data	OUT	OUT	OUT	OUT	
VTI		Н	XTI clock	MUTE (Low)	LOW	HL	LOW	LOW	
XTI H	п	L	XTI clock	MUTE (Low)	OUT	OUT	OUT	LOW	
AUTO	Connected to	Н	XTI clock	MUTE (Low)	LOW	HL	LOW	LOW	
	ERROR pin	L	PLL recovered clock	Decoded data	OUT	OUT	OUT	OUT	

Table 12. Operation Mode and Clock Source

(1) The VCO free-running frequency is not a constant frequency, because the VCO oscillation frequency is dependent on supply voltage, temperature, and process variations.

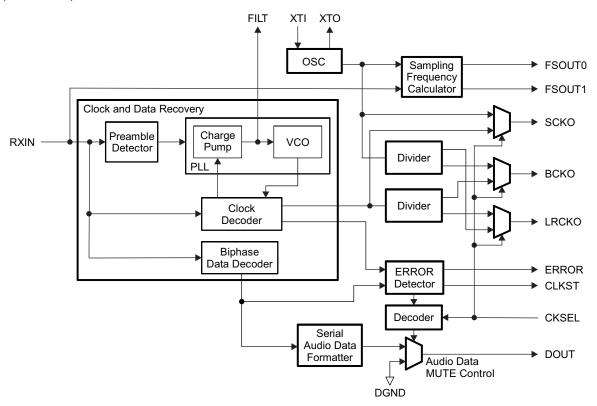


Figure 12. Clock Source, Source Selector and Data Path

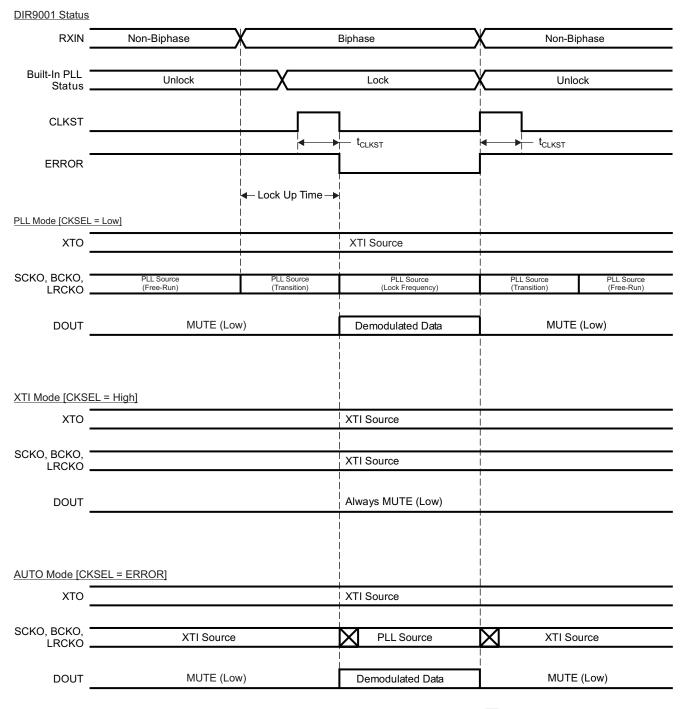
8.4.1.2 Clock Transition Signal Out

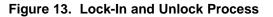
The DIR9001 provides an output pulse that is synchronized with the PLL's LOCK/UNLOCK status change.

The CLKST pin outputs the PLL status change between LOCK and UNLOCK. The CLKST output pulse depends only on the status change of the PLL.

This clock change/transition signal is output through CLKST.

As this signal indicates a clock transition period due to a PLL status change, it can be used for muting or other appropriate functions in an application.


A clock source selection caused by the CLKSEL pin does not affect the output of CLKST.


CLKST does change due to PLL status change even if CKSEL = H in the XTI source mode.

When DIR9001 is reset in the state where it is locked to the biphase input signal, the pulse signal of CLKST is not output. That is, the priority of reset is higher than CLKST.

The relation among the lock-in/unlock process, the CLKST and ERROR outputs, the output clocks (SCKO, BCKO, LRCKO), and data (DOUT) is shown in Figure 13.

Note: Means clock source change.

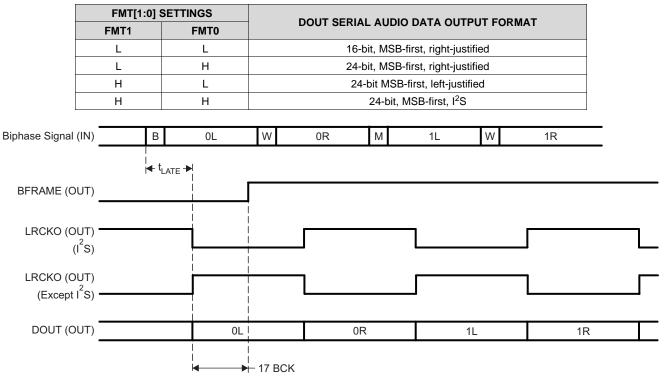
8.5 Programming

8.5.1 Data Description

8.5.1.1 Decoded Serial Audio Data Output and Interface Format

The DIR9001 supports following 4-data formats for the decoded data.

- 16-bit, MSB-first, right-justified
- 24-bit, MSB-first, right-justified
- 24-bit, MSB-first, left-justified
- 24-bit, MSB-first, I²S


Decoded data is MSB first and 2s-complement in all formats.

The decoded data is provided through the DOUT pin.

The format of the decoded data is selected by the FMT[1:0] pins.

The data formats for each FMT[1:0] pin setting are shown in Table 13.

Table 13. Serial Audio Data Output Format Set by FMT[1:0]

Figure 14. Latency Time Between Biphase Input and LRCKO/DOUT

The relationships among BCKO, LRCKO, and DOUT for each format are shown in Figure 15.

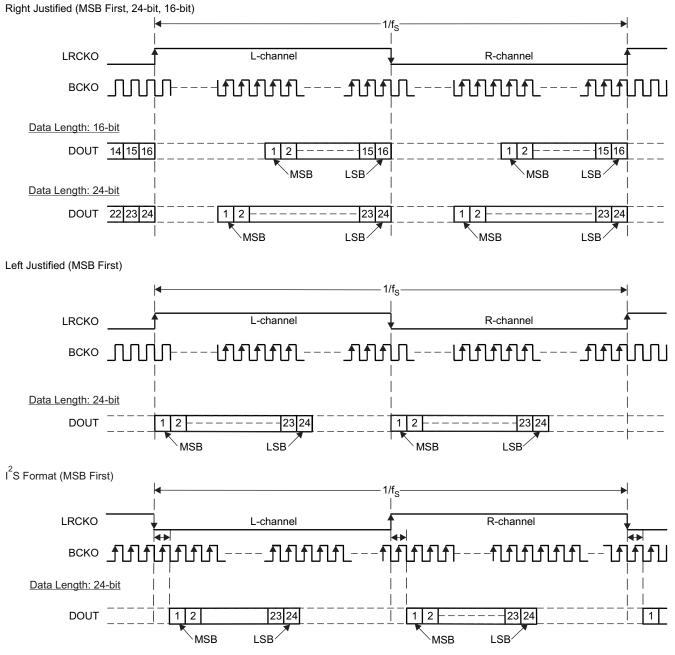


Figure 15. Decoded Serial Audio Data Output Formats

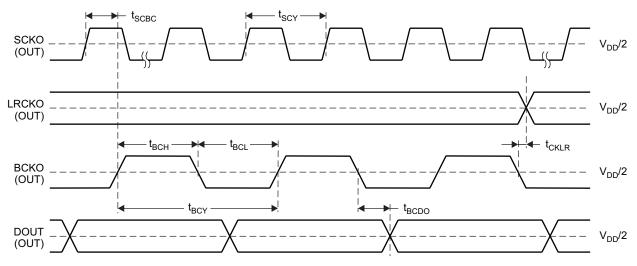


Figure 16. Decoded Audio Data Output Timing

TEXAS INSTRUMENTS

www.ti.com

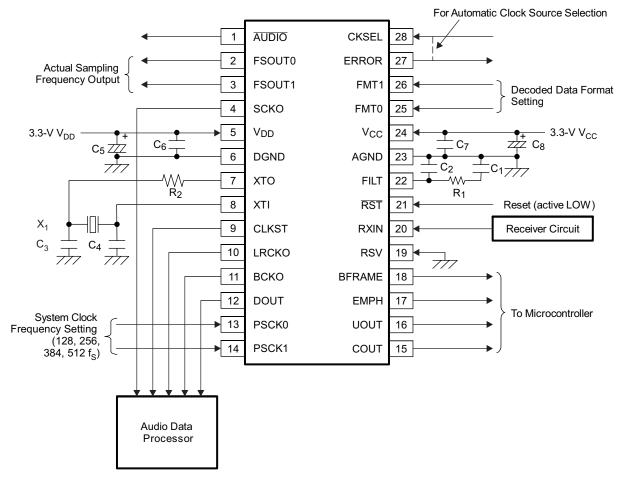
9 Application and Information

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The DIR9001 is an audio receiver capable of accepting S/PDIF, EIAJ CP-1201, IEC60958, and AES/EBU up to a 108-kHz sampling rate. When receiving a biphase differential signal, a clock can be recovered to be used as a master clock or use an external crystal. 16-bit and 24-bit PCM serial audio data can be output in master mode. All settings are controlled in hardware by setting pins high or low, this can be done with pull up/down resistors or with GPIO from a microcontroller. User and channel data from the S/PDIF or AES/EBU standard is processed and output at the UOUT and COUT pins. BFRAME is a synching signal meant to indicate the start of a frame of information. A 3.3-V analog and 3.3-V digital supply are required, this could come from the same 3.3-V supply or separate supplies.



SLES198A – DECEMBER 2006 – REVISED MAY 2015

DIR9001

9.2 Typical Application

Figure 17 illustrates typical circuit connection.

NOTES: R_1 : Loop filter resistor, 680 Ω

R₂: Current-limiting resistor; generally, a 100 Ω -500 Ω resistor is used, but it depends on the crystal resonator.

- C₁: Loop filter capacitor, 0.068 µF.
- C₂: Loop filter capacitor, 0.0047 µF.

 C_3 , C_4 : OSC load capacitor; generally, a 10-pF–30-pF capacitor is used, but it depends on the crystal resonator and PCB layout.

 $C_5,\,C_8\!\!:10\text{-}\mu\text{F}$ electrolytic capacitor typical, depending on power-supply quality and PCB layout.

C₆, C₇: 0.1-µF ceramic capacitor typical, depending on power-supply quality and PCB layout.

X1: Crystal resonator, use a 24.576-MHz fundamental resonator when XTI clock source is needed.

Figure 17. Typical Circuit Connection Diagram

9.2.1 Design Requirements

- Control: Hardware
- Audio Input: Biphase differential signal
- Audio Output: PCM serial audio data
- Master Clock: 24.576-MHz crystal

Typical Application (continued)

9.2.2 Detailed Design Procedure

- Hardware control with GPIO of microcontroller
- Select crystal capacitors by reading the crystal data sheet
- Select if system will be run off the recovered clock or the external crystal by setting CKSEL high for the external crystal and low for the recovered clock
- Decide sampling rate and audio related settings
- Configure microcontroller to receive PCM data along with User and Channel data from S/PDIF or AES/EBU data stream

9.2.3 Application Curve

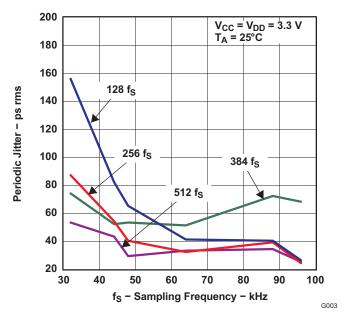
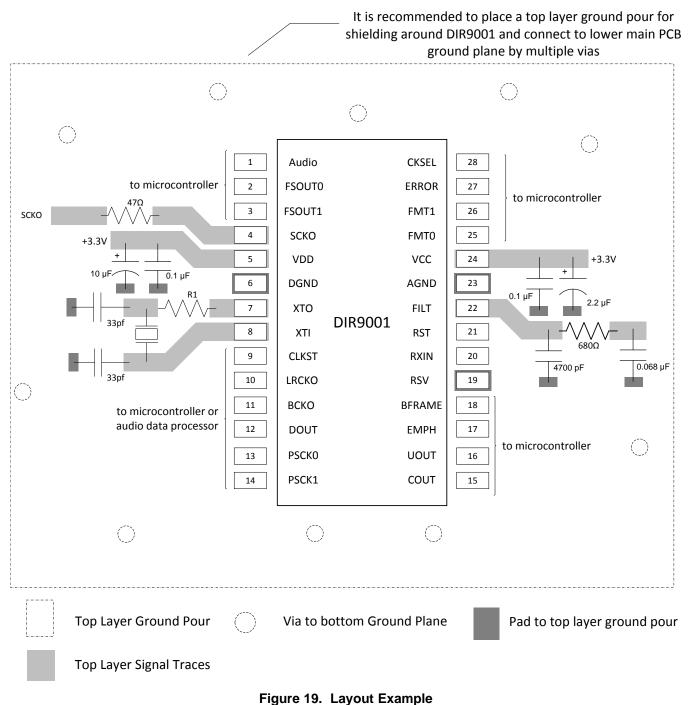


Figure 18. SCKO Jitter vs Locked Sampling Frequency

10 Power Supply Recommendations

The DIR9001 requires that 3.3 V be supplied to the digital VDD pin and analog VCC pin. For better separation of analog and digital components two supplies can be used but is not required. Decoupling capacitors for the power supplies should be placed close to the device terminals. For both VDD and VCC, a 10- μ F and 0.1- μ F capacitor should be used.


11 Layout

11.1 Layout Guidelines

- Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for minimum ground noise.
- A single common GND plane between AGND and DGND is recommended to avoid a potential voltage difference between them. To avoid signal interference between digital and analog signals, take care to separate analog and digital signals and return paths.
- Use supply decoupling capacitors as shown in Figure 17 and described in *Power Supply Recommendations*.
- Series resistors can be used on MCLK, LRCK, and BCK to reduce or eliminate reflections and noise. These are to be tuned as each PCB is different but the resistors are usually below 50 Ohms.

11.2 Layout Example

12 Device and Document Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

SpAct, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

25-Sep-2014

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DIR9001PW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DIR9001	Samples
DIR9001PWG4	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DIR9001	Samples
DIR9001PWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DIR9001	Samples
DIR9001PWRG4	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	DIR9001	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

25-Sep-2014

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

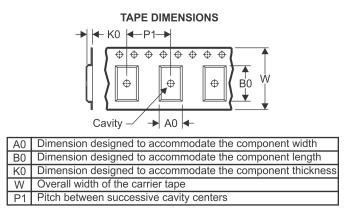
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF DIR9001 :

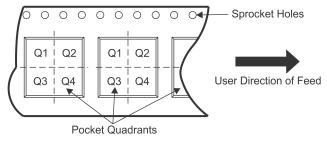
• Automotive: DIR9001-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


PACKAGE MATERIALS INFORMATION

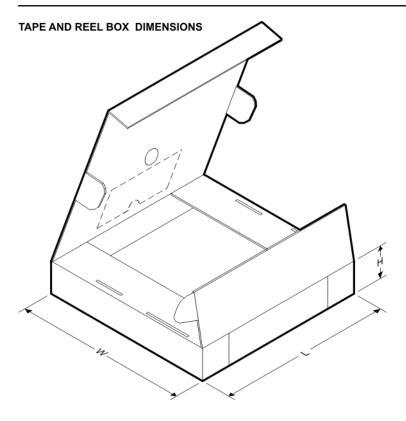
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All c	dimensions	are	nominal
--------	------------	-----	---------

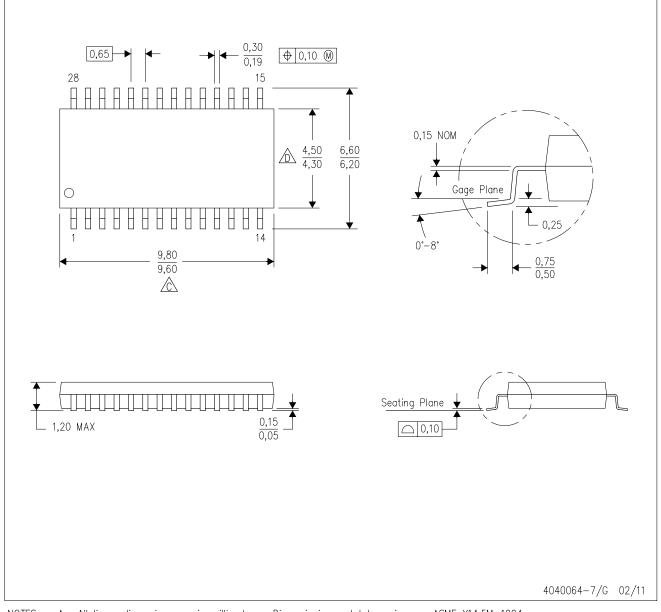

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DIR9001PWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

25-Sep-2014



*All dimensions are nominal

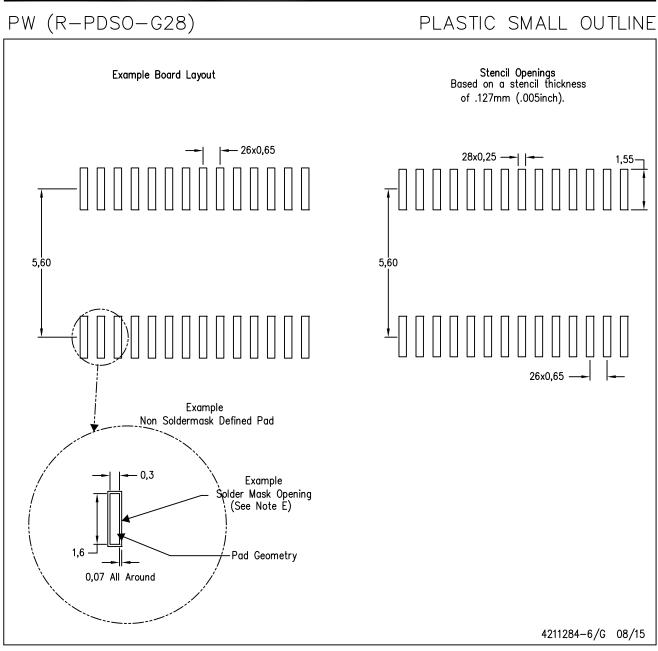
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DIR9001PWR	TSSOP	PW	28	2000	367.0	367.0	38.0

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:

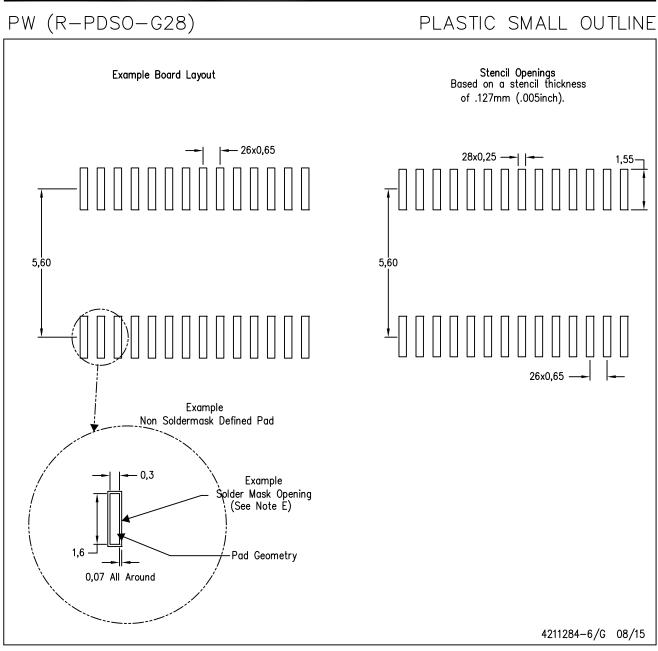
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA


NOTES: All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

LAND PATTERN DATA

NOTES: All linear dimensions are in millimeters. Α.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.

E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated