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Summary 

Biological invasions are one of the top threats to biodiversity and ecosystem functioning 

worldwide, and fresh waters are among the most invaded ecosystems in the world. To be 

successful, an invader must possess qualities that allow invasion in the new habitat, but 

besides these qualities its success also depends on the interactions between its traits, the 

traits of the invaded community, and many other contingent factors. A recent addition to the 

list of alien invertebrate species in European fresh waters is the North American Trichocorixa 

verticalis (Hemiptera: Corixidae). To date, T. verticalis is the only established alien waterbug 

in these ecosystems. In the 18 years since its first detection in the Iberian Peninsula, T. 

verticalis has increased its area of distribution in and around Doñana, in the Guadalquivir 

delta, and also in other areas of conservation interest including Ramsar wetlands and Nature 

Reserves in Andalucia. In general, it is highly dominant and abundant in permanent saline 

waters, where native Corixidae are rare, but it is rare in fresh waters, where native Corixidae 

dominate.  

This thesis focuses on four main determinants of successful invasions (plasticity, resource 

competition, parasites and facilitative interactions among invaders) to investigate why T. 

verticalis dominates in saline waters while it is rare in fresh waters. In addition, we explored 

the success of a restoration project for macroinvertebrates in new ponds where T. verticalis is 

known to be an abundant breeder. In addressing these topics, we apply an invasive-native 

comparative approach to both experimental and field data collected in Doñana.  

In Chapter 1 we show experimentally that T. verticalis possesses broader physiological 

plasticity than native corixids when exposed to different conditions of temperature and 

salinity, and its physiological tolerance to both heat and freezing increases following 

exposure to high conductivities. In Chapter 2 we investigate the niche partitioning between 

native and invasive corixids from different ecosystems by means of carbon (C) and nitrogen 

(N) stable isotopes. We reveal strong resource partitioning between species in permanent 

ponds, but also some degree of niche overlap in unstable temporary sites. In Chapter 3 we 

describe the role of parasite infections during the invasion. T. verticalis show higher total 

parasite (water mite) prevalence, mean total abundance infection and mean infection than 

native corixids in low salinity waters, whereas mites are not present in saline waters. In 

Chapter 4 we examine experimentally the role of facilitative interactions among invaders. T. 

verticalis invasion does not seem to be promoted by a lower predation rate by alien predators 

compared to native corixids. In contrast, owing its smaller size it suffers higher predation 

rates by Odonata larvae. Finally, in Chapter 5 we investigate the value of the Caracoles 
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restoration project in supporting aquatic macroinvertebrates. T. verticalis is known to be an 

abundant breeder in these ponds. We find that, although new ponds differ from reference 

sites in abiotic conditions, they become representative and even surpass the levels of local 

invertebrate richness, diversity and abundance 6-7 years after restoration. However, 

differences in the abundance and distribution of invasive species between waterbody types 

and inundation periods may have strong effects on the patterns of species composition, 

especially for the Hemiptera.  

The integration of these results sheds light on the role of salinity for the invasion success of 

T. verticalis, and helps to elucidate why it is still rare in fresh waters. In addition, we also 

provide important insights on the potential impacts that T. verticalis may have on native 

Corixids in the future. 
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Resumen 

Globalmente, las invasiones biológicas constituyen una de las principales amenazas para la 

biodiversidad y el funcionamiento de los ecosistemas, y son los sistemas de agua 

continentales los mas susceptibles a estas invasiones. El éxito de una especie como invasora 

depende de sus cualidades, las que le permiten invadir un nuevo hábitat, pero también de 

las interacciones de éstas con la comunidad invadida, además de otros muchos factores. 

Recientemente, el coríxido de Norte América Trichocorixa verticalis (Hemiptera: Corixidae) ha 

sido incluido en la lista de invertebrados acuáticos invasores en los ecosistemas europeos. 

Hasta hoy, se trata de la única especie de heteróptero acuático invasor en estos ecosistemas. 

Tras 18 años desde su primera detección en la Península Ibérica, su área de distribución se ha 

expandido dentro y fuera de Doñana, encontrándose en el delta del Guadalquivir, así como 

en otros lugares de interés para la conservación en Andalucía, incluyendo humedales 

RAMSAR y Reservas Naturales. Por lo general, T. verticalis domina en aguas salinas donde 

los coríxidos autóctonos son poco comunes, pero es rara en aguas dulces donde los coríxidos 

autóctonos son dominantes.  

La presente tesis investiga el papel de cuatro factores principales involucrados en una 

invasión (plasticidad, competencia trófica, parásitos e interacción entre especies exóticas) 

para comprender el éxito de T. verticalis en aguas salinas y su escasa presencia en aguas más 

dulces. Además, examinamos su potencial impacto en las comunidades de 

macroinvertebrados acuáticos en lucios artificiales que fueron creados durante el proyecto de 

restauración de humedales realizado en 2005 en Doñana, en los que sabemos que T. verticalis 

se reproduce abundantemente. Para abordar estos cuatro factores, usamos un método 

comparativo especie exótica frente a especies autóctonas aplicado a datos de campo y 

experimentales. 

En el Capítulo 1, detectamos experimentalmente, que T. verticalis tiene una mayor 

plasticidad fisiológica cuando es expuesta a diferentes condiciones de temperatura y 

salinidad, y que su tolerancia al calor y al frío aumenta después de ser aclimatada a elevadas 

salinidades. En el Capítulo 2, investigamos mediante el uso de isótopos estables de Carbono 

(C) y Nitrógeno (N), la partición de recursos entre la especie exótica y las especies autóctonas 

de coríxidos, en diferentes ecosistemas. Encontramos una fuerte segregación en los recursos 

usados en lagunas permanentes, pero también un cierto nivel de solapamiento en los nichos 

isotópicos en lagunas temporales. El Capítulo 3, describe el papel de las infecciones realizada 

por parásitos en esta especie invasora. En agua dulce, la prevalencia total, la abundancia 

total y la infección media de parásitos es mayor en T. verticalis que en los coríxidos 
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autóctonos. En aguas salina no hemos encontrado parásitos. En el Capítulo 4, nos centramos 

en el papel de las “facilitative interations” entre especies exóticas. Descubrimos que T. 

verticales no sufre una menor tasa de depredación en comparación con los coríxidos 

autóctonos por parte de depredadores exóticos. Al contrario, debido a su menor tamaño, T. 

verticalis parece sufrir una mayor tasa de depredación por parte de larvas de Odonatos 

nativos. Por último, en el Capítulo 5, investigamos el éxito de las comunidades de 

macroinvertebrados acuáticos en los ecosistemas restaurados de Caracoles, donde sabemos 

que T. verticalis cría abundantemente, por tanto su presencia podría influir en la recuperación 

de los macroinvertebrados acuáticos. Los resultados muestran que 6-7 años después de la 

restauración, los lucios artificiales, a pesar de tener condiciones abióticas muy diferentes en 

comparación con los sitios naturales de referencia, tienen el mismo nivel local de riqueza 

taxonómica y diversidad, y mayor abundancia que los sitios de referencia. Sin embargo, las 

diferencias en la abundancia y distribución de T. verticalis entre los lucios artificiales y los de 

referencia, a lo largo de los dos años de estudio, podrían explicar las diferencias anuales 

encontradas en la composición de especies de hemípteros. La combinación de estos 

resultados revelan el papel que el agua salobre tiene en el éxito de invasión de T. verticalis y 

aclaran el porqué de su rareza en agua dulce. Además, los resultado de esta tesis 

proporcionan información útil acerca del potencial impacto que T. verticalis podria tener 

sobre especies nativas de coríxidos en el futuro. 
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General Introduction & Outline  

Biological invasion problem 

Humans have moved other species from site to site for centuries (Wilson et al., 2009).  

However, their role in shaping the biota increased exponentially over time, especially 

throughout the 20th century (Hulme, Pysek & Nentwig, 2009). Many of these species, once 

introduced in habitats outside their native range (i.e., alien species), establish self-sustaining 

populations within the new environment (i.e., they become naturalized), but remain small 

and localized (i.e., non-invasive), while others spread widely and become abundant at many 

sites (i.e., they become invasive). Nowadays, only a few habitats are free of alien species, and 

in most of the systems they have invaded they now account for a significant portion of the 

biota (Vitousek et al., 1997). 

Although not all alien species have appreciable effects on the invaded ecosystems, 

many of them have been often implicated in species extinction, habitat degradation and 

ecosystem alteration (Cox, 1999; Clavero & García-Berthou, 2005; Pimentel, Zuniga & 

Morrison, 2005). One classical example is the introduction of the piscivorous Nile perch 

(Lates niloticus) in the 1950s in Lake Victoria in East Africa, which led to the extinction of over 

200 endemic fishes (Kitchell et al., 1997). There is a large consensus among researchers that 

biological invasions are one of the top threats to biodiversity and ecosystem functioning 

worldwide (Rahel & Olden, 2008). The increasing awareness to this global impact makes 

biological invasion a hot topic for research. To date, the extensive online information 

networks on invaders underpin the increasing necessity to improve information and impacts 

to be used in prevention and control actions (Simpson et al., 2006). 

 

Freshwaters: one of the most invaded ecosystems in the world 

Fresh waters are being subject to periodic deliberate and accidental introduction of 

alien species globally. Typical sources of invader introductions are ballast water, pet, 

aquarium and ornamental trade, sport fishing and research. In addition, exploitation and 

pollution of these waters and conversion to agriculture or urbanization also increase the 

likelihood of the alien species establishment and spread worldwide throughout degraded 

habitats (Rahel, 2002; MEA, 2005; Dudgeon et al., 2006). All together these factors convert 

fresh waters into one of the most invaded and threatened ecosystem in the world (Darwall et 

al., 2008; Strayer, 2010), with proportionally more invaders than terrestrial systems (Vitousek 

et al., 1997). Although insects form a large part of native fauna in freshwaters worldwide 

(Balian et al., 2008), the majority of invaders in these habitats belong to bivalves, gastropods 
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and crustaceans (Cobo et al., 2010), while invasive aquatic insects are quite rare (Karatayev et 

al., 2009). Some possible explanations include the lack of their deliberate introductions as pet, 

ornamental trade etc., their inability to survive in active and diapausing stage in ballast 

waters or sediments, and their need to find suitable aquatic and terrestrial environments to 

complete their life cycle, often being aquatic as juveniles and terrestrial as adults (Duggan et 

al., 2005; Karatayev et al., 2009).  

Among freshwater invaders, only a handful of them have recognized ecological 

impacts (e.g. the water hyacinth Eichhornia crassipes, the crayfish Procambarus clarkii and the 

zebra mussel Dreissena polymorpha, see Gherardi, 2006; Laranjeira & Nadais, 2008 and 

Higgins & Vander Zanden, 2010), while in general the consequences of alien species for 

faunal composition, community structure and ecosystem functioning in freshwater systems 

are largely unknown. Freshwater habitats hold more than 7% of described species (Darwall 

et al., 2008) with extensive local endemism (Gibon, 2000; Dudgeon, 2003). They are also vital 

for species that depend indirectly on them, including humans. Therefore, understanding the 

factors leading to successful invasion should be a priority of research, especially for 

taxonomic groups that include few invaders, such as aquatic insects, because this could 

provide predictive power for future invasions and important insights for the management of 

currently invaded systems.  

 

Invasion process  

Biological invasion is a multistage process that starts when individuals are 

transported outside their native area, become established and persisted in the new range 

(naturalized), proliferate and finally spread (invasion) (Kolar & Lodge, 2001). Several 

barriers characterize each one of these stages. If a species fails to pass one of these barriers, at 

any stage of the invasion process, it fails to become an invader. As a consequence, not all the 

introduced species become successful invaders, instead only a small percentage of 

transported taxa become established, and among these only about 1% become so abundant 

to dominate and even displace natives (Williamson & Fitter, 1996). 

To be successful an invader must possess qualities that allow invasion in the new habitat, but 

besides these qualities its success is also the result of the interactions between its attributes, 

the attributes of the invaded community, and many other contingent factors (Lonsdale, 1999; 

Kolar & Lodge, 2001; Vilà & Weiner, 2004). Focusing on the processes that affect local 

establishment and spread in novel areas, invasive species usually arrive in sites with 

different environmental conditions than those in which they evolved; therefore they need to 

possess characteristics that first enable them to tolerate and then to adapt to the novel 
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conditions. Species that have broad environmental tolerance (i.e., ecological breadth) should 

be able to sustain and maintain population growth over a wide range of conditions, a factor 

that may increase their chance to become invasive. The extent of such ecological breadth may 

be partly explained by their capacity to show plastic response to the environment (Sultan, 

2001; Richards, Pennings, & Donovan, 2005). Plasticity, the “environmentally sensitive 

production of alternative phenotypes by given genotypes” (Hulme, 2008), has been indicated to 

play an important role during invasion (Richards et al., 2006; Ghalambor et al., 2007). Plastic 

responses can be induced by abiotic (e.g., light, temperature, nutrients) and biotic factors 

(e.g., predators, competitors), and can be expressed as behavioural, morphological and 

physiological changes (Reylea, 2001; Pigliucci, Murren & Schlichting, 2006).  

Successful invasions also depend on the invaders’ ability to exploit resources 

(Seabloom et al., 2003). From the time of release, invaders interact with species in the 

invaded systems. If invaders and natives are taxonomically similar and/or have similar diet, 

competition for limiting resources, such as space or food, is the more predictable 

consequence on the invaded community (Vilà & Weiner 2004; Dick, 2008). Invasive species 

are frequently considered superior competitors; examples include the zebra mussel Dreissena 

polimorpha outcompeting native bivalves, and the mosquitofish Gambusia holbrooki 

outcompeting the autochthonous Spanish toothcarps (Ricciardi, Neves & Rasmussen, 1998; 

Rincón, 2002). 

The role of parasites during an invasion process has been widely recognized, but the 

mechanisms through which they can operate are different. For example, invaders can benefit 

from the scarcity of natural predators and pathogens, which are lost during the introduction 

process, compared to the native range – ‘Enemy release hyphothesis’ (Torchin, Lafferty & 

Kuris, 2002; Torchin et al., 2003; Keane & Crawley, 2002; Colautti et al., 2004; Prenter et al., 

2004). By contrast, invaders may also introduce new parasites or pathogens that arrive with 

them, with detrimental effects for the native communities – ‘Parasites Spillover’ (Dobson & 

Foufopoulos, 2001; Power & Mitchell, 2004). Finally, invasive species can be suitable hosts 

for native parasites. In this case the impact can be either for the invasive host or for the 

native species, because invaders can also amplify the infection “spillback” from exotic to 

native species (Daszak, Cunningham & Hyatt, 2000; Tompkins & Poulin, 2006). 

In multiply invaded ecosystems, such as fresh waters, new invaders have a great 

probability to arrive in sites already occupied by older invaders. In such a situation, the 

presence of the initial invader may facilitate the establishment of the new invader, especially 

if they share a common geographic or evolutionary history, as under the ‘invasional 

meltdown hypothesis’ (Simberloff & Holle, 1999). Facilitative interactions have been 
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indicated as frequent as any other biotic interaction including competition, parasitism and 

predation (Bruno, Brombertg & Bertness, 2005), therefore they can play a key role during 

invasion success (Simberloff & Holle, 1999; Richardson et al., 2000).  

Over the years, it has become increasingly clear that invasions are likely to result of 

multiple interacting mechanisms (Gurevitch et al., 2011). Multiple studies should therefore 

be integrated for a better understanding of the whole invasion process.  

 

The case of Trichocorixa verticalis  

In European fresh waters few insect species have been detected as invaders 

(Karatayev et al., 2009) and, among them, Trichocorixa verticalis verticalis (Fieber, 1851) 

(hereafter T. verticalis) is the only established alien waterbug (Rabitsch, 2008). 

T. verticalis (Heteroptera, Corixidae) is a small aquatic insect (< 5.5 mm) naturally distributed 

along the Atlantic coast of North America from Labrador to the north of Mexico and some 

Caribbean islands (Sailer, 1948; Jansson, 2002). Recently it has been recorded in aquatic 

systems outside its native range in Africa, Oceania and Europe (Jansson & Reavell, 1999; 

Kment, 2006; L’Mohdi et al., 2010), although the geographic origin of these invasive 

populations is still not clear. It was supposed that the introduction of T. verticalis, 

particularly in SW Europe or South Africa and New Caledonia, was accidentally linked to 

the introduction of the fishes Fundulus heteroclitus or Gambusia affinis, respectively, which are 

sympatric with T. verticalis in its native area (Jansson, 1982; Jansson & Reavell, 1999; Sala & 

Boix, 2005). Recently the link between its actual distribution with the major maritime trade 

routes made plausible thinking that it was most likely dispersed by ship transport 

(Guareschi et al., 2013). T. verticalis is a euryhaline insect (Hutchinson, 1993) that is abundant, 

as adult and juvenile (Kelts, 1979), in brackish and saline waterbodies (Sailer; 1948). 

However, it is able to colonize several kinds of habitat, including rivers, brackish pools, 

potholes, and salt marshes (Günter & Christmas, 1959). In its native area T. verticalis 

overwinters as eggs, and hatching commences in spring and early summer (Tones, 1977; 

Kelts, 1979). After hatching, its life cycle includes six stages: five juvenile instars (each lasting 

5–10 days) and adult (Fig. 1). It has two or three generations per year (Tones, 1977; Kelts, 

1979). It is considered omnivorous and its diet is composed of both animal and plant sources, 

including zooplankton, filamentous algae and dipteran larvae (Kelts, 1979; Simonis, 2013). 

However, it seems a voracious predator of anostraceans and cladocerans (Wurtsbaugh, 1992; 

Simonis, 2012), and this may strongly influence ecosystem functioning. For example, field 

experiments showed that the consumption of cladocerans by adults of T. verticalis caused 

strong top-down trophic cascades (Simonis, 2013), and combined field and observational 
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studies revealed that its predation on brine shrimp Artemia franciscana Kellog, 1906 during 

periods of low salinity affected the food web of the Great Salt Lake (USA) (Wurtsbaugh 

1992).  

 
Figure 1. Trichocorixa verticalis female (A), male (B), V instars nymph (C) and egg (D) (from Guareschi, 
PhD Thesis, 2015). 
 

 

Introduction in the Iberian Peninsula 

In the Iberian Peninsula, T. verticalis can clearly be considered invasive. It was first 

recorded in Algarve (Portugal) in 1997, but soon thereafter it was found at several sites along 

the Iberian Atlantic coast (Sala & Boix, 2005), in various Andalucian wetlands, including 

Ramsar sites (Millán et al., 2005; Rodríguez-Pérez et al., 2009; Van de Meutter, Trekels & 

Green, 2010a, authors unpublished data, see Fig. 2), and bio-climatic models have predicted 

its future spread across Europe and the Mediterranean region (Guareschi et al., 2013). In and 

around Doñana in the Guadalquivir delta T. verticalis is highly dominant and abundant in 

permanent saline fish ponds (especially the Veta la Palma estate) and salt ponds, where 

native Corixidae are rare, in contrast to lower salinity waters, where the native corixids 

dominate but T. verticalis is rare (Rodríguez-Pérez et al., 2009; Van De Meutter, et al., 2010). 

T. verticalis is also highly dominant in the salt ponds within the Odiel marshes and Cádiz 

Bay, as well as in coastal ponds along the Algarve. 
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Figure 2. Map representing the current distribution of Trichocorixa verticalis in the native (triangles) 
and invaded (circles) areas (from Guareschi et al., 2013). 
 

 

The ability of T. verticalis to live in hypersaline waters, as juvenile and adult, has been 

suggested to play a key role in explaining its invasion success (Van De Meutter et al., 2010), 

allowing the fill of an empty niche. However, when compared through an experimental 

approach the salinity tolerance of adult T. verticalis did not differ from the tolerance of native 

corixids, especially respect to Sigara selecta (Van De Meutter, et al., 2010). This suggests that 

the successful invasion of T. verticalis can not be simply explained on the basis of 

osmoregulation ability, and that other factors such as e.g. release from enemies, higher 

plasticity and/or higher competitive ability than native corixids may account for its success.  

To date, there are few data on the potential ecological impact of T. verticalis on native aquatic 

communities and ecosystems in its introduced range. In the Larache salt ponds in Morocco, 

L’Mohldi and co-workers (2010) observed that increased abundance of T. verticalis coincided 

with a decrease in the abundance of the native S. selecta. This suggests that in the Iberian 

Peninsula, where T. verticalis dominates and native Corixidae are rare, the latter may have 

been competitively excluded. This seems especially true for S. selecta that share similar 

habitat requirements with T. verticalis. However, T. verticalis may also affect, directly or 
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indirectly, the native Corixidae often found with them – Sigara lateralis, S. stagnalis, and S. 

scripta (Rodriguez-Perez et al., 2009) –given its ability to persist in a wide range of habitats, 

its high voracity combined with its generalised feeding habitats. 

Specifically, in this thesis we will focus 

mainly on the comparison between T. 

verticalis and the Sigara lateralis (Leach, 

1817). S. lateralis (Fig. 3) is a Paleartic, 

opportunistic species frequently found 

inhabiting in small temporary freshwater 

ponds (Millán et al., 1988; Boda & Csabai, 

2009; (Cianferoni, 2009). It is a corixid of 5-

6 mm length (Nieser, Baena, Martínez-

Avilés & Millán, 1994) with at least two 

generations per year (i.e. bivoltine, 

Cianferroni, 2009). This species is known 

to feed mainly on animal prey (Murillo & 

Recasens, 1986; Layer et al., 2010) and to 

possess high dispersal ability (Boda & 

Csabai, 2009).  

 

 

 

 

Figure 3. Sigara lateralis  
(Photo: www.biodiversidadvirtual.org).  

 

Invasive species can bring serious threats to the conservation of protected areas 

(Lonsdale, 1999; Lovejoy, 2006). The cordgrass Spartina densiflora, the crayfish Procambarus 

clarkii and the water hyacinth Eichhornia crassipes are three good examples of invaders that 

had detrimental effects on protected ecosystems (Castillo et al., 2008; Cruz et al., 2008; 

Laranjeira & Nadais, 2008). Doñana marshes have a critical role in biodiversity conservation 

and represent one of the most important breeding and overwintering sites for many 

migratory water birds. The successful establishment of T. verticalis in this area could 

represent the latest menace added to these aquatic systems. Like many other wetlands in the 

Mediterranean region, the Doñana marshes have been subject to strong anthropogenic 

impacts since 1920, including increases in water demand that followed agriculture, tourism 

and urbanization development outside Doñana borders (Martín-López et al., 2011), changes 

in the inundation regime over the years and also multiple invasions (Frisch, Rodríguez-Pérez 

& Green, 2006; Garcia-Murillo et al., 2007; Rodríguez-Pérez et al., 2009; Bravo Utrera, 2010). 

For most of these invaders, the effects on wetland ecosystem functioning and on the 

conservation of native fauna have been investigated in some detail, while for others, 

especially for the aquatic insects T. verticalis, these are largely unknown. Studies on insects 
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would be particularly valuable because they often cause substantial ecological change and 

economic damages (Kolar & Lodge, 2001). 

In some cases, invasive species are also the cause of failure in restoration projects. For 

example, Matthews & Spyreas (2010) showed that when the abundance of the invasive reed 

canary grass Phalaris arundinacea increased, the vegetation communities within restored 

wetlands progressed towards an undesirable community state. T. verticalis has a well-

established population within the “Caracoles estate” in Doñana National Park (South West 

Spain), a large complex of new ponds that were created during marsh restoration 

(Rodriguez-Perez et al., 2009; Frisch et al., 2012). Since T. verticalis could affect native species 

directly via competition and predation, or indirectly by modifying the environmental 

conditions, this species may therefore interfere with a successful recovery of aquatic 

macroinvertebrate diversity in these new ponds, when compared with natural communities.  

 

Objectives and thesis outline 

What determines invasiveness of alien organisms and which are the potential 

consequences of a biological invasion on the host community are among the most interesting 

and urgent questions in ecology (Levine et al., 2002, 2003; van Kleunen et al., 2010). In this 

thesis we used an invasive-native comparative approach on both experimental and field data 

collected in Doñana. We explore the hypothesis that the invader T. verticalis dominates in 

saline waters, but is rare in fresh waters, for various reasons: (1) it is more plastic than native 

species and its physiological performance improves at high salinity; (2) it is released from 

natural enemies (native parasites, predators); (3) its spread is facilitated by interactions with 

alien fish predators; and (4) its trophic relationships with native corixids differ between 

saline and fresh waters. Lastly, we explored the success of a restoration project for 

macroinvertebrates in new ponds where T. verticalis is known to be an abundant breeder.   

Since plasticity is generally a characteristic of good invaders, in Chapter 1 we experimentally 

compare thermal tolerance and plasticity responses between T. verticalis and the native S. 

lateralis acclimated to different conditions of salinity and temperature. In Chapter 2 we 

combine experimental and field data on stable isotopes of carbon (C) and nitrogen (N) to 

investigate the potential of T. verticalis to compete for food with native corixids in habitats 

that differ in water stability and resource diversity. We also investigate the trophic ecology 

of this invader where it has stable reproductive populations within Doñana. To evaluate the 

role of parasites during this invasion, in Chapter 3 we compare larval water mite infection 

levels between native corixids and T. verticalis along a salinity gradient combining specific 

and generic parasite sampling. As facilitative interactions among exotics have been shown to 
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play an important role during invasion, in Chapter 4 we experimentally investigate 

differences in predation rates between two exotic predators and one native predator on the 

invasive and native corixids. In Chapter 5 we evaluate the restoration success of the 

Caracoles ponds, where the invasive species has reproductive populations, for 

macroinvertebrates (the whole community, Coleoptera and Hemiptera) compared to natural 

reference sites during two different inundations, so as to depict the potential impact of T. 

verticalis within a restoration framework. Finally, we synthesize and discuss the major results 

of the previous chapters and we report the conclusions of this thesis.  
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Abstract 

Trichocorixa verticalis verticalis, a native of North America, is the only alien corixid identified 

in Europe. First detected in 1997 in southern Portugal, it has spread into south-west Spain 

including Doñana National Park. Its impact on native taxa in the same area is unclear, but it 

is the dominant species in several permanent, saline wetlands.  

We investigated whether the ecophysiology of this alien species favours its spread in the 

Iberian Peninsula and its relative success in saline areas. We compared physiological 

responses to heating (Critical Thermal maximum), cooling (Critical Thermal minimum) and 

freezing (Super Cooling Point) in the native Sigara lateralis and introduced T. verticalis 

acclimated to different temperatures and salinities. The larger S. lateralis generally 

outperformed T. verticalis and appeared to possess a broader thermal tolerance range. In 

both taxa, CTmax was highest in animals exposed to a combination of high conductivities and 

relatively low acclimation temperatures. However, CTmax was generally higher in T. verticalis 

and lower in S. lateralis when acclimated at higher temperatures. CTmin were lower (greater 

tolerance to cold) after acclimation to high conductivities in T. verticalis, and following 

acclimation to low conductivities in S. lateralis. Both acclimation temperature and 

conductivity influenced corixids´ freezing tolerance; however, only in T. verticalis did SCP 

decrease after exposure to both high temperature and conductivity. T. verticalis showed a 

higher range of mean responses over all treatments.  

Whilst the native S. lateralis may have a broader thermal range, the alien species performs 

particularly well at higher salinities and temperatures and this ability may facilitate its 

invasion in Mediterranean areas. The greater plasticity of T. verticalis may further facilitate its 

spread in the future, as it may be more able to respond to climate shifts than the native 

species.  
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Introduction 

Freshwater habitats occupy less than 1 % of the world’s surface, but hold more than 7 % 

of described species (Darwall et al., 2008), with extensive local endemism (Gibon, 2000; 

Dudgeon, 2003). At the same time, however, inland water ecosystems and biological 

communities are affected by increasing numbers of alien species (Cohen, 2002) and are 

amongst the most threatened in the world (Darwall et al., 2008). According to the DAISIE 

database, there are 296 invertebrate alien species in European inland waters (Gherardi et al., 

2009). However, the consequences of invasive invertebrate species for faunal composition, 

community structure and ecosystem functioning in freshwater systems are largely unknown, 

with the exception of a handful of taxa such as the red swamp crayfish Procambarus clarkii 

(Gherardi, 2006) and the zebra mussel Dreissena polymorpha (Higgins & Vander Zanden, 

2010). 

Whilst some taxonomic groups (e.g. bivalves, crustaceans and gastropods) are well 

represented in alien invertebrate species lists, insects are highly under-represented, despite 

them dominating the world’s freshwater fauna (Balian et al., 2008). A recent addition to these 

lists is the water boatman Trichocorixa verticalis verticalis (Fieber, 1851) (Heteroptera, 

Corixidae), native to North America, but now occurring in temperate zones in other parts of 

the world such as South Africa, Iberia and Morocco (Kment, 2006; Jansson & Reavell, 1999;  

L’Mohdi et al., 2010). In Europe, T. verticalis represents the only established alien waterbug 

(Rabitsch, 2008). In the Iberian Peninsula it was first recorded in 1997 in the Algarve in 

Portugal (Sala & Boix, 2005). It is now successfully established and continues to spread, but 

is so far restricted to areas along the Atlantic coast (Sala & Boix, 2005) and in the 

Guadalquivir Estuary and surrounding parts of SW Spain (Rodríguez-Pérez et al., 2009; Van 

De Meutter et al., 2010). It is predicted to spread widely across Europe and the 

Mediterranean region in the future (Guareschi et al., 2013). 

T. verticalis is now the dominant breeding corixid at several sites in and around Doñana 

National Park on the Guadalquivir Estuary (Rodríguez-Pérez et al., 2009; Van De Meutter et 

al., 2010). Part of its success appears to be related to its ability to live in hypersaline 

environments (Kelts, 1979), and to colonize different kinds of habitats, including brackish 

and saline waterbodies (Günter & Christmas, 1959). This ability may enhance the 

competitive advantage of T. verticalis over other corixids in the face of global change. During 

the twentieth century, the wetlands in southern Spain and the rest of the Mediterranean 

region have become increasingly prone to development and extraction of fresh water (Green 

et al., 2002; Sousa et al., 2010) and these factors, together with projected climate-induced 

changes in hydrology, increase salt concentrations in remaining waterbodies (Moss et al., 
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2009). 

If native species are unable to respond to extreme conditions, either physiologically 

(Calosi, Bilton & Spicer, 2008; Calosi et al., 2008; Calosi et al., 2010; Bozinovic, Calosi & 

Spicer, 2011) or behaviourally (Kearney, Shine & Porter, 2009; Tewksbury, Huey & Deutsch, 

2008), they are likely to be excluded through interspecific competition with more tolerant 

species (Dick & Platvoet, 1996; Cáceres, 1998). Field data on the distribution of T. verticalis 

suggest that its physiological tolerance of salinity may be at least partly responsible for its 

competitive advantage over native corixids in the Doñana area (Van De Meutter et al., 2010). 

Moreover, the effects of salinity and temperature on insect physiological tolerance can be 

synergistic or additive. Sánchez-Fernández et al. (2010) for example, recently demonstrated 

how the interaction of these two environmental factors influences the thermal biology of 

adult Nebrioporus diving beetles, where cold tolerance increases following exposure to high 

salinities and low temperatures.  

In this experimental study, we subjected T. verticalis and the native Palaearctic corixid 

Sigara lateralis (Leach, 1817) (Cianferoni, 2009) to different combinations of temperature and 

salinity and compared several indicators of upper and lower thermal sensitivity of 

individuals of both species acclimated to different conditions. These two species are 

sympatric in southern Iberia, and frequently occur together in the same ponds, although T. 

verticalis is becoming the dominant corixid in some areas previously occupied by S. lateralis 

(Rodríguez-Pérez et al., 2009). We specifically examined their critical thermal maximum (as a 

proxy for upper thermal limits), chill coma (as a proxy for lower thermal limits) (Huey et al., 

1992; Castañeda, Lardies, & Bozinovic, 2005), and cold hardiness (supercooling point, often 

used as a measure of tolerance to low temperatures) (Sinclair & Sjursen, 2001; Worland & 

Convey, 2001). Differences in thermal tolerance and plasticity between native and invasive 

species can be used as predictors of their ability to persist, increase or decline in response to 

climate change. We explore whether exposure to different acclimation salinities and 

temperatures influence the thermal tolerance of the native and invasive species in an 

interactive manner, and examine the implications these have for the spread of T. verticalis. 

 

Materials & Methods 

Animal collection and maintenance  

Adults of T. verticalis and S. lateralis were collected during July and August 2010 using a 

D-framed pond net (500 �m mesh; 16 × 16 cm) from different sites in Doñana and the Odiel 

marshes (SW Spain). Permits for sampling in Doñana and Odiel were provided by the 
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Consejería de Medio Ambiente, Junta de Andalucía. Conductivity of sampling sites ranged 

from 60 mS cm-1 (Odiel marshes) to 1.15 mS cm-1 (Doñana National Park) (See Table 1). Sites 

were chosen based on preliminary observations of corixid presence (Rodríguez-Pérez et al., 

2009), authors’ unpublished data). After collection, corixids were transported to the 

laboratory inside plastic containers filled with damp aquatic vegetation and kept within 

thermally insulated polystyrene boxes in order to minimize thermal fluctuations and 

extremes as much as possible. In the laboratory, individuals were maintained in aquaria 

containing water close to the original conductivity, before being transferred to holding 

aquaria with water at conductivity 18 mS cm-1. When the original conductivity was >35 mS 

cm-1, to avoid acute exposure to experimental conditions, individuals were first maintained 

at 25-30 mS cm-1, before being transferred to 18 mS cm-1 (see Table 1). Aquaria were provided 

with sand and vegetation, and corixids were fed ad libitum with frozen chironomid larvae. 

Individuals were maintained on a natural photoperiod regime for 24 h before they were 

subjected to acclimation conditions, with a 12 h: 12 h D:L regime. 

 

Table 1. Collection sites in SW Spain, original conductivities and maintenance water conditions in the 
laboratory.  
 

 
 
All sites are in Doñana except the Odiel Marshes (See Rodríguez-Pérez et al., 2009; Van De Meutter et 
al., 2010  for details). VLP-EBD are individuals reared in mesocosms at the EBD (Estacíon Biólogica de 
Doñana-CSIC) but originating from Veta la Palma. Tv= Trichocorixa verticalis; Sl= Sigara lateralis. 

 

 

 

 

 

Sampling 

date 

Arrival 

date 
Sites 

Original 

conductivity 

Laboratory 

conductivity 
Species 

21/07/10 23/07/10 Veta la Palma (VLP) 11.59 mS cm-1 12 mS cm-1 Tv + Sl 

29/07/10 02/08/10 Odiel Marshes 60 mS cm-1 30 mS cm-1 Tv 

30/07/10 02/08/10 VLP-EBD 14 mS cm-1 14 mS cm-1 Tv 

30/07/10 02/08/10 FAO 2.8 mS cm-1 2.6 mS cm-1 Tv + Sl 

30/07/10 02/08/10 Caracoles 41 mS cm-1 25 mS cm-1 Tv + Sl 

19/08/10 20/08/10 FAO 1153 µS cm-1 1 mS cm-1 Tv + Sl 

19/08/10 20/08/10 VLP-EBD 36.5 mS cm-

1 

25 mS cm-1 Tv 

31/08/10 01/09/10 FAO 1.32 mS cm-1 1.32 mS cm-1 Tv + Sl 

31/08/10 01/09/10 Caño Guadiamar 6.76 mS cm-1 6 mS cm-1 Tv + Sl 
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Experimental setup and acclimation 

Individuals were transferred to 3 L aquaria (with a maximum of 13 ind. of the same 

species in each aquarium) at 4 different conductivities: 1, 4, 12 and 18 mS cm-1, which 

corresponded to salinities of 0, 2.1, 6.8 and 10.6 ppt. Aquaria were kept for 72 h in either a 

climatic chamber set at 10 or 15 ºC or a water bath set at 25 °C. Temperatures and salinities 

were chosen to simulate a range of conditions present at waterbodies where both species are 

found together (Rodríguez-Pérez et al., 2009; Van de Meutter, Trekels & Green, 2010). Whilst 

these conductivities do not span the entire range occupied by T. verticalis in the field (see 

above) they were chosen since preliminary experiments demonstrated that they were non-

lethal in both taxa studied, allowing direct comparison of their responses to be conducted 

across a wide conductivity range. Waters of different conductivity were prepared by 

dissolving an appropriate quantity of salt (Instant Ocean, Aquarium Systems, Sarrebourg, 

France) in aerated artificial pond water, that consists of a solution of salts dissolved in 

double-distilled water, prepared according to a standardized protocol (ASTM, 1980). During 

the experiment we monitored water temperature and conductivity at 12 h intervals using a 

handheld multimeter (YSI 85, Yellow Springs, USA). Conductivity fluctuations, due to 

evaporation and/or differences in solubility, were corrected by dissolving small quantities of 

Instant Ocean or adding artificial pond water to aquaria. Aquaria were sealed with cling-film 

to reduce evaporation and to prevent individuals from escaping, whilst aeration was 

continuously provided. No food was provided 24 h prior to thermal tolerance limits being 

determined.  

Following the exposure period, 10 individuals of each species were randomly removed 

from each treatment and further sub-divided into two equal-sized groups: one sub-group 

was used to measure critical thermal maximum (CTmax) and the other to measure critical 

thermal minimum (CTmin). The estimation of supercooling point (SCP) was undertaken in 

separate trials approx. 15 d after the determination of thermal limits, using the same 

procedure. After experiments, individuals were sexed using a stereo microscope and 

weighed to the nearest 0.001 g using a Sartorius 1204 MP2 balance (Sartorius Ltd, U.K.). 

Thermal tolerance and supercooling point experiments were carried out in air given the 

impossibility to estimate freeze tolerance in water. This procedure provides an indication of 

the ability of a species to perform better than others at high or low temperatures in water as 

well as air (Calosi, Bilton & Spicer, 2008; Calosi et al., 2008; Calosi et al., 2010; Sánchez-

Fernández et al., 2010).  
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Thermal tolerance experiments 

Thermal tolerance tests commenced at the temperature at which individuals had been 

acclimated (see Terblanche et al., 2007 for methodological details). A total of 240 individuals 

were used: 120 S. lateralis and 120 T. verticalis. Individuals were removed from their 

acclimation aquaria, quickly but carefully blotted on absorbent paper, and placed into a 

clean and dry well of a plastic multiwell culture plate. For CTmin, specimens were placed 

individually into a generic 24-well plastic culture plate (Corning Ltd, Sunderland, UK), while 

for CTmax a modified plate was used with deeper wells to avoid escape during heating. In 

both cases, external bases were painted with white Tipp-Ex to allow easy visualization of 

temperature related responses. Plates were immersed in the water bath until only the upper 

edges (1- 2 mm) were exposed, and affixed to the side of the bath with adhesive tape to 

prevent movements and thus water entering experimental wells. To further avoid escape, 

well plates were covered with a plastic lid between additions of individuals. Once the 

experiment started, lids were removed to allow full aeration and avoid the build-up of water 

vapour, which might have affected the thermal tolerance of individuals (Pörtner, 2001). A 

maximum of 5 individuals were tested at any one time.  

Thermal tolerance tests relied on a dynamic method, which involves increasing or 

decreasing test temperatures via a ramping program (± 1 °C min) until the end-point (see 

below) was observed. A rapid ramping rate was favoured as it allows observed responses to 

be related to the effect of different acclimations, and minimizes other undesired effects that 

may occur during slower ramping on thermal limits (see Rezende, Tejedo, & Santos, 2011). 

Experiments were performed with a Grant R5 water bath (12 l capacity) and a GP200 

thermostatic controller (Grant Instruments Ltd., Cambridgeshire, England) connected to a 

computer. Grant Labwise software was used to construct and control temperature programs. 

The actual temperature within each well was measured directly using a calibrated digital 

thermometer (Omega_ HH11; Omega Engineering Inc., Stamford, CT, USA) equipped with 

an Omega® ‘precision fine wire thermocouple’ (type T – dia. ⁄ ga. 0.08/0.13 Teflon). Distilled 

water and 70% ethylene glycol solutions were used as fluids inside the water bath to 

determine CTmax and CTmin /SCP respectively. 

CTmax and CTmin were defined using individual end-points represented by death (lethal 

point) at high temperatures, and chill coma (sub-lethal point) at low temperatures. Whereas 

death was readily identifiable in CTmax experiments (individuals never revived after 

cessation of movement), defining lower lethal limits was more difficult. At low 

temperatures, individuals exhibited total paralysis and were apparently dead (chill coma), 

but they would revive and recover full or partial locomotory abilities shortly after the end of 
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the exposure period. As already documented for other insects (Gaston & Chown, 2008; 

Calosi et al., 2010), both lethal limits and sublethal end-points (e.g. paralysis) provide an 

accurate picture of insect thermal biology. Consequently, we defined CTmin as the 

temperature at which individuals were paralysed, as the few corixids which recovered from 

the treatment were severely impaired in their locomotory ability and died shortly 

afterwards.  

 

Supercooling point experiment  

The SCP is the temperature of spontaneous freezing at which a biological solution or a 

whole organism freezes when cooled below its equilibrium freezing temperature (Salt, 1961; 

Wilson, 2003). During this experiment, the temperature at which individuals froze (SCP) was 

determined with a Campbell Scientific CR1000 datalogger equipped with an Omega 

‘precision fine wire thermocouple’ (type T 1 mm long, 0.08 or 0.13 mm diameter) interfaced 

to a computer. Data were recorded and stored at 1 s intervals using Campbell Scientific 

PC400 software. Tests were carried out using a Grant R5 water bath (12 l capacity) and a 

GP200 thermostatic controller (Grant Instruments Ltd., Cambridgeshire, England) connected 

to a computer. Grant Labwise software was used to construct and control temperature 

programs. 

A total of 115 individuals were tested: 60 S. lateralis and 55 T. verticalis. Individuals were 

removed from their exposure aquaria, quickly but carefully blotted on absorbent paper, and 

attached individually by the dorsum to an acetate disk with cyanoacrylic glue (Loctite, 

Henkel Ltd, Hempstead, UK). Individuals were introduced, one per well, into a 12-well 

plastic culture plate. A maximum of 5 animals were run concurrently in each experiment. 

The SCP was measured by supporting the thermocouple vertically on the insect’s abdomen. 

Thermocouple movement was avoided by fixing individuals to the cell walls with BlueTack. 

Once ready, the individuals were transferred to the tank, and plates were covered with 

acetate lids to avoid thermal oscillations during the experiment. Individuals were cooled 

with a cooling ramp program (±1 ºC min-1), starting from the temperature at which 

individuals had been acclimated. The SCP of each individual was recorded as the lowest 

temperature reached before the start of the exothermic reaction caused by the latent heat of 

freezing of the animal’s body fluids (Aarset & Torres, 1989; Worland, Leinaas & Chown, 

2006). Owing to a shortage of individuals, we were unable to test the SCP on individuals of 

T. verticalis exposed to 25 ºC and 18 mS cm-1. 
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Statistical analyses 

In order to assess the effect of exposure to different temperatures and conductivities on 

the thermal biology of S. lateralis and T. verticalis, we examined differences in CTmax, CTmin 

and SCP with general linear models on untransformed data; with acclimation temperature 

(10, 15 or 25 ºC), acclimation conductivity (1, 4, 12 and 18 mS cm-1), and species (T. verticalis 

or S. lateralis) as fixed factors, and sex (male or female) as a random factor. With the 

exception of CTmax, sex did not have a significant effect and was excluded from further 

analyses. Variances met assumptions for homoscedasticity (Levene’s test, P > 0.05), and data 

met the assumption of normality (Shapiro–Wilks test, P > 0.05) for both CTmin and SCP as 

untransformed data, but not for CTmax, even after log10 transformation.  However, given our 

sample sizes, models employed were robust to deviations from normality (Sokal & Rohlf, 

1995; Underwood, 1997) and examination of residual plots for all data revealed satisfactory 

patterns. Model selection started by incorporating all predictors and the interactions between 

factors. Then, non-significant interactions were removed in a hierarchical, stepwise manner 

until a significant effect or interaction was found.  

Body weight was not included in the overall model because it was not measured in all 

individuals of T. verticalis. We thus used a second model for only S. lateralis with the above 

factors together with body weight as a covariate. With the exception of CTmax, body weight 

did not have a significant effect on S. lateralis thermal limits (P > 0.05 for both CTmin and 

SCP), and was thus excluded from further analyses.  

Finally, Bonferroni-corrected Estimate Marginal Means post-hoc tests were used for 

pairwise comparisons when any single factor or interaction was significant. All analyses 

were performed using SPSS version 17.0. 

 

Results 

Critical thermal maximum 

For both species, mean CTmax reached its maximum when individuals were acclimated at 

the lowest temperature (10 °C) and the highest conductivity (18 mS cm-1) (Figure 1), whilst 

minimum CTmax were recorded at 10 ºC and 1 mS cm-1 for T. verticalis and 25 ºC and 18 mS 

cm-1 for S. lateralis. 

In terms of their CTmax, S. lateralis and T. verticalis responded differently to acclimation at 

different temperatures (temperature x species interaction P < 0.001; Figure 1, Table 2 - 

Bonferroni tests maximum P = 0.035; Supplementary Table 1). Mean CTmax was also 

significantly influenced by the interaction between temperature and conductivity (P < 0.001; 
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Supplementary Fig. 1, Table 2 - Bonferroni tests maximum P = 0.049; Supplementary Table 

1). Sex also had a strong influence (P < 0.03; Table 2) on CTmax in both species’ heat tolerance, 

CTmax being higher on average in females than males (Bonferroni tests maximum P = 0.030; 

Supplementary Table 1). 

 

 
 

Figure 1. Thermal limits and freezing point of Trichocorixa verticalis and Sigara lateralis. Histograms of 
mean ± SE critical thermal maximum (CTmax), critical thermal minimum (CTmin) and supercooling 
points (SCP) of Sigara lateralis and Trichocorixa verticalis acclimated to different temperatures (10, 15 
and 25 °C) and conductivities (1, 4, 12, 18 mS cm−1). Significantly different means within species (P < 
0.05) measured at different acclimation temperatures are indicated by different capital letters inside 
the histograms, whereas significantly different means measured at different conductivities within the 
same temperature treatment are indicated by different lower case letters above or below the 
histograms (according to Estimated Marginal Means tests with Bonferroni correction).  
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Table 2. Effect of acclimation temperature (T), acclimation conductivity (C), species (Sp: Trichocorixa 
verticalis or Sigara lateralis) and sex on corixid critical thermal maximum (CTmax) – General linear 
model.  

 

Source SS d.f MS F P 

T 10.3 2 5.1 2.92 0.05

8 C 37.2 3 12.4 7.03     < 0.001 

Sp 51.8 1 51.8 29.37     < 0.001 

Sex 8.5 1 8.5 4.85 0.03

0 T × C 59.2 6 9.8 5.60     < 0.001 

T × Sp 32.7 2 16.3 9.28     < 0.001 

C × Sp 3.7 3 1.2 0.71 0.54

5  

Sum of squares (SS); degrees of freedom (d.f.); mean square (MS), F-ratio (F), probability level (P). 
 
 

Overall, CTmax was significantly higher in S. lateralis than in T. verticalis (Supplementary 

Fig. 2) at 10 ºC and 15 ºC (P < 0.05) but not at 25 ºC (P > 0.05). However, post-hoc 

comparisons showed that conductivity had a marginal influence on CTmax when animals 

were acclimated at higher temperatures. In contrast, CTmax was significantly lower for S. 

lateralis at 25 ºC than at other temperatures (Fig. 1; Supplementary Table 1). 

S. lateralis was larger on average than T. verticalis, with mean (± SD) body weights of 5.35 

± 1.28 mg and 3.46 ± 0.73 mg, respectively. When S. lateralis was analysed separately with 

body weight as an additional covariate (Table 3), CTmax increased significantly with body 

weight (Pearson correlation R = 0.537, P < 0.001) but sex no longer had a significant effect. 

Hence the effect of sex on CTmax seems to be a direct consequence of the lower body weight 

of males. Conductivity was the only other variable retaining a significant partial effect on 

CTmax once body weight was controlled for.  

 

Table 3. Effects of acclimation temperature (T), acclimation conductivity (C) and weight (W) on the 
critical thermal maximum (CTmax) of Sigara lateralis– General linear model.  
 

Source SS d.f MS F P 

T 6.4 2 3.2 2.43 0.098 

C 17.1 3 5.7 4.34 0.009 

W 18.2 1 18.2 13.88 0.001 

T × C 11.7 6 1.9 1.40 0.206 
 

Sum of squares (SS); degrees of freedom (d.f.); mean square (MS), F-ratio (F), probability level (P). 
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Critical thermal minimum 

Minimum CTmin were recorded at 10 °C and 4 mS cm-1 for S. lateralis and 15 ºC and 12 mS 

cm-1 for T. verticalis (Fig. 1). Maximum CTmin were recorded at 25 ºC and 18 mS cm-1 for S. 

lateralis and at 10 ºC and 4 mS cm-1 for T. verticalis.  Mean lower thermal limit was 

significantly influenced by the interaction between species and conductivity (P < 0.001; Table 

4 - Bonferroni tests maximum P = 0.006; Table S2). Mean CTmin also differed significantly 

between species (P < 0.001) with S. lateralis showing a higher tolerance to cold than T. verticalis 

(Bonferroni tests maximum P < 0.001; Supplementary Fig. 2; Supplementary Table 2. 

Acclimation temperature was not significantly related to mean CTmin in either species. 

CTmin was lower for S. lateralis (i.e., this species showed a greater tolerance to low 

temperatures) at both 1 and 4 mS cm-1. For S. lateralis, CTmin increased significantly as 

conductivity increased from 4 to 18 mS cm-1. In contrast, CTmin for T. verticalis decreased 

significantly as conductivity increased from 4 to 12 mS cm-1 (Supplementary Table 2).  

 

Table 4. Effect of acclimation temperature (T), acclimation conductivity (C) and species (Sp: 
Trichocorixa verticalis or Sigara lateralis) on corixid critical thermal minimum (CTmin) – General linear 
model.  
 

 

 
 
 
 
 
 
 
 
 
 
Sum of squares (SS); degrees of freedom (d.f.); mean square (MS), F-ratio (F), probability level (P). 
 
 

Supercooling point 

The minimum SCP for S. lateralis occurred when acclimated at 10 °C and 12 mS cm-1, 

whilst the maximum for this species occurred when acclimated at 25 °C and 12 mS cm-1 (Fig. 

1).  For T. verticalis, minimum and maximum SCP occurred when acclimated at 25 °C and 1 

mS cm-1 and 15 °C and 4 mS cm-1, respectively (Fig. 1). Mean SCPs for S. lateralis and T. 

verticalis were influenced by acclimation at different temperatures (temperature x species 

interactions P < 0.001; Table 5 - Bonferroni tests maximum P = 0.014; Supplementary Table 3) 

and conductivities (conductivity x species interaction P < 0.001; Table 5 - Bonferroni tests 

Source SS d.f MS F P 

T 8.0 2 4.0 2.7

8 

0.067 

C 6.7 3 2.2 1.5

4 

0.208 

Sp 46.3 1 46.3 32.

03 

    < 0.001 

T × C 13.8 6 2.3 1.5

9 

0.158 

T × Sp 6.1 2 3.0 2.1

1 

0.126 

C × Sp 31.5 3 10.5 7.2

7 

    < 0.001 
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maximum = 0.026; Supplementary Table 3). For both species, freezing point was significantly 

influenced by both conductivity (P = 0.041; Table 5; Bonferroni tests maximum = 0.044; 

Supplementary Table 3) and acclimation temperature (P = 0.003; Table 5; Bonferroni tests 

maximum = 0.002; Supplementary Table 3). Mean SCPs also differed strongly between 

species (P = 0.001; Supplementary Table 3), being lower on average for S. lateralis (Bonferroni 

tests P = 0.001; Supplementary Table 3).  

Overall, S. lateralis had a significantly lower SCP (i.e. greater tolerance to freezing) than 

T. verticalis. Such a significant effect was recorded at acclimation temperatures of 10 and 15 

ºC, but was reversed at 25 ºC (Supplementary Fig. 2). At conductivities of 4 and 12 mS cm-1, 

S. lateralis had a significantly lower SCP than the alien corixid (Supplementary Fig. 2). For T. 

verticalis only, post-hoc tests showed that SCP varied significantly both with temperature 

and conductivity, decreasing as temperature increased to 25 ºC, and as conductivity 

increased to 18 mS cm-1 (Supplementary Table 3). 

 

Table 5. Effect of acclimation temperature (T), acclimation conductivity (C) and species (Sp: 
Trichocorixa verticalis or Sigara lateralis) on corixid supercooling point (SCP) – General linear model.  

 

Source SS d.f MS F P 

T 76.0 2 38.0 6.29 0.003 

C 51.9 3 17.3 2.86 0.041 

Sp 77.3 1 77.3       12.81 0.001 

T × C 32.8 6   5.4 0.90 0.495 

T × Sp       190.6 2 95.3       15.78     < 0.001 

C × Sp       134.5 3 44.8 7.42     < 0.001 
 

Sum of squares (SS); degrees of freedom (d.f.); mean square (MS), F-ratio (F), probability level (P). 
 

 

Discussion 

T. verticalis and S. lateralis differed strongly in their physiological responses to heating, 

cooling and freezing; a finding in agreement with (Chown et al., 2007a), who suggest that the 

form of physiological plasticity can be a key difference between invasive and native species. 

However, contrary to our expectations, S. lateralis generally outperformed T. verticalis, and 

appeared to possess a broader thermal tolerance range (sensu Calosi et al., 2010). Both 

temperature and conductivity influenced corixid thermal tolerance. However, the effect of 

exposure to different temperatures and conductivities varied between upper and lower 

limits for the two species examined.  
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Although the temperatures recorded for CTmin and SCP are below those encountered by 

corixids under field conditions in our study area, their relative values and plasticities allow 

us to compare the relative ability of Trichocorixa and Sigara to cope with cold. The minimum 

air temperature recorded at the Palacio de Doñana in 2012 was -6oC and this matches the 

minimum value ever recorded in Doñana (February 1981; 2012), although temperatures 

below zero are not so unusual (http://www-rbd.ebd.csic.es/Seguimiento/mediofisico.htm). 

The CTmax values we recorded are ecologically very relevant, however, since the maximum 

air temperature often reaches 46oC in July-August. Corixids concentrate in shallow water 

whose temperature can exceed that of the air in summer. For example, in ponds frequented 

by the study species, water temperature reached 39 oC in May 2007 (authors’ unpublished 

data), whilst air temperature in the same month did not exceed 34 oC.  

 

Critical thermal maximum 

In terms of heat tolerance, the present study demonstrates that both species increase their 

CTmax in response to acclimation to a combination of high conductivity (18 mS cm-1) and low 

temperature (10 ºC). Such an effect was also recorded by Verween et al., (2007), who found a 

trade-off between suboptimal temperature tolerance and high salinity in Mytilopsis 

leucophaeata (Mollusca, Bivalvia). Contrary to our initial expectations, acclimation to higher 

temperatures (25 °C) did not improve heat tolerance in either corixid species. From our 

findings it appears that both species possess a similar heat shock response at the higher 

temperature employed.  

Insects express heat shock proteins (HSPs) in response to both cold and osmotic shock 

(Feder & Hofmann, 1999, Benoit et al., 2010). In Drosophila, exposure to low temperature 

results in heat shock protein upregulation when the animals are returned to higher 

temperatures (Chown et al., 2007b), suggesting that the interaction between low temperature 

exposure and acute heating can also increase heat resistance (Goto & Kimura, 1998). Both 

processes may operate in the corixids in our study, suggesting that although HSP expression 

can vary among and within species (Feder & Hofmann, 1999), they appear to exhibit similar 

capacities to regulate HSP production under laboratory conditions. Such a plastic 

thermotolerance response has already been reported in many organisms (Barua, Downs & 

Heckathorn, 2003) and here suggests that both corixids may use similar physiological 

mechanisms of acclimation when exposed to low temperatures and high salinity. On the 

other hand, the fact that both species did not elevate their heat tolerance after exposure to the 

higher temperature suggests that both species may maintain a high standing stock of HSPs 
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in their cells. This mechanism often occurs in warm adapted organisms (Barua, Downs & 

Heckathorn, 2003), and suggests that new warmer conditions experienced in SW Spain by T. 

verticalis compared to its native range may have led to some physiological changes as an 

adaptation to the local conditions.  

From our data, S. lateralis appears to be generally more heat tolerant than T. verticalis. It is 

possible that the differences in maximum heat tolerance observed in the present study are at 

least partly based on differences in body size between the two species. Body size-mediated 

thermal acclimatory responses of upper thermal limit have previously been reported for 

diving beetles (Sánchez-Fernández et al., 2010) and freshwater Crustacea (Mundahl & 

Benton, 1990), and could explain why the larger species S. lateralis showed a higher heat 

tolerance than T. verticalis here. 

In general, warm adapted ectotherms possess great tolerance to heat (Stillman, 2003; 

Compton et al., 2007), but according to Stillman, (2003) they may have evolved this ability at 

the expense of their acclimatory capacity. Our results are in general agreement with 

Stillman’s conclusion, since S. lateralis has a lower ability to acclimate CTmax in response to 

prior temperature exposure than T. verticalis (note how the alien shows greater magnitude of 

change in mean CTmax with temperature in Supplementary Table 1), despite having the 

highest absolute CTmax overall. The fact that Trichocorixa apparently has greater plasticity to 

heat than S. lateralis may make it better able to respond to sudden temperature shifts in 

nature, something which may favour its spread. 

 

Critical thermal minimum 

Whilst the native S. lateralis generally entered chill coma at lower temperatures, the 

response to acclimation conductivity was species specific. Whereas S. lateralis increased 

CTmin at lower conductivities, the opposite occurred for T. verticalis. Several previous studies 

have found effects of salinity on cold tolerance in other ectotherms, including Nebrioporus 

diving beetles, and fishes including the blackchin tilapia (Sarotherodon melanotheron) and the 

red drum (Sciaenops ocellatus) (Sánchez-Fernández et al., 2010; Stauffer, Vann & Hocutt, 

1984), but see (Craig, Neill, & Iii, 1995). Doñana and surrounding areas such as the Odiel 

marshes are characterized by a Mediterranean subhumid climate with rainfall between late 

September and early April, hot and dry summers, and mild winters (Serrano et al., 2006). 

Salinity varies spatially and temporally, but many ponds and marshes in Doñana are 

oligohaline during the winter (Serrano et al., 2006). Given that S. lateralis overwinters as 

adults, our results suggest that its ability to better remain active at lower conductivities may 
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reflect the ability to minimize energetic costs for osmoregulation during the winter season. 

However, such an adaptation for winter survival could bring a high cost for S. lateralis in 

terms of development, fecundity and longevity (Feder & Hofmann, 1999). 

Cold hardiness and desiccation resistance are mechanistically linked, and one is thought 

to originally have developed from the other (Ring & Danks, 1994). Amongst Drosophila 

species, widespread species possess higher levels of resistance to both desiccation and cold 

(Kellermann et al., 2009). Furthermore, this lack of genetic limitation in resistance traits 

appears to help drive Drosophila distribution patterns. Thus, it is plausible that T. verticalis 

possesses such desiccation-inducible genes that are also induced by the desiccating effect of 

increases in ambient salinity. In response to osmotic stress at higher conductivities, these 

genes produce solutes that enhance cold tolerance (Sømme, 1999). In its native habitats, T. 

verticalis is considered to be a euryhaline insect (Hutchinson, 1993) and often occurs in 

brackish and saline waters (Rodríguez-Pérez et al., 2009). As with S. lateralis, T. verticalis 

overwinters as adults, but contrary to the native species, seems well adapted to overwinter 

in higher salinity waterbodies, like estuarine fish ponds (Rodríguez-Pérez et al., 2009; Van de 

Meutter, Trekels & Green, 2010). In this context, our results suggest that the osmoregulatory 

ability of T. verticalis may allow this alien to spend the cold season in saline wetlands, where 

it probably also achieves continuous reproduction and development. This would help 

explain its successful colonization of Doñana, especially its dominance in permanent, saline 

fish ponds (Rodríguez-Pérez et al., 2009; Van de Meutter et al., 2010).  

We detected no effect of temperature of acclimation on CTmin, contrary to many previous 

studies on insects (e.g. Terblanche et al., 2005; Sisodia & Singh, 2010; Sánchez-Fernández et 

al., 2010). This absence of acclimatory ability shows limited temperature-dependent 

phenotypic plasticity for CTmin in our study species. Freezing winter temperatures are 

unusual in wetlands of southern Iberia, and these populations may not need well developed 

acclimatory abilities, which are known to have costs related to the severity of the stress (Rako 

& Hoffmann, 2006). In contrast, much colder winter temperatures are observed in the native 

range of T. verticalis along the east coast of North America (www.worldclim.org), and it 

would be interesting to compare native and invasive populations in this regard.  

 

Supercooling point  

Both corixid species are freeze-avoiding insects, as they both show pre-freeze mortality 

and the SCP represents their lower lethal limit to survival. Moreover, a decrease in SCP is 

likely to be part of their seasonal cold-hardening strategy (Lee, 1991). Different factors 
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contribute to the enhancement of SCP capacity in insects, especially body size (Hahn, Martin 

& Porter, 2008). However, we didn’t find an effect of intraspecific size variation in our study.  

In the case of T. verticalis, cold hardiness was higher after acclimation to both higher 

temperatures and conductivities. This may result from physiological adjustments that 

probably involve heat protectant accumulation in response to high temperature and water 

loss regulation in response to osmoregulatory stress. As temperature increases, T. verticalis 

increase its heat tolerance, perhaps by HSP upregulation. The ability of HSPs to improve 

both heat and cold stress has been well documented in Drosophila species (Goto & Kimura, 

1998), for reviews see (Feder & Hofmann, 1999), as has the influence of dehydration on 

insects’ cold hardiness (Salt, 1961). 

Since we did not observe any influence of either acclimation temperature or salinity on 

SCP in S. lateralis, it is possible that the native and exotic species differ fundamentally in their 

physiological ability to supercool. This lack of acclimatory ability of SCP in S. lateralis 

suggests that T. verticalis may in fact be better able to survive temperature and salinity 

fluctuations, despite the fact that it generally exhibited higher CTmin and SCPs than S. 

lateralis.  

 

 Implications for the invasion of T. verticalis 

Overall, we found the native S. lateralis to be more thermally tolerant than the invasive T. 

verticalis, and our results may explain why S. lateralis remains dominant in freshwater ponds 

in the Doñana area, where T. verticalis is rare and has not been confirmed as a breeding 

species (Rodríguez-Pérez et al., 2009). However, our study supports the hypothesis that an 

ability to cope with environmental fluctuations, and a high resistance to salinity, favours the 

invasion of T. verticalis in the Mediterranean region. The tolerance of T. verticalis to both heat 

and freezing increases following exposure to high conductivities. The mean salinity of 

remaining natural wetlands in the Mediterranean basin is much higher than in northern 

Europe (Declerck et al., 2005; Moss et al., 2009), partly because freshwater wetlands have 

been drained more extensively (Green et al., 2002). Under a scenario of further climatic 

warming, greater evapotranspiration rates are likely to promote further increases in salinity 

(Moss et al., 2009), and as a consequence, species able to cope with higher salinities may 

benefit from ongoing global change. The ability of T. verticalis to survive and reproduce in 

waters of relatively high conductivity during winter may be central to its success. The 

regular droughts occurring in the Mediterranean region mean that some winters see so little 

rain that many freshwater marshes do not flood, and in regions such as Doñana, this leaves 
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water only in brackish fish ponds or coastal salt-pans which are now dominated by T. 

verticalis (Kloskowski et al., 2010). Our results suggest that T. verticalis has higher cold 

tolerance than S. lateralis in such habitats, a factor which is likely to contribute to its 

overwinter survival and reproduction. Saline waters may act as sources of the invasive T. 

verticalis for the surrounding freshwater habitats in Doñana and elsewhere, and its broad 

salinity tolerance and ongoing salinization of aquatic habitats may play important roles 

during the invasion.  

Plasticity is a recognized characteristic of good invaders (Richards et al., 2006; Ghalambor 

et al., 2007) and the thermal physiology of T. verticalis is consistent with this pattern. The 

greater range of mean responses recorded across our 12 experimental treatments in T. 

verticalis compared to S. lateralis (4.56 vs 3.46 oC for CTmax; 3.04 vs 2.68 oC for CTmin; 7.65 vs 

3.89 oC for SCP) all point to greater plasticity in the invader. In addition to its physiological 

abilities, life history characteristics may play a central role in the invasion success of T. 

verticalis. According to Sol et al. (2012), successful invaders can face the ecological pressure 

posed by the newly invaded environment by allocating reproductive efforts over several 

breeding events. T. verticalis has multiple generations a year in permanent fish ponds in 

Doñana (authors unpublished data), whereas S. lateralis is bivoltine (Cianferoni, 2009). 

Whilst there are limited data on the life-history of native populations of T. verticalis in the 

Americas, it appears that the warmer climate of the Mediterranean area may have allowed 

this species to switch to reproducing throughout the year, as suggested in previous studies 

(Van De Meutter et al., 2010). Such responses can occur rapidly following invasion.  Japanese 

populations of the faall webworm (Hyphantria cunea, Lepidoptera) have shifted from being 

bivoltine to trivoltine in 25 years when exposed to new environmental conditions (Gomi, 

2007). In T. verticalis, the ability to reproduce throughout the year, together with an 

apparently greater plasticity to heat, cold and salinity could facilitate its survival in the face 

of new environmental conditions, and indeed facilitate its spread as climate change 

proceeds. 

Finally, whilst T. verticalis occurs in sympatry with the native S. lateralis in Spain 

(Rodríguez-Pérez et al., 2009), it also appears to overlap the salinity niche of some halophilic 

European corixids such as S. selecta (Fieber, 1848) and S. stagnalis (Leach, 1817) (Van de 

Meutter, Trekels & Green, 2010). Future research should address possible interactions with 

these other species, since the outcomes of these encounters may not be identica. 
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Figure 1. Interactive effect of temperature and conductivity on mean CTmax. Histograms are mean ± 
SE critical thermal maximum (CTmax) of Sigara lateralis and Trichocorixa verticalis acclimated to different 
temperatures (10, 15 and 25 °C) and conductivities (1, 4, 12, 18 mS cm−1). Significantly different means 
(P < 0.05) between different acclimation temperatures measured at the same acclimation conductivity 
are indicated by different capital letters inside the histograms, whereas significantly different means 
measured at different conductivities at the same acclimation temperature are indicated by different 
lower case letters above or below the histograms (according to Estimated Marginal Mean test with 
Bonferroni correction).  
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Figure 2. Thermal limit and freezing point differences between Trichocorixa verticalis and Sigara 
lateralis. Histograms of mean ± SE critical thermal maximum (CTmax), critical thermal minimum 
(CTmin) and supercooling points (SCP) of Sigara lateralis and Trichocorixa verticalis acclimated to 
different temperatures (10, 15 and 25 °C) and conductivities (1, 4, 12, 18 mS cm−1), according to linear 
model output. Significantly different means between species (P < 0.05) measured at different 
acclimation temperatures are indicated by different capital letters inside the histograms, whereas 
significantly different means between species measured at different conductivities are indicated by 
different lower case letters above or below the histograms (according to Estimated Marginal Mean test 
with Bonferroni correction).  
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Table 1. Significantly different mean CTmax (Estimated Marginal Means tests with Bonferroni 
correction) from Table 2 according to acclimation temperature (T), acclimation conductivity (C), 
species (Sp: Trichocorixa verticalis or Sigara lateralis) and sex (1= male; 2 = female). These tests refer to 
partial effects from the final model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conductivity vs temperature 

C  (I)T (J)T Mean Difference 

(I-J) 

Std. Error Sig. 

1 10 15 -1.45 0.59 0.049 

25 -1.49 0.59 0.040 

4 10 15 -1.68 0.59 0.016 

25 -2.00 0.59 0.003 

18 10 25 2.26 0.59 0.001 

temperature vs conductivity 

T (I)C  (J)C  Mean Difference 

(I-J) 

Std. Error Sig. 

10 1 12 -2.39 0.59   0.001 

18 -3.23 0.59 <0.001 

4 12 -2.08 0.59   0.004 

18 -2.92 0.59 <0.001 

temperature vs species 

T (I)Sp (J)Sp Mean Difference 

(I-J) 

Std. Error Sig. 

10 Sl Tvv 2.69 0.43 <0.001 

15 Sl Tvv 1.33 0.43    0.002 

species vs temperature 

Sp (I)T (J)T Mean Difference 

(I-J) 

Std. Error Sig. 

Sl 10 25 1.09 0.42 0.035 

15 25 1.10 0.42 0.031 

Tvv 10 15 -1.37 0.42 0.004 

25 -1.46 0.42 0.002 
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conductivity 

(I) C (J) C Mean Difference 

(I-J) 

Std. Error Sig. 

12 1 1.44 0.34 < 0.001 

18 1 1.17 0.34 0.006 

species 

(I) Sp (J) Sp Mean Difference 

(I-J) 

Std. Error Sig. 

Sl Tv 1.39 0.25 < 0.001 

sex 

(I) Sex M (J) Sex F Mean Difference 

(I-J) 

Std. Error Sig. 

1 2 -0.69 0.31 0.030 
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Table 2. Significantly different mean CTmin (Estimated Marginal Means tests with Bonferroni 
correction) from Table 4 according to acclimation conductivity (C) and species (Sp: Trichocorixa 
verticalis or Sigara lateralis). These tests refer to partial effects from the final model. 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

conductivity vs species 

C (I) Sp (J) Sp Mean Difference  

(I-J) 

Std. Error Sig. 

1 Sl Tv -1.58 0.43 < 0.001 

4 Sl Tv -2.76 0.43 < 0.001 

species vs conductivity 

Sp. (I) C (J) C Mean Difference 

(I-J) 

Std. Error Sig. 

Sl 4 18 -1.49 0.43 0.006 

Tv 12 4 -1.59 0.43 0.003 

species 

(I) Sp. (J) Sp. Mean Difference 

(I-J) 

Std. Error Sig.  

Sl Tv -1.24 0.22 < 0.001  



Chapter 1: Ecophysiology 

 59 

C
hapt
er 5: 
Rest
orati
on 
 

Table 3. Significantly different mean SCPs (Estimate Marginal Means tests with Bonferroni correction) 
from Table 5 according to acclimation temperature (T), acclimation conductivity (C) and species (Sp: 
Trichocorixa verticalis or Sigara lateralis). These tests refer to partial effects from the final model. 
 

 

temperature vs species 

T (I) Sp. (J) Sp. Mean Difference 

(I-J) 

Std. Error Sig. 

10 Sl Tv -3.59 0.77 < 0.001 

15 Sl Tv -3.98 0.77 < 0.001 

25 Sl Tv 2.37 0.95 0.014 

species vs temperature  

Sp (I) T (J) T Mean Difference 

(I-J) 

Std. Error Sig. 

Tv 25 10 -4.43 0.95 < 0.001 

15 -5.35 0.95 < 0.001 

species vs conductivity 

Sp (I) C (J) C Mean Difference 

(I-J) 

Std. Error Sig. 

Tv 18 1 -3.38 1.15 0.026 

4 -5.15 1.15 < 0.001 

12 -4.37 1.15 0.002 

conductivity vs species 

C (I) Sp (J) Sp Mean Difference 

(I-J) 

Std. Error Sig. 

4 Sl Tv -4.31 0.89 < 0.001 

12 Sl Tv -3.51 0.89 < 0.001 

conductivity 

(I) C (J) C Mean Difference 

(I-J) 

Std. Error Sig.  

4 18 2.00 0.73 0.044  

temperature 

(I) T (J) T Mean Difference 

(I-J) 

Std. Error Sig.  

25 15 -2.17 0.61 0.002  

species 

(I) Sp (J) Sp Mean Difference 

(I-J) 

Std. Error Sig.  

Sl Tv -1.73 0.48 0.001  
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Abstract 

Trichocorixa verticalis verticalis, a North American water boatman, is the only alien corixid in 

European fresh waters. It has rapidly spread, becoming the dominant corixid in and around 

the Doñana protected area (SW Spain). Its high abundance and similar morphology to native 

corixids suggest that T. verticalis may impact on them through competition for food. Here we 

used stable isotopes of nitrogen (N) and carbon (C) and Bayesian analytical tools to 

investigate niche partitioning between T. verticalis and the natives Sigara lateralis and S. 

scripta through a combination of experimental and field data. Species sampled from 

permanent ponds and laboratory aquaria could be separated based on their isotopic values 

(δ15N and δ13C). S. lateralis consistently showed higher δ15N values than T. verticalis, 

suggesting that the invasive species may be feeding at a lower trophic position and relying 

more on herbivory than its native competitors. This was particularly true for the T. verticalis 

nymph stage, which showed depleted δ15N values compared to adults, indicating 

ontogenetic dietary shifts. In contrast, native corixids and the invasive species showed 

similar isotopic compositions in temporary habitats at different stages in the flooding-

desiccation cycle, suggesting some degree of niche overlap and a slight reduction in trophic 

level for S. lateralis when inhabiting ephemeral systems. The combination of experimental 

and field data has been useful to depict trophic interactions during a biological invasion and 

stable isotopes provided insights into the trophic ecology of this invasive species and into 

mechanisms that facilitate species co-existence in the invaded range.  
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Introduction 

Invasion by exotic species is a global ecological and conservation problem, causing 

community change and species extinctions worldwide (Crowl et al., 2008; Vilà et al., 2010; 

Hermoso et al., 2011; Strayer, 2012). The impact caused by biological invasions can range 

from undetectable to dramatic (Edelaar & Tella, 2012) depending partly on how invasive 

species traits, including behaviour or physiology, match those of natives in the invaded 

community (Strauss et al., 2006). Several studies have related traits such as competitive 

ability for food and/or space to invasion success, as invasive species are often considered 

superior competitors (Levine et al., 2003; Vilà & Weiner, 2004).   

When competition occurs, the degree of resource/niche overlap among invasive and 

native species largely determines species exclusion or co-existence (De Roos et al., 2008). 

Niche similarity between species can cause the strongest impact on inferior competitors 

(Dick, 2008) through behavioural alterations (i.e., shifts in habitat use and foraging niche) or 

species exclusion and extinction (Begon et al., 1996; Simon & Townsend, 2003). In contrast, 

niche differentiation, in which competing species specialise on distinct resources (resource 

partitioning) or exploit the same resources at different places or times (spatial or temporal 

niche partitioning), favours species co-existence (Koch, 1974; Tilman, 1982; Chesson, 2000).  

The outcome of species relationships, however, is context specific (Chesson, 2000). For 

example, competitive interactions, within and between species, may be reversed among 

habitats that differ in productivity and resource diversity (Tobler, 2008). In recent years, 

stable isotopes and novel quantitative metrics have been proved to be valuable tools in 

identifying trophic niche characteristics and trophic interactions among species (Olsson et 

al., 2009; Zambrano et al., 2010; Piscart et al., 2011; Eloranta et al., 2013; Jackson et al., 2013). 

Stable isotopes are especially powerful because they integrate information over long time 

periods (Bearhop et al., 2004; Olsson et al., 2009; Atkinson et al., 2010), and do not have the 

biases of gut analysis (Clarke et al., 2005; Araújo et al., 2007). The latter is not always easy to 

apply, particularly in small species, given the difficulties of identifying material in their guts. 

However, measures of niche dimensions at a population level can bring misinterpretation if 

the inherent variability of consumers (i.e. individual physiology) and the spatial isotopic 

variability in the diet are not taken into account (Jackson et al., 2011).  

Freshwaters habitats have proportionally more invaders than terrestrial systems 

(Vitousek et al., 1997). Nonetheless, for the majority of these invaders the effects on the 

invaded systems are largely unknown. Exceptions include the zebra mussel Dreissena 

polymorpha, the mosquitofish Gambusia holbrooki and the crayfish Procambarus clarkii (Pimentel 

et al., 2005; Caiola & Sostoa, 2005; Savini et al., 2010). The North American boatman 
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Trichocorixa verticalis verticalis (Fieber, 1851) (Heteroptera, Corixidae) is a successful invader 

in south-west Iberian Peninsula. It has established populations at several sites, including the 

Doñana wetland complex, where it is the dominant breeding corixids in saline wetlands 

(Rodríguez-Pérez et al., 2009; Van de Meutter et al., 2010). It was first recorded in Algarve 

(Portugal) in 1997 and has since become widespread in southern Portugal (Sala & Boix 2005), 

south-west Spain (Rodríguez-Pérez et al., 2009; Van de Meutter, Trekels & Green, 2010 ) and 

Morocco (L’Mohdi et al., 2010). It is predicted to spread widely across Europe and the 

Mediterranean region in the future (Guareschi et al., 2013).  

Given the voracity of T. verticalis in its native range (Wurtsbaugh, 1992) and the 

morphological similarity of piercing and sucking mouthparts within Hemiptera, we can 

expect a high feeding impact of the invasive corixid on native corixids, especially Sigara 

lateralis and S. scripta, which are often found to co-occur in the invaded range. Furthermore, 

the wide spectrum of potential food used by T. verticalis, including zooplankton, filamentous 

algae and dipteran larvae (Kelts, 1979; Simonis, 2013) suggests that other important 

ecological interactions might occur. In its native range, for example, T. verticalis is likely to 

cause changes in ecosystem processes via trophic cascades (Wurtsbaugh, 1992; Simonis, 

2013). Nonetheless, there is no previous information about trophic relationships between T. 

verticalis and native co-occurring corixid species, and little is known about its trophic ecology 

in the invaded areas.  

 In this study we applied stable isotopes (δ15N and δ13C) and Bayesian tools to 

experimental and field data to assess the potential of T. verticalis to compete with native 

species in the invaded range. We are not aware of any previous studies that compare stable 

isotopic variability between experimental and wild populations. This approach offers the 

possibility to examine the trophic relationships between species removing biases that may be 

related to spatial or age variability. Specifically, we examine niche partitioning among T. 

verticalis and native corixids in permanent and temporary waterbodies in Doñana, so as to 

understand changes between their trophic relationships and habitat variability. In addition, 

we aim to further our understanding of the trophic ecology of T. verticalis where it has stable 

reproductive populations within Doñana, and its potential impact upon the invaded aquatic 

systems. Because T. verticalis was often found in syntopy with native corixids in temporary 

waterbodies, we hypothesised that niche differentiation through resource partitioning 

facilitates their co-existence. However, we expected a different outcome of species 

interactions in stable saline permanent ponds where T. verticalis dominates. Finally, we 

discuss the implications of our results for conservation of native corixids and prey 

communities.  
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Material & Methods 

Laboratory experiment 

To reduce the effect of potentially confounding factors other than niche partitioning that 

may cause isotopic differences between corixids (e.g. age-related dietary differences or 

spatial segregation), a laboratory experiment was conducted between August and September 

2012 at the Doñana Biological Station-CSIC. Aquaria (6 L, 27x17x18 cm) were filled with 

sediments and water collected from the FAO pond within Doñana National Park, where T. 

verticalis and S. lateralis were co-existing. Salinity in aquaria was less than 1 ppt. One plastic 

circular jar lid (~9 cm diameter) was added to each aquarium as a substrate for periphyton 

(i.e. epilithon) growth. Aquaria were maintained with a 12h:12h dark/light regime until flora 

and fauna from egg and seed banks within pond sediment colonized them. After three 

weeks, we added V instar corixid nymphs to each aquarium. These nymphs had been reared 

in the laboratory from the egg stage. To collect eggs, adults of T. verticalis and S. lateralis 

originating from the FAO pond were placed separately in aquaria containing 5 X 5 cm of 500 

µm plastic mesh (known from previous observations to be a preferred substrate for egg 

laying). Meshes were later carefully removed and placed in separate aquaria until eggs 

hatched. Nymphs were then fed with lyophilized microalgae (Tetraselmis chuii) until they 

reached the V instar. 

We added 15 or 20 nymphs of each species in the same aquarium, with three replicates. 

Live chironomid larvae from the FAO pond were added one day after the experiment 

started. After 16-23 days, adult corixids and resources were removed and processed for 

stable isotope analysis. A sufficient number of nymphs became adults (after 16-23 days) in 

only two aquaria (AQ1, AQ2) and were thus used for stable isotope determinations. This 

time is considered enough to capture the overall isotope change (Gratton & Forbes 2006), 

which is also mirrored by the rapid chitin turnover (Schimmelmann, 2011).  

 

Field study 

Corixids and their potential food resources were collected during June-July 2011 and 

February 2012 from areas within the Doñana wetland complex (Fig. 1). Five permanent 

ponds, located in Veta la Palma estate within Doñana Natural Park (hereafter VLP), were 

sampled twice during summer (July) and winter (February). Four temporary waters were 

sampled only once (June). These sites were inside Doñana National or Natural Park and 

included two ponds (local names 9N3PP and AC3, hereafter T1 and T2), one section of a 
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seasonal stream (Entremuros, hereafter T3), and one shallow lake (Lucio del Lobo, hereafter 

 

Figure 1. Map of the sampling sites in Doñana. 
The dark grey area in the upper figure 
indicates Doñana National Park and the light 
grey area indicates Doñana Natural Park. Six 
permanent ponds are identified in Veta la 
Palma estate, and four temporary sites are 
identified in and around the Caracoles estate. 

T4).  
Water salinities varied spatially and  

temporally, from 8.7 and 19.8 psu in 

summer to 10.2 and 18.3 psu in winter in 

permanent ponds, and between 5.4 and 

15.9 psu in temporary sites (see 

Supplementary Table 1). Details of VLP 

and its aquatic invertebrate community 

are given by Rodriguez-Pérez & Green, 

(2012). The temporary sites were described 

by Frisch et al. (2012). 

In general, the alien T. verticalis 

dominates in permanent, saline habitats in 

VLP, whereas native corixids dominate in 

temporary sites of lower salinity in 

Doñana National Park (Rodríguez-Pérez 

et al., 2009; Van de Meutter et al., 2010). As 

native corixids, we selected Sigara lateralis 

and S. scripta because they represent the 

most frequent and abundant corixids 

found in syntopy with T. verticalis. Corixid 

size differed between species, with S. 

lateralis (mean total length ± SE, 4.73 ± 0.25 

mm, n = 103,) the larger species, followed 

by S. scripta (4.39 ± 0.25 mm, n = 93) and T. 

verticalis (4.16 ± 0.32 mm, n = 111). 

When possible, 20 adults of each species, balanced for sex, were collected. Nymphs (III, 

IV and V instars) of T. verticalis were only obtained in February from permanent ponds. No 

adult corixids were found in two of the five sampled permanent ponds in winter. Details of 

sampling methods for flora and fauna in permanent and temporary sites are summarized in 

Supplementary Table 2. With the exception of periphyton (i.e. epiphyton), potential 

resources were always collected at different locations within permanent ponds because they 

were also used for a broader study of pond food webs. In the case of temporary waterbodies, 

corixids and sources were collected in the same area (ca. 20 m2) within the site.  
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After collection, samples were kept inside plastic containers filled with a minimal volume 

of water, placed within a portable freezer and transported to the laboratory. Once at the 

laboratory, suspended particulate organic matter (POM), phytoplankton and seston were 

obtained by filtering a known volume of water (pre-filtered through a 100 µm mesh) onto 

Whatman GF/F glass fiber filters (ø= 47 mm) under vacuum. Filters were then packed into 

aluminium paper and frozen. The periphyton (i.e. epiphyton) suspension (Supplementary 

Table 2) was filtered through Whatman GF/F glass fiber filters in the same way as 

seston/POM. Flora and fauna were rinsed with distilled water and put in Eppendorf tubes 

(1.5 ml) or in plastic bags before being frozen. Samples were frozen as soon as possible using 

a liquid nitrogen tank and stored until processing. All samples were thawed and oven-dried 

at 50°C for 24h before stable isotope analysis.  

POM, phytoplankton, seston and periphyton (i.e. epiphyton) were exfoliated from the 

glass filters and pulverized. POM filters were fumigated with concentrated HCl and 

subsequently re-dried. VLP sediments were sequentially acidified with 0.1M HCl to remove 

carbonates, then oven-dried, while sediments from temporary sites were sub-sampled in two 

groups. For δ13C analyses, subsamples were washed with diluted HCl to remove carbonates 

and redried. δ15N was measured on untreated samples, as HCl treatment has been reported 

to affect δ15N values (Bunn et al., 1995). In both cases, sediments were considered as a proxy 

for periphyton (i.e. epipelon), however, nitrogen estimates were conservative for VLP 

sediments.  

Adult corixids from VLP were analyzed whole, while adults minus one leg were 

analysed from individuals from temporary sites. T. verticalis nymphs and chironomids were 

pooled for analyses, as samples of multiple individuals. Dry samples were homogenised, 

weighed and packed into tin capsules before analysis.  

 

Stable isotope analysis  

Isotopic analyses of carbon and nitrogen contents were carried out at the UC Davis Stable 

Isotope Facility (University of California, Davis) and in the Laboratory of Stable Isotopes at 

EBD-CSIC (www.ebd.csic.es/lie/index.html). Samples from VLP were analysed using a PDZ 

Europa Scientific Roboprep elemental analyser in line with a PDZ Europa Hydra 20/20 

isotope ratio mass spectrometer (Crewe, UK) at UC Davis, while samples from laboratory 

experiment and temporary sites (about 0.9–1 mg) were combusted using a continuous flow 

isotope-ratio mass spectrometry system (Europa Scientific, UK) by means of a Carlo Erba 

1500 N C elemental analyser interfaced with a Delta Plus CL isotope ratio mass spectrometer 
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at the EBD-CSIC.  

All isotope results are expressed in δ-notation as parts per thousand (‰) deviation, 

referred to international standards for nitrogen (i.e., Air) and carbon (i.e., Vienna Pee Dee 

Belemnite) as defined by the equation: δ13C, δ15N = [(Rsample / Rreference) - 1] X 103, where R = 

13C/12C for carbon and 15N/14N for nitrogen. The long-term standard error (based on 

replicate analyses of standard reference material) for samples measured at UC Davis was ± 

0.2 and ± 0.3 for δ13C and δ15N, respectively and for samples measured at LIE was ± 0.1 and ± 

0.2 for δ13C and δ15N, respectively. See Supplementary Table 3 for the standard reference 

material used at each laboratory. 

A total of 505 corixids (277 T. verticalis, 160 S. lateralis and 68 S. scripta) were analyzed 

from field studies, and 34 (18 T. verticalis and 16 S. lateralis) from laboratory experiments. 

 

Statistical analyses  

Non parametric Kruskal–Wallis or Mann-Whitney U tests were used to test for 

differences in δ13C and δ15N values among species, or between T. verticalis adults and 

nymphs. These tests were conducted within each waterbody (permanent or temporary) or 

aquarium. Significance levels of non-parametric post hoc tests were Holm-Bonferroni 

corrected, when appropriate. 

Kruskal–Wallis or Mann-Whitney U tests were used to test for spatial (among ponds) 

differences in isotopic values for species and food sources, and seasonal differences in T. 

verticalis isotopic composition and food sources. These analyses were conducted using the 

ponds common to each season (3 permanent ponds) and the food sources common to each 

pond (i.e. sediments and POM). 

 

Estimated trophic position within habitats 

Within each studied aquarium or waterbody (permanent and temporary) we constructed 

the mixing polygon of potential sources and corrected consumers for trophic enrichment 

using the values reported by McCutchan et al. (2003): δ13C 0.5‰ and δ15N 2.3‰ for corixids 

with mixed diet. We also estimated the relative mean trophic position of corixids by using 

phytoplankton values (laboratory and temporary sites) or POM (which is considered as a 

proxy of phytoplankton in permanent ponds) as baselines, and assuming a mean trophic 

enrichment of 2.3‰ for δ15N between corixids and their food sources following McCutchan 

et al. (2003). POM and phytoplankton were selected as baseline because these were the 
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resources common to each studied system. Given the larger error associated with the use of 

primary producers (Vander Zanden & Rasmussen 2001), absolute values for these estimates 

must be only considered as a proxy of their actual trophic position. However, since corixid 

δ15N values were corrected for site-specific δ15N baselines, these estimates were still useful 

for capturing differences in trophic positions across systems. 

 

Niche width and trophic structure 

To visualise how corixid populations were separated, or overlapped each other, in δ13C-

δ15N bi-plot space within each system, we calculated Standard Ellipses Areas corrected for 

sample size (SEAc expressed in ‰2) following Jackson et al. (2011) and using the Bayesian 

Stable Isotopes Ellipses (SIBER) in the SIAR package in R. Standard ellipses contain ca. 40% 

of the data, and were obtained from the variance and covariance matrix of x (δ13C) and y 

(δ15N) data. Therefore, an ellipse represents the core isotopic niche for each species and is a 

proxy of the richness and evenness of resources consumed by the population (Bearhop et al., 

2004). When possible the SEAc was used to calculate the degree of standard ellipse overlap, 

between species within each individual pond, i.e. the percentage of area that overlap relative 

to the total isotopic niche occupied by the two species, and the Bayesian estimates of SEA 

(SEAB, bootstrapped n=10000) were generated to test for significant differences between 

corixid isotopic niche widths by comparing their confidence intervals (Jackson et al., 2012). 

The SEAc method is equivalent to the convex hull area proposed by Layman et al. (2007), 

and has the advantage of avoiding any bias when a minimum of 20 individuals is used, as 

we often did in this study (Brind’Amour & Dubois 2013). However, slightly lower sample 

sizes are also less biased if the variability in populations is low (Syväranta et al., 2013). 

Jackson et al. (2011) further discussed the relationship between SEA, SEAc and SEAB. Niche 

width comparisons were only possible when the spatial variation in corixid isotopic 

composition could be dismissed (Cummings et al., 2012). We tested for distance between 

ellipse centroid locations (D) following the methodology of Turner et al. (2010). Two 

centroids are considered to occupy different locations if the distance between them is 

significantly greater than zero (Turner et al., 2010). All these metrics and test statistics were 

performed with R (v 2.15.1), using the package SIAR (Jackson et al., 2011) and the scripts 

provided by Turner et al. (2010). 
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Results 

Stable Isotopes  

T. verticalis was significantly more depleted in δ15N values than S. lateralis in each 

aquarium (Mann-Whitney U tests P < 0.05), but δ13C values differed significantly only in 

AQ2 (mean isotopic differences between species: 0.3‰ for δ13C and 3.6‰ for δ15N at AQ1; 

1.1‰ for δ13C and 1.7‰ for δ15N at AQ2) (Fig. 2).  

 

 
Figure 2. Dual-isotope food web diagram of aquaria including Standard ellipses showing differences 
in Trichocorixa verticalis and Sigara lateralis isotope values. Food web components: CHI=chironomidae; 
PER= periphyton; PHY= phytoplankton; OLI= oligochaeta; MAC= macrophytes; SED= sediments; 
VGR= vegetation roots; VGD= vegetal detritus; ZOO=zooplankton. Dashed lines represent the mixing 
polygon circumscribed by the isotopic signature of several resources (mean δ13C and δ15). Corixid δ13C 
and δ15N values were corrected for trophic enrichment.  
 
 

T. verticalis and S. lateralis showed significant differences in both δ13C and δ15N values 

within each permanent pond where they co-existed (P < 0.001). On average, S. lateralis was 

more 13C-depleted and 15N-enriched than T. verticalis (mean isotopic differences between 

species: 4.5‰ for δ13C and 1.3‰ for δ15N at A3; 2.5‰ for δ13C and 3.2‰ for δ15N at B3) (Fig. 

3). We did not find any spatial variation among the ponds where both species co-existed for 

T. verticalis (P > 0.05), but a significant difference in δ13C (P = 0.02) was found for S. lateralis. 

However, we did not find any significant differences in the isotope values of the common 

sources between ponds (P > 0.05).  
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Figure 3. Dual-isotope food web diagram of two permanent ponds showing the Standard ellipse area 
(SEAc) of Trichocorixa verticalis and Sigara lateralis. CHI=chironomidae; COP= copepods; POM= 
particulate organic matter, PHR= Phragmites sp.; SED= sediments; RUP = Ruppia sp.; SPR = Spartina 
sp.+Ruppia sp.; PPE =Potamogeton pectinatus. Corixid δ13C and δ15N values were corrected for trophic 
enrichment.  
 

 

T. verticalis adults were more 15N-enriched than nymphs at permanent ponds B7 (0.2‰) 

and A5 (1.0‰) (P < 0.05), and significantly more 13C-depleted (2.4‰) than nymphs at pond 

B7 (P = 0.006). No differences were found between adults and nymphs at pond A7 

(Supplementary Fig. 1). Adults of T. verticalis showed significant spatial differences in both 

δ13C and δ15N, but we did not find any spatial differences in isotope values for sediments or 

POM (P > 0.05). Strong seasonal differences were also found for δ13C and δ15N values (P < 

0.05). In winter, T. verticalis was overall more 13C-depleted (mean =-18.4‰) but 15N-enriched 

(mean = 11.4‰) than in summer (mean δ13C = -16.7‰; mean δ15N = 9.7‰). We did not find 

any seasonal differences in δ13C for sediments or POM (P > 0.05), but there was a significant 

seasonal difference in δ15N value in each source (P < 0.05). In winter, values for sediments 

and POM were more 15N-depleted than in summer (sediments mean = 8.06 vs. 11.20; POM 

mean = 2.52 vs. 6.16) (Supplementary Fig. 2).  

Interspecific differences in isotopic values were more pronounced among temporary sites 

(Fig. 4). T. verticalis was significantly 13C-enriched at T1 relative to S. lateralis and S. scripta, 

but the opposite was observed at T2 (Holm-Bonferroni test P < 0.05). The alien species was 

significantly enriched in 13C relative to S. lateralis at T4 (P < 0.001), but depleted in 13C 

compared to S. scripta at T3 (P = 0.01, Table 1). T. verticalis was significantly depleted in 15N 

compared to both native species at T1 (P < 0.001, Table 1) and to S. lateralis at T4 (P = 0.03). 
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Strong spatial differences between temporary sites were also found for T. verticalis and S. 

scripta in δ13C values (Kruskal-Wallis test P < 0.001) and in both δ13C and δ15N values for S. 

lateralis (P < 0.001). Both δ13C and δ15N values of sediments and phytoplankton also differed 

among sites (P < 0.05). Spatial differences were found in δ15N for periphyton (P = 0.03) and in 

δ13C for chironomids (P = 0.01), but we did not find any isotopic difference for Scirpus spp. 

among sites (P > 0.05) (Supplementary Table 4). 

 

 
Figure 4. Dual-isotope food web diagram of 4 temporary sites showing the Standard ellipse area 
(SEAc) of Trichocorixa verticalis, Sigara lateralis and Sigara scripta. Dashed lines represent the mixing 
polygon circumscribed by the isotopic signature of several resources (mean δ13C and δ15N±SD). 
Corixid δ13C and δ15N values were corrected for trophic enrichment. ALG= filamentous algae; CHI= 
chironomidae; PHY = phytoplankton; SCI= Scirpus sp.; PER =periphyton; SED= sediments; RUP= 
Ruppia sp.; SCR= Scirpus sp.+Ruppia sp. 
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Table 1 Stable isotope values (mean±SD) of Trichocorixa verticalis (TV), Sigara lateralis (SL) and S. 
scripta (SS) in temporary waters during summer (June 2011). 
 

Sites Species n δ13C±SD δ15N±SD 

T1 TV 20 -20.1 ± 1.4 6.6 ± 1.3 

SL 21 -23.6 ± 1.7 9.4 ± 1.8 

SS 19 -21.6 ± 1.1 7.9 ± 1.3 

T2 TV 20 -21.7 ± 2.2 7.3 ± 2.2 

SL 23 -18.9 ± 1.9 5.9 ± 1.4 

SS 18 -19.8 ± 2.3 7.0 ± 2.3 

T3 TV 20 -23.8 ± 2.0 7.7 ± 2.4 

SL 20 -23.9 ± 1.8 8.9 ± 2.6 

SS 18 -22.2 ± 1.7 8.3 ± 2.0 

T4 TV 19 -24.1 ± 1.7 7.1 ± 1.3 

SL 18 -25.9 ± 1.5 7.7 ± 0.9 

SS 13 -24.9 ± 2.0 7.4 ± 0.7 

 
Local names for these sites are as follows: T1= 9N3PP; T2 =AC3; T3= Entremuros; T4= Lucio del Lobo 
(see Frisch et al. 2012 for details). See Figure 1 for location. 
 
 

Estimated trophic position within habitats 

The estimated mean trophic position was at 3.3 for S. lateralis and at 2.1 for T. verticalis in 

the laboratory experiment (Fig. 2). Similarly, in permanent ponds S. lateralis fed at a higher 

trophic level (3.4) than T. verticalis (2.4). In temporary waterbodies the mean estimated 

trophic position was at 2.1 for S. lateralis, at 1.9 for S. scripta and at 1.7 for T. verticalis. 

 

Niche width differences among species  

 SEAB values did not differ significantly between T. verticalis and S. lateralis within each 

aquarium where they co-existed, and SEAc showed complete segregation (Table 2).  

SEAB comparisons between T. verticalis and S. lateralis were not performed within each 

permanent pond and between them, as their large isotopic niche widths could be largely the 

result of spatial variation, preventing a reliable comparison of their dietary and isotopic 

niche variability. Nevertheless, it was evident that no SEAc overlap existed between species 

at A3 and B3. 

In temporary waters, T. verticalis had a significantly larger SEAB than S. lateralis at T2 and 

T4 (SEAc 75 and 80%, respectively) (Table 2). At T1 SEAB was significantly smaller for T. 

verticalis (SEAc 43%) than for S. lateralis. There were no significant differences in SEAB for T. 
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verticalis (SEAc 43%) than for S. lateralis. There were no significant differences in SEAB for T. 

verticalis and S. scripta (Table 2). Maximum SEAc overlap was found at T4 between T. 

verticalis and S. scripta (27%) and at T3 between T. verticalis and S. lateralis (31%). These were 

the only two cases in which the centroid locations for different corixid species (D) were not 

statistically different (Table 3; Figs. 2-4).  

 

Table 2. Summary of niche width analyses based on Bayesian tools showing: the Isotopic space 
(SEAc) inhabited by Trichocorixa verticalis (TV), Sigara lateralis (SL) and Sigara scripta (SS), the Bayesian 
probability that the isotopic space (SEAc) of one species was smaller than that of the other species, and 
the proportional SEAc overlap. Sample sizes (n) are reported for each species in each site. Asterisks 
indicate significant differences between SEAc. 
 

 

 
Table 3. P values for comparison of mean centroid position between Trichocorixa verticalis (TV), Sigara 
lateralis (SL) and Sigara scripta (SS) according to the methodology developed by Turner et al. (2010). 
Significant differences are indicated by asterisks.  
 
 
 
 
 

 

 

 

 

 

 

Sites n SEAc (‰2) Bayesian 
probability (%) 

SEAc 
overlap (%) 

 TV SL SS TV SL SS TV-
SL 

TV-
SS 

SS-
SL 

TV-
SL 

TV-
SS 

SS-
SL 

AQ1 8 8 / 1.04 0.43 / 32 / / 0 / / 

AQ2 10 8 / 0.19 0.40 / 52 / / 0 / / 

T1 20 21 19 5.93 10.34 4.73 96* 25 99* 0 5 4 

T2 20 23 18 15.67 3.88 17.36 0* 61 0* 5 23 15 

T3 20 20 18 14.54 11.38 9.94 22 12 67 31 24 18 

T4 19 18 13 7.26 1.45 4.31 0.09* 10 4* 0.16 27 12 

Sites Species comparison 

 
 TV-SL TV-SS SS-SL 

AQ1 0.001* / / 

AQ2 0.001* / / 

A3 0.001* / / 

B3 0.001* / / 

T1 0.001* 0.001* 0.001* 

T2 0.001* 0.008* 0.084 

 T3 0.106 0.018* 0.008* 

 T4 0.001* 0.297 0.073 
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Discussion 

To our knowledge, this is the first isotopic study that compares trophic relationships 

between invasive and native aquatic corixids from different ecosystems, supported by an 

experimental approach. Although we encountered some of the limitations observed in other 

isotopic studies, including spatial and temporal variability in basal resources, we found 

evidence of changes in the relative position of δ13C and δ15N values between co-existing 

invasive and native corixids among the studied habitats. Stable isotopes revealed strong 

resource partitioning between species with little or no isotopic niche overlap in permanent 

ponds when water levels are relatively stable, but also some degree of niche overlap in 

unstable temporary sites.  

 

Trophic relationships between T. verticalis and native corixids 

Permanent ponds and aquaria 

A prerequisite for species co-existence in stable habitats, assuming that consumers and 

resources are all in equilibrium, is that species must exploit different resources to survive 

(Hutchinson, 1958). We found consistent differences in both δ13C and δ15N values between 

the native and the invasive species in both permanent ponds or experimental aquaria, and 

no isotopic niche overlap between them. This suggests that T. verticalis and S. lateralis fed on 

different food items, facilitating their co-existence, at least in these stable systems.  

Omnivorous corixids such as T. verticalis and S. lateralis (Murillo & Recasens, 1986; 

Simonis, 2013) possess similar piercing-sucking mouthparts (stylets) suitable for feeding on 

both plants and animals. However, previous studies have confirmed the importance of 

animal prey to S. lateralis (Murillo & Recasens, 1986; Layer et al., 2010) and others have 

described T. verticalis as predators on Cladocera and Artemia in its native range 

(Wurtsbaugh, 1992; Simonis, 2013). In contrast, our results showed that T. verticalis fed at 

lower trophic level than S. lateralis both in the experimental aquaria and in permanent ponds, 

and suggest a tendency of T. verticalis towards herbivory and the higher importance of 

animal prey for S. lateralis. This may partly be explained by the salinity of the permanent 

ponds we studied, which are too saline for cladocerans but are not hypersaline and have no 

Artemia (Frisch et al., 2006). Our data did not allow a detailed assessment of corixid diets, as 

many corixids often fell outside the polygons that could be constructed with measured 

resources within each system, therefore, we are not able to estimate if small or big 

differences exist in their diet. However, plants and animals from the laboratory experiment 
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had sufficiently distinct δ13C values to aid approximate identification of their diet. In fact, the 

close isotopic value of Chironomidae and Oligochaeta to S. lateralis (Fig. 2) suggested their 

inclusion in its diet. In contrast, T. verticalis did not appear to be heavily reliant on animal 

prey (Fig. 2).  

There was also evidence of larger inter-individual variation in the field than in the 

laboratory experiment for both species. Wide isotopic variation in wild populations is 

common in nature, due to sexual or age differences, diet specialization and spatial variation 

(Fry et al., 1999; Layman & Allgeier, 2012). While we were unable to pinpoint the exact 

mechanism behind this variation, it seems possible that spatial heterogeneity in basal 

resource values, within or among ponds, explains the clustering of isotopic values we 

observed in each corixid species in permanent ponds, and the much greater isotopic 

variation observed there for T. verticalis and S. lateralis than in experimental aquaria.  

Isotopic composition of sources can vary at very small scales (< 1 m) within a wetland 

(Hill et al., 2008). Similarly, our results revealed considerable isotopic variation for sources 

within a single permanent pond (Fig. 3), and how patchiness can affect the isotopic 

composition of consumers in aquaria (Fig. 2).  

Therefore, it seems possible that, despite their ability to fly between waterbodies, corixids 

in permanent ponds are very local in their feeding strategy and faithful to a patch, their 

isotopic values reflecting the patch availability of the resources. However, individuals may 

also disperse and feed among ponds that differed in basal resource values. Our result did not 

support this hypothesis, as we did not find spatial differences (among permanent ponds) in 

the isotopic values of sources. However, these were tested only for a few common sources 

whose isotopic composition changes very quickly, so we cannot rule out the possibility that 

we would have found a different result using less variable sources. These two possibilities 

need to be investigated in the future by more detailed spatial analyses of consumers and 

sources, as such high patch fidelity would represent a very surprising result for a non-sessile 

organism. 

 

Temporary waterbodies 

During summer, with high temperatures and no rainfall, temporary aquatic habitats in 

Doñana quickly reduce their depth and surface area and dry out completely by August 

(Serrano et al., 2006; Frisch et al., 2012). In these conditions, corixid densities become very 

high and opportunities for S. lateralis to feed on preferred prey may decrease, as other 

invertebrates become scarce. At the same time however, a high quantity of detritus caused 

by the decomposition of organic matter becomes progressively mixed and concentrated in 
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shallow waters where corixids concentrate. In these conditions of disturbance and 

superabundant food of low diversity, we might expect convergence of diet between different 

corixid species. However, isotopic values of different corixid species were very similar at 

some of the four temporary waterbodies but very different at others. Similar isotopic values 

do not necessarily indicate similar diet, as corixids can feed on sources that are not distinct 

enough isotopically to allow discrimination. Similarly, isotope niche widths were site specific 

for each species (Fig. 4). This large intra and interspecific variation in isotopic composition 

could indicate the influence of various physiological processes, including life stage, growth 

rate or body size (Fry & Arnold, 1982; Haubert et al., 2005; Carleton & Martínez del Rio, 

2005), but can also indicate a more varied diet (Bolnick et al., 2003) or differences in the 

magnitude of variation of basal resources among temporary sites (Bearhop et al., 2004). 

We are unable to assess the relative contribution of these factors to the observed 

variability in species isotopic composition. However, irrespective of the mechanisms behind 

such variation, our data revealed that some degree of niche overlap might also occur 

between the invasive and native corixids in highly variable systems (Fig. 4). As a 

consequence, we suggest the possibility that, within these populations of generalist feeders, 

some individuals of both species exploit similar resources. 

Nonetheless, niche overlap is not sufficient to indicate that competition between species 

occurs in these habitats, especially without data that directly quantifies limitation or 

superabundance of food. However, the existence of niche partitioning and the use of similar 

resources among native and invasive corixids indicate that competitive interactions exist 

between them. Furthermore, S. lateralis seemed to occupy a slightly lower position in 

temporary waters respect to permanent ponds or aquaria. This is not surprising, since native 

species are probably more adapted to cope with such environmental and food fluctuations. 

Therefore, it seems possible that higher dietary plasticity of the native species is the 

mechanism behind its co-existence with T. verticalis.  

 

Trophic ecology of T. verticalis in stable permanent ponds  

Stable isotopes suggest that the invasive species tends to be herbivorous in stable waters. 

This result agrees with previous studies and personal observations that indicate T. verticalis 

has a herbivorous strategy at the first instar stage (Campbell, 1979; Kelts, 1979), and a diet 

based on periphyton as adults outdoors (Downing, 2005; authors’ personal observation). 

Periphyton is a mixture of algae, cyanobacteria, heterotrophic microbes, detritus and 

mucilaginous polysaccharides, and each of these is likely to have very different isotopic 
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values to the whole structure analysed during this study. It is possible that T. verticalis 

assimilated only some components from this mixture. A periphyton-based diet is also 

supported by close relationships between δ13C values of T. verticalis from permanent ponds 

with those of periphyton during winter (Supplementary Fig. 2).  

Contrary to the typical winter 15N-depletion (Harrod & Grey 2006), which was found for 

POM and epipelon during this study, T. verticalis was 15N-enriched. This suggests this 

seasonal variation in T. verticalis δ15N values was not related to change in the importance of 

periphyton in its diet, but was most likely explained by seasonal changes within periphyton 

composition and its δ13C and δ15N values (Borduqui, Ferragut & Bicudo, 2008) 

(Supplementary Fig. 2). Thus, T. verticalis could be assigned to the grazer guild in our 

permanent pond system.  

Varying use of periphyton between permanent ponds and aquaria may partly reflect 

differences in its composition with their different water chemistry (e.g. salinity, see Online 

Resource 1), or with the substratum where growth occurs (i.e. epilithon, epipelon, epiphyton, 

periphyton). At higher nutrient concentrations, such as those of the permanent ponds, 

periphyton may contain a higher proportion of green algae, more palatable to grazers 

(Rejmánková & Komárková 2005).  

Different isotopic values for nymph and adult T. verticalis suggest an ontogenetic dietary 

shift, as found by Simonis (2013). However, different dynamics of tissue turnover between 

life stages (Haubert et al., 2005) or increases in consumption rate during ontogeny (Simonis 

2013), could also contribute to isotopic shifts between nymphs and adults, at least during 

winter. Further studies (e.g. metabarcoding of gut contents) are needed to clarify this point, 

as ontogenetic diet shift can play an important role in explaining the success of some 

organisms in the invaded ecosystem, by allowing a better use of resources and/or reducing 

competition (Céréghino, 2006). 

 

Conclusion 

We showed how trophic interactions between native and invasive corixids changes 

between permanent and temporary waterbodies. These changes seem to indicate that 

competition among corixids is not equal between habitats that differed in the types and 

abundances of local food sources. Although these are results from one sampling campaign, 

and we cannot exclude the possibility that results would be different in other periods of the 

year, our findings help to elucidate the processes underlying the co-existence of these 

species, and suggest many questions about this invasion that need to be addressed in the 

future.  
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There is a need for further studies to fully understand the habitat and foraging ecology of 

T. verticalis in its introduced range, especially since the species is expected to spread across a 

large part of Europe (Guareschi et al., 2013). Indeed, Trichocorixa has an important effect on 

ecosystem functioning in its native range (Downing, 2005), and long-term field and 

mesocosm studies are required to assess the impact of this invasive species on the native 

corixid community (including species not covered in the present study), as well as on prey 

assemblages (e.g. through trophic cascades via predation on zooplankton, Simonis, 2013). 

The effect of the invader in other habitat types where it is present in Iberian Peninsula, such 

as solar saltworks (Van de Meutter et al., 2010; authors, unpublished) should also be 

addressed. 
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 Supplementary Materials 

 

 
Figure 1. Dual-isotope food web diagram within three permanent ponds (A5, A7 and B7) illustrating 
isotopic differences in Trichocorixa verticalis adults and nymphs during winter. 
 

 

 

Figure 2. Dual-isotope food web diagram of three permanent ponds (A5, A7 and B7) illustrating 
isotopic seasonal (left: summer; right: winter) and spatial variation in Trichocorixa verticalis and 
common food web components within seasons: CHI=chironomidae; POM= particulate organic matter, 
MYS= Mesopodopsis slabberi; SED= sediments; SES=seston. 
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Table 1. Salinity and Chlorophyll a variation in temporary and permanent waterbodies across 
seasons. 

 

Sites Season Chl a (µg l-1 ) Salinity (psu) 

T1 summer 36.4 7.6 

T2 summer 105.5 15.9 

T3 summer 44.6 8.7 

T4 summer 76.7 5.4 

A3 summer 55.5 9.1 

B3 summer 145.5 9.3 

A7 summer 155.0 19.8 

B7 summer 135 18.6 

A5 summer 157.0 8.7 

A7 winter 23.7 18.3 

B7 winter 53.7 11.6 

A5 winter 15.5 10.9 

 

 
Table 2. Sampling methodology used across temporary and permanent waterbodies.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Species Sampling methods  

Corixids (adults and juveniles) D-framed pond net (500 µm mesh; 16 × 16 cm) 

Benthos D-framed pond net (500 µm mesh; 16 × 16 cm) 

Cylindrical (32cm2) cores. 

Box (240cm2) cores.  

Zooplankton Tows (200 µm and 500 µm sizes).  

Concentrated in laboratory on a 64 µm mesh 

Mysidacea Fixed traps (Fyke type. funnel-mouthed bags trap) 

with three mesh sizes: 2 mm, 5 mm and 10 mm. 

Periphyton Submerged part of plants were brushed with a 

toothbrush, then vigorously shaked in distilled water  

Sediments (i.e. epipelon) Benthic corer (top 5 mm) 
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Table 3. Standard references used at UC Davis and at LIE laboratory. 
 
 δ13C (‰VPDB) %C δ15N (‰Air) %N 
UC Davis      

Nylon -27.81  -9.77  
Bovine Liver -21.69  7.72  

USGS-41 Glutamic Acid 37.626  47.6  
Glutamic Acid -28.85 40.81 -4.26 9.52 
Peach leaves -26.12 46.18 1.95 2.88 

LIE     
Cow Horn -22.49 ± 0.12  9.94 ± 0.14  

Whale Baleen -22.48  9.92  
Feathers of Razorbill -15.72 ± 0.08  16.55 ± 0.2  

 

Table 4. Range of stable isotope values of source items (n=3) in 4 temporary waters: PER= periphyton; 
PHY= phytoplankton; SCI= Scirpus sp.; RUP = Ruppia sp.; SCR= Scirpus sp. root; ALG= filamentous 
algae; CHI= chironomids; SED = sediments. 
 

Sites Source Range 

δ13C δ15N 

T1 PER -19.1 - 14.1 8.1 - 9.0 

 PHY -24.5 - 24.3 5.8 - 6.0 

 SCI -27.4 - 27.0 5.0 - 9.7 

 CHI -21.8 - 21.4 7.9 - 8.7 

 SED -24.7 - 24.1 7.8 - 9.0 

T2 PER -18.6 - 17.5 1.2 - 3.9 

 PHY -21.6 - 21.4 2.7 - 2.8 

 RUP -21.3 - 20.7 2.3 - 4.7 

 CHI -19.5 - 19.1 3.7 - 4.2 

 SED -25.1 - 24.8 6.9 - 7.5 

T3 PHY -19.4 - 18.5 7.9 - 8.6 

 SCI -28.3 - 28.2 12.0 - 13.0 

 CHI -20.5 - 20.2 4.6 - 9.0 

 SED -25.8 - 25.5 9.5 - 9.8 

T4 PER -21.0 - 16.3 6.7 - 8.1 

 PHY -26.1 - 25.7 4.7 - 6.0 

 ALG -31.3 - 26.9 3.9 - 6.1 

 SCI -29.3 - 28.1 7.3 - 9.8 

 SCR -28.5 - 27.1 4.9 - 6.9 

 CHI -28.6 - 27.3 7.2 - 8.5 

 SED -25.9 - 25.2 7.6 - 8.7 
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Abstract 

The water boatman Trichocorixa verticalis verticalis (Fieber 1851) is originally from North 

America and has been introduced into the southern Iberian Peninsula, where it has become 

the dominant Corixidae species in saline wetlands. The reasons for its success in saline 

habitats, and low abundance in low salinity habitats, are poorly known. Here we explore the 

potential role of water mites, which are typical parasites of hemipterans, in the invasion 

dynamics of T. verticalis. We compared infection levels between T. verticalis and the natives 

Sigara lateralis (Leach, 1817) and S. scripta (Rambur, 1840). No mites were found in saline 

wetlands where T. verticalis is highly dominant. Larvae of two mite species were identified 

infecting corixids in habitats of lower salinity: Hydrachna skorikowi and Eylais infundibulifera. 

Total parasite prevalence and prevalence of E. infundibulifera were significantly higher in T. 

verticalis compared with S. lateralis and S. scripta. Mean abundance of total infection and of E. 

infundibulifera and H. skorikowi were also higher in T. verticalis. When infected with H. 

skorikowi, native species harbored only one or two parasite individuals, while the smaller T. 

verticalis carried up to 7 mites. When infected with E. infundibulifera, native species 

harboured only one parasite individual, while T. verticalis carried up to 6. Mite size didn’t 

differ among host species, suggesting that all are suitable for engorgement. Both mite species 

showed a negative correlation between prevalence and salinity. T. verticalis susceptibility to 

parasitic mites may explain its low abundance in low salinity habitats, and may contribute to 

the conservation of native corixids. The success of T. verticalis in saline wetlands may be 

partly explained by the absence of parasitic mites, which are less halotolerant.  
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Introduction 

Invasive species have become a major conservation problem in aquatic ecosystems at the 

global scale (Leppäkoski et al., 2002). Understanding the interactions between invasive 

species and the recipient community (including free living organisms and parasites) is key to 

understanding the invasion process, to improve our capacity to predict the outcome of 

invasions and to design strategies for the conservation of native taxa.  

The introduction and spread of invasive species is a significant but insufficiently studied 

factor in disease emergence (Kelly et al., 2009a; Mastitsky et al., 2010). Although it is now 

widely recognized that the impacts of species introductions on native communities are often 

mediated via parasites (Prenter et al., 2004, Dunn, 2009), our understanding of how such 

impacts occur is incomplete. Most studies have focused on the effect of the loss of coevolved 

parasites during the introduction process (‘Enemy Release Hypothesis’, Torchin et al., 2002, 

2003; Keane & Crawley 2002; Colautti et al., 2004; Prenter et al., 2004), and the introduction of 

exotic parasites arriving with alien hosts to the recipient community (‘Parasite Spillover’, 

Dobson & Foufopoulos 2001; Power & Mitchell 2004). However, with the exception of native 

parasites affecting exotic plants and invertebrates of economic importance, which have been 

the subject of studies of biological control (Williams et al., 2003; Li et al., 2012), the 

acquisition of new parasites by exotic species has been largely overlooked, even though it is 

potentially a frequent and important process (Kelly et al., 2009b; Mastitsky et al., 2010). 

Depending on the mechanism and the role played by the novel parasite, the consequences 

for the invasion success of the alien host and the impact on the recipient community can be 

highly variable. Disentangling such mechanisms will improve our understanding of 

biological invasions and enhance our ability to predict the outcomes of ongoing and future 

invasions. 

Trichocorixa verticalis verticalis (Hemiptera: Corixidae) is native to North America and 

occurs in brackish and saline wetlands (Sailer, 1948). Recently it has invaded aquatic 

ecosystems in Africa, Oceania and Europe, where it is the only known exotic corixid 

(Rabitsch, 2008, 2010; Guareschi et al., 2013). It is predicted to spread extensively across 

Europe during the course of this century (Guareschi et al., 2013). However, there are 

currently few data on its potential ecological impact in the introduced range. In its native 

North America, this omnivorous insect is important in structuring the pelagic planktonic 

communities of aquatic ecosystems through predation on cladocerans (Simonis, 2013) and 

anostracans (Wurtsbaugh, 1992). In Great Salt Lake (USA), during periods of low salinity, T. 

verticalis has been shown to affect the food web of the lake through its predation on brine 

shrimp Artemia franciscana Kellog, 1906 (Wurtsbaugh, 1992). It causes a strong trophic 
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cascade affecting microbes and phytoplankton (Wurtsbaugh, 1992). Therefore, we can expect 

T. verticalis to have a significant impact in wetlands of the introduced range. 

In its introduced range in the south of the Iberian Peninsula, T. verticalis is highly 

dominant and abundant in permanent saline fish ponds and salt ponds where native 

Corixidae are rare and may have been competitively excluded. In contrast, native corixids 

dominate in seasonal ponds and marshes of lower salinity within the same general area 

(Rodríguez-Pérez et al., 2009; Van de Meutter, Trekels & Green, 2010). This strong pattern in 

relation to salinity remains unexplained, especially as experiments with adult corixids have 

shown that T. verticalis adults perform well at low salinities and are not more resistant to 

high salinities than some native corixids (Van de Meutter et al., 2010; Coccia et al., 2013). 

Indeed, the native Sigara selecta (Fieber, 1848) is more halotolerant than T. verticalis (Van de 

Meutter et al., 2010). 

There is no previous information on the potential role of parasites in the invasion 

dynamics of the American corixid. Corixidae are known to be hosts to a diverse community 

of parasites, water mites (Hydracarina) being among the most common (Reilly & McCarthy 

1991). Parasitic mites occur in almost all fresh and brackish aquatic environments, where 

they can reach densities of more than 2000 specimens per square meter (Smith et al., 2010). 

While most nymphal and adult stages are predatory and free living in aquatic ecosystems, 

the larval stage is parasitic (Davids, 1973). Mites can strongly impact host populations and 

influence biological interactions between corixid species (Smith, 1977). Therefore, they have 

the potential to play an important role in the outcome of competition between native and 

invasive species. However, there are no previous studies of parasitic mites in the Corixidae 

of the southern Iberian Peninsula. On the other hand, there exists a lack of information about 

factors affecting host preference by water mites. Size of hosts appears to be one important 

factor (Blower & Roughgarden 1988) and the difference in size between T. verticalis and 

native species may potentially influence parasitism rates and hence the success of the 

invasion. 

The aim of this study was to compare infestation levels of larval water mites in native 

(Sigara lateralis and Sigara scripta) and exotic corixids (T. verticalis) along the salinity gradient 

in Doñana in southwest Spain, and to consider their role in the invasion of T. verticalis. We 

test the following hypotheses: (i) T. verticalis is released from mite parasitism at the high 

salinities where it dominates; (ii) parasites grow to a larger size in larger corixid species; and 

(iii) mites attach to a wider range of body parts in T. verticalis because this species is less 

sclerotized than native species. The results of this study may have important implications for 

the conservation of native corixid fauna in Europe. 
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Material & Methods 

Study area 

The climate in the study area is Mediterranean subhumid, characterized by hot, dry 

summers and mild winters. Sampling of seasonal habitats where native and invasive 

corixids coexist was mainly conducted within Caracoles estate in the northern edge of 

Doñana National Park (Southwest Spain, see Fig. 1). This is a marshland area containing 96 

experimental temporary ponds of different size and depth (see Frisch et al., 2012; Sebastián-

González & Green, 2014 for details). Experimental ponds are fed mainly by precipitation that 

occurs generally from late September to early April.  

Sampling was also carried out in the Veta la Palma fish ponds (Fig. 1) where T. verticalis 

is the dominant corixid (Rodríguez-Pérez et al., 2009; Rodríguez-Pérez & Green, 2012). Veta 

la Palma is an extensive fish farm composed of 37 shallow brackish ponds within Doñana 

Natural Park. These permanent, saline, ponds are supplied with water from the estuary of 

the River Guadalquivir (see Kloskowski et al., 2009; Rodríguez-Pérez & Green, 2012 for 

details). In general, the fish ponds are much more saline on average than the seasonal marsh 

and temporary ponds in Doñana (Rodríguez-Pérez et al., 2009; Kloskowski et al., 2009; Van 

de Meutter, Trekels & Green, 2010). 

Details of the sampling sites, dates and sampling objectives are summarized in Table 1. 

 

Specific sampling 

On 27 June 2011 a total of 307 adult corixids (111 T. verticalis, 103 S. lateralis and 93 S. 

scripta) were collected specifically for the study of parasites using a D-framed pond net (500 

µm mesh; 16 × 16 cm) from an individual temporary pond in Caracoles estate (hereafter 

AC3). The sampling date was selected because corixids reached maximum abundance in 

summer, and this particular pond was chosen based on previous observations of the species 

coexistence [authors’ personal observation]. After collection, individuals were placed inside 

plastic containers filled with damp aquatic vegetation and transported alive to the 

laboratory. Once at the laboratory, specimens were carefully separated and individually 

stored in 1.5 ml Eppendorf tubes filled with 70% ethanol, until examination for parasites. 

This sampling was designed to minimize the probability of water mites becoming detached 

from the host prior to examination, in order to have an exact measure of infection rates.  
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General sampling in Caracoles and Veta la Palma ponds 

We also studied the prevalence of infected corixids in a large collection of samples 

collected from 32 ponds within Caracoles estate, which were representative of all size and 

depth classes and 10 points within 7 natural or semi-natural waterbodies in the immediate 

surroundings (Fig. 1) during May-June of two years (2010-2011), as part of a broader study 

on the invasion of T. verticalis. Water salinities vary spatially and temporally, with a range of 

2.62 to 37.8 ppt during the study period in the selected sites.  

Details of mite infections are presented here for those sites that held both parasitic mites 

and at least two species of corixids. To establish the prevalence and abundance of mites in 

the fish ponds where T. verticalis is highly dominant, we examined 909 T. verticalis adults 

collected from 3 permanent ponds (G3, A3 and A7, which were representative of the salinity 

gradient within the pond complex) during May-July 2011 (Fig.1). Water salinities varied 

from 4.3 to 25.8 ppt during the study period in the selected ponds. These samples were 

collected in a sweep net as before, but individuals from the same pond were stored together 

in 5 ml vials filled with 70% ethanol until they were examined for the presence of parasites. 

Therefore we cannot exclude the possibility of some mites becoming detached from their 

hosts (although the attachment sites remain visible, see Results).  

Some free living adult mites were found in 4 different sites during the general sampling: 

two temporary ponds within Caracoles estate (AC4 and AE5); one semi-natural pond (FAO 

pond) within Doñana National Park; and one intermittent stream (Caño Guadiamar) within 

Doñana Natural Park (during March 2010, and March and May 2011). These samples were 

used to compare species composition with parasitic larvae and to aid larval identification. 

Salinity (ppt) was measured in situ using a WTW 340i multiprobe. 

Using a stereomicroscope we identified each corixid species in our samples (after 

Jansson, 1986; Nieser et al., 1994; L’Mohdi et al., 2010), determined its sex and checked for 

the presence of mites. Body length of corixids were measured on images taken with a digital 

camera (AxioCam Icc1) connected to a Zeiss microscope (Discovery V8). For the inspection 

of the thoracic and abdominal torsum, hemielytra and wings were lifted. We measured 

prevalence (proportion of individuals infected), mean abundance (number of parasites 

averaged for each corixid species), and mean intensity (number of parasites averaged for all 

infected corixids) for total mite infection and for each mite species in the different hosts (see 

Bush et al., 1997 for definitions of infection descriptors).  

We recorded the attachment site for each individual mite and compared the susceptible 

surface area between different hosts using all infected individuals (from both specific and 

general samplings). Site of attachment was subdivided into different regions: head, 
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pronotum, legs (pairs 1-3 / right-left / femur, tibia, tarsum), abdomen (1-7 abdominal 

segments) and thorax. All water mites were measured on images, in the same manner as 

corixids, as indicators of parasite growth (Davids 1973).  

 

 
 
Figure 1. Map of the study area showing the Doñana region in southern Spain (a). The solid lines 
indicate the boundary of Doñana National Park and the dashed lines indicate Doñana Natural Park 
(b). The area where we found water mites within Caracoles estate and immediate surroundings is 
framed. Red crosses represent sites with water mites and corixids; black dots indicate sampled sites 
without water mites but with corixids. The number (1) indicates FAO sample sites and (2) indicates 
Veta la Palma fish ponds. Map detail (c) shows the spatial arrangement of all sites with water mites. 
The number (3) indicates the pond (AC3) of the specific sampling. See Frisch et al. (2012) for further 
details of the Caracoles ponds. 
 

 
Table 1. Summary of the location, dates and objectives of sampling. 
 

Sampling Type General sampling 

Main objective Broader study of seasonal dynamics of corixid communities; plus water 
mite infections 

Study area / total nº 
ponds / date 

Caracoles estate and waterbodies in the immediate surroundings/ 42 
ponds / May-June 2010-2012 

 Veta la Palma Fish Ponds / 3 ponds (Gaveta 3, A3, A7) / May-July 2011 

Sampling Type Specific sampling 

Main objective Most accurate possible calculation of mite infection rates 

Study area / nº ponds / 
date 

Caracoles estate / 1 pond (AC3) / 27 June 2011 
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Larvae identification 

Larvae were inspected under a Zeiss Standard bright-field microscope and a 

representative subset were detached, slide mounted and studied with a Leica TCS SPE 

Confocal Laser Scanning Microscope (see Lorenzo-Carballa et al. 2011 for detailed 

procedure). Serial sections were acquired and subsequently worked out with Fiji/Imagej (ver 

1.48d; downloaded from http://fiji.sc/Fiji), Amira (ver 5.5.0) and Photoshop CS5 extended. 

Morphological diagnostic characters were used to identify Hydrachna  (Davids, 1973) and 

Eylais (Nielsen & Davids, 1975). 

 

Statistical analysis 

We evaluated the significance of the differences between corixid species in prevalence 

with Z tests (Snedecor & Cochran, 1989) and in abundance and intensity with Kruskal-Wallis 

and Mann–Whitney U tests. We also used Z tests to compare the prevalence between males 

and females of each corixid species. The size of the different host was compared with 

Kruskal Wallis tests followed by pairwise multiple comparisons, and the size of water mite 

larvae was compared with a Mann-Whitney U-test. The effect of host species, number of 

parasites per host and salinity on mite size was analyzed using Generalized Linear Models. 

For this particular analysis we used only data from 2011 because of the low number of 

infected individuals recorded in 2010.  

Generalized linear models with binomial responses were used to test the effect of salinity 

and sampling date (categorized by months and years) on the presence of water mite larvae. 

Generalized Linear Models were bias corrected according to Firth (1993). P values were 

always adjusted for multiple comparisons through false discovery rate (Benjamini and 

Hochberg 1995). Statistical analyses were conducted using Statistica 12.0 (StatSoft, Inc.) and 

R (v 2.15.3, R Development Core Team 2008). 

 

Results 

Larvae of two water mite species infecting Corixidae (Hemiptera: Heteroptera) were 

identified from Caracoles estate: Hydrachna skorikowi Piersig, 1900 and Eylais infundibulifera 

Koenike, 1897 (Acari: Hydrachnellae) (Figs. 2-5). In addition to these two species, Piona 

nodata (Müller, 1776) (Acari: Hydrachnellae) was identified in the sample of adult mites. This 

species has previously been reported to have populations with females laying small eggs 

resulting in parasitic larvae and populations producing large eggs resulting in non-feeding 

larvae (Smith 1988); seasonal shifts in the lifestyle have been also observed, with a parasitic 
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phase produced in winter and a free living one in summer (Böttger, 1962). P. nodata can 

infect other insect groups such as chironomids (Peyrusse et al., 2004). 

 

 
Figure 2. Individuals of Eylais infundibulifera (A, B) and Hydrachna skorikowi (C, D). These individuals 
are discoloured by preservation in alcohol. The natural colour of the mites is red due to the presence 
of carotenoids. 

 

Description of the larvae 

Full descriptions of the larvae of H. skorikowi and E. infundibulifera may be found in 

Davids (1973) and Nielsen and Davids (1975), respectively. Our identification of specimens 

agrees with the general descriptions of the larvae and their diagnostic characters. A median 

margin of the first coxa longer than the lateral margin and a pair of strong setae in the third 

coxal group are characteristic of the larvae of H. skorikowi  (Fig. 4). The larvae and 

protonymph of E. infundibulifera has a dorsal plate with converging posterior ridges and a 

pair of long anterior setae (Fig. 3). 

 

 
 

Figure 3. Protonymph of Eylais infundibulifera Koenike, 1897. A: Dorsal view. Arrow points to  the 
dorsal plate. Maximum intensity projection. B: ventral view. Arrows point to vestiges of three pairs of 
legs. Maximum intensity projection. C: Dorsal plate, 3D reconstruction (Amira). Arrow points to 
diagnostic groove of E. infundibulifera. 
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Figure 4. Hydrachna skorikowi Piersig, 1900 A:  Larva attached to the femur of Trichocorixa verticalis. 
Maximum intensity projection. B: Idiosome, ventral view. The arrow points to a diagnostic character 
of this species. Maximum intensity projection. 

 

 

    
 

 

Infection indexes from the specific sampling in a temporary pond 

Total prevalence of water mites at pond AC3 on 27/06/2011 differed among corixid 

species. T. verticalis exhibited the highest values, followed by Sigara lateralis and S. scripta 

(Table 2). While the exotic T. verticalis was infected by both mite species in this sampling, 

native corixid species were infected by only one species (E. infundibulifera for S. lateralis and 

H. skorikowi for S. scripta). Paired comparisons (Z tests) showed that differences in total 

prevalence were significantly higher in T. verticalis compared with both S. lateralis (Z = 2.705, 

P < 0.05) and S. scripta (Z = 2.875, P < 0.05). Prevalence of E. infundibulifera was significantly 

higher in T. verticalis compared with S. scripta (Z = 2.643, P < 0.05) but not compared with S. 

Figure 5. Sigara lateralis showing a brownish spot 
which indicates the previous presence of a 
larval mite.  
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lateralis. Differences in prevalence of H. skorikowi among corixid species were not significant. 

Males and females of the different hosts did not differ in prevalence in total or for either mite 

species (P > 0.05).  

Total mean abundance of mites was significantly different between corixid species (Table 

2). Pairwise comparisons (Mann Whitney U test) showed that abundance was significantly 

higher in T. verticalis than S. lateralis (U = 5100, 5, P < 0.005) or S. scripta (U = 4563, P < 0.005), 

but did not differ between S. lateralis and S. scripta (U = 4748, P = 0.63). Mean abundance of 

E. infundibulifera was also significantly different between corixid species (Table 1), being 

significantly higher in T. verticalis than S. lateralis (U = 5308, P < 0.05) or S. scripta (U = 4696, P 

< 0.005), but not differing between S. scripta and S. lateralis (U = 4696, P = 0.18). Mean 

abundance of H. skorikowi was also significantly different between host species (Table 2). 

Abundance was significantly higher in T. verticalis than S. lateralis (U = 5407.5, P < 0.05), but 

there were no differences between T. verticalis and S. scripta (U = 4937, P = 0.09) or S. lateralis 

and S. scripta (U = 4738, P = 0.297).  

Total mean intensity of mites was not significantly different between corixid species, 

neither were there significant differences for either mite species (Table 2, but note the small 

sample size for native corixids). When infected, native species harbored only one parasite 

individual; however water mite loads in T. verticalis ranged between 1 and 7 parasites per 

host (1-6 for E. infundibulifera and 1-3 for H. skorikowi). 

 

 

Table 2. Prevalence (P%), Mean Abundance (MA ± SE) and Mean Intensity (MI ± SE) of Hydrachna 
and Eylais water mite larvae infecting Corixidae from Caracoles estate (pond AC3, Doñana National 
Park) on 27/06/2011. Compared with Kruskal-Wallis and Mann-Whitney U tests. *P < 0.05, **P < 
0.005, ***P < 0.0005. SL= Sigara lateralis, SS = Sigara scripta, TV = Trichocorixa verticalis. H=Kruskal-
Wallis H statistic; U= Mann-Whitney U statistic. 
 

  
SL SS TV H, U 

(n = 103) (n = 93) (n = 111)   
Prevalence (%)     

Eylais 1.94 0.00 9.01  
Hydrachna 0.00 1.07 5.40  

Total 1.94 1.07 12.61  
Mean Abundance (MA ± SE)    

Eylais 0.02 ± 0.014 0.00 ± 0.00 0.22 ± 0.084 H = 12.58** 
Hydrachna 0.00 ± 0.000 0.01 ± 0.011 0.08 ± 0.036 H = 7.87* 

Total 0.02 ± 0.014 0.01 ± 0.011 0.297 ± 0.101 H = 16.89*** 
Mean Intensity (MI ± SE)     

Eylais 1.00 ± 0.00 0.00 ± 0.00 2.40 ± 0.618 U = 6 
Hydrachna 0.00 ± 0.00 1.00 ± 0.00 1.50 ± 0.342 - 

Total 1.00 ± 0.00 1.00 ± 0.00 2.36 ± 0.561 U = 1.76 



Chapter 3: Parasitism 

100 

Infection index from the general sampling in temporary ponds and permanent Veta 

la Palma fish ponds 

Samples collected from fish ponds during May (n = 305), June (n = 94) and July 2011 

(n = 510) revealed no evidence of mite parasitism in adult T. verticalis (Supplementary Table 

1). 

From samples collected in May-June 2010-2011 in temporary ponds, we selected the 19 

sampling events out of 123 (including ponds in Caracoles estate and natural water bodies in 

the surrounding area) in which mite parasites and at least two corixid species were recorded. 

We found similar patterns of parasite infection as for AC3. S. lateralis was infected in 9 out of 

18 samplings where this species was present (88.8% of infected individuals with H. skorikowi 

and 20% with E. infundibulifera); S. scripta was infected in 3 out of 13 samplings where it was 

present (100% of individuals with H. skorikowi and 0% with E. infundibulifera);  T. verticalis 

was found to be infected in 13 out of 17 samplings where it was present (15.4% of 

individuals with H. skorikowi and 92.3% with E. infundibulifera) (Table 3). Considering all the 

samplings (n = 19), T. verticalis showed highest values of total prevalence in 13 cases, and S. 

lateralis in 5 cases. The maximum values of prevalence for H. skorikowi were 10% for S. 

lateralis, 40% for S. scripta and 69.2% for T. verticalis; the maximum values for E. 

infundibulifera were 1.47% for S. lateralis and 100% for T. verticalis (Table 3).  

Parasite intensity across the period was 1-2 for E. infundibulifera and 1-7 for H. skorikowi. 

When infected with E. infundibulifera, T. verticalis was infected with 1-2 individuals, while H. 

skorikowi load reached up to 7 individuals per host; native species were infected with only 

one E. infundibulifera per corixid, and only three S. lateralis were infected with more than one 

H. skorikowi (2 individuals per host) (Table 3). In addition to T. verticalis, S. lateralis and S. 

scripta, two other infected corixid species were recorded. Corixa affinis Leach, 1817 which was 

infected in two samplings with H. skorikowi (prevalences of 7.14% (n = 14) and 1.44% (n = 69)) 

and Sigara stagnalis (Leach, 1817) which was infected in only one sampling with H. skorikowi 

but with 100% (n = 1) prevalence.  
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Table 3. Prevalence (%) of Hydrachna skorikowi (HS) and Eylais infundibulifera (EI) water mite larvae 
infecting Corixidae (SL= Sigara lateralis; SS = Sigara scripta; TV= Trichocorixa verticalis) from temporary 
ponds in Doñana National Park. Only samples (ponds/date) where parasites and at least two corixid 
species were present are included here (37.8% of the total number of samples). Data from AC3, 
27/06/2011 (Table 2) are not included. 

 

 

Determinants of water mite prevalence 

Generalized Linear Models indicated that water salinity was a significant predictor 

for the occurrence of both E. infundibulifera (P < 0.001) and H. skorikowi (P = 0.018) Table 4). In 

both cases, there was a negative partial effect, such that prevalence was lower at higher 

salinities when controlling for date and corixid species. The prevalence of E. infundibulifera 

was significantly lower in either of the two native corixid species than in T. verticalis. 

Similarly, the prevalence of H. skorikowi was significantly lower in S. lateralis than in T. 

verticalis. Prevalence was lower in S. scripta than in T. verticalis, but not significantly so (Table 

4). Sampling date also significantly affected mite presence. The occurrence of E. 

infundibulifera was significantly higher in June 2011 than in June 2010 or in May 2011. For H. 

skorikowi, its presence was significantly higher in May 2011 than in May or June 2010, and 

significantly higher in June 2011 than in June 2010 (Table 4). 

 SL SS TV 

Pond Date Salinity n HS EI n HS EI n  HS EI 

ENTREMUROS 1 11/06/2010 2.7 35 2.86 0 0   3 0 0 
LUCIO DEL LOBO 11/06/2010 2.2 54 3.7 0 20 0 0 14  0 7.14 
0N1GP 14/05/2011 2.3 32 6.25 0 5 0 0 1  0 0 
6N2MP 14/05/2011 4 10 10 0 5 0 0 0   
AC3 15/05/2011 1.2 129 8.53 0 5 40 0 13 69.23 0 
AC4 15/05/2011 1.3 25 16 0 0   0   
AE6 15/05/2011 1.5 51 3.92 0 0   2 0 0 
AE8 15/05/2011 3.4 57 3.51 0 4 0 0 1 0 0 
0N2GP 24/06/2011 4.4 9 0 0 4 0 0 1 0 100 
3N3MP 24/06/2011 8.5 1 0 0 0   1 0 100 
6N2MP 24/06/2011 20.9 2 0 0 0   10 0 20 
9N3PP 24/06/2011 7.6 241 0 1.24 38 2.63 0 26 0 15.38 
0S2GP 25/06/2011 8.7 46 0 0 0   30 0 10 
0S4GS 23/06/2011 23.7 21 0 0 38 0 0 89 0 3.37 
3S3MP 23/06/2011 21 31 0 0 7 0 0 34 0 2.94 
5S1PP 23/06/2011 5.9 136 0.74 1.47 1 0 0 10 0 20 
AC3 25/06/2011 15.8 43 0 0 30 0 0 53 1.89 5.66 
AC4 25/06/2011 23.9 72 0 0 35 0 0 71 0 1.41 
CANAL 
CARACOLES 26/06/2011 8.4 4 0 0 21 4.76 0 16 0 18.75 
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Table 4. Results from a GLM with binomial error estimating Eylais or Hydrachna presence according to 
sample date, salinity and corixid species (SL = Sigara lateralis; SS = Sigara scripta;). Trichocorixa verticalis 
(TV) was used as the reference category for the presence of water mite larvae infecting native Corixids 
(i.e. TV was aliased), as no significant differences in the prevalence of mites were found between 
native species. Reference groups for sampling date are those on the right. Asterisks indicate 
statistically significant predictors.  
 

Coefficients 

 

Estimate Std. Error Pr(>|z|) Odds ratio 

EYLAIS 

Salinity -0.116 0.031     < 0.001 *  8.873e-01 

SL -2.910 0.480     < 0.001 *  5.036e-02 

SS -3.553  1.399  0.011* 6.931e-09  

05/10 vs 06/10  -1.217 1.608 0.449 1.469e+06 

05/10 vs 05/11 -1.119 1.996 0.574 8.462e-01 

05/10 vs 06/11  2.097 1.466 0.153 6.010e+07 

06/10  vs 05/11   0.097 1.621 0.952 1.102 

06/10 vs 06/11  3.313 0.866    < 0.001 *  27.486 

05/11 vs 06/11  3.216 1.450 0.026 * 24.944 

HYDRACHNA 

Salinity -0.284 0.146 0.018 * 0.752 

SL -1.868 0.419    < 0.001 *  0.154 

SS -0.618 0.609 0.310 0.539 

05/10 vs 06/10  0.250 1.512  0.868  1.284  

05/10 vs 05/11  3.341 1.418 0.018 * 28.259 

05/10 vs 06/11  2.165 1.600 0.176 8.717 

06/10 vs 05/11  3.091 0.601    < 0.001 *  22.006 

06/10 vs 06/11  1.915 0.815 0.019 * 6.787 

05/11 vs 06/11  -1.176 0.819 0.151 0.308 

 

 

Relation between host size and mite size 

We found differences in body length of hosts among corixid species (Kruskal Wallis 

test, H = 128.83, P < 0.001), S. lateralis being the biggest (4.73 ± 0.25 mm) followed by S. scripta 

(4.39 ± 0.25 mm) and T. verticalis (4.16 ± 0.32 mm). All pairwise comparisons were statistically 

significant (P < 0.05). The two water mite larvae species didn’t differ in size (mean ± SE: 

534.98 ± 23.18 µm for E. infundibulifera and 535,29 ± 24.40 µm for H. skorikowi: U = 575.5, P = 

0.985). On the other hand, the size of E. infundibulifera was very similar between host species 

(mean ± SE: 573.69 ± 22.10 µm for S. lateralis and 566.52 ± 13.92 µm for T. verticalis). The same 

was true for H. skorikowi (549.40 ± 62.57 µm for T. verticalis; 506.88 ± 46.81 µm for S. lateralis; 

617.68 ± 207.37 µm for S. scripta). Accordingly, the results of a Generalized Linear Model of 



  Chapter 3: Parasitism 

! !  103 

C
hapter 5: W

etland R
estoration 

mite size indicated no significant effect of host species, salinity, nor the number of parasites 

infecting the host (P > 0.194 for H. skorikowi and P > 0.181 for E. infundibulifera). Nonetheless, 

the date of sampling (May or June) significantly affected the size of H. skorikowi (F1, 38 = 

25.498, P = 0.00001) with bigger larvae in June. For E. infundibulifera, we didn’t include the 

effect of date in the Generalized Linear Model because this mite species was only present in 

June.  

 

Differences in attachment sites between mite and host species 

Attachment sites were highly specific for both mite species. E. infundibulifera 

invariably attached to the dorsal side of the abdomen (Figure 2, a-b); H. skorikowi (Figure 2, c-

d) mainly selected the legs but it was also found on the hemelytra, abdomen, head and 

pronotum (Table 5). E. infundibulifera was found attached over a higher surface area when 

infecting  T. verticalis (2-5 abdominal segments) compared to S. lateralis (2-3 abdominal 

segments) (Table 5). H. skorikowi attached over a higher diversity of sites when infecting T. 

verticalis (legs, abdomen, head, and pronotum, in order of declining frequency) followed by 

S. lateralis (legs, abdomen and hemelytra) and S. scripta (legs and head) (Table 5). When 

attached to the legs there was no significant difference between the proportions on the right 

and left sides. 
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Table 5. Attachment sites of H. skorikowi and E. infundibulifera when infecting Sigara lateralis (SL), 
Sigara scripta (SS) and Trichocorixa verticalis (TV) from Doñana. Data correspond to both the “specific 
sampling” and “general sampling” (Table 1). 
 

 

 

Discussion 

Differential infection between native and invasive corixids 

T. verticalis is a highly successful invader in coastal wetlands of higher salinities in the 

southern Iberian Peninsula (Rodriguez-Perez et al., 2009; Van De Meutter et al., 2010; 

Guareschi et al., 2013). Although information remains limited, its ability to outcompete 

native corixids at high salinities seems to be related to its high fecundity and a capacity to 

complete several generations a year. Furthermore, the eggs and nymphs of some native 

corixid species do not seem resistant to such high salinities (J.A. Carbonell & C. Coccia, 

Corixid 
species 

Water mite 
species 

Area of 
attachment (%) 

Specific point  
(%)  

SL E. infundibulifera abdomen (100) segment II (20)  
     segment III (80)   
 H. skorikowi legs (92.8) leg I (7.7) femur (100) 
   leg II (73.1) femur 

(31.6)     tibia (31.6) 
    tarsum 

(31.6)     indet (5.2) 
   leg III (19.2) femur (80) 
    tibia (20) 
  abdomen (3.6)   
    hemelytre (3.6)     
SS H. skorikowi legs (75) leg I (33.3) femur (100) 
   leg II (33.3) femur (100) 
   leg III (33.3) tarsum 

(100)     head (25)     
TV E. infundibulifera abdomen (100) segment II (59.3) 
   segment III (29.6) 
   segment IV (7.4) 
     segment V (3.7)   
 H. skorikowi legs (87.1) leg I (3.7) femur (100) 
   leg II (63.0) femur 

(70.6)     tibia (29.4) 
   leg III (33.3) femur 

(77.8)     tibia (22.2) 
  abdomen (6.5) segment V (50)  
   indent (50)  
  head (3.2)   

    pronotum (3.2)     
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unpublished data). The present study supports the hypothesis that the much lower relative 

abundance of T. verticalis in temporary wetlands of lower salinity may be caused by their 

susceptibility to harmful parasitic mites, which are absent in the saline wetlands. We have 

shown that T. verticalis was not infected by water mites in saline wetlands, where T. verticalis 

is often the only corixid species recorded.  

It is a widespread pattern that species richness of invertebrates decreases at higher salinities 

in Mediterranean wetlands (e.g. Frisch et al., 2006; Waterkeyn et al., 2008), and adult Eylais 

mites cannot tolerate the high salinities in the areas where T. verticalis is found to be 

dominant (V. Céspedes, A.J. Green & M.I. Sánchez unpublished data). Although we cannot 

rule out the possibility that the absence of mites from fish ponds is also related to the 

permanent hydroperiod and/or the high density of fish, decapod shrimps or other predators 

(Kloskowski et al.. 2009), our results from temporary wetlands support a strong salinity 

effect. In Generalized Linear Models, a negative partial correlation between salinity and 

prevalence was detected for both mite species. Hydrachna was particularly rare at higher 

salinities, so T. verticalis may encounter this parasite much less than Eylais, which was much 

more prevalent at higher salinities. However, date was confounded with salinity in our 

dataset because the temporary wetlands dry out in summer, so that a difference in 

phenology between mite species may be more important than a difference in salinity 

tolerance. 

In temporary wetlands, we recorded consistently higher levels of parasitism by larval 

water mites in T. verticalis compared with S. lateralis and S. scripta, both for H. skorikowi and 

for E. infundibulifera. There is a clear pattern of consistently higher prevalence in T. verticalis 

for E. infundibulifera. In contrast, our Generalized linear Model analyses suggest that the 

greater prevalence of H. skorikowi in T. verticalis is only clear for S. lateralis, and it would as 

yet be premature to conclude that this mite favours T. verticalis as a host compared to all 

native species.  

Both mite species recorded are obligate parasites of water boatmen (Heteroptera: 

Corixidae) (Stevens & Greven, 1999; Reilly & McCarthy, 1991). H. skorikowi is a palearctic 

species, so if it generally prefers T. verticalis as a host, this would be a case of parasite 

acquisition in which the exotic species becomes the preferred host compared to native ones. 

E. infundibulifera has been found in Europe (including the Iberian Peninsula), Asia and North 

America. Such cosmopolitan parasites are usually considered as acquired (Torchin et al., 

2003; Prenter et al., 2004; Mastitsky et al., 2010), since it is much more likely that they have 

reencountered the parasites in the invaded area than that they were introduced with the 

alien host (Mastitsky et al., 2010). However, given the low prevalence of E. infundibulifera in 
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native corixids, we cannot yet rule out the possibility that it has been introduced with T. 

verticalis. Studies of mite parasitism in corixid communities in parts of Iberia where T. 

verticalis has not yet arrived would shed light on this question. The means by which T. 

verticalis arrived on the peninsula are unknown, as is the date of arrival (Rodríguez-Pérez et 

al., 2009; Guareschi et al., 2013). 

We are unaware of any other case in which an exotic insect in Europe has been shown to 

be more infected by parasites than native hosts. When an introduced species is a suitable 

host for a native parasite, this can seriously impact the exotic hosts, but can also amplify the 

infection (“spillback” from exotic to native species) with effects for native species at both the 

host individual and population level (Daszak et al., 2000; Tomkins & Poulin 2006). At the 

current stage of T. verticalis invasion our results provide no evidence of parasite spillback, 

but it remains a potential risk given the density and reproductive potential of the exotic host, 

high susceptibility for parasites and the high reproductive potential of parasites, all factors 

affecting the probability of spillback (Hershberger et al., 2010, Paterson et al., 2013). We can 

expect the opposite to the dilution effect hypothesis, which predicts that the introduction of a 

less competent host species may reduce infection prevalence in the native host (Telfer et al., 

2005). Moreover, given the likely high dispersal abilities of T. verticalis (Guareschi et al., 

2013), this species may enhance dispersal of mites and their introduction into new 

environments, as has been suggested for epibiotic mites infecting the invasive crab Eriocheir 

sinensis Milne-Edwards, 1853 (Normant et al., 2013). 

Differences in parasite susceptibility observed in this study between native and alien 

corixids may be related to several factors. Firstly, hosts that rarely co-occur with mites in 

nature may be more susceptible to parasitism when spatial and temporal barriers are 

removed (Smith & McIver, 1984a). This can apply to invasive species which represent new 

hosts for native parasitic fauna. Increased susceptibility of hosts to new parasites related to a 

lack of co-adaptation (“naïve host syndrome”, Mastitsky et al., 2010) has been reported for a 

wide range of parasites (Alderman et al., 1987, Burreson et al., 2000). 

Alternatively, the increased susceptibility of T. verticalis to parasites may be caused by 

the differential level of sclerotization among hosts. Dark colour indicates a higher degree of 

sclerotization in water boatmen (Bennett, 1993). The light aspect of T. verticalis compared 

with the darker S. lateralis and S. scripta suggests that the exotic corixid is less sclerotized, 

and that mites could perforate the integument of T. verticalis with less difficulty. The higher 

surface area susceptible to attachment (i.e., number of body regions in which mites were 

found) in T. verticalis compared to S. lateralis and S. scripta supports this hypothesis. Bennett 

(1993) showed that a smaller susceptible area for attachment in sclerotized Cenocorixa bifida 
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(Hungerford, 1926) resulted in reduced overall susceptibility to Eylais euryhalina Smith, 1986 

compared to the unsclerotized C. expleta (Uhler, 1895). In laboratory conditions, when 

equally exposed to water mites, 90% of C. expleta and 25% C. bifida were infected.  

Another possibility is that biological and ecological factors affecting spatial distribution 

of the hosts would differentially expose them to water mite infection. Field observations (C. 

Coccia, personal observation) suggest that T. verticalis is more concentrated in the shallowest 

parts of ponds, where it may be more exposed to mites. Mite larvae are positively phototactic 

and swim to the water surface in search of hosts (Lanciani 1969), and it is also possible that T. 

verticalis coincides more often with the larvae within the water column. For example, S. 

lateralis feed more on benthic chironomid larvae (Tawfik et al., 1990) while T. verticalis may 

feed more on zooplankton in the water column (Wurtsbaugh, 1992; Simonis, 2013). 

Behavioural factors may also play a role in our results. Some corixid species are able to 

limit infestations by eating larval mites (Lanciani, 1985) or by defensive behaviours (Smith 

and McIver 1984b). Moreover, physiological aspects related with the ability of some species 

of corixids (Sigara) to impede engorgement of Hydrachna and Eylais species by reacting 

against the stilistoma of the mite (sometimes provoking the death of the parasite) (Davids, 

1973) may also partly explain our results. Experimental infection with equal exposure and 

behavioural tests would be necessary to discern between these hypotheses. 

 

Effect of host sex, host size and attachment site 

Like Smith (1977), we found no differences between sexes in parasite infection. Sexual 

preferences may be related with differences between sexes in size, time of emergence, 

differential exposure caused by different behaviors or different dispersal patterns. The low 

prevalence in C. affinis (by far the largest host species 7.2-10.5 mm Nieser et al., 1994) and 

high prevalence in T. verticalis (the smallest species in our study) suggests the mites show no 

preference for larger host species. Although host size has previously been shown to influence 

parasite growth for Hydrachna and Eylais species (Davids & Schoots 1975), we didn’t find 

differences in parasite size when infecting native and invasive species, suggesting that all 

hosts are equally suitable for engorgement. Although T. verticalis is significantly smaller that 

native species this difference is perhaps too small (<14% difference in length) to have a 

noticeable effect on the mites. Bennett (1993) found fully engorged mites preferentially on 

lightly sclerotized corixids and rarely on highly sclerotized species, which suggests that 

parasite growth also depends on host sclerotization. Therefore, the low sclerotisation of T. 

verticalis may compensate for its smaller size. The size of the parasite relative to it host 
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influences the degree of the damage it can induce (for example in fecundity, Davids & 

Schoots, 1975). So for a given parasite size, we can expect more damage in a smaller host 

such as T. verticalis. However, laboratory growth experiments would be necessary to confirm 

that mite growth does not vary between host species.  

The precise attachment site is relevant to the understanding of the effects of mites in their 

hosts, and to host-parasite coevolutionary interactions (Bennett & Scudder, 1998). The 

attachment site for both mite species was highly species-specific and reflects different life 

histories. Eylais larvae are semi-aquatic requiring an air supply to survive, and are therefore 

restricted to areas such as under the wings, tergites, underside of the elytra and hemielytra 

(Lanciani, 1969, Nielsen & Davids 1975, Davids et al., 1977). In our study they were 

invariably found attached to the abdominal tergites under the wings, which is likely to 

damage flight musculature (Smith, 1988). In contrast, Hydrachnidae larvae are strictly 

aquatic and can use dissolved oxygen in the water. Therefore they can be found attached to 

all surfaces of the host (Harris & Harrison, 1974), and in our study they were observed on the 

wings, head and legs. We did not find any preference between the right and left side of the 

host. In some species of Sigara the right hemelytron is more infected because it overlaps the 

left one (Davids, 1973), although this is not a consistent result (Mitchell, 1968). 

 

Ecological impact of mite infection and consequences for T. verticalis invasion 

Mites have the capacity to have a major influence on the extent of invasion by T. 

verticalis. Smith (1977) previously showed that the spatial distribution of two sympatric 

water boatmen was determined by the presence of water mites, which exclude one of them 

at lower salinity. In many host-parasite systems, values of prevalence exceeding 10%, as in 

our study for T. verticalis, are enough to exert a negative influence on host density (Hall et al., 

2011). Moreover, total prevalence and intensity of mites recorded in our study were probably 

underestimates. We often found brownish spots in the point of attachment of larval mites in 

all corixid species, indicating the previous presence of parasites (Figure 5). In fact, in 

Arrenurus Dugès, 1833 species these marks have been used to accurately estimate the number 

of larvae that had been attached to the host (Lanciani, 1979).  

Mite-induced reduction in survival has been demonstrated for a variety of host-parasite 

associations (Lanciani, 1982, 1986). Numerous studies have shown that parasitism by mites 

adversely affects insects (Smith, 1988). Fernando and Galbraith (1970) reported 

disappearance of gerrid populations heavily infected by water mites. Hence mites have the 

potential to cause local extinctions of T. verticalis. 
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Specific information about the ecological impacts of E. infundibulifera and H. skorikowi 

larvae are lacking. However, the existing literature suggests that negative effects of infection 

can be expected at both the host individual and population levels. Both Eylais spp. and 

Hydrachna spp. experience a dramatic increase in size during the larval phase. The Eylais 

genus includes the largest species of all water mites (Lanciani, 1971) and some species of 

Hydrachna can increase their volume by 600 times from birth (Davids, 1973). Enlargement of 

the larvae is correlated with the time spent on the host, and in these genera the duration of 

the larval engorgement period can be very long (several months, Bennett, 1993). Therefore, 

the time of the parasitic phase together with the size reached by the larvae in our study are 

both expected to negatively impact the hosts.  

On the other hand, water mite larvae have been shown to destroy host tissue (Abro, 

1982) and adversely affect flight musculature (Smith, 1988), consequently affecting the host's 

flight ability (Gillies & Wilkes 1972). The ability to fly and disperse is fundamental for the 

survival of aquatic insects living in temporary habitats, such as corixids (Savage, 1989; Boda 

& Csabai, 2009). Larval Hydrachna spp. and Eylais spp. infecting aquatic Hemiptera can also 

dramatically decrease fecundity by reducing egg production (Davids & Schoots, 1975).  

Other reproductive effects caused by mites in corixids include delayed maturation of the 

host (Lanciani, 1975), reduction of nymphal growth (Lanciani & May, 1982) that may affect 

competitiveness and survival (Martin 1975), and reduction of male mating success (Forbes, 

1991a, b, Forbes & Baker 1991). Deutonymphs and adults of H. skorikowi have also been 

shown to feed on eggs of water boatmen (Stevens & Greven, 1999), as have other Hydrachna 

species (Davids, 1979). High intensity of infection can induce mortality (Lanciani, 1975), 

impacting at the population level. In this study, the values of infection intensity for T. 

verticalis (up to 7) are among the highest recorded for corixids. All these effects can 

potentially be stronger in the exotic species under the naïve host syndrome (Mastitsky et al., 

2010). 

Indirect effects can also be expected. Eylais and Hydrachna nymphs feed on Cladocera, 

where T. verticalis also occur and may compete for these prey (Simonis, 2013). Since water 

mites can be very abundant (up to 13,000 eggs per female over a period of 12 months have 

been reported for Eylais discreta, Davids 1973), this may result in competition for food 

between mites and corixids. Further research should focus on the ecological impact of mites 

on the T. verticalis invasion and its interactions with native corixids, using naturally infected 

populations in combination with experimental laboratory infections.  
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Conclusion 

T. verticalis showed consistently higher infection levels by water mite larvae compared 

with the native corixid hosts S. lateralis and S. scripta. We found evidence that the invasion 

success of T. verticalis in natural wetlands of low salinity has been limited owing to a higher 

susceptibility to parasites compared with native species. Since water mites strongly reduce 

reproductive success and increase mortality at high intensities, they are likely to play a key 

role in driving the outcome of ecological interactions between the invasive and the native 

species. This study suggests that mites may prevent T. verticalis from colonizing low salinity 

wetlands or outcompeting the native corixids there. As the invader spreads across Europe in 

future decades, the mites may play a vital role in conservation on native insect diversity. 
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Supplementary Materials 

 
Table 1. Details of Trichocorixa verticalis inspected for water mite larvae in Veta la Palma fish ponds 
(G3, A3 and A7) during May, June and July 2011. Note pond A3 has lower salinity than the other 
ponds because it is managed for shrimp production. No mites were recorded. Adult mites were not 
recorded in the area during a previous study of the invertebrate community (Rodríguez-Pérez & 
Green, 2012). 
 
 

 

 

 

 

 

 

 

 

 

Ponds Date Salinity  n 

A7 19/05/11 11.9  22 

G3 19/05/11 24.5  37 

 A3 19/05/11  4.3 246 

G3 08/06/11 25.8  26 

A3 08/06/11  5.8  68 

A7 13/07/11 21.4  13 

A3 13/07/11  8.1 497 
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Abstract 

Invasive species represent an increasing fraction of aquatic biota. However, studies on the 

role and consequences of facilitative interactions among aliens remain scarce. Here we 

investigated whether the spread of the alien water boatman Trichocorixa verticalis verticalis in 

the Iberian Peninsula is related to reduced mortality from predation compared with native 

Corixidae, especially since T. verticalis co-occurs with the invasive fishes Gambusia holbrooki 

and Fundulus heteroclitus. All three invaders have a common native range in North America 

and are widespread in and around Doñana in SW Spain. Using laboratory experiments, we 

compared the predation rates by the two exotic fish and native Odonata larvae on 

Trichocorixa and the native Sigara lateralis. We found no evidence to suggest that T. verticalis 

suffers lower predation rates. However, when both corixids were mixed together, predation 

of T. verticalis by Odonata larvae was higher. Odonata larvae were size-limited predators and 

the proportion of corixids ingested was positively correlated with mask length. Since T. 

verticalis is smaller than its native competitors, this may explain their higher susceptibility to 

predation by Odonata. This may be one of various factors explaining why T. verticalis is 

particularly dominant in saline habitats where Odonata are rare, while it is still scarce in 

fresh waters.  
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Introduction 

Freshwater habitats have been subjected to massive species introductions from multiple 

sources for decades (Gherardi et al., 2008). As a consequence, in many of these systems, alien 

organisms are now a significant part of their biota (Cohen, 2002). Iberian inland waters, for 

example, host ca 73 non-indigenous freshwater species (Garcia-Berthou et al., 2007), 

belonging to a variety of taxa such as molluscs, crustaceans and fishes (Cobo et al., 2010).  

Although negative interactions between species have been considered to be among the 

major drivers of biological invasions, only recently have studies highlighted the role of 

facilitative interactions among exotic species (Simberloff & Holle, 1999; Richardson et al., 

2000). According to Courchamp et al. (2000), the co-occurrence of exotic predators and exotic 

prey can heavily impact native prey by hyperpredation. Adams et al. (2003) demonstrated 

how the invasion of the bullfrog Lithobates catesbeianus in North America was facilitated by 

the invasive bluegill sunfish Lepomis macrochirus, as the latter preys on macroinvertebrates 

that in turn prey on bullfrog tadpoles. Such positive interactions are thought to be 

widespread and important in exacerbating the problem of invasion (Simberloff & Holle 

1999), but studies that evaluate these interactions are still scarce (Richardson et al., 2000; 

Tecco et al., 2006), particularly for vertebrates (but see Adams et al., 2003). 

In this study we experimentally investigated the role of predation by exotic predators 

(the eastern mosquitofish Gambusia holbrooki and the mummichog Fundulus heteroclitus; 

hereafter Gambusia and Fundulus, respectively) and native predators (dragonfly larvae) on 

the invasive boatman Trichocorixa verticalis verticalis (hereafter T. verticalis) and the native, co-

occurring boatman, S. lateralis (hereafter S. lateralis), in the Iberian Peninsula. T. verticalis 

(Fieber 1851) (Heteroptera: Corixidae) is native to North American saline and freshwater 

habitats but now also occurs in South Africa, Iberia and Morocco (Jansson & Reavell, 1999; 

Kment, 2006; L’Mohdi et al., 2010). In Europe, following its initial detection in the Algarve in 

Portugal (Iberian Peninsula) in 1997, the species has spread along the Iberian Atlantic coast 

(Sala & Boix 2005) and into the Guadalquivir delta and surrounding parts of SW Spain. Bio-

climatic models predict future spread across Europe and the Mediterranean region 

(Guareschi et al., 2013). Established populations of T. verticalis have been found at several 

sites in and around Doñana in the Guadalquivir delta, where it is the most abundant corixid 

in saline wetlands (Rodríguez-Pérez et al., 2009; Van de Meutter et al., 2010). Despite their 

dominance at higher salinities, they do not show higher halotolerance as adults than native 

corixids (Van de Meutter et al., 2010; Coccia et al., 2013). 

In its native area, T. verticalis co-occurs in rivers, brackish pools, potholes, and salt 

marshes with the above two euryhaline fish species (Gambusia along the east coast of USA 
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from New Jersey to Florida! and Fundulus along the North American Atlantic coast from 

Canada to Florida, see Sala & Boix, 2005). Various studies illustrate the coexistence of this 

corixid species with one of these fish species in the same waterbody within the native range 

(e.g. Harrington & Harrington, 1972; Cherry et al., 1979; MacKenzie, 2005; Rochlin et al., 

2011; J. Simonis, pers. comm. 2014). These fishes were introduced to the Iberian Peninsula 

from North America around 1921 and 1970 respectively (Cobo et al., 2010). They now occur 

in a multitude of aquatic habitats during all the hydrological cycle in Doñana, where they are 

far more abundant than any native freshwater fish (Moreno-Valcárcel et al., 2013). Both 

species have been shown by gut content analysis to include corixids in their diet in 

permanent saline fish ponds in Doñana, where Odonata are absent or only recorded at low 

densities (Pyke, 2005; Dreamer-John, 2012; Rodríguez-Pérez & Green, 2012). In contrast, 

Odonata larvae represent the most important predators of corixids in temporary ponds in 

Doñana, where the invasive and native corixids co-exist but fishes rarely occur (Florencio et 

al., 2009; Rodríguez-Pérez et al., 2009).  

As exotic predators can have dramatic effects on both invasive and native prey (Lodge, 

1993; Knapp et al., 2001), only organisms with specific and effective anti-predatory 

mechanisms are likely to coexist with them (Sih et al., 2010). Although some studies have 

shown native prey to possess better defenses against native than alien predators (Gomez-

Mestre & Díaz-Paniagua 2011), prey species may also undergo rapid evolutionary change to 

counter a novel predation pressure (Griffin, 2004; Boyero, 2011). However, predator 

detection has a cost and performance can be lost with similar speed if the predator is 

removed (Strauss, Lau & Carroll, 2006). 

We hypothesized that alien predators (fish) and those native to Doñana (Odonata larvae) 

would have different interactions with the alien (T. verticalis) and native (S. lateralis) corixids. 

Specifically, we tested the following hypotheses: i) predator responses to different prey 

depend on co-evolutionary history; thus, the exotic predators Fundulus and Gambusia are 

more successful at detecting and catching T. verticalis, while Odonata are more successful at 

detecting and catching S. lateralis; and ii) differences in predation also depend on predator 

and prey size. We discuss the evidence that facilitative interactions can account for T. 

verticalis success in southern Iberia and whether the scarcity of Odonata larvae in permanent, 

saline habitats in Doñana could be a factor promoting its dominance in this area (Rodríguez-

Pérez et al., 2009; Van de Muetter, Trekels & Green, 2010).  
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Material & Methods 

Methods 

Adults of Fundulus and Gambusia were collected during spring 2012 using either minnow 

traps or a D-framed pond net (500 �m mesh; 16 × 16 cm), respectively. Native Odonata 

larvae and adults of T. verticalis and S. lateralis were sampled using the same D-framed pond 

net. Experiments were run from 28 March to 16 May 2012. Fundulus and T. verticalis were 

obtained from Veta la Palma fish ponds within Doñana Natural Park, Gambusia from an 

artificial pond called “pozo salinas” located in the stabilized sands (a system of stable dunes 

formed by marine drift during the Holocene period) in the west part of Doñana Biological 

Reserve and S. lateralis were sampled in two artificial ponds within the garden of the Cartuja 

Monastery (within the city of Seville). Finally, Odonata larvae were collected in artificial 

ponds either within Doñana National Park (FAO pond) or the Cartuja Monastery (see 

Serrano et al., 2006 for position of the Doñana sites).  

Water conductivity varied between sites, being 32 - 36 mS cm-1 in Veta la Palma, and 1.8 - 

5 mS cm-1 in the other ponds.  

 After collection, predators and prey were placed separately in plastic bags (a maximum 

of 4 fishes per bag) filled with water from the collection site and transported to the 

laboratory within thermally insulated polystyrene boxes to minimise thermal fluctuations. 

Once in the laboratory, each predator was transferred to its own 6-L aquarium (27 x 17 x 18 

cm), containing water at conductivities that resembled those of sites from which they were 

collected [17 mS cm-1for Fundulus; 5 mS cm-1 for Gambusia (ca. 11 cm depth); and 2 mS cm-1, 

for Odonata larvae (ca. 6 cm depth)]. Water from the collection point was used for the 

treatments of 5 and 2 mS cm-1, whereas for high conductivity treatments, water was prepared 

by mixing pond water (32 - 36 mS cm-1) with dechlorinated tap water until the required 

conductivity of 17 mS cm-1 was obtained. As we did not test for turbidity effects, all 

treatments were conducted in clear water. Aquaria were provided with sand and were 

aerated for the fish treatments. Predators were acclimated for 24 h before predation 

experiments; this period is considered sufficient to allow fishes to explore the aquaria 

(Primavera 1997). No food was provided to predators during these 24 h. 

Experiments were conducted in a climatic chamber set at 15ºC under a 12 h: 12 h D:L 

regime. Ten corixids (balanced for sex when possible) were added to each aquarium 

containing a predator individual. When fishes were used as predators, six treatments were 

created by crossing corixid species (T. verticalis alone, S. lateralis alone and both species 

together) and refuges (with and without an artificial plant, Supplementary Fig. 1a,b). In the 
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case of Odonata larvae, only three treatments were employed (the three corixid 

combinations) as aquaria were always provided with artificial plants to provide a perch for 

the larvae. Five replicates of each treatment were used for each fish species and 10 replicates 

for dragonflies. The first check for surviving corixids was made after 6 h. Thereafter, aquaria 

were checked every 24 h. At each check, live corixids were retrieved using a hand net, 

counted, identified to species and visually sexed. After that, the corixids were returned to 

their aquarium. Consumed corixids were not replaced. After a maximum of 72 h, predators 

were retrieved from each aquarium. Each predator was used only once and sacrificed under 

licence after the experiment, using anaesthetic. Fishes were weighed using a ALC_2100.1 

balance (Sartorious Ltd, U.K.) and the length of each individual was measured using a 

plastic millimeter sheet. Mean predator sizes (± SE) were as follows: 6.9±0.13 cm for Fundulus 

and 3.8±0.04 cm for Gambusia. The mean lengths (± SE) of masks of Odonata larvae (4.03±0.14 

mm) were measured on images taken with a digital camera (AxioCam Icc1) connected to a 

Zeiss microscope (Discovery V8) (Supplementary Table 1 and Fig. 2). Odonata larvae were 

mainly (70%) final instars, and the remaining 30% were mid instars (according to Askew 

1998). Prey size was not measured, as it would have involved a strong handling stress that 

may have altered corixid behaviour. The typical lengths were 5-6 mm for S. lateralis (Nieser 

et al., 1994) and 3.5-5.4 mm for T. verticalis (authors’unpublished data).  

 

Data analysis 

We quantified the proportion of corixids (either S. lateralis or T. verticalis) that were eaten 

by predators (Proportion of Corixids Eaten, PCE = 1 – final/initial number of corixid 

individuals), for each predator (Fundulus, Gambusia, and Odonata) and for each corixid 

treatment (single species vs. both species together). Although we used larvae of several 

dragonfly genera of the families Libellulidae and Aeshnidae [Orthetrum spp. (n=10); Aeshna 

spp. (n= 19); Sympetrum spp. (n= 10); and Crocothemis spp. (n=1)], we pooled the data for final 

analyses presented because results were the same as when using only the most frequent 

genus (Aeshna spp., other taxa could not be analysed separately because there were not 

enough individuals, see Supplementary Table 2). Initial models showed that there were no 

significant differences in PCE for fish between treatments with and without an artificial plant 

(results not shown). Thus, these treatments were pooled for further analyses comparing PCE 

between predator and prey species. 

We used general linear models (GLMs) followed by Tukey tests to compare, for each 

corixid species separately, the effect of predator identity, corixid treatment and their 



Chapter 4: Facilitative Interactions among Invaders 

! !  125 

C
hapter 5: W

etland R
estoration 

interaction on PCE, which was arcsin square root transformed to improve normality and 

homogeneity of variances (tested with Shapiro-Wilk’s and Levene’s tests, respectively). 

Given the differential consumption rates between Fundulus (the most voracious), Gambusia 

and dragonflies, we initially calculated PCE for several experimental time intervals (6 and 

24h for Fundulus; 6, 24, 48 and 72h for Gambusia and dragonflies), but we present results only 

for the final time (24h for Fundulus and 72h for Gambusia and dragonflies) because (1) 

Gambusia and dragonflies started eating after 24h and (2) results of analyses were the same 

between 6 and 24h for Fundulus and between 48 and 72h for Gambusia and dragonflies. 

As the interaction between predator identity and corixid treatment was significant for T. 

verticalis, we then used separate GLMs for each predator species to further explore effects of 

corixid treatment on PCE, for each corixid species separately. In these analyses we included 

the log (x+1) transformed predator size (for Fundulus and Gambusia) or dragonfly mask 

length as a covariate. Finally, we compared PCE between corixid species for the ‘both species 

together’ treatment with one-way ANOVA for each predator separately. 

 

Results 

Predator identity had a significant effect on PCE (Table 1), although results differed 

slightly for each corixid species. For S. lateralis, Fundulus showed the highest predation rate 

followed by Odonata larvae and Gambusia. For T. verticalis, Fundulus and Odonata were 

equally efficient, and Gambusia was again the least efficient predator (Fig. 1). Corixid 

treatment had no effect on PCE, but the interaction between predator identity and corixid 

treatment was significant for T. verticalis (Table 1); differences between corixid treatments 

were significant for Odonata (P < 0.05), which consumed significantly more T. verticalis when 

S. lateralis was also present, but not for the other predators (Fig. 1).  

When the effect of different predators was analyzed separately, there was no significant 

effect of either corixid treatment or predator body length for Fundulus and Gambusia (results 

not shown). For Odonata larvae, corixid treatment had no effect for S. lateralis; however, 

corixid treatment did have a significant effect for T. verticalis. Mask length had a positive 

effect on PCE for both species (Table 2): dragonflies with larger masks ate more corixids (Fig. 

2). When both corixid species were together, there were no significant differences between 

the number of S. lateralis and T. verticalis eaten by any predator (Fundulus: F1,42 = 0.06, P = 

0.78; Gambusia: F1,38 = 1.28, P = 0.27; dragonflies: F1,38 = 3.50, P = 0.069); however, the marginal 

result for dragonflies shows they tended to eat more T. verticalis individuals (Fig. 3). Hence, 

the predation efficiency of Odonata larvae increased with their size, and was marginally 

influenced by prey size.  
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Table 1. Results (degrees of freedom, sum of squares, F-statistic and p-value) of GLMs showing the 
effects of predator identity (Fundulus heteroclitus, Gambusia holbrooki or dragonflies larvae), corixid 
treatment (single species or both species together), and their interaction, on the proportion (arcsin sqrt 
transformed) of corixids eaten by predators. 
 

Source of variation df SS F P 

Sigara lateralis     

   Predator  2 14.51 36.93    < 0.0001 

   Corixid  1  0.01  0.03 0.87 

   Predator × Corixid  2  0.54  1.38 0.26 

   Error 85 16.70   

Trichocorixa verticalis             

   Predator  2 17.14 41.17    < 0.0001 

   Corixid  1  0.12  0.60 0.44 

   Predator × Corixid  2  1.49  3.58 0.032 

   Error 85 17.69   

 
 

 

Figure 1. Arcsin sqrt-transformed mean ± SE proportion of corixids eaten (PCE = 1 - final/initial 
number of corixid individuals) for each corixid species (SL, Sigara lateralis; TV, Trichocorixa verticalis), 
by different predators (Fundulus heteroclitus, Gambusia holbrooki, and Dragonflies), and in two different 
corixid treatments (single species vs. both species together). Asterisks indicate significant differences 
in the PCE of TV by Dragonflies compared to the other predators when SL was also present. 
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Figure 2. Linear regression (+ 95% confidence interval) between log-transformed dragonfly larva mask 
length and arcsin sqrt-transformed proportion of corixids eaten (PCE); SL, Sigara lateralis (P = 0.11, R2 

= 0.13); TV, Trichocorixa verticalis (P = 0.001; R2 = 0.46). 
 

 

Table 2. Results of GLMs showing the effects of corixid treatment (single species or both species 
together) and log (x+1) transformed mask length of the arcsin sqrt transformed proportion of corixids 
eaten by Odonata larvae. 
 

Source of variation df SS F P 

Sigara lateralis     

   Corixid  1 0.48  2.82 0.10 

   Dragonfly mask length  1 0.93  5.47 0.027 

   Error 27 4.57   

Trichocorixa verticalis     

   Corixid  1 1.50 10.95 0.003 

   Dragonfly mask length  1 1.41 10.36 0.003 

   Error 27 3.69   
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Discussion 

In a multiple invasion context, where invaders at different trophic levels co-exist, several 

scenarios are possible. For example, alien predators may prefer native prey, native predators 

may prefer alien prey, or predators may easily detect/recognize prey because they share a 

co-evolutionary history (Sih et al., 2010).  

Our results indicate that the invasive Fundulus and the native Odonata larvae are 

considerably more efficient than the invasive Gambusia in the rate of consumption of 

corixids. However, the only evidence to suggest that predators distinguish between alien 

and native corixids was on the basis of body size. T. verticalis body mass is 35% lower than 

that of S. lateralis (Coccia et al., 2013), and our results suggest that for that reason they suffer 

higher predation by Odonata, and that this may help explain T. verticalis dominance in saline 

waters in SW-Spain.  

We found no evidence to suggest that corixids show different predator avoidance 

behaviour depending on whether they encountered predators sharing a common native 

range or predators of a different origin. However, our study did not allow us to distinguish 

between the existence of anti-predator responses in corixids vs. prey detection/capture 

mechanisms in predators, and we did not collect behavioural data. The absence of an 

efficient anti-predator response can lead to species decline (Courchamp et al., 2000), and the 

apparent inefficiency of anti-predator responses contradict field data confirming the co-

occurrence of both exotic fishes and corixids in Doñana (Van de Meutter, Trekels & Green, 

2010; authors' unpublished data). Under confined laboratory conditions and high water 

clarity, it is likely that predator efficiency was greater than that in the field, where habitats 

are more diverse with reduced spatial or temporal overlap in habitat use between predator 

and prey, and turbidity can be high. For example, Kelts (1979) showed an increased rate of 

consumption of T.verticalis var sellaris by Fundulus when algae were removed from aquaria. 

Figure 3. Arcsin sqrt-transformed 
mean ± SE proportion of corixids 
eaten (PCE) of each species (SL, 
Sigara lateralis; TV, Trichocorixa 
verticalis) in the ‘both species 
together’ treatment. 
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The plastic plant we used as a refuge had no similar effect and was probably insufficient to 

hinder prey detection (Supplementary Fig. 1a,b). 

In Doñana, Fundulus and Gambusia occur in different types of habitat (see Supplementary 

Table 3), however Fundulus prefers saline waters, and is generally absent in fresh or brackish 

ponds, which are inhabited mainly by Gambusia (Moreno-Valcárcel et al., 2013). Trichocorixa 

and Sigara often co-occur in sites of 3-15 mS cm-1 (Van de Meutter at al., 2010), whereas 

Trichocorixa is the dominant corixid at higher salinities and Sigara at lower salinities. Thus, 

we might expect a strong effect of Fundulus for both corixids at salinities between 9-23 mS 

cm-1 where Fundulus dominates (Moreno-Valcárcel et al., 2013). However, in most of the sites 

were T. verticalis was found with native corixids within the Doñana area, Gambusia was the 

only fish present (Van de Meutter, Trekels & Green, 2010). At low conductivities (0.3-8.5 mS 

cm-1), Moreno-Valcárcel et al. (2013) also found Gambusia to be the dominant species. The 

low observed predation rate by Gambusia in our experiments suggests that the predator-prey 

interaction between Gambusia and both the corixids is less important than that of Fundulus, a 

finding in agreement with field data showing that Gambusia ate mainly copepods and 

relatively few corixids (Dreamer-John, 2012). In contrast, our results suggest that Fundulus 

and Odonata larvae may have a major impact on the invasive corixids in permanent saline 

waters and low salinity ponds respectively. 

 Permanent saline waters in SW Spain are often inhabited by both Fundulus and T. 

verticalis (Sala & Boix, 2005). It has been suggested that the unpalatability of T. verticalis late 

instars and adults may reduce predation by Fundulus in North America (Campbell & Denno, 

1978; Kelts, 1979), but our observations do not support this. The extent of predation on T. 

verticalis by Fundulus is likely to partly depend on the availability of alternative prey such as 

copepoda, isopoda and decapod shrimps (Dreamer-John, 2012). Furthermore, the 

distribution and abundance of Fundulus is likely to be limited by its own predators, such as 

larger fish and piscivorous birds, both of which are present at high density in saline parts of 

Doñana where T. verticalis is dominant (Rendón et al., 2008, Rodríguez-Pérez & Green 2012). 

Additionally, co-occurrence with Fundulus may also be related to T. verticalis preferences for 

shallow, vegetated waters (authors personal observation) avoided by fish (Kelts, 1979; Lewin 

et al., 2004). At the same time, the osmoregulatory ability of the invasive corixid at the egg 

and nymph stage together with its high fecundity and the absence of parasitic infections 

might be some important determinants of its success at higher salinities (authors’ 

unpublished data). 

In temporary ponds, corixids arrive en masse in spring to reproduce, and the absence of 

fish maximises nymphal survival (Brown, 1951). Odonata larvae and both corixid species are 
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often found together in Doñana ponds, especially during late spring (Florencio et al., 2009; 

Rodríguez-Pérez et al., 2009). Odonata larvae are top predators in temporary aquatic 

habitats, able to feed on different prey ranging from invertebrates (Hopper, 2001) to small 

fishes (Walker, 1953). Our results illustrate how Odonata larvae are size-limited predators, 

and suggest that predation of T. verticalis by these major pond predators is increased by their 

smaller size compared to native Sigara spp. (including S. scripta, S. stagnalis and S. selecta, 

Rodríguez-Pérez et al. 2009, Van de Meutter, Trekels & Green, 2010). The predator size-prey 

size relationship is one of many factors that can lead to greater use of exotic species as prey 

by native predators (Anholt & Werner 1998). There are many previous example of native 

predators consuming exotic prey (King et al., 2006; Bulté & Blouin-Demers, 2008), sometimes 

as the dominant food items (Carlsson et al., 2009). In temporary ponds, predation by 

Odonata larvae may provide biotic resistance to invasion (Levine, Adler & Yelenik 2004), 

limiting the abundance of T. verticalis which frequently reproduces in temporary ponds in 

the native range (Brown, 1951). Selective predation can often mediate similar co-existence of 

similar prey (Ciros-Pérez et al., 2004).  

 

Conclusion 

T. verticalis is a successful invader in SW Spain and is particularly dominant over native 

corixid species in saline wetlands (Rodríguez et al., 2009, Van de Meutter, Trekels & Green, , 

2010). Our findings provide no support for the hypothesis that the T. verticalis invasion has 

been promoted by lower predation rates compared to native corixids. On the other hand, T. 

verticalis may suffer particularly higher predation rates from native Odonata larvae, which 

may partly explain why this species is particularly successful in saline habitats where 

Odonata are rare. Further studies are required to compare the life histories of the alien and 

native corixids. Priorities for future research include direct interactions (aggression, 

predation) between T. verticalis and native heteropterans, as well the trophic ecology of T. 

verticalis and its role in invaded food webs. 
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Figure 1. Artificial plant used in the experiment. 
 

 
 

 
 

Figure 2. Example of stereomicroscope photograph of Odonata larvae mask. 
 



Chapter 4: Facilitative Interactions among Invaders 

! !  137 

C
hapter 5: W

etland R
estoration 

Table 1. Dragonflies mask length. 
 

 
 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

N Origen Genus 
Mask Length 
(mm) Treatment 

1 Cartuja M. Orthetrum spp.  3.5 SL+TV 
2 Cartuja M. Orthetrum spp. 3.6 SL+TV 
3 Cartuja M. Orthetrum spp. 3.0 SL+TV 
4 Cartuja M. Orthetrum spp. 3.3 SL+TV 
5 Cartuja M. Orthetrum spp. 3.1 SL+TV 
6 Cartuja M. Orthetrum spp. 3.3 SL+TV 
7 Cartuja M. Orthetrum spp. 2.8 SL+TV 
8 Cartuja M. Orthetrum spp. 3.2 SL+TV 
9 Cartuja M. Orthetrum spp. 2.6 SL+TV 
10 Cartuja M. Orthetrum spp. 1.9 SL+TV 
1 FAO Aesha spp.  5.6 SL+TV 
2 FAO Aesha spp. 4.7 SL+TV 
3 FAO Aesha spp. 5.5 SL+TV 
4 FAO Aesha spp. 5.6 SL+TV 
5 FAO Aesha spp. 4.3 SL+TV 
6 FAO Aesha spp. 4.8 SL+TV 
7 FAO Aesha spp. 4.3 SL+TV 
8 FAO Aesha spp. 4.5 SL+TV 
9 FAO Aesha spp. 4.6 SL+TV 
10 FAO Aesha spp. 4.8 SL+TV 
1 FAO Aesha spp. 4.9 SL 
2 FAO Aesha spp. 5.6 SL 
3 FAO Aesha spp. 4.7 SL 
4 FAO Aesha spp. 3.5 SL 
5 FAO Sympetrum spp. 3.5 SL 
6 FAO Sympetrum spp. 3.5 SL 
7 FAO Sympetrum spp. 3.4 SL 
8 FAO Sympetrum spp. 3.4 SL 
9 FAO Sympetrum spp. 3.7 SL 
10 FAO Sympetrum spp. 3.6 SL 
1 FAO Aesha spp. 4.7 TV 
2 FAO Aesha spp. 4.1 TV 
3 FAO Aesha spp. 4.7 TV 
4 FAO Aesha spp. 4.6 TV 
5 FAO Aesha spp. 5.6 TV 
6 FAO Crocothemis spp. 3.4 TV 
7 FAO Sympetrum spp. 3.6 TV 
8 FAO Sympetrum spp. 3.6 TV 
9 FAO Sympetrum spp. 3.7 TV 
10 FAO Sympetrum spp. 3.9 TV 
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Table 2. Comparison of the results (degrees of freedom, sum of squares, F-statistic and p-value) of 
GLMs performed with all Odonata genera with those including only the most frequent genus Aeshna 
spp. on the proportion (arcsin sqrt transformed) of corixids eaten by them.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of variation  Df  SS  F   P 

Aeshna spp.  

Sigara lateralis      

Predator  2 16.132 43.737 < 0.001 

Corixid  1 0.041  0.221    0.639 

Predator x Corixid  2 0.044  0.120    0.886 

Error 69 12.72   

Trichocorixa verticalis 

Predator  2 18.294 44.132 < 0.001 

Corixid  1 0.208  1.003    0.319 

Predator x Corixid  2 1.416  3.416    0.038 

Error 70 14.51   

All Odonata  

Sigara lateralis     

Predator  2 14.510 36.929 < 0.001 

Corixid  1  0.005  0.027    0. 868 

Predator x Corixid  2  0.543  1.382    0.256 

Error 85 16.70   

Trichocorixa verticalis 

Predator  2 17.138 41.167 < 0.001 

Corixid  1  0.124  0.597    0.442 

Predator x Corixid  2  1.491  3.581    0.032 

Error 85 17.69   
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Table 3. Types of habitat where Fundulus heterolictus, Gambusia holbrooki, Odonata larvae and Corixids 
(Sigara lateralis and Trichocorixa verticalis) occur within the Doñana area. 

 

 

Habitat occurrence Fundulus 

heteroclitus 

Gambusia 

holbrooki  

Odonata  

larvae 

Sigara 

lateralis 

Trichocorixa  

 verticalis 

Temporary ponds  x* x x x 

Permanent fresh 

ponds 

 x x x x 

Small streams x x x x x 

Seasonal lakes x x x x x 

Saline fish ponds  x x x  x 

Solar saltworks x    x 

Waterholes  x x x x 

Ditches x x x x x 



 

140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 141 

C
hapt
er 5: 
Rest
orati
on 
 

Chapter 5 

 

Newly created ponds complement natural water bodies for 

macroinvertebrate conservation in South West Spain 

 

Cristina Coccia, Bram Vanschoenwinkel, Luc Brendonck, Luz Boyero, Andy J. Green 

Submitted to Freshwater Biology 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 5: Wetland Restoration 

142 

Abstract 

Ecological restoration is becoming increasingly widespread to compensate for wetland loss 

and transformation worldwide. However, most post-restoration studies are descriptive, 

limited to particular taxonomic groups and fail to pinpoint underlying drivers of community 

assembly over time. During two consecutive inundations (2009 - 2011), we studied the 

macroinvertebrate communities in 32 temporary ponds constructed between 2004 and 2005 

during a restoration in Doñana, SW Spain, and compared them with ten natural reference 

sites nearby. We compared two dominant groups of active dispersers (Coleoptera and 

Hemiptera), with the whole aquatic macroinvertebrate community (a mix of active and 

passive dispersers) to shed light on dispersal constraints during ecosystem recovery. We 

hypothesized that (i) communities in new ponds would be less stable over years, (ii) species 

diversity is higher in reference sites than in new ponds for the whole community but not for 

active dispersers, (iii) communities in new ponds converge in their taxonomic composition 

with reference sites towards the final phase of annual succession within an inundation, and 

(iv) new ponds would contibute more to nestedness than reference sites. Although new 

ponds differed in abiotic conditions in respect to reference sites, we found that six to seven 

years after restoration invertebrate richness and diversity in new ponds matched the levels 

reached within reference sites, whilst invertebrate abundance was even higher. As 

succession progressed within an inundation, communities in new ponds were first 

dominated by branchiopods, then by flying colonists such as Chironomidae and Coleoptera 

and, finally, by halotolerant taxa such as the beetle Ochthebius viridis fallaciosus. However, 

communities of new and reference ponds frequently did not converge toward the end of 

inundations, but showed divergent community composition. Contrary to expectations, new 

ponds did not contribute more than reference ponds to the overall nested patterns, and 

contained taxa not found in reference sites, suggesting that, to date, they provide 

complementary habitats important for maintaining macroinvertebrate diversity. 
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Introduction 

Wetlands are dynamic ecosystems that support unique biodiversity and provide 

important ecosystem services (MEA 2005; Ramsar Convention Secretariat, 2006). However, 

they are vulnerable to land use changes (Nicolet et al., 2004) whilst, dependence on rainfall, 

overflowing rivers or groundwater for their filling makes them vulnerable to environmental 

change. Since 1900, most of the world’s wetland surface has been lost (Davidson, 2014), and 

human activities such as overexploitation, land conversion and introduction of alien species 

continue to cause wetland degradation and loss worldwide (MEA, 2005). On the other hand, 

wetland restoration projects have become common practice, aimed at re-establishing 

ecosystem functions and reversing biodiversity losses (Budelsky & Galatowitsch, 2000; 

Nakamura, Tockner & Amano, 2006; Palmer, 2009; Bullock et al., 2011). 

Post-restoration monitoring is essential to evaluate the effectiveness of restoration 

projects and to allow an adaptive management approach, but in many restoration projects 

monitoring is absent or inadequate (Ruiz-Jaen & Aide, 2005). Where monitoring exists, the 

overall restoration success is typically evaluated based on similarities between the restored 

sites and reference sites (Seabloom & Hall, 2003; Moseman et al., 2004; Matthews & Spyreas, 

2010; Meyer, Whiles & Baer, 2010). However, equally important is to compare the temporal 

dynamics of the restored versus the reference habitats and communities to visualize the 

stages of recovery over time. Community assembly typically involves deterministic 

processes that result in predictable changes in species composition controlled primarily by 

environmental gradients. However, stochastic processes such as long distance dispersal, 

priority effects and stochastic extinction can also modulate the outcome of species 

interactions over time (Chase, 2007). In a conservation context, this means that there are 

typically many potential routes to recovery after a disturbance, as well as a myriad of 

undesirable scenarios (Bond & Lake, 2003; Watts, Clarkson & Didham, 2008; Matthews & 

Spyreas, 2010; Suding, 2011; Brudvig, 2011). Temporal trajectories might thus help to identify 

the internal or external factors that cause change in community composition, both during 

inundations as well as long term changes across different years. 

In general, new ponds are rapidly colonized by species from nearby water bodies 

(Williams, Heeg & Magnusson 2007), which may serve as reference sites. As a consequence, 

species assemblages in new ponds can be nested (i.e. impoverished) subsets of those in 

reference sites (Patterson, 1987), especially in the early years after wetland restoration (Ruhí 

et al., 2013). Information about nestededness patterns, and how these change over time, can 

thus be important to fully evaluate the potential value of restored sites for biodiversity 

conservation.  
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The present study is centred in the “Caracoles estate” within Doñana National Park 

(South West Spain), where a large complex of new ponds was created during marsh 

restoration. The Doñana marshes have been subject to strong anthropogenic impacts since 

1920, including large-scale conversion of marshlands to cropland for intensive agriculture 

(Méndez et al., 2012). In 1998, the Spanish Ministry of Environment formulated a project to 

restore natural hydrology and reverse wetland loss. This allowed restoration of 5,600 ha of 

marshland, including the Caracoles estate (2,700 ha) which was incorporated into the 

National Park (Zorrilla-Miras et al., 2014; Sebastián-González & Green, 2014).  

Macroinvertebrates play a critical role in wetland food webs by linking primary 

production to higher level consumers, such as birds and fish. They are also very useful as 

indicators of ecosystem processes, such as energy allocation and transformation (Covich, 

Palmer & Crowl, 1999; Balcombe et al., 2005) and ecosystem health (Sharma & Rawat, 2009; 

Florencio et al., 2009; 2011). They can indicate ecological perturbations that occur over time, 

including heavy metal accumulation, eutrophication or a modified flow regime (Feld & 

Hering, 2007). Monitoring macroinvertebrates provides very different insights compared to 

water birds, which are more frequently used in monitoring programs but which are less 

sensitive to ecological change (Guareschi et al., 2015).  

Here we investigated the value of the Caracoles restoration project in supporting 

aquatic macroinvertebrates, six years after restoration. We compared species diversity and 

composition between newly constructed ponds and reference sites across two subsequent 

inundations in consecutive years. We compared patterns for the entire macroinvertebrate 

community with those for the speciose Coleoptera and Hemiptera. Macroinvertebrates have 

a broad range of dispersal abilities. The arrival of passive dispersers to new habitats can be 

slowed down by spatial constraints even if habitat conditions are suitable. In contrast, active 

dispersers such as adult Hemiptera and Coleoptera should be affected more by 

environmental control than by spatial processes (Heino, 2013). As a consequence, active 

dispersers may be better than the whole community for evaluating short-term ecosystem 

recovery. In addition, Coleoptera include particularly sensitive taxa (Bloechl et al., 2010; Van 

de Broeck et al., 2015), which may be good indicators of environmental differences between 

new and restored ponds. 

The general aim of this study was to evaluate if wetland restoration allowed the 

development of macroinvertebrate assemblages similar to those in natural wetlands within 6 

to 7 years. We tested the following specific hypotheses: (i) interannual variation in 

community structure would be more pronounced in new ponds due to their young age, in 

contrast to the older, mature reference sites; (ii) species diversity would be higher in 
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reference sites than in new ponds for the whole community, but not for Coleoptera and 

Hemiptera because of their high dispersal capacity; (iii) communities in new ponds become 

more similar to reference sites towards the final phase of succession within an inundation, 

when environmental filters become stronger (e.g. temperature and salinity increase) and 

allow only the less sensitive taxa to persist; and (iv) when all sites are subject to a nestedness 

analysis, the ranks of new ponds would be higher in absolute value then those of reference 

sites, with a higher contribution for active dispersers. This is because new ponds are 

expected to provide a simpler environment, and to lack many passive dispersers owing to 

spatial constraints.  

 

Material & Methods 

Study area and climate description 

The study was conducted within and around the Caracoles estate in the northern 

edge of Doñana National Park (South west Spain) (Fig. 1). This is a marshland area covering 

2700 ha situated in the Guadalquivir estuary. During the 1960s, the estate was hydrologically 

disconnected from the surrounding marshes to prevent flooding and was converted into 

arable farmland. For over 30 years it was used mainly for the cultivation of cereals. During 

2004 – 2005 restoration was carried out in the estate during the “Doñana 2005” government 

sponsored programme, with the aim of restoring its connection with surrounding marshes 

and creating a set of 96 experimental temporary ponds. These ponds were of similar elliptical 

shape but with variable long axis (60, 125 and 250 m) and maximum depth (30 and 60 cm). 

Most ponds were distributed in two clusters of 44 ponds each. In addition, 8 isolated ponds 

were constructed well away from these clusters (Supplementary Fig. 1). The colonization of 

these ponds by zooplankton and by water birds has been studied previously (Badosa et al., 

2010; Frisch et al., 2012; Sebastián-González & Green, 2014).   

Doñana has a Mediterranean climate with rainfall concentrated between October and 

March (wet season) and little precipitation from April to September (dry season). Caracoles 

ponds are usually flooded during the wet season and dry out from early May onwards until 

July. However, dates of flooding and drying vary among years, as a result of different 

rainfall and evaporation patterns. See Frisch et al. (2012) and Sebastian-Gonzalez & Green 

(2014) for more details of the study area. 
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 Site selection and data collection 

We sampled 32 new ponds within the Caracoles estate representative of all size and 

depth classes that were created, of which 24 were within the two clusters and 8 medium 

sized ponds were isolated and occurred outside these clusters (Supplementary Fig. 1). Most 

selected ponds had already been studied for zooplankton by Badosa et al. (2010). We also 

sampled ten older temporary reference sites representing different categories of water body 

types including three streams, two lakes, one artificial pond and one drainage ditch (see Fig. 

1 and Supplementary Table 1 for details) that were located nearby. These sites have broader 

range of environmental variables than new ponds (Supplementary Table 1), but were 

selected to be both relatively accessible and close to the new ponds.  

 

 

 

Figure 1. Map of the sampling sites in Doñana. The dark grey area in the upper figure indicates 
Doñana National Park and the light grey area indicates Doñana Natural Park. Blue points identify 
sampled new ponds within the Caracoles estate, orange crosses identify reference sites.  
 
 

Sampling was conducted during two consecutive inundations (2009 - 2010 and 2010 – 

2011 hereafter referred to as 2010 and as 2011) and started approximately 2 months after 

initial pond filling and was then repeated every 45 days, resulting in a total of 4 sampling 

events within each inundation before the ponds dried out (February, March, May and June). 

Total precipitation was 784 mm for the first inundation and 712 mm for the second 
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inundation with much higher rainfall from December to February in the first 

(Supplementary Fig. 2). In both inundations, new ponds and reference sites showed similar 

timing of flooding and drying. The heavy floods that occurred especially during the first 

inundation established temporary connections between some ponds and surrounding 

reference sites (Supplementary Fig. 3). During the first inundation the connections between 

ponds in clusters and some reference sites (Supplementary Fig. 3) inhibited access to the 

other part of the estate, preventing complete sampling of the area (see Supplementary Table 

2 for sampling details). 

 

Environmental variables measured in ponds 

During each visit we visually estimated the percentage of each pond area that was 

inundated, and water depth profiles were recorded with a measuring stick in five locations 

evenly distributed in the water body. We measured in situ the pH, salinity and temperature 

with a WTW 340i multiprobe. We also collected water samples for further analyses in the 

laboratory of chlorophyll-a, nutrient concentrations (total phosphorous and nitrogen) and 

turbidity. Chlorophyll a concentration (µg l-1) was determined using methanol extraction 

(Talling & Driver, 1963). Total phosphorus was determined by colorimetry after acid 

hydrolysis (APHA, 1980). Total nitrogen was digested with alkaline potassium persulfate 

(D’Elia, Steudler, & Corwin, 1977) and absorbance measured at 220 nm. The presence of fish 

was determined by visual inspection of the net after sweeping, or in the laboratory during 

sample processing. The presence of submerged vegetation was recorded and total emergent 

vegetation cover (%) was estimated visually.  

 

Sampling and processing of macroinvertebrates  

In each pond on each sampling occasion, 3 samples of macroinvertebrates were 

collected using a D-framed pond net (500 µm mesh; 16 × 16 cm) by sweeping at 5 meter 

intervals (at 0, 5 and 10 m from the shore) along a transect. At each of the three points a 1-m 

sweep of 30s was carried out (Supplementary Fig. 4). Invertebrate samples were preserved in 

plastic containers filled with 70% ethanol. Data from the three samples were pooled for each 

pond and date before analysis. 

Macroinvertebrates were identified in the laboratory under a stereo-microscope. The 

Coleoptera, Hemiptera and Crustacea were identified mostly to species level (after Jansson, 

1986; Friday, 1988; Vondel, 1991; Alonso, 1996; Nieser et al., 1994); Odonata, Gastropoda and 
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Ephemeroptera to genus level (Carchini, 1983; Gerken & Sternberg, 1999; Tachet et al., 2000); 

and Diptera, Trichoptera and Lepidoptera to family level (Tachet et al., 2000). We also 

counted the Collembola, Hydracarina, Coelenterata, Turbellaria, Oligochaeta and Hirudinea, 

but did not identify them to a lower taxonomic level. For Coleoptera and Hemiptera, some 

juveniles could be identified only to genus level and were assigned to species according to 

the proportions of congeneric adults recorded in the same pond. If adults were not present, 

juveniles were left at genus level. Not all Hemiptera instars could be classified to genus, and 

these were left at family level.  

 

Statistical analyses 

All analyses were conducted in the statistical programming environment R version 

2.15.3 (R Development Core Team, 2009), and functions in the packages Vegan (metaMDS, 

adonis, simper, nestednodf, oecosim, diversity, raupcrick, rarefy, speaccum), Bipartite 

(nestedrank) and Coin (Wilcox_test, permutational test). 

 

Environmental variables  

To investigate annual changes in abiotic conditions within new ponds and reference 

sites, and temporal differences between them, we used a Permutational Multivariate 

Analysis of Variance with distance matrices (PERMANOVA; “ADONIS” in R, see Oksanen 

et al., 2012). Analyses were conducted on log (x+1) transformed data (with the exception of 

pH and variables expressed as presence/absence). Annual dissimilarity among new ponds 

or reference sites and differences between them for each sampling occasion were calculated 

using Euclidean distances. To overcome the problem of differences in the number of 

sampled ponds between years (Supplementary Table 2), inter annual differences were tested 

using samples from May, as this was the month with the highest number of sampled sites 

each inundation. Differences between new and reference ponds were tested for each 

sampling occasion.  

When ADONIS revealed significant differences in new ponds or in reference sites 

between years, or significant differences between reference sites and new ponds on a given 

sampling occasion, we performed a Multivariate Homogeneity of Group Dispersion 

(SIMPER) analysis. This analysis identifies the most influential explanatory variables for 

differences in environmental conditions between inundations, or between new ponds and 

reference sites. The significance levels were calculated using Wilcoxon paired tests (for 

temporal differences) and Mann-Whitney U tests, respectively.  
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Macroinvertebrate inter-annual abundance and diversity 

Absolute richness and diversity were calculated using the lowest possible taxonomic 

level, generally genus and higher levels. Estimates of absolute richness were thus 

conservative. However, we used rarefied richness to compare between new and reference 

sites, which was performed using the minimum number of individuals collected within new 

ponds or reference sites between the two years. Annual changes in rarefied richness, the 

Shannon-Wiener diversity index and relative abundance (individuals/m2) were performed 

separately for new and reference ponds using the data from May by means of Wilcoxon 

paired tests. Given the differences in sampling effort between inundations we also estimated 

richness using sample-based rarefaction curves based on the Chao 2 estimator. 

Compositional similarity between inundations for new ponds or reference sites was 

tested using an ADONIS analysis on the abundance Hellinger transformed Euclidean 

distance matrix  (i.e. Hellinger distances, see Legendre & Gallagher, 2001).!Rare species that 

occurred in only one pond were excluded to avoid potential bias. If significant differences 

were found, we then performed a SIMPER analysis to identify the taxa that accounted for 

such differences. All analyses were done on the total community and for Coleoptera and 

Hemiptera separately. 

 

Temporal dynamics in the community within inundations  

We first visualized the differences in community structure between new ponds and 

reference sites for each month during each inundation using non-metric multidimensional 

scaling (NMDS) with the above mentioned distance matrices.  

We then compared rarefied richness, which was standardized according to the 

minimum number of individuals recorded each month, Shannon-Wiener diversity indices 

and relative abundance (individuals/m2) between new and reference ponds for each 

sampled month by means of a Mann-Whitney U test.  

We also tested the similarity in community composition between new and reference 

ponds using a month-by-month ADONIS analysis based on Hellinger distances. SIMPER 

analysis was used to identify the taxa that contributed most to differences between new and 

reference ponds. Analyses were conducted on the whole community and on the Coleoptera 

and Hemiptera separately. 

Finally, we investigated the compositional similarity between new and reference 

ponds controlling for the environmental variables that differed significantly between them 

each month with ADONIS. As the order of incorporation of non-orthogonal variables can 
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impact the outcomes of significance testing in this procedure, the explanatory descriptors 

were introduced as the first predictors in the analysis, adding water body type as the last 

variable. This procedure allowed measurement of the pure effect of water body type after 

controlling for environmental variability, which was largely responsible for their differences. 

!

Temporal trajectories in community assembly within inundations 

To assess whether communities in new ponds become more similar to reference sites 

during the final phase of succession within an inundation we used a modified version of the 

Raup-Crick index (Chase et al., 2011), which is robust to variation in species richness. This 

index uses presence/absence data to express the probabilistic dissimilarity between two 

observed communities relative to the null expectation under a random assembly. The null 

expectation was generated using 9999 randomizations of a null model. This index was 

calculated using one single matrix containing data from both new ponds and reference sites.  

We first tested for differences between the individual contributions to each pond type 

by means of Mann Whitney U tests on the averaged pairwise dissimilarity of all pairwise 

comparisons within the group. We tested if the dissimilarity index within each taxonomical 

group was affected by pond type (i.e., new ponds and reference sites). If pond type affected 

community composition, the pairwise dissimilarity indices between communities in new 

ponds and reference sites should be greater than those within new ponds. Because the 

pairwise dissimilarity indices calculated either among different new ponds or between new 

ponds and reference sites were not independent, the significance of this comparison was 

tested via Permutational Multivariate Analyses (ADONIS). 

 

Temporal nestedness 

To evaluate the contribution of new and reference ponds to nested patterns, we 

carried out nestedness analyses based on nested overlap and decreasing filling (NODF, see 

Almeida-Neto et el., 2008). NODF can assume values ranging from 0 to 100, with higher 

values indicating higher nestedness of communities. Nestedness analyses were calculated on 

presence/absence data,!for a maximally nested matrix (i.e. sites ranked in decreasing order 

of  species richness, and species ranked in decreasing order of incidence, so that the most 

diverse assemblage will occupy the first row and have a nested rank = 1). The significance of 

nestedness was evaluated by comparing observed values with those generated by 999 null 

models!randomized according to a quasi swap algorithm (Gotelli & Entsminger, 2001). The 

quasi swap method creates independent matrices that maintains both row and column 
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frequencies. This method is less vulnerable to Type I error (Gotelli, 2000). When significant 

nested patterns were detected, we tested for significant differences between the nested rank 

of reference and new ponds using a Mann-Whitney U test with 999 permutations.  

Analyses were repeated for each sampled month, each inundation and for each 

taxonomic group separately.  

 

Results 

Environmental variables 

New ponds and reference sites showed significantly different environmental 

conditions in the two study inundations (ADONIS, P < 0.05). Submerged vegetation, pH and 

turbidity explained ~50 % of cumulative differences between inundations for new ponds. 

During the second inundation, turbidity was significantly lower (Wilcoxon paired test, V = 

454.5, P < 0.001), but pH was significantly higher (V = 35.5, P < 0.001) and submergent 

vegetation was detected in a higher number of ponds (Table 1). Submergent vegetation, pH 

and chlorophyll-a explained ~50 % of cumulative differences between inundations for 

reference sites. During the second inundation, pH and chlorophyll-a were not significantly 

higher but submergent vegetation was detected in a higher number of reference sites (Table 

1).  

There were significant differences between new ponds and reference sites (ADONIS, 

P < 0.05) each month, for each inundation. Mean monthly values are shown in Table 1. 

Dissimilarity between them was higher in June during both inundations (ADONIS, ~11%), 

when new ponds also exhibited significantly higher salinity (Mann Whitney U test, W2010=60 

P = 0.003; W2011= 116, P = 0.007). Overall SIMPER analysis revealed that pH, chlorophyll-a 

content, vegetation (emergent and submergent), fish and turbidity together explained ~50 % 

of cumulative monthly dissimilarity between new ponds and reference sites, but they had 

different contributions each month (Supplementary Table 3). When differences in individual 

variables between new ponds and reference sites for a given month were significant, new 

ponds consistently had higher pH and presence of submerged vegetation, and lower 

chlorophyll-a concentration and presence of emergent vegetation and fish (detailed results 

not shown).  

See Supplementary Table 4 for detailed information on vegetation and fish identified 

during this study.  
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Table 1. Environmental characteristics (±SE) of new ponds and reference sites over the study period. 
In the case of fish, vegetation (emergent and submergent) and T. verticalis (TV) the values indicate the 
number of sites where they were detected. Emergent vegetation refers to the presence of Juncus 
subulatus and Scirpus maritimus.  
 

 2010 2011 
New Ponds Feb Mar May Jun Feb Mar May Jun 
N 12 14 32 8 30 32 32 14 
Mean depth 
(cm) 

55.72 
(5.16) 

54.82 
(5.2) 

28.28 
(3.12) 

16.84 
(4.16) 

38.71 
(2.96) 

46.13 
(2.83) 

26.23 
(2.77) 

15.41 
(3.09) 

Temperature 
(ºC) 

14.70 
(0.51) 

16.33 
(0.61) 

19.03 
(0.68) 

19.58 
(1.57) 

11.22 
(0.31) 

18.62 
(0.57) 

23.68 
(0.57) 

22.11 
(0.84) 

pH 
8.29 

(0.03) 
8.44 

(0.12) 
9.03 

(0.05) 
8.98 

(0.13) 
8.91 

(0.03) 
9.23 

(0.08) 
9.43 

(0.08) 
9.07 

(0.08) 

Salinity (psu) 
0.79 

(0.21) 
0.36 

(0.01) 
2.14 

(0.19) 
5.88 

(0.85) 
0.76 

(0.08) 
0.68 

(0.07) 
2.32 

(0.15) 
13.06 
(1.96) 

Turbidity 
(NTU) 

54.78 
(9.58) 

226.36 
(21.95) 

82.49 
(10.38) 

94.49 
(24.80) 

64.23 
(10.06) 

50.95 
(5.61) 

47.80 
(5.84) 

77.04 
(15.61) 

Total N  
(mg l-1) 

0.89 
(0.08) 

2.30 
(0.21) 

1.89 
(0.16) 

4.54 
(0.78) 

1.10 
(0.11) 

0.93 
(0.08) 

1.73 
(0.12) 

7.37 
(1.10) 

Total P  
(mg l-1) 

0.18 
(0.02) 

1.28 
(0.77) 

0.25 
(0.04) 

0.77 
(0.11 

0.21 
(0.02) 

0.18 
(0.02) 

0.15 
(0.02) 

0.40 
(0.06) 

Chla  
(µg l-1) 

2.95 
(0.37) 

9.27 
(1.25) 

18.88 
(4.81) 

74.34 
(15.17) 

5.72 
(0.58) 

3.33 
(0.36) 

8.5 
(1.68) 

42.15 
(10.80) 

Fish presence 0 3 4 2 1 9 7 9 
Emergent 
Vegetation  0 1 25 4 5 28 31 13 
Submerged 
vegetation  0 0 14 0 4 28 29 8 
TV presence 0 0 7 5 3 5 13 11 
Reference sites 
N 1 9 10 8 10 10 10 10 
Mean depth 
(cm) 61.17 

64.24 
(7.10) 

38.17 
(6.88) 

28.16 
(6.43) 

58.54 
(6.38) 

56.32 
(9.17) 

38.34 
(7.01) 

20.42 
(5.69) 

Temperature 
(ºC) 16.30 

19.43 
(0.47) 

18.47 
(0.85) 

19.46 
(1.26) 

13.88 
(0.50) 

19.15 
(0.87) 

22.13 
(0.67) 

24.63 
(0.93) 

pH 8.40 
8.25 

(0.14) 
8.45 

(0.13) 
8.29 

(0.18) 
8.46 

(0.04) 
8.64 

(0.23) 
8.47 

(0.19) 
7.97 

(0.17) 

Salinity (psu) 0.30 
0.21 

(0.08) 
1.33 

(0.37) 
2.15 

(0.49) 
0.52 

(0.07) 
0.53 

(0.08) 
1.58 

(0.22) 
5.27 

(1.28) 
Turbidity 
(NTU) 56.00 

146.80 
(32.61) 

75.48 
(10.99) 

78.39 
(16.53) 

48.02 
(7.72) 

36.45 
(13.10) 

55.39 
(13.76) 

163.74 
(44.92) 

Total N  
(mg l-1) 0.83 

2.19 
(0.18) 

1.58 
(0.35) 

3.00 
(0.47) 

1.62 
(0.30 

1.19 
(0.17) 

2.42 
(0.70) 

4.74 
(0.63) 

Total P  
(mg l-1) 0.26 

0.34 
(0.06) 

0.27 
(0.07) 

0.42 
(0.13) 

0.18 
(0.02) 

0.19 
(0.03) 

0.33 
(0.13) 

0.61 
(0.12) 

Chla  
(µg l-1) 3.52 

11.51 
(3.40) 

15.98 
(3.16) 

37.81 
(9.56) 

15.02 
(4.11) 

9.12 
(2.16) 

15.66 
(5.63) 

72.91 
(9.90) 

Fish presence 0 1 6 4 1 5 7 9 
Emergent 
vegetation  

1 9 10 8 9 10 10 10 

Submerged 
vegetation  

0 0 2 3 3 7 8 3 

TV presence 0 1 3 5 4 2 4 5 
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Macroinvertebrate abundance and diversity in different years 

Over the two sampling periods we identified a total of 109 taxa (55 identified to 

species level belonging to 22 main taxonomical groups (Table 2). Insects dominated the 

fauna in new ponds and reference sites in both inundations. Coleoptera was the most 

taxonomically rich group with a total of 43 taxa, followed by Hemiptera with 17. Odonata 

and Diptera were represented by 9 and 14 taxa, although this was an underestimate since 

they were not classified beyond genus and family, respectively.  

During the first inundation we found 73 taxa, of which 51 were recorded in new 

ponds, 66 in reference sites and 38 taxa were shared between new ponds and reference sites. 

During the second inundation in the next year we found 93 taxa, of which 74 were recorded 

in new ponds, 76 in reference sites, and 59 were shared. There were no significant differences 

between years in invertebrate abundance whether for new ponds or reference sites, for the 

whole community, Coleoptera or Hemiptera (Table 3). However, there was a significant 

increase in species richness and diversity in new ponds in the second inundation for all 

groups, whereas in reference sites we did not find any significant differences in species 

richness and diversity between years for each group (Table 3). 

Community composition varied between inundations at the whole community level 

(ADONIS; R2 = 0.07, P = 0.001) and for Coleoptera in new ponds (R2 = 0.05, P = 0.01), and for 

Hemiptera in new ponds (R2 = 0.11, P = 0.001) and reference sites (R2 = 0.14, P = 0.006). The 

taxa identified from SIMPER analysis as discriminant among inundations and with the 

higher abundance in new ponds or in reference sites are reported in Supplementary Table 5.  

Species accumulation curves showed an asymptotic trend for new and reference 

ponds for each group in each inundation, therefore any differences in sample size from 2010 

to 2011 were unlikely to affect the above results (Supplementary Fig. 5). 
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Table 3. Mean (±SE) cumulative abundance (A; individuals/m2), absolute richness (AR), rarefied 
richness (RR) and Shannon diversity (D) in new ponds (32) and reference sites (10) for the whole 
macroinvertebrate community and for Coleoptera and Hemiptera separately during May within each 
inundation. Asterisks indicate significant differences between inundations, according to Wilcoxon 
paired–tests, and are placed alongside the higher values. 
 

 
*P < 0.05 
**P < 0.01 
***P < 0.001 

 

Comparing new pond and reference communities within inundations  

The NMDS ordination showed different level of separations between new and 

reference ponds depending on the taxonomic group, the studied month and the inundation 

period (Fig. 2). We did not detect any significant differences in the whole community 

abundance between reference sites and new ponds each month, for either inundation, but 

richness and diversity were significantly lower in new ponds during February 2011 (Table 4). 

With the exception of June 2010, community composition differed between new ponds and 

reference sites each month for both inundatins (ADONIS; P < 0.05; see Supplementary Table 

6 for the main differences in taxa). Coleoptera abundance was higher in new ponds than 

reference sites in May and June each inundation but rarefied richness and diversity were 

never significantly different between pond types (Table 4). Coleoptera composition differed 

between them almost every month (ADONIS; P < 0.05), except during March 2011 (see 

Supplementary Table 7 for the main differences in taxa). Hemiptera had higher abundance in 

new ponds than reference sites in June 2011 and higher rarefied richness in May 2011 (Table 

4). Hemiptera composition did not differ significantly between new and reference ponds 

 A AR RR 
 

D A AR RR 
 

D 

 2010 2011 

Total Macroinvertebrates 
New 
Ponds 

1129.8 
(214.7) 

9.4 
(0.5) 

5.69 
(0.33) 

3.8 
(0.2) 

1096.9 
(120.8) 

14.4 
(1.0) 

7.99*** 
(0.49) 

6.1*** 
(0.5) 

Reference 
sites 

1600.1 
(660.9) 

12.9 
(2.5) 

6.27 
(0.61) 

4.1 
(0.63) 

1497.3 
(491.7) 

15.7 
(2.5) 

7.75 
(0.88) 

5.2 
(0.9) 

Coleoptera 

New 
Ponds 

368.5 
(63.3) 

3.6 
(0.3) 

2.79 
(0.25) 

1.7 
(0.1) 

445.8 
(66.5) 

6.9 
(0.7) 

4.93*** 
(0.46) 

3.2*** 
(0.3) 

Reference 
sites 

190.0 
(100) 

3.7 
(1.4) 

2.75 
(0.53) 

1.8 
(0.4) 

204.2 
(131.2) 

5 
(1.2) 

4.32 
(0.84) 

2.8 
(0.6) 

Hemiptera 

New 
Ponds 

420.0 
(110) 

3.1 
(0.2) 

2.88 
(0.20) 

2. 1 
(0.1) 

234.6 
(34.6) 

4.2 
(0.29) 

3.89*** 
(0.24) 

3.2*** 
(0.2) 

Reference 
sites 

297.0 
(91.9) 

3.2 
(0.7) 

3.02 
(0.43) 

2.5 
(0.4) 

224.9 
(155.4) 

2.9 
(0.2) 

2.83 
(0.42) 

2.2 
(0.2) 
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during the first flooding (ADONIS; P > 0.05), but it differed significantly each month during 

the second one (ADONIS; P < 0.05; see Supplementary Table 8 for the main differences in 

taxa).  

Most of the variation in community composition between new ponds and reference 

sites was related to their environmental differences, and most differences among new ponds 

and reference sites disappeared after adjusting for environmental differences (cut off of 

cumulative percentage of dissimilarity applied at ~70%). However, differences between 

water body types remained significant for the whole community in March 2011 (ADONIS; R2 

= 0.04, P = 0.032), for Coleoptera in June 2010 (R2 = 0.15, P = 0.041) and for Hemiptera in 

February 2011 (R2 = 0.07, P =0.012). 

 

 
 

Figure 2. NMDS ordination of (a) the whole community, (b) Coleoptera and (c) Hemiptera abundance 
showing the differences in community composition between new ponds (black symbols) and 
reference sites (grey symbols) across months. Feb = �, Mar = �, May =��, June = �. 
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Table 4. Mean (± SE) monthly abundance (individuals/m2), absolute richness, rarefied richness and 
Shannon–Wiener diversity in new ponds and reference sites for the total macroinvertebrate 
community (M) and for Coleoptera (C) and Hemiptera (H) separately. TV = Trichocorixa verticalis. 
Asterisks indicate significant differences between reference sites and new ponds, and are placed 
alongside the higher values.  
 

 2010 2011 
 Feb Mar May Jun Feb Mar May Jun 
N 12 14 32 8 30 32 32 14 

Abundance 
New Ponds 
M 255.20 

(68.63
) 

229.46 
(36.17

) 

1129.77 
(214.70) 

3092.34 
(645.16) 

620.13 
(49.00) 

1087.16 
(99.39) 

1096.87 
(120.85) 

1496.39 
(326.64) C 37.32 

(9.35) 
22.61 
(7.26) 

368.55* 
(63.31) 

404.16** 
(108.25) 

39.09 
(7.50) 

216.01 
(35.15) 

445.76* 
(66.46) 

244.78* 
(44.91) H 2.08 

(0.77) 
6.24 

(3.17) 
420.00 
(110) 

814.73 
(366.06) 

64.99 
(17.01) 

202.66 
(49.08) 

234.64 
(34.61) 

536.72** 
(152.94) TV 0 0 8.13 

(7.21) 
7.55 

(3.54) 
0.27 

(0.17) 
0.32 

(0.14) 
12.36 
(7.06) 

50.74 
(17.09) Reference sites 

N 1 9 10 8 10 10 10 10 
M / 165.73 

(55.86
) 

1600.12 
(660.89) 

1758.02 
(643.67) 

404.78 
(85.59) 

1444.15 
(423.68) 

1497.27 
(491.66) 

832.76 
(220.11) C / 16.97 

(8.12) 
190.00 
(100) 

77.34 
(38.68) 

52.70 
(14.20) 

104.78 
(43.77) 

204.16 
(131.25) 

87.28 
(60.55) H / 6.24 

(4.51) 
297.00 
(91.97) 

524.82 
(234.44) 

65.83 
(27.53) 

77.91 
(24.78) 

224.99 
(155.37) 

82.77 
(43.56) TV / 0.23 

(0.23) 
19.11 

(12.77) 
22.13 

(11.20) 
2.77 

(1.24) 
1.66 

(1.27) 
11.24 

(10.11) 
10.41 
(4.56) Absolute Richness 

New Ponds 
M 7.8 

(0.67) 
6.9 

(0.64) 
9.43 
(0.5) 

10.35 
(0.80) 

8.6 
(0.5) 

10. 
(0.64) 

14.40 
(1.05) 

12.07 
(1.45) C 4 

(0.36) 
2 

(0.29) 
3.6 

(0.34) 
3.85 

(0.58) 
3.46 

(0.34) 
4.6 

0.49) 
6.9 

(0.68) 
4.6 

(0.79) H 0.5 
(0.15) 

0.85 
(0.22) 

3.06 
(0.24) 

4.1 
(0.51) 

1.16 
(0.14) 

2.44 
(0.16) 

4.21 
(0.29) 

4.93 
(0.62 Reference sites 

M / 9.77 
(1.4) 

12.9 
(2.5) 

11.25 
(1.9) 

13.3 
(1.68) 

15.7 
(1.69) 

15.7 
(2.48) 

8.6 
(1.6) C / 2.4 

(0.55) 
3.7 

(1.40) 
2.87 

(0.77) 
5 

(0.99) 
5 

(1.37) 
5 

(1.21) 
3 

(0.91) H / 0.66 
(0.23) 

3.2 
(0.74) 

3.5 
(0.77) 

1.8 
(0.38) 

2.6 
(0.51) 

2.9 
(0.48) 

2.6 
(0.63 Rarefied Richness 

New Ponds 
M  3.08 

(0.27) 
5.8 

(0.33) 
4.57 

(0.32) 
3.44 

(0.16) 
4.10 

(0.27) 
7.99* 
(0.49) 

3.33 
(0.23) C  1.91 

(0.23) 
2.83 

(0.25) 
3.06 

(0.42) 
3.23 

(0.31) 
2.9 

(0.29) 
4.93 

(0.46) 
2.23 

(0.26) H  0.85 
(0.17) 

2.89 
(0.21) 

3.22 
(0.31) 

1.2 
(0.13) 

2.32 
(0.16) 

3.89 
(0.23) 

2.58 
(0.28) Reference sites 

M  4.58 
(0.73) 

6.41 
(0.63) 

5.16 
(0.62) 

6.56*** 
(0.71) 

4.73 
(0.65) 

7.75 
(0.92) 

2.66 
(0.37) C  2.25 

(0.42) 
3.14 

(0.82) 
2.51 

(0.67) 
4.24 

(0.75) 
3.34 

(1.07) 
4.32 

(0.77) 
1.80 

(0.29) H  0.66 
(0.23) 

3.02 
(0.65) 

2.81 
(0.51) 

1.8 
(0.39) 

2.47 
(0.57) 

2.83 
(0.46) 

1.94 
(0.42) Diversity 

New Ponds 
M 2.66 

(0.35) 
3.05 

(0.36) 
3.79 

(0.21) 
3.15 

(0.36) 
2.62 

(0.18) 
3.47 

(0.27) 
6.12 

(0.51) 
5.18 

(0.63) C 2.91 
(0.28) 

1.66 
(0.19) 

1.71 
(0.15) 

1.91 
(0.23) 

2.26 
(0.21) 

1.86 
(0.19) 

3.19 
(0.34) 

2.50 
(0.33) H 1 

(0) 
1.24 

(0.13) 
2.07 

(0.13) 
2.20 

(0.13) 
1.18 

(0.05) 
1.96 

(0.10) 
3.2 

(0.2) 
3.28 

(0.43) Reference sites 
M / 5.06 

(0.90) 
4.10 

(0.63) 
3.51 

(0.62) 
5.50*** 
(0.71) 

3.53 
(0.54) 

5.20 
(0.91) 

3.52 
(0.78) C / 2.05 

(0.37) 
1.76 

(0.42) 
1.93 

(0.38) 
3.49 

(0.74) 
3.49 

(1.02) 
2.78 

(0.57) 
1.84 

(0.26) H / 1.09 
(0.09) 

2.49 
(0.38) 

2.15 
(0.34) 

1.64 
(0.22) 

2.21 
(0.35) 

2.2 
(0.2) 

2.45 
(0.54)  

*P < 0.05 
**P < 0.01 
***P < 0.001 
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Temporal trajectories in community assembly within inundations 

For the whole community the modified Raup-Crick dissimilarity index (βRC) was 

significantly lower in new ponds compared to reference sites each month (i.e. comparing PP 

and RR in Fig. 3), during both inundations (Mann-Whitney U test, P < 0.05). Differences were 

not significant in March 2010 for Coleoptera (W = 32.5; P = 0.06) and Hemiptera (W = 62.5; P 

= 1) or in June 2010 for Hemiptera (W = 14; P = 0.06). 

When comparing differences within new ponds with those between new ponds and 

reference sites (i.e. PP and PR in Fig. 3), the βRC index was affected by pond type every month 

for the whole community and for months other than March for Coleoptera (ADONIS; P < 

0.05). For Hemiptera the βRC was affected by pond type in May 2010 (R2 = 0.05, P = 0.05) and 

all months in 2011 except March (ADONIS, P < 0.05).  

 

  
 
Figure 3. Mean pairwise Raup Crick dissimilarity indices for the whole community 
(Macroinvertebrates), Coleoptera and Hemiptera, within new ponds (PP), within reference sites (RR) 
and between them (PR). February 2010 data are missing because extensive flooding prevented the 
complete sampling of the area (Supplementary Fig. 3).  
 
 
 



Chapter 5: Wetland Restoration 

164 

C
hapter 5: W

etland R
estoratiom

 

Temporal nestedness 

During the first inundation, the overall macroinvertebrate community structure was 

never significantly nested, whereas Coleoptera were nested in May (NODF= 17.79, P = 0.08) 

and Hemiptera in June (NODF = 25.75, P = 0.04). During the second inundation, the whole 

community was significantly nested in March (NODF = 15.43, P =0.02), Coleoptera were 

nested in March (NODF = 21.53, P = 0.03) and June (NODF = 12.21, P = 0.017), whereas 

Hemiptera were nested in May (NODF = 44.56, P = 0.021) and June (NODF = 31.64, P = 

0.019). In no case did new ponds have a significantly higher nestedness rank than reference 

sites.  

 

Discussion 

In this study we found that 6-7 years after restoration new ponds provided different 

and more homogeneous environmental conditions to reference sites but still supported 

diverse communities representative of natural systems and seem to be a well-integrated 

component of the Doñana wetland complex. Reference sites did not appear to act as a source 

of colonist for the newly created ponds within an inundation any more than new ponds 

acted as a source for reference sites.  

 

Patterns of communities change over years 

Over the two studied consecutive inundations, richness and diversity increased in 

new ponds for all invertebrate groups, whereas they were almost stable in reference sites. 

This result supports our first prediction that communities in new ponds are less stable over 

years than those in reference sites. The colonisation of new ponds occurs when passive 

dispersers are transported via vectors, or when actively flying insects (e.g. Coleoptera and 

Hemiptera) arrive from nearby water bodies (Williams, Heeg & Magnusson, 2007). Passive 

dispersers with dormant propagules (e.g. branchiopods or turbellarians; see  Brendonck & 

De Meester, 2003) can recolonise temporary ponds in subsequent years when they are re-

flooded. Hence one reason why richness increased in our second study year could be the 

increase in diversity of the propagule bank in the sediments. Newly created habitats have 

unoccupied niches that become rapidly colonized by agile, generalist taxa. As communities 

develop, more niches become available (e.g. through development of vegetation) and species 

with specialized requirements can progressively colonize. Particularly, development of 

vegetation is likely to be important in our system since it has been shown to be a prime 
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driver of macroinvertebrate diversity in freshwater systems (Declerck et al., 2005). This is 

supported by the accumulation, or increased abundance, of taxa typically associated with 

macrophytes (e.g. Laccophilus minutus; Enochrus spp., Libellulidae, Berosus affinis). However, 

the difference between study years may also have been a consequence of the dynamic 

hydrology. Reduced connectivity and increased isolation between new ponds in the second 

year (Supplementary Fig. 3) could in itself be the cause of increases in beta and gamma 

diversity. Different communities can develop in similar but disconnected ponds because 

passive dispersers can largely be regulated by stochastic processes and priority effects 

(Scheffer et al., 2006). On the other hand, communities in reference sites seem to respond 

differently to variation in connectivity across inundations. This probably reflects their great 

habitat heterogeneity that maintains diversity within communities (Fig. 3). 

 

Macroinvertebrate recovery and dispersal limitation 

At a given point in time within each inundation, new ponds and reference sites often 

differed in community composition, richness and diversity. One major reason for this is that 

some taxa had not yet managed to colonize new ponds. The absence of some taxa (e.g. 

Gastropoda) from new ponds and the presence of others in low abundance (e.g. Oligochaeta) 

suggest that populations of these species have not yet (fully) established. Both taxa lack 

planktonic dispersal stages and Oligochaeta possess juveniles that develop in cocoons. These 

factors delay colonization of new habitats by Gastropoda and Oligochaeta, making their 

recovery very slow (Brady et al., 2002). These results support our second prediction that 

dispersal limitation will be more apparent for the whole community than for Coleoptera and 

Hemiptera with high flight ability. 

On several occasions, new ponds and reference sites differed in community 

composition but not in richness and diversity, suggesting that some taxa showed site-specific 

preferences owing to variation in environmental conditions, as observed at intermediate 

phases of succession within an inundation. New ponds were usually fishless, a factor that 

may explain the dominance of the large branchiopods Streptocephalus torvicornis and 

Chirocephalus diaphanus that hatch from dormant egg banks. Hatching experiments suggest 

that these taxa were absent from the sediments when new ponds were created (Frisch & 

Green, 2007), suggesting that their eggs were rapidly dispersed either through water 

connections between new and reference ponds, or by the abundant water birds (Green & 

Figuerola, 2005; Sebastián-González & Green, 2014). The dominance of chironomids in the 

new ponds was to be expected (Layton & Voshell, 1991) and as with the large branchiopods, 
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this might reflect their lack of dependence on higher vegetation. In contrast, among 

Coleoptera many Hydrophilidae are commonly associated with well-vegetated ponds with 

high pH (Bloechl et al., 2010; Touaylia, Garrido, & Boum aiza, 2013). New ponds generally 

had a higher coverage of submergent vegetation than reference sites. This difference could 

partly explain the higher abundances of adult Berosus (Hydrophilidae), found in new ponds 

in the later stage of an inundation. We cannot exclude, however, that lower predation 

pressure exerted by fish in new ponds also played a role. On the other hand, the lower 

abundance of Odonata reflects the lack of emergent vegetation in new ponds. As seasons 

proceed and temporary ponds begin to dry out, salinity increases causing osmotic stress to 

macroinvertebrates. In this advanced phase, only the most tolerant species could persist in 

the most saline new ponds, such as the Coleoptera Ochthebius viridis fallaciosus (Garrido & 

Munilla, 2008; Millán et al., 2011) or the Hemiptera Sigara stagnalis and the alien Trichocorixa 

verticalis (Van de Meutter, Trekels, & Green, 2010). However, our finding of higher 

Hemiptera richness in new ponds also reflects their acquisition of some widespread taxa 

absent from reference sites (e.g. Notonecta glauca).  

Our finding that richness and diversity in new ponds matched the levels in reference 

sites 6-7 years after restoration, and that abundance even surpassed the reference levels, is 

not unusual in restored wetlands. Several studies have shown a rapid recovery of species 

richness and diversity in macroinvertebrates within a few years after wetland restoration 

(Meyer & Whiles, 2008), and this was previously observed for zooplankton in our new ponds 

(Badosa et al., 2010). In contrast, the recovery of natural community composition generally 

takes more time (Levin & Talley, 2002). However, we recorded some taxa exclusive to both 

pond types and nearly 40 Coleoptera taxa in new ponds (Table 2), including specialist 

herbivores (e.g. Curculionidae), indicating that the new ponds are healthy ecosystems of 

conservation value (Bameul, 1994). 

 

Community similarity and the effect of pond type  

Overall, new ponds supported communities that were more similar among them  

(including ponds within and outside the clusters) than for reference sites. This probably 

reflects greater habitat heterogeneity between individual reference sites, which include a 

broader range of waterbody shape, depth and other characteristics (Fig. 1; Supplementary 

Table 1). The slow recovery for emergent plants in new ponds, might have increased this 

difference between new and reference ponds. Emergent plants appear to be relatively poor at 

colonizing by seeds compared to submerged ones, and were mainly expanding their cover 
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slowly by clonal horizontal expansion. Our results were similar to the results of a recent 

meta analysis (Moreno-Mateos et al., 2012), showing slow recovery rates for vegetation in 

restored wetlands.   

Our results did not support our hypothesis that community composition between 

new and reference ponds becomes more similar towards the end of an inundation, when 

environmental conditions associated with desiccation may filter out sensitive taxa. In fact, 

the environmental dissimilarity between new ponds and reference sites increased towards 

the end of the hydroperiods, when the smaller new ponds became more saline through 

evaporation. This indicates that communities were shaped mainly by environmental 

differences between pond types, which were sufficiently strong to prevent convergence in 

community composition. Differences between pond classes in levels of dissimilarity within 

each class (comparing PP with RR in Fig. 3) were weakest early on in March, and became 

weak again later in June in the case of the Hemiptera, probably because of their broader 

niches (Bloechl et al., 2010). Typically, early colonists are the most generalist, and should 

therefore be the least affected by specific habitat properties (Vanschoenwinkel et al., 2010). 

The lack of differences between pond classes in March (comparing PP with PR in Fig. 3) 

suggest that pioneer taxa colonized indiscriminately both new and reference ponds, 

irrespective of their environmental differences. This suggests that deterministic processes 

were of less importance for early colonists. However, landscape structure may influence 

species dispersal (Numa et al., 2009) and during the first inundation, when our system was 

completely flooded (Supplementary Fig. 3), high turnover of Coleoptera and Hemiptera 

across pond types may have decreased the inter-pond class variation.  

Differences in the abundance of invasive species between body types and between 

inundations may also have had strong effects. This concerns invasive fish (Supplementary 

Table 4) but also the alien corixid T. verticalis whose impact on other macroinvertebrates is 

unknown and is worthy of detailed investigation (Van de Meutter, Trekel & Green, 2010; 

Coccia et al., 2013). Within its native area T. verticalis exerted a top-down control on a tri-

trophic food web (phyoplankton-cladoceran zooplankton-T. verticalis, see Simonis, 2013). In 

our study area, we found a clear negative correlation between the abundance of T. verticalis 

and that of grazers and periphyton consumers such as Ochthebius viridis fallaciosus, Cyzicus 

grubei, and Corixidae nymphs or Coleoptera larvae (unpublished results). This suggests that 

this invasive species can affect the community structures indirectly by competition for food 

more than directly by predation (e.g. on chironomids or cladocerans), and that T. verticalis 

might potentially exert bottom up control in these ponds. However, Cladocera are rare or 
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absent in many of these ponds (Badosa et al., 2010; Frisch et al., 2012). Further studies are 

needed to clarify this point.  

 

Contribution to global nestedness 

A nested species assemblage occurs when taxa in sites with lower species richness are 

a proper subset of those in richer sites (Patterson, 1987). Nestedness is the result of a non 

random distribution of species between sites that differ in e.g., area, isolation or habitat 

diversity (i.e., nested habitats) (Patterson & Brown, 1991; Wright et al., 1998). Our initial 

hypothesis was that the more complex and mature reference sites would also contain more 

habitat specialists, and that new pond communities should be ranked higher in the 

maximally nested matrices than reference sites. We found no support for this hypothesis. 

Overall, the communities in our system exhibited significant nested patterns across 

inundations. Previous studies have found macroinvertebrates to be highly nested in 

freshwater habitats (Ruhí et al., 2013), including a study in a different part of Doñana 

(Florencio et al., 2011). There are several factors that may have contributed to generate the 

nested species assemblage in our system, including differences in pond size or isolation 

(Kadmon, 1995; Heino, Mykrä & Rintala, 2010), whose effects may have been variable within 

and between inundations. However, whatever the cause of nested patterns we did not find 

any significant differences in the nested ranks between new and reference ponds during each 

inundation for any taxonomic group. Nestedness is a type of hierarchical organization of 

species, sites or both (Patterson & Atmar, 2000), so that the rank order of site reflects the 

suitability gradient among them (Azeria & Kolasa, 2008). In our maximally packed matrix, 

similar mean ranking values between new and reference ponds suggest that new ponds, 

despite being less heterogeneous than reference sites, are now well integrated into our 

wetland complex. Furthermore, it seems likely that their ecological attributes increased the 

overall habitat complexity of the area. This in turn suggests that reference sites didn’t act as a 

source of colonists for new ponds any more than new ponds were a source for reference 

sites, underlining the value of the new ponds for biodiversity conservation 6-7 years after 

restoration.  
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Conclusion 

Our study shows that 6-7 years after restoration new ponds constructed in Doñana 

National Park (SW Spain), one of the most important wetland areas in Europe, hold different 

macroinvertebrate communities than natural reference sites. This may indicate that new 

ponds are still supporting pioneer communities. A longer time is usually needed to reach a 

stable, mature macroinvertebrate community assemblage in restored wetlands (Moreno-

Mateos et al., 2012), which seems likely in our system given the slow recovery of emergent 

vegetation. However, communities in new ponds will not necessarily converge towards the 

composition of reference communities. Environmental factors seem to be the main drivers of 

community assembly in this area, and it seems likely that the environmental heterogeneity 

between new ponds and reference sites still remains sufficiently strong for 

macroinvertebrates to perceive new ponds as different habitats. Further studies will be 

needed to address this in the future. The success of restoration is often evaluated based on 

similarities in species composition, diversity and density between the restored sites and 

target reference sites. However, this study illustrates the need to consider patterns of 

temporal composition, including species identity, and aspects of local and regional processes 

to fully restoration success. Although different to reference sites, these newly created ponds 

are healthy ecosystems with considerable conservation value.  
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 Supplementary Materials 

 
 
Figure 1. Codes of the sampled ponds within Caracoles estate 
 

!
 
Figure 2. Monthly variation in precipitation (mm) during the two studied inundations (H1 = 2009 - 
2010, total = 784 mm; H2 = 2010 - 2011, total = 712 mm). 
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Figure 3.!Landsat 7 ETM+ images showing the differences during peak flooding among inundations 
in the water surface area and the level of connectivity within the study area. Red points identify new 
ponds within Caracoles, orange crosses identify reference sites.  
 
 

 
 
Figure 4. Examples of 10 m line transect within large, medium and little ponds. Biological samples 
were collected at 0, 5 and 10 m from the shore by sweeping a D-framed pond net (500 µm mesh; 16 × 
16 cm) along 1 meter for 30s. Image from Google Earth. 
!
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"
"
Figure 5. Rarefaction curves and standard error bars showing differences in estimated taxon richness 
between new ponds (black) and reference sites (red) for the whole community (total 
macroinvertebrates), Coleoptera and Hemiptera.  
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Table 2. Sampling visits in new ponds and reference sites during the two studied years. 
!

 2010 2011 

New Ponds   

0N1GP Feb-Mar-May-June Feb-Mar-May-June 
0N2GP Feb-Mar-May-June Feb-Mar-May-June 
0N3GS Feb-Mar-May Feb-Mar-May 
0N4GS Feb-Mar-May Feb-Mar-May 
1N2MS Feb-Mar-May Feb-Mar-May 
2N1PS Feb-Mar-May Feb-Mar-May 
3N3MP Feb-Mar-May-June Feb-Mar-May-June 
4N4PS Feb-Mar-May Feb-Mar-May 
6N2MP Feb-Mar-May-June Feb-Mar-May-June 
8N1MS Feb-Mar-May Feb-Mar-May 
8N4PP Feb-Mar-May-June Feb-Mar-May 
9N3PP Feb-Mar-May-June Feb-Mar-May-June 
0S1GP May Feb-Mar-May-June 
0S2GP May Feb-Mar-May-June 
0S3GS May Feb-Mar-May 
0S4GS May Feb-Mar-May-June 
3S3MP May Feb-Mar-May-June 
4S1PS May Feb-Mar-May 
4S2MS May Feb-Mar-May 
5S1PP May Feb-Mar-May-June 
7S1MP May Feb-Mar-May 
8S2PP May Feb-Mar-May 
10S2PS May Feb-Mar-May-June 
10S4MP May Feb-Mar-May-June 
AO1 May Feb-Mar-May 
AO2 May Feb-Mar-May 
AC3 May Mar-May-June 
AC4 May Mar-May-June 
AE5 Mar-May-June Feb-Mar-May 
AE6 Mar-May-June Feb-Mar-May 
AE7 May Feb-Mar-May 
AE8 May Feb-Mar-May 
Reference Sites   
C.CAR Feb-Mar-May-June Feb-Mar-May-June 
CAÑO_1 Mar-May-June Feb-Mar-May-June 
ENT_1 Mar-May-June Feb-Mar-May-June 
ENT_2  Mar-May Feb-Mar-May-June 
FAO Mar-May-June Feb-Mar-May-June 
GUADI_1 Mar-May-June Feb-Mar-May-June 
GUADI_2 Mar-May-June Feb-Mar-May-June 
LOBO Mar-May-June Feb-Mar-May-June 
MARILOPEZ May Feb-Mar-May-June 
ROSALIMAN Mar-May-June Feb-Mar-May-June 

!
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Table 3. Results from SIMPER analyses showing the main environmental variables that contributed 
(%) to the monthly dissimilarity (according to ADONIS analyses) between new ponds and reference 
sites. Cut-off of cumulative percentage of dissimilarity set at ~50%. C= Contribution to dissimilarity. 
Analyses were not possible for February 2010 due to the limited number of reference ponds sampled.  
 

 2010 2011 

 Feb Mar May Jun  Feb Mar May Jun 

Overall dissimilarity (%) / 9.4 9.4 11 10.0 9.7 9.8 11.8 
pH  47 19 17 42 26 27 22 
Turbidity      42  54 
Chlorophyll-a    51 54  56 44 
Emergent vegetation  30  29 27    
Submergent vegetation   47     33 
Fish   35 41  57 43  

 
 
 
Table 4. Vegetation (emergent and submergent) and fish identify during the two studied inundations. 
 

 New Ponds Reference Sites 
Emergent Vegetation   
Scirpus maritimus x x 
Juncus subulatus x x 
Phragmites spp.  x 
Typha spp.  x 
Submerged Vegetation   
Ranunculus spp. x x 
Ruppia spp. x x 
Chara spp. x x 
Zanichellia spp. x x 
Damasonium spp. x x 
Callitriche spp. x x 
Riella spp. x x 
Azolla filiculoides  x 
Lemna spp.  x 
Fish  x 
Atherina boyeri  x 
Fundulus heteroclitus  x 
Gambusia holbrooki x x 
Cyprinus carpio x x 

 
 
  



  Chapter 5: Wetland Restoration 

183 

C
hapter 5: W

etland R
estoratiom

 

Table 5. Result from SIMPER analyses showing abundance of the main taxa that contributed (%) to 
the dissimilarity (according to ADONIS analyses) between inundations. Cut-off of cumulative 
percentage of dissimilarity set at ~50%. C= Contribution to dissimilarity. Significant differences in 
abundance (in bold) between wetland types were identified via Wilcoxon tests. 
 

  
 
 

 New Ponds Reference Sites 
Total macroinvertebrates 

C H1 (2010) 
 
H2 (2011) C H1 (2010) 

 
H2 (2011) 

Berosus guttalis 6.21 264.7 ± 61.4 173.6 ± 41.6    
Corixidae spp. (nymphs) 5.20 317.8 ± 92.9 101.43 ± 22.6    
Chironomidae spp. 4.69 328.2 ± 76.9 375.5 ± 56.8    
Berosus affinis 4.21 50.9 ± 22.6 136.0 ± 37.8    
Sigara lateralis 2.80 61.7 ±1 8.3 61.1 ± 14.8    
Ochthebius viridis 
fallaciosus 

2.51 23.4 ± 11.4 40.2 ± 14.9    

Corixa affinis 2.49 6.8 ± 2.5 23.4 ± 5.6    
       
Coleoptera       
Berosus guttalis 14.1 264.7 ± 61.4 173.6 ± 41.6    
Berosus affinis 10.0 50.9 ± 22.6 136.0 ±3 7.8    
Berosus spp. (larvae) 8.0 10.5 ± 5.1 4.8 ± 3.4    
       
Hemiptera       
Corixidae spp. (nymphs) 38.6 317.8 ± 92.9 101.43 ± 22.6 15.6 178.1 ± 59.4 159.4 ± 136.0 
Sigara lateralis    9.6 47.9 ± 17.2 9.0 ± 6.1 
Micronecta scholtzi    8.2 10.2 ± 7.2 16.2 ± 10.8 
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Synthesis  

In the 18 years since its first detection in the Iberian Peninsula T. verticalis has 

increased its area of distribution not only within Doñana, but also in other areas of great 

conservation interest such as Ramsar wetlands and nature reserves in Andalucia. The 

present thesis provides valuable insight into the factors that contribute to make this species 

so successful in its introduced range. We used both experimental and observational 

approaches to consider the role of four main determinants of successful invasions: plasticity, 

resource competition, parasites and facilitative interactions among invaders. Aimed at the 

general understanding of this invasion, we also investigated the macroinvertebrate 

communities of newly created ponds that housed breeding populations of this invasive 

species to shed light on the potential consequences on native communities. 

Previous literature illustrated the ability of T. verticalis to cope with high salinity in 

both its native and invaded range. This trait is assumed either to facilitate its colonization 

and the dominance in the sites it invaded, or to confer competitive advantage over native 

corixids, especially in the face of global change. Differences in performance and plasticity 

between native and invasive species have often been considered of particular importance 

during the invasion process. Based on this, but also taking into account the potential 

synergistic or additive effects of temperature and salinity on controlling insect physiological 

tolerance, in Chapter 1 we examined whether the ecophysiology of this alien species favours 

its spread in the Iberian Peninsula and its dominance in saline areas. We experimentally 

compared several indicators of upper and lower thermal sensitivity of individuals of T. 

verticalis and the native Sigara lateralis acclimated to different conditions of temperatures and 

salinities. We showed that the physiological responses to heating, cooling and freezing 

differed between native and invasive corixids. Although being less thermally tolerant than 

native species, T. verticalis showed broader physiological plasticity when exposed to different 

conditions of temperatures and salinities. In addition, T. verticalis increased its tolerance to 

both heat and freezing following exposure to high conductivities. Furthermore, the 

osmoregulatory ability of T. verticalis makes this species able to spend the cold season in 

saline wetlands in southern Spain, where it can achieve a continuous reproduction, and this 

factor could explain its dominance in permanent saline ponds. Translated to a climate 

change perspective the greater plasticity of T. verticalis makes it better than native species to 

survive temperature and salinity fluctuations, a factor that may further facilitate its spread in 

the future.  

Resource competition has long been regarded as one of the major mechanisms 
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responsible for successful invasions, and invasive species are frequently considered superior 

competitors. If competition between native and invasive species occurs, the outcome of their 

interactions (species exclusion or coexistence) depends on the degree of resource/niche 

overlap, which can be context specific. The high voracity of T. verticalis in the native range 

and the morphological similarity of mouthparts within Hemiptera suggest that it may have a 

high impact on native corixids through resource competition. In Chapter 2 we used stable 

isotopes of carbon (C) and nitrogen (N) applied to experimental and field data, to explore 

niche partitioning between T. verticalis and native co-occurring corixids in permanent (S. 

lateralis) and temporary ponds (S. lateralis and Sigara scripta) in Doñana. We also explored the 

trophic ecology of T. verticalis in permanent saline waters, where it has stable reproductive 

populations. As expected, there was a clear change in trophic interactions between native 

and invasive corixids in both waterbody types. In permanent ponds, where we assumed that 

consumers and resources were all in equilibrium, the native and invasive corixids had 

different isotopic values and no trophic overlap. This suggests that strong resource 

partitioning facilitates their coexistence. In particular, the consistently lower δ 15N of the 

invasive species suggests that it may be feeding at a lower trophic position and relaying 

more on herbivory (i.e., periphyton) than its native competitors. However, in temporary 

sites, with high corixid densities and characterized by high disturbance and superabundant 

food of low diversity, the native and invasive corixids showed some degree of niche overlap, 

and a slight reduction in trophic level for the native species. This suggests that the high 

dietary plasticity of the native species is the mechanism behind their coexistence in 

temporary ponds. Overall, these findings indicate that competition among corixids is not 

equal between habitats that differ in stability and types and abundances of local food 

sources. 

It is well known that hemipterans host a diverse community of parasites, including 

water mites (Hydracarina) that inhabit almost all fresh and brackish aquatic environments. 

T. verticalis may either be less parasitized than native species because it loses its natural 

parasites during the introduction process, or it can be more parasitized because it represents 

a more suitable host for native parasites. In addition, new parasites may also have been 

introduced with T. verticalis, with potential negative effects on native species. In Chapter 3, 

we explored the potential role of water mites in the invasion dynamics of T. verticalis. We 

compared infestation levels of larval water mites between native (S. lateralis and S. scripta) 

and exotic corixids along a salinity gradient, taking also into account the effect of the host’s 

size for parasite acquisition. Samples from a specific sampling were used to obtain the 

calculation of mite infection rates as accurately as possible. In saline wetlands where T. 
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verticalis dominates, water mites were absent, in contrast to temporary waters where two 

mite species were found to affect corixids (Eylais infundibulifera and Hydrachna skorikowi). For 

both of them there was a negative association between prevalence and salinity. Overall, the 

total parasite prevalence, total parasite abundance and mean intensity of each water mite 

were higher in T. verticalis than in native corixids. The greater prevalence of H. skorikowi in T. 

verticalis respect to S. lateralis and of E. infundibulifera respect to both native corixids points 

toward a case of parasite acquisition and a reencounter between host and parasites in the 

invaded area, respectively. Water mites may have different effects on corixids, including 

reducing flight ability and reproductive success or competing them for food. Therefore, 

parasites may have a role in explaining why in low salinity waters, where T. verticalis suffers 

higher susceptibility to infection compared to native corixids, the species is not particularly 

successful. On the other hand, in saline waters the absence of water mites may partly explain 

the abundance and dominance of T. verticalis. 

In a multiple invaded scenario, the presence of one invader may potentially promote the 

establishment and spread of new invaders, especially if it shares a co-evolutionary history 

with them. It has been shown that facilitative interactions are as frequent as any other biotic 

interaction. As a consequence, the co-occurrence of exotic predators and exotic prey can, for 

example, heavily impact native prey by hyperpredation. Based on this premise and 

assuming that only organisms with specific and effective anti-predatory mechanisms are 

likely to coexist with exotic predators, in Chapter 4 we investigated whether the spread of 

the alien water boatman T. verticalis in the Iberian Peninsula is related to reduced mortality 

from predation compared with native Corixidae, especially since T. verticalis shares a 

common native range in North America with the invasive fishes Gambusia holbrooki and 

Fundulus heteroclitus. By using an experimental approach we compared the proportion of 

corixids (either invasive or native) eaten by the two exotic fish and by native Odonata larvae. 

We hypothesized that predator responses to different prey depend on shared co-

evolutionary history, and that differences in predation also depend on predator and prey 

size. Our results provide no evidence that the invasion of T. verticalis has been promoted by 

lower predation rates compared to native corixids. We were able to show that both alien and 

native corixids suffered similar, high predation rates by Fundulus and Odonata larvae. 

Instead, when both corixids were mixed together, T. verticalis were eaten more by Odonata 

larvae, as the result of their smaller size. We suggest that Fundulus and the native Odonata, 

which are more common in permanent saline waters and low salinity ponds respectively, 

might have a heavy impact on the invasive corixids. However, it seems possible that in saline 

waters the presence of alternative prey for Fundulus, and the presence of top predators that 
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feed on this exotic fish can reduce the extent of predation on T. verticalis. Instead, in low 

salinity ponds T. verticalis may suffer particularly high predation rates from native Odonata 

larvae, which may provide biotic resistance to their invasion and may partly explain why 

this species is particularly successful in saline habitats where Odonata are rare.  

As in many other countries, wetland ecosystems in the Iberian Peninsula are subject not only 

to habitat loss and degradation, but also to multiple biological invasions. In recent years, 

restoration projects have become common practice aimed at re-establishing ecosystem 

functions and reversing biodiversity losses worldwide. In some cases invasive species 

motivated restoration projects, but sometimes they were also the causes of their failure. In 

Chapter 5, we investigated the value of the Caracoles restoration project in supporting 

macroinvertebrates during two consecutive inundations. T. verticalis is known to have 

reproductive populations in these new ponds. We compared the temporal dynamics of two 

dominant groups of active dispersers (Coleoptera and Hemiptera) with the whole aquatic 

macroinvertebrate community (a mix of active and passive dispersers) to shed light on 

dispersal constraints during ecosystem recovery. Macroinvertebrate richness and diversity of 

new ponds matched those in reference sites and abundance was even higher, but they 

showed different community composition. As expected, dispersal limitation affected the 

recovery of the whole community, but contrary to our expectations new ponds contributed 

equally to the overall nestedness than reference sites. We suggest that new ponds provide 

complementary habitats suitable for species with or without specific preference for them. 

Although most of the differences between waterbodies were the result of their 

environmental differences, these differences may also be partly due to the different 

distribution of invasive species between waterbodies and hydroperiods (including alien fish 

as well as T. verticalis). 

 

Integrating results  

The results of this thesis shed light on the role of salinity for the invasion success of T. 

verticalis. The dominance of this invader in saline waters, but its absence from fresh waters 

where native corixids are dominant, seems the result of the combination between its ability 

to maintain continuous reproduction and development in stressful situations (Chapter 1), for 

example, during the cold season (Jack-of-all-trades scenario sensu Richards et al., 2006); the 

reduced probability to encounter less halotolerant natural enemies such as parasites and 

predatory Odonata larvae (Chapter 3 & 4); and the higher probability to find high quality 

periphyton (Chapter 2). In addition, in stable permanent saline ponds fish may act as 

keystone predators, preventing the dominant competitor from monopolizing the major 
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resources (Brucet et al., 2005), thus the overall diversity of food should be greater than in 

temporary sites. In such conditions, native and invasive corixids can co-exist through 

resource partitioning (Chapter 2), and predators that include corixids in their diet may 

encounter alternative prey or may be low in abundance owing to limitation by their own 

predators (Chapter 4). This suggests that saline waters act as sources of T. verticalis for the 

surrounding freshwater habitats in Doñana and elsewhere.  

We found good evidence that, to date, T. verticalis does not represent a serious threat 

for co-occurring native species in temporary sites. As emerged from Chapter 5 the presence 

of T. verticalis within the newly created ponds in Caracoles did not affect the successful 

recovery of macroinvertebrates, including corixids (Chapter 5). However, in these waters this 

could be the result of the greater rate of parasitism infection that T. verticalis suffered respect 

to native Corixids (Chapter 3) and the greater predation pressure exerted by Odonata larvae 

on them (Chapter 4). Both these factors may have prevented T. verticalis to exert a strong 

impact on native species by increasing their mortality rates, limiting their population growth 

and changing the outcome of species relationships. In addition, the stressful conditions of 

high temperature and low salinity that are likely to favour the invader over native corixids 

are generally concentrated in a short phase within the inundation, when the abundance of 

food is high even if its diversity is low (Chapter 2). 

However, our results also suggest a risk of more complex interactions with native 

corixids in the future. In Chapter 5, we suggested that differences in the abundance and in 

the number of sites colonized by T. verticalis between years might have had strong effects on 

the patterns of macroinvertebrate recovery that we have detected in the Caracoles estate, 

especially for corixids. T. verticalis colonized a higher number of sites during the second 

studied year. Probably the environmental differences (e.g., water depth, salinity) between 

the two inundations are responsible for such differences. Climate change will affect aquatic 

systems by warming waters, increasing evapotranspiration rates and salinity (Moss et al., 

2009). As suggested in Chapter 1, these changes are expected to favour T. verticalis spread 

since it will be better able than native species to cope with higher salinities and climate 

fluctuations. At the same time, increases in water salinity may filter out the most sensitive 

taxa including parasites and Odonata larvae. Alternatively, as in the case of epibiotic mites 

infecting the invasive crab Eriocheir sinensis (Normant et al., 2013), the further expansion 

predicted for T. verticalis (Guareschi et al., 2013) may cause a disease impact on native corixid 

populations via the spillback of native parasites (Daszak, Cunningham, & Hyatt, 2000; 

Tompkins & Poulin, 2006). Climate change can also decrease aquatic system productivity 

(O’Reilly, Alin, Plisnier, Cohen, & McKee, 2003), which implies that competition for food 
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between native and invasive species may become exacerbated (Chapter 2). L’Mohdi and co-

workers (2010) suggested that the presence of T. verticalis affected the halophilic Sigara 

selecta. In Doñana S. selecta already seems to be much rarer than before, and in our study sites 

S. selecta was absent, so we cannot rule out the possibility that this absence was induced by a 

strong competition with the invasive corixid. The future expansion of T. verticalis predicted 

by bio-climatic models (Guareschi et al., 2013) suggests that the presence of S. selecta in SW 

Spain may be seriously threatened by this invasion. Similarly, T. verticalis might also affect 

the other native species in the future, when salinities and temperatures increase.  

 

Future perspectives 

Overall, this thesis helped to shed light on the mechanisms and processes explaining 

the success of T. verticalis as an invasive species in saline waters, and the possible 

consequences of this invasion for native fauna in less saline sites. However, several new 

questions that emerged during this study need to be investigated in the future. Here I 

suggest several research lines that may help to further our understanding of this invasion 

process.  

It will be interesting, in my opinion, to introduce a comparative biogeographical 

approach to this invasion, applying molecular analyses and an invasion genetics approach. 

This should allow identification the subspecies of T. verticalis arrived in the Iberian 

Peninsula, from where it has spread. The physiological performance of T. verticalis should 

also be compared between the native and invaded range, so as to understand the role of 

adaptive evolutionary changes in this invasion. It would also be interesting to examine 

whether the distinct populations outside its native range (i.e. in the Iberian Peninsula, 

Morocco, South Africa, etc) have a common origin.  

A better understanding of corixid diet seems crucial, especially for predicting the 

potential impact of T. verticalis on the foodweb. I suggest the use of amino acid isotopes 

analyses instead of bulk tissue isotopes analysis. Despite being much costly, this technique 

can bypass some of the problems we encountered using the bulk tissue approach. Since our 

results suggested that T. verticalis might compete for food with native species under 

prolonged stressed conditions, I suggest the use of manipulative experiments of salinity, 

food (diversity and availability) and consumer density to confirm this hypothesis, using also 

native species not included in this study, such as Sigara selecta. 

Since the higher levels of parasite infection in T. verticalis respect to native corixids, 

and its high dispersal ability, make it plausible that T. verticalis amplifies the infections on 

native corixids, experimental tests may help to elucidate this hypothesis. In addition, as 



 Synthesis 

! !  195 

mentioned above, parasites could affect hosts in different way including reducing fecundity 

and affecting individual growth. It would be interesting to compare the effects of parasite 

infections between native corixids and T.verticalis, and to study whether parasite infections 

alter their behaviour or morphology, to elucidate the role of parasites during invasion 

processes.  

Regarding the effect of T. verticalis on the invaded community, our results showed 

different patterns of recovery in Hemiptera composition between years. It would be helpful 

to conduct a mesocosm study that experimentally tests the impact of T.verticalis during 

community assembly, particularly if the invasion sequence affected the community 

structure.  

Finally, there is the need, in my opinion, for long-term monitoring of 

macroinvertebrates in areas thought to be suitable for T. verticalis invasion but which have 

not yet been invaded or in which this species is still rare, so as to have more accurate 

information on the changes in the invaded community that this species can produce after its 

arrival through time. This would include any saline wetland east of Gibraltar, since the 

species has not yet been detected further east than Barbate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Synthesis 

196   

References 

Brucet, S., Boix, D., López-Flores, R., Badosa, A., Moreno-Amich, R. & Quintana, X. D. (2005). 

Zooplankton structure and dynamics in permanent and temporary Mediterranean salt 

marshes: taxon-based and size-based approaches. Archiv Für Hydrobiologie, 162, 535–555.  

Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2000). Emerging Infectious diseases of wildlife 

— Threats to biodiversity and human health. Science, 287, 443–450. 

Guareschi, S., Coccia, C., Sánchez-Fernández, D., Carbonell, J.A., Velasco, J., Boyero, L., … 

Millán, A. (2013). How Far Could the alien boatman Trichocorixa verticalis verticalis 

spread? Worldwide estimation of its current and future potential distribution. PLoS One, 

8, e59757.  

L’Mohdi, O., Bennas, N., Himmi, O., Hajji, K., El Haissoufi, M., Hernando, C., … Millán, A. 

(2010). Trichocorixa verticalis verticalis (Fieber,1851) (Hemiptera,Corixidae): une nouvelle 

especies exotique au Maroc. Boletin de La Sociedad Entomológica Aragonesa, 46, 395–400. 

Moss, B., Hering, D., Green, A.J., Aidoud, A., Becares, E., Beklioglu, M., … Weyhenmeyer, G. 

A. (2009). Climate Change and the future of freshwater biodiversity in Europe: A primer 

for policy-makers. Freshwater Reviews, 2, 103–130.  

Normant, M., Zawal, A., Chatterjee, T., & Wójcik, D. (2013). Epibiotic mites associated with 

the invasive Chinese mitten crab Eriocheir sinensis – new records of Halacaridae from 

Poland. Oceanologia, 55, 901–915. 

O’Reilly, C. M., Alin, S. R., Plisnier, P., Cohen, A.S. & McKee, B.A. (2003). Climate change 

decreases aquatic ecosystem productivity of lake Tanganyika, Africa. Nature, 424, 766–

768. 

Richards, C.L., Bossdorf, O., Muth, N.Z., Gurevitch, J. & Pigliucci, M. (2006). Jack of all 

trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology 

Letters, 9, 981–93.  

Tompkins, D.M. & Poulin, R. (2006). Parasites and Biological Invasions. In R. B. Allen & W. 

G. Lee (Eds.), Biological Invasion in New Zealand (Vol. 186, pp. 67–86). Berlin: Springer-

Verlag. 

 



 

197 

General Conclusions 

Chapter 1 

The physiological responses to heating, cooling and freezing differ between the invasive T 

verticalis and the native S. lateralis. Although the native species has a broader thermal range, 

the alien corixid has greater plasticity to heat, cold and freezing. 

 

T. verticalis performs particularly well at higher salinities and temperatures. In particular, its 

tolerance to both heat and freezing increases following exposure to high conductivities.  

 

The osmoregulatory ability in T. verticalis might enhance its resistance to cold stress, which 

in turn may allow the invasive species to spend the cold season in saline wetlands where it 

achieves continuous reproduction and development.  

 

Chapter 2 

Trophic interactions between native and invasive corixids change between habitats that 

differ in water stability and in the types and abundances of local food sources.  

 

Resource partitioning between native and invasive corixids is strong in stable waters, where 

T. verticalis may be feeding at a lower trophic position and relying more on herbivory than its 

native competitors. In contrast, niche overlap between native and invasive corixids exists in 

temporary waters, and the native species seems to occupy a slightly lower position 

compared to stable waters. In combination, these results indicate that competitive 

interactions can exist between them. 

 

In stable permanent ponds the invasive species has a periphyton-based diet and can be 

assigned to the grazer guild, especially the nymphs. 

 

Chapter 3 

In saline wetlands, where T. verticalis dominates, water mites are absent. In contrast, in 

temporary waters T. verticalis is infected by both species of water mites found in this study 

(Hydrachna skorikowi and Eylais infundibulifera). 



General Conclusions 

198   

Total parasite prevalence, total parasite abundance and mean infection intensity of water 

mites are higher in T. verticalis than in native corixids.  

 

The greater prevalence of H. skorikowi in T. verticalis compared with S. lateralis points to a 

case of parasite acquisition. On the other hand, the greater prevalence of E. infundibulifera in 

T. verticalis respect to both S. lateralis and S. scripta does not exclude the possibility that this 

parasite came with T. verticalis, although it is more likely that they have reencountered in the 

invaded area. 

 

The higher susceptibility to parasites compared with native species probably limits T. 

verticalis invasion in natural wetlands of low salinity. 

 

Chapter 4 

T. verticalis does not suffer lower predation rates compared to native corixids. Predation rates 

do not depend on whether corixids encounter predators sharing a common native range or 

predators of a different origin. 

 

Odonata larvae distinguish between alien and native corixids on the basis of their body size. 

The smaller T. verticalis suffers higher predation pressure than the larger S. lateralis. This may 

partly explain why this species is particularly successful in saline habitats where Odonata 

are rare. 

 

Chapter 5 

New ponds created during a wetland restoration project match or even surpass the levels of 

local invertebrate richness, diversity and abundance 6-7 years after restoration, despite 

having different and more homogeneous abiotic conditions than reference sites.  

 

Passive dispersers (i.e., Gastropoda and Oligochaeta) have so far failed to colonize new 

ponds, suggesting that dispersal limitation is more important than environmental constraints 

for the recovery of these ponds over a short time frame.  

 

New ponds house slightly less diverse communities than reference sites, but new ponds and 

reference sites contribute equally to the global nestedness. New ponds contain taxa not 
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found in reference sites, indicating their complementary functions as well as their value as 

habitats for biodiversity conservation. 

 

Differences in the abundance and distribution of T. verticalis between new and reference 

ponds among years might explain the annual differences found for Hemiptera species 

composition, especially towards the end of the hydroperiod, when environmental filters 

become stronger (e.g. temperature and salinity increase). 

 

In summary, our results indicate that T. verticalis is a successful invader in saline waters, but 

it is rare in fresh waters, because in saline waters its physiological performance improves, it 

is released from natural enemies (native parasites and predators) and it does not compete for 

food with native corixids.  
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Conclusiones Generales 

Capítulo 1 

La respuesta fisiológica de la especie invasora T. verticalis al calor, al frío y al congelamiento 

es diferente a la respuesta de la especie autóctona S. Lateralis. A pesar de que la especie 

nativa tiene una mayor tolerancia térmica, la especie exótica tiene una mayor plasticidad 

fisiológica al calor, al frio y al congelamiento. 

 

La respuesta fisiológica de T. verticalis es mas efectiva a condiciones de elevada salinidad y 

temperatura. En concreto, su tolerancia térmica al calor y al frío aumenta tras ser aclimatada 

a una elevada salinidad. 

 

La capacidad de regulación osmótica de T. verticalis podría también incrementar su 

resistencia al frio, y a la vez facilitar su permanencia durante el invierno en humedales 

salobres donde puede reproducirse y desarrollarse de forma contínua.   

 

Capítulo 2 

Las interacciones tróficas entre el coríxido exótico y los nativos varían en hábitats de 

diferente hidroperiodo y que tienen diferente diversidad y abundancia de recursos tróficos. 

 

En humedales permanentes, los coríxidos nativos y exótico usan distintos recursos tróficos. 

La especie exótica parece alimentarse en un nivel trófico inferior, y depender más de 

recursos vegetales en comparación a sus competidores nativos. De forma contraria, en 

humedales temporales, los coríxidos nativos y exótico muestran un solapamiento en sus 

nicho isotópico, y la especie nativa se alimenta a un nivel trófico inferior que en humedales 

permanentes. La combinación de estos resultados sugieren que pueden existir interacciones 

competitivas entre ellos.  

 

En humedales permanentes la especie invasora se alimenta principalmente de perifiton y 

podría considerarse un “grazer”, sobre todo las ninfas.  
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Capítulo 3 

En humedales salobres donde la especie invasora T. verticalis es el coríxido dominante, no se  

encontraron ácaros acuáticos. Contrariamente, en los humedales temporales T. verticalis es 

infectado por las dos especies de ácaros acuáticos encontrados durante este estudio 

(Hydrachna skorikowi and Eylais infundibulifera) .  

La prevalencia total de parásitos, la media total de sus abundancias de infección y la media 

de infección de cada parásito es mayor en T.verticalis que en los coríxidos nativos. 

 

La elevada prevalencia de H. skorikowi en T. verticalis comparada a la de S. lateralis indica un 

caso de adquisición de parásitos. De forma contraria, la mayor prevalencia de E. 

infundibulifera en T. verticalis comparado a la de S. lateralis y S. scripta no excluye la 

posibilidad de que este parásito haya llegado junto con T. verticalis, aunque parece ser mas 

probable que se hayan reencontrado en la zona invadida. 

 

Es probable que la mayor susceptibilidad de T. verticalis a ser parasitado comparado con los 

coríxidos nativos limiten la invasión de esta especie en humedales naturales de menor 

salinidad.  

 

Capítulo 4 

T. verticalis no sufre una menor tasa de depredación en comparación con los coríxidos 

nativos. El origen de los depredadores (nativo o exótico) no influye en la tasa de depredación 

de los coríxidos. 

 

La larva de Odonato es capaz de distinguir entre coríxidos exótico y nativo debido a la 

diferencia de tamaño. T. verticalis (siendo mas pequeño) tiene una tasa de depredación más 

elevada que S. Lateralis. Esto podría explicar en parte el porqué T. verticalis tiene más éxito en 

hábitats salobres donde las larvas de Odonato son escasas. 

 

Capítulo 5 

Tras 6-7 años de su creación los lucios artificiales presentan el mismo nivel de riqueza 

taxonómica y diversidad, pero una mayor abundancia que los sitios de referencia, aunque 

sus características ambientales sean diferentes y más homogéneas en comparación con éstos 

últimos. Los dispersantes pasivos (i.e., Gastropoda and Oligochaeta) no han colonizado 
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hasta el momento los lucios artificiales, lo que sugiere que las limitaciones relacionadas a la 

dispersión son más importantes que las que imponen las características ambientales en 

nuestro sistema de estudio. Los lucios recién creados tienen comunidades menos diversas 

que los sitios de referencia, pero contribuyen de forma similar al patrón de anidamiento 

general de las comunidades. Sin embargo, en los lucios recién creados se han encontrado 

taxa no presentes en los sitios de referencia, indicando así su función complementaria y su 

valor como hábitat para la conservación de la biodiversidad.  

 

La diferencia anual en la abundancia y distribución de T. verticalis entre los nuevos lucios y 

los sitios de referencia, podrían explicar el diferente patrón anual encontrado en la 

composición de la especies de Hemípteros, especialmente hacia el final del periodo de 

inundación cuando la condiciones ambientales son más rigurosas (e.g. incremento de 

temperatura y salinidad).  

 

Para concluir, los resultado de esta tesis indican que T. verticalis tiene mayor éxito en los 

cuerpos de agua más salobres debido a que su tolerancia fisiológica es más efectiva, donde 

está libre de parásitos, depredadores y tampoco compite con los coríxidos nativos por los 

recursos tróficos.  
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