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ABSTRACT
In the midst of digital transformation, automatically understanding
the structure and composition of scanned documents is important in
order to allow correct indexing, archiving, and processing. In many
organizations, different types of documents are usually scanned
together in folders, so it is essential to automate the task of seg-
menting the folders into documents which then proceed to further
analysis tailored to specific document types. This task is known
as Page Stream Segmentation (PSS). In this paper, we propose a
deep learning solution to solve the task of determining whether
or not a page is a breaking-point given a sequence of scanned
pages (a folder) as input. We also provide a dataset called TABME
(TAB this folder of docuMEnts) generated specifically for this task.
Our proposed architecture combines LayoutLM and ResNet to ex-
ploit both textual and visual features of the document pages and
achieves an F1 score of 0.953. The dataset and code used to run the
experiments in this paper are available at the following web link:
https://github.com/aldolipani/TABME.

CCS CONCEPTS
• Computing methodologies→ Information extraction; Com-
puter vision problems; • Information systems → Digital li-
braries and archives; Document structure.
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1 INTRODUCTION
Document Intelligence (DI) is the area of scientific research that
leverages Machine Learning (ML), Natural Language Processing
(NLP), and Computer Vision to extract critical insights from a wide
range of business documents (e.g., contracts, emails, purchase or-
ders, sales agreements, financial statements, etc.) to enhance the
efficiency of companies’ business processes. Business documents
are usually natively digital or scanned forms, containing a variety of
structures such as straight texts, images, tables, and multi-column
formats. Possible format inconsistencies, complicated document
structures, and poor scan quality make understanding these docu-
ments challenging.

Recently, we have seen many efforts utilizing ML algorithms to
understand and interpret documents. Popular research topics in DI
for visually rich business documents include classification, informa-
tion extraction, table detection, semantic structure extraction, etc. A
common theme across these topics is that they assume a document
as a unit. In the real world, however, business documents usually
come in folders, with different types of documents mixed in a single
PDF file. This might come from two very common scenarios: 1) In
many legal and business situations, all documents pertaining to
a single case are filed together, and; 2) many companies resort to
bulk scanning services in the process of digitizing documents. As
a result, we introduce an automation task to segment the folder
into documents based on the page content. We will refer to this
task as Page Stream Segmentation (PSS). The PSS is essential in
obtaining documents from a folder that will proceed to further
analysis tailored to specific document types.

The output of the PSS task is a binary vector with a size equal
to the number of pages in the input folder, whose values indicate
whether or not a page is a breaking-point, i.e., the beginning of a
new document. In Figure 1, we illustrate an example of a PSS task.
The PSS can be approached using rule-based systems, conventional
ML, or deep learning (DL). The interpretation of the page contents
can be based on visual or textual features. For the textual-based
interpretation, scanned documents must be preprocessed by an
Optical Character Recognition (OCR) before inputting into the
system.

We approach the PSS task using visual-based and textual-based
DL because 1) it can be applied to heterogeneous datasets contain-
ing large variations of document formats and lengths, and the types
of documents are not known beforehand, and; 2) recent works on

https://github.com/aldolipani/TABME
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Figure 1: An example of the Page Stream Segmentation (PSS) task: Given as input a 16-page folder, the target output is a 16-digit
binary sequence, where 1 indicates a breaking-point and 0 indicates the continuation of the previous document. Red outlines
highlight the breaking-point pages. The pages highlighted in blue indicate an example of a document.

similar tasks have shown that both visual-based and textual-based
DL models can achieve state-of-the-art performance. Wiedemann
and Heyer [14] and Guha et al. [5] introduced similar multi-modal
DL approaches. Wiedemann and Heyer employed a GRU-based
model as a text feature extractor, while Guha et al. employed a
Legal-BERT model. In our work, we chose LayoutLM [15] to ex-
tract the textual features, since it takes both texts and layouts into
consideration, as opposed to most language models in which the
information about layouts is neglected. For the extraction of visual
features, the two previous works used the VGG-16 model, while
we chose to use the ResNet model [9] since it achieved the highest
accuracy on a similar dataset (Tobacco-3432) but for a different task:
document image classification [1].

We also found that, while several public document datasets are
available, most of them consist of single-page documents that are
unsuitable for the PSS task. To facilitate future studies, the dataset
and code used in this paper are available at the following web link1.

In this paper, we make the following contributions:

1https://github.com/aldolipani/TABME

(1) we present a generated dataset for the PSS task, named
TABME, which stands for TAB this folder of docuMEnts;

(2) we propose a deep learning solution: a model architecture
that is based on LayoutLM and ResNet, which are a pre-
trained BERT-based document understanding model and a
pretrained image classification model, and;

(3) we perform an ablation study and an analysis of several
potential model biases. With the former, we demonstrate the
importance of both kinds of contextual information exploited
by the two models, visual and textual. With the latter, we
show that the breaking-points positions in the folders do not
influence the quality of the predictions.

The remainder of this paper is structured as follows. In Sec-
tion 2, we present the related work. In Section 3, we introduce
and formalize the page stream segmentation task and present a
new user-centric evaluation measure. In Section 4, we propose a
model to solve this task. Experiments and results are presented in
Section 5. We conclude in Section 6.

https://github.com/aldolipani/TABME
https://github.com/aldolipani/TABME
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2 RELATEDWORK
Several works related to the PSS task exist, which can be equiv-
alently referred to as Document Flow Segmentation, Document
Stream Segmentation, or Document Separation.

A DL approach that utilizes both textual and visual features was
first implemented by Wiedemann and Heyer [14] who combined
textual features from the GRU-based model and visual features from
the VGG-16 model in an ensemble which outputs the prediction by
comparing the previous page with the current page. The proposed
model achieved an accuracy of 88.9% on the proprietary German
archive dataset and 91.9% on the public U.S. tobacco companies
(Tobacco800) dataset. This is the only workwhere the authors tested
their model on a publicly available dataset, and we will use it as a
baseline.

Guha et al. [5] improved upon the previous work by replacing
the textual feature extractor with the pretrained Legal-BERT model.
An F1 score of 97% was reported on the proprietary title insurance
dataset. Although the authors claim that this work is an improve-
ment over the previous one, we were not able to test this model
against ours due to the unavailability of their source code and the
tested dataset. Moreover, this model was optimized only for legal
documents, while our dataset is more general.

There are also approaches to the PSS task that use more con-
ventional machine learning approaches. Textual-based approaches
include Daher and Belaïd [3] in which various conventional ML
classifiers were used (including voted perceptron, which achieved
the best performance) to segment pages based on textual features
of the current and the previous page obtained from regular expres-
sions. A similar feature extraction method was chosen by Daher
et al. [4], but an incremental classifier was used instead. Hamdi et al.
[7] extracted textual features using Doc2Vec and made predictions
based on a similarity threshold. A follow-up work by the same
authors, Hamdi et al. [6], used a purely rule-based approach. The
work performed by Karpinski and Belaïd [10] also features a similar
approach. Visual-based approaches have been proposed by Agin
et al. [2] in which Bag of Visual Words are used as a visual-based
feature extractor and Random Decision Forest as the classifier. All
of these approaches have been outperformed by the deep learning
approach proposed by Wiedemann and Heyer [14]. For this reason,
we will not compare against them.

We observe that in most works, the prediction is performed by
comparing the current page’s content with the previous page. In our
work, the classifier consists of a series of 1D convolutional layers
that takes into account the information of the previous, current,
and subsequent pages, while the information of other pages can
also flow to the last layer.

3 PAGE STREAM SEGMENTATION
3.1 Task Description
Here, we formalize the page stream segmentation task (PSS) as fol-
lows. Let x = [𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ] with 𝑥𝑖 ∈ Rℎ×𝑤 and 1 ≤ 𝑖 ≤ 𝑁

be a sequence of images representing our input, that is the folder of
papers we wish to segment, consisting of 𝑁 pages where each page
is of dimension ℎ ×𝑤 pixels. The target output is a binary vector

y = [𝑦1, . . . , 𝑦𝑖 , . . . , 𝑦𝑁 ] with 𝑦𝑖 ∈ {0, 1} and 1 ≤ 𝑖 ≤ 𝑁 , where:

𝑦𝑖 =

{
1, if page 𝑥𝑖 is a breaking-point
0, otherwise

, (1)

where by breaking-point we intend the first page of a document.
Based on these breaking-points we can then reconstruct the struc-
ture of the documents forming the folder. However, note that by
doing this, we are making the following two assumptions: 1) docu-
ment pages are input in sequence, that is, all the pages belonging
to the same document are input one after the other, and; 2) the
pages within each document are input in the correct order. These
two assumptions allow us to reduce the more general problem of
sorting out a folder of papers into documents to the here-defined
PSS task.

3.2 The TABME Dataset
A commonly used dataset for the understanding and classification
of business documents is the IIT-CDIP test collection [11]. From
this test collection also other datasets have been derived like the
RVL-CDIP dataset [8] that was specifically created for a document
type classification task. The IIT-CDIP test collection was built by
collecting documents from the tobacco litigation. However, this
dataset is unsuitable for our purposes since it only contains images
and there is no information about to which document these images
belong.

For the creation of our dataset, we followed a similar approach.
We downloaded a portion of the documents publicly hosted by the
University of California, San Francisco (UCSF) library2. This collec-
tion consists of a sample of 44,769 PDF documents from the Truth
Tobacco Industry Documents (TTID) archive. The TTID archive
includes several document types (leaflet, letter, email, etc.) and each
document can range from one to a hundred pages. In the sampled
documents, we made sure not to include corrupted files (i.e., files
that could not be opened without an error) or documents longer
than 20 pages. Based on this sample, we aim to build a synthetic
dataset for our task.

To generate an unbiased dataset we had to perform two pre-
processing steps. The first step consisted in cropping the bottom
margin of all pages. This was needed because each PDF file con-
tained an identifier of the document printed in them. The second
step consisted in transforming all PDFs to gray-scale and resizing
them to fit within a square with a side length of 1,000 pixels. This
was needed in order to avoid inconsistencies among the documents.
Next, to avoid any data leakage among the training, validation, and
test sets, we performed the split at this level: We randomly sam-
pled 90% of the documents for the training set (40,292 documents;
110,132 pages), 5% for the validation set (2,238 documents; 6,089
pages), and 5% (2,238 documents; 6,237 pages) for the test set.

We now simulate the digitization of folders of documents fol-
lowing the procedure described in Algorithm 1. Using the sampled
documents we simulate the length and variety of document types
we find in real-world scenarios. Given a sample of documents D
and the number of folders we wish to generate𝑀 , we first sample
an integer 𝐿 following a Poisson distribution. We choose the Pois-
son distribution because it is often used to model the number of
2https://www.industrydocuments.ucsf.edu/

https://www.industrydocuments.ucsf.edu/
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(a) Training set.

0 20 40 60 80 100
Folder length

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

(b) Validation set.
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(c) Test set.

Figure 2: Distribution of folder lengths in the TABME dataset.

Algorithm 1: Generation of the folders of documents,
where ∼ and | | are the sampling and concatenation op-
erators.
Data: D (set of documents), 𝜆 (parameter of the Poisson

distribution),𝑀 (number of folders to generate).
Result: F (set of folders of documents).
F ← ∅;
foreach 𝑛 ∈ [1, . . . , 𝑀] do

𝐿 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆);
𝑓 ← [];
foreach 𝑖 ∈ [1, . . . , 𝐿] do

𝑑 ∼ D \ {𝑑 ′ ∈ 𝑓 };
𝑓 ← 𝑓 | | 𝑑 ;

end
F ← F ∪ {𝑓 }

end

Table 1: Summary of the TABME dataset.

Split Number of
folders

Number of pages in each folder

Mean SD Min Max

Training 100,000 30.13 14.30 0 120
Validation 5,000 30.36 14.36 1 101

Test 5,000 30.43 14.41 1 107

events happening in a given interval of time. In this case, we use it
to model the number of documents in a folder. We set the param-
eter of the Poisson distribution 𝜆 = 11 based on the observation
we have in our applications. The combination of this parameter
choice and the sampled documents generates folders with a mean
length of around 30 pages. Then, we sample without repetition 𝐿

documents and concatenate them to generate a folder. Finally, we
add this folder to the set of generated folders and return this set
(F ). We perform this process for each split and generate 100,000
folders for the training set, 5,000 folders for the validation set, and

Figure 3: Examples of computation of the MNDD required
to change the predictions (on the left-hand side) into the
ground-truth (on the right-hand side).

5,000 folders for the test set. The summary of the TABME dataset
is given in Table 1. In Figure 2, we show the distribution of folder
lengths in the training, validation, and test sets.

For the sake of reproducibility, we also release the further pre-
processing done to get the OCR results. These results are obtained
using the Tesseract OCR engine. This engine was configured to
assume English as the language to be recognized and to output tab-
separated values files containing the recognized words and their
associated box coordinates and confidence levels.
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3.3 Evaluation Measures
To evaluate and compare the performance of the ML algorithms
applied to this task we use standard evaluation measures like Preci-
sion, Recall, and F1-score. We can use these evaluation measures
since this task is a sequential binary classification problemwhose fo-
cus is on the identification of the breaking-points. Moreover, given
that the number of breaking-points is much lower than the number
of non-breaking-points (35% vs 65%) these evaluation measures are
preferred over measures like accuracy that weigh the identification
of both classes equally. However, these metrics are system-centric
evaluation measures and may not reflect the actual satisfaction of
a user using a system. This is because not every misclassification
requires users the same amount of work. For this reason, we formu-
late a new user-centric evaluation measure inspired by a graphical
user interface used in our applications. This measure aims to count
the Minimum Number of Drag-and-Drops (MNDD) a user would
need to perform should the pages of the identified documents are
not separated correctly.

In Figure 3, we illustrate with three examples what the MNDD
computes. We have, on the left-hand side, the model predictions
(𝑦) and, on the right-hand side, the ground-truth (𝑦). Each row is a
document, and each value represents the number of pages in the
folder. In the first example, we see that page 6 was identified as
the last page of the second document, while it should have been
identified as a new one-page document. To remedy this error, the
user would need to perform only one drag-and-drop action. In the
second example, we see that pages 4 and 5 were identified as the
continuation of the first document, while they should have been
identified as a new document. To remedy this error, the user would
need to perform at least two drag-and-drop actions. Following this
line of reasoning, the reader can infer what is happening in the
third example where at least 3 drag-and-drop actions are required.

Based only on the first two examples we can see that the mis-
classification of 1 breaking-point has caused the user to perform
a different amount of work, which is reflected in this evaluation
measure and not in the previous ones. Moreover, note that the illus-
trated solutions are not unique. There are other ways of rearranging
the pages of the folder into the correct order. However, here we
care about the minimum number of drag-and-drops required to do
so and not about the actual drag-and-drops actions to be performed.
Also, the order of the documents (rows) does not matter. The pro-
posed measure is in fact invariant to the order of the documents in
the folder.

4 THE PROPOSED MODEL
The model architecture (illustrated in Figure 4) relies on both
Computer Vision (CV) and Natural Language Processing (NLP)
approaches.

The input folder containing 𝑁 images of size ℎ×𝑤 is represented
by:

x = [x1, . . . , xN] ∈ R𝑁×ℎ×𝑤 . (2)

Each image 𝑥𝑖 is fed into ResNet and LayoutLM. We chose these
pre-trained models since they have achieved state-of-the-art per-
formance on other tasks. For LayoutLM, we first need to extract

the words and the bounding boxes using the Tesseract OCR engine.

hr = ResNet(x), (3)
hl = LayoutLM(OCR(x)). (4)

where ℎ𝑟 ∈ R𝑁×512 and ℎ𝑙 ∈ R𝑁×768 are feature vectors extracted
by the two pretrained models respectively.

The outputs hr and hl, representing the visual and textual em-
beddings of the document pages, are then concatenated:

h = [hr, hl] ∈ R𝑁×1280 . (5)

This concatenated vector is then fed into a stack of six 1D convolu-
tional layers with a kernel size of 3 and a stride of 1. The convolution
operation is done along the series of pages. Therefore, setting the
kernel size to 3 means that each layer can see the features of the
previous, current, and subsequent page. This allows the model to
learn the similarities and differences of the pages in comparison
with the adjacent pages.

These convolutional layers follow an encoder structure where
the dimension of the feature vector decreases as it is fed into the
next layer. The output vectors of the six convolutional layers are of
size 𝑁 × 1067, 𝑁 × 854, 𝑁 × 641, 𝑁 × 428, 𝑁 × 215, and finally 𝑁 × 2.
The number of convolutional layers and the size of their output
vectors are hyper-parameters of this architecture. The dimension
along the length of the documents is preserved by circular padding.
A rectified linear unit (ReLU) and dropout layer with a probability
of 0.2 are added after each convolutional layer. Formally we have:

c = CNN(h), (6)

where c ∈ R𝑁×2.
For each page, the two output classes indicate whether or not

the page is the breaking-point. Because of the flexibility of the
convolutional layers, the input folder can have any number of
pages. In the case of folders with many pages where the input
cannot fit into the GPU memory, the pages can be separated and
input into the model using a sliding window. Formally we have:

s = Softmax(c) (7)

ŷ =

[
argmax
𝑏∈{0,1}

(𝑠𝑖,𝑏+1) : 1 ≤ 𝑖 ≤ 𝑁

]
(8)

where s ∈ R𝑁×2 and ŷ ∈ R𝑁 are the logits matrix and the predicted
vector.

This architecture is trained using an unweighted binary cross
entropy loss function:

L(y, ŷ) = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log 𝑃 (𝑦𝑖 = 1) + (1 − 𝑦𝑖 ) log 𝑃 (𝑦𝑖 = 0)] (9)

where y ∈ R𝑁 is the ground-truth label.
All layers including those in the pretrained models are unfrozen

and trained for a maximum of 30 epochs using an early stopping
strategy to avoid overfitting. We use Adam as the optimizer. The
stopping strategy is set to stop training after the validation loss
has not improved for at least 5 epochs. The learning rate is set to
5 · 10−5. The model takes around 40 minutes to finish one epoch
when trained on an Nvidia GeForce RTX 3090 GPU. On average, the
training terminates after around 20 epochs. The rest of the training
and validation details are provided in the Appendix.
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Figure 4: The model architecture consisting of ResNet and LayoutLM model followed by 1D convolutional layers.

We hypothesized that the combination of the two approaches
results in an improvement in the performance of the model. Relying
on visual inputs alone might not be sufficient because most docu-
ments are in black and white and contain visually similar layouts.
The same applies to the OCR inputs, where the quality of OCR
results is sometimes poor and the OCR fails on handwritten texts
and texts with uncommon fonts. Thus, the combination of both
inputs gives the model a better view of the documents and a better
chance to make the correct prediction. This hypothesis is tested
later with an ablation experiment.

5 EXPERIMENTAL SETUP
In this section we aim to answer the following 3 research questions:
RQ1 How does the proposed model perform on the TABME task?
The model was compared against two trivial baselines on the pro-
posed dataset that we generated containing 6,237 images from 2,238
documents. The baselines consist of a random classifier that predicts
a breaking-point 35% of the times (named random) and a model
that predicts as a breaking-point only the first page of the folder
(named only first page). To evaluate these models, we will use the
dataset and evaluation measures introduced in Section 3.

We also compare the proposed model against the only public
baseline we found provided by Wiedemann and Heyer [14] on
the Tobacco800 dataset [12]. We test the model on their test set
which was sampled from the last 260 images from 150 documents
according to the alphabetical order of the filenames. Although this
dataset and ours are generated separately, they are from the same
original source. To ensure the absence of any data leak between
this test set and our training and validation sets, we compared the
document IDs and did not find any shared document. To ensure a
fair comparison we compared against this model using the same
metric recommended by the authors, i.e., accuracy.

Table 2: Performance comparison of the proposed model
against the baselines. For MNDD the lower the better, for
Precision, Recall and F1, the higher the better.

Model MNDD Precision Recall F1

Our model 3.440 0.947 0.964 0.953
Random 15.256 0.415 0.498 0.432

Only first page 20.548 1.000 0.102 0.182

RQ2 What is the contribution of the ResNet and LayoutLM com-
ponents?

To assess the contribution of the components of the combination
of ResNet and LayoutLM, we perform an ablation study. This abla-
tion study consists of evaluating the performance of each model
independently and comparing their performance to the combined
model. When LayoutLM is ablated, we replace the OCR input with
a constant embedding equivalent to the case where there is no OCR
box detected; When the ResNet is ablated, we replace the image
embeddings with an embedding of a white blank page.
RQ3 Are there any biases in terms of the position of the breaking-

point in the folder, the length of the folder, or the length of
the documents in the folder?

To assess the presence of any of such biases, we will assess the
model in function of the position of the breaking-points in the
folder, the length of the folder, and the length of the documents.

5.1 TABME Task (RQ1)
In Table 2, we show the performance of our model against the naive
baselines on the proposed dataset. We observe that the proposed
model is able to achieve performances way above the naive base-
lines. This indicates that the model is not behaving in a naive way.
The proposed model is able to classify correctly the breaking-points
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Sample folder with correct predictions
ffbl0049 ffcf0128 ffxm0104 ffxv0081 ffyh0053 ffym0205 fffv0175-0 fffv0175-1

Sample folder with incorrect predictions

Predictions Ground Truth

fffj0113 ffhk0007 ffjn0087 fflx0085-0 fflx0085-1 ffjw0016 ffgn0074-0 ffgn0074-1

Figure 5: Sample predictions of the proposed model. In red (below) we indicate the correct breaking-point and in blue (above)
the predicted one.
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(a) A folder with all correctly identified breaking-points.
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(b) A folder with some incorrectly identified breaking-points.

Figure 6: UMAP of the image and text embeddings for folders with correctly (left) and incorrectly (right) identified breaking-
points. A point represents a page. Each point is labeled with its document identifier. Points of the same color belong to the same
document. The identifiers are marked in black if the prediction is correct and in red if it is incorrect. The arrows connecting
the points indicate the order of the pages in the folder and documents.

as demonstrated by the high score achieved, generating a result that
in expectation requires only around 2 drag-and-drops corrections
by the user as indicated by the MNDD metric. In Figure 5, we show
two sample predictions. In the first sample, the model performs
correctly. In the second sample, the model incorrectly identified
the 5th and the 8th pages as breaking-points when none should
have been inferred. The source of this mistake could be explained
by observing that rarely in our dataset a new document starts with
a blank page and the format of the 7th page is different from the
8th. We also compare the performance of our model against the
baseline provided by Wiedemann and Heyer [14] on the same test
set. The baseline achieves an accuracy of 0.919, while our model
achieves an accuracy of 0.977, outperforming the baseline.

To gain some intuitions about how the model operates, we per-
form a Uniform Manifold Approximation and Projection (UMAP)

[13] on the embeddings generated by ResNet and LayoutLM, hr
and hl. This is shown in Figure 6. UMAP is a nonlinear dimension-
ality reduction technique often used to visualize embeddings in
a lower-dimensional space, 2 in this case. Here we find that page
embeddings from the same document are generally closer in the
vector space than those from other documents. The incorrect pre-
dictions generally occur when the breaking-points are close to the
previous page, or when the non-breaking-points are far away from
the previous page. Here we observe that the clustering is more
apparent in the image embeddings than in the text embeddings.
However, when the prediction is correct, both kinds of information
are necessary since when pages belonging to the same document
are not close in the image embedding’s space they are close in the
text embedding’s space and vice versa.
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Table 3: The ablation study.

Model MNDD Precision Recall F1

Our model 3.440 0.947 0.964 0.953
... minus LayoutLM 3.910 0.944 0.948 0.942

... minus ResNet 15.928 0.940 0.421 0.559
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Figure 7: Box plot of the MNDD (a) and F1 scores (b) for the
ablation study.

5.2 Ablation Study (RQ2)
In Table 3, we present the results of the ablation study. We observe
that the model clearly benefits from both models by performing
much better when the two components are used. We also observe
that for this task the ResNet has a stronger influence on the final
performance by achieving a better MNDD score. This is not a sur-
prise since this task has a strong visual component. This finding is
corroborated by also looking at the higher F1 score achieved when
removing this component. This was also observed when looking
at the embeddings in Section 5.1, where we saw that the image
embeddings tend to cluster more the pages belonging to the same
document than the text embeddings.

In Figure 7 we present the box-plots of the MNDD and F1 score
metrics, where we can observe that there is likely to be a difference
between the full model and the model with LayoutLM ablated since
in both measures its median line lies outside of the box of the
combined model. In contrast, this is not observed when ablating
ResNet. To determine if there is a statistical difference between the
models, we perform a paired t-test between the full model and the
ablated ones. All differences between our model and the ablated
ones are statistically significant with a p-value < 0.05. Detailed
statistics are available in the Appendix.

5.3 Analysis of Model Biases (RQ3)
To assess if the model is biased against the position of the breaking-
points, for each page number 𝑖 , we filtered out the folders in the
test sets which have page 𝑖 as a breaking-point, and calculated their
average F1 score. In Figure 8, we observe that there is no substantial
bias in terms of the position of the breaking-point within the folder.
The model is able to correctly classify the breaking point at any
position in the folder. Note that the high variance we observe at the
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Figure 8: Results with respect to the page position: the his-
togram of folders’ frequency (above) and the average F1 score
(below).
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Figure 9: Results with respect to the folder length: the his-
togram of folders’ frequency (above) and the average F1 score
(below).

end of the plot is due to the limited number of folders considered
for those breaking-point positions.
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Figure 10: Results with respect to the document length: the
histogram of folders’ frequency (above) and average F1 score
(below).

To assess how the model performance degrades with the length
of the folder, in Figure 9 we plotted the average F1 score across
folders with different lengths. The higher variance we observe when
the folder length increases is due to the fact that the number of
folders with a given folder length exponentially decreases when
the folder length increases. In this plot, we observe that measuring
the F1 score across the folder lengths has a natural bias against
longer folders. This is because there is a higher chance to measure
a smaller F1 score when the folder length increases, as also shown
by the performance measured on the baseline models. However, for
our model, we observe a relatively constant performance.

To assess how the model performance degrades with the length
of the documents, we extracted all the documents from all folders
with a given length and calculated the average F1 score across
them. Our model again has a relatively constant performance across
the document lengths, in comparison with a quick decrease in
performance in the random model. This decrease in value is due to
the same rationale provided in the paragraph above.

6 CONCLUSION AND FUTUREWORK
In this paper, we introduced a user-centric evaluation measure for
the Page Stream Segmentation (PSS) task, the MNDD, which mea-
sures the Minimum Number of Drag-and-Drops the user would
need to perform if the model inferred the wrong segmentation, and
constructed the TABME dataset. We also provided a model that
exploits both visual and textual information using ResNet and Lay-
outLM as backbones. This baseline achieves good performance and
further experimentation demonstrated the robustness of this model.
With the ablation study, we also demonstrated the importance of
including a purely visual component.

In the TABME task, we assume that the pages of a document
in a folder are continuous and sorted. In future work, we aim to
investigate when these two assumptions are not true. This new task
could be considered as a generalization of the proposed one. Such
a task, in fact, naturally requires the use of graphs to represent
documents, i.e., nodes to represent pages and links to represent
their order. For this reason, we are currently experimenting with
graph neural networks.
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A TRAINING AND VALIDATION
A.1 Hyper-Parameter Search
We study the influence of the structure of the 1D convolutional
layers.We have experimentedwith the size of output vector for each
convolutional layer. This size starts at 𝑁 × 1280 (the dimensionality
of the embeddings) and drops to 𝑁 × 2 (the dimensionality of the
predictions). We found that the performance of the architecture is
better in terms of validation loss when the size of the convolutional
layers between the input and output layers decays linearly along the
forward layers than when the size decays geometrically. Therefore,
based on the linear decay, we explored architectures with 0, 1, 2,
3, 4, 5, and 6 hidden layers using a learning rate of 5 · 10−5. The
minimum validation loss across five repeats was found in the model
with 5 hidden layers. The results from the hyper-parameter search
are shown in Table 4.

Table 4: Results from the hyper-parameter search.

# of Hidden Layers Validation Loss Validation F1

0 0.380 0.783
1 0.132 0.927
2 0.121 0.930
3 0.113 0.929
4 0.114 0.934
5 0.104 0.941
6 0.118 0.934

A.2 Validated Architecture
The breakdown of 1D convolution layers in our model is shown in
Table 5. The layers Permute, Squeeze and Unsqueeze are added to
facilitate the convolution operation along the series of pages that
is specific to the way this can be implemented with PyTorch.

A.3 Learning Curves
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Figure 11: Learning curves of the validated architecture.

The learning curves for the training of the model with the best
hyper-parameters configuration are provided in Figure 11.

B ABLATION STUDY
To determine if there is a statistically significant difference between
our model and the baseline models, we perform paired t-tests of

Table 5: Breakdown of the convolutional layers.

Layer Output Shape # of Parameters

Input (N, 1280) 0
Permute (1280, N) 0
Unsqueeze (1, 1280, N) 0
Conv1d (1, 1067, N) 4098347
ReLU (1, 1067, N) 0
Dropout (1, 1067, N) 0
Conv1d (1, 854, N) 2734508
ReLU (1, 854, N) 0
Dropout (1, 854, N) 0
Conv1d (1, 641, N) 1642883
ReLU (1, 641, N) 0
Dropout (1, 641, N) 0
Conv1d (1, 428, N) 823472
ReLU (1, 428, N) 0
Dropout (1, 428, N) 0
Conv1d (1, 215, N) 276275
ReLU (1, 215, N) 0
Dropout (1, 215, N) 0
Conv1d (1, 2, N) 1292
Permute (1, N, 2) 0
Squeeze (N, 2) 0
Softmax (N, 2) 0
Total 9,576,777

the corresponding F1 and MNDD scores. The detailed test statistics
are shown in Table 6.

Table 6: T-tests for ablation studies

Test p-value t-stat (df=4999)

F1: full v.s. –ResNet ∼ 0.0 136.863
F1: full v.s. –LayoutlM 4.44 · 10−40 13.369
MNDD: full v.s. –ResNet ∼ 0.0 -84.211

MNDD: full v.s. –LayoutlM 9.21 · 10−06 -4.440
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