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SUMMARY  I 
 

Summary 

Like the Arctic, the Antarctic region hosts some of the hot spots of climatic change. At the 

western Antarctic Peninsula, alterations of air and water temperature, pH, salinity and sea-ice 

regime were reported and associated shifts in species abundance and changes in food web 

structure have already become evident. In contrast, for most high-Antarctic regions, no 

climate related changes have yet been found. However, future temperature increases are also 

projected for these areas. Ocean warming affects marine ectotherms by directly impacting 

their body temperature and thus physiology. Antarctic marine ectotherms, such as fish, are 

highly adjusted to the very cold and stable conditions of the Southern Ocean and are 

suggested to be highly temperature sensitive. Fish constitute an important link in Antarctic 

food webs by being prey and predator alike. While various studies focused on the impact of 

elevated temperature on lower organisational levels in Antarctic fish, trade-offs of increased 

temperature for the whole organism remain unclear, but are highly relevant from an 

ecological perspective. 

Thus, this thesis aimed to assess the impact of increasing temperature on Antarctic fish at the 

whole-organism level from an energy budget perspective. The energy taken up by an 

organism can be allocated to different vital functions, such as routine metabolism, growth, 

reproduction and excretion. When routine metabolic costs are covered, energy can be 

allocated to growth and reproduction, the factors influencing a species abundance and 

population structure. In the first study of this thesis, energy allocation to routine metabolism 

as well as response patterns to an acute increase of temperature in the fish species 

Lepidonotothen squamifrons, Trematomus hansoni and Lepidonotothen nudifrons were 

analysed using oxygen consumption measurements. While metabolic responses to changing 

temperature were comparable in all species, metabolic costs of high-Antarctic fish were 

higher at habitat temperatures. Starting from higher metabolic rates at habitat temperature, it 

was hypothesised that high-Antarctic species might achieve critical thermal thresholds much 

earlier than low-latitude species when temperature increases. In the second study, 

temperature-dependent trade-offs at the whole-organism-level in Antarctic fish were analysed 

measuring different energy budget parameters. The results indicated a lower thermal tolerance 

of the high-Antarctic Trematomus bernacchii compared to the low-Antarctic Lepidonotothen 

nudifrons. After nine weeks of acclimation to elevated temperatures (4°C), routine metabolic 

rates of T. bernacchii returned to baseline levels (0°C). However, mass growth was reduced 

by 84% at 2°C, likely due to less efficient food assimilation. In nature, such severe reductions 
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in fish growth could delay sexual maturity and reduce production. In the third study, 

temperature-dependent growth rates of fish species from different latitudes were assessed. 

Polar and especially Antarctic species showed low growth and a narrow thermal tolerance 

window for growth performance compared to temperate species. A further climate induced 

reduction of already low growth rates could significantly affect population structures and 

abundances of polar fish. 

In conclusion, this thesis indicates differences in energy allocation, such as potentially higher 

routine metabolism, among low- and high-Antarctic fish. These could contribute to a high 

thermal sensitivity of high-Antarctic species. On the whole-organism level, this thermal 

sensitivity was displayed by significant reductions of already low growth rates at elevated 

temperatures. Finally, these results suggest that ocean warming may have far-reaching 

consequences for Antarctic fish production and population structures with potential extensive 

implications for entire Antarctic ecosystems and food webs. 



ZUSAMMENFASSUNG  III 
 

Zusammenfassung 

Die Polarregionen gehören zu den sich am schnellsten erwärmenden Gebieten der Erde. An 

der antarktischen Halbinsel sind bereits Veränderungen der Luft- und Wassertemperaturen, 

des pH-Wertes, der Salinität sowie des Meereisregimes erkennbar, die mit Verschiebungen 

von Verbreitungsgrenzen von Arten und Veränderungen des Nahrungsnetzes einhergehen. Im 

Gegensatz dazu ist das Klima in den hochantarktischen Regionen bisher stabil. Modelle 

prognostizieren jedoch auch für diese Regionen zukünftig Temperaturanstiege. Die 

Erwärmung der Ozeane beeinflusst die Physiologie mariner ektothermer Organismen direkt 

durch Veränderungen ihrer Körpertemperatur. Als ektotherme Organismen sind antarktische 

Fische hoch angepasst an die kalten und stabilen Temperaturbedingungen des Südpolarmeeres 

und somit vermutlich sehr empfindlich gegenüber Temperaturveränderungen. Fische sind 

selbst Jäger und Beute zugleich und stellen somit eine wichtige Verbindung zwischen 

verschiedenen Trophiestufen dar. Während der Einfluss von Temperatur auf molekulare und 

zelluläre Ebenen in antarktischen Fischen häufig untersucht wurde, sind die Auswirkungen 

von steigenden Temperaturen auf das Ganztier unklar. Besonders die Ganztierebene ist jedoch 

aus ökologischer Sicht höchst relevant. 

Der Fokus dieser Arbeit liegt daher auf der Untersuchung des Einflusses steigender 

Temperaturen auf die Ganztierebene antarktischer Fische, unter dem Aspekt der 

Energieallokation. Energie, die ein Organismus mit der Nahrung aufnimmt kann für 

verschiedene Funktionen, wie zum Beispiel für den Grundstoffwechsel, Wachstum und 

Fortpflanzung verwendet oder ausgeschieden werden. Erst, wenn ausreichend Energie für den 

Grundstoffwechsel vorhanden ist, kann in Funktionen wie Wachstum und Reproduktion 

investiert werden, die die Abundanz und Populationsstruktur einer Art beeinflussen. 

Im ersten Teil dieser Arbeit wurde der Routinestoffwechsel der antarktischen Fischarten 

Lepidonotothen squamifrons, Trematomus hansoni und Lepidonotothen nudifrons bei 

Habitattemperatur und bei akuter Temperaturerhöhung mit Hilfe von 

Sauerstoffverbrauchsmessungen bestimmt. Hierbei zeigten alle Arten vergleichbare 

Stoffwechselreaktionen auf Temperaturerhöhung, jedoch wurden Unterschiede im 

Routinestoffwechsel bei Habitattemperatur deutlich. Durch bereits erhöhte Stoffwechselraten 

bei Habitattemperatur könnten hochantarktische Fische bei Erwärmung schneller kritische 

physiologische Zustände (kritische Temperaturen) erreichen als Arten nördlicherer 

antarktischer Regionen. Nachfolgende Experimente zur Energieallokation in Lepidonotothen 

nudifrons aus der nördlichen und Trematomus bernacchii aus der südlichen Antarktis 
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bestätigten eine geringere Temperaturtoleranz der hochantarktischen Art. Bei T. bernacchii 

führte bereits eine Temperaturerhöhung auf 2°C zu Wachstumseinbußen von 84%. Dies 

wurde vermutlich u.a. durch eine weniger effiziente Nahrungsverwertung verursacht. In der 

Natur könnte eine solch signifikante Reduktion des Wachstums das Erreichen der 

Reproduktionsreife verzögern und die Produktion beeinträchtigen. Eine anschließende 

Metaanalyse von temperaturabhängigen Wachstumsdaten aus der Literatur zeigte ein generell 

geringeres Wachstum, wie auch ein schmaleres Temperaturtoleranzfenster für polare 

Fischarten, im Vergleich zu Arten aus gemäßigten Breiten. Eine klimabedingte 

Temperaturerhöhung könnte die bereits geringen Wachstumsraten polarer Fische zusätzlich 

verringern und weitreichende Folgen für Populationsstrukturen und das Vorkommen einzelner 

Arten haben. 

Zusammengefasst deuten die Ergebnisse dieser Arbeit auf Unterschiede in der 

Energieallokation, wie zum Beispiel im Grundstoffwechsel, zwischen Fischen aus nördlichen 

und südlichen antarktischen Breiten hin. Diese Unterschiede könnten zu einer geringeren 

Temperaturtoleranz hochantarktischer Fische beitragen. Bei zunehmenden Temperaturen wird 

die geringere Temperaturtoleranz hochantarktischer Fische besonders durch zusätzliche 

Reduktion der bereits geringen Wachstumsrate deutlich. Die Ergebnisse dieser Arbeit lassen 

darauf schließen, dass durch steigende Wassertemperaturen Produktionsraten, 

Populationsstrukturen wie auch die Verbreitung antarktischer Fische sehr stark beeinträchtigt 

werden könnten, mit potenziell weitreichenden Folgen für antarktische Nahrungsnetze und 

Ökosysteme. 
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1. Introduction 

The Antarctic region is one of the most remote and pristine regions on earth. It is surrounded 

by the Southern Ocean, which is inhabited by various unique marine species. Displaying 

fascinating adaptation to their extreme habitat, the Antarctic fish fauna shows a high degree of 

endemism (Kock, 1992; Eastman, 1993). While the Southern Ocean ecosystems are facing 

various challenges, such as the increase of human activities and illegal fishing, this thesis will 

focus on the impact of increasing temperature on Antarctic fish species, with respect to 

potential impacts of anthropogenic climate change. 

 

1.1. The Antarctic environment and climate change 

Antarctica is a geographically isolated place, by distances to neighbouring continents as well 

as by topography. The Southern Ocean encircles the continent, enclosing the waters from the 

Antarctic continental borders to the Polar Front. The eastward-flowing Antarctic Circumpolar 

Current is the most prominent circulation feature of the Southern Ocean and connects the 

Pacific, Indian and Atlantic Ocean. Part of the Antarctic Circumpolar Current is the Polar 

Front, which is characterised by an abrupt change in surface water temperature of 2 to 3°C to 

over 1000 m depth (Kock, 1992; Clarke et al., 2005). Forming a barrier to north-south water 

exchange, the Antarctic Polar Front represents a biogeographic border and promotes the 

presence of endemic species in Antarctic marine invertebrates and fish fauna (Kock, 1992; 

Arntz et al., 1997). The Southern Ocean is made up of a system of deep basins of 3000 to 

5000 m depth, connected by oceanic ridges, which form the only shallow areas besides the 

shelf (Eastman, 1993). Global continental shelves host most productive fish grounds. While 

being broad and shallow (<130 m) in most parts of the world, Antarctic shelves are 

considered to be deep (~500 m) and also narrow, because large proportions are covered by ice 

shelves (Anderson, 1991; Eastman, 1993). 

In the following, the area covered by ice almost throughout the year, adjacent to the Antarctic 

continent, will be referred to as high-Antarctic region (Kock, 1992; Hunt et al., 2003). In 

contrast, the term low-Antarctic will describe the seasonal pack-ice zone and adjoining 

northern Antarctic waters (cf. Kock, 1992; Barnes et al., 2006). 

In the Antarctic regions, light conditions vary strongly within the seasons. In high-Antarctic 

areas, 24 hours daylight in summer contrast nearly complete darkness in the austral winter. 

Coupled to this is a very seasonal primary production with a short, but dense bloom starting in 
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mid-December that is followed by constant low production in the water column for the rest of 

the year (Clarke, 1988). In contrast, in the benthic realm, food availability is constant 

throughout the year (DeVries and Eastman, 1981; Kock, 1992). 

Water temperatures below 0°C are encountered in large parts of the Southern Ocean, 

characterising it as one of the coldest and most stable marine habitats. In high-Antarctic areas, 

sea water temperature shows little seasonal variation of -1.9 to -0.35°C throughout the year, 

while in northern areas, such as South Georgia, seasonal temperatures vary by up to 5°C (Fig. 

1; Hunt et al., 2003; Barnes et al., 2006). 

However, Antarctica does host some of the most rapidly warming regions today. While global 

sea surface temperatures have risen around 0.1°C per decade since 1971 (Hoegh-Guldberg et 

al., 2014), surface water temperatures in some Antarctic areas like Potter Cove (King George 

Island, South Shetland Islands) have increased by up to 0.36°C per decade (Schloss et al., 

2012). Surface waters around South Georgia have risen in temperature by 2.3°C within the 

last 81 years (Whitehouse et al., 2008) and water temperature increases of more than 1°C have 

been reported for the Western Antarctic Peninsula since the 1950s (Meredith and King, 2005). 

Reductions in sea ice habitat (Stammerjohn et al., 2008) have caused various changes in 

ecosystems and food webs at the Western Antarctic Peninsula, such as shifts in phytoplankton 

species (Moline et al., 2004), decreases in krill and increases in salp abundance (Atkinson et 

al., 2004), shifts in abundance and reductions of Adélie, gentoo and chinstrap penguins 

(Forcada et al., 2006; Trivelpiece et al., 2011; Turner et al., 2014) as well as shifts in seal 

populations (Costa et al., 2010). Moreover, the appearance of invasive species, such as king 

crabs in the Palmer Deep (Smith et al., 2011), is suggested to be connected to elevated 

temperatures. Additionally, warming is suggested to increase the frequency of ice scouring, 

with negative effects on benthic organisms (Smale et al., 2008).  

In contrast to already evident changes in some northern Antarctic regions, changes in water 

temperature have not yet been recorded for high-Antarctic areas. Overall, Antarctic sea ice 

extend was reported to increase since 1979, while causes of this development are unclear 

(Parkinson and Cavalieri, 2012; Fan et al., 2014; Gagné et al., 2015). 

Recent models suggest a temperature increase of 0.6 to 0.9°C in the Southern Ocean until the 

year 2200, with high regional variations (Timmermann and Hellmer, 2013). Around the 

Western Antarctic Peninsula, warming is suggested to not exceed 2°C until 2100 

(Timmermann and Hellmer, 2013; R. Timmermann personal communication 2015), while 



INTRODUCTION  3 
 

scenarios for high-Antarctic seas vary widely. The Western Ross Shelf is predicted to 

experience minor warming of 0 to 0.4°C until 2100 (Timmermann and Hellmer, 2013). In 

contrast, high-Antarctic areas around the Filchner Trough in the Weddell Sea might warm by 

up to 2°C in the same period (Hellmer et al., 2012).  

 

Fig. 1 Sea water temperature variation declines from low to high latitudes within Antarctic waters in 10-20 m 
depth (Barnes et al., 2006). Encircled numbers denote catch locations of model organisms Lepidonotothen 

nudifrons (1) and Trematomus bernacchii (2) as outlined in section 1.6. 

 

1.2. The Antarctic fish fauna 

The fish fauna shapes Antarctic coastal ecosystems by playing an important role in food webs. 

Adult life stages display various combinations of benthos, fish and plankton feeding, with 

shifts in diet composition being associated with ontogeny, season and local abundances of 

prey. Bivalves, amphipods, isopods and other crustaceans as well as polychaetes, algae and 

other small fish are used as food sources (Gon and Heemstra, 1990). Feeding strategies from 

bottom and ambush feeding, bottom slurping and grazing to water column feeding can be 

found (Daniels, 1982). However, ambush feeding is likely to be the most prevalent one. 
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Different species were observed to be ‘sit and wait predators’, waiting motionless on the 

ground for prey organisms to approach (Daniels, 1982; Hubold, 1992). In turn, fish are preyed 

upon by various predators, such as seals, seabirds, whales, squid as well as by larger fish 

species (Kock, 1992). Thus, they constitute an important link between lower and higher 

trophic levels in Antarctic food webs (Hureau, 1994; Kock et al., 2012). 

The pelagic fish fauna in the Southern Ocean is poorer in diversity and density than the 

benthic fish fauna, which is widely distributed on the shelves and upper slopes (Kock, 1992). 

This coastal fish fauna is dominated by the endemic perciform suborder Notothenioidei, in 

terms of numbers as well as biomass. The notothenioids radiated into eight families, the 

Bovichtidae, Pseudaphritidae, Eleginopsidae, Nototheniidae, Harpagiferidae, Artedraconidae, 

Bathydraconidae and Channichthyidae (Eastman and Eakin, 2000), making up for 91 to 98% 

of species sampled by trawling in coastal regions (Eastman, 1993; Mintenbeck et al., 2012). 

Most notothenioids display a primarily benthic lifestyle, and thus lack a swim bladder. Only 

few species have adapted secondarily to the pelagic habitat (Kock, 1992; Eastman, 1993). 

 

1.3. Adaptation to the Antarctic environment 

Regarding the Antarctic fish fauna, the Nototheniidae are the most and best studied group. In 

recent years, they allowed researchers to gain a glimpse on a range of adaptations to one of 

the coldest and most stable marine environments on earth.  

Multiple processes are suggested to be slower in Antarctic fish, compared to temperate 

species. Antarctic fish generally reach a high age, show comparatively slow growth, small 

body size and reach sexual maturity late in their life cycle (DeVries and Eastman, 1981; Kock 

and Kellermann, 1991; Kock and Everson, 1998; La Mesa and Vacchi, 2001). However, 

while these traits can display eco-physiological adaptations, it is unclear whether they are 

caused by genetic or ecological factors.  

Generally, polar fish are suggested to have higher metabolic rates compared to temperate and 

tropical fish when extrapolated to the same temperatures, as hypothesised by the theory of 

metabolic cold adaptation (MCA) (Scholander et al., 1953; Wohlschlag, 1960). Since its 

introduction, the MCA concept has been intensely debated. Today, it is widely agreed upon 

MCA at the enzyme level (Crockett and Sidell, 1990; Kawall et al., 2002; White et al., 2012; 

Magnoni et al., 2013), while the existence of metabolic cold adaptation at the whole-organism 
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level is still controversially discussed (Holeton, 1974; Clarke and Johnston, 1999; Jordan et 

al., 2001; White et al., 2012).  

Low temperature associated with ice coverage is one of the biggest challenges of the Southern 

Ocean environment, requiring resistance to freezing. Sea water freezes at temperatures below 

-1.86°C, due to its high ion concentration. The ionic content of blood in marine teleosts is 

typically one third of that of sea water, resulting in a freezing point of -0.8°C (Kock, 1992). 

Having adapted to their extreme habitat, Antarctic fish possess antifreeze proteins that 

prohibit the build-up of ice and contributes to a temperature tolerance down to -2°C (DeVries, 

1971). Special antifreeze glycoproteins bind to ice crystals forming in or entering the 

organism and depress the growth of ice by causing a temperature difference between the 

melting and freezing point of ice (hysteresis) (Celik et al., 2013).  

Moreover, an increased mitochondrial density was found in Antarctic fish red muscle, which 

is suggested to enhance the aerobic capacity in the cold (Archer and Johnston, 1991; Johnston 

et al., 1998; O'Brien et al., 2003). Besides, unusually large fibre diameters, but small fibre 

numbers have been reported for some notothenioids (Battram and Johnston, 1991; Johnston et 

al., 2003). Other adaptations at the molecular level include membranes that contain high 

proportions of unsaturated fatty acids to maintain a fluid state at low temperatures (Morris and 

Schneider, 1969; Macdonald and Wells, 1991) as well as tubulins of Antarctic fish 

cytoskeletons that polymerise into microtubule at much lower temperatures than commonly 

found in other organisms (Detrich III, 1991). Furthermore, high lipid contents in Antarctic 

fish tissue serve as an important energy store and contribute to buoyancy in some species 

(Eastman and DeVries, 1981; Sidell et al., 1995).  

The low temperatures of the Southern Ocean not only increase the viscosity of sea water, but 

also of other fluids such as blood. Higher viscosity increases the work of the heart and 

circulatory system by affecting vascular resistance (Macdonald and Wells, 1991). Lower 

haematocrit, i.e. a lower erythrocyte fraction, measured in different Antarctic species is 

thought to mitigate the effect of increased viscosity due to low temperature (Eastman, 1993; 

Egginton, 1996). Besides, the lack of the oxygen-binding protein haemoglobin, in all species, 

and myoglobin, in some species, of the notothenioid family Channichthyidae (‘icefishes’) is a 

remarkable adaptation (Ruud, 1954; Sidell et al., 1997; Wittenberg and Wittenberg, 2003). 

While haemoglobin is involved in the transport of oxygen via blood from the respiratory 

organs to the tissue, myoglobin is suggested to play a critical role for storage as well as for 

diffusion of oxygen in muscle tissue. As a consequence, oxygen merely goes in solution in 
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icefish blood, resulting in an oxygen carrying capacity of less than 10% compared to that of 

red-blooded notothenioids, but a low blood viscosity (Holeton, 1970; Egginton, 1996). For 

compensation, icefish possess large hearts, enabling a several-fold increased cardiac output 

(Hemmingsen et al., 1972), large blood volumes and capillaries of large diameter (Fitch et al., 

1984). In spite of lacking haemoglobin and myoglobin, the combination of high oxygen 

concentration in cold Antarctic waters and the aforementioned arrangements allow a sufficient 

oxygen supply for the whole organism (Sidell and O'Brien, 2006). 

Some of their adaptations to the cold, such as higher mitochondrial densities, high proportions 

of unsaturated fatty acids in membranes and high lipid contents, have been suggested to 

render Antarctic fish more susceptible to oxidative and thereby any physiological stress 

(including thermal stress) compared to lower-latitude species (Abele, 2002; Abele and 

Puntarulo, 2004). 

Additionally, some Antarctic fish species were found to have lost the heat shock response 

(Hofmann et al., 2000; Place and Hofmann, 2005), which was thought to be a nearly universal 

stress response among organisms (Lindquist, 1986). Usually, a heat shock response is 

triggered e.g. by thermal stress. Heat-induced chaperones bind to denatured proteins, 

preventing their aggregation and support their refolding into the native functional state, when 

temperatures normalise (Parsell and Lindquist, 1993). Evolution of Antarctic fish in such a 

very stable and cold environment might have permitted the loss of this functional trait to 

respond to temperature changes. It is paralleled by a very low thermal tolerance in these fish, 

which will be discussed in the next paragraph. 

 

1.4. Thermal tolerance 

Temperature is an abiotic key factor in the marine realm. In ectotherm organisms, such as 

fish, body temperatures are driven by ambient temperatures, impacting metabolic processes 

and shaping distribution limits (e.g. Pörtner and Knust, 2007). 

In recent years, shifts in fish species distribution as a response to increasing water 

temperatures have been reported (Murawski, 1993; Perry et al., 2005; Dulvy et al., 2008). 

Recent model predictions suggest a global reduction in fish body weight of 14 to 24% within 

50 years under a high-emission scenario. While half of this effect is caused by shifts in 

distribution and abundance of local species assemblages, the other half is assumed to be 

caused by changes in physiology (Cheung et al., 2013). 
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Within the physiological tolerance range of an organism, i.e. its thermal window, an acute 

increase of temperature leads to an exponential increase of metabolic rate. Usually, a 10°C 

increase of temperature results in a two to three-fold rise of metabolism, generally called the 

Q10 (Jensen et al., 1993). A change in metabolic rate of an organism displays a variation in 

tissue oxygen demand for ATP production, where oxygen is needed for the oxidation of 

substrates gained from food consumption (Jobling, 1994). Consequently, oxygen consumption 

can serve as an indirect estimate of metabolic rate and a measure for the impact of 

temperature on an organism’s performance. 

The concept of oxygen- and capacity-limited thermal tolerance (OCLTT) explains how 

reduced oxygen supply can limit the aerobic capacity (i.e. aerobic scope, the difference 

between standard and maximum metabolic rate) of an organism at both sides of the thermal 

window (Pörtner, 2010). The thermal window of an organism is defined by the optimal 

temperature, at which an organism meets best condition, enhancing growth and reproduction 

(Fig. 2). If temperature increases or decreases, it can enter the upper or lower pejus 

temperature range, where the performance decreases due to reduced aerobic scope, leading to 

reduced oxygen availability to tissues. At upper and lower critical temperatures, oxygen 

supply can no longer match the increasing demand and metabolism reverts to anaerobic 

pathways (Pörtner, 2010). The OCLTT concept has been supported by various studies at 

different organisational levels in marine invertebrates and fish from various latitudes. While 

OCLTT implies that aerobic scope drives most other physiological performances, such as 

growth, digestion, reproduction etc., alternative concepts suggest the existence of different 

optimal temperatures for the performance of different functions. The idea of ‘multiple 

performances – multiple optima’ (MPMO) suggests aerobic scope to be one function out of 

many others, without hierarchical order (Clark et al., 2013). The response to increasing 

temperature is likely to vary between species as well as between populations, with life stage 

and ecotype and depends on the rate of temperature change (Pörtner and Farrell, 2008; Clark 

et al., 2013). 

The thermal window of an organism is shaped by the temperature conditions experienced in 

its natural environment. While species from temperate regions usually display a broader 

thermal tolerance, species from the more stable high-latitudes show a lower thermal tolerance 

range (Fig. 2; Somero and DeVries, 1967; Van Dijk et al., 1999; Brodte et al., 2006a). 

Antarctic marine ectotherms, including fish, were found to be very stenotherm (Peck et al., 

2014). Antarctic fish display low critical thermal maxima, compared to temperate or tropical 
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species (Bilyk and DeVries, 2011). However, acclimation to increased temperature was 

shown to elevate critical thermal maxima in various Antarctic species (Bilyk and DeVries, 

2011). Similarly, some Antarctic fish are able to acclimate their metabolic rate to increasing 

temperature, compensating for thermal effects on metabolic processes (Seebacher et al., 2005; 

Franklin et al., 2007). For example, Pagothenia borchgrevinki was found to compensate for 

elevated temperature completely after 28 days at 4°C (Robinson and Davison, 2008). In 

contrast, other notothenioid species could not be acclimated to this temperature (Robinson, 

2008). 

 

Fig. 2 Schematic temperature dependent performance curve (adapted from Pörtner and Farrell, 2008). The 
thermal window is narrow for polar stenotherm (blue) and for tropical organisms (red), while being broader for 
temperate eurytherms (black). Areas shaded in green denote optimal temperatures for physiological 
performance, such as growth. 

 

Even though the thermal tolerance of Antarctic fish has been the subject of various studies, 

the underlying physiological mechanisms are still not completely understood. Studies on 

different species showed deviations between thermal limits for different organisational levels 

(Gonzalez-Cabrera et al., 1995; Mark et al., 2005; Robinson, 2008; Strobel et al., 2013; Enzor 

and Place, 2014). Performance limitations might become evident at the most complex 

organisational level first, but specialisation of molecules could also have forced an 

interdependency of thermal tolerance limits of different organisational levels (Pörtner et al., 

2007). While studies on lower organisational levels, such as molecules or enzymes, are 

important to understand physiological mechanisms, the thermal response of whole-organism 

functions, such as growth and reproduction, are most essential in an ecosystem context. 
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1.5. Energy budgets 

Various studies show relations between temperature and organismic traits, such as growth and 

metabolism (Fonds et al., 1992; Brodte et al., 2006a; Hildebrandt et al., 2011). Besides, shifts 

in distribution of fish species due to increasing temperature have been reported with 

progressing climate change (Murawski, 1993; Perry et al., 2005; Grebmeier et al., 2006; 

Dulvy et al., 2008). However, studies linking experimental results on thermal tolerance to 

production and abundances in the field are rare. Pörtner and Knust (2007) showed agreement 

of thermal limits being effective in the field with lab-determined thermal tolerance. They 

found temperatures at which declining growth rates, accumulation of anaerobic metabolites 

and increasing oxygen consumption were measured in the lab, to comply well with declining 

abundances in the field (Pörtner and Knust, 2007). 

The abundance of a population is driven by natality and mortality. While both factors vary 

with the Darwinian fitness of the single individuals of a population, natality moreover 

depends on individual fecundity, and mortality is regulated by individual growth and 

predation pressure in the community. Thus, the fitness of an individual, by determining 

fecundity and growth, impacts natality and mortality within a population and shapes 

population structures and abundances. This fitness is influenced by the energy budget.  

According to Jobling (1994), the energy budget can be explained by the following equation: 

= + + +  

The energy that is taken up by an organism in form of food (R) can be allocated to different 

vital functions, such as body growth or reproduction (P), basal/routine metabolism including 

cots of digestion and activity (M), general excretion (U) and faecal excretion (F) (Jobling, 

1994). The routine or basal metabolic rate covers the vital functions to keep an organism 

alive. Only when these energetic costs have been met, energy can be allocated, e.g. to growth 

and reproduction (Wieser, 1994; Sokolova, 2013). 

Energy allocation can be influenced by abiotic factors, such as temperature, as well as by 

physiological adaptations to the environment. This is demonstrated for example by 

differences in length at first spawning that can indicate differences in energy allocation to 

growth and reproduction. For instance, some Antarctic species reproduce only after having 

reached up to 80% of their final size, suggesting that energy allocation to growth and 

reproduction is clearly separated (Kock and Kellermann, 1991). Such traits are likely to 
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resemble adaptations to enhance fitness in a specific environment. Furthermore, differences in 

and impacts on energy allocation to growth and reproduction can affect population structures. 

Therefore, energy budgets are a useful tool to analyse whole-organism performance, the 

impact of elevated temperature as well as potential consequences for abundance structures. 

 

1.6. Objectives of this thesis 

In the framework of progressing climate change, the understanding of thermal response 

patterns of Antarctic organisms becomes more and more important. Fish play a crucial role in 

Antarctic food webs. The objective of this thesis was to analyse the thermal tolerance of 

Antarctic fish at the whole-organism level.  

The natural environment of an organism is thought to influence its thermal tolerance (e.g. 

Stillman 2003; Tewksbury et al. 2008). While Antarctic fish in general are suggested to be 

highly stenothermal (Somero and DeVries, 1967; Somero, 2010), differences between 

Antarctic species have rarely been investigated with respect to habitat conditions (Bilyk and 

DeVries, 2011). As shown in Fig. 1, the Southern Ocean comprises different thermal habitats, 

possibly influencing thermal tolerance. Therefore, the correlations between thermal tolerance 

and habitat temperature conditions were investigated in this thesis.  

Moreover, various studies on thermal tolerance of lower organisational levels, such as cells 

and enzymes of Antarctic fish are available, while little is known about thermal response of 

the whole animal to warming (e.g. Mark et al., 2005; Jayasundara et al., 2013; Strobel et al., 

2013; Enzor and Place, 2014). Thus, another objective of this thesis was to analyse the impact 

of elevated temperature on the whole-organism performance parameters and potential 

consequences for population structures and abundances.   
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The following working hypotheses were posed: 

 

1. Due to life in different thermal regimes, thermal tolerance of Antarctic fish varies 

depending on habitat conditions. High-Antarctic fish display a lower thermal 

tolerance compared to low-Antarctic species. 

 

2. Cold adaptation is paralleled by high thermal sensitivity. Increasing temperature 

causes energetic trade-offs at the whole-organism level in Antarctic fish. 

 

3. Elevated temperature impacts energy allocation patterns to vital functions, such 

as growth. General growth performance and the temperature dependence of 

growth differ in species from different latitudinal ranges, influencing a species’ 

sensitivity to ocean warming. 

 

With respect to the first hypothesis, metabolic rates at habitat temperatures as well as 

metabolic responses to acute temperature changes of the Antarctic fish species 

Lepidonotothen squamiforns, Lepidonotothen nudifrons and Trematomus hansoni, from 

different thermal environments were compared (manuscript I). While metabolic rate at habitat 

temperature displays the routine energetic cost in terms of an organism’s energy budget, the 

assessment of the acute thermal tolerance served as a schematic approach to compare 

response capacities. 

To assess potential trade-offs caused by elevated temperature at the whole-organism level in 

Antarctic fish, as posed in the second hypothesis, energy allocation experiments were carried 

out. Energy budget parameters, such as food intake, growth, routine metabolism and 

reproduction were measured after long-term acclimation to increased temperatures in fish 

with low- and high-Antarctic distribution (manuscript II & III). Here, the yellowfin nothie, 

Lepidonotothen nudifrons, served as a model species for fish with low-Antarctic distribution 

(Fig. 3). L. nudifrons occurs in the Scotia Arc, from the Antarctic Peninsula and associated 

islands to South Georgia in the north (Gon and Heemstra, 1990). The specimens worked with 

in this thesis, were caught around Elephant Island (cf. Fig 1). The emerald rockcod, 

Trematomus bernacchii, served as a model organism for high-Antarctic fish (Fig.4). It shows 

a circum-Antarctic distribution and is a very common species of the high-Antarctic Ross Sea 

shelf (cf. Fig 1), where animals were caught for this study (Gon and Heemstra, 1990). Both 

species are primarily benthic and prey on various epifaunal organisms, such polychaetes, 
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gammarids, isopods, amphipods and also on fish eggs, bivalves or small crustaceans (Gon and 

Heemstra, 1990; Montgomery et al., 1993; La Mesa et al., 2004). 

For both species, general energy allocation patterns, as well as the impact of temperature on 

energy allocation, were determined and assessed with regard to potential ecological 

consequences.  

Considering the third hypothesis, temperature dependent growth rates of fish species from 

different latitudes, including results from manuscript II, as well as literature data, were 

analysed in manuscript IV. These results were assessed with regard to the knowledge gained 

from the investigations of the first and second hypotheses. Therefore, general differences in 

growth rates as well as differences in thermal tolerance of growth performance were discussed 

in an energy allocation framework, including potential implications of these traits for a 

species’ sensitivity to ocean warming. 

 

 

Fig. 3 T. bernacchii resting on ice (copyright M. D. 
Lamare) 

 

 

 

 

Fig. 4 L. nudifrons in an aquarium (copyright T. 
Sandersfeld) 
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2. Manuscripts 

This thesis includes four manuscripts. The manuscripts, their status as well as the candidate’s 

contribution to them are shown in the manuscript outline. It is followed by reprints of the 

single manuscripts. 

 

2.1. Manuscript outline 

 

Manuscript I 

Authors:  Tina Sandersfeld, Felix C. Mark, Rainer Knust (2015) 

Title:  Temperature-dependent metabolism in Antarctic fish: Do habitat conditions 

  affect acute thermal tolerance? 

Status:  Under review at Polar Biology 

Contributions:  RK and TS developed the idea and outline of the study. TS conducted the  

  experiments. TS interpreted the data, wrote the manuscript and prepared the 

  figures. RK supported data interpretation. RK, FCM and TS edited the  

  manuscript. 

 

Manuscript II 

Authors:  Tina Sandersfeld, William Davison, Miles D. Lamare, Rainer Knust, Claudio 

  Richter (2015) 

Title:  Elevated temperature causes metabolic trade-offs at the whole-organism level 

  in the Antarctic fish Trematomus bernacchii 

Status:  Published in The Journal of Experimental Biology 218, 2373-2381,  

  doi:10.1242/jeb.122804 

Contributions:  TS conceived the experiments with support of RK. MDL, WD and CR 

provided   logistical support. MDL and TS collected experimental animals. TS designed 

  and implemented the experiments. WD aided in experiment implementation. 

  TS prepared the manuscript and figures. RK, MDL, WD, CR and TS edited the 

  manuscript. 
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Manuscript III 

Author:  Tina Sandersfeld, Magnus Lucassen, Nils Koschnick, Claudio Richter, Rainer 

  Knust (2015) 

Title:  Routine metabolism, growth and excretion in the Antarctic fish   

  Lepidonotothen nudifrons: Does temperature affect the effective use of energy 

  resources? 

Status:  Manuscript (Brief Communications) 

Contributions:  The idea of study was conceived by TS and RK. ML, NK and TS collected the 

  model organisms. TS developed the experimental design and carried out the 

  experiments. NK supported the sampling. TS prepared the manuscript and  

  figures. The manuscript was reviewed by the co-authors. 

 

Manuscript IV 

Authors:  Tina Sandersfeld, Kristina L. Kunz, Felix C. Mark, Claudio Richter, Holger 

  Auel, Rainer Knust (2015) 

Title:  Energy allocation to growth as an indicator of sensitivity to climate change - 

  an analysis of temperature-dependent growth of fish species from different 

  latitudes 

Status:  Manuscript  

Contributions:  TS developed the outline of the study, wrote the manuscript and prepared the 

  figures, based on former ideas of RK. The manuscript was reviewed by the co-

  authors.
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Abstract 

Climatic warming is most pronounced in the polar regions. For marine ectotherms such as 

fish, temperature is a key abiotic factor, influencing metabolic processes. Species distribution 

and abundance are driven by reproduction and growth, which depend on available energy 

exceeding baseline maintenance costs. These routine metabolic costs make up a large part of 

the energy expenditure. Thermal stress can increase routine metabolism, affecting an 

organism’s fitness. 

Data of routine metabolic rates of Antarctic fish is scarce and comparability of existing data 

sets is often problematic due to ecological differences between species and in experimental 

protocols. Our objective was to compare routine metabolism and thermal sensitivity of species 

with similar ecotypes, but different thermal environments to assess possible implications of 

warming waters on energy expenditure in Antarctic fish, a fauna characterised by geographic 

isolation, endemism and putative thermal adaptation. 

We measured routine metabolic rates of three benthic Antarctic fish species from sub-, low- 

and high-Antarctic regions at habitat temperatures and during acute temperature increase. Our 

analysis revealed differences in metabolic rates at the same temperature suggesting local 

adaptation to habitat temperature. Acute thermal stress induced a comparable response of 

metabolic rates to increasing temperature, suggesting that high-Antarctic species starting off 

from elevated metabolic rates might reach critical temperatures much quicker. We conclude 

that higher metabolic rates are associated with higher energetic costs and narrower thermal 

windows, a potential disadvantage to the endemic high-Antarctic fish fauna facing the 

challenge of climate change. 

 

 

Key words: Routine metabolic rate, Polar fish, Notothenioids, Metabolic cold adaptation, 

Respiration 
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Introduction 

The Polar Regions comprise some of the ‘hot spots’ of climatic warming. Around the Western 

Antarctic Peninsula, surface waters have risen in temperature about 1°C in the second half of 

the twentieth century and around South Georgia a temperature increase of 2.3°C has been 

recorded within the last 81 years (Meredith and King, 2005; Whitehouse et al., 2008). 

Although temperature changes have not yet been recorded for high-Antarctic regions such as 

the Weddell Sea, water temperature increases of up to 2°C have been projected by the year 

2100 also for these areas (Hellmer et al., 2012; Turner et al., 2014). 

Temperature is a key abiotic factor in the marine environment. In ectotherm organisms like 

fish, body temperature is determined by ambient temperature, affecting metabolic processes.  

The thermal tolerance window of a species yields insight into physiological plasticity 

regarding changes in ambient temperature. According to the concept of oxygen- and capacity- 

limited thermal tolerance (OCLTT) (Pörtner, 2012), the temperature window of an organism 

is defined by the upper and lower critical and pejus temperatures. At a species’ optimal 

temperature, low maintenance costs and maximised aerobic scope were found to come along 

with high growth rates (Koehn and Shumway, 1982; Wieser, 1994; Brodte et al., 2006). Even 

though supporting evidence for the OCLTT concept was found in various species (Mark et al., 

2002; Lannig et al., 2004; Pörtner et al., 2004), its general applicability and how to measure it 

has still been discussed in the recent literature (Clark et al., 2013; Norin et al., 2014). 

Fish play an important role in Antarctic food webs. Being predator and prey alike, they serve 

as an important link between lower and higher trophic levels (Hureau, 1994). Antarctica has 

been an oceanographically isolated and thermally very stable environment over geological 

time scales, leading to the evolution of an endemic Antarctic fish fauna with highly 

stenothermal species. Antarctic fish exhibit different adaptations to their constantly cold 

environment, such as a lack of heat shock response, expression of anti-freeze glycoproteins, a 

lack of haemoglobin and myoglobin, higher mitochondrial densities as well as other 

compensatory adaptation in the heart and circulatory system (e.g. DeVries and Eastman, 

1981; Coppes Petricorena and Somero, 2007). Compared to temperate species that experience 

broader environmental temperature fluctuations, Antarctic fish have very narrow temperature 

windows (Somero and De Vries, 1967; Van Dijk et al., 1999; Brodte et al., 2006). However, 

habitat temperature does not only vary on global scales, but also within the Southern Ocean. 

In the lower, i.e. northern Antarctic region, shelf water temperatures are generally warmer 
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(Barnes et al., 2006; Clarke et al., 2009), compared to the very stable high Antarctic shelf 

region in the south with temperatures between -0.5 to -1.9°C (Hunt et al., 2003). Evolution in 

these thermally different regions is likely to have affected thermal tolerance within Antarctic 

notothenioids. Studies on critical thermal maxima (CTmax) showed thermal tolerance 

differences between high and low-Antarctic species of up to 4°C (Bilyk and DeVries, 2011). 

Moreover, organismal freeze avoidance (mostly anti-freeze glycoproteins) in Antarctic 

icefishes was shown to decrease with distribution in increasing latitudes (Bilyk and DeVries, 

2010), indicating specific adaptation to the respective regional climate. 

For a benthic marine fish species, Pörtner and Knust (2007) showed thermal limits determined 

in laboratory experiments to agree with ambient temperatures beyond which growth 

performance and abundance in the field declined. Growth and reproduction are the main 

driving forces for population dynamics and structure, thereby shaping a species’ abundance 

and distribution. However, growth and reproduction of an organism depend upon aerobic 

energy available after baseline costs of maintenance have been met (Koehn and Shumway, 

1982; Wieser, 1994). Thus, knowledge on the impact of temperature on energy budget factors 

from experimental trials, such as routine metabolic costs, helps to estimate possible impact of 

ocean warming on Antarctic fish. 

Various studies are available focusing on differences in routine metabolism and thermal 

tolerance between temperate, tropical and polar species (Johnston et al., 1991; Clarke and 

Johnston, 1999; Vanella and Calvo, 2005; White et al., 2012). However, data for Antarctic 

species is limited (Robinson, 2008; Strobel et al., 2012; Enzor et al., 2013) and additionally 

comparability of single studies is complicated by differences in experimental setups, protocols 

and species’ ecotypes, all of which have major effects on results (Chown et al., 2009; Bilyk 

and DeVries, 2011). The aim of this study is to compare routine metabolism and thermal 

sensitivity of different Antarctic fish species from different thermal environments i.e. sub-

Antarctic, low northern and high southern Antarctic regions, to gain insight in the impact of 

environmental temperature variability within Antarctic waters on a species’ thermal tolerance. 

While a population’s thermal tolerance is an important factor to assess, as it has direct fitness 

consequences in a warming Southern Ocean, ambiguities of species and regional effects 

cannot be resolved with this approach. In this study, we compare three notothenioid species 

from different latitudes, namely Lepidonotothen squamifrons, Lepidonotothen nudifrons and 

Trematomus hansoni, which are all benthic, shelf inhabiting species. Distributions range from 

the sub-Antarctic Islands for L. squamifrons, the Scotia Arc and the Antarctic Peninsula (low-
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Antarctic) for L. nudifrons, to high-Antarctic areas for T. hansoni (Gon and Heemstra, 1990). 

We present a data set of routine metabolic rates at habitat temperatures as well as in response 

to acute temperature increase of different Antarctic demersal fish species of similar ecotype 

measured with the same experimental setup and protocol. Thereby we want to approach the 

question how the geographically isolated and highly endemic Antarctic fish fauna will fare 

with progressing climate change and whether there will be differences in this putatively 

temperature sensitive species depending on habitat conditions. 

 

Material and methods 

Animals 

In this study, the three Antarctic fish species, Lepidonotothen squamifrons, Trematomus 

hansoni and Lepidonotothen nudifrons, were investigated. 

Lepidonotothen squamifrons were caught near South Georgia at a depth of ~310 m, water 

temperature of 2.1°C and salinity of 34.4‰ by bottom trawl in March/April 2011 (RV 

Polarstern, ANT-XXVII/3). Body weight of the fish ranged from 233.5 - 394.0 g. 

Trematomus hansoni were collected in the Eastern Weddell Sea at a depth of ~225 m, water 

temperature between -1.5 to -1.9°C, and salinity of 34.4‰ by bottom trawl in April 2011 (RV 

Polarstern, ANT-XXVII/3). Body weight of the animals was between 213.2 and 300.8 g. 

Experiments with L. squamifrons and T. hansoni were carried out after a recovery period of a 

minimum of 14 days on board RV Polarstern. During this time L. squamifrons were kept at a 

temperature of 2°C (habitat temperature measured before trawling), while T. hansoni were 

kept at the lowest technically possible temperature on board the vessel of -0.5 to 0°C. 

Lepidonotothen nudifrons were caught near Elephant Island at a depth of 70 to 322 m, water 

temperature of 0.0 to 0.8°C and salinity of 34.2 to 34.5‰ by bottom trawl in March/April 

2012 (RV Polarstern, ANT-XXVIII/4). Fish weight was 32.2 to 41.0 g. Animals were 

transported to the Alfred Wegener Institute in Bremerhaven (Germany) and kept in aquaria at 

0 to 1°C. Experiments were carried out in August 2012. 

The temperature at which the animals were kept after being caught is here after referred to as 

habitat temperature and was used as the starting temperature for the respiration experiments. 

Experiments were stopped, when fish showed first signs of stress, indicated by a loss of 
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balance or irregular movements of opercula. Locations of catch for all species, as well as 

habitat temperature variations, are shown in Table 1. 

Oxygen consumption measurement 

Routine metabolic rates (RMR) in this study were measured by flow-through systems. Prior to 

each measurement, oxygen probes were calibrated at the starting temperature for 100% 

oxygen saturation with air equilibrated seawater and for 0% saturation with nitrogen bubbled 

seawater. Before and after each measurement period, a blank, i.e. without an animal inside the 

respiration chamber, was measured to estimate bacterial respiration and fluctuation of the 

flow. Blank data showed negligible oxygen consumptions and therefore were not considered 

in calculations of oxygen consumption. All animals were starved for about 10 days prior to 

experiments, to exclude effects of specific dynamic action on metabolic rates. The fish were 

placed in the respiration chamber at habitat temperature. After an acclimation period of at 

least 24 hours, oxygen consumption was measured for another 24 hours at habitat temperature 

for RMR determination. Subsequently, temperature was increased by 1°C per 24 hours. 

Temperature was continuously raised at the same time of day, usually in the morning. In this 

way, settings could be supervised while temperature was increased and data for analysis were 

recorded at stable temperature overnight, as disturbance levels by surroundings were lowest 

during this time. A dimmed light was turned on all day long in the experimental room to 

resemble summer light conditions. In the beginning of each measurement, the flow rate was 

set in a way that the out-flowing water displayed oxygen saturation between 95 and 90%. 

The term ‘routine metabolic rates’ will be used in this study to describe oxygen consumption 

rates including all metabolic processes that contribute to keeping an organism alive (also often 

termed as basal or standard metabolism), plus spontaneous activity. Measured specimens were 

observed to adapt a tripod stance and showed very rare spontaneous activity. 

For calculation of metabolic rates, usually mean oxygen consumption of 12 hour-periods was 

used (minimum 8 hours). For assessment of routine metabolic rates at habitat temperature, 

means were calculated over data of 24 hours. 

Statistical analysis 

Statistical analysis was performed using R statistical language (R Core Team, 2014; version 

2.1.51). Data was checked for normality distribution (Shapiro-Wilk test, p > 0.05 for all 

groups, removing one data point of L. squamifrons (5°C) as an outlier (see Online Resource 
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1-3, 5)) and homogeneity of variances (Bartlett test, p > 0.05 across all species). The 

significance level was set to α = 0.05 throughout the study. Logarithmic oxygen consumption 

data of single species in response to different temperatures was modelled linearly. Species-

specific intercepts were tested for significant differences (ANOVA, common trend from 

linear model removed). Pairwise differences in intercepts were tested for significance by 

Tukey HSD (post-hoc, p < 0.05). 

 

Results 

Oxygen consumption of T. hansoni at 0°C was highest with a value of 34.63±4.2 mg O2 kg-1 

h-1. This is followed by MO2 of 34.44±3.5 mg O2 kg-1 h-1of L. squamifrons at 2°C. Lowest 

oxygen consumption of 21.12±1.8 mg O2 kg-1 h-1 was measured for L. nudifrons. Detailed 

oxygen consumption values including standard errors (s.e.m.) of the single species at different 

temperatures are shown in Table 1. 

 

Table 1 Routine metabolic rate in mg O2 kg-1 h-1± s.e.m. for different fish species measured at habitat 
temperature (first value for each species) and with increasing temperature of 1°C per 24 hours. 

Temperature [°C] T. hansoni L. squamifrons L. nudifrons 

0 
34.63 ±4.2 

(n=5) 
- 

21.12 ±1.8 
(n=6) 

1 
39.93 ±3.9 

(n=5) 
- 

19.30 ±2.2 
(n=6) 

2 
51.47 ±3.8 

(n=5) 
34.44±3.5 

(n=8) 
27.52 ±2.9 

(n=5) 

3 
59.17 ±5.5 

(n=5) 
38.23±2.9 

(n=8) 
31.87 ±3.8 

(n=6) 

4 
67.71 ±7.6 

(n=5) 
48.15 ±2.8 

(n=8) 
35.50 ±3.8 

(n=6) 

5 - 
50.55 ±2.0 

(n=7) 
- 

6 - 
55.53 ±3.5 

(n=6) 
- 

 

A linear fit revealed a significant effect of temperature on MO2 (p < 0.001), i.e. a significant 

increase of oxygen consumption with increasing temperature (see Fig. 1).With no significant 

differences in slopes (p > 0.05), analysis supported model selection with a common slope for 

all species (y = 0.150827 × x + b). Thus, temperature had a comparable effect on MO2 of all 

analysed species. The full model with species specific slopes as well as the model with one 

common slope showed a significant difference in oxygen consumption between species (p < 
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0.05), which can be interpreted as differences in intercept between regression lines of the 

different species and thus significant differences in MO2 at the same temperature between all 

species. Intercepts (b), y (x = habitat temperature) and RMR at habitat temperature are 

summarized in Table 2. Including the possible outlier in the data set of L. squamifrons (5°C) 

yielded in comparable results (not shown). Raw data and details of analysis are given in 

Online Resource 1 to 6. 

 

Fig. 1 Natural logarithm of routine metabolic rates in dependence of temperature of the notothenioid species T. 

hansoni (open circles), L. squamifrons (triangles) and L. nudifrons (filled circles). Black error bars indicate 
standard errors of logarithmic metabolic rates, while grey bars indicate standard errors of the linear model with 
common slope. Literature data of P. brachycephalum (dashed line) (Van Dijk et al., 1999), Harpagifer bispinis 
(dotted-dashed line) (Vanella and Calvo, 2005) and Austrolycus depressiceps (dotted line) (Vanella and Calvo, 
2005) are indicated. 

 

Table 2 Routine metabolic rate (RMR) in mg O2 kg-1 h-1for different fish species at habitat temperature 
according to the linear model with a common slope for all species y = 0.150827×x+b. 

Species Intercept 
Habitat 

temperature 
[°C] 

y (x = habitat 
temp.) 

RMR at habitat 
temperature 

[mg O2 kg-1 h-1] 

T. hansoni 3.57 0 3.57 35.58 

L. squamifrons 3.18 2 3.49 32.68 

L. nudifrons 2.93 0 2.94 18.93 
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Discussion 

In this study, Antarctic fish species showed differences in metabolic rates at the same 

temperature, but no differences in respiratory response to warming. Generally, an increase of 

metabolic rate with increasing temperature complies well with our current understanding of 

temperature dependent metabolism (see Clarke and Fraser, 2004 and references therein) and is 

in line with the theory of oxygen-limited thermal tolerance (Pörtner, 2001). Comparing 

thermal tolerance of species from different thermal environments within the Southern Ocean, 

a common slope as response to increasing temperature could be a consequence of 

evolutionary adaptation to this cold environment with little temperature variation (cf. Table 

2). Moreover, our results indicate significant differences in oxygen consumption at the same 

temperature. While highest oxygen consumption rates were found for high-Antarctic T. 

hansoni, intermediate metabolic rates were found for the sub-Antarctic L. squamifrons. 

Lowest rates were found for L. nudifrons from low-Antarctic regions (cf. Table 3). 

 

Table 3 Location of catch (habitats) as well as minimum and maximum habitat temperatures of species used in 
this study. Temperatures are derived from Ocean Data View data sets SOA and WOA09 (Olbers et al., 1992; 
Locarnini et al., 2010; Schlitzer, 2011). 

Species Habitat Latitude 
Habitat temp. 

min. [°C] 
Habitat temp. 

max. [°C] 

T. hansoni 
Southern Ocean/ 

Weddell Sea 
70°S -1.9 -1.5 

L. squamifrons 
Southern Ocean/ 
South Georgia 

53°S 1.5 2.5 

L. nudifrons 
Southern Ocean/ 
Elephant Island 

61°S -1.5 1.0 

 

Imagining there was a general upper limit of metabolic rate in benthic fish with an inactive 

lifestyle, a common thermal response would result in differences of thermal tolerance ranges 

(i.e. width of thermal windows), depending on the starting point (y-intercept, cf. Fig. 2). 

A higher oxygen consumption of T. hansoni compared to L. nudifrons matches with the 

assumption of higher metabolic rates of Antarctic species from high latitudes and a colder 

environment. As shown in various studies, high-Antarctic species, such as T. hansoni, are 

considered to be highly temperature sensitive, displaying a very narrow thermal tolerance 

window (Pörtner and Farrell, 2008; Bilyk and DeVries, 2011). In contrast, data of L. 

squamifrons does not match with this hypothesis, as this species has a sub-Antarctic 

distribution, which would suggest a higher thermal tolerance. However, Beers & Sidell (2011) 

showed L. squamifrons to be especially sensitive towards high temperature and to have a 
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narrower thermal window compared to other red-blooded notothenioid species. They found 

the reason for this to be low haematocrit levels, which were negatively related to thermal 

tolerance (Beers and Sidell, 2011).  

Literature data of temperature-dependent oxygen consumption measurements according to a 

comparable protocol is scarce and only available for the Antarctic eelpout Pachycara 

brachycephalum (Van Dijk et al., 1999). This species also shows a similar slope of oxygen 

consumption but a lower oxygen consumption at the same temperature compared to species 

analysed in this study (Fig. 1). The deep sea origin of the family Zoarcidae suggests lower 

metabolic rates for the eelpout species compared to species from shelf habitats (Hochachka, 

1988). Moreover, it supports the finding of high metabolic rates in cold habitats, as shelf 

waters are usually colder than deep waters. For further comparisons, we added data of 

Harpagifer bispinis, a plunderfish species, and Austrolycus depressiceps, a zoarcid, from the 

Beagle Channel to Fig. 1. Even though experimental protocols of these species deviate and do 

include acclimation times, this data supports a similar picture (see Vanella and Calvo, 2005 

for original data and details of expertimental protocol). Generally, oxygen consumption seems 

to be higher in species from cold habitats. The South American eelpout A. depressiceps 

displays lowest oxygen consumption, which is followed by the South American H. bispinis, 

the Antarctic eelpout P. brachycephalum, low-Antarctic L. nudifrons and high-Antarctic T. 

hansoni. Differences in oxygen consumption at the same temperature, but a similar response 

to an increase of temperature could be the basis of differences in thermal windows between 

species. Data gained in this study cannot be regarded as comprehensive enough to serve as a 

basis for a general theory on thermal windows. However, in the following we will explain our 

idea which will have to be tested and might serve as a starting point for further studies. Fig. 2 

shows a schematic illustration of a small thermal window (light grey triangle) of a high 

Antarctic species that reaches metabolic limitations quicker, as it starts off with higher oxygen 

consumption (light grey line). In contrast, a northern or low-Antarctic species that starts off 

with a lower oxygen consumption (dark grey line) has more capacity to increase metabolism 

when temperature rises, shown by a larger thermal window (dark grey triangle). In 

consequence, this allows for and explains a relatively more eurythermal way of life for low-

Antarctic species. But what sets metabolic limitations in these fish? 

A limiting factor for an increase of metabolic rate might be set e.g. by the circulatory system 

as shown by Mark et al. (2002). (Sub-) cellular space requirements were suggested to 

constrain maximum scope for activity, as a higher mitochondrial volume is needed in the cold 
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for the same functional capacity as at warmer temperatures (O'Brien and Sidell, 2000; 

Pörtner, 2002). In Antarctic fish, metabolic rates are low, but metabolic increments e.g. due to 

increasing temperature are relatively high due to high amounts of enzymes to warrant 

functional capacities at low temperature, resulting in early capacity limitations (Pörtner et al., 

1998; Pörtner et al., 2013). 

This concept would comply well with findings of other studies. Declining width of thermal 

windows with decreasing habitat temperature variation has been observed for eelpout species 

from Antarctic and temperate regions (Van Dijk et al., 1999). Beers and Sidell (2011) 

suggested a positive relation between thermal tolerance and haematocrit levels, which 

matches well with the oxygen limited thermal tolerance model by Pörtner (2001). This also 

agrees well with our results of relatively high routine metabolism of L. squamifrons for a 

species with sub-Antarctic distribution, possibly indicating restricted scope for an increase of 

metabolism. A high performance sensitivity towards increasing temperature was suggested by 

various studies for species living at the warm-edge of their distributional range (Stillman, 

2003; Deutsch et al., 2008; Neuheimer et al., 2011), which might also be true for L. 

squamifrons. 

 

Fig. 2 Schematic illustration of differences in thermal windows of species with differences in oxygen 
consumption at the same temperature, but the same response to increasing temperature, given there was an upper 
limit to metabolic rate (black dashed line). Starting off at higher metabolic rates (light-grey line), high-Antarctic 
species display a smaller thermal window (long-dashed triangle), while low-Antarctic species start off with 
lower metabolic rates (dark-grey line), displaying a larger thermal window (short-dashed triangle). 

 

A several-fold higher metabolic rate of polar compared to temperate or tropical ectotherms 

when extrapolated to the same temperature is hypothesised by the metabolic cold adaptation 

theory (MCA, Scholander et al., 1953; Wohlschlag, 1960). Since its introduction, the MCA 

concept has been vigorously discussed in the literature. While most studies support higher 
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activity rates for energy metabolism associated enzymes in species from polar regions 

(Hochachka, 1988; Crockett and Sidell, 1990; West et al., 1999; Kawall et al., 2002; but see 

also Magnoni et al., 2013), experimental results deviate widely at the whole-organism level 

(Holeton, 1974; Torres and Somero, 1988; Clarke and Johnston, 1999; Jordan et al., 2001; 

Steffensen, 2002; White et al., 2012). Our results agree well with a recent analysis by White 

et al. (2012), who found evidence for MCA at different levels of organisation in fish, with 

strongest support at the level of whole-animal metabolic rate. However, differences in 

metabolic rates in our, as well as in White’s study, are not even close to a several-fold higher 

MO2 for species from high latitudes as initially suggested by Scholander et al. (1953) and 

Wohlschlag (1960). About two-fold increased metabolic rates of species from higher latitudes 

were also considered in papers that actually disagree with the MCA hypothesis (cf. Holeton, 

1974; Clarke, 1980).  

Factors usually criticized in experiments supporting MCA, such as the lack of acclimation 

periods in the experimental protocol and comparison of species of different ecotypes can be 

excluded in this study. The use of flow-through respirometers was a major factor criticized by 

Steffensen (Steffensen, 1989; Steffensen, 2002), as this method was supposed to cause 

overestimation of metabolic rates. Steffensen and co-workers found differences in 

experimental protocols associated with flow-through respirometry, such as lack of acclimation 

times, short measuring periods and no consideration of diurnal rhythms, to result in high 

metabolic rate measurements. However, respiration rates obtained here comply well with 

values measured for similar species in other studies (Van Dijk et al., 1999; Mark et al., 2002; 

Steffensen, 2005; Brodte et al., 2006; Robinson, 2008; Robinson and Davison, 2008; Enzor et 

al., 2013). Moreover, methodological comparison of flow-through versus intermittent-flow 

respirometry showed no significant differences in oxygen consumption data of individual fish 

measured with both methods according to appropriate protocols (Sandersfeld and Knust 

unpublished). As in many other studies on high-Antarctic fish (Axelsson et al., 1992; 

Davison, 2001; Maffia et al., 2001), T. hansoni was not kept at its usual habitat temperature of 

below -1°C in this study. Although an elevation of metabolic rate due to higher acclimation 

temperature cannot be excluded, a comparison of literature data makes it seem unlikely 

(Robinson, 2008).  

Yet, there are various factors possibly influencing metabolic rates, which cannot be 

completely controlled. While seasonal impacts on shelf water temperature expand only into 

the upper 100 to 200 m of the water column (Clarke, 1988; Barnes et al., 2006), seasonal 
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impacts on metabolic rates have been reported with respect to spawning as well as food 

availability in fish (Beamish, 1964; Karås, 1990). As experiments with notothenioid species 

were conducted after the spawning season (cf. Table 4), metabolic rates are likely to have 

been on a lower level. Moreover, various physiological and ecological as well as habitat-

specific factors are known to possibly influence metabolic rates (Post, 1990; Campbell et al., 

2009; Giesing et al., 2011; Ohlberger et al., 2012). However, only the parameters of lifestyle 

and activity could be considered and were regarded to be comparable for the analysed species. 

 

Table 4 Time of experiment and time of spawning for species used in experiments. Spawning times are derived 
from Sil’yanova (1980) and Andriashev (1986). 

Species Time of experiment Time of spawning 

T. hansoni April (autumn) February/March 

L. squamifrons March/April (spring) February 

L. nudifrons August (winter) April/May 

 

There are various attempts to explain high metabolic rates in Antarctic fish. The 

mitochondrial proton leak makes up a significant part of an organism’s metabolic rate. 

Hardewig and co-workers (1999) estimated the proton leak to make up for about 10% of 

respiration in liver mitochondria of the Antarctic fish L. nudifrons. This makes a higher 

whole-animal metabolic rate in Antarctic fish with higher mitochondrial densities probable. 

While this is supported by results from studies on enzyme levels (e.g. Crockett and Sidell, 

1990) and matches with observations of low growth in polar ectotherms (DeVries and 

Eastman, 1981; La Mesa and Vacchi, 2001; Pörtner et al., 2005), results of whole-organism 

metabolic rates are controversial. Studies at lower organisational levels are often less complex 

and yield clearer results. Nevertheless, when aiming to transfer results from lower levels to 

ecosystems, one can hardly get around taking the whole-organism level into account (cf. 

Barnes and Peck, 2008). It is questionable, whether measurements of metabolic rate via 

oxygen consumption are the optimal tools to estimate routine metabolic costs, as it includes a 

variety of complex processes (see also Clarke, 1991). However, alternatives are scarce. As 

routine metabolism makes up for about 50% of Antarctic fish energy expenditure (Brodte et 

al., 2006), differences in routine metabolic costs are likely to have fitness consequences (cf. 

Pörtner and Knust, 2007). High-Antarctic fish were shown to grow slower, compared to 

species from the seasonal pack-ice zone (La Mesa and Vacchi, 2001). While low growth 

performance is suggested to be linked to lifestyle and food resources (La Mesa and Vacchi, 
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2001), it could also suggest limitations in energy allocation of high Antarctic species. High 

routine metabolic costs could limit energy investment into growth (cf. Donelson and Munday, 

2012), which is crucial for a species abundance and population structure. Regarding metabolic 

stressors, such as rising water temperatures and ocean acidification, which can additionally 

increase metabolic rates, generally elevated metabolic costs could be disadvantageous. 

In conclusion, regarding regional thermal variability, habitat conditions did not affect acute 

thermal tolerance patterns in the studied species. Our results suggest that metabolic responses 

to rising temperature of species from Antarctic regions do not differ, but that species from 

high latitudes start off at higher metabolic rates and enzymatic capacities, which brings them 

to critical temperatures quicker than species from lower latitudes, resulting in narrower 

thermal windows. Increasing habitat temperature, even on small scales of some 0.1°C as 

suggested for the habitats of species studied here, are likely to increase routine metabolic 

costs. Recent models suggest that warm deep water entering the Filchner Trough in the 

Southern Weddell Sea can lead to temperature increases of up to 2°C (Hellmer et al., 2012). 

For high-latitude species with high routine metabolic rates and low growth performance, 

increasing habitat temperatures might further skew this imbalance affecting growth and 

reproduction and thereby population structures. In consequence, the discussion about higher 

or lower metabolic rates of polar fish species could be crucial for our understanding of 

thermal sensitivity of these animals in the current stage of climate change. 
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Abstract 

Measurements of temperature-dependent energy allocation of the low-Antarctic 

Lepidonotothen nudifrons were compared to published data of the high-Antarctic Trematomus 

bernacchii to reveal interspecies differences of thermal tolerance on the rarely-studied whole-

organism level. In spite of a second stressor besides temperature causing ambiguous patterns 

in some parameters, energy budget studies proofed to be a useful tool to analyse thermal 

performance windows in Antarctic fish. Despite its limitations, our data revealed a higher 

thermal tolerance on the whole-organism level in the low-Antarctic L. nudifrons than in the 

high-Antarctic T. bernacchii. 

 

 

Key words: Notothenioid, Energy allocation, Teleost, Energy budget, Ocean warming 
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Brief Communications 

Climate change affects the ecophysiology of marine organisms with already visible 

consequences for production and population structures (Perry et al., 2005; Sundby and 

Nakken, 2008; Pörtner and Peck, 2010; Ohlberger, 2013). In the Antarctic region, marine 

organisms are highly adapted to the very cold and stable conditions of the Southern Ocean. 

However, some of the most rapidly warming places were found in this area (Meredith and 

King, 2005; Whitehouse et al., 2008; Schloss et al., 2012; Bromwich et al., 2013). 

Stenothermal Antarctic fish were shown to possess a very low thermal tolerance. Indeed, 

results are mostly derived from acute or short-term temperature exposure and often focused 

on lower organisational levels or metabolic rate (Bilyk and DeVries, 2011; Strobel et al., 

2013; Enzor and Place, 2014; Sleadd et al., 2014). Especially for Antarctic fish, experimental 

studies at the whole-organism level are rare, but give most relevant information about 

potential population responses and possible associated consequences for ecosystems. 

Previously, we analysed the impact of elevated temperature on energy allocation of the high-

Antarctic fish Trematomus bernacchii. In this species, a temperature increase of 2°C caused 

growth reductions of up to 84%, highlighting the low thermal tolerance of high-Antarctic fish 

(Sandersfeld et al., 2015). Differences in thermal tolerance between species from lower and 

higher Antarctic latitudes were shown in other studies (Brodte et al., 2006; Bilyk and 

DeVries, 2011). A comparison of ecologically similar species, is most interesting considering 

potential climate induced shifts in species distribution that might cause co-occurrence of low- 

and high-Antarctic species in some habitats, as observed in northern latitudes (Perry et al., 

2005; Renaud et al., 2012).  

Thus, we aimed to produce a completely comparable data set on energy allocation parameters 

of an Antarctic fish species with northern (low-)Antarctic distribution, for comparison with 

the high-Antarctic T. bernacchii (Sandersfeld et al., 2015). Lepidonotothen nudifrons, a 

benthic rather inactive species, mainly feeding on polychaetes, amphipods and isopods with a 

distribution ranging from the Antarctic Peninsula to South Georgia in the Scotia Arc was 

chosen as model organism (Gon and Heemstra, 1990). We hypothesised a higher thermal 

tolerance of the low-Antarctic L. nudifrons to be paralleled by lower trade-offs of elevated 

temperature for the whole-organism level, compared to the high-Antarctic T. bernacchii.  

We measured the effects of acclimation to 0, 2, 4 and 6°C on routine metabolism, growth, 

food intake, ammonia as well as faecal excretion in this species to assess its acclimation 

capacity and potential consequences of warming for population structures and abundances. 
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The experiments have been approved by the veterinary inspection office (Senatorin für 

Bildung, Wissenschaft und Gesundheit, Bremen, Germany) under the permit references AZ: 

522-27-11/02-00 (93) and ‚SYNKLIFisch‘. L. nudifrons were caught near Elephant Island at a 

depth of 70 to 322 m, water temperature of 0.0 to 0.8°C and salinity of 34‰ by bottom trawl 

in March/April 2012 (RV Polarstern, ANT-XXVIII/4). Animals were transported to the 

Alfred Wegener Institute in Bremerhaven (Germany) and kept in aquaria at temperatures of 0 

to 1°C until the start of the experiments in February 2013. Standard length of the fish varied 

from 8.8 to 16.5 cm, total length from 10.0 to 17.9 cm and body mass from 7.9 to 65.2 g, with 

no significant difference among treatment groups (ANOVA: p > 0.05). During the growth 

experiment, fish were held in four groups, separated in closed aquarium systems at 0, 2, 4 and 

6°C (0°C n = 8, 2°C n = 7, 4°C n = 6, 6°C n = 7) for a period of about 60 days. During this 

time, individual food intake was recorded and energy allocation to growth (size/weight 

determination), routine metabolism (oxygen consumption measurements), ammonia excretion 

and faecal excretion were determined. The experimental set up and protocol was identical to 

that described in Sandersfeld et al. (2015) regarding growth, feeding intervals and routine 

metabolism measurements as well as tissue, stoichiometric and statistical analysis. Yet, krill 

(Euphausia pacifica) was used as food and food wet mass was used for food intake 

determination. Besides, standard length instead of total length was used for calculation of the 

condition factor. During the first respiration measurement, it was attempted to determine 

SDA. However, metabolic rate did not approach baseline levels ten days after feeding for the 

2°C group. As long starvation periods were assumed to reduce growth, determinations of 

scope and duration of SDA were abandoned and routine metabolic rates including SDA were 

measured for all animals as described in Sandersfeld et al. (2015). Similarly, as in the study 

by Sandersfeld et al. (2015), ammonia and faecal excretion measurements were done in 

combination with oxygen consumption measurements before and after the acclimation period. 

Respiration measurements were carried out in a closed tank for every animal. After the 

respiration measurements, faeces produced by the fish were siphoned into a beaker and 

filtered onto pre-weight, organic-free glass fiber filters together with 100 ml of water from the 

sampling beaker. Additionally, a sample of 100 ml water was filtered onto a control filter to 

account for particulates in the water. Filters were stored at -20°C until analysis. Next, the 

water in the tank was mixed, a water sample was taken and frozen at -20°C until being 

analysed for ammonia concentration following Holmes et al. (1999). Filters were oven dried 

at 57°C. Faecal excretion was determined gravimetrically and by using Euro EA Elementar 

Analyser (Hekatech GmbH, Wegberg, Germany) for analysis of carbon and nitrogen.  
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Table 1 Condition, energy conversion and growth parameters of L. nudifrons at different temperatures (means ± 
s.e.m.). Number of replicates (n) is 6, 5, 4 and 1 for 0, 2, 4 and 6°C respectively, if not stated otherwise. 
DM: dry mass; M: body mass 

Temperature 0°C 2°C 4°C 6°C 

Mortality [%] 
 

25.0 
(n=8) 

28.6 
(n=7) 

33.3 
(n=6) 

85.7 
(n=7) 

Condition factor 1.32±0.04a 1.35±0.04a 1.10±0.05 b 1.38 

Food intake 
[J g-1 M d-1] 

19.19±2.17a 30.63±3.49ab 34.73±5.92b 34.84 

Specific growth rate 
[% M d-1] 

-0.09±0.08 0.01±0.02 -0.11±0.02 -0.05 

Growth 
[% SL d-1] 

-0.006±0.011 0.024±0.013 0.005±0.006 -0.026 

Feed conversion ratio -0.14±0.11 0.00±0.02 -0.10±0.036 -0.03 

Energy content white 
muscle 
[J g DM-1] 

22085±541 
(n=3) 

21118±1760 
(n=3) 

19094±688 
(n=3) 

24677 
(n=1) 

Water content white 
muscle [%] 

81.77±0.63 
(n=3) 

81.80±0.30 
(n=3) 

82.28±0.41 
(n=3) 

81.63 
(n=1) 

Lipid content liver 
[% DM] 

15.05±1.94 
(n=3) 

15.97±1.42 
(n=3) 

18.28±2.61 
(n=3) 

25.67 
(n=1) 

Faeces nitrogen 
[% N g -1 M g food-1 d-1] 

0.37±0.16 0.90±0.39 1.45 ±0.50 0.41 

NH4 excretion 
[µmol g -1 M h-1] 

0.092±0.012 
(n=6) 

0.135±0.022 
(n=4) 

0.103±0.016 
(n=2) 

0.241 
(n=1) 

 

Faecal quantities were not sufficient for calorimetric analysis. Produced faeces were related to 

initial food intake at first feeding before the first respiration measurement for the first run. For 

the second run of faecal determination, faecal production was related to mean food intake per 

day during the experiment, as digestion times were unknown. 

To enhance the comparison of data of high- and low-Antarctic species, as well as expected 

results and data recorded in this study, results are shown in parallel with and discussed in 

respect to data of T. bernacchii from a completely comparable experiment recently published 

by Sandersfeld et al. (2015) and highlighted in grey in Fig. 1 to 4. 

In temperature experiments, elevated mortality is often an indicator of stress. For example the 

negative effect of temperature is shown by 33% mortality of T. bernacchii at 2 and 4°C 

compared to 0% in the control treatment (0°C) (Fig. 1A). However, in this experiment with L. 

nudifrons, elevated mortality of 25 to 29% in low temperature treatments at 0 and 2°C 

indicates the presence of an unknown stressor besides temperature and thereby questions the 

significance of results (Fig. 1A, Table 1). We will still analyse this data in comparison to 
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published data of T. bernacchii, to show that in spite of this limitation, a clear metabolic 

response to temperature can be identified. We show that even data of experiments with 

restricted explanatory power, as in this case, can contribute to our understanding of thermal 

tolerance in Antarctic fish. 

 

Fig. 1 Mortality (A), condition factor (B) and liver lipid content (C) of L. nudifrons and T. bernacchii at different 
temperatures (L. nudifrons: A: 0°C: n=8, 2°C: n=7, 4°C: n=6, 6°C: n=7; B: 0°C: n=6, 2°C: n=5, 4°C: n=4, 6°C: 
n=1; C: n=3 for all temperatures; data from this study; T. bernacchii: A & B: 0 & 1°C: n=12, 2 & 4°C: n=8; C: 
n=3 for all temperatures; T. bernacchii-data from Sandersfeld et al. 2015). 
 

Despite a general high mortality, an increase of mortality from 33% at 4°C to 85% at 6°C 

indicates a significant impact of temperature on L. nudifrons (Fig. 1A, Table 1). Only one of 

seven fish at 6°C survived the complete acclimation period. Data of this individual is shown 

in Fig. 1 to 4 and Table 1. However, we will not further discuss this data point due to the 

limited sample size. A stress induced increase in mortality is usually paralleled with a 

decreasing condition, as seen for T. bernacchii (Fig. 1B). While the condition factor for L. 

nudifrons is comparable for fish at 0 and 1°C, a significant decrease at 4°C indicates a 

negative effect of temperature (ANOVA: p = 0.003; post hoc: 0 vs. 4°C: p = 0.007, 2 vs. 4°C: 
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p = 0.004, Fig. 1B). With decreasing condition at 4°C, a depletion of energy stores, e.g. in 

form of liver lipids, would be expected, as observed for T. bernacchii in Fig. 1C. In contrast, 

liver lipid content, showed a non-significant but increasing trend with increasing temperature 

in L. nudifrons (Fig. 1C), while the hepatosomatic index did not show any temperature 

correlation. Increasing energy storage in the liver could suggest surplus energy being 

available for deposition in storage sites, but it might also suggest lacking metabolic capacity 

for mobilisation of energy stores. 

 

Fig. 2 Food intake (A), specific growth rate (SGR) (B) and feed conversion ratio (FCR) (C) of L. nudifrons and 
T. bernacchii at different temperatures. Different letters above boxes denote significant differences, similar 
letters denote lack of differences between temperatures (L. nudifrons: 0°C: n=6, 2°C n=5, 4°C: n=4, 6°C n=1; T. 

bernacchii: 0 & 1°C: n=12, 2 & 4°C: n=8; T. bernacchii-data from Sandersfeld et al. 2015). 

 

Increased food intake of L. nudifrons with increasing temperature indicates a higher energy 

demand and thus a higher food intake of animals in warmer treatments, with a significant 

difference between 0 and 4°C (ANOVA: p = 0.026; Tukey: 0 vs. 4°C: p = 0.031, Fig. 2A). 

However, food conversion ratios (FCR) close to or below zero at all treatment temperatures 
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indicate an insufficient energy intake that did not allow energy assimilation (Fig. 2C). As a 

consequence, specific growth rate (SGR) of this low-Antarctic species showed a comparable 

development with a slightly positive value at 2°C and negative values at 0 and 4°C (Fig. 2B), 

while tissue energy and water content were comparable at all treatments (Table 1). Length 

growth was close to zero at all treatment temperatures, but 2°C. However, positive growth of 

L. nudifrons at 2°C was still low compared to growth rates (length) of the high-Antarctic T. 

bernacchii or the Antarctic eelpout Pachycara brachycephalum (Brodte et al., 2006; 

Sandersfeld et al., 2015). 

Results of L. nudifrons shown in Fig. 2 suggest a general energy shortage in spite of ad 

libitum feeding. This is supported by a lower food intake compared to T. bernacchii, also at 

low temperatures (Fig. 2A). The krill food used for L. nudifrons closely resembled natural 

food sources of this species (Gon and Heemstra, 1990). However, the amount of 

physiologically useable net energy of krill might be lower due to higher costs of digestion for 

chitin containing crustaceans (Secor, 2009). Most L. nudifrons did not feed every second day, 

when food was offered. Thus, feeding intervals seemed to be sufficient. 

 

Fig. 3 Faeces nitrogen content of L. nudifrons after acute temperature increase (light grey boxes) and 
temperature acclimation (dark grey boxes) (acute 0°C: n=8, 2°C: n=7, 4°C: n=6, 6°C: n=7; acclimated 0°C: n=6, 
2°C: n=5, 4°C: n=4, 6°C: n=1). 

 

In the high-Antarctic T. bernacchii, SGR and FCR declined at 4°C, despite of similar food 

intake compared to the control group (Fig. 2B, C). This indicated less efficient energy 

assimilation in the high-Antarctic species and was supported by increasing trends of nitrogen 
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content in faeces with increasing temperature (data not shown, Sandersfeld et al., 2015). 

Similarly, an increasing trend of nitrogen content in faeces at higher temperatures was found 

in L. nudifrons (Fig. 3, Table 1). Ammonia excretion in L. nudifrons seemed to be low 

compared to that of T. bernacchii (Sandersfeld et al., 2015). Comparison to ammonia 

excretion data of other Antarctic fish species is difficult due to large deviations in 

experimental protocol (fish size, time of measurement, ration size) that likely affect excretion 

rates (Boyce and Clarke, 1997; Boyce, 1999). In combination with low growth rates, low 

ammonia excretion also hints to a potential energy shortage in L. nudifrons. 

 

Fig. 4 Routine metabolic rate (RMR) of L. nudifrons and T. bernacchii after acute temperature increase (light 
grey boxes) and temperature acclimation (dark grey boxes). Different letters above boxes denote significant 
differences, similar letters denote lack of differences between measurements (L. nudifrons: acute 0°C: n=8, 2°C: 
n=7, 4°C: n=6, 6°C: n=7; acclimated 0°C: n=6, 2°C: n=5, 4°C: n=4, 6°C: n=1; T. bernacchii: acute 0°C: n=4, 1 
& 2°C: n=8, 4°C: n=6; acclimated 0°C: n=7, 1, 2 & 4°C: n=8; ; T. bernacchii-data from Sandersfeld et al. 2015). 
 

Routine metabolic rates after an acute temperature increase as well as after acclimation 

display an increase with temperature as expected from our current understanding of thermal 

tolerance (Fig. 4; Pörtner, 2010). Significantly elevated metabolic rates (RMR) at 4 and 6°C 

in L. nudifrons after acute temperature increase indicate elevated metabolic costs (ANOVA: 

p < 0.001; posthoc: 0 vs. 4°C: p < 0.001, 0 vs. 6°C: p = 0.026, 2 vs. 4°C: p < 0.001, 2 vs. 6°C: 

p = 0.040, Fig. 4). The comparison to data of T. bernacchii shows similar acute thermal 

tolerance of the high-Antarctic species (Fig. 4). After acclimation to treatment temperatures a 

decrease of metabolic rates would be expected, as metabolism is suggested to acclimate to 

stressful environmental conditions after a sufficient acclimation time (Robinson and Davison, 

2008; Sandersfeld et al., 2015; Seebacher et al., 2015). For instance, acclimation of RMR at 
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4°C was observed for T. bernacchii (Fig. 4). In contrast, we observed an increasing trend of 

RMR after the acclimation period in L. nudifrons. After acclimation, fish at 4°C showed a 

significantly elevated metabolic rate compared to fish at 0°C (ANOVA: p = 0.002; posthoc: 0 

vs. 4°C: p < 0.001). This observation implies that the stress level of the fish increased during 

the acclimation period, hinting to an additional stressor besides temperature, as suggested by 

various other parameters. Such a stressor could exist in the abiotic conditions of the aquarium 

system, e.g. regarding water quality, as well as in biotic conditions, such as the food source or 

the bacterial community in the water. However, artificial sea water was used in this 

experiment and water parameters were checked regularly to ensure water quality. As all fish 

were kept in individual cages, social stress is unlikely for this not in groups living 

notothenioid. 

In summary, increasing food intake, liver lipid and faeces nitrogen content in parallel to low 

growth and FCR at warm temperatures in L. nudifrons are contradictory. While enough 

energy for the build-up of energy stores in the liver seems to be available, energy is not 

assimilated in form of body tissue but excreted via faeces. Based on this ambiguous data, we 

were not able to draw conclusions on the absolute thermal tolerance of L. nudifrons. A high 

mortality in the control treatment can generally question the results of an experiment. Though, 

it is noteworthy that a thermal response can still be distinguished in the data and is 

comparable to that of other Antarctic fish (Brodte et al., 2006; Sandersfeld et al., 2015). The 

combination of decreasing condition factor, SGR, FCR as well as increasing mortality and 

RMR at 4 and 6°C suggest a negative impact of temperature at 4°C. While condition and 

mortality of L. nudifrons are comparable at 0 and 1°C, food intake as well as growth is lower 

at 0°C, indicating lower performance around 0°C. In the Weddell Sea, Lepidonotothen species 

were found in a temperature range of -1 to 2°C, while abundances were highest at 

temperatures above 0°C (Meyer, 2012). This might suggest a lower thermal limit in this 

species around 0°C. Even though thermal sensitivity can be increased by additional stressors 

(Pörtner and Farrell, 2008), it is unlikely to be decreased. Thus, our results are rather 

underestimating the thermal tolerance of this species. 

For the high-Antarctic T. bernacchii, significant trade-offs for the whole organism were found 

at 2°C (cf. Fig. 1-4; Sandersfeld et al., 2015), indicating a lower thermal tolerance of the high- 

compared to the low-Antarctic species. L. nudifrons might live close to its lower thermal limit 

at the western Antarctic Peninsula and our data suggest this species to have adaptation 

potential to warmer temperatures around 4°C. In contrast, the high-Antarctic T. bernacchii is 
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unlikely to have a wide scope for acclimation to increasing temperature in its natural habitat 

(cf. Sandersfeld et al., 2015). Projections suggest warming of sea water temperature in the 

Western Antarctic Peninsula region not to exceed 2°C within the next 100 years 

(Timmermann and Hellmer, 2013, R. Timmermann personal communication 2015). 

Disregarding associated ecological changes, our results suggest this to be a manageable 

scenario for L. nudifrons. Despite the limitations of data from this study due to the presence of 

an unknown second stressor, we were able to identify metabolic patterns in response to 

increased temperature. Thus, energy budget studies proofed to be a good tool to analyse the 

thermal tolerance window of Antarctic fish as well as temperature-dependent trade-offs to 

changing environmental conditions. 
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Abstract 

Climate change affects the physiology of marine ectotherm organisms, such as fish. In recent 

years, impacts of rising temperatures on fish distribution have been reported from several 

marine regions. Growth and reproduction are among the driving forces for fish population 

structures and abundances. In the framework of this study, we analysed temperature-

dependent growth performance from experimental studies of fish species with different 

latitudinal distribution. We found a decreasing width of the thermal tolerance window for 

growth performance with increasing latitude. Moreover, lower growth rates at higher latitudes 

imply differences in energy allocation to growth. These results are discussed with regard to 

recent physiological models and energy allocation patterns. We hypothesise that high-latitude 

fish species are particularly susceptible to climate change due to the combination of slow 

growth and high thermal sensitivity of growth performance. Narrow thermal windows might 

make polar species more likely to encounter temperatures unfavourable for growth compared 

to temperate species with a broader thermal tolerance. Given the low growth rates at high 

latitudes, additional temperature induced reductions with progressive ocean warming may 

have significant consequences for population structures and species distribution of polar fish. 

 

 

Key words: Thermal window, Ocean warming, Teleost, Thermal tolerance, Polar fish 
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Introduction 

The efficiency of energy utilisation determines the fitness of an organism. For heterotrophic 

organisms, food intake represents the energy input, which is used to cover all vital functions. 

While routine metabolism covers the essential processes to keep an organism alive, including 

costs of digestion and spontaneous activity, the energy allocated to growth and reproduction is 

the driving factor for population structure and abundance (Jobling, 1994; Pörtner et al., 2001; 

Pörtner and Knust, 2007). Energy allocation is influenced by biotic factors, such as prey 

availability, predation pressure and lifestyle, depending on habitat characteristics. Moreover, 

abiotic factors, such as temperature, affect energy allocation. At optimal temperature 

conditions, an organism allocates a large part of its energy input into growth and reproduction 

as well as in the build-up of energy stores. In contrast, under stress, i.e. at sub-optimal 

temperature conditions, energy is often limited and can only cover costs of essential functions, 

such as standard metabolism (Pörtner, 2010; Sokolova et al., 2012). Thus, the width of an 

organism’s thermal window describes the temperature-dependent performance and thereby 

the efficient use of energy resources of single individuals of a population. In the course of 

climate change, temperature in the ocean changes at an exceptional pace, making an 

organism’s thermal tolerance an essential trait (Pörtner and Knust, 2007). 

Published models and literature describe a shift of fish abundances as well as decreases in 

production as consequences of ocean warming (Murawski, 1993; Perry et al., 2005; Dulvy et 

al., 2008; Cheung et al., 2010). While migration to colder areas cannot always fully 

compensate for the effects of progressive warming (Pörtner et al., 2014), decreasing 

production is likely to be connected to impacts of temperature on energy budgets, becoming 

evident in limited energy allocation to growth (Sokolova et al., 2012). 

Variations of growth rates between species as well as populations across latitudes have often 

been discussed in literature. In general, high-latitude species seem to show slower growth 

rates compared to temperate species (DeVries and Eastman, 1981; Jobling, 1997; Kock and 

Everson, 1998; Pörtner et al., 2005). Low temperature at high-latitudes limits catabolic as well 

as anabolic biochemical reactions including growth. In addition, low food availability can 

limit growth in polar regions. Moreover, factors such as density effects, predation pressure, 

genetic differences, activity and seasonality can account for differences in growth between 

species (Boehlert and Kappenman, 1980; Kock and Everson, 1998; Björnsson and 

Steinarsson, 2002; Lorenzen and Enberg, 2002; Pörtner et al., 2005; Yamahira et al., 2007).  
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Here, we present a comparison of temperature-dependent growth rates of fish species with 

different latitudinal distributions under comparable laboratory conditions from Arctic, 

Antarctic and temperate regions. We test the hypothesis that in spite of comparable 

maintenance and feeding conditions, absolute growth rates and thermal tolerance of growth 

performance decline with increasing latitude from temperate to polar fish. The results will be 

discussed in an energy allocation framework as well as regarding potential implications of 

ocean warming on growth performance. 

 

Methods 

We performed a meta-analysis of published data on temperature-dependent growth rates of 

species with different latitudinal distribution, as summarised in Table 1. This new 

combination of data from fish covering a latitudinal range from 77°N to 77°S allows a 

comparison of species from both polar regions to the temperate counterparts.  

All studies included, used a comparable experimental design (Table 1). Fish species were 

acclimated to different temperatures, while being fed ad libitum. Feeding intervals were 

depending on the feeding activity of the fish, associated to acclimation temperature. Fish kept 

at warm temperatures were more active and fed daily (Fonds, 1989; Fonds et al., 1992), while 

fish at lower temperatures were fed only every second or third day (Brodte et al., 2006a; 

Sandersfeld et al., 2015). Supplied food was usually similar to natural food sources of the 

respective species. Fish, cockle and mussel meat were used as food in most studies. Only 

during experiments with the two gadoid species, industrial fish feed was used and fish were 

fed only every fourth day. With the exceptions of Gadus morhua and Boreogadus saida, 

which were relatively active, all other species had a rather inactive lifestyle. All studies were 

conducted in the respective summer season, except for that of Pachycara brachycephalum, 

which was carried out throughout the year. However, it is questionable whether seasonal 

factors affect growth of this species with deep-sea origin, caught from relatively deep depth 

(200-800 m) (Brodte et al., 2006b). Studies on Pleuronectes platessa and Plathichthys flesus 

at high temperatures were conducted in summer, while low temperature experiments took 

place in winter. Periods of growth measurements (i.e. acclimation times) varied from 11 to 

120 days. A shorter acclimation time likely increases stress levels of animals and potentially 

reduces growth. However, shortest acclimation times were used for warm-temperate species 

with highest growth rates (cf. Table 1) and are unlikely to bias data interpretation. For a 

comparison of growth rates, size differences among species have to be considered.  
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Additional information Table 1: 
*depending on experimental temperature; **experiments were conducted throughout the year 
Habitat temperature ranges derived from fishbase.org (Froese and Pauly, 2015) for P. flesus, P. 

platessa, M. scorpius; from Brodte et al. (2006a) for Z. viviparus; from Ottersen et al. (1998) for G. 

morhua; from Falk-Petersen et al. (1986) for B. saida; from Brodte et al. (2006b) for P. 

brachycephalum; from Hunt et al. (2003) for T. bernacchii. 

 

Yet, for data used in this analysis, fish sizes were similar in all studies (cf. Table 1). For data 

analysis, 2nd order polynomial fits were used to relate growth data to temperature (cf. Fig. 1). 

 

Results 

Fig. 1 displays temperature-dependent growth rates of different fish species. Highest 

maximum growth rates were found for the temperate species P. flesus and P. platessa, 

exceeding maximum growth rates of the temperate Z. viviparus and G. morhua by a factor of 

two. The Arctic M. scorpius and B. saida showed intermediate growth rates, followed by the 

Antarctic P. brachycephalum and finally T. bernacchii with the lowest absolute growth rates 

recorded. A similar pattern is apparent for the width of the growth performance window. 

While the warm-temperate species P. flesus and P. platessa display a broad thermal window 

regarding growth performance, the width of the thermal window decreases towards polar 

species, with the high-Antarctic T. bernacchii displaying the narrowest thermal tolerance 

window. The Antarctic species T. bernacchii and P. brachycephalum start with low growth 

rates at low temperatures, which increase only little when temperature rises. Subsequently, 

growth rates decline quickly when experimental temperatures exceed the habitat temperature 

range, resulting in short and shallow curves. In contrast, for temperate species, such as Z. 

viviparus and P. platessa, growth rates increase with increasing temperature over a range of 

several degrees, before maximum growth rate is reached and growth declines again with 

further increasing temperature, showing large bell-shaped curves. The Arctic species, B. saida 

and M. scorpius show steeper curves compared to Antarctic species, which are, however, still 

smaller and shallower than curves of temperate species. 

 

Discussion 

In spite of comparable experimental conditions, data presented here show clear differences in 

absolute growth rates as well as in temperature-dependent growth performance between fish 

species from different latitudinal ranges. We will first focus on possible reasons and 
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implications of differences in general growth performance and subsequently discuss the role 

of thermal sensitivity for growth performance and potential implications of these findings. 

 

Fig. 1 Temperature-dependent growth rates in cm a-1 of fish species with different latitudinal distribution, P. 

flesus (Fonds et al., 1992), P. platessa (Fonds et al., 1992), Z. viviparus (Fonds, 1989), G. morhua ( Kunz et al., 
unpublished), M. scorpius (Fonds, 1989), B. saida (Kunz et al., unpublished), P. brachycephalum (Brodte et al., 
2006a) and T. bernacchii (Sandersfeld et al., 2015). 

 

Differences in growth rates 

Fig. 1 shows generally higher growth rates for temperate P. flesus and P. platessa than for 

polar P. brachycephalum and T. bernacchii under ad libitum feeding conditions. This implies 

an effect of temperature on growth performance, with higher growth at warmer temperatures. 

In fact, studies observed higher growth rates in populations of the same species living in the 

warmer distributional ranges compared to populations from colder areas, supporting similar 

findings from latitudinal comparisons between different species (Clarke, 1983; Jobling, 1997; 

Kock and Everson, 1998; La Mesa and Vacchi, 2001; Pörtner et al., 2001; Hildebrandt et al., 

2011; Trip et al., 2014). Some polar ectotherms display seasonal variation in growth patterns, 

while others show constant growth throughout the year (Barnes, 1995; Peck et al., 1997; Peck 
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et al., 2000). In pelagic habitats, growth can be limited by highly seasonal food supply at high 

latitudes (cf. Pörtner et al., 2005). However, in most benthic habitats, food is constantly 

available throughout the year (DeVries and Eastman, 1981; Kock, 1992). As shown in this 

study, for benthic fish species, food availability is unlikely to limit growth. Seasonal rhythms, 

possibly influenced by light regime, temperatures as well as hormonal triggers have been 

suggested to impact feeding activity in Antarctic fish, irrespective of food availability (Clarke 

and North, 1991; Johnston and Battram, 1993; Campbell et al., 2008). For instance, reduced 

feeding activity in winter was indicated by experiments with Notothenia species despite 

sufficient food supply (Targett, 1990; Coggan, 1997). Generally, differences in food 

composition, such as different lipid and protein content, influence the growth efficiency (e.g. 

García et al., 2015). However, the food used in growth experiments closely resembled natural 

food sources of the respective species, except for the gadoids. Studies on different fish 

populations indicate population-specific differences in food conversion efficiency and food 

consumption, thereby indicating differences in energy utilisation (Reinitz et al., 1978; Present 

and Conover, 1992; Jonassen et al., 2000). Such differences in energy allocation patterns 

could also influence interspecies variation in growth. 

Additionally, differences in the lifestyle of a species can impact growth performance. The 

rather inactive eelpouts species, Z. viviparus and P. brachycephalum, show a comparable 

lifestyle to T. bernacchii and M. scorpius, as well as the flatfish species P. flesus and P. 

platessa. In contrast, the gadoid species, G. morhua and B. saida, are more active, showing 

demersal as well as pelagic presence. In general, a pelagic lifestyle limits energy allocation to 

growth due to elevated costs for activity and potentially lower or more seasonal prey 

availability. Benthic species spend less energy for activity and benefit from a relatively 

constant food supply. Besides, growth rates of G. morhua from the study by Kunz et al. 

(unpublished) are low, compared to values reported e.g. by Fischer (2003) or Björnsson et al. 

(2001). These differences can be related to feeding conditions (Fischer, 2003), as well as 

population-specific differences (Björnsson et al., 2001). For this study, we chose the data set 

of Kunz et al., as these data were produced using an identical protocol as for B. saida, thus 

enhancing comparability between the two more active species. In spite of slight differences in 

feeding regime, data of G. morhua and B. saida serve as a valuable addition, demonstrating 

comparable growth patterns, independent of lifestyle. 

Regarding differences in energy allocation of species from different latitudes, a higher 

metabolic rate of species from high latitudes has been vigorously discussed in recent years 
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(Scholander et al., 1953; Wohlschlag, 1960; Holeton, 1974; Clarke, 1980; Clarke, 1991; 

Steffensen, 2002; White et al., 2012). Though the existence of elevated metabolism in polar 

species is still under debate, it could serve as an explanation for differences in growth. A 

higher energy allocation to routine metabolism could cause trade-offs in energy allocation to 

growth at high latitudes, as illustrated in Fig. 2a (cf. Koehn and Shumway, 1982; Wieser, 

1994). Pörtner et al. (2005) showed a negative relationship between routine metabolism and 

growth for low- and high-Antarctic fish, with high-Antarctic species having highest metabolic 

rates, but lowest growth. Jobling (1997) argued that a higher metabolic rate might be essential 

for high-latitude fish to be able to fully utilise available food sources during the shorter 

growing seasons. However, this is unlikely to play a role in benthic habitats. 

 

Fig. 2 Schematic illustration of energy allocation patterns of fish species with different latitudinal distributions. 
As polar species show the lowest growth rates (A), the effect of temperature is most severe by reducing these 
low growth rates even further (B). 

 

Besides the obvious differences between temperate and polar species, growth rates of B. saida 

and M. scorpius display an intermediate level between the temperate and Antarctic species. 

Even though the Arctic and Antarctic seem to be comparable regions in terms of average 

temperature, environmental conditions differ distinctly in terms of variability. The 

geographically isolated Southern Ocean displays extremely stable and cold temperature 

conditions. Thus, Antarctic fish are highly stenotherm organisms. In contrast, the Arctic 

Ocean is a cold, but more variable thermal habitat. Therefore, Arctic fish are adapted to larger 

temperature fluctuations and warmer temperatures than Antarctic fish, potentially coming 

along with intermediate growth rates. 

Thermal tolerance of growth performance 

In addition to differences in growth rates, temperate species display a broad thermal window 

of growth performance, which decreases towards the Arctic species and is narrowest for the 



MANUSCRIPT IV  71 
 

high-Antarctic species. A narrow thermal performance window makes a species more 

sensitive towards temperature changes. For the high-Antarctic T. bernacchii, mass growth 

reductions of up to 84% were recorded in response to a temperature increase of 2°C, while 

growth of the temperate Z. viviparus was similar between 4 and 12°C, with highest growth 

performance at 12°C (Brodte et al., 2006a; Sandersfeld et al., 2015). Energy can only be 

allocated to growth after all vital metabolic costs have been covered (Koehn and Shumway, 

1982; Wieser, 1994). Stress, such as increased temperature, can elevate energetic costs for cell 

protection and repair, decrease food conversion efficiency and impact aerobic ATP 

production. Thus, stress-induced reductions of aerobic metabolic scope and increased routine 

metabolic costs can limit energy available for other functions (Sokolova et al., 2012; 

Sokolova, 2013, cf. Fig. 2). However, the shift in temperature necessary to cause these 

consequences depends on the width of a species’ thermal tolerance window (Fig. 1). While 

warming is likely to have negative impacts on growth for very stenothermal species, such as 

T. bernacchii, small increases of temperature might influence growth rates of temperate, more 

thermal tolerant species, such as P. platessa, even positively. For example, increasing stock 

size of capelin in the Barents Sea (Arctic Ocean) from the 1990’s onwards has been linked 

with increasing temperatures enhancing growth and reproduction (Hop and Gjøsæter, 2013). 

Ecological implications 

Different life strategies are associated with differences in energy allocation. Garvey and 

Marshall (2003) showed different energy allocation strategies in largemouth bass 

(Micropterus salmoides) to be connected to low- and high-latitude distribution. They found 

low-latitude fish to mainly invest energy in body growth and reproduction to enhance length 

growth and reproductive output. High-latitude fish allocated energy to body growth in 

summer, to energy reserves during fall (to increase survival during winter) and to 

reproduction early before the spawning season. Similarly, gender and region specific 

differences in energy allocation to growth and reproduction were found in polar cod and were 

suggested to be caused by differences in diet and predation risk in different habitats 

(Nahrgang et al., 2014). 

Antarctic fish usually grow to high age and reproduce late in their life cycle, indicating that 

energy is first allocated to somatic growth (Kock and Kellermann, 1991; Kock, 1992). Some 

high-Antarctic species only spawn after having reached about 70 to 80% of their maximal size 

(Kock and Kellermann, 1991). In contrast, the Arctic B. saida reproduces at the age of 2 to 3 

years (males/females; Craig et al., 1982). While attaining a maximum age of 7 years, 
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individuals older than 5 years are rarely encountered (Hop and Gjøsæter, 2013). G. morhua, 

reaching a maximum age of about 10 years, matures comparatively late at an age of 6 to 8 

years (Ottersen and Sundby, 1994; Brander, 1995). Thus, different life strategies affect the 

allocation of energy between growth and reproduction. Usually, somatic growth can be 

retained in a broader range of environmental conditions than reproductive output. Thus, when 

impacts on growth performance can be measured, reproduction is likely to be affected to a 

higher degree already (Jobling, 1997).  

In conclusion, we suggest that the impact of ocean warming on a species depends on the 

width of the thermal tolerance window and the general growth performance. Data presented 

here indicate that polar fish are affected first and most severely by climate change. 

Disregarding temperature compensation, the combination of a low thermal tolerance and slow 

growth results in a high sensitivity towards ocean warming. 

While Arctic fish species display a higher thermal tolerance and higher growth rates 

compared to Antarctic species, the Arctic region will face the largest temperature increase 

globally. Although predicted temperature increases for Antarctic waters are comparatively 

low (Hellmer et al., 2012; Timmermann and Hellmer, 2013), the lower thermal tolerance of 

the highly adapted Southern Ocean fish fauna might lead to similarly severe ecological 

consequences. 
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3. Discussion 

In the studies of this thesis, the impact of increasing temperature on Antarctic fish was 

analysed from different perspectives. The collected data allow to gain a glimpse into 

acclimation capacities of Antarctic fish with regard to ocean warming and it can contribute to 

improve the knowledge of thermal responses in these unique organisms. In the following, the 

data of the second manuscript will be used to show the relevance of the assessment of the 

whole-organism level for the interpretation of data at various organisational levels. This is 

followed by a methodological discussion on critical aspects of thermal tolerance 

measurements at the whole-organism level. Subsequently, the objectives and results of this 

thesis will be discussed in a wider ecological framework. 

 

3.1. Assembling pieces - the thermal response of Trematomus bernacchii 

Regarding Antarctic fish, T. bernacchii is a very well studied model organism. This chapter 

will review knowledge on the metabolic response of this species to temperature changes, 

trying to establish a broader picture of its acclimation capacity and underlying physiological 

mechanisms. 

The common and nearly universal response to stress, the heat shock response, is absent in T. 

bernacchii. A continuous up-regulation of heat shock proteins has been observed in this 

species (Hofmann et al., 2000) and it is suggested to be a requirement to mitigate the effects 

of constant sub-zero temperatures (Place et al., 2004; Place and Hofmann, 2005). However, 

this is thought to make these fish incapable of any further up-regulations of heat shock 

proteins (Hofmann et al., 2000; Place et al., 2004). Nevertheless, various responses to 

temperature stress at different organisational levels of this species have been revealed in the 

second study of this thesis (manuscript II), as well as various other studies, that will be 

discussed in the following (Table 1). A metabolic response depends on the magnitude of a 

temperature increase, as well as on the exposure time. This paragraph will focus on studies 

conducted at an elevated water temperature of 4°C (cf. Table 1). 

Due to its ecological relevance, the studies of this thesis focused on the whole-organism level. 

However, measurements on the whole-organism level display only the sum of various 

processes on lower organisational levels. An organism is made up of cells, thus changes in 

cellular processes affect cellular energy demand and become evident at the whole-organism 

level. For instance, low hepatocyte respiration was shown to comply with low whole-
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organism metabolic rate and maximum growth in the Antarctic eelpout Pachycara 

brachycephalum at 4°C (Mark et al., 2005; Brodte et al., 2006a). Thus, the integration of 

knowledge from the whole organism, cellular and molecular levels can yield insight into the 

underlying mechanisms of thermal tolerance and can help to improve the understanding of 

thermal response patterns and thus thermal limits of organisms (Pörtner, 2012; Somero, 

2012). 

Temperature accelerates biochemical reaction times, which generally becomes evident in an 

elevated whole-organism metabolic rate after an acute temperature increase (Jensen et al., 

1993). Such an elevation of metabolic rate was also measured in T. bernacchii in experiments 

of this thesis (manuscript II), as well as in other studies, after an acute increase of 

temperature. Increased metabolism was observed for up to 28 days after a temperature 

increase (Robinson, 2008; Enzor et al., 2013). This increase of metabolism likely displays an 

increased energy demand (Wells, 1978; Buckley and Somero, 2009). In aerobic metabolism, 

oxygen is needed for energy conversion. Thus, increased oxygen transport capacity 

(haematocrit) measured in the blood of T. bernacchii is suggested to be a (temporary) measure 

to support aerobic energy supply (Davison et al., 1994; Hudson et al., 2008; cf. also Sleadd et 

al., 2014). When energy supply can no longer match the increasing demand, a shift to 

anaerobic metabolism assures energy supply of the tissue (Pörtner, 2010). Results of different 

studies indicate a shift to anaerobic metabolism in T. bernacchii after a temperature increase 

(Wells, 1978; Jayasundara et al., 2013). A shift to anaerobic metabolism is suggested to mark 

temperatures which affect the metabolic scope of an organism, potentially influencing e.g. 

activity and growth. Beyond these temperature threshold, it its suggested that conditions can 

only be tolerated for limited time (Pörtner, 2010).  

Changes in metabolic enzyme activities, as well as an up-regulation of genes involved in 

reorganisation of metabolic pathways, indicate a shift in metabolic fuel preferences from 

lipids to carbohydrates after an acute increase of temperature in T. bernacchii (Buckley and 

Somero, 2009; Jayasundara et al., 2013). Moreover, indicators of inflammation, apoptosis, 

cell-cycle arrest (Sleadd and Buckley, 2013; Sleadd et al., 2014) and increased oxidative 

tissue damage (Enzor and Place, 2014) imply elevated cellular stress levels. In addition, up-

regulation of genes involved in intracellular signalling, as well as cytoskeletal organisation, 

cell cycle arrest and proteolysis (Buckley and Somero, 2009) also suggest increased cellular 

stress after exposure to increased temperature. While mitigation of damage and cell repair 

seem to be important processes happening parallel to metabolic reorganisation, activity seems 
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to be unimpaired by acute increases of temperature, indicating no impact on crucial activities, 

such as escape or hunting capabilities (Wilson et al., 2001).  

Generally, temperature changes are thought to trigger a two-stage stress response (Kültz, 

2005; Buckley and Somero, 2009). The first phase, the ‘cellular stress response’, generally 

assures the short-term survival of the cell independent of the stressor. It comprises growth 

control, the protection of macromolecular integrity, the modulation of major energetic 

pathways and apoptosis (Kültz, 2005). The aforementioned thermal metabolic responses in T. 

bernacchii seem to comply well with this first phase of the stress response. According to 

Kültz (2005), the second phase, the ‘cellular homeostatic response’, aims at the restoration of 

cellular homeostasis depending on the stressors effect. Declining cellular oxidative damage 

and compensated whole-animal metabolic rate after an acclimation time of about 56 days 

could suggest a return to organismal homeostasis in T. bernacchii. However, transcriptomic 

changes indicate reduced overall transcription, reduced protein turnover capacity, as well as a 

mobilisation of energy stores (Huth and Place, 2013), which is supported by decreasing trends 

in condition factors and energy storage, as well as decreasing growth rates at the whole-

organism level after long-term acclimation to elevated temperature (manuscript II). An 

increasing trend in nitrogen content of faeces found in manuscript II indicates less efficient 

food assimilation. These results could suggest a lower efficiency of energy metabolism after 

acclimation to increased temperature. However, whether e.g. a reduced protein turnover is a 

cause for reduced food conversion efficiency or whether inefficient food assimilation 

contributes to reduced protein turnover rates, will have to be assessed in further studies. 

In the short-term, increasing temperature seems to trigger various molecular, cellular and 

organismal compensation mechanisms in T. bernacchii, which seem to make these fish able to 

cope with changing temperatures. Nevertheless, it is questionable whether the energetic costs 

for these ‘mitigation’ measures can be met without cut-offs for other traits and whether a 

complete return to an organismal homeostasis is possible in the long-term. In the face of rapid 

temperature changes, resistance mechanisms and short-term responses to assure physiological 

functioning, such as oxygen and energy supply of the tissue, are most crucial processes (Peck 

et al., 2009; Pörtner, 2010). However, in an ecological context of slow environmental change, 

physiological and ecological processes interact. Then, the combination of physiological 

factors, such as the efficient utilisation of energy reserves and the degree of acclimation of 

various physiological processes, as well as ecological factors, such as food availability and 

predator/prey interactions, can be pivotal for survival (Barnes and Peck, 2008; Peck et al., 
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2009). Knowledge on physiological ranges of thermal tolerance is most important, but these 

ranges are likely to be additionally confined by ecological limitations in a species’ natural 

environment, such as limited food supply or suitable habitat (Peck et al., 2009). Thus, 

physiological optima and the ecological niche that is actually realised by a species do not 

always comply. For example, this is again demonstrated by the Antarctic eelpout Pachycara 

brachycephalum, which was found to show best growth performance at 4°C in laboratory 

studies, but lives at water temperatures around 0 to 0.6°C (Brodte et al., 2006b; Brodte et al., 

2006a). 

In spite of the described response patterns that maintain all vital functions, the energetic trade-

offs for growth indicated by long-term experiments are significant. Neglecting potentially 

mitigating effects of transgenerational plasticity and cross-generational shifts of adaptation 

capacities, the results collected here make the acclimation ability to increased temperatures 

around 2 to 4°C on population-relevant time scales in T. bernacchii highly questionable. 
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Table 1 Schematic summary of studies on thermal tolerance of T. bernacchii, focusing on acute (up to 36 hours) 
as well as acclimatory responses of different organisational levels to 4°C (if not stated otherwise). 

Influenced factor Acute ≥14 d ≥28 d ≥56 d References 

Whole-organism level 
Growth     Manuscript II 
Food conversion ratio     Manuscript II 
Routine metabolism     Enzor et al. 2013; Morrison et al. 

2006; Robinson 2008; Manuscript 
II 

Drinking rates     Petzel 2005 
Burst swimming     Wilson et al. 2001 

Tissue & cellular level 
Gill tissue respiration     Somero et al. 1968 
Brain tissue respiration     Somero et al. 1968 
Apoptotic hepatocytes (2°C, 
6°C) 

    Sleadd et al. 2014 

Oxidative damage (gill)  7d   Enzor and Place 2014 
Oxidative damage (liver)  7d   Enzor and Place 2014 
Hematocrit (acute 10°C)     Davison et al. 1994; Hudson et al. 

2008 
Serum osmolality     Brauer et al. 2005; Gonzalez-

Cabrera et al. 1995; Guynn et al. 
2002; Hudson et al. 2008; 
Morrison et al. 2006 

Blood ATP concentration (5°C)     Wells 1978 
Blood lactate concentration 
(5°C) 

    Wells 1978 

Serum cortisol     Hudson et al. 2008 
Hemoglobin (10°C)     Davison et al. 1994 

Molecular level 
Na+/K+-ATPase (gill)     Gonzalez-Cabrera et al. 1995; 

Guynn et al. 2002 
Na+/K+-ATPase (muscle)     Gonzalez-Cabrera et al. 1995 
Na+/K+-ATPase (liver)     Gonzalez-Cabrera et al. 1995 
Na+/K+-ATPase (kidney)     Gonzalez-Cabrera et al. 1995 
HOAD (ventricular tissue)     Jayasundara et al. 2013 
CS (ventricular tissue)     Jayasundara et al. 2013 
LDH (ventricular tissue)     Jayasundara et al. 2013 
HOAD (skeletal muscle)     Jayasundara et al. 2013 
CS (skeletal muscle)     Jayasundara et al. 2013 
LDH (skeletal muscle)     Jayasundara et al. 2013 

Gene regulation 

Transcription/Translation 
(general) 

    Huth and Place 2013 

Cytochrome C Oxidase (gill)     Huth and Place 2013 
Apolipoproteins (liver)     Huth and Place 2013 
C/EBP δ (white muscle)  6h    Sleadd and Buckley 2013 
HOAD: 3-Hydroxyacyl CoA dehydrogenase, CS: Citrate synthase LDH: Lactate dehydrogenase; C/EBP δ: CCAAT/enhancer-binding 
protein δ (mediating inflammatory and pro-apoptotic processes) 
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3.2. Thermal tolerance at the whole-organism level - a methodological discussion 

In this section, some major aspects of the methodology for thermal tolerance assessment will 

be discussed, regarding their relevance for this study. There are several approaches to assess 

the thermal tolerance of an organism. Estimates of thermal tolerance can vary widely, 

depending on the condition of the animal, its sex, its life stage and its feeding status, but also 

on the type of experiment, such as acute or acclimation experiments, or the rate of 

temperature increase or temperature intervals (Post, 1990; O'Connor et al., 2000; Chown et 

al., 2009; Peck et al., 2009; Pörtner and Peck, 2010; Terblanche et al., 2011; cf. Fig. 5).  

Typically, slow heating rates are thought to result in lower estimates of thermal tolerance and 

closer resemble conditions experienced by an organism in the field (Peck et al., 2009). In 

contrast, the application of acute temperature changes often focuses on comparative or 

mechanistic approaches that are not feasible to realise in the framework of acclimation 

experiments. Acute temperature experiments are often used for multi-species comparisons, 

such as the thermal response patterns of Lepidonotothen nudifrons, Lepidonotothen 

squamifrons and Trematomus hansoni that were compared in manuscript I using oxygen 

consumption measurements. The discussion of this first manuscript highlights that the 

comparability of studies using acute measures is often confined by differences in 

experimental protocols, such as rates of temperature increase or prior acclimation.  

This does not only apply to oxygen consumption measurements. For example, the application 

of the critical thermal maximum (CTmax) focuses on the determination of the temperature at 

which locomotory ability and the escape response from lethal conditions is impaired (Cowles 

and Bogert, 1944). The use of e.g. different heating rates, for the determination of CTmax, 

often makes comparison of data difficult (Terblanche et al., 2007). Additionally, acute 

measures (as well as long-term measures) can vary depending on prior exposure or 

acclimation to elevated temperatures that can cause shifts of tolerance limits (Pörtner and 

Peck, 2010; Bilyk et al., 2012). For instance, when CTmax of T. bernacchii was determined 

twice for the same individual within 24 hours, the second measurement resulted in a higher 

CTmax than the first measurement (Bilyk et al., 2012). On the other hand, Prodrabsky and 

Somero (2006) analysed thermal tolerance in a group of T. bernacchii directly transferred to 

4°C, as well as in a group slowly heated to 4°C over 24 hours. They found comparable warm 

acclimation patterns resulting in an increased thermal tolerance (comparable lethal 

temperature) of both groups after 24 hours.  
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In contrast to these acute thermal challenges, experiments with longer acclimation times are 

suggested to reveal more ecologically relevant capacities of thermal tolerance (Peck et al., 

2009). These long-term acclimation capacities were aimed to be determine in energy budget 

studies of this thesis. The energy budget proofed to be a good tool to assess acclimation 

patterns, as shown in manuscript II and III using temperature dependent energy allocation of 

T. bernacchii and L. nudifrons as an example. However, various factors have to be taken into 

account that might possibly impact results, by affecting metabolism or thermal tolerance of 

the experimental organism, and could limit data interpretation. 

An important factor influencing metabolism and thereby possibly thermal response capacities 

is food quality and quantity (Peck et al., 2003; Secor, 2009; Norin and Malte, 2011). 

O’Connor (2000) found food deprivation to cause changes in the rank order of Atlantic 

salmon metabolic rate, indicating that fish were able to adjust metabolic expenses according 

to food availability. As Antarctic fish display generally low growth rates, food was supplied 

ad libitum in the energy budget studies of manuscript II and III. By maximising energy input 

and thereby energy availability for growth, it was aimed to maximize the growth potential of 

fish. One reason for this was the standardisation of measured growth rates for comparison 

with other studies. However, as suggested in manuscript II, the food source, nutrient 

composition, costs of digestion and physiologically usable energy have to be considered and 

can affect the net energy gain from food. Nutritional composition of food is known to impact 

food conversion ratios and physiologically usable energy (García et al., 2015). In nature, food 

composition varies, possibly facilitating a more or less balanced and comprehensive 

nutritional source. In the energy budget experiment with T. bernacchii, the discrepancy 

between energy input in form of food and the amount of energy allocated to vital functions 

demonstrated potential trade-offs in energy estimations, when physiological usable or 

digestive energy cannot be determined. In the experiment with L. nudifrons (manuscript III), 

higher energetic costs for the digestion of chitin containing crustacean food (Secor, 2009) in 

combination with temperature and an unknown second stressor might have contributed to 

declining condition and negative growth. Though, increased liver lipid content at elevated 

temperature did not indicate energy shortage in these fish (manuscript III). Moreover, an 

unlimited food supply in experiments has to be taken into account regarding any ecological 

interpretation of the results from the laboratory studies of this thesis, since they do not 

necessarily reflect environmental conditions. In nature, food availability might be limited and 

foraging costs decrease net energy gain from food (Flore and Keckeis, 1998; Giacomini et al., 

2013).  
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In general, captivity cannot be avoided in fish energy budget studies. The separation of 

individuals, as done by cages in experiments of this thesis, could either pose additional stress 

or even reduce social stress, since this avoids hierarchical pressure (Pottinger and Pickering, 

1992; Morgan and Tromborg, 2007). The Antarctic species used in experiments of this thesis 

are known to be inactive, display low activity ranges, territorial behaviour and are likely to be 

loners (Miyamoto and Tanimura, 1999). Thus, separation was unlikely to cause but rather 

reduce social stress for these fish. Specimens from experiments of this thesis did not show any 

behavioural changes after separation into cages, except from some smaller T. bernacchii, 

which seemed less shy and fed more after separation (T. Sandersfeld, personal observation). 

Lower stress levels during captivity were also reported by Davison et al. (1995). They 

compared heart rate and cardiovascular parameters in groups of T. bernacchii measured in 

Antarctica directly with that of a group transported to and kept in captivity at 

Christchurch/NZ. Fish kept in aquaria in Christchurch for three weeks displayed lower heart 

rates compared to those measured in Antarctica (Davison et al., 1995). In combination with 

even lower heart rates measured after a minimum of six weeks in captivity in Christchurch by 

Axelsson et al. (1992), these results could indicate lower stress levels in captivity (Davison et 

al., 1995). 

Furthermore, the behavioural aspects on thermal tolerance in Antarctic fish are hardly studied 

and often neglected due to feasibility reasons, as also in this study. Thermal effects on 

behaviour can influence boldness and shyness in fish, with potential impacts on feeding 

activity. In damselfish, increased aggression, boldness and activity were found at elevated 

temperature (Biro et al., 2010). Moreover, behavioural responses to environmental 

temperature changes have been observed for various species (Claireaux et al., 1995; Perry et 

al., 2005; Morita et al., 2010). For instance, thermoregulating behaviour, such as migration to 

cooler/warmer water layers or higher latitudes, has been observed for cod (Gadus morhua) in 

laboratory trials as well as in their natural habitat (Perry and Neilson, 1988; Claireaux et al., 

1995). However, regarding Antarctic and especially high-Antarctic fish species, evasive 

manoeuvers such as migration to deeper water layers or higher latitudes are limited and will 

be discussed in section 3.3.  

Additionally, the social status was shown to be positively correlated with in situ metabolic 

rate and growth in Atlantic salmon (Metcalfe et al., 1995). However, due to unknown 

hierarchical structures and social behaviour in most species as well as potential impacts of 

captivity, this is hardly controllable in laboratory experiments. Moreover, energy allocation 
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patterns change within the life cycle of a fish (Post, 1990; Jonsson and Jonsson, 2003). 

Besides differences between juvenile and adults, energy allocation can vary depending on 

reproductive cycles and strategies (Post, 1990; Post and Parkinson, 2001; Garvey and 

Marschall, 2003). However, access to model organisms is often limited in studies on Antarctic 

fish. In the study on L. nudifrons (manuscript III), selection of animals was limited, as animals 

were caught by trawling. Thus, the inclusion of animals of different sizes and possibly 

different reproductive status could not be avoided. As T. bernacchii were caught by hook and 

line fishing, selection of juvenile animals allowed to at least partly control impacts of 

reproductive cycles (manuscript II). Yet, the impact of different sexes could not be prohibited, 

as visual sex determination was not possible in the used species. 

As described above, the whole-organism level can be influenced by a variety of factors, 

making it hard to establish a completely controlled experimental setup. This is demonstrated 

by the contradictory data set of L. nudifrons (manuscript III). Acute oxygen consumption 

measurements display an increase of metabolic rates with increasing temperature, similar to 

data of T. bernacchii (manuscript III, Fig. 3). However, after the acclimation period, higher 

metabolic rates were recorded compared to those measured after an acute temperature 

increase. Under unstressed conditions, one could expect metabolic rates after temperature 

acclimation to be comparable to or lower than measurements after an acute temperature 

challenge. During metabolic rate measurements of L. nudifrons, an unknown additional 

stressor was suspected to have elevated metabolism after the acclimation period, illustrating 

the sensitivity of the experimental work at the whole-organism level. 

In spite of influencing factors and potential limitations of experiments at the whole-organism 

level, the organism is the pivotal factor that needs to be understood. Clear and detailed 

experimental protocols, e.g. regarding heating rates, acclimation times, feeding regime and 

handling, can help to enhance comparability between studies and support the identification of 

potential influencing factors. Combinations of studies, at lower as well as at higher 

organisational levels, if possible taking into account behavioural and ecosystem aspects, are 

of great value, as discussed above in section 3.1. Moreover, experimental results at the whole-

organism level enable us to gain insight into potential consequences of elevated temperature 

at ecosystem-relevant levels, which will be further elaborated in the next section. 
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Fig. 5 Thermal tolerance estimates are influenced by animal as well as experimental condition. While some 
factors (red) can contribute to a higher estimated thermal tolerance, other factors (blue) can contribute to a lower 
estimate of thermal tolerance.  

 

3.3. Sensitivity of Antarctic fish to ocean warming 

Regarding vulnerability to climate change, organisms living at the upper limit of their thermal 

window are thought to be especially sensitive towards temperature changes (Stillman, 2003; 

Neuheimer et al., 2011). Moreover, the temperature range experienced in an environment is 

suggested to be a driving factor for the capacity to cope with rising temperatures (Tewksbury 

et al., 2008; Peck et al., 2014). Thus, various studies suggest a relatively low thermal 

tolerance of Antarctic fish compared to temperate counterparts, due to their evolutionary 

adaptation to lower temperature fluctuations in Antarctic waters (Somero, 2010; Peck et al., 

2014). In turn, differences in thermal regimes in low- and high-Antarctic areas suggest 

differences of thermal tolerance within Antarctic fish species (cf. Fig. 1; Stillman 2003; 

Tewksbury et al. 2008, Bilyk and DeVries 2011). Accordingly, a lower thermal tolerance of 

high-Antarctic compared to low-Antarctic fish species was hypothesised. In the first study 

of this thesis (manuscript I), routine metabolic rates of different Antarctic fish species at their 

habitat temperature as well as after acute temperature increase were compared. A comparable 

effect of increased temperature on routine metabolism suggests no difference in the thermal 

response of the analysed species. Though, routine metabolic rates at habitat temperature 

suggested higher metabolic rates of species from higher latitudes. This partly supports the 

hypothesis of metabolic cold adaptation (MCA), however, in a much weaker sense. The 

hypothesis of MCA suggests polar fish to display several-fold elevated metabolic rates than 

temperate or tropical fish when projected to the same temperatures (Scholander et al., 1953; 
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Wohlschlag, 1960). While MCA has been found at lower organisational levels in fish 

(Hochachka, 1988; Kawall et al., 2002; but also see Magnoni et al., 2013), it is still vigorously 

discussed at the whole-organism level (Holeton, 1974; Clarke, 1991; Jordan et al., 2001; 

White et al., 2012). The size of the data set of manuscript I does not allow identification of 

broad scale patterns and conclusions on this topic, but it can serve as further evidence 

enhancing this discourse. Higher routine metabolic costs could have far reaching 

consequences for energy budgets by reducing energy availability for other vital functions, 

such as growth and reproduction. Moreover, according to the hypothesis of manuscript I, it 

could limit the scope for further elevations of metabolism, e.g. caused by increasing 

temperature, thereby decreasing thermal tolerance due to energetic constraints. Differences 

between high- and low-Antarctic species could be crucial in competition scenarios that will be 

discussed later in this paragraph. 

Assuming that temperature affects energy allocation, it was hypothesised that increasing 

temperature causes metabolic trade-offs at the whole-organism level in high-Antarctic 

fish. In this context, the temperature-dependent energy allocation in the high-Antarctic T. 

bernacchii (manuscript II) was analysed. Results of the second study show that temperature 

does cause trade-offs at the whole-organism level. These trade-offs were most evident in form 

of growth reductions. In T. bernacchii, a temperature increase of only 2°C caused mass 

growth reductions of up to 84%, which was likely due to inefficient food conversion. In 

agreement with the first study (manuscript I), L. nudifrons showed a broader thermal 

tolerance, displayed by shifts in energy allocation after temperature increases to 4°C in 

contrast to 2°C for T. bernacchii (manuscript III). Absolute comparisons of shifts in energy 

allocation between the two species were prohibited by high mortality in control treatments of 

L. nudifrons. However, in spite of an additional unknown stressor in this experiment, a clear 

thermal response could be identified, emphasising the use of energy budget experiments for 

the identification of ecologically relevant thermal tolerance windows. 

Starting from the assumption that elevated temperature significantly impacts growth in 

high-Antarctic fish, it was hypothesised that differences in growth rates as well as 

temperature dependent growth performance influence a species’ production and 

thereby its sensitivity to ocean warming. To address this hypothesis, temperature-dependent 

growth rates of fish species with different latitudinal distributions were analysed. Polar and 

especially Antarctic fish species were found to show low growth rates and low thermal 

tolerance of growth performance compared to temperate species (manuscript IV). As 
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hypothesised in manuscript I, higher routine metabolic costs could contribute or account for 

low growth rates at high-latitudes. Moreover, a very low thermal tolerance of growth 

performance, as shown in manuscript II for T. bernacchii, can cause further reductions in 

already low growth rates of Antarctic species. Changes in temperature can potentially disrupt 

the balance between energy allocation to growth and reproduction as well as metabolic costs. 

While consequences of increasing temperature might be smaller for temperate species with 

relatively higher growth rates and a broad thermal tolerance, consequences might be more 

severe for Antarctic fish species with low growth rates and a high thermal sensitivity, making 

these fish particularly sensitive to ocean warming. 

Shifts in species distribution, to colder water layers or higher latitudes, have already been 

observed in response to increasing temperature (Perry et al., 2005; Dulvy et al., 2008; Sundby 

and Nakken, 2008). For example in the North Sea, especially species with fast life cycles and 

small body size, such as dragonet (Callionymus lyra), were observed to shift their distribution, 

while species with slower life cycles, such as spurdog (Squalus acanthias), seemed not to be 

able to adapt to changing conditions (Perry et al., 2005). Antarctic fish show much slower life 

cycles compared to temperate species (Kock, 1992; La Mesa and Vacchi, 2001), calling their 

response capacities into question.  

However, avoidance strategies, such as migration to colder waters in deeper depth or higher 

latitudes can only be partially exploited by Antarctic fish. In the high-latitudes, deep waters 

are warmer than upper water layers (Mantyla and Reid, 1983), making migration to deeper 

depth an unsuitable avoidance manoeuver from rising temperatures. In contrast, warming of 

shelf waters might facilitate the introduction or increasing abundance of deep-sea, bathy- or 

mesopelagic fish species, as well as non-Antarctic invaders (Mintenbeck et al., 2012). For 

instance in the Palmer deep, a large population of king crabs was found and is suspected to be 

restricted in upward migration by cold temperatures (Smith et al., 2011). Besides, migration to 

colder waters in higher latitudes is only possible for low-Antarctic fish. For these species, 

north-south aligned shelves, such as at the Antarctic Peninsula, the Kerguelen Plateau or 

Victoria Landon might offer potential habitats (Barnes et al., 2009). Though, for high-

Antarctic species pole-ward migration is limited by the borders of the Antarctic continent. 

In such a migration scenario, low-Antarctic species could intrude high-Antarctic waters and 

compete for niches and other resources with high-Antarctic species. Analysis of temperature 

dependent abundance structures of fish species in the Atlantic sector of the Weddell Sea 

showed typical low-Antarctic species, such as of the genus Lepidonotothen, to occur in a 



DISCUSSION  89 
 

temperature range of -1 to 2°C, while abundances were highest at temperatures above 0°C 

(Meyer, 2012). Typically high-Antarctic species, such as of the genus Trematomus, were 

mostly found below 0°C, with peak abundances between -1 and -2°C (Meyer, 2012). 

However, temperature-induced overlaps in abundances of species could enhance competition. 

Here, a higher thermal sensitivity of high-Antarctic species might be a disadvantage with 

progressing climate change. As presumed in manuscript I, a higher metabolic rate of high-

Antarctic fish could restrict thermal tolerance and cause these species to reach physiological 

critical temperatures earlier compared to low-Antarctic species. Low growth rates in addition 

to a higher thermal sensitivity of growth performance, as shown in manuscripts II, III and IV, 

could reduce production rates of high-Antarctic fish at elevated temperatures by a higher 

degree than those of low-Antarctic species. Besides the thermal effects on physiology, 

temperature associated changes in intra- and interspecies interaction, food web as well as 

habitat structures may have advantages and disadvantages for high- and low-Antarctic fish 

alike. 

Regarding food availability, some species, such as T. bernacchii and L. nudifrons, show a 

quite broad prey spectrum, feeding on various benthic and epifaunal organisms as well as 

planktonic copepods, amphipods and fish (Gon and Heemstra, 1990; Montgomery et al., 

1993; Fanta, 1999; La Mesa et al., 2004). Feeding strategies that target sessile, crawling as 

well as swimming organisms alike, suggest sufficient flexibility to cope with fluctuations and 

possible changes in prey spectrums (cf. Montgomery et al., 1993). However, even flexible 

predators can be impacted by changes in the food web that significantly limit available energy 

sources. For example, decreasing sea ice cover coming along with decreasing krill abundance 

and increasing salp abundance was reported to impact food webs at the Western Antarctic 

Peninsula (Atkinson et al., 2004; Turner et al., 2014). Such changes in food webs may change 

the distribution of food sources for pelagic life stages of marine organisms, as well as top 

predators, such as chinstrap penguins, and disrupt established recruitment cycles (Trivelpiece 

et al., 2011; Flores et al., 2012). Moreover, the substitution of a high-energy food source by a 

low-energy prey can decrease energy input and thus reduce energy available for higher 

trophic levels (Mintenbeck et al., 2012). Ruck et al. (2014) found regional differences in 

energy content of common prey species of predators, such as large fish, seals and penguins. 

For example, lipid content of Antarctic krill (Euphausia superba) increased with latitude and 

was suggested to vary between in- and offshore areas (Ruck et al., 2014). In case of 

distribution shifts, such regional differences in energy content of important prey species, can 

affect energy availability for predators. Increased temperature also influences predator-prey 
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interaction among fish species (Grigaltchik et al., 2012). For instance, in reef fish, elevated 

temperature increased predator performance positively, but negative effects on prey escape 

responses increased predation rates (Allan et al., 2015). However, fish are predator and prey 

alike. Impacts on fish as predators are likely to be followed by impacts on organisms preying 

on fish, such as seabirds, seals and penguins (Casaux and Barrera-Oro, 2006; Mintenbeck et 

al., 2012). After all, limited knowledge on complex food webs and interspecies interactions 

make predictions of temperature impacts on Antarctic ecosystems difficult.  

In an optimistic future scenario, the situation of Antarctic fish regarding distribution overlaps 

could be similar to that of fish species in the Norwegian Sea, Barents Sea and waters around 

Svalbard (Norway). Here, shifts in species distribution due to warming waters have led to co-

occurrence of Atlantic cod, haddock and polar cod in some regions (Sundby and Nakken, 

2008; Drinkwater, 2009; Renaud et al., 2012). Even though, inference of niches was 

suspected in this case, no evidence for strong competition has yet been found (Renaud et al., 

2012). Foraging in different depth and targeting of different prey species or life stages of prey 

seem to be mechanisms to prevent competition for food sources among Antarctic fish today 

(Moreira et al., 2014). Additionally, Brenner et al. (2001) found small-scale horizontal 

gradients in areas disturbed and undisturbed by iceberg scouring to affect niche separation in 

Trematomus species in the Weddell Sea. However, climate change induced food web changes 

could facilitate resource competition, e.g. regarding food and habitat availability, and might 

affect mechanisms that reduce competition today. Potential competition scenarios might point 

out winners and losers in the challenge of climate change.  

Considering climate impacts on fish, complex life cycles and differences in thermal sensitivity 

of different life stages have to be considered (Rijnsdorp et al., 2009; Petitgas et al., 2013). 

Increasing temperatures might affect recruitment of Antarctic fish, for example with regard to 

timing or location (Van der Veer et al., 2000; Wilderbuer et al., 2002). Such changes could 

result in mismatches between hatching and larval food supply (Edwards and Richardson, 

2004; Voss et al., 2006). Additionally, around the Antarctic Peninsula warming is paralleled 

by decreasing sea ice, reducing spawning habitat of ice associated species, such as the 

Antarctic silverfish (Pleuragramma antarctica) (La Mesa et al., 2015a). Various larvae of 

Antarctic fish hatch in the short Antarctic summer (Kock and Kellermann, 1991; Kock, 1992), 

when food is abundant. Thus, impacts on timing of hatching could be severe regarding short 

production peaks in the pelagic zone of the Southern Ocean (Clarke, 1988). Generally, early 

life stages are suggested to be more temperature sensitive than adult fish (Pörtner and Farrell, 
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2008; Pörtner and Peck, 2010). Experimental studies on early life stages of Antarctic fish are 

scarce, but available data indicates theses to be most vulnerable to environmental change 

(Mintenbeck et al., 2012). To date the only available study on thermal tolerance of Antarctic 

fish early life stages by Flynn et al. (2015) found increased metabolic and developmental rate 

as well as increased mortality of developing Antarctic dragon fish embryos at 2°C.  

Most notothenioid larvae are pelagic and thus transported by ocean currents (Kock, 1992; 

Damerau et al., 2012; Mintenbeck et al., 2012; La Mesa et al., 2015b). Increased temperatures 

are suggested to reduce larval-stage duration, thereby limiting dispersal distance (O'Connor et 

al., 2007). Additionally, potential climate induced changes of ocean currents might affect 

larval dispersal patterns with potential consequences on availability of food and other 

resources (Rijnsdorp et al., 2009; Vestfals et al., 2014). Due to reduced or lacking swimming 

ability, migration from warming areas is often restricted for larval stages (Rijnsdorp et al., 

2009). Considering the high sensitivity of early life stages to abiotic as well as biotic factors, 

they might be critical for response patterns of Antarctic fish in a warming ocean (Rijnsdorp et 

al., 2009; Mintenbeck et al., 2012). 

From a genetic perspective, a limited connectivity between habitats in the Antarctic region is 

assumed to restrict genetic mixing (Patarnello et al., 2011; Agostini et al., 2015). A reduction 

of polymorphisms can facilitate locally adapted genotypes, but might also limit capacities to 

react to environmental change (Patarnello et al., 2011; Agostini et al., 2015). Indicators of 

developmental plasticity and cross generational shifts in stress tolerance have been observed 

for fish as well as for invertebrates and suggest mitigating effects (Schaefer and Ryan, 2006; 

Parker et al., 2012; Donelson et al., 2014). For example, transgenerational plasticity and 

environment-genotype interactions were reported to mitigate impacts of increased temperature 

on metabolic capacity and growth of sticklebacks (Shama et al., 2014). 

In a worst case scenario, ocean warming could reduce population sizes and thereby genetic 

variability, or cause local extinctions, by reducing available habitat (Patarnello et al., 2011; La 

Mesa et al., 2015a). On the other hand, adaptation over life cycles as well as tolerance shifts 

over generations could mediate effects of increasing temperatures (Schaefer and Ryan, 2006; 

Shama et al., 2014). Besides, changing ocean currents and temperatures might influence larval 

drift and developmental patterns (O'Connor et al., 2007) with possible advantageous or 

disadvantageous impacts on habitat connectivity. Warming temperatures might facilitate 

invasion of non-indigenous species and possibly destabilise Antarctic ecosystems (Aronson et 
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al., 2007). Besides, the exploitation of living resources, such as krill and fish, puts additional 

stress on Antarctic ecosystems (Kock et al., 2007; Ainley and Pauly, 2013). 

Projections suggest a maximum water temperature increase of up to 2°C within the next 100 

years for the southern Weddell Sea as well as the Antarctic Peninsula (Hellmer et al., 2012; 

Timmermann and Hellmer, 2013, R. Timmermann personal communication 2015), the 

southernmost areas of T. bernacchii’s and L. nudifrons’ distributional range respectively. The 

results of this thesis suggest that progressing climate change is likely to affect population 

structures and abundances of Antarctic fish species, with high-Antarctic species, such as T. 

bernacchii, being most vulnerable to ocean warming. 
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4. Conclusion & Future Perspectives 

In the framework of this thesis, different aspects of the thermal tolerance of Antarctic fish 

were analysed. In the first study (manuscript I), a comparable acute thermal response of 

routine metabolism of different Antarctic fish species from low- and high-Antarctic regions 

was found. Moreover, results of the first study indicate differences in routine metabolic rates 

between low- and high-Antarctic species. This could contribute to a limited thermal tolerance 

of these fish. In the second study (manuscript II), impacts of increased temperature at the 

whole-organism level in T. bernacchii were analysed. As a significant trade-off of elevated 

temperature in this species, growth rates were reduced by up to 84% at 2°C. The third study 

on temperature dependent energy allocation in L. nudifrons (manuscript III) indicated a higher 

thermal tolerance of energy allocation in this low-Antarctic species. In the fourth study 

(manuscript IV), a metadata-analysis showed growth rates of polar and especially Antarctic 

fish to be lower, compared to those of temperate fish. Besides, polar fish displayed a narrower 

thermal window compared to temperate species. 

In summary, these results suggest that a low thermal tolerance of Antarctic fish could be 

caused by differences in energy allocation. Elevated temperature affects this energy 

allocation, leading to significant reductions in growth, likely affecting production and making 

Antarctic fish most sensitive towards ocean warming. Additionally, a high thermal sensitivity 

of growth performance could also reduce the competitive force of high-Antarctic fish, when 

climate change induced distribution shifts might lead to co-occurrence of low- and high-

Antarctic species in some regions. 

While a wealth of short-term studies on thermal tolerance of Antarctic fish is available, the 

low number of long-term experiments is surprising and more studies on acclimated animals 

are urgently needed. This is particularly important since the second study of this thesis and 

various other studies on thermal tolerance of Antarctic fish indicate acclimation to take 21 to 

69 days (Robinson and Davison, 2008; Bilyk and DeVries, 2011; Strobel et al., 2012; Peck et 

al., 2014). At the whole-organism level, energy budget studies (manuscript II & III) proofed 

to be a good mean to assess temperature impacts. Further, transgenerational plasticity, such as 

effects of maternal temperature acclimation on thermal tolerance of offspring, would be most 

interesting. However, cross-generation experiments with Antarctic fish are mostly hindered 

by problems of larval rearing and breeding. 
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Additionally, the combination of physiological and genetic studies can yield valuable insights 

and enhance the effective use of animal and work resources. In this context, a further 

processing of tissue samples collected in the energy budget experiment with T. bernacchii is 

planned to follow-up findings from this thesis (manuscript II). An analysis of transcriptomic 

changes among temperature treatments could be a great chance to track down changes 

identified at the whole-organism to genetic levels. Such an analysis could include e.g. 

transcriptomic profiles. Real time quantitative polymerase chain reaction (qPCR) assays on 

single genes could yield insight into anabolic and catabolic pathways and heat shock protein 

responses to increased temperature. Later, epigenetics may give some insight into factors 

influencing thermal tolerance, e.g. by analysis of DNA methylation and histone modification 

patterns. 

Considering differences in thermal tolerance within Antarctic species, ambiguities of species 

and regional effects are a very interesting aspect. Studies on the thermal sensitivity of 

different populations of the same species from different Antarctic habitats could help to assess 

e.g. genetic contributions to thermal response capacities, local adaptations to biotic and 

abiotic factors as well as assumptions of countergradient variation (Conover and Present, 

1990). In this context, a comparable energy budget study to the one from this thesis with a 

northern population of T. bernacchii, e.g. from the Antarctic Peninsula, would be of great 

value to assess the phenotypic plasticity and acclimation capacity of the species. The 

combination of such a study with the above mentioned genetic analysis could potentially help 

to identify genetic patterns associated with a higher thermal tolerance across populations. 

Knowledge on genetic patterns involved in thermal tolerance and warm acclimation capacities 

might allow a scan of different populations of T. bernacchii for their thermal response 

capacities to gain insight in the overall temperature tolerance of this circum-Antarctic species. 

From an ecological perspective, the assessment of potential consequences of climate change 

based on knowledge of a species’ thermal tolerance is most crucial. Regarding the example of 

the model species T. bernacchii, the identification of thermal limits for the whole animal 

could be followed by the assessment of mitigation scenarios. The identification of 

temperature-dependent abundance structures in combination with knowledge on thermal 

tolerance can allow the identification of potentially suitable habitats for a species (c.f. 

Galparsoro et al., 2009). Climate and ecosystem models could then be used to analyse 

possible suitable habitats and potential shifts in abundances based on projected future ocean 

conditions.  
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Furthermore, data from energy budget experiments, food web as well as abundance studies 

could be combined with temperature predictions and estimations of available habitat to serve 

as a framework for an ecological model (cf. Albouy et al., 2014). Such a model could allow 

the estimation of energy fluxes within ecosystems, as well as potential changes due to 

elevated temperature, thereby supporting to assess potential consequences of progressing 

climate change. Linking data on thermal tolerance of single fish species from physiological 

studies to ecological data sets is an important step to gain a better understanding of what 

might happen in Antarctic areas in the future. 

The Southern Ocean is a unique ecosystem inhabited by a variety of organisms with diverse 

adaptations to this extreme environment. Antarctic fish display various features adjusting their 

physiology and ecology to the cold, making them most sensitive to temperature changes 

(O'Brien and Crockett, 2013; Peck et al., 2014). The assessment of potential consequences of 

ocean warming for Antarctic fish is particularly important regarding their significant role for 

Antarctic ecosystems and food webs. Antarctic fish are an important link between higher and 

lower trophic levels in Antarctic food webs, as they serve as food source for predatory species 

such as seals, penguins and sea birds (Hureau, 1994; Kock et al., 2012). Thus, impacts on fish 

could have far reaching consequences for food webs and whole Antarctic ecosystems.  

Climate change has the potential to irrevocably change the Southern Ocean. The studies of 

this thesis demonstrate the low thermal tolerance of Antarctic fish species and indicate a high 

vulnerability towards increasing temperatures. Ocean warming is also paralleled by e.g. ocean 

acidification and changes in salinity (Mintenbeck et al., 2012). The Interaction of different 

stressors can have antagonistic or synergistic effects, with potential implications for 

physiology and ecology of fish species (Perry et al., 2005; Pörtner and Peck, 2010; 

Mintenbeck et al., 2012; Gräns et al., 2014). While warming waters have been recorded to 

affect fish especially on the warm end of their distributional range (Perry et al., 2005), a 

recent study found ocean acidification to negatively affect species at the cold edge of their 

distributional range (Gräns et al., 2014). The combination of different stressors influencing 

marine environments thus raises the need for multi-stressor experiments. A clear 

understanding of already visible and potential future consequences is urgently needed to 

assess options to mitigate and stop anthropogenic climate change.  
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temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish 
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Supplementary material - Manuscript I 

To enhance transparency of the conducted data analysis, text files with original data 

(displayed as tables in the following) and ‘R’ scripts for data analysis were submitted as 

electronic supplementary material (ESM) and are referred to as ‘Online Resource’ in 

manuscript I. 

 

ESM 1 

Summary respiration data L. nudifrons [mg O2 kg-1 h-1] 

 Temperature [°C] 

Fish ID 0 1 2 3 4 

1 26.42 12.20 37.81 39.65 46.06 

2 24.94 21.97 - 33.55 34.62 

3 21.96 27.46 29.26 45.19 47.86 

4 18.76 14.87 21.51 25.04 25.71 

5 20.31 20.22 23.76 26.25 28.63 

6 14.35 19.06 25.24 21.51 30.10 

 

ESM 2  

Summary respiration data L. squamifrons [mg O2 kg-1 h-1] 

 Temperature [°C] 

Fish ID 2 3 4 5 6 7 

1 47.73 48.47 52.27 58.02 69.95 - 

2 44.03 49.41 47.41 - - - 

3 37.53 35.00 44.73 52.55 60.95 - 

4 - - - - - - 

5 26.10 31.39 48.15 52.48 52.48 62.29 

6 26.83 30.39 37.95 45.31 54.07 54.90 

7 25.72 36.02 40.69 44.86 48.10 - 

8 43.92 45.37 63.98 82.89 - - 

9 23.63 29.80 50.05 50.07 47.65 55.80 
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ESM 3 

Summary respiration data T. hansoni [mg O2 kg-1 h-1] 

 Temperature [°C] 

Fish ID 0 1 2 3 4 5 

1 26.89 32.61 37.66 43.34 48.85 56.59 

2 47.13 53.58 59.49 65.79 76.35 - 

3 32.35 39.39 55.89 76.03 92.56 - 

4 25.48 32.11 49.71 54.23 59.50 68.01 

5 41.31 41.94 54.59 56.45 61.30 78.51 

 

ESM 4 

Complete data set (species abbreviation: L. nud = L. nudifrons, L. squami = L. squamifrons, T.han = T. hansoni) 

Species Temperature [°C] MO2 [mg O2 kg-1 h-1] 

L.nud 0 26.42 

L.nud 1 12.20 

L.nud 2 37.81 

L.nud 3 39.65 

L.nud 4 46.06 

L.nud 0 24.94 

L.nud 1 21.97 

L.nud 3 33.55 

L.nud 4 34.62 

L.nud 0 21.96 

L.nud 1 27.46 

L.nud 2 29.26 

L.nud 3 45.19 

L.nud 4 47.86 

L.nud 0 18.76 

L.nud 1 14.87 

L.nud 2 21.51 

L.nud 3 25.04 

L.nud 4 25.71 
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L.nud 0 20.31 

L.nud 1 20.22 

L.nud 2 23.76 

L.nud 3 26.25 

L.nud 4 28.63 

L.nud 0 14.35 

L.nud 1 19.06 

L.nud 2 25.24 

L.nud 3 21.51 

L.nud 4 30.10 

L. squami 2 47.73 

L. squami 3 48.47 

L. squami 4 52.27 

L. squami 5 58.02 

L. squami 6 69.95 

L. squami 2 44.03 

L. squami 3 49.41 

L. squami 4 47.41 

L. squami 2 37.53 

L. squami 3 35.00 

L. squami 4 44.73 

L. squami 5 52.55 

L. squami 6 60.95 

L. squami 2 26.10 

L. squami 3 31.39 

L. squami 4 48.15 

L. squami 5 52.48 

L. squami 6 52.48 

L. squami 2 26.83 

L. squami 3 30.39 

L. squami 4 37.95 

L. squami 5 45.31 

L. squami 6 54.07 
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L. squami 2 25.72 

L. squami 3 36.02 

L. squami 4 40.69 

L. squami 5 44.86 

L. squami 6 48.10 

L. squami 2 43.92 

L. squami 3 45.37 

L. squami 4 63.98 

L. squami 5 82.89 

L. squami 2 23.63 

L. squami 3 29.80 

L. squami 4 50.05 

L. squami 5 50.07 

L. squami 6 47.65 

T.han 0 26.89 

T.han 1 32.61 

T.han 2 37.66 

T.han 3 43.34 

T.han 4 48.85 

T.han 0 47.13 

T.han 1 53.58 

T.han 2 59.49 

T.han 3 65.79 

T.han 4 76.35 

T.han 0 32.35 

T.han 1 39.39 

T.han 2 55.89 

T.han 3 76.03 

T.han 4 92.56 

T.han 0 25.48 

T.han 1 32.11 

T.han 2 49.71 

T.han 3 54.23 
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T.han 4 59.50 

T.han 0 41.31 

T.han 1 41.94 

T.han 2 54.59 

T.han 3 56.45 

T.han 4 61.30 

 

ESM 5 

R code for analysis of respiration data - Shapiro-Wilk test for normality distribution 

L.nudi<-read.table("L.nudifrons_summary.txt",header=TRUE,sep="\t", as.is=TRUE) 
L.nudi 
plot(density(L.nudi[,2])) 
shapiro.test(L.nudi[,2]) 
shapiro.test(L.nudi[,3]) 
shapiro.test(L.nudi[,4]) 
shapiro.test(L.nudi[,5]) 
shapiro.test(L.nudi[,6]) 
 
 
L.squami<-read.table("L.squamifrons_summary.txt",header=TRUE,sep="\t", as.is=TRUE) 
L.squami 
plot(density(L.squami)) 
shapiro.test(L.squami[,2]) 
shapiro.test(L.squami[,3]) 
shapiro.test(L.squami[,4]) 
 
shapiro.test(L.squami[,5]) 
L.squami[,5] 
L.squami[8,5]=NA # check with outlier assumption 
shapiro.test(L.squami[,5]) 
 
shapiro.test(L.squami[,6]) 
shapiro.test(L.squami[,7]) 
 
 
T.han<-read.table("T.hansoni_summary.txt",header=TRUE,sep="\t", as.is=TRUE) 
T.han 
shapiro.test(T.han[,2]) 
shapiro.test(T.han[,3]) 
shapiro.test(T.han[,4]) 
shapiro.test(T.han[,5]) 
shapiro.test(T.han[,6]) 
shapiro.test(T.han[,7]) 
 
shapiro.test(r$MO2) 



APPENDIX  115 
 

ESM 6 

R code for analysis of respiration data - linear model (for MO2 data_complete data set) 

 

r<-read.table("MO2 data_complete data set.txt",header=TRUE,sep="\t") 
r=r[-61,] # outlier assumption for data point 82 L. squami(5°C) 
 
for (s in levels(r$species)) {w=which(r$species==s) ; print( bartlett.test(r$MO2[w],r$temp[w] 
) ) } 
bartlett.test(r$MO2,factor(paste(r$species,r$temp))) 
 
logM<-log(r$MO2) 
 
# model selection: exclude interactive effect of temp & species 
r.lm<-lm(logM~r$temp*r$species) 
summary(r.lm) 
 
#model selection:effect of species on MO2 - intercepts 
r.lm.1<-lm(logM~temp+species,data=r) 
summary(r.lm.1) 
summary(r.lm.1)$coefficients -> co 
levels(r$species) 
 
# remove trends  
y=logM-co[2,1]*r$temp 
summary(aov(y~r$species)->aov.y) 
par(oma=c(5,3,1,1)) 
plot(TukeyHSD(aov.y),las=2) 
 
# full model, incl. species specific slopes 
co1=summary(r.lm)$coefficients 
co1 
y1=r.lm$residuals 
y1 
y1[r$species=="L. squami"]=y1[r$species=="L. squami"]+co1[1,1] 
y1[r$species=="L.nud"]=y1[r$species=="L.nud"]+co1[1,1]+co1[3,1] 
y1[r$species=="T.han"]=y1[r$species=="T.han"]+co1[1,1]+co1[4,1] 
 
summary(aov(y1~r$species)->aov.y) 
par(oma=c(5,3,1,1)) 
plot(TukeyHSD(aov.y),las=2) 
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Supplementary material - Manuscript II 

Table S1 Routine metabolic rates of T. bernacchii after acute temperature increase 

Fish no. Temperature [°C] RMR [mg O2 kg-1 h-1] 

1 0 19.72 

2 0 21.17 

3 0 26.17 

8 0 18.44 

13 2 21.72 

14 2 23.58 

15 2 23.61 

16 2 24.90 

17 2 20.34 

18 2 16.87 

19 2 26.28 

20 2 23.59 

25 4 22.72 

26 4 36.10 

27 4 32.81 

30 4 41.22 

31 4 32.18 

32 4 28.14 

37 1 24.81 

38 1 30.82 

39 1 26.26 

40 1 26.56 

41 1 21.67 

42 1 23.15 

43 1 20.42 

44 1 20.70 

 

 

 



APPENDIX  117 
 

Table S2 Routine metabolic rates of T. bernacchii after acclimation to increased temperature 

Fish no. Temperature [°C] RMR [mg O2 kg-1 h-1] Acclimation time [d] 

1 0 23.02 70 

3 0 17.18 70 

4 0 14.84 65 

5 0 21.45 67 

6 0 21.42 67 

7 0 20.21 67 

8 0 24.56 65 

13 2 24.02 65 

14 2 14.55 65 

15 2 18.90 65 

16 2 20.12 63 

17 2 23.17 65 

20 2 19.37 63 

21 2 14.24 59 

23 2 23.66 59 

25 4 16.47 69 

26 4 33.86 69 

28 4 32.41 69 

30 4 21.27 63 

32 4 16.78 65 

33 4 21.33 65 

35 4 21.66 65 

36 4 26.66 65 

37 1 20.84 62 

38 1 18.90 62 

39 1 11.55 62 

40 1 23.88 62 

41 1 29.27 63 

42 1 19.50 63 

43 1 17.88 63 

44 1 23.14 63 
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This version of the thesis includes corrections of misspellings and a revision of Figure 2A 

(Manuscript III, page 54). 



 


