
Mehrrechner-Datenbanksysteme (Verteilte und Parallele DBS)

Prof. Dr. E. Rahm

Wintersemester 2021/2022

Universität Leipzig
Institut für Informatik

https://dbs.uni-leipzig.de/stud/2021ws/mrdbs

WS21/22, © Prof. Dr. E. Rahm

0 - 1

DBS-Module

- Bachelor-Studium
 - 10-201-2211 Datenbanksysteme 1
 - 10-201-2212 Datenbanksysteme 2
 - 10-201-2210 Datenbankpraktikum
 - 10-201-2224 Realisierung von Informationssystemen
 - 10-201-2010 Bachelorseminar Informatik
 - Bachelorarbeit
- Master-Studium Informatik
 - 10-202-2215 Moderne Datenbanktechnologien (kleines Modul)
 - 10-202-2216 Moderne Datenbanktechnologien (großes Modul)
 - 10-202-2213 Anwendungsbezogene Datenbankkonzepte (kleines Modul)
 - 10-202-2011 Masterseminar Informatik
 - Masterarbeit
- Master-Studium Data Science
 - 10-INF-DS01 Skalierbare Datenbanktechnologien 1 (Pflichtmodul, 10 LP)
 - 10-INF-DS101 Skalierbare Datenbanktechnologien 2 (5 LP)
 - 10-INF-DS102 Big Data Praktikum (5 LP)
 - 10-INF-DS103 Praktikum Data Warehousing und Data Mining (5 LP)
 - 10-INF-DS301 Aktuelle Trends in Data Science (5 LP)
 - 10-INF-DS02 Masterseminar Data Science (5 LP)
 - Masterarbeit

Mapping Module - Lehrveranstaltungen WS21/22

- Master-Modul Moderne Datenbanktechnologie (10 LP)
 - Mehrrechner-DBS
 - Cloud und Big Data Management
 - Data Mining
- Bachelor-Modul *Realisierung von Informationssystemen* und Master-Modul *Moderne Datenbanktechnologie (5 LP)*
 - 2 Vorlesungen aus: MRDBS, Cloud/Big Data Management, Data Mining
- Data-Science-Modul *Skalierbare Datenbanktechnologien 1*
 - 2 Vorlesungen aus: MRDBS, Cloud/Big Data Management, Data Mining
 - Seminar: New Trends in Machine Learning and Data Analytics
- Bachelorseminar / Masterseminar
 - Vortrag über laufende Bachelor/Masterarbeit im Rahmen des DB-Oberseminars
- überzählige Vorlesung (z.B. MRDBS) kann auch in Modul im SS22 eingebracht werden

WS21/22, © Prof. Dr. E. Rahm

0 - 3

Bachelor Informatik mit DB-Profil

Sem.	5 LP	5 LP	5 LP	5 LP	5 LP	5 LP
1	Modellierung und Programmierung 1	Algorithmen u. Datenstrukturen 1	Technische Informatik 1	Diskrete Strukturen	Analysis	
2	Modellierung und Programmierung 2	Algorithmen u. Datenstrukturen 2	Java-Praktikum	Logik	Lineare Algebra	
3	Datenbanksysteme 1	Software-Technik	Softwaretechnik- Praktikum	Betriebs- und Kommunika- tionssysteme	Automaten und Sprachen	Wahrschein- lichkeitstheorie
4	Datenbanksysteme 2	Kernmodul 2	Techn. Inf. 2 / Hardware- Praktikum	Berechen- barkeit	DB-Praktikum	
5	Realisierung v IS	Seminarmodul	Vertiefungsmodul		Ergänzungsfach	
6	Kernmodul 4	Bachelorseminar	Bachelorarbeit		Schlüsselqualifikation	

Legende:

Theoretische Inf.

Wahlmodule

Technische Inf.

Mathematikmodul

Schlüsselqualif.
Ergänzungsfach

Masterstudium Data Science

- neuer Studiengang seit SS20
- Hauptinhalte
 - skalierbares Datenmanagement ("Big Data"), mind. 20 LP
 - Datenanalyse / Machine Learning, mind. 20 LP
 - Ergänzungs-/Anwendungsmodule
 - viele Praktika möglich
 - 1. Semester
- 2. Semester
- 3. Semester
- 4. Semester

Skalierbare Datenbanktechnologien 1		Skalierbares Skalierbares Daten- Daten- management management		Vertiefung	Mastersem. Data Science (5 LP)	
Datena	nalyse	Datenanalyse		Vertiefung	Masterarbeit (25 LP)	
Ergänzung	Ergänzung	Ergänzung	Anwendung/ Ergänzung	Anwendung/ Ergänzung	mastera sent (25 2	

WS21/22, © Prof. Dr. E. Rahm

0 - 5

Beispielbelegungen Data Science

Wintersemester		Sommersemester		Wintersemester	4. Semester	
Skalierbare			Big	Advanced	Master-	
Datenbanktechnologien 1		SDBT2	Data Praktikum	Information Retrieval	seminar (5 LP)	
			FIAKLIKUIII		(3 LF)	
Künstl. neuronale Netze		Multivariate Statistik		Wissens- und		
u. maschin. Lernen		und Data Mining		Content Management		
					Masterarb	eit (25 LP)
IT-	Prakt. Data	Text-	Aktuelle	Verfahren und		
Sicherheit	Wareh./	daten-	Trends in DS	Anwendungen in den		
	Mining	banken		Digital Humanities		

Skalierbare Datenbanktechnologien 1	SDBT2	Big Data Praktikum	Text Mining	Master- seminar (5 LP)	
Statistisches Lernen	Multivariate Statistik und Data Mining		Künstl. neuronale Netze u. maschin. Lernen	Masterarbeit (25 LP)	
Sequenzanalyse und Genomik	Grundl. komplexer Systeme	Aktuelle Trends in DS	Visualisierung	,	

Leistungsbewertung

- Prüfungsklausur 60 Minuten
 - Feb. 2022
 - Präsenzklausur geplant
 - überprüft konzeptionelles Wissen + Anwendungsfälle
- Klausurerfolg durch
 - intensives Vorlesungsstudium
 - Online-Übungen (LOTS)
 - Literatur

WS21/22, © Prof. Dr. E. Rahm

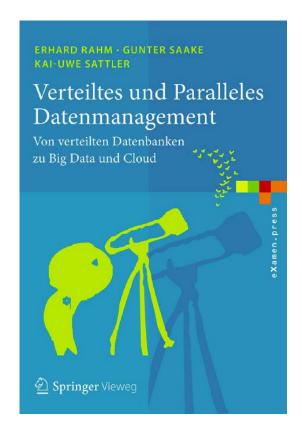
0 - 7

Lernziele der Vorlesung MRDBS

- fortgeschrittene Kenntnisse der Funktionsweise von verteilten und parallelen Datenbank- und Datenmanagementsystemen
- Implementierungstechniken u.a. zu
 - Datenverteilung
 - Verteilte Anfrageverarbeitung
 - Verteilte Transaktionsverarbeitung
 - Replizierte Datenbanken
 - Blockchain-Systemen
- Verfahren relevant für verteilte relationale Datenbanken und NoSQL-Systeme

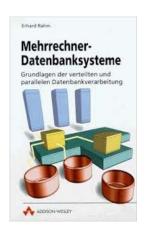
Vorläufiges Inhaltsverzeichnis

- Einführung
 - Anforderungen an Mehrrechner-Datenbanksysteme (Verteilte / Parallele DBS)
 - Arten der Parallelität, Scaleup und Speedup
- Klassifikation von Mehrrechner-DBS
- VDBS: Schemaarchitektur, Katalogverwaltung
- Datenverteilung in VDBS / PDBS (Fragmentierung, Allokation)
- Verteilte / Parallele Query-Verarbeitung
- Verteilte Transaktionsverwaltung (Commit-Protokolle, Synchronisation)
- Replizierte DB
- Block Chain und Verteilte Ledger-Systeme
- Shared-Disk-DBS


Data Warehouses, Cloud & Big Data Management, NoSQL -> eigene Vorlesungen

WS21/22, © Prof. Dr. E. Rahm

0 - 9


Lehrbuch

- Rahm/Saake/Sattler:
 Verteiltes und Paralleles Datenmanagement.
 Springer 2015
 - E-Book online zugänglich im Uni-Netz
 - mit Übungsaufgaben

Zusatzliteratur

- E. Rahm: Mehrrechner-Datenbanksysteme.
 - Addison-Wesley 1994
 - Übungsaufgaben mit Musterlösungen
 - Online-Version verfügbar (PDF und HTML)

- M. T. Özsu, P. Valduriez: Principles of Distributed Database Systems.
 - 4th edition, Springer-Verlag, 2020

WS21/22, © Prof. Dr. E. Rahm

0 - 11

Online-Übungen

- LOTS (Leipzig Online Test System), http://lots.uni-leipzig.de
 - Kennung

LOTS: Online-Übungen

Aufgabe 3 (Nested-Block-Join)

Für den Gleichverbund zwischen R und S (je 100.000 Sätze, Blockungsfaktor 100) soll ein Nested-Block-Join genutzt werden. Welche Kombinationen zwischen verfügbarer Hauptspeichergröße M und Anzahl erreichbarer Plattenzugriffe (ohne Schreiben des Resultats) treffen zu?

M=1001; 1 Million Plattenzugriffe

M=5001; 2000 Plattenzugriffe

M=1001; 2000 Plattenzugriffe

Erklärung X Erklärung X Erklärung X

0 von 2

0 von 2

Aufgabe 4 (Hash-Join)

Markieren Sie die zutreffenden Aussagen.

Durch die Nutzung von Bitvektoren lässt sich der Umfang der Hash-Tabellen kleiner halten

☐ Hash-Joins sollten nur eingesetzt werden, wenn die kleinere Eingabetabelle im Hauptspeicher gespeichert werden

✓

Hash-Joins können effektiv zur Realisierung von Mehr-Wege-Joins genutzt werden

Hash-Join-Verfahren eignen sich zur Beantwortung von Equi-Join-Anfragen

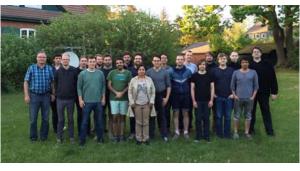
WS21/22, © Prof. Dr. E. Rahm

0 - 13

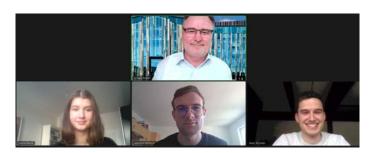
Lehrstuhl Datenbanksysteme

- seit 1994 am Institut für Informatik
- umfangreiches Lehrangebot
 - Vorlesungen, Praktika, Seminare
 - Online-Übungssystem LOTS
 - Eigene Lehrbücher: MRDBS, IDBS, ...

Oberseminare an Uni-Außenstelle Zingst - seit 2001

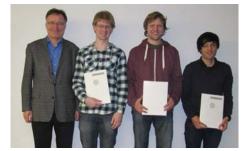


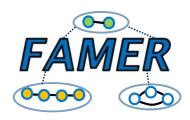
Außenstelle Zingst



WS21/22, © Prof. Dr. E. Rahm

0 - 15


Auszeichnung von Top-Student(inn)en - seit 2008



Forschung

WS21/22, © Prof. Dr. E. Rahm

Adversarial Networks

0 - 17

Deutsche KI-Zentren

- KI-Strategie des Bundes beinhaltet Einrichtung von 5 Zentren für Künstliche Intelligenz (neben DFKI)
 - Berlin (BIFOLD)
 - Dortmund / Bonn (ML2R)
 - Dresden / Leipzig (ScaDS.AI)
 - München (MCML)
 - Tübingen (tuebingen.ai)

SCADS.AI

SCADS.AI: Center for Scalable Data AnalyticS and Artificial Intelligence

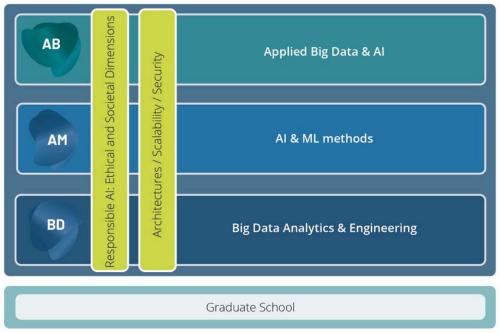
- zunächst (2014-19) Big-Data-Zentrum ScaDS Dresden/Leipzig
- seit Nov. 2019: KI- bzw. Data-Science-Zentrum ScaDS.AI
- Ko-Finanzierung durch Bund und Land Sachsen
- Direktoren: Nagel (Dresden), Rahm (Leipzig)

Highlights ScaDS.AI

- 8 neue KI-Professuren, davon 4 an der Univ. Leipzig
- Forschung im Rahmen einer Graduiertenschule
- Demo and Living Lab

https://scads.ai

WS21/22, © Prof. Dr. E. Rahm


0 - 19

Grobstruktur

