Analiza pasma tarczowego

Układy tarczowe o znacznej długości, okresowo obciążone i podparte – stan naprężenia oraz funkcja Airy - rozwinięcie, jako **nieskończone szeregi trygonometryczne Fouriera**.

Podstawy teorii szeregów Fouriera:

Funkcja spełnia w danym przedziale warunek Dirichleta, jeśli przedział ten można podzielić na skończoną liczbę

podprzedziałów, w których funkcja jest monotoniczna i ograniczona.

Funkcję *f* spełniającą w przedziale (-l, l) warunek Dirichleta, można wykonać jej rozwinięcie w szereg trygonometryczny Fouriera:

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right), \text{ w każdym przedziale ciągłości } f$$

zachodzi $a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx, \ a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx$

Jeżeli funkcja *f* jest parzysta zachodzi $b_n = 0$, przy funkcji *f* nieparzystej zachodzi $a_0 = a_n = 0$. Rozwinięcie funkcji w szereg Fouriera jest funkcją okresową, jak na rysunku.

Szeregi Fouriera mogą być stosowane do rozwinięcia funkcji nieciągłych, w odróżnieniu od szeregów potęgowych Taylora, ograniczonych do zakresu funkcji o ciągłych pochodnych wszystkich rzędów. W punktach nieciągłości funkcji *f* odpowiadający jej szereg Fouriera jest zbieżny do wartości średniej arytmetycznej jej obustronnych granic: $0.5 \int f(x-0) + f(x+0) dx$.

Przykład: rozwinięcie w szereg Fouriera obciążenia ciągłego odcinkowego

$$a_{n} = \frac{2}{l} \left(p \int_{0}^{l-c} \cos \frac{n\pi x}{l} dx - p \frac{l-c}{c} \int_{l-c}^{l} \cos \frac{n\pi x}{l} dx \right) =$$

$$= \frac{2}{l} \left(p \frac{l}{n\pi} \sin \frac{n\pi (l-c)}{l} + p \frac{l-c}{c} \frac{l}{n\pi} \sin \frac{n\pi (l-c)}{l} \right) =$$

$$= \frac{2}{l} p \frac{l}{n\pi} \sin \frac{n\pi (l-c)}{l} \left(1 + \frac{l-c}{c} \right) = \frac{2}{l} p \frac{l}{n\pi} \frac{l}{c} \sin \frac{n\pi (l-c)}{l} =$$

$$= \frac{2pl}{n\pi c} \sin \frac{n\pi (l-c)}{l} = \frac{2pl}{n\pi c} \sin \left(n\pi - \frac{n\pi c}{l} \right)$$

Wzór trygonometryczny: $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$,

stąd:
$$a_n = \frac{2pl}{n\pi c} \left(\sin n\pi \cos \frac{n\pi c}{l} - \cos n\pi \sin \frac{n\pi c}{l} \right).$$

Ponieważ sin $n\pi = 0$ oraz cos $n\pi = (-1)^n$ zachodzi $a_n = -(-1)^n \frac{2pl}{n\pi c} \sin \frac{n\pi c}{l}$,

wiec
$$p(x) = -\frac{2pl}{\pi c} \sum_{n=1}^{\infty} \sin \frac{n\pi c}{l} \cos \frac{n\pi x}{l}$$

Rozwinięcie obciążenia odcinkowego: $p(x) = -\frac{2pl}{\pi c} \sum_{n=1}^{\infty} \sin \frac{n\pi c}{l} \cos \frac{n\pi x}{l}$

Pierwszy wyraz
$$(n=1)$$
: $p^{(1)}(x) = \frac{2pl}{\pi c} \sin \frac{\pi c}{l} \cos \frac{\pi x}{l}$

Przykład: swobodna tarcza nieskończona (**pasmo tarczowe**) o grubości *g* i szerokości 2*b* (model tarczy ciągłej), obciążona okresowo (okres równy 2*l*) i symetrycznie względem osi x_2 . Przy obciążeniu dowolnym $p(x_1)$ jest to odpowiednik jego części symetrycznej: $p_{sym}(x_1) = 0.5[p(x_1) + p(-x_1)].$

Obciążenie brzegu górnego \tilde{p} i dolnego p – funkcje parzyste, okresowe, rozwinięte w następujące szeregi:

Równowaga na oś
$$x_2$$
: $\int_{-l}^{l} \tilde{p}(x_1) dx_1 = \int_{-l}^{l} p(x_1) dx_1$, więc $\tilde{a}_0 = a_0$.

h

Łączne obciążenie jest superpozycją stanów o odpowiadających funkcjach naprężeń F_1 i F_2 . Spełnienie równania biharmonicznego przez każdą z nich (warunki $\nabla^4 F_1 = 0$ i $\nabla^4 F_2 = 0$) jest równo-znaczne ze spełnieniem równania biharmonicznego przez ich sumę – operator ∇^4 (·) jest liniowy.

Pierwsza składowa obciążenia – stała: $p = \tilde{p} = 0.5a_0$ opisana jest funkcją naprężeń $F_1 = Cx_1^2$, C – wartość stała. Jedyne niezerowe naprężenia $\sigma_{22} = \frac{\partial^2 F_1}{\partial x_1^2} = 2C$, z warunku brzegowego $\sigma_{22}|_{x_2=\pm b} = \frac{a_0}{2}$

otrzymuje się stałą $C = \frac{a_0}{4}$, zatem $F_1 = \frac{a_0}{4}x_1^2$.

Druga składowa obciążenia opisana jest funkcją naprężeń o rozdzielonych zmiennych: $F_2(x_1, x_2) = \sum_{n=1}^{\infty} f_n(x_2) \cos \alpha_n x_1$.

Podstawienie do równania biharmonicznego $\nabla^4 F_2(x_1, x_2) = 0$ daje

$$\sum_{n=1}^{\infty} \left[f_n(x_2) \alpha_n^4 - 2f_n''(x_2) \alpha_n^2 + f_n^{IV}(x_2) \right] \cos \alpha_n x_1 = 0. \text{ Rozwinięcie}$$

w szereg funkcji zerowej wymaga wszystkich zerowych współczynników, zatem $f_n(x_2)\alpha_n^4 - 2f_n''(x_2)\alpha_n^2 + f_n^{IV}(x_2) = 0$.

Równanie różniczkowe zwyczajne, o stałych współczynnikach: $f_n(x_2)\alpha_n^4 - 2f_n''(x_2)\alpha_n^2 + f_n^{IV}(x_2) = 0$. Przewidywanie: $f_n(x_2) = e^{rx_2}$ daje zapis $e^{rx_2}(\alpha_n^4 - 2r^2\alpha_n^2 + r^4) = 0$, stąd $(\alpha_n - r)^2(\alpha_n + r)^2 = 0$, rezultat: dwa pierwiastki podwójne: $r_{1,2} = \alpha_n$, $r_{3,4} = -\alpha_n$.

Całka ogólna: $f_n(x_2) = C_1 e^{\alpha_n x_2} + C_2 x_2 e^{\alpha_n x_2} + C_3 e^{-\alpha_n x_2} + C_4 x_2 e^{-\alpha_n x_2}$, z użyciem $ch\alpha x = 0.5(e^{\alpha x} + e^{-\alpha x})$, $sh\alpha x = 0.5(e^{\alpha x} - e^{-\alpha x})$ przekształcona do postaci z nowymi stałymi całkowania:

$$f_n(x_2) = \frac{1}{\alpha_n^2} \Big[A_n ch \alpha_n x_2 + \alpha_n x_2 B_n sh \alpha_n x_2 + C_n sh \alpha_n x_2 + \alpha_n x_2 D_n ch \alpha_n x_2 \Big],$$

gdzie mnożnik α_n^{-2} dla ułatwienia różniczkowania. Sumarycznie: $F(x_1, x_2) = 0.25a_0x_1^2 +$

$$+\sum_{n=1}^{\infty}\frac{1}{\alpha_n^2}\left[A_n\,ch\,\alpha_nx_2+\alpha_nx_2\,B_n\,sh\,\alpha_nx_2+C_n\,sh\,\alpha_nx_2+\alpha_nx_2\,D_n\,ch\,\alpha_nx_2\right]\cos\alpha_nx_1$$

Stan naprężeń w tarczy:

$$\sigma_{11} = \frac{\partial^2 F}{\partial x_2^2} =$$

$$= \sum_{n=1}^{\infty} \left[\left(A_n + 2B_n \right) ch \alpha_n x_2 + \alpha_n x_2 B_n sh \alpha_n x_2 + \left(C_n + 2D_n \right) sh \alpha_n x_2 + \alpha_n x_2 D_n ch \alpha_n x_2 \right] \cos \alpha_n x_1$$

$$\sigma_{22} = \frac{\partial^2 F}{\partial x_1^2} = 0.5a_0 +$$

$$- \sum_{n=1}^{\infty} \left[A_n ch \alpha_n x_2 + \alpha_n x_2 B_n sh \alpha_n x_2 + C_n sh \alpha_n x_2 + \alpha_n x_2 D_n ch \alpha_n x_2 \right] \cos \alpha_n x_1$$

$$\sigma_{12} = -\frac{\partial^2 F}{\partial x_1 \partial x_2} =$$

$$- \sum_{n=1}^{\infty} \left[\left(A_n + B_n \right) sh \alpha_n x_2 + \alpha_n x_2 B_n ch \alpha_n x_2 + \left(C_n + D_n \right) ch \alpha_n x_2 + \alpha_n x_2 D_n sh \alpha_n x_2 \right] \sin \alpha_n x_1$$

Warunki brzegowe:

* brzeg górny $x_2 = b$: 1) $\sigma_{22} = \tilde{p}(x_1), 2$ $\sigma_{12} = 0$

* brzeg dolny $x_2 = -b$: 3) $\sigma_{22} = p(x_1), 4$ $\sigma_{12} = 0$, gdzie

$$\tilde{p}(x_1) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \tilde{a}_n \cos \alpha_n x_1, \ p(x_1) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \alpha_n x_1, \ \alpha_n = \frac{n\pi}{l}.$$

Rozwiązanie układu czterech równań algebraicznych liniowych:

$$A_{n} = -(\tilde{a}_{n} + a_{n})\frac{sh\alpha_{n}b + \alpha_{n}bch\alpha_{n}b}{sh2\alpha_{n}b + 2\alpha_{n}b}, B_{n} = (\tilde{a}_{n} + a_{n})\frac{sh\alpha_{n}b}{sh2\alpha_{n}b + 2\alpha_{n}b}$$
$$C_{n} = -(\tilde{a}_{n} - a_{n})\frac{ch\alpha_{n}b + \alpha_{n}bsh\alpha_{n}b}{sh2\alpha_{n}b - 2\alpha_{n}b}, D_{n} = (\tilde{a}_{n} - a_{n})\frac{ch\alpha_{n}b}{sh2\alpha_{n}b - 2\alpha_{n}b}$$

Tym samym funkcja Airy $F(x_1, x_2)$ jest w pełni określona. Jej różniczkowanie daje w rezultacie pole tensorowe naprężeń. Dalsza analiza dotyczyć będzie naprężeń normalnych σ_{11} w kierunku wymiaru x_1 , podobnie, jak w belkach, o dużym znaczeniu. Szereg σ_{11} jest wolnozbieżny, szczególnie na granicach, gdy $x_2 \rightarrow \pm b$. Naprężenia na krawędziach – przekształcone, szeregi o lepszej zbieżności:

$$\sigma_{11}\Big|_{x_2=b} = \sum_{n=1}^{\infty} \Big[\tilde{a}_n - (\tilde{a}_n + a_n)c_n + (\tilde{a}_n - a_n)d_n\Big]\cos\alpha_n x_1$$

$$\sigma_{11}\Big|_{x_2=-b} = \sum_{n=1}^{\infty} \Big[a_n - (\tilde{a}_n + a_n)c_n - (\tilde{a}_n - a_n)d_n\Big]\cos\alpha_n x_1$$

gdzie nowe stałe $c_n = \frac{2\alpha_n b}{sh2\alpha_n b + 2\alpha_n b}, d_n = \frac{2\alpha_n b}{sh2\alpha_n b - 2\alpha_n b}$
Własności: $\sum_{n=1}^{\infty} \tilde{a}_n \cos\alpha_n x_1 = \tilde{p}(x_1) - \frac{a_0}{2}, \sum_{n=1}^{\infty} a_n \cos\alpha_n x_1 = p(x_1) - \frac{a_0}{2}$
W przypadku tarczy wysokiej – w granicznym przypadku $b \to \infty$ stałe c_n i d_n
są wyrażeniami postaci $\lim_{x\to\infty} \frac{1}{shx/x\pm 1}$. Ponieważ $\lim_{x\to\infty} \frac{shx}{x} = \lim_{x\to\infty} chx = \infty$,
zatem przy $b \to \infty$ zachodzi $c_n \to 0$ i $d_n \to 0$. Tym samym naprężenia na
dolnym brzegu tarczy $\sigma_{11}\Big|_{x_2=-b} = p(x_1) - 0.5a_0$. Przy obciążeniach samo-
równoważących się może być $a_0 = 0$, wtedy $\sigma_{11}\Big|_{x_2=-b} = p(x_1) = \sigma_{22}\Big|_{x_2=-b}$

Porównanie z WM – pasmo tarczowe analizowane jako belka.

Model WM: belka ciągła nieskończona o jednakowych przęsłach o rozpiętości 2l, przekroju poprzecznym $g \times 2l$, działanie q = const.

W tym modelu wskaźnik wytrzymałości przekroju $W = \frac{2gb^2}{3}$,

momenty zginające, odpowiednio w przęśle

i na podporze, podane na rysunku, wynoszą $ql^2/6$ i $ql^2/3$. Model belkowy - wykresy naprężeń σ_{11} liniowe, ekstremalne:

- przęsłowym ("A-A")
$$\sigma_{11,extr} = \frac{3ql^2}{12gl^2} = \frac{1}{4}\frac{q}{g}$$
 (1/4 rezultatu tarczy)
- podporowym ("B-B") $\sigma_{11,extr} = \frac{3ql^2}{6gl^2} = \frac{1}{2}\frac{q}{g}$ (1/8 rezultatu tarczy).

<u>Uwagi:</u>

1) Przyłożenie obciążenia $q \begin{bmatrix} kN_m \end{bmatrix}$ na górnym lub na dolnym brzegu (ewentualnie między górnym, a dolnym brzegiem tarczy) **nie wpływa** na rozkład naprężeń σ_{11} i σ_{12} , a **wpływa jedynie** na naprężenia σ_{22} .

Wynika to z następującego rozumowania:

2) Podobnie rozwiązuje się tarcze zakrzywione w planie → zbiorniki i silosy

Konstrukcja : Rozwinięcie : R n podpór $(tutaj \ n=6)$ TTT. $=\frac{2\pi R}{2\pi R}$ n

