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We study the semiflow on a submanifold with corners M of Euclidean Space Rn

obtained as follows. If a smooth vector field X is given on a neighbourhood of M in

Rn we project it at each point of M onto the tangent cone to M at the point and

integrate the resulting inner vector field X(M) on M: such systems arise in

mathematical economics, mathematical biology and in the theory of electrical

networks.

We obtain an existence-uniqueness result and construct a device, the iteration, with

which to study the local behaviour of trajectories, in particular in relation to the

smooth flows obtained by projecting X onto individual strata of M. We investigate the

relation between the iteration, right hand time derivatives of the trajectories, and

generalisations of the classical tangency sets, establish a canonical form for

intersections of the last and establish their generic properties.

We investigate the local geometry of the semiflow and show that in most cases the

classical theory has no simple generalisation to these systems, but using an ad hoc

equivalence relation which respects the natural stratification of M we show that some

significant local geometric results can be established. We show that if a condition

involving the absence of infinite order tangencies is satisfied at a point then the

number of stratum jumps made by the trajectories on a neighbourhood of this point is

uniformly bounded, and we use this to show that the semiflow obtained from a

residual subset of polynomial vector fields with M an orthant (this context includes the

biological models) is in our strong stratum preserving sense locally stable near points

x where X(M)(x) is non-vanishing.

We consider briefly the global geometry of these systems, and in particular obtain a

result with significant implications for the piece-wise linear systems occurring in

mathematical biology which inspired the study.
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Notational Conventions

Whenever the symbols -», f , 4 are used the existence of the appropriate sequence is

implied whether explicitly stated or not. Thus "suppose there exists hjlO" is short for

"suppose there exists a sequence of positives reals {hj}jez+ such that hj 10 as j-^oo",

and

"supppose K is such that there exists hJ(K)t0" is short for "suppose K is such that

there exists a sequence of negative reals {hj(K)}jez+ such that h,(K)tO as j-»°°".

The ith time derivatve of f evaluated at t=0 is denoted D,'f(t=0).

Sets of indices are enclosed within round brakets, eg (1,2,3), instead of the usual { }.

The reader's attention is drawn to the existence of an index to symbols and notation,

beginning on page 222.



Introduction

In this thesis we shall study the geometric properties of a set of differential equations

subject to a particular type of constraint, or equivalently a particular kind of semiflow on

a submanifold with corners of Rn, which arise in mathematical economics, mathematical

biology, in the theory of electrical networks, and elsewhere.

If we are given a submanifold with corners (these terms will be defined formally in

Chapter One) M of Rn and a smooth vector field X on Rn (or at least on a neighbourhood

of M) we construct a new vector field X(M) on M by at each point x of M projecting

X(x) onto the tangent cone to M at x and calling the result X(M)(x). We will show we

can integrate the resulting (inner) vector field X(M) on M to form trajectories on M. The

trajectories of our system (M,X) will then be just those of X as long as the trajectory x(t)

remains in the interior of M, but on intersecting 3M x(t) will crudely speaking "slide"

along the boundary of M until the vector field lifts it off again.

Example 0.1 Suppose M is the cube in R2 M={xGR2: | x; | <1}, then if

X(x1,x2)=(-x2,x1) we obtain by this construction X(M)(x)=X(x) unless x£fi ,f2 , (3 ) or

i4 (see Figure 0.1a) where X(M)(x) = (-x2,0) or (0,Xj):

(U)

(-1,-1)

Figure 0.1a



If we take M as above but with X(x1;x2) = (1,1) we obtain X(M)(x)=X(x) unless

xetut2,OT £n, where X(M)(x)=(l,0) or (0,1) or (0,0):
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Figure 0. lb

We see that by making X(M) discontinuous around part of 3M we are able to confine

the trajectories starting in M to M for all t > 0 .

In addition to scrutinizing figure A.7 of the appendix the reader may consider the

following:

Example 0.2 Take for M {xGR3:2x2-X! >0,2x2+X! >0} where in cross-section the angle

between the two faces is greater than a right angle (this is important): then for a suitable

vector field X we may find a trajectory of X(M) beginning at y! G int(M), hitting the face

F1 = {xGR3:2x2-x1=0,2x2+x1>0} at y2, sliding along F, until meeting

F 1 2={xGR 3 :2x 2 -x 1=0,2x 2 + x1 = 0} at y3, crossing straight over to

F2={xGR3:2x2-X!>0,2x2+Xi=0}, returning to F12 at y4, and sliding along F[2 until

re-entering F2 at y5 (Figure 0.2).



Trajectory in int(M)'

Trajectory in F, or F2 <

Trajectory in F12—

Figure 0.2

We now consider situations where such systems arise.

One class of examples occurs in economics. Suppose we have N consumers, m public

goods (this is an economics term for a commodity with the property that the total amount

produced may in its entirety be "consumed" simultaneously by every one of the

consumers, such as broadcasting), and one private good. Let us denote by x; the amount

of the ith public good produced, and by yj the amount of the private good consumed by

the jth consumer. One objective of [16,40] is to exhibit a set of differential equations

involving x ^ . . , ^ , yi,..,yN satisfying various properties, such as that the integral curve

starting from any initial condition converges to a pseudo-equilibrium ([16]). This is done

by finding suitable differentiable functions f,g:RN+m->Rm,RN (these are non-trivial

functions of marginal costs, rates of substitution, etc) and setting

fk(x,y) if x k >0

max(0,fk(x,y)) if xk=0

y=g(x,y)

( * )
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(for k=l , . . ,m, where x=(x t , . . ,x j and y=(yi,..,yN) )• The form of the right hand side

of (*) arises to avoid generating negative output levels. We see that this is of our form

with M={xGRm+N:Xi>0 Vi=l,..,m} and X(x,y)=(f(x,y),g(x,y)), f,g as given above;

in the case where M is an orthant (ie, a set of the form {x€Rn :x i>0, i= l , . . , k} , some

k<n) projection takes the form (*) (see eg Remarks 2.5).

A second example comes from a model for the levels of activity in coupled neural

populations [60]: the populations are of four types, each subject to constant excitatory

input, and each emitting a signal which inhibits activity levels in each of the other

populations (including in itself), the strength of the inhibition being different for different

receiving populations but rising with the activity level in the population emitting the

signal. A simple set of equations exhibiting such behaviour is (see [60])

• - [ f i ( y ) i f y i > °
( * * } y '~ max(0,f(y)) if y.=0

where y; is the activity level of the ith population, i= 1,..,4, or for more general systems

of this type i= l , . . ,n , f(y)=k-Ay, k,y are n-vectors with each k;>0, and A is an (nXn)

matrix with A ; j>0 for all 1 <i,j <n. The form of (**) arises to prevent negative activity

levels. The author of [60] considers systems of this type both with n=4 and (coupling

four such systems together) n = 16; in both cases we see we have a system of our form

with M=(R+U{0})n, n=4 or 16, X(x)=k-Ax.

We may stratify (R+U{0})n into 2n "strata" - sets of the form ok={xGRn:x i=0,

i = 1,.. ,k, X; > 0, i = k + 1 , . . ,n} - and we see that a solution trajectory starting in any given

stratum will travel along it until lifting off to a higher dimensional stratum or hitting a

lower dimensional one; denoting the set of points where the flow on stratum o*; lifts off

to c^'j by lk(i,j) an interesting consequence (Chapter 8) of positivity of the coefficients

Ay and of the fact M = (R+ U {0})n is that subject to mild extra restrictions on A each of

the iterated maps induced by the flow of the form Ik(0,l)-^akl
1->ojc

2->lk(2,3)^..^lk(0,l) is

invertible.

This is an interesting result, although one would only regard it as amongst the most

important results in the thesis if one's interest in this thesis was exclusively in its

implications for the global dynamics of Willis Models (Willis being the author of [60]).

Willis Models and other specific models bear the same relation to this thesis that any

specific set of differential equations do to the classical geometric theory of differential
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equations, as expounded in [37,42]: they inspired our interest and occasionally influence

our choice of topic, as when for example in Chapter Seven we treat polynomial systems,

a case motivated by the structure of Willis models, but the main aim of this thesis is to

develop the general theory of these systems in a way analogous to that for classical

systems found in [37,42]. Nothing like this has been attempted before: scrutiny of the

books [4] and [20], which present respectively the Western and Russian Schools of the

group of subjects to which this thesis is most closely related- differential equations with

discontinuous right hand sides, differential inclusions (which arise as the regularisation

of differential equations with discontinuous right hand sides), and viability theory

(concerning "viable" trajectories: if K is a closed subset of Rn a trajectory 4>x is viable if

for all t > 0 $x(t)6K) - will give the reader a clear picture of how this subject has been

treated hitherto: most of the work has been concerned with establishing minimum

conditions to guarantee existence, uniqueness or viability of solutions, and when

qualitative theory is discussed (in [20]) it is in the general context of differential equations

with discontinuous right hand side (and then mainly in the plane) where little of

consequence can be proved.

The context in which we shall develop our theory is as follows: we shall begin with a

submanifold with corners M of Euclidean space Rn and a smooth vector field X given

on M, and at each x E M we project X(x) onto the tangent cone to M at x. The result will

be a vector field X(M) equal to X in int(M) but in general discontinuous on part of dM.

In the theory of differential equations with discontinuous right hand side an often used

definition of "solution" (see [20]) is a continuous almost everywhere differentiable curve

with derivative, where it exists, equal to the right hand side; we adopt this definition and

show that for any x £ M there exists a right-hand interval [0,5) of t=0 (which may if M

is compact be taken as [0,oo) ) and a continuous a.e. differentiable map

<KM,X)(x):[0,5)-*Msuch that Dt0(M,X)(x)(t)=X(M)0(M,X)(x)(t) for almost all tG [0,5),

and that $(M,X)(x) is unique and depends continuously on x.

A semidynamical system is a continuous map ^:GxM->M, where G is the set of

non-negative integers under addition or non-negative reals under addition (in which case

\p may be termed a semiflow) satisfying for all xGM, for all s, t>0,

i/-(t+s,x)=\p(t,\J/(s,x)) and i/-(0,x)=x. Hence at least for compact M <t>(M,X) is a

semiflow, and this thesis is a study of a class of semiflow or semidynamical system.

The theory of trajectories is much richer than is the case for unconstrained systems and

Chapters 1-5 are mainly devoted to it. In Chapter 6 we consider a few questions
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concerning the local geometry of the semiflow. In chapter 7 we establish a local stability

theorem for polynomial systems, and in chapter 8 make a brief study of linear systems

and prove the result concerning Willis models mentioned above. In an appendix we

consider aspects of global theory.

All the material in this thesis is new, subject to two qualifications:

(1) Theorem 1.1 does not go far beyond results of Cornet [12] or Chikin [10] (roughly

speaking parts 1 and 2 of theorem 1.1 extend to submanifolds with corners of arbitrary

codimension what Chikin establishes for submanifolds with corners of codimension 0) and

part 1 of theorem 3.1 - the part which says that the right hand derivative of <£(M)(x) at

t=0 is X(M)(x) - has been done for M an orthant by Henry [31].

(2) Versions of those preparatory results which are of a very general nature will clearly

have been obtained elewhere already. Into this category will certainly come Lemmas 1.1

and 2.1 and Remarks 2.1, and probably Lemmas 2.2, 3.1 and part (1) of the proof of

Lemma 5.9, and Remarks 2.5(1) and 4.2.

The questions we consider in this thesis are ones which we consider to be basic to this

class of system, and it will be seen that the character of the theory we develop, based

upon convexity, stratifications and ideas such as the iteration which make their

appearance here for the first time, is unlike that of the classical theory. The local stability

result in Chapter 7 mentioned above for example is established using the locally finite

stratifiability of subanalytic sets and our uniform bound theorem of Chapter 5, which is

well removed from the methods of [37,42]. In chapter 6 we consider local theory in a

classical way and find that most of the classical results have no straightforward

generalisations to these systems. Additionally because of the way our trajectories jump

about between strata the division between the theory of trajectories and local theory is not

as clear-cut as it is for unconstrained systems - it is for example no easier to show

Theorem 5.1 for points on an individual trajectory than it is for any convergent sequence

of points on M.



Chapter One

Preliminaries

In this chapter we shall formalize the concepts mentioned in the introduction and we

shall show that projecting a vector field onto a sub manifold with comers in the way

described does yield a unique semiflow. We establish some results which are needed

later in this thesis, such as lemma 1.2 which is a critical result in constructing the

iteration of Chapter Two, in a stronger form than is necessary for this chapter.

Comers and Stratifications

Rn denotes n-dimensional Euclidean space with, for x,yERn, inner product

(x,y)=I^=1xiyi and norm | x | =vr(x,x). A closed comer is a subset of Rn of the

form (xGRn:(x,ni)=0 i=l , . . ,k,{x,nj)>Oi=k+l, . . ,k+m} for independent vectors

{n;: i= l , . . ,k+m} and generalising the notation L(ni,..,nk) for

{xGRn:(x,nj)=0 i = l,..,k} is denoted LC(n1,..,nk;nk+1,..,nk+m). Similarly a relatively

open comer is a subset of the form (again with {nj}i=1 k+m an independent set)

{xeRn:(x,ni)=0 i=l, . . ,k,(x,n i)>0 i=k+l , . . , k+m} and is denoted by

LO(ni,..,nk;nk+i,..,nk+m). If for the purposes of the discussion the vectors are already

prescribed these comers may be denoted respectively LC(I;J) and LO(I;J) (the C is for

closed, the O for open) where I=(l , . . ,k) and J=(k+l , . . ,k+m) are sets of indices.

For our purposes a C stratification of a subset M of Rn may be defined as follows

(see [28-30,57,59] for a fuller treatment). A Cr stratum in M is a connected

boundaryless Cr manifold contained in M. A partition of M into strata is locally finite

if for each x £ M there exists a neighbourhood of x intersecting only finitely many

members of the partition. A locally finite partition £ of M into C strata is called a C7

stratification of M if whenever a,, a2 G S with ax n (closa2\inta2) ^ 0 then

0-j C closa2\intcr2 and dimc^ < dima-2. As an example we may stratify the closed comer

LC(I;J) into relatively open comers LO(K;J\K) for ICKCIUJ ; when we refer to the

strata of LC(I;J) we always mean these relatively open comers.

A subcorner of LC(I;J) is a subset of the form

{xERn: (x,ni)=0 ViGK,,<x,ni>>0 ViGK2,(x,n,)>0 ViGK3}, for K,,K2,K3 satisfying

ICK 1CK 1UK 2CK,UK 2UK 3=IUJ ({nj^j as above a set of independent vectors)



and may be denoted LCO(K,;K2;K3). We see

that any stratum LO(K;J\K) of LC(I;J) is a subcorner of LC(I;J) as is its closure

LC(K;J\K). We may decompose any closed corner LC(I;J) as UICKCIUJLO(K;J\K)

and any subcorner LCO(K,;K2;K3) as U K I C K . C K I U ^ C K . U K . = K I U K 2 U K J L O ( K ' ; K " ) ; if the

number of elements of J is denoted | J | then a closed corner LC(I;J) may be

decomposed into 2 ! J ' strata and contains 3 ' ' ' subcorners.

For example, Figure 1.1 shows the closed corner LC(I;J) with 1 = 0 and J = (l ,2):

\N
LO(1,2;0) =

Figure 1.1

- the strata are LO(0;1,2),LO(1;2),LO(2;1),LO(1>2;0)

(respectively the interior of the closed corner, the two open half-lines, and the vertex);

the subcorners of LC(I;J) are all these strata, their closures, and LCO(0;1;2) and

LCO(0;2;1) which are respectively the unions of the first and second and of the first

and third strata in the above list (making 9 subcorners in total, since

closLO(l,2;0)=LO(l,2;0)).

Projections Onto Convex Sets and Onto Corners

A good general reference on convex sets is Bazaraa and Shetty [5]. It is shown in

[4] that for any closed convex subset C of Rn and y£R n there exists a unique x0 such

that | y-x0 | =min{ | y-x | :x£C}. We define the projection operator P(C):Rn->C

by P(C)y=x0 and say x0 is the projection of y onto C. The following Characterisation

of Projection is also established in [4]: xo=P(C)y iff x o £C and (x-xo,y-x()<O for

each xGC.



-y

Fig 1.2 P(C) is non-linear

The reader will of course recall (see eg [14]) that if the convex set is a linear

subspace L then P(L) is linear, is self-adjoint (ie (P(L)x,y) = (x,P(L)y) for all x,y) and

idempotent (ie P(L)2=P(L)), and the Characterisation of Projection takes the form

xo=P(L)y iff x o 6L and (x,y-Xo) = 0 for all x£L . We also recall the idea of the

convex hull of a set ([5 p. 16]): the convex hull of S is

{x£Rn:x=E*=1Xixi, x i£S)X i>O,i=l,..,k,EX i = l ,k> 1}; it is the smallest convex set

containing S. We shall denote its closure by conv(S) (which is convex by [5, p.35]).

If C is a closed convex set in R" then for y E C w e set P(C)"'y = {x£Rn:P(C)x=y}.

This notion is related to that of polar cone, defined for any subset C of Rn as

C* = {p£Rn:(x,p}<0 for all x£C};if for example C is a closed convex cone, ie a set

of points in Rn invariant under multiplication by non-negative scalars and under

addition, then by the Characterisation of Projection it follows that C* = P(C)"'(origin).

Lemma 1.1 If C,, C2 are a pair of closed convex sets in Euclidean space then

(1) If Q C Q and P(C2)x6C,, then P(C,)x = P(C2)x

(2) If y 6 C 1 n C 2 , then P(C1)-'ynP(C2)-
|y = P(conv(CiUC2))-'y



Figure 1.3

Proof

(1) Setting P(C2)x=x2 we know by the Characterisation of Projection above that

(x-x2,x2-y}>0 for all yEC2 and so a fortiori for all yEC, , hence by the

Characterisation of Projection x^PCC^x.

(2) Suppose P(C0x=P(C2)x = y.

Set H={z:(x-y,y-z)>0}; as above we know for each XjEQ that (x-y^-xJ^O and

hence Q C H , and hence (since conv(C,UC2) is the closure of the smallest convex set

containing Q and C2) that convCQUC^CH. But P(H)x = y by definition of H and

Characterisation of Projection again, and since P(H)x=yEC,nC 2 and hence E

:,UC2), by (1) y=P(H)x = P(conv(C1UC2))x. Conversely if P(conv(Q U C2))x

: , f lC 2 we get by (1) that y = P(C,)x=P(C2)x.

We now specialise to the case where the convex set is a closed corner. It is fairly

clear that for any given yER" there will exist at least one stratum of LC(I;J) such that

projecting onto LC(I;J) will give the same result as projecting onto the affine span of

this stratum (^smallest linear subspace containing this stratum). We shall need the

more subtle fact that the set of strata for which this is true together form a subcorner;

we have observed that the subcorner LCO(P;Q;IUJ\(PUQ)) of LC(I;J) equals the

union of strata ULO(H;IUJ\H) with the union taken over those H satisfying

P C H C P U Q , so this is equivalent to saying
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Lemma 1.2 For any closed corner LC(I;J) as above and xGR" there exist I',J' with

I 'D I and I ' U J ' C I U J such that P(LC(I;J))x = P(K)x if and only if I ' C K C I ' U J ' .

Proof

We have above stratified LC(I;J) = UIUJ=KUK,D1OI LO(K;K')

and for any given xGR" we must have P(LC(I;J))x lying in one of these strata, say

P(LC(I;J))x=yGLO(K;IUJ\K) some ICKCIUJ , (which equals LO(K;J\K) since

KDI). Since LO(K;J\K) is relatively open in L(K) there exists a convex

compact neighbourhood Ny of y in LO(K;J\K). Then by part 1 of Lemma 1.1

P(LC(I;J))x =P(Ny)x. Since Ny is a neighbourhood of y in L(K) for each z6L(K)

there exists z 'ENy with y-z = A(y-z') some \ > 0 (See Figure 1.4).

L(K)

Figure 1.4

Hence (x-y,y-z) = X(x-y,y-z') and this last quantity is > 0 for all z ' 6N y since

P(Ny)x=y and using the Characterisation of Projection for P(Ny). Hence by the

Characterisation of Projection for P(L(K)) (which we henceforth abbreviate to P(K)),

P(K)x= P(LC(I;J))x and there exists K such that P(LC(I;J))x=P(K)x.

Suppose now K1;K2 with ICK^KjCIUJ satisfy this condition, ie P(K!)x=P(K2)x=y.

By Lemmal.1 part 2 P(conv(L(K,)UL(K2)))x=y. The result will follow if we can

show that KJPIKJ and K,UK2 satisfy the condition too, ie that P(K,nK2)x=y and

P(K1UK2)x = y.

By [5, Section 3.1] conv(L(K,)UL(K2)) = (L(KI)*nL(K2)T =

(span{ni,ieK,}nspan{ni,ieK2})* =(span{n i,ieK,nK2})' = L(K1nK2) (where C* is

the polar cone of C as above).

Hence y=P(L(K1OK2))x = P(K1nK2)x .

If y=P(K,)x=P(K2)x clearly y£L(K,UK2), hence by part one of Lemma 1.1

P(K,UK2)x=y. Hence result.

Eg. With 1 = 0 , J = (l,2) we see that for each x;, i = l,..,5 in Figure 1.5 below

there exists a unique pair I/,},' with IC I,' CI. 'UJ/ CIUJ such that
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{K:ICKCIUJ and P(C)xi=P(K)xi} = {K:Ii'CKCIi'UJi'} (where C=LC(0;1,2))

\LO(2;1)

(C)x1=p(2)x,

LO(0;1,2)

= P(C)x5=P(0)x5

P(C)x4=P(l)x4 L0(l;2)
k

Figure 1.5

Submanifolds with corners

A subset M of Rn is a Cr submanifold with corners of dimension n-k if for each

xGM there exists a closed corner LC(I;J(x)) in Rn, with I=(l , . . ,k) and

J(x)=(k+l,. . ,k+m(x)), a Cr map j3:Rn-»Rn mapping the origin to x which is a Cr

diffeomorphism on a neighbourhood U of the origin, and such that

/3(UnLC(n1,..,nk;nk+1>..,nk+mW))is a neighbourhood of x in M (See [41] or [15] for a

more general treatment). With r=0 we get a topological submanifold with boundary.

The interesting cases from our point of view are C°° and C and henceforth Cr will

mean one of these two (ie consistently).

All submanifolds with corners appearing in this thesis are assumed connected.

We define the tangent cone to M at x as TxM=(D/3(0))LC(I;J) and the tangent space

to M at x by (D/?(0))L(I). Of course, if M is a smooth submanifold the two coincide

at every point. Setting hi(x)=(x,ni) (so gradhi(x)=ni) we have that our neighbourhood
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of x in M is /3(UnLC(I;J)) = /3Un/3LC(I;J)= /3Un{xGRn:hi|3-1(x)=O

iGI,hi/3
1(x)>0 i £ J } . Writing vectors in Rn as columns of reals and representing the

linear map Df(x) as a matrix in the usual way we have for f:Rn->R that

gradf(x)=Df(x)T (= transpose of Df(x)), hence grad(hii3
1)(x)=(D/31(x))Tni, so if /S is a

diffeomorphism {grad(hi/3"1)(x):iGIUJ} is a set of independent vectors and if y is such

that hij8-1y=O for iGIUJ' with J '= (k+l , . . ,k+m' )CJ (see Figure 1.6) we get TyM

=D/3(O)LC(I;J')=D^(O){D/3-1(y)zGRn:(D/31(y)z,ni)=OiGI,(Dj8-1(y)z)ni)>O)iGJ'} =

{zGRn:(D/31(y)z,ni)=0iGI>(D/3-1(y)z,ni)>0,iGJ'} =

{zGRn:(z,grad(h,|3-1)(y))=0 i G I . U g r a d C h ^ X y ) ) ^ iG J'} =

LCCgradCh^Xy),..,grad(hkJ8-1)(y);grad(hk+1|3-1)(y),..,grad(hk+m,/3-1)(y)}and similarly

the tangent space to M at y is L(grad(h1/3'1)(y),..,grad(hk|3"1)(y)).

M

Figure 1.6
If M near x is /3(UnLC(I;J)) and y is near x, M near y is /3(UnLC(I;J')) some
J 'CJ .

One pictures the tangent cone and tangent space this way-

y+tangent space to M at

Figure 1.7

A vector field on M is a map X:M-*Rn such that for each xGM X(x) is in the

tangent space to M at x. We shall say a vector field on M is Cr if there exists a

neighbourhood U of the origin in Rn and a Cr vector field Y on UHL(I) such that
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X | j3(UnLC(I;J))= 0.Y | /3(UnLC(I;J)) where /3,I,LC(I;J) are as in the definition

above and /3 is Cr. As usual X | V means X restricted to V and /3.Y means the push

forward of Y by j3 (see eg [1 section 4.2]).

From the definition of subinanifold with corners we have observed above that we

can represent M near any x0GM locally as {xGRn:h1/3"'x=0 Viei,hij3"1x>0 ViGJ}

(where the functions h,/3~1:Rn->R, iEIUJ , are independent near x̂  ie their gradients

are independent near x0) but it is convenient to choose a slight refinement of this. For

independent functions fi,..,fk define

Z(fi,..,fk) = {xGRn:fi(x) = ..=fk(x)=:O} which if the functions are prescribed in

advance is abbreviated to Z(I) where I = (l,..,k). Setting f,)..,fk=h1j8"1,..,hki8">
1 if for

jGJ=(k+ l , . . , k+m) we act on the codimension 1 submanifolds (hji3*1)"1(0)riZ(I) of

Z(I) with the vector fields {gradf;}iei to form local hypersurfaces Sj (see Figure 1.8)

we may find independent C functions fj:V-»R for V a neighbourhood of x0 in Rn

cutting out the Sj; that is , Sj = fj-
1(0)n V.

The boundaryless Cr submanifold

= {xGRn:f(x)=h,/3-1(x)=0for all iGI} of Rn

Z(J)r\(hfi-ly\0), somejGJ, a

codimension 1 C submanifold of Z(I)

Figure 1.8. Acting on Z(I)n(hj/3"1)'1(0) with each of the flows of gradfi,..,gradfk

in turn yields (locally) a codimension 1 C submanifold Sj of R\

These fj satisfy fj"
1(0)nZ(I)= (h j i3

I)'(0)nZ(I) for j = k + l , . . , k + m , and have the

additional property that for each xG(hy3')''(0)n Z(I) and any iGI, jGJ

(gradfi(x),gradfj(x))=O (which would not necessarily have been the case if we had set

f—hi/3'1 for iGJ as well as for iGI). M near x0 is locally {xGRn:fi(x)=0 for all iGI,
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f ;(x)>0 for all iGJ}. The results concerning the tangent cone and space are as above,

replacing each gradh^^x) with gradf;(x), i= l , . . , k+m, that is, with XQ as above

TXoM={yeRn:(gradfi(xo),y)=O for all iGI, (gradfi(xo),y)>0 for all iGJ} and the

tangent space to M at Xo is {yGRn:(gradfi(xo),y)=0 for all iGI}.

By analogy with the closed (linear) corner we shall use the notation

ZN(fi,..,fk;4+!,..,fk+Jabbreviated to ZN(I;J) (where I=(l , . . ,k) , J= (k+ l , . . , k+m) )

for {xGRn:fi(x)=0 ViGI,fi(x)>0 ViGJ} and ZP(f1,..,fk;fk+1,..,fk+Jabbreviated to

ZP(I;J) for {xGRn:f;(x)=0 ViGI,f;(x)>0 ViGJ} (where Z is for zero, P for positive,

N for non-negative and are of course the non-linear analogues of respectively L,C,O.

To stress its construction from linear functions fi(x)={x,ni) we may refer to LC(I;J) as

a linear corner). Thus near x0 we are representing M locally in the form

ZN(f1,..,fk;fk+1,..,fk+J=ZN(I;J), which may be stratified into 2 1 J ' strata ZP(K;J\K)

for IC K CIU J. Of course if x G Z(I U J) then TXZN(I; J) =

LC(gradf1(x),..,gradfk(x);gradfk+1(x),..,gradfk+m(x))=LCa;J),iflCKCIUJthat

TxZ(K)=L(gradf;(x):iGK) etc - on this basis, an expression such as

P(TxZ(K))gradfj(x) may occasionally get abbreviated to P(K)gradfj(x). When we say M

is represented near x as ZN(I;J) we shall always suppose that x itself is in Z(IU J).

Note incidentally that the vector field X we begin with is supposed defined on M and

hence that where M is represented as ZN(I;J) is equal to X(I). We shall call the

region of M which may be represented by a particular representation

ZN(f,,..,fk;fk+i,..,fk+m)the domain of the representation. We shall as with the linear

case call ZNP(K,;K2;K3) = {xGRn: fi(x)=0 ViGK^f tx^O ViGK2,fi(x)>0 ViGK3},

for K^K^Kj satisfying ICK^ C ^ UK2CKj UK2UK3=1U J, a subcorner of ZN(I;J).

Henceforth whenever notation of this kind is used it will always be supposed that the

functions involved are independent.

ZP(1,2;3)

M, locally
represented as ZN(1;2,3)

ZP(1;2,3)

ZP(1,3;2)

Figure 1.9 A local representation of a submanifold with corners



16

In Figure 1.9 the tangent cone to M at x is TXZN(1;2,3) =

{yGRn:(y,gradf](x))=O and (y,gradfi(x))>0 for i=2,3}, and the tangent space to M

at x is {yeRn:(y,gradf,(x))=O}.

The Projection of a Vector Field onto a Submanifold

With Corners and the Semiflow of this Projection

Since the tangent cone to M at x is a closed corner in the tangent space any vector

X(x) in the tangent space to M at x may be uniquely projected onto it; we set

X(M)(x)=P(TxM)X(x). If X(x) points into the tangent cone to M at x X(M)(x)=X(x);

if it doesn't X(M)(x) is the unique vector in the tangent cone closest to X(x) ( hence

this kind of projection is called in [4] "projection of best approximation"). It is usual

(as in [41]) to call a vector field Y on M with every Y(x)ETxM an inner vector field:

thus our vector field X(M), as defined pointwise above, is inner. We gave some

examples in the Introduction (Examples 0.1 and 0.2). Another is

Example 1.1 M is the half space {(x,y)6R2:y>0} and X is the vector field
x ( x , y ) = (l,x)- Then X(M)(x,y) is the vector field

X(M)(x,y) =
X(x,y) if x > 0 or y > 0

(1,0) if x < 0 and y=0

and so is discontinuous on the half line (x<0,y=0).

\
-» - * -

T
/

Figure 1.10

We want next to generalize the classical notion of trajectory. A definition suited to

our needs (which is for example that used by Chikin in his paper [10] which forms the
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basis for our Theorem 1.1) is as follows.

A function x: [a,b]->Rn is absolutely continuous [4] if for any e>0 there exists 5>0

such that for any countable collection of disjoint subintervals [a^bj of [a,b] such that

EOt-aJ < 5 we have S | x ^ - x ^ | < e.

It is known (eg [4, section 0] or [48]) that an absolutely continuous function is a.e.

differentiate and satisfies x(t)-x(s) = J ^x(u)du (in fact a continuous function is

absolutely continuous iff it satisfies this condition). If for xGM there exists t x >0 and

absolutely continuous <£(M,X)(x):[0,tx)-»M satisfying <£(M,X)(x)(0)=x and

Dt<£(M,X)(x)(t) =X(M)<£(M,X)(x)(t) for a.a te[O,tJ (where Dt denotes differentiation

with respect to t) we say <j>(M,X)(x) is a trajectory of X(M) at x. <£(M,X) will usually

be abbreviated to <t>(M) and <£(M,X)(x)(t) written as <£(M,X)(x,t).

For our Example 1.1 the curves sketched in Figure 1.11 are certainly absolutely

continuous and satisfy the condition to be trajectories of X(M) (with t* = oo for every

point).

<KM,X)(x0)

Figure 1.11

Theorem 1.1 If X is a smooth vector field on a submanifold with corners M of Rn

then at each point x of M

1. There exists a unique trajectory <£(M,X)(x) of X(M)

2.If M is compact we may take for each x ^=0°

3.For any x £ M and t^ct* <£(M,X)(x,t) is continuous in x.

This will be proved after Lemma 1.3. If for all x ^=00 Parts 1 and 3 of Theorem

1.1 tell us (cf definition in the Introduction) that the map <£(M,X):Mx[0,oo)->M is a

semiflow. In this thesis on the only occasion M is non-compact we have M an orthant

and X linear, where it is straightforward to check that ^=00 for all x, hence <f>(M,X)

is a semiflow throughout. Cornet proves an existence-uniqueness theorem nearly

equivalent to Theorem 1.1 in [12] (see also Remark 3.1(4)). Parts 1 and 2 of this

result have been established by Chikin ([10]) in the case M is an admissable subset,
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which is a bounded connected subset of Rn of the form {x£Rn:fj(x)>0 for all iGI}

where the f;:R
n-^R are C2 and satisfy the condition that if at xGM f;(x)=0 for all iGIo

then {gradfi(x),i£Io} is an independent set. Locally a codimension 0 submanifold with

corners is of this form, and we can establish parts 1 and 2 of Theorem 1.1 for an

arbitrary submanifold with corners if we can extend it locally to a codimension 0

submanifold with corners A and find a vector field Y on A such that the trajectories

produced by Chikin's Theorem applied to A,Y are, for a starting point on M,

trajectories of X(M) - the technical aspects of this are done in Lemma 1.3.

We have shown that locally M may be represented as ZN(I;J) and we extend this

codimension | I | submanifold with corners to the codimension 0 submanifold with

corners ZN(0;IU J) which we denote A; it has ZN(I;J) as the closure of one of its

strata. We recall that the functions f; in the local representation of M as ZN(I;J) were

constructed in such a way that if y£ZN(I;J) with fj(y)=O for all j G J ' C J , then

(gradfi(y),gradfj(y))=O for all iGI, jG J'. We extend the Cr vector field X on M to a

Cr vector field Xe on a neighbourhood of y in Rn by pushing forward X by the flows

of gradfi,gradf2,..,gradfk in turn - this will leave X on M unchanged,

ieXe | M=X | M - and set Y=Xe-Eie,gradf; on this neighbourhood (Figure 1.12).

A=ZN(0;IUJ)
A=ZN(0; IUJ)

Xe, a Cr extension to A of X on M

represented as
ZN(I;J) = {x:f,(x)=0 for all iGI,

fi(x)>OforalliGJ}

Figure 1.12

Lemma 1.3 If x0GM with M locally represented as ZN(I;J), and A,Y are as above,

there exists a neighbourhood V of XQ in Rn such that

(1) P(TxA)Y(x) = P(TxM)X(x) for all xGMOV (and hence (P(TxA)Y(x),gradfi(x))=O

f o r a l l x G M n V , iGI), and

(2) (P(TxA)Y(x), Eieigradf,(x))<0 for all xGADV\M
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Proof We are supposing that M is represented locally as ZN(I;J).

(1) At xGMOV we have xGZ(IUJ') some J'CJ and TXM=LC(I;J'),

TxA=LC(0,IU J'). If X is a Cr vector field on M we have of course

{X(x),gradfi(x))=O for all i£I , any x GM. Fixing x, set e—gradf^x) for each

iGIUJ', v=X(x), C=LC(0;IUJ') where J'CJ as above, and C'=LC(I;J').

For example with xo=xGZ(l,2,3) in Figure 1.9 where I=(l), J=J'=(2,3) we have

C, C as illustrated in Figure 1.13 below.

eu perpendicular to the plane of C

C=LC(0;1,2,3), contains C as a closed subcorner

vGL(l)

Figure 1.13

Since (e;,ej)=0 for all iGIJGJ' we have the orthogonal direct sum decomposition Rn

=J£1©EJ.©N where J£I=span{ei}i€I ,Ey = span{ej}jej,, and N =orthogonal

complement to span{e;}i€IUJ. in Rn, so E;.©N=L(I), and if we decompose any zGRn

as Z=ZJ+ZJ.+ZN we have P(L(I))z=Zj.+zN. Furthermore if zGC then (z,ej)>0 for all

jGJ' , and since (zI} ej)=O for all jGJ'

(P(L(I))z,ej)=(zJ-+zN,ej)=(z,ej)>0 for all jGJ', ie P(L(I))zGC, and since C is a

closed convex subset of closed convex L(I) we have by Lemma 1.1 part 1 that

P(L(I))z=P(C')z.

Hence if zGC we may decompose z as z=Zj+z2 where Zi=P(L(I))zGC and

We now show that for v=X(x) as above we get P(C)(v-Ei6Iei)=P(C')v.

For any zGC we have z,GC and we know by the Characterisation of Projection

that (v-Eie^-PCC'Xv-^gje^PCCOCv-I^e^-z^^O. Furthermore by the definition of

C and the fact that (v,ei)=0 for all iGI, we have (v-Eieiei-P(C')(v-Sieiei),z2) =
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-Siei(ei,z2)=-Eiei(ei,z) since (ei,z1)=0 for all iGI, and -Siei(ebz) is < 0 because

zG C. Hence for any z in C

<v-Eieiei-P(C')(v-2:i6A),P(C')(v-Eieiei)-z1Hv-Ei6IerP(C')(v-Ei6Ie!),z2>^0,ie,

(v-Ei6jei-P(C')(v-Eieiei),P(C')(v-Ei6Iei)-z)>0, which means by the Characterisation of

Projection again that P(C)(v-Ei6^i)=P(C')(v-Ei6Iei). If q G C

(v-EieA-P(C')v,P(C')v-q)=(v-P(C')v,P(C')v-q)-Si6I(ei,P(C')v-q) =

(v-P(C')v,P(C')v-q)-0, which is > 0 by the Characterisation of Projection, and so by

the Characterisation of projection P(C')(v-Eei)=P(C')v. This combined with

P(C)(v-Eei)=P(C')(v-Eei) (above) gives us P(C)(v-Ees)=P(C')v, ie

P(TxA)pC(x)-Egradfi(x))=P(TxM)X(x), which completes the proof of (1), since if

xGM then X(x)=Xe(x) by construction of Xc.

(2) (a) We show that if x0GZ(IU J), then there exists a neighbourhood Uo of XQ in Rn

and d > 0 such that for any K' satisfying KZK'CIUJ we have

(P(TxZ(K'))(-Eieigradfi(x)),Ei6Igradfi(x))<-d/2for all xGUonZ(K') Figure 1.14

below will remind us of what these sets are -

xGZ(K') where I C K ' C I U J

Figure 1.14

Begin by partitioning K' = (K'f iI)U(K'n J). We have eg from the Characterisation

of Projection that if v6T x R n =R n then ?(TxZ(K'))w=0 (the zero vector) iff

vGspan{gradfi(x0)}i6K,, so

P(K')Eieigradfi(x0)=P(K')(Ei6InKgradf1(x0)+Si€KK,gradfi(xo))=P(K')(Si€KK,gradfi(x0))

=0 iff I \K' = 0 , ie iff K' D I. We have therefore for any I £ K' CIU J

(P(TXoZ(K'))(-Ei6igradfi(x0)),Ei6Igradfi(x0)}=- | P(TXoZ(K'))(Egradf,(xo)) j 2 = d(K'), a

real number < 0 by the above.

Set d = minIlZK.CIUj | d(K') | and the result follows by continuity,

(b) We show that if {ejjgnj, are independent vectors with (ei,ej)=0 for all i G I j G J

then for any I ' C I U J and any XGR° P(I ' )X=P(I 'ni )P(I 'n j )X=P(I 'nJ)P(I 'n i )X
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Proof- If jGJ then e^GL(I'ni) since <ei,ei>=0 for all iGI 'n iCI , thus P(I'ni)eJ=ej.

We may verify directly (or use Remarks 2.1) that

X-P(I'nJ)XGspan{ei}i6J, and hence applying P(I'ni) to this expression (leaving the

right hand side unchanged because P(I' 01)%=% for all jGJ) we see

p(i' n i)x-P(i' n i)P(i' n j)x=x-P(i' n J)X

and similarly P(I'nJ)X-P(I'nJ)P(I'ni)X =X-P(I'ni)X; hence P(I'nj)P(I'ni)X =

P(I'ni)P(I'nj)X, and hence this quantity is contained in L(I'DI)n L(I'DJ)=L(I').

The Characterisation of Projection for linear subspaces (ie, that Xo=P(L)x iff XQGL

and (x-Xo,y)=O for all yGL) tells us that (X-P(I'ni)X,w)=0 for all wGL(I'ni),

(P(I'ni)X-P(I'nj)P(I'ni)X,w)=Ofor all wGL(I'DJ), hence

(x-P(i'n i)x+P(i 'n i)x-P(i'n j)P(r n i)x,w)=0for ail w G L(r n j) n L(i'n I)=L(i')

and since we now know P(I' n J)P(I' HI)X to be in L(I') by the Characterisation of

Projection again this tells us that P(I'nj)P(I'ni)X=P(I')X.

(c) We show that if x0GM with M locally represented as ZN(I;J) and d>0 then there

exists a neighbourhood Uj of XQ in Rn such that for any K' CIU J we have

(P(TxZ(K'))Xc(x),Ei€1gradfi(x))<d/2 for all xGU,nZ(K'). Xe is our Cr extension of

X on ZN(I;J) to a neighbourhood of ZN(I;J) in Rn near x0, and this result is saying

that for any K' CIU J (in Figure 1.15 there are 4 such K') the projection of X^x) onto

TXZ(K') has arbitrarily small component parallel to Si6Igradf;(x) if x is arbitrarily

close to x0 in Rn.

ZN(0;IUJ)

XeonZN(0;IUJ)

ZN(I;J)

1
gradfi(x), iGI

X on ZN(I;J)

Figure 1.15

The map x-*(P(TxZ(K'))Xe(x)>2:iejgradfi(x)> is clearly continuous in x for fixed K', so

since there are only finitely many K' it suffices to show that for each K 'CIUJ

(P(TXoZ(K'))X(xo),Ei6Igradf1(xo))=O (recall X6(x)=X(x) for all xGZN(I;J)).

Set X(Xo)=X, gradfi(Xo)=ei. By the construction of the representation of M



22

(gradfi(xo),gradfj(x0))=0 for all i £ l , jGJ , so we may apply (b) to conclude that for

any K 'CIUJ and any iGI P(K')e;=P(K'ni)P(K'nJ)e;. Morover P(I 'nj)e i=e i since

e ; eL(J)CL(I 'n j ) , so P(K')e i=P(K'ni)e i. Then since X(xo)GTx<)Z(I), ie in our

notation X=P(I)X, and P(K') is self-adjoint, we obtain for any i £ I

(P(K')X,ei)=<X,P(K' n I)e;)=(P(I)X,P(K' D I)e;)

=(P(K'ni)P(I)X,ei)=(P(I)X,ei)=O since iGI, as required,

(d) x E A \ M implies xEZfl 'UJ') with I ' 2 1 , hence P(TxA)Y(x)=P(TxZ(K'))Y(x)

some I' U J' D K' 2>I, and applying (a) and (c) we get for xG UoflU! but x not in M

that(P(TxA)(Xe(x)-Si6Igradfi(x)),EigIgradfi(x)) =

<P(TxZ(K'))(X6(x)-2:i6Igradfi(x)),Ei£Igradfi(x)> =

(P(TxZ(K'))Xe(x),i:i6Igradfi(x))+(P(TxZ(K'))(-i:ieigradfi(x)),Ei6Igradfi(x))<O, which

gives (2) with V set to Uo 0 1 ^ . -

Proof of Theorem 1.1

Chikin has established [10] the following: if A is an admissable subset (see above) of

Rn and f:RxRn-»R is a continuous function satisfying for all x,yGRn

| (f(t,x)-f(t,y),x-y) | <l(t) | x-y | 2, for some l(t) summable on finite intervals, then

the problem: find absolutely continuous x:[0,oo)^.Rn satisfying Dtx(t)=P(TxA)f(t,x)

for a.a. tG[0,oo), x(O)=XoGA,x(t)GA for all t G ^ o o ) , has a unique solution.

From [19,Section 5] we may furthermore infer that the solution is continuous in

initial conditions.

For x0GM extend M locally represented as ZN(I;J) locally to A as above, and

choose U as in Lemma 1.3, and consider the vector field Y=Xe-Si6igradfj on

AnBr(xo) (Br(x0) being the open ball with centre XQ and radius r), where r is chosen

so small that Br(x0)CV, dBr(xo) is transverse to all the strata of A as a submanifold

with corners (and hence AflBr(x0) is admissable), and so that for some c > 0

(Y(x)-Y(y),x-y)<c | x-y | 2 for all x,yGBr(x0) (this being possible by smoothness of

Y).

Applying Chikin's Theorem to admissable AOBr(xo) we obtain absolutely continuous

x:[0,oo)-»v satisfying X(0)=XQ, x(t)GAPiBr(xo) for all tG[0,oo), and

Dtx(t)=P(Tx(t)(AnBr(xo)))Y(x(t)) for almost all tG[0,co), and hence since for some

T > 0 x(t)GBr(x0) for 0 < t < T that Dtx(t)=P(Tx(l)A)Y(x(t)) all t£[O,T). We have from

Lemma 1.3 and almost everywhere differentiability of x that Eiei(fix(t)-fix(0)) =
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S iei I o fi'(x(s))x(s)ds =E i g I J ^(gradfi(x(s)),P(TxA)Y(x(s)))ds <0 .

If xGA then xGM iff f{(x)=O for all iGI. For all xGA, f;(x)>0 for all iGL

Hence if x(0)GM then x(t)GM for all tG[0,T), and hence by Lemma 1.3 part 1

P(Tx(t)A)Y(x(t)) = P(Tx(t)M)X(x(t)) for all tG[0,T), and hence Dtx(t)=P(Tx(t)M)X(x(t))

for a.a. tG[0,T), which is the trajectory we seek, is unique by [10] and continuous in

x(0) by [19, Section 5].

In the usual way if M is compact and t* is maximal such that there exists a solution

on [ 0 , ^ , then if t*< °° limttt x(t)GM (by compactness) and repeating the

construction at the limit point we may extend x(t) past t=tx contrary to the maximality

of tx, hence we must have tx= oo. —

Remarks

(1) Evidently the map <£(M,X) need not be differentiable in x or t - consider Examples

0.1, 0.2 or 1.1 above - but we shall show that the points of [ 0 , ^ where $(M,X)(x) is

not differentiable are countable and rare (Proposition 5.2 ) and that it has one sided

derivatives at all points (Theorem 3.1 and Proposition 5.1).

(2) Smoothness of data is not essential for Theorem 1.1: the lower bound on

differentiability is determined by Chikin's Theorem (X C1, the f£'s C2)

(3) A rather obvious generalisation of the context we have adopted, where M has been

a submanifold with corners of Euclidean Space Rn, is to have M a submanifold with

corners of a Riemannian manifold N. This means that there exists a Cr map * on N

such that for each xGN <i>(x):TxNxTxN-»R is bilinear, symmetric and positive

definite and so for finite dimensional N makes TXN a Hilbert Space. Thus setting for

any uGTxN || u || =«l>(x)(u,u)'/i by [48,4.10] we know that for any X(x)GTxN there

exists a unique element X(M)(x) in TXM satisfying

|| X(x)-X(M)(x) || =min{ || X(x)-v || :vGTxM} and we may proceed as above. In fact,

since the construction of X(M)(x) is invariant under isometries we could use Nash's

result on the isometric embedding of Riemannian manifolds in Euclidean space (See

[7]) to generalise Theorem 1.1 as follows: if M is a submanifold with corners of

Riemannian N, X a smooth vector field on M (or more probably on N), then at each

point xGM there exists t x>0 and a unique trajectory ^(M,X)(x):[0,tx)->M with

</>(M,X)(x)(t)=X(M)<£(M,X)(x)(t) for a.a. tG[O,tJ, and if M is compact we may take
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Chapter Two

The Iteration

We showed in Chapter One that if M is a submanifold with corners and X is a

smooth vector field on M then for the system (M,X) there exists at each xEM a

unique trajectory <£(M)(x):[0,tx)->M in the sense described there. We also recall that

on some neighbourhood of any xGM we may establish a local representation of M of

the form ZN(I;J). It is fairly clear, and is shown in Lemma 2.1 below, that if M

(meaning the f;'s) is C and X is C then for each K with ICKCIUJ the projection of

X onto Z(K), or onto the stratum ZP(K;J\K) which is an open subset of Z(K), is C,

as is its integral flow. In this chapter we shall develop an algorithm to determine if

there exists a stratum ZP(K;J\K) of ZN(I;J) such that

$(M)(x)(O,5) = {(£(M)(x,t):O<t<5} is the integral curve of the projection of X onto

Z(K) for some 0<5<tx > and if there is to determine what it is.

We begin by making some general constructions involving sets of independent

functions and establishing a few elementary facts about them. Suppose fu..,fk+m are

functions independent at and hence on a neighbourhood of a common zero x0, with

(l, . . ,k)=Iand (k+l, . . ,k + m)=J. Denoting (fk+1(y),..,fk+m(y)) by f,(y) we may foliate

Z(I) near x0 by the manifolds {y£Z(I):f,=constant} and will denote each leaf

{yeZ(I):fj(y)=a}by Z(IUJ,I,a) (Figure 2.1). We see

Z(IUJ,I,a) = Z(fi,..,fk;fk+rak + 1,..,fk+m-ak+Jwhere a = (ak+,,..,ak+m). Plainly

yezCIUJ.I.f/y)).

Figure 2J_ AsZ(J)

= {xeRn:f,(x)=0}

Z(IUJ,I,fJ(y))
{x6Rn:fI(x)=0,fJ(x) = fJ(y

Z(J)=-[x6Rn:fJ(x) =

Z(IUJ,I,O) = Z(IUJ)

{xGR":fJ(x)-fj(y)=0}
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We can form vector fields X(I) and X(IUJeI) on Z(I) (the e is for "extension";

X(IU Jel) is a Cr extension of the vector field X(IU J) on Z(IUJ) to a neighbourhood

of Z(IUJ) in Z(I)) by projecting at each xGZ(I) the vector X(x) in TxR
n onto

respectively the subspaces TXZ(I) and Tx(Z(UJJ,I,fj(x)), ie X(I)(x)=P(TxZ(I))X(x),

X(IUJeI)(x)=P(TxZ(IUJ,J,fj(x)))X(x). We shall show in Lemma 2.1 that these vector

fields and their integral flows are Cr, but first some preliminary remarks.

Remarks 2.1

(1) We shall show that X(I)(x)-X(IUJ)(x)Gspan{P(I)gradfi(x):iej}. Working in TxR
n

and writing X(I)(x) as X(I), TXZ(I)=L(I), gradf;(x)=ej etc it suffices to show that if

I=(l,..,k), J = (k+l,..,k+m), then for any YGRn

P(IUJ)Y-P(I)YGspan{P(I)ek+1,P(IU{k+l})ek+2,..,P(IUJ\{k+m})ek+m} because then

re-applying this result with I'=I, J'=J\{k+m}, Y'=ek+m we get

P(IUJ\{k+m})ek+m-P(I)ek+mespan{P(I)ek+1)..,P(IUJ\{k+m,k+m-l})ek+m.1})ie

PaUJ\{k+m})ek+meP(I)ek+mUspan{P(I)ek+1,..,P(IUJ\{k+m,k+m-l})ek+m.,}and

inserting this into the previous result and repeating we eventually obtain

PauJ)Y-P(I)Yespan{P(I)ek+1,P(I)ek+2)..,P(I)ek+m}as required.

Decomposing

P(IUJ)-P(I)Y=P(IUJ)Y-P(IUJ\{k+m})Y+P(IUJ\{k+m})Y-..-P(I)Y it suffices to

show that

P(IU{k+l)..,k+p+l})Y-P(IU{k+l,..,k+p})YespanP(IU{k+l,..,k+p})ek+p+1.

We have by definitions that the vector

P(IU{k+l,..,k+p+l})Y-P(IU{k+l,..,k+p})Y6L(IU{k+l,..,k+p})andbythe

Characterisation of Projection for linear subspaces that

(P(IU{k+l,..,k+p+l})Y-P(IU{k+l,..,k+p})Y,w)=Ofor all

w£L(IU{k+l,..,k+p+l}), and these two conditions determine

P(IU{k+l,..,k+p+l})Y-P(IU{k+l,..,k+p})Yup to a non-zero scalar. Thus it

suffices to check that P(IU{k+l,..,k+p})ek+p+1 satisfies these two conditions.

(Pau{k+l)..,k+p})ek+p+1)w)=(ek+p+1)P(IU{k+l,..,k+p})w)

=(ek+p+1,w)ifwGL(IU{k+l,..,k+p})

=0 if weL(IU{k+l,..,k+p+l})CL(k-l-p-(-l), and so the result follows.

(2) It follows that if {gradfi(x):iGIUJ} are independent vectors in Rn then

{P(I)gradf;(x):iEJ} are independent vectors in TXZ(I). For if {P(I)ei}ieJ were not
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independent then there would exist {Xi}iej with X; not all zero and EjgjXjPOOe^O. By

(1) above for any vGRn P(I)v-vGspan{ej:jGI}, hence P(I)ei-ei=Ejeifiijej, some n^,

hence S^jX^Eje^ijej+e^O. But the \ are not all zero so this implies linear

dependence of {e ;:iGIUJ}, contrary to the assumption.

(3) Normal Spaces. If Sj is a submanifold of S2, with S! and S2 smooth boundaryless

submanifolds of Rn, define at xGSx the normal space to Si in S2 (a topologist might

have preferred "perpendicular space") to be {yETxS2:(y,z)=0 V z G T ^ J written

Nx(Sj in S2); if Su S2 are Z(I), Z(IU J), zero sets of functions independent near

xGZ(IUJ), NX(Z(IUJ) in Z(I)) may be written NX(IUJ in I). Thus yGNx(IUJ in I)

iff yGTxZ(I) and (y-0,0-z)=0 for all zGTxZ(IUJ) and hence from the Charactisation

of Projection NX(IUJ in I) = {yGTxZ(I):P(IUJ)y=O}. From the Subspace Projection

Theorem ([5, pp 4 and 8]) we get TXZ(I)=TXZ(IUJ)©NX(IUJ in I), so

dimNx(IUJ in I) = | J | =m, and since by (2) above {P(I)gradf;(x)}i6J are

independent vectors in TXZ(I) and (P(I)gradfi(x),z)=O for all zGTxZ(IUJ), any jGJ,

we must have for any xGZ(IUJ) that NX(IUJ in I) = span{P(I)gradf;(x)}iej. By the

same argument for any xGZ(I), Nx(Z(IUJ,I,fj(x)) in Z(I))=span{P(I)gradfi(x)}ie,.

Thus X(IUJ)(x)-X(I)(x)Gspan{P(I)gradfi(x)}iej, ie for any xGZ(IUJ)

X(IUJ)(x)-X(I)(x)GNx(IUJin I). Furthermore since for xGZ(I) X(IUJeI)(x) is just

X(IUJ)(x) with different but still independent functions we have at xGZ(I)

X(IUJeI)(x)-X(I)(x)GNx(Z(IUJ,I,fJ(x))inZ(I)).

Lemma 2.1 If X is a Cr vector field on Rn and {Q are Cr functions with XQE Z(IUJ)

and such that {g rad f^ )}^ , ^ is an independent set of vectors , there exists a

neighbourhood U of XQ in Z(I) such that X(I) and X(IU Jel) are Cr vector fields on U

and their integral flows, denoted <j>(l) and <£(IUJeI) respectively, are also Cr.

Proof Take Uj open in Rn a neighbourhood of x0 so small that {gradf;(x)}ieiuJ is an

independent set for all xGUj. Then for each iGI=(l . .k) , xGU, and XGRk define a

Cr map g i:R
n+k^R by gi(x,X)=(X(x)-Ej6IXjgradfJ<x),gradfi(x)) and g:Rn+k-»Rk by

g(x,X)= ((g,(x,X),..,gk(x,X)). The matrix A with coefficients Ajj =

(gradfi(x0),gradfJ(x0)) i,jGI is invertible since ( g r a d f ^ ) } ^ are independent, and

setting X(xo)=A"1b where bi=(X(x0),gradfi(x0)) we have g(x0,X(x0))=0 and by the C°°

or C" Implicit Function Theorem ([14, Chapter 10]) there exists an open
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neighbourhood U2 of XQ contained in Uj and a unique Cr map X:U2->Rk such that for

all xGU2 g(x,X(x))=0. Since this is saying X(x) is the unique XGRk such that

X(x)-EjeiXjgradfjGTxZ(I,0,fI(x)) and since by Remark 2.1(1) above we know

X(Ie0)(x)=X(x)-v with vGspan{gradfi(x):iGI} it follows v=EjeiXjgradfj(x) and (1)

X(Ie0)(x)=X(x)-Sj6IXjgradfj(x) for all x£U 2 and is therefore Cr, and since if

xGU2nZ(I) then X(Ie0)(x)=X(I)(x), (2) that for all xGU2OZ(I)

X(I)(x)=X(x)-SjeiXjgradfj(x) and is Cr. Furthermore if 13, L(I) are as in the definition

of submanifold with corners /3*X(I) is Cr in L(I) and hence X(I) is a Cr vector field on

Z(I)HU2 in the sense of Chapter One. If we apply (1) with I replaced by IUJ we get

an open neighbourhood U3 of x0 in Rn with X(IUJe0) a Cr vector field on U3. If we

now apply (2) with X replaced by X(IUJe0) (which we may do because we now

know it to be C r) we get a neighbourhood U4 contained in U3 of XQ with

X(IU Je0)(I), the projection of X(IU Je0) onto Z(l), a Cr vector field on U4nZ(I).

We may check from definitions that for all xGZ(I) X(IUJeI)(x) =X(IUJe0)(I)(x)

and we conclude that X(IUJel) is a Cr vector field on U4fiZ(I).

We may use classical theory (eg [1, Chapter 4]) to infer that the flows 4>(l) and

0(IUJeI) are also Cr.

Remark 2.2 Using that (X(I)(x),gradfj(x)>=0 for all j G I and writing X(x) for the

column vector with components \(x) we find that in the equation in (2) of Lemma 2.1

that X(x)=M(x)'N(x)TX(x) where M(x) is the kxk symmetric matrix with elements

M(x);j =(gradfi(x),gradfj(x)) (which is invertible because {gradf;(x)} are independent)

and N(x) the n x k matrix with ith column gradf;(x); hence in this notation

=X(x)-N(x)M(x)-'N(x)TX(x).

We have established in Lemma 1.2 the relation between P(LC(I;J))X and P(L(K))X

for I C K C IUJ and much of Chapters 2 to 5 is concerned with the relation between

<t>(M) = the unique semiflow of X(M) provided by Theorem 1.1 and <£(K) =unique

Cr integral flow of X(K) (if M is locally LC(I;J) this K must lie in the range

ICKCIUJ) as provided above by Lemma 2.1.

We firstly show that for some systems there exist points where no 5 > 0 can be found

satisfying the condition that for some K there exists 5 > 0 such that for all tG(0,5)

<£(M)(x,t)=<KK)(x,t).



Example 2.1

Take X(x,y)=(l,f(x)) with

f(x) =
(l/x2)exp(-l/x)(sin(l/x)-cos(l/x)) if x>0

0 i fx<0

onM={(x,y)GR2:y>0}.

If l/xm=m7r+7r/4, then f(xJ=O,

f'(xm)=exp(-l/xm)/x*
if m is even

+\J2 if m is odd

So if m is odd f(xJ=0, f'(xJ>0.

For F'(x)=f(x) we have the integral F(x)-F(y) = [exp(-l/t)sin(l/t)fy

and since F(xm.2)-F(xJ =-(lA/2)(exp(2x)-l)exp(-x(m+ K)) < 0

the integral curve at (x^O) with m odd has the form shown in Figure 2.2.
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Figure 2.2

By Theorem 1.1 there exists an absolutely continuous trajectory <£(M)(0) based at the

origin, which is clearly not C1 on any deleted neighbourhood of 0, and in fact in any

such neighbourhood there are countably infinitely many points where <£(M)(0) is not

differentiable.

0"

Figure 2.3

Let us consider now a simple situation where such a K does exist

Example 2.2

Suppose M={xGR3:x1>0,x2>0} and X(x1(x2,X3)=(x33-x2
2,-l,l). We seek K such

that <KM)(0,(0,5))CZP(K;(l,2)\K) and tf(M)(0,t)=tf(K)(0,t) for tG[O,5), some 5>0.
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Since X(O) = (O,-1,1), by continuity we must have that X(M)(y)=X(2)(y) for all y near

the origin in ZP(2;1). Hence if a single stratum does contain 0(M)(O,t) for small t > 0

it must be either Z(l,2) or ZP(2;1). We decide which by considering

X(2)(x1,x3) = (x3
2,l): the first nonvanishing time derivative of (<^(2)(x=0,t=0),n1) is

the third, which is > 0 , and hencs *(M)(0,t)CZP(2;l) with *(M)(0,t)=*<2)(0,t) for

all small t > 0 (Figure 2.4).

<£(M)(0)CZP(2;l)

Figure 2.4

We could not have inferred this by for example considering time derivatives of the

unconstrained equation: we see in fact the unconstrained trajectory *(0)(O) heads into

{x:x!<0,x2<0}.

Our general algorithm will provide us at the ith stage with a subcorner

ZPN(K!;K2;IU A ^ U K ^ ) with the property that if there exists a K such that

<HM)(x,t)=tf(K)(x,t) for all t 6 (0,5) then it is a stratum of the subcomer; then by

suitable comparison of (i+l)th time derivatives (in fact of 0(K,)(x) and ^(K.UK^Cx)

at t=0 ) it will provide us with a yet smaller subcorner with this property. The result

underlying the iterative step in this shrinking process is Lemma 1.2.

With M as usual locally represented as ZN(I;J) we begin by taking the differences

between the first time derivatives of 0(1)(x) and 0(IU J)(x) at t=0, ie

Dt0a)(x,t=O)-Dt<KIUJ)(x,t=O), and use Lemma 1.2 to find the subcorner of

TXM=TXZN(I;J)=LC(I;J) such that projecting this quantity onto TXM gives the same

result as projecting onto the affine spans of the strata in this subcorner. (We use the

notation Dtf(t=0) to denote the time derivative of f evaluated at t=0). If this

subcorner is LCOOK.jK^IUAC^UIQ) at the second stage we work with the closed

corner LC(K,;K2), seeking the subcorner of this such that the projection of
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Dt
2<£(I)(x,t=0)-Dt

2<KIU J)(x,t=0) onto LC(K,;K2) gives the same result as projecting

onto the affine spans of the strata in this subcorner. We see that in this way we obtain

a contracting sequence of strata I=S°i(x)CS°2(x)C... CS2(x)CS^x)=IU J (where in

the notation of this paragraph, S°2(x)=K1,S2(x)=K1UK2) and in view of this

contracting property this sequence must converge. (Whether to a single set of indices

or not being a matter of some import). We see that the sets of indices

S00(x)= H^S^x) and S°(B(x) = UialS°i(x) have the property that for all sufficiently

large i Si(x)=S00(x) and S°i(x)=S°00(x). The strata ZP(K;J\K) with S°00(x)CKCS0D(x)

will be the candidates for the stratum we seek.

In Lemma 2.4 we show that X(M)(x)=X(K)(x) is equivalent to a pair of conditions,

that X(K)(x) points into TXZN(K;J\K) and that (X(x),P(K\j)gradfj(x))<0 for all

j G K \ I . With S00(x) and S°0o(x) as above we show in Lemma 2.5 that for all t in some

(0,50 <KSoo(x))(x,t) G ZP(S00(x);ASo=(x)), and in Lemma 2.6 that for all t in some

(0,52) {X(S0
oo(x)\j)^(S0

O3(x))(x,t),gradfJ(^(S0
oo(x))(x,t))) < 0 for all j G S°00(x)\S°1(x),

which together imply after some manipulation that if Soo(x)=S°0o(x) then the

conditions for Lemma 2.4 apply on tG(0,min(51,52)) with K=Soo(x)=S°oo(x), ie that

X(M)0(K)(x,t)=X(K)<KK)(x,t) on (0,min(5,,52))- If S0
0o(x)^Sco(x) but the data (ie X

and the f;'s) are analytic it is still the case that c£(M)(x,t)=<£(K)(x,t) any

S°0o(x)CKCS0o(x) for t > 0 sufficiently small.

Formally, the iteration at xGM is defined as follows: if M is locally ZN(I;J) (and

we recall that by convention we suppose x itself is in Z(IUJ)) we set S°1(x)=I,

S1(x)=IUJ, and S°;(x), S;(x) are defined iteratively using Lemma 1.2: this tells us that

for given S°i.1(x),Si.1(x), there exist unique S°;(x), S;(x) with

S°ui(x) C S°i(x) C S;(x) C Si.^x) such that

PCrxZN(S°,1(x),S,1(x)\So
i.1(x)))(Dt

i^(S°,1(x))(x,t=O)-Dt
i^(S,1(x))(x,t=O))

=P(TxZ(K))(Dt
iV(So

i.1(x))(x,t=O)-Dt
i^(Si.1(x))(x,t=O))iffS°i(x)CKCSi(x). We

observe that the sets of indices S°j(x), Sj(x) obtained depend on M, X and on the point

xGM of evaluation, so written out in full are S°j(x,M,X) and Sj(x,M,X), but these

will usually be abbreviated to S°j(x),Sj(x).

Working through Example 2.2 above for example we find S°1(O)=(0),S°i(O)=(2) for

all i > 2 , Si(0) = (l,2) i= l ,2 ,3 , and Sj(0)=(2) for all i > 4 , so S00(0)=S°oa(0) = (2), and

Theorem 2.1 below tells us (as we reasoned above directly) that <£(M)(0,t)=<£(2)(0,t)

for all tG[0,to), some to>0, and that </>(M)(0,t)GZP(2;l) on (0 ,0 . A more complete

understanding of the iteration will follow from Chapter Three (where we relate the

iterates S°i(x), Sj(x) to the right hand derivatives D,+i<KM) at x) and Chapter Four
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(where we relate the iteration at each xGMto the decomposition of M into

generalisations of the classical tangency sets).

Remark 2.3 The reader will have observed that the iteration is an operator, and we

can formalize this as follows.

Define the operator ITN acting on triples of the form

((I,J),{n;:ieiU J},{^(K):ICKCIU J}) where the first argument (I,J) is a pair of sets

of indices, the second argument {nj is an independent set of vectors in Rn, and the

third argument is a collection of smooth functions ^(K):U-*Rn for ICKCIUJ, where

U is some interval of the real line containing the origin. By Lemma 1.2 there exists a

unique pair of sets of indices I',J' with ICI 'C I 'UJ 'C IUJ such that

I 'CKCruj' ,andwethensetITN((I,J),{n i:ieiUJ},{^(K):ICKCIUJ}) =

( ( i y ^ ^ i e i ' U J ' ^ M K ^ I ' C K C l ' U J ' } ) . We see this yields

ITNX(S0
1(x),S1(x)\S0

1(x)),{gradfi(x):iGS1(x)},{^(K)(x):S0
1(x)CKCS1(x)}) =

((S%1(x),Sj+1(x)\S0
j+1(x)),{gradfi(x):ieSj+I(x)},{Dt^(K)(x):S0

j+1(x)CKCSj+1(x)})for

any j > 0 .

Theorem 2.1 (1) If X is a smooth vector field on a smooth submanifold with corners

M of Rn, with M near x locally represented as ZN(I;J), then if S°00(x)=S00(x) there

exists to>O such that the trajectory tf(M,X)(x,t) = < )̂(Soo(x))(x,t) for all tG[O,to), with

^(S.(x))(x,t)eZP(So>(x);S1(x)\S06(x)) for all tE(O,to)

(2) If the data (ie, X and the f;'s) are analytic there exists to>0 such that

tf>(M,X)(x,t)=<HK)(x,t) on tG[0,g , any S°00(x)CKCS00(x) , and for t6(0 ,U

*(M,X)(x,t)eZP(S00(x);S1(x)\So,(x)).

In either case X(M)<£(M,X)(x,t)=X(K)<HM,X)(x,t) on t€[0,to), any

S°00(x)CKCS00(x).

This is proved after Lemma 2.6. We recall and shall use without further mention

basic facts about P(K): that it is self-adjoint, that P(K)2=P(K), that if kGK then

P(K)nk=0, etc.

In Lemmas 2.2 and 2.3 we shall write Dtty(I) for Dtty(I)(x,t=0).

Lemma 2.2 If D^(<baU})-<bCD)=0 i=0,..,k-l. then

Dt
k(<KI)-<KIUj)) =Dt

k(f>(I))P(I)gradfj(x)/ | P^gradf/x)
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Proof We showed in Remarks 2.1 that we have

X(IUj)(x)-X(I)(x) G span(P(I)gradfj(x)). Since

{P(I)gradfj(x),X(IUj)(x))=(P(I)gradfj(x),P(IUj)X(x))=(P(IUj)gradfJ(x),X(x))=O

(because P(IUj)gradfj(x)=P(IUj)P(j)gradfj(x) and P0)gradfj(x)=O) we must have

(P(I)gradfj(x),X(I)(x)-X(IUj)(x))= (P(I)gradfj(x),X(I)(x)) and therefore

Xa)(x)-X(IUj)(x)=(P(I)gradfJ(x),Xa)(x))P(I)gradfj(x)/ | P^gradf/x) | \

Then since (by definition of grad) Dl(fi<f>(T)) = fj'((/)(I))D^(I)= (gradfj(x),X(I)(x)) =

(P(I)gradfj(x),X(I)(x)) the Lemma is true for k = l . Suppose it is true for k-1, and that

Dt
!(0(IUj)- <j>(T))=O i=0,. . ,k-l. Since it is true for k-l we know that D t

t l(f j^(I))=0.

Using X(IUj)(x)=X(I)(x)-(X(I)(x),gradfj(x))P(I)gradfj(x)/ | P(I)gradflx) | 2 we have

that Dt
k<HIUj) =Dt

k-1(X(I)^(IUj)-Dt(fj^>(I))P(I)gradfJ(^)(IUj))/ | POOgradfjO^Uj)) | 2).

^^KIUj)) involves terms in Dt
!<£(I Uj) up to i=k- l , so since these all equal

we must have Dt
k-1X(I)<ji)(IUj)=DtV(I). Furthermore since Dt

ifj^(I)=0 for

Dt
k(fj<^(I))P(I)gradfj/ | P(I)gradfj | 2, and so the Lemma is true for k.

Lemma 2.3 If for some i> 1 K is such that S°i(x)CKCSi(x) then

Proof If i = l ; P(K)Dt(^(S°1(x))- <^(S1(x)))=P(K)(X(S°1(x))-X(S1(x)))=X(K)-X(S1(x))

as required.

Suppose the result is true for i-1.

We have P(K)Dt
i(^(So

i(x))^(S1<x))=P(K)Dl
i(^(So

i(x))- °

where K=S°i(x)Uj(l)U..Uj(k) and S i(x)=S° i(x)Uj(l)U..Uj(k)U..Uj(m)for

m > k > 0 . We know S°i.1(x)CS°i(x)CKCS1(x)CSi.1(x) and by the inductive hypothesis

we also have

Since S°i(x)CS°i(x)Uj(l)CSi(x) the left hand sides are equal; subtracting we get

therefore Dt
il(<^(So

i(x))-0(S°i(x)Uj(l)))=Oto which we may apply Lemma 2.2 to

obtain Dl
i(<HSo

i(x))-<KS°i(x) Uj(l)))

=Dt
i(fj(1)^(So

i(x)))P(S°i(x))gradfj(1)(x)/ | P(S°i(x))gradfj(I)(x) | 2,

and similarly for all other terms which are of the form Dl
i(<^(S°i(x)Uj(l)U.. Uj(r))-
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.. Uj(r)))P(S°i(x) Uj(l) U .. Uj(r))gradfj(r+1)(x)/ | P(S°i(x) Uj(l) U.

..Uj(r))gradfj(r+1)(x)|2. (*)

Then if r+1 <k, P(K)P(S°i(x)Uj(l) U.. Uj(r))=P(K) and P ^ r a d ^ ^ x ) =

P(K)PC(r+l))gradfj(r+i)(x)=O. Hence from (*) it follows P(K)Dt
i(<^(So

i(x)-^>(K))=O,

and so P(K)Dl
i(^(So

i(x))-^(S1<x))) =P(K)Dt
i(*(K)-*(Si(x))). (**)

If r + l > k , ieif r>k , P(K)P(S°i(x)Uj(l)U..Uj(r))=P(S°i(x)Uj(l)U..Uj(r))and so

using (*)

P(K)Dt
i(<^(S°i(x) U j(l) U.. U j(r))-<^(So

i(x) U j(l) U.. U j(r+1))) =

Dt
i0(S°i(x)Uj(l)U.. Uj(r))-<^(So

1(x) Uj(l)U.. Uj(r+1))), and hence
i =P(K)D ^

Combining with (**) P(K)Dl
ifa(S°i(x))-tf(Si(x)))=Dl

i(0(K)-tf(Si(x))) as required.

Corollary 2.1 If S°i+1(x)CK1,K2CSi+1(x) then Dt
j<^(K1)(x,t=0)=Dt

j(/)(K2)(x,t=0) for

a l l j < i

Corollary 2.2 Dt
i(<^(So

i(x))(x,t=O)-<^(Si(x))(x,t=O))GNx(Si(x) in S°(x))

Proof By Corollary 2.1 Dt
il(</)(K)(x,t=0)-^(KUj)(x,t=0)) =0 for all

SOi(x)CKCKUjCSi(x); therefore by Lemma 2.2 if Si(x)=S°i(x)U(l,..,k) then

Dt
i(0(So

i(x))(x)t=O)^(S1(x))(x,t=O))=a1P(So
i(x))gradf1(x)+a2P(So

i(x)U{l})gradf2(x) +

...+akP(Si(x)\{k})gradfk(x), some scalars al,a2,..,2^, which by the reasoning used to

prove Remark 2.1 parts 1 and 2 is contained in span{P(S°j(x))gradf|(x):j = l,..,k} =

span{P(So
i(x))gradfj(x):jGSi(x)\So

i(x)}, which equals Nx(S;(x) in S0
;(x)) by Remark

2.1(3).

Remark 2.3 In the case that the submanifold with comers is (at least locally) an

intersection of linear comers (ie LC(I;J) rather than ZN(I;J)) we may dispense with

the Sj(x) term in the definition and construction of the iteration and obtain an

equivalent iteration with the SOj(x) term only (the S;(x) term is subtacted ultimately to

take care of the bending of the strata away from the tangent cone). Also we can use

Corollary 2.2 to show that an equivalent iteration may be obtained by replacing

TxZN(S0,(x);Si(x)\S°1(x)) with TxZN(S°i(x);S1(x)\S°i(x))nNx(S1(x) in S°,(x)); we shall

not need either fact.
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Lemma 2.4 Suppose X is a vector in Rn and K satisfies ICKCIUJ; the following are

equivalent

1. P(LC(I;J))X=P(K)X

2. (a) P(LC(I;K\I))XGL(K) and (b) P(K)X6LC(K;J\K)

3.(a) {X,V(K\3)n)£Q for all j € K \ I and (b) P(K)XGLC(K;J\K)

Eg if 1 = 0 , J=(l,2,3), and K=(l) :

LC(0;1,2,3)

LC(1;2,3), a closed subcorner of LC(0;1,2,3),
xwith affine span L(l)

P(LC(0;1,2,3))X=P(1)X iff (a) P(LC(0;1))XGL(1)
and(b)P(l)XGLC(l;2,3)

Figure 2.5

Proof

l-»2 We can check from definitions that if ICKCIUJ then P(LC(I;J))X=P(K)X iff

P(LC(I;J))P(I)X=P(K)P(I)X, and that P(LC(I;K\I))XGL(K), P(K)XGLC(K;J\K) iff

P(LC(I;K\I))P(I)XGL(K), P(K)P(I)XGLC(K;AK), and so it suffices to prove the

result with X replaced by P(I)XGL(I), which is equivalent to proving the result with I

set to 0 . We first show 1^2a; we show that if for 0 C K C J P(LC(0;J))X=P(K)X,

then <X-P(K)X,P(K)X-y)>Ofor all yGLC(0;K), which by the Characterisation of

Projection implies P(K)X=P(LC(0;K))X. Consider (y+L(K))HL(AK) (see Figure

2.6); L(K) and L(J\K) are transverse and hence y+L(K) and L(J\K) are transverse

for all y. Hence (on dimensional grounds) (y+L(K))DL(J\K)^0. Furthermore if

zG(y+L(K))HL(J\K) then z-yGL(K) so (z-y.n^O for all iGK. zGL(J\K) means

(z,ni)=0 for all iGJ\K. Since (y,n;)>0 for all iGK we have therefore that

zGLC(J\K;K) which is contained in LC(0;J).
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X

Figure 2.6

Since y-zGL(K) (X-P(K)X,P(K)X-y)= (X-P(K)X,P(K)X-(y-z + z)) =

(X-P(K)X,P(K)X-z), 1. tells us that P(K)X = P(LC(0;J))X and since zGLC(0;J) by

the Charactisation of Projection again we know (X-P(LC(0;J))X,P(LC(0;J))X-z)>O

and so (X-P(K)X,P(K)X-z)>0. This gives P(LC(I;K\I))X=P(K)X (ie l-»2a). l. also

tells us thatP(K)XGLC(I;J)nL(K) = LC(K;J\K) (ie l-»2b)

2̂ >1 2a. is equivalent to P(LC(I;J))X = P(K)X hence under conditions 2a. and 2b.

P(K)XeLC(I;K\I)nLC(K;J\K) = LC(K;J). So P(LC(I;K\I))X =

P(K)XGLC(K;J)CLC(I;J) (since ICKCIUJ) and hence since LC(I;K\I)DLC(I;J),

by Lemma 1.1 P(LC(I;K\I))X = P(LC(I;J))X and hence P(K)X=P(LC(I;J))X as was to

be shown.

2a*>3a Fact 1 SpanlPffle;},-^, =span{P(K\i)e,}i6KXI any ICK.

Clearly the right hand side = span{P(K\i)P(I)ei}ieKV, so since for i £ K \ J (see

Remarks 2.1) P(K\i)P(I)e,-P(I)eiGspan{P(I)eJ}jeKXIXi we have

span{P(K\i)P(I)ei}ieKVCspan{P(I)ei}i6KNI. Suppose K\I = (l,..,m). For i j e ( l , . . , m )

= <P(K\j)e,,e;>
=0 if

if i=j

- this is so because i £ K \ j if i ^ j , while if" i = j (P(K\j)ei,ej)= | P(K\j)ej | 2, so equals

0 iff P(K\j)ej = O, which (by Remarks 2.1(1)) is so iff ejGspanle^iGKXj} which

would contradict the linear independence of {e^GX}. Thus the matrix A with

elements Aij = {P(I)ei,P(K\j)P(I)ej) for iJG(l , . . ,m) is invertible from which it follows
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that (P(K\l)P(I)eb..,P(K\m)P(I)eJ has rank m, which proves the result.

Fact 2 For ICK any wGLC(I;K\I) may be expressed as w=P(K)w+SieKNIaiP(K\i)ei

for some sequence of reals {a;} with each a;>0.

Write w=P(K)w+w-P(K)w, then if weL(I),

w-P(K)w=P(I)w-P(K)P(I)w€span{P(I)ei}ieK (by Remark 2.1(2))

= span{P(I)ei}ieKXI (since P Q e - O if iGI)

=span{P(K\i)e;}ieKXI by Fact 1. Hence w=P(K)w+£i€KNJaiP(K\i)ei for some

sequence of reals {%}. wGLC(I;K\I) iff wGL(I) and (w,ej)>0 for all jGK\ I ; hence

wG LC(I;K\I) iff EieKM(a1P(K\i)ei,ej) > 0 for all j G K\I iff {^(KM^e) > 0 for all

j G K \ I (all other terms =0) and since as in Fact 1 (P(K\i)ei,ei)= | P(K\i)e; | V 0

wG LC(I;K\I) iff a ^ O for all iGK\I .

We now establish that 2a«*3a. P(LC(I;K\I))XGL(K) iff P(LC(I;K\I))X=P(K)X (via

Lemma 1.1 since L(K) is a closed convex subset of LC(I;K\I))

iff for all wGLC(I;K\I) (X-P(K)X,P(K)X-w) >0 , ie (X-P(K)X,w) <0 , which using

Fact 2 is equivalent to saying iff for all sequences {a;} with each a;>0

(X-PCKJX.PCKJw+EieK^PCKMta)<0, ie iff XieK&(X-P(K)X,-p(lZSX)td<0. Then

since (P(K)X,P(K\i)ei)=(X,P(K)ei)=0 for all iGK\I this is so iff for all iGK\I

(X,P(K\i)ei)<0, as was claimed.

We have observed that because of the property S^x) C S0
;(x) C S,(x) C Sx(x) D j^S^x)

exists, is contained in every Sj(x) for j G Z + and equals linv^S^x); we call this S0o(x).

Similarly Ui2:1S
Oj(x) exists, contains every S°j(x) for j G Z + and is contained in every

Sj(x) and hence in S00(x), and equals lim^^S^x). We have for all i

S0
1(x)CS°i(x)CS°oo(x)CSK>(x)CSi(x)CS1(x).In Lemmas 2.5 and 2.6 we consider the

flows 0(S°oo(x)) and <HSm(x)). We shall show that on some (0,T) <^)(S0o(x))(x,t) lies

in ZP(S00(x);S,(x)\S00(x)) (Figure 2.7a) and that for all jGS°00(x)\S°1(x) and at every

point y of <^(S°00(x))(x,t) that (X(y),P(S°0o(x) \j)gradfJ(y))<0 (Figure 2.7b).

If then S°00(x)=S00(x) we may combine these results and use Lemma 2.4 to infer that

at every point y=<^.(S00(x))(x,t) with tG(0,T) P(TyM)X(y)=P(K)X(y) and hence this is

the K alluded to in the overview above - 4>(M)(x,t)= <£(K)(x,t) on (0,T). In the

analytic case we get a result even if we do not have S°00(x) = S00(x).
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*(S.(x))(x,t) C ZP(S.(x);S1(x)\S.(x))
for small t > 0 by Lemma 2.5

ZP(S00(x);S1(x)\Stt(x)) open in Z(S.(x))

Figure 2.7a

gradfj(y)

Figure 2.7b. (X(^(S0
w(x))(x,t))P(S0

co(x)\i)gradfj(^(S0
CD(x)\j)(x,t))) < 0

for small t > 0 , each j eSo
w(x)\S°i(x), by Lemma 2.6

Lemma 2.5 If jGSr(x)\Sr+1(x) then

Dt
ifj0(S(B(x))(x,t=O)

=0 if i < r

> 0 if i=r

Proof We have S°r(x) C Sw(x) C Sw(x) Uj C Sr(x) but S»(x) Uj <t Sr+1(x). By Corollary

2.1 Dt
i<^(Soo(x))(x,t=0)= Dt

i^(Soo(x)Uj)(x,t=0) for all i< r . By Lemma 2.2

Dt
ifj<^(Soo(x))(x,t=0)=0 for all i < r . Since S°r(x)CSoo(x)UjCSr(x) but

S00(x)Uj<z:Sr+1(x) we know P(Soo(x)Uj)Dt
r(0(S°r(x))(x,t=O)^(Sr(x))(x)t=O))^

P(Soo(x))Dt
r(0(So

r(x))(x,t=O)-<^(Sr(x))(x,t=O))(by definition of the iteration). We shall

write TxZN(S°r(x);Sr(x)\S°r(x)) as Cr and Dt
r(^(S°r(x))(x,t=0)-^(Sr(x))(x,t=0))as Xr,

so by the construction of the iteration again

P(Sw(x))Dt
r(<^(S°r(x))(x,t=0)-^(Sr(x))(x,t=0)) =P(Cr)Xr. We have therefore

(P(S00(x))Xr,gradfJ(x))=(P(Cr)Xr,gradfj(x))>Ofor all j6S r(x) and by the beginning of

Lemma 2.2 we know that (P(Soo(x))Xr,gradfj(x))=0 iff P(Scc(x))Xr=P(S0o(x)Uj)Xr.
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Furthermore (P(S00(x)Uj)Xr,gradfJ(x)) = (P(Scc(x)Uj)Xr,P(SCM(x))gradfJ(x))=0 for all j

by self-adjointness of P and since PCS^x) Uj) =P(S00(x))P(S00(x)Uj). By Lemma 2.3

we know that P(SO3(x)Uj)Xr=Dt
r(^(SO3(x)Uj)(x,t=0)-<^(Sr(x))(x,t-0)) and

P(Soo(x))Xr-Dl
r(0(SO3(x))(x,t=O)-<^(Sr(x))(x,t=O)), hence

(gradfj(x),Dt
r(^»(SO)(x))(x,t=0)- <£(Sr(x))(x,t=0))> >O ( > 0 because

(gradfj(x),P(Soo(x))Xr) = (gradfJ(x),P(TxZN(S0
r(x);Sr(x)\S0

r(x))Xr)>0asjeSr(x)\Sr+1(x)

and hence jGSr(x)\S°r(x); ^ 0 because we noted above that (gradfj(x),P(Soo(x))Xr)=0

iff P(S00(x))Xr = P(S00(x))Xr = P(S00(x)Uj)Xr, and we also saw that the construction of

the iteration implied that this was not the case if jGSr(x)\Sr+1(x)). We have also that

(gradfj(x),Dl
r(c/)(S<x(x)Uj)(x)t=O)-0(Sr(x))(x,t=:O)))=O (since

Dt
r(^(SO3(x)Uj)(x,t = 0)^(S,(x))(x,t = 0)) = P(SM(x)Uj)Xr), thus

(gradfj(x),Dt
r(0(SM(x))(x,t=O)-0(So,(x)Uj)(x,t=O))) > 0 and hence by Lemma 2.2

Lemma 2.6 Suppose S°r(x)CS°r(x)Uj CS°r+1(x)CKCSr+1(x). If we set

) = <X(K\j)^(K)(x,t),P(K\j)gradfj^(K)(x,t)) , then

D;gj(K)(t=0)
=0 if i < r - l

<0 if i=r-l

Proof Since jGK, for all yGZ(K) (X(K)(y),P(K\j)gradfJ(y)) = (X(K)(y),gradfj(y))=O;

thus gj(K)(t)=(X(K \j)<p(K)(x,t)-X(K)0(K)(x,t),P(AJ)gradfJc/>(K)(x,t)). By Corollary

2.1 we know D>(K\j)(x)t=0)=D1
i^.(K)(x,t = 0) i=0, . . , r- l , hence D1

igJ(K)(t=0)=0

i=0,..,r-2, and Dt
r"IgJ(K)(t-0) =

(Dt
r0(K\j)(x,t=O)-Dl

r(p(K)(x,t=O),P(K\j)gradt^(K)(x,t=O)). By Lemma 2.3 we know

P(K\j)Xr=Dt
r(</)(K\j)(x,t=0)-</)(Sr(x))(x,t=0)) (Xr as defined in Lemma 2.5). By

definition of the iteration P(TxZN(Su
r(x),Sr(x)\S°,(x)))Xr = P(K)Xr iff

S°r+i(x)CKCSr+1(x) (Xr as defined in Lemma 2.5) and hence by Lemma 2.4 for any

S°r+)(x)CKCSr+1(x) (X,,P(K\j)gradfJ(x))<0 for all jGK\S°,(x) . Since K\j is not

between S°r+1(x) and Sr+1(x) we must have P(K\j)Xr^P(K)Xr. We know from

Remarks 2.1 that P(K\j)Xr-P(K)Xr =

(P(K\j)gradfJ(x),X,.)P(K\j)gradfJ(x)/ | P(K\j)gradf,(x)
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so <gradfj(x),P(K\j)Xr>^0, so by the above <0 . By the above

D^(K\j)(x , t=0H(K)(x, t=0)) =P(K\j)Xr-P(K)Xr. (*)

Acting on both sides of (*) with P(K\j), which leaves the right hand side unchanged,

we get (P(K\j)Dt
r(0(K\j)(x,t=O)-^(K)(x,t=O)),gradfj(x)) <0 , and hence

Dt
Mgj(K)(t=0) < 0 as required.

Proof of Theorem 2.1

(1) By Lemma 2.5 we know that on some (O,to) fj<£(Soo(x))(x,t)>0 for all

jeS^xJXS.Cx), ie that </»(S0o(x))(x,t)eZP(Sw(x),S1(x)\S00(x)) on (0 ,0 .

For any jGS°00(x)\S1(x) there exists r such that jGSo
r+1(x)\S°r(x), and Lemma 2.6

tells us that with this j then for any S°r+1(x)CKCSr+1(x) there exists t(j,K)>0 such

that <Xtf(K)(x,t),P(KNj)gradf#(K)(x,t))<O on (O,t(j,K)). S°es(x) satisfies

S°r+1(x)CS°00(x)CSr+1(x) for all r and hence there exists to>O such that for all

t 6 (0 ,g and for all j G S°,(x)\S1(x)

(X0(S°O5(x))(x,t),P(So
oo(x)\j)gradfj(0(So

oo(x))(x,t)))<O. If then S°tt(x)=S00(x) setting

Soo(x)=S°oo(x)=K, then for y=<£(K)(x,t) with tG(0,O we have yEZP(K;S,(x)\K) so

TyM=TyZN(So
1(x);K\S°,(x)) and Lemma 2.4 tells us that

P(TyZN(S°1(x);K\S°1(x)))X(y) =P(K)X(y) iff

(a) (X(y),P(K\j)gradfJ(y))<0 for all jGKXSVx), and

(b) P(K)X(y) 6 TyZN(K;K\K)

so (b) is satisfied vacuously, and (a) is satisfied by the above.

We know P(TxM)X(x)=P(K)X(x) because by definition X(M)(x)=X(K)(x) any

S°2(x)CKCS2(x) and we know S°2(x)CS°OD(x)=K=S0o(x)CS2(x). Thus for all

tE [0 ,0 P(T0(K)MM)X(0(K)(x,t))=P(K)X(^(K)(x,t)). The left hand side is by

definition X(M)<£(K)(x,t), the right hand side is Dl^(K)(x,t) so we have

X(M)(0(K)(x,t))=D,^(K)(x,t) for all t 6 [ 0 , O , and so by uniqueness (Theorem 1.1) of

the solution to the equation X(M)<£(M)(x,t)=Dt<KM)(x,t) f o r a-a- tE[O,to) we must

have 0(M)(x,t)=^(K)(x,t) on [0,0-

(2) By Corollary 2.1 we have if S°oo(x)CK,,K2CSoo(x)

Dt
iqi.(Ki)(x)t=0)=Dl

1>(K2)(x,t=0) for all i and so if the data, and hence the ^(K^'s,

are analytic we have Dl
i^(K1)(x,t)=Dl

i^(K2)(x,t) for all t.

We shall show that 0(S°oo(x))(x,t)=</>(M)(x,t) for all sufficiently small t > 0 , and

hence by the above 0(K)(x,t)=0(S°w(x))(x,t) for all S°oo(x)CKCSoo(x). We showed in

(1) that on some (0 ,0 (i) (X</>(S0
m(x))(x,t),P(S0

oo(x)\j)gradf^(S0
oo(x)(x,t)))<0 for all
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x), and (ii) <^(S00(x))(x)t)6ZP(S00(x);Si(x)\S00(x)). Since we have

shown ^(K1)(x,t)=0(K2)(x,t) for all S°0o(x)CKiCS0o(x) we can rework this second

condition as (ii') tf(S0,(x))(x,t)6ZP(SOB(x);S1(x)\S0.(x)). For tG(0 ,g writing

y=0(S°oo(x))(x,t) (=</>(S00(x))(x,t)) we have therefore

TyM=TyZN(So
1(x);Sw(x)\S°1(x)). If we show P(TyM)X(y)=X(S°0D(x))(y) it will follow

by the same reasoning as in the last part of (1) that <£(M)(x,t)=<£(S°w(x))(x,t) for all

tG[0,to).

Lemma 2.4 tells us that P(TyZN(S°1(x);Soo(x)\S0,(x)))X(y)=P(S0
oo(x))X(y) iff

(a) (X(y))P(S°o>(x)\j)gradfj(y))<0 for all j G S ^ x A S ^ x ) , and

(b) P(S°0o(x))X(y)eTyZN(S°OJ(x);S00(x)\S°00(x)).

(a) holds by (i) above. We know y=^(S°0o(x))(x,t)=<^(Soo(x))(x,t) and that

D^(S°a,(x))(x,t)=D^(SaB(x))(x,t) and so that X(S°B8(x))(y)=X(S00(x))(y). Then since

X(S0o(x))(y)eTyZ(SO0(x))CTyZN(S°oa(x);S0o(x)\S°oo(x)) (b) also follows, and hence the

result. —

Example 2.3 For the biological models [60] which originally inspired the thesis we

have a situation of the following form: M={xGRn: (x,ni)>pi i= l , . . , n} , where {nj

are an orthonormal set, and X(x)=Ax where AGL(Rn,Rn). Suppose x is a point such

that (x,ni)=Pi V i=l , . . ,k . We seek the stratum of M containing <£(M)(x,t) for all t £

(0,5), some5>0.

We see we have S1(x) = (l..k),S°1(x) = 0 , and using the definition of iteration and

Remark 2.5(1) below we get

S2(x) = {iGS1(x)\S°1(x):(Ax,ni)<0}

S°2(x) = {ieS1(x)\S°1(x):(Ax,n1) <0},

and generally

Sm(x) = {i£ Sm.1(x)\S°m.1(x):((P(S°m.1(x))A)'n-1x,ni) < 0} U &^(x)

S°m.i(x) = {iGSm.1(x)\So
m.i(x):((P(S°m.1(x))Ar1x,ni) <0} U S°m.,(x), where

P(K)A=A-EieKnini
TA.

If Sm(x)=S°m(x) we know by Theorem 2.1(1) that

{xER":<x,ni>=pi ViGSm(x), (x,n i)>p i viG(l..k)\Sm(x)} is the stratum we seek.

Alternatively if we arrive at a state where it is evident that S°r(x)=S°m(x),

Sr(x)=Sm(x) V r > m , then since the system is analytic we may apply Theorem 2.1(2)

with the same result.
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Remark 2.5

A submanifold with orthogonal comers is a submanifold with corners such that for

some neighbourhood of each point there exists some local representation

ZN(I;J)=ZN(f1,..,fk;fk+1,..,fk+Jwith (gradfi(x),gradfj(x))=O for all xGZN(I;J) and

for all i j G I U J with i ^ j . This category includes orthants and sets formed out of

orthants and balls, such as {xGRn:Xi>0 for all i6K l 5 a2<EieKiX;2<b2} for

K!,K2C (l,..,n) and not necessarily distinct reals a,b (Figure 2.8), as well as of course

submanifolds with smooth boundary. While this notion of the corners of a

submanifold with corners being orthogonal will suffice for our purposes it is obviously

very crude: it has in particular the drawback that the defining property will not hold

for all local representations even if it holds for one - eg, M={xeR n :x !>0 ,

Vi <X!2+x2
2< 1} (Figure 2.8) is a submanifold with orthogonal corners of Rn, and

near a point with xx=0, x2
2+X!2=l we can choose for the functions in our

representation f1(x)=x1/x2)f2(x) = l-x2
2-x1

2 whose gradients are othogonal near this

point, but if we choose instead f1(x)=x1,f2(x) = l-x2
2-x1

2, which is also a local

representation of M, the gradients are only orthogonal if x ^ O .

This situation arises because the "intrinsic" property of a submanifold with orthogonal

corners is that gradfi(y),gradfj(y) are perpendicular at every point y where fs(y) and

fj(y) are both zero, not everywhere on M.

Figure 2.8. A submanifold with orthogonal corners

(1) We show that if M is a submanifold with orthogonal corners (with local

orthogonal representation ZN(I;J)) then for each y in the domain of this representation

X(M)(y)=X(S1(y))(y)+Ei6Si(y)v(gradfi(y)/ | gradf.(y) | 2)max«gradf,(y),X(y)),0).

From Chapter One X(M)(y) is the unique vector in TyM such that
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X(M)(y)-X(y) | =min{ | X(y)-Y | :Y€TyM}. Near y M is locally represented as

iCtfV), with TyM=TyZN(I;S1(y)\J). By Remark 2.1 we have

Y-P(TyZ(S1(y))YGspan{P(I)gradfi(y):ieS1(y)} and by orthogonality of {gradf;(y)} we

find this gives Y=P(TyZ(S1(y)))Y+EieSi(y)(Y)gradfi(y))gradfi(y)/ | gradfty) | 2 and

similarly X(y)=X(S1(y))+EieSi(y)(X(y),gradfi(y))gradfi(y)/ | gradfty) | \

Thus | X(y)-Y | is minimized over YGTyZN(I;S!(y)\I) by choosing

P(TyZ(S1(y)))Y=X(S1(y))

<Y,gradfi(y)>=0ifi6I

(Y.gradfiCy))=max{(X(y),gradfi(y)),O} if i € S^yJNJ

which is the required result.

(2) We show why in Example 0.2 we needed the angle between Fj and F2 to be

greater than a right-angle if the transition at y3 was to occur. In fact we show in

general that if M is a submanifold with orthogonal corners then for any x E M and

t > 0 if <KM)(x,t)Ga stratum a then X(M)<£(M)(x,t)=X(ff)<£(M)(x,t) (such clearly was

not the case at y3 in Figure 0.2).

If $(M)(x,t)=yGcr (see Figure 2.9) then working with the usual local representation

of M near y (ie ZN(S°1(y);S1(y)\S°1(y))) X(a)y=X(S!(y))(y): from (1) above therefore

if X(M)(y)*X(o)(y) then (gradf,(y),X(y))>0 some i G S ^ y ^ I . By continuity (of

y-*{gradfi(y),X(y))) there exists h > 0 with t-h>0 such that

{gradf^(M)(x,s),X(0(M)(x,s)))>O for all s6(t-h,t), which implies by (1) again that

(X(M)^(M)(x,s),gradf^(M)(x,s)>=<X^(M)(x,s),gradf^(M)(x,s)>forallse(t-h,t).

Hence f#(M)(x,t)-f>(M)(x,t-h)= \ t,h(gradf1(^(M)(x,s)),X(M)^(M)(x,s))ds=

We know f#(M)(x,t-h)>0 since «^(M)(x,t-h)6M, hence f^(M)(x,t)>0 which is a

contradiction to iGS^y).

M

Figure 2.9
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Chapter Three

The Iteration In Relation To Right-hand Derivatives

We have seen in Chapter Two that if the iteration at x converges to a single stratum

(or to be precise a single set of indices representing a single stratum) then this stratum

contains <£(M)(x,t) for all sufficiently small positive t. This chapter and part of

Chapter 5 will be concerned with what the pair (S°i(x),Si(x)) is telling us at each stage,

even if the data is only smooth and we have no a priori reason to suppose that the

iteration will ever converge to a single stratum. If Theorem 2.1 applies at x then for

some to>0 </>(M)(x,t)=^(S00(x))(x,t) for all t6[O,to), and so <HM)(x,t) has right-hand

time derivatives at t=0, denoted Dt
+i<£(M)(x,t=0), of all orders and equal to the

two-sided time derivatives of <^(Soo(x))(x,t) at t=0. Since (by Corollary 2.1)

Dt
i0(K1)(x,t=O)=Dl

i0(K2)(x,t=O) for all S0
i+1(x)CK1,K2CSi+1(x) it follows that in

these cases Dt
+i^(M)(x,t=0)=Dl

i^(K)(x)t=0) for all S°i+1(x)CKCSi+1(x), and we

show in this chapter that that this remains so if the (i+l)th stage of the iteration is the

last we reach and where even had we continued ad infinitum it may still not have

provided us with a single stratum containing <£(M)(x,(0,5)). We shall in the process

obtain an alternative definition of trajectory (=solution): <£(M)(x) is a trajectory iff

Dt
+<£(M)(x,t)=X(M)<?i>(M)(x,t) for all tGLO.tJ (this has been established by Henry in

[31] for the case M is an orthant).

Definition (One sided derivatives) If # is a map $:[0,T)-*Rn some T > 0 , such that

limhJ0(<£(h)-<£(0))/h exists, say the limit is D+<£(0) and inductively if D+i<£(h) exists for

all h£[0,T) some T > 0 and limhi0(D
+i^(h)-D+i(/)(0))/h exists denote the limit by

D+(i+1)<£(0). Similarly for left-hand derivatives: if D'l4>(h) exists on (-T,0] some T > 0

and limhlo(D^(O)-Di0(-h))/h exists denote the limit by D"(i+1)</)(0). If right (left) hand

derivatives of all orders exist at 0 say <j> is C+°° (C"°°) at 0. 4> is C°° on U open in R

iff at every point tGU <f> is C+0o,C00 and D+ i^(t)=D^(t) for all i € Z + .

Theorem 3.1 If M,X are smooth (with M near x locally represented in the usual way

as ZN(S°1(x);S1(x)\S0,(x))), then for every xGM <£(M)(x,t) is C+o° for all tG[0 ,g

(where t, is as in Theorem 1.1) and D,+ty(M)(x,t=0)=Dtty(K)(x,t=0) for all

S°i+1(x)CKCSi+1(x), and Dt
+tf(M)(x,t=0)= X(M)tf(M)(x,t=0).

This will be proved after Lemma 3.2. The last part (that D t
+^(M)(x,t=0) =
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X(M)<£(M)(x,t=O)) has been proved in the case M is an orthant by Henry [31]). We

can see Theorem 2.1 is plausible by reconsidering Example 2.1:

Example 3.1 In Example 2.1 we had X(x,y)=(l,f(x)) where

(l/x2)exp(-l/x)(sin(l/x)-cos(l/x)) if x > 0

0 i f x < 0

on M={(x,y)6R2:y>0} and established that the trajectory based at the origin looked

like

Figure 3.1

where l/tm=m7r+x/4. We can check that S°(O) = 0 and S;(0) = l for all i. Evidently

the conclusion of Theorem 1.1 holds away from the origin. We can readily show by

ad hoc means that it is C+°° at 0: on ( t ^ t ^ for m odd

0(M)(O,t) = (t,max(O,exp(-(t-tJ"1)sin(t-tJ-1),and thus on ( t , ^ ) for m odd

Dt
+i^(M)(O,t) = (Dt

i(t),Dt
+ig(t)) where Dt

+ig(t)=0 or D'CexpHt-tJ-VnCt-tJ1)- For

large m tm.2<2tm and hence for all t G ^ , ^ ) l/tm< l/(t-tj and hence

supie(tm>tm2)(l/(t-tJ)Dt
i(exp(-(t-tJ"1)sin(t-tJ-1).Dt

i(exp(-(t-tm)"I)sin(t-tm)-1) is a sum of

terms of the form (t-tJ^expKt-tJ^sintt-tJ"1 or (t-tJ^xpHt-tJ^cosCt-tJ-1 (k>l)

and since for tSCt^t^) l /( t- t j> 1/0^2-0=(2 x/3)(m+l/4)(m-5/4) we can see by

substituting um=l/(tm.2-tj that supl€(t >t .(l/OD^expHt-tJ^sinCt-tJ'1)-**) as m-»oo for

alii.

We have set <HM)(O,t)=(t,g(t)) and the above tells us that (l/t)Dt
+ig(t)-»O as t -*0 for

all i > 0 . Thus g(t)/t-* 0 so Dt
+g(t=O)=O, (Dt

+g(t)-Dt
+g(O))/t=Dt

+g(t)/t^ 0 as t-*0

so D t
+2g(t=0)=0, and inductively Dt

+ig(t=O)=O for all i. Thus at the only point

which might have presented a problem (ie the origin) we are saved because there is at

this point an infinite order tangency between <£(0) and $(1) (that is to say,

Dt
i<^(0)(O,t=O)=Dt

i</)(l)(O,t=O) for all i).

To recap: to prove Theorem 3.1 we are necessarily interested in infinite order

tangencies, because if there aren't any then by Corollary 2.1 S°0o(x)=S0o(x), so we

could apply Theorem 2.1, and the conclusion of Theorem 3.1 follows immediately.

The above example suggests that if there is an infinite order tangency at x between

and ^(Kj) for all ICKi,K2ClUJ we could stitch together an inductive proof
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that 4>(M)(x) is right hand smooth at x. We must though consider how to deal with the

situation where S°00(x) ^S^Cx), and hence the flows <£(K) with K between these

bounds are infinitely tangent at x, but S°oo(x)?>iS0
1(x) or S00(x)?^S1(x) and hence other

strata are present locally (Figure 3.2); we would like to show that on some (0,5)

<£(M)(x,t) is disjoint from these, and hence that we could apply the above idea on a

subcorner of ZN(I;J).

ZP(K3;J\K3)

Figure 3.2

For example, in the context of Figure 3.2, if S°0o(x)CK1,K2CS0o(x) and so ^(K^ and

<£(K2) have an infinite order tangency at x, we wish to show that on some (0,5)

<£(M)(x) does not intersect any ZP(K3;J\K3) where K3 does not lie between S°00(x) and

None of the results so far will tell us this: to apply Theorem 2.1 we needed

S00(x)=S°00(x). What we do is to use Lemmas 2.5 and 2.6 to show that there exists a

finely tapered set in ZNP(S0
m(x);S00(x)\S0

0)(x);S1(x)\S00(x)) which is mapped into

itself by the flow and contains x in its boundary, which is exactly the result needed.

Definition We define the canonical r-funnel F.(q.r>l = ((t.x>)€R1XR<1-1:t>0. | x | <t r}.

If X is a non-vanishing Cr vector field on a Cr q-dimensional submanifold without

corners S, with corresponding flow <f>, we have by the straightening-out Theorem ([1,

Chapter 4], [37, Chapter 5] etc) that any point x in S has a neighbourhood U for

which there exists a Cr diffeomorphism f:U-»Rq such that f.X=unit field 6j on Rq ( i e

for all yGR" 61(y)=e1 = (l,0)eR1XR<>-1, with flow ^(y,t)=y+te,, yGRq), and so that

f<£(x',t)=^(fx',t), for all x 'GU. We say f ' F ^ r ) is an r-funnel about the trajectory

in S (Figure 3.3).



f
flow 4> on S maps to
unit flow on Rq

S, a Cr boundarlyless
"submanifold

Figure 3.3

Lemma 3.1 If X is any smooth vector field on Rq with corresponding flow 4> agreeing

with the flow of the unit vector field e, above to infinite order at the origin (ie

D^(0, t=0)=e 1=(l ,0)eRxR< ! l , D/<M0,t = 0) = (0,0) for all i> I) then for any rGZ+

there exists a neighbourhood U of the origin such that for all x£dF c(q,r)nU X(x)

points into Fc(q,r) (Figure 3.4).

flow c/> having infinite order tangency with e, at 0

Figure 3.4

Proof We shall denote the set of unit vectors in Rq~' by Sq'2. Setting \pe(i) = tr0+te,

where 0GSq"2 we have 3Fc(q,r) = U {^,(O:0eSq-2,t>O} (see Figure 3.5).

Figure 3.5
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The tangent space to 3Fc(q,r)at \{/e(t) has inward pointing normal n(i/'e(t))=r1re1-0.

Setting g9(t)=(n(^(t)),X(^fl(t))> we seek Dt
!ge(t=0). From the definition of \pe we have

that Dtty,(t=0)=Dtty(0,t=0) if i< r - l , hence D t
!X^(t=0) =Dt

i+1^(0,0) if i< r - l , so

et if i=0

0 if l < i < r

!<e1)e1> if i=r-l

0 if 0 < i < r - l
Thus DtWt=0) =

and hence gf,(t)=tr"1(r+(t/r!)Dt
rg(,(/xt)) some ^£(0,1) by Taylor's Theorem, and if

M=sup{ | Dt
rg,(t))/r!r | i t e ^ l ^ e S 1 - 2 } (which is finite for fixed r > 0 by

compactness of Sq~2 and smoothness of the data) we have gj(t) > 0 for all 0 if

0<t<min(l , l /M), and setting U = (0,min(l,l/M))xRql (that is, (0,min(l,l/M)) as an

open subset of R) we get (X(x),n(x))>0 for all xGdFc(q,r)nU\{0}, while at the

origin X(0)=e!. _

We will show (Lemma 3.2) that for large enough r the intersection of an r-funnel in

Z(S°CD(x)) about <̂ >(S°0o(x))(x) with M is , if x itself is deleted, disjoint from all strata

ZP(K;J\K) such that < (̂S°0o(x))(x) is not infinitely tangent to <KK)(x) at x, and

furthermore is mapped into itself by the flow <£(M) near x and hence contains

(see Figure 3.6).

The intersection of M with an
r-funnel in ZCS^x)) about

Figure 3.6
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These funnels depend on x,M r,X, the straightening-out map f and S°00(x,M,X), and

will usually be denoted by Fx(r,f), with a funnel satisfying the conclusions of Lemma

3.2 ' usually denoted by Fx (this amounts to choosing r large enough and a

particular choice of f), and its intersection with ZN(S°0o(x);SO0(x)\S°00(x)) by Fx '.

The reader may like to think of funnels in the following way. Classically, if X was a

smooth vector-field on a smooth manifold the trajectory through a point x, <£(x), was

smooth. Now if M is a smooth vector-field on a smooth submanifold with corners M

<£(M)(x) is only guaranteed to be smooth on a right neighbourhood of t=0 if the

conditions to apply Theorem 2.1 apply (viz that the iteration converges to a single set

of indices). Otherwise we may have a situation such as illustrated in Example 2.1

where <£(M)(0) is not smooth on a right neighbourhood of t=0. Thus in general the

best we can do (if smoothness is what we're after) is to replace "smooth $(x)" with

"smooth Fx '", which contains the non-smooth <£(M)(x) and has various additional

properties mentioned above and proved in Lemma 3.2 below. These properties of the

funnels are the basis for the proof of Theorem 3.1.

Lemma 3.2 If M is a smooth submanifold with corners and X is a smooth vector

field on M, with M near x locally represented as ZN(S°,(x);S1(x)\S°1(x)), then there

exists ro(x)GZ+ such that for each r>r 0 there exists a neighbourhood U of x in Rn

and a funnel Fx=F(x,ZN(I;J),r,X,f,S0
00(x)) in Z(S°03(x)) of X(S°0O(x)) about

0(S°oo(x))(x) and corresponding closed subsets Fx'=FxnZN(S°0=(x);So=(x)\S°00(x))

such that

1. Fx'nU\{x}CZNP(Su
O3(x);Scc(x)\S°CE(x);S1(x)\S0o(x)) (= a subcorner of

ZN(S°1(x);S1(x)\Su
1(x)), s o F / C M )

2. X(M)(y)=X(K)(y) some not necessarily constant K with S°OJ(x)CKCSO5(x) for all

y G F / O U

3. X(K)(y) points into intFx for all y S d F . n U for all S°03(x)CKCS00(x)

4. 0(M)(x) n U C Fx'H U

Eg take M = {x:Xi>0,i = 1,2,3} CR\ X(x) = (l,f(x,),-1) with fas in Example 2.1. We

have then that S°,(O) = 0 and S,(0) = (l,2,3), Su,(0) = (3) and S;(0) = (l,3) for all i>2 .

Then our funnels Fx are of the form {x£R3:x3=0, | x2 | <x, r ,x ,>0}, and FX' is of

the form Fxn{x:x2>0} (Figure 3.7).
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Z(3)DFXDFX'D<KM)(O)

Figure 3.7

Alternatively take M as above and set X(x) = (l,xI,f(x1)); then S°i(O) = 0 ,

S1(0) = (l,2,3), S°2(O) = 0 , S2(0) = (l,3), S°i(O) = 0 , S;(0) = (3) for all i > 3 . The funnels

Fx are of the form {xGR3: | -J(x2
2+x3

2)-lA\l
2 | <Xi">i >0}, and Fx ' is of the form

F xn{x:x 3>0}. 4>(M)(0) is as in Figure 3.1, with the x-axis there mapped to the curve

{x3=0,x2=
1/2X1

2} and the y-axis pointing in the x3-direction (Figure 3.8).

Figure 3.8
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Proof The convention in this chapter (and in fact in Chapter Seven) will be that

dim(Z(S°00(x)))=q.

(a) We show that there exists r o 6 Z + such that for some neighbourhood U of x a r0-

funnel Fx(r0,f) about <^(S°0o(x))(x) in Z(S°00(x)) (and therefore Fx(r,f) for any r>r0) has

the property that Fx(r0,f)nU\{x}CZP(S°oo(x);S1(x)\S0o(x)). We have defined

Fx'=FxnZN(S°M(x);S0o(x)\S°oo(x)) so if we show this then

Fx'nU\{x}CZNP(S°oo(x);Soo(x)\S0
oo(x);S1(x)\Soo(x)) which is part (1) of Lemma 3.2.

For each j£S1(x)\S0o(x) there exists r(j)GZ+ such that jESr(j)(x)\Sr(i)+1(x) and by

Lemma 2.5 we know that

0 for all i

We take r0=l+max{r(j):jGS1(x)\Soo(x)}. Suppose we set \j/e' =f'V« where f is the

straightening out map used in the definition of funnel and \p9 is a curve in 3Fc(q,r0), as

in Lemma 3.1. Since by Corollary 2.1 Dt
i0(So.(x))(x,t=O) =Dt

i<£(S°oo(x))(x,t=0) for

all i and by definitions D,W(t=0) =Dt
i<^(S°w(x))(x)t=0) for all i<r o , it follows that

0 for all i<r(j)

Hence fj^'(t)=f®((r(j) + l)kj+tDt
r(i)+1fj^'(Act))/(r0) + l)!) some^E(0, l ) , which is

positive for tE(0,6(0)] say, and by evident continuity of f$9 in 9, fi\p9.'(t)>0 if

tE (0,8(9)] and 6' E some neighbourhood of 9, Ue. We get a covering of Sq2 by such

IVs, and by compactness of Sq~2 there exists a finite subcover Sq"2= U {Ue: 0E 0}

where 9 is a finite set in Sq"2. So fj^'(t)>0 for all 9 if te(O,min,ee5(0)]. Repeating

for each jES1(x)\S00(x) we obtain a neighbourhood U of x in Z(S°0o(x)) such that for

all yEdFx(r0,f)nU\{x} and for all jESj(x)\S00(x) fj(y)>0, and since by definition

Fx(r0,f)CZ(S°oo(x)) we have Fx(r0,f)nU\{x}C ZP(S°0o(X);S1(x)\S00(x)), and hence

Fx'nU\{x}CZNP(S°0o(x);Soo(x)\S0
a3(x);S1(x)\Soo(x)) as required for (1).

(b) We show that if X is a vector in Rn such that for some K with I C K C I U J

(X,P(K\j)nj)<0 for all j E K \ I then there exists e > 0 such that if

| (P(K)X,n;) | / | P(K\j)X,nj) | <e for all i E J \ K and for all j E K \ I then

P(LC(I;J))X=X(H) some K C H C I U J .

(i) For any XEL(I) we have by Remark 2.1(1) that for some {X^},
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X-X(IUJ)=E1€KXI\,P(I)ni+EieAKe,P(I)ni. Then for any jGIUJ

(P(K)(X-P(IUJ)X),nj) = EieAK<eiP(K)ni>nj), and since I C K C I U J and jGIUJ the left

hand side is <P(K)X,nj)-(P(IUJ)X,ni) = (P(K)X,nj)-O.

Hence if we set Nu = <P(K)ni,P(K)nj>, for ijGJXKjN"^ inverse of N in

span{P(K)n;;iGJ\K} (this inverse exists by Remark 2.1(2)), and pj = (P(K)X,nj>, then

Ne=p or e=N''p.

IfjeK\Jthen(P(K\j)X,nj)=<P(K\j)X-P(IUJ)X,nj> = (P(K\i)(X-P(IUJ)X),nj>

= (P(K\j)(Si6KXIX,ni + EieAKe1ni),nJ) = XJ | P(K\j)nj | 2 + EieJVK(eiP(K\j)ni,nJ).

It is then straightforward to check that given any 5>0 there exists 1/e so large (how

large depends on the invertible matrix N) that if (P(K\j)X,nj}<0 for all jGK\ I and

(P(K)X,ni)/(P(K\j)X,n1)<e for all j e K\I and for all iGJ\K, then Xj<0 and

| ej | / | Xj | <5 for all such i,j and e;,Xj as above.

(ii) We know eg by Lemma 1.2 that P(LC(I;J))X=P(H)X some I C H C I U J . We must

have P(H)XGLC(H;J\H) so (P(H)X,n^)>0 for all j G J \ H , so

(P(H)X,(Ei6KXH | X, | n,)>0 (where K is as above). But since (P(H)P(IUJ)X,n,) =

<P(HJJ)X,ni) = 0 if iGIUJ,and each Xi<0,we have

(P(H)X,Ei6KXH | Xi | n,) = <P(H)(X-P(IUJ)X),E,6KXH | \ | n;> =

(PC^CEie^Xini + Eie^ein^EieKNH I \ I n,) =

- | P(H)(EieKXHX,n;) | 2 + (E,eJVKe,n;,P(H)(EieKXH | \ \ n,)).

We have | P(H)(EieKXHX,n,) | =0 iff K\H = 0 , ie iff KCH. If K ^ H then

- | P(H)(EieKXHX,n,) | 2 + (E,6JXKe1ni,P(H)(E,eKXH | X, | nO) =

- | P(H)(E1£KXHXini) | 2(l+{(E,eJXK6,n,),P(H)(E,6KXH | \ | n;))/ | P(H)(E,6KXHX,ni) | 2).

(EieJXKeini,P(H)(EieKXH | X, | n,))/ | P(H)(EiSKXHX,n;) | 2 is small by (i), and hence

- | P(H)(EieKXHX,ni) | 2 + {E,6JXKe1ni,P(H)(Ei6KXH | \ | n ;))<0, contrary to

(P(H)X,(Ei6KXH | Xj | n|))>0. Hence we must have HDK as claimed.

(c) We showed in (a) that there exists an integer r0 such that for any r>r 0 there exists

an r-funnel Fx = Fx(r,f) about 0(S°oo(x))(x) satisfying for some neighbourhood V of x

UnFs(r)t)\{x}CZNP(Su
w(x);SO3(x)\SlUx);S1(x)\SM(x)). We now show (2), ie that

for all y G F / H U X(M)(y) = X(K)(y) some S°00(x)CKCS00(x). Fx 'OU\{x} intersects

strata ZP(K;S,(x)\K) for all Su
0o(x)CKCS0o(x), and taking yGZP(K;St(x)\K) we

haveTyM=T>.ZN(Su
I(x);K\S°1(x)) and we must show

P(TyZN(S(1
1(x);K\Su

1(x)))X(y) = X(K')(y) some S°oo(x)CK' C S J x ) . By (b) above it

suffices to establish two conditions, that (P(Su
a,(x)\j)X(y),gradfj(y)) < 0 for all

jGS°00(x)\S(l
1(x), and that {P(Su

O0(x))X(y),gradf,(y))/(P(Sl)
oo(x)\j)X(y),gradfJ(y)) is
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arbitrarily small for all iGK'XS'Ux) and for all j

If yGFx(r,f)\{x} then we may write y=^b(t) where bG the closed ball Bm-1 with

m=n-dimZ(S°0o(x)), b being a parameter in the cross-section to Fx(r,f) (with b-»i/'b(t)

continuous for each t) and D,tyb(t=0) =Dt
i0(S°oo(x))(x,t=O) for all i < r (see Figure

3.9).

A, representing a cross-section of Fx(r,f)

Fx(r,f)

Figure 3.9

We know by Lemma 2.6 that for all K satisfying S°00(x)CKCS00(x) and

j G S°oo(x)\S0
1(x) that there exists r(j)GZ+ such that jGS°r(j)+1(x)\So

r(j)(x), and setting

gj(K)(t)=<X(K\j)^(K)(x,t),gradf>(K)(x,t)> then

Dt'gj(K)(t=0)-
0 for all 0< i< r ( j ) - l

k/ < 0 if i=r(j)-l

If we now take r>max{{r0 of part (a)},{r(j)-l for jGS°00(x)\S0D(x)}} (where r(j) is as

in Lemma 2.6) then setting hj(b)(t)=(X(S0
oo(x)\j)i/'b(t),gradfji/'b(t)) we have since

Dttyb(t=0)=Dt
i<KS°oo(x))(x,t=0) for all i<r that

=0 for all 0 < i < r ( j ) - l

< 0 if i=r(j)-l

and hence by continuity of b-*\pb that hj(b')(O < 0 for all tG (0,T(b)] and for all b' in

some neighbourhood Ub of b in Bm l . By the same argument as in (a), we may use

compactness of B m l to infer that there exists T > 0 such that hj(b)(t)<0 for all

tG(0,T] and for all bGB m l , ie that there exists a neighbourhood U of x such that for

all yGFx(r,f)nU\{x} and for all jGS°os(x)\S°1(x) (P(S°aj(x)\j)X(y),gradfJ(y))<0.

Thus we have shown the first of the two conditions. For the second, we have

("theorem of indeterminate forms") that if g,h:R-»R are smooth with

Dt
!g(t=0) =0^(1=0) =0 for all i<r(j)-l, and Dt

r(i)1g(t=0)=0, D t
r ( i )1h(t=0)<0, then

linVog(t)/h(t)=0.
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Thus if we set gj(b)(t)=(P(S0
oo(x))X^b(t),gradf^b(t)) for j G S ^ X S ' U x ) , and

hj(b)(t)-(P(S0
O0(x)\j)X^b(t),gradfj^b(t)) for jGS^WXSVx) (ie, hj(b) is exactly as

above), then the second condition will follow if we can show that Dt'gj(b)(t=O)=O for

all i<r(j), Dt
ihj(b)(t=0)=0 for all i<r(j)-l, and Dt

r°>1hj(b)(t=0)<0. Dealing first

with the gj(b) term, we have by construction of ^b that for all i<r(j)

Dt
i(P(S0

0o(x))X^b(t=0),gradfJA(t=0)) =

Dt
i(P(S°oo(x))Xc/)(S0

M(x))(x,t=0),gradfj</)(S0
cn(x))(x,t=0))

=Dt
i+1fj<KS°oo(x))(x,t=0), which=O for all i > 0 and for all j G S ^ X S ' U x ) by

Lemma 2.2 and Corollary 2.1. hj(b)(t) we have already dealt with above; we saw that

setting hJ(b)(t)=Dt
i(P(S°00(x)\j)X^b,gradf^b(t)> then

Dt
ihj(b)(t=0)

=0 for all 0 < i < r ( j ) - l

< 0 if i=r(j)-l

which is exactly the result we need.

Hence for all jGSO3(x)\S°M(x) and for all ieS^OONSV*), for all sufficiently small

t > 0 (P(S0
oo(x))X(^b(t)),gradf1(^(t)))/(P(S0

oo(x)\i)X(^b(t)),gradfj(^b)(t)))<0, and hence

as above for some neighbourhood U of x this quantity is < 0 on Fx(r,f)nU\{x},

which completes the proof of (2).

(d) For all S°0o(x)CKCS0o(x), f.X(KeS°08(x)) is a smooth vector field on Rq (where f

is our straightening-out map and X(KeS°00(x)) is as defined at the beginning of

Chapter Two) with integral flow f.<£(Ke0) (the integral flow of the push forward is

the push forward of the integral flow - eg [1, Section 4.2]) and furthermore by

Corollary 2.1 Dt
if.^(K1e0)(x,t=O)=Dt

if.<^(k2e0)(x,t=O) for all iGZ + and for any

S°00(x)CK1,K2CS00(x), so by Lemma 3.1 there exists some neighbourhood U of the

origin on which f.X(KeS°00(x))(x) points into Fc(q,r) for all x£3Fc(q,r), and hence

there exists a neighbourhood V of x in Z(S0
O3(x)) such that X(K)(y) points into Fx(r,f)

for all yGdFx(r,f)nV, which is (3).

(e) (2) and (3) imply Fx ' flU is mapped into itself and we can then use continuous

dependence on initial conditions (Theorem 1.1 part 3) to obtain (4). -

Proof of Theorem 3.1

(1) By absolute continuity of <£(M)(x) we have



54

4>(M)(x,h)-<£(M)(x,0) = j hoX(M)0(M)(x,s)ds and hence

| <£(M)(x,h)-<KM)(x,0)-hX(M)4>(M)(x,0) | <

J'S | X(M)</.(M)(x,s)-X(M)0(M)(x,O) | ds (by [48, Chapter 1])

< | h | supsei0,h] | X(M)*(M)(x,s)-X(M)tf(M)(x,O) | (also by [48, Chapter 1]).

By Lemma 3.2 part 4 <£(M)(x,s) GFX' for all sufficiently small s>0 , and by Lemma

3.2 part 2 for all such s X(M)<^(M)(x,s)=X(K)^(M)(x,s) some S°M(x)CKCSB(x).

Hence since X(M)(x)=X(K)(x) for all S°00(x)CKCSO3(x) we must have

sup{ | X(M)0(M)(x,s)-X(M)0(M)(x,O) | :se[0,h]}-*0as hlO hence

limhl0 | *(M)(x>h)-0(M)(x,O)-hX(M)*(M)(x,O) | / | h | =0.

Hence Dt
+</>(M)(x,t=O)=X(M)<KM)(x,t=O)=X(K)0(M)(x,O) for any

S°0o(x)CKCSO0(x), so by Corollary 2.1 Dt
+<HM)(x,t=0)=X(K)(HM)(x,0) any

S°2(x)CKCS2(x).

(2) Since for small t > 0 ^(M)(xst)eFxnU\{x}CZP(S°,(x),SI(x)\S0.(x)) (see part (a)

of the proof of Lemma 3.2) we have Si(<^>(M)(x,t))CS00(x) for small t > 0 . Returning

to part (c) of the proof of Lemma 3.2 we see that at each point y of Fx ' f lU, and

hence of <£(M)(x,t) for t small and >0 , (X(K\j)(y),gradfj(y))<0 for all

j eS°00(x)\S°1(x) any S0
OB(x) CKC S00(x). Thus by part (c) of the proof of Lemma 3.2

this means (since M near y is represented as ZN(S0
1(x);Stx,(x)\S°1(x))) that we cannot

have X(M)(y)=X(H)(y) any HCS°0o(x), hence S0
2(<^(M)(x,t))DS0

oo(x) for t small and

positive. Thus for such t we have S°oo(x)CS0
2(^(M)(x,t))CS1((i!)(M)(x,t))CSoo(x) so by

the construction of the iteration S0
1(x)CS0

0D(x)CS0
2(^(M)(x,t))CS0

oo(<^(M)(x)t))C

CS00(^(M)(x,t))CS1(<KM)(x,t))CS00(x)CS1(x),for all sufficiently small t > 0 and for

a l lxGM.

(3) We take as inductive hypothesis that for all i < k and for all xGM

Dt
+itf>(M)(x,t=0) exists, and that Dt

+i^(M)(x,t=O)=Dt
i0(I)(x,t=O) any

S°0o(x)ClCS0o(x) (and hence by Corollary 2.1 for any I such that

The inductive hypothesis is true if k=2 by (1). We have by definition

Dt
+k0(M)(x,t=O)=limh,o(Dt

+(k^(M)(x,h)-Dt
+*1V(M)(x,O))/h (**)

if the right hand side exists, and by the inductive hypothesis

Dt
+*1V(M)(x,h)=Dt

k-1^(I)((/)(M)(x,h),t=0)anyS0
aj(^(M)(x,h))CICS0o^(M)(x,h)))

and so by (2) D t
+(kI^(M)(x,h)=D t

kV(I)(^(M)(x,h),t=0) some S°O0(x)CICS0o(x).

Thus for each small h > 0 we may select a set of indices I(h) where

S°oo(x)Cl(h)CSoo(x) such that Dt
+(kl)</)(M)(x,h)=Dt

k^(I(h))(</)(M)(x)h),t=0).
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1 if I(h)=I.
Setting 5;(h) =

0 otherwise

where each I; is one of the 2 ' S»(X)XS -(x) I set of indices lying in the range

S°00(x)CliCS00(x), then since Dt
+(kl)<£(M)(x,t=0)=Dt

kl<KI)(x,t=0) for all

S°O0(x)CICSoo(x) the right hand side of (**) is

(In this formula we need <f>(lie0) rather than <£(I;) because <£(Ij)(<£(M)(x,h)) is only

defined if 4>(M)(x,h)GZ(Ij). Of course, if <^(M)(x,h)^Z(Ii) then 5;(h)=0, so the need

for <£(Iie0) is purely formal).

(4) If Y is any smooth vector field, <f> any smooth flow, set Yi(x)=Dt
i"1Y<^(x,t=0). We

show limhi0 (Yi(^(x,h))-Yi(<^(x,0)))/h = Yi+1(x). Yi(<^»(x,h)) =

Dt
wY0(«(x,h),t=O), but <£«>(x,h),t)=<Kx,t+h) so Yi(0(x,h))=Dt

i-1Y^(x,t+h) | t=o.

Hence limhl0(Y
i(^(x,h))-Yi(^(x,0)))/h =

lim^oCD^Y^Cx.t+h)) | l=0-Dt"Y(*(x,t)) | t=0)/h = DhDt
MY*(x,t+h) | t=h=0 =

Dt
;Y^)(x,t=0)=Yi+1(x).

(5) We show that if Y is any C1 vector field, 4> a C° right differentiable function

<£:[0,T)->Rn with | Dt
+4> \ bounded on compact intervals, then li

Proof- by C!-ness of Y | Y(0(h))-Y(^(O))-Y'(x)(^(h)-^(O)) | =k | ^(h)-^(0) | where

k-*0 as | <Kh)-<H0) | -*0. Taking supt6[0>h] | Dt
+^(t) j =M we have by the right sided

Mean Value Theorem ([14, Chapter 8.5, problem 2]) that | ^(h)-^(O) | <Mh and

hence by continuity of <$> that | Y<£(h)-Y(0(O))-Y'(<KO))(tf(hH(O)) I ^khM where

k-*0 as h-*0, hence result.

(6) Set Dt
i0(Ie0)(y,t=O)=XI

i(y)=Dt
ilX(Ie0)<^(Ie0)(y,t=O) giving us fields X{ on a

neighbourhood of x in Rn. Consider

limhlo(D t
kXl1e0)(^(M)(x,h),t=O)-D t

k^(I i)(x,t=O))/h

=limht0(XI
k-1(</)(M)(x,h))-XI

k-1(x))/h = XI
kl'(x)Dt

+<^.(M)(x,t=0) by (5). But since by
i i i

(1) Dt
+«^(M)(x,t=O)=Dt0(Ii)(x,t=O) the above = XI

kl'(^(Ii)(x,0))D^(Ii)(x,t=0) =

limhJO(XIj
k-1(^(Iie0)(x,h))-XI

kl(^(Ii)(x,O)))/h (by (5) backwards) =XI
k(x) by (4).

(7) If 5;(h) is as defined in (3) and fi(h)->f(h) independent of i as h i 0, then

(E5i(h)fi(h))-f(h) = E5i(h)(fi(h)-f(h))-*Oas hlO. Using this with
= (Dk-10(Iie0)(^(M)(x,h),O)-Dkl0(Iie0)(^(M)(x,t),O))/h(where I; is as defined in
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(3) ) which by (6) tends to Dt
k^(I1)(x,t=0) as hiO, and using that by definition of I;

and Corollary 2.1 Dl
k0(Ii)(x,t=O)=Dt

k(K)(x,t=O) for all S°0o(x)CKCSO3(x), we see

that (*)= Dt
k<KK)(x,t=0) any S°00(x)CKCS00(x), and so by induction Theorem 3.1 is

true for all k. „.

Remarks 3.1

(1) Theorem 3.1 part 1 is true so long as X is C1. Since an absolutely continuous

function is a.e. differentiable ([48, Chapter 7] or [4, Section 0]) the following are

equivalent definitions (this remark gives (b)-»(a), (a)->(b) by Theorem 3.1) of <£(M)(x)

i f X i s C 1 :

(a) </)(M)(x):[0,tx)-^M is an absolutely continuous function such that

Dt<HM)(x,t)=X(M)<KM)(x,t)a.e. on [0,Q

(b) <^)(M)(x):[0,tx)-^M is an absolutely continuous function such that

Dt
+<KM)(x,t)=X(M)<HM)(x,t) everywhere on [O.tJ.

This second definition defines a trajectory by a property holding at every point of

[O,tJ and given the one-sided "semi" nature of everything in the subject has much to

commend it.

(2) If <KM)(x,t)GZP(K;J\K) for tG(0,h) we have Dt
+fk<KM)(x,t=0)=0 for all kGK

for all tG(0,h), ie (gradfk<^(M)(x,t),X(M)0(M)(x,t))=O for all kGK and for all

t6(0,h), and since 0(M)(x,t)GZP(K;J\K), so X(M)<£(M)(x,t)=X(K>(M)(x,t) some

K'CK, we have X(M)^(M)(x,t)=X(K)<£(M)(x,t) for all tG(0,h). Furthermore by

Theorem 3.1 X(M)(x)=limuoX(M)0(M)(x,t) so we have

X(M)<£(M)(x,t)=X(K)<£(M)(x,t) for all tG [0,h). Thus by uniqueness of integral

curves (Theorem 1.1(1)) 0(M)(x,t)=<£(K)(x,t) for all tG[O,h).

(3) If we set 9fi(x) = {K:S0i(x)CKCSi(x)} we have from the construction of the

iteration that 3;(x) D ̂ (x) for all j > i . At present S°,(x) is merely the set of indices

defining the manifold on which X is defined (see the preamble on the iteration in

Chapter 2) and might as well be written S°: since it is independent of x. As far as the

local trajectory </>(M)(x,t) is concerned the vector field might though as well have been

defined only on limhJ0S
0

2(^(M)(x,t)) since it is (by Lemma 3.2) contained entirely

within this stratum; if we replace the old S°, by S°!(x)= limhi0S°2(<£(M)(x,t)) (which

certainly does depend on x) we get from part 2 of the proof of Theorem 3.1

9t
1(<^(M)(x,t))C9:

0o(x) if t > 0 is sufficiently small, which combined with the iteration

property ( i e that S°j(x)CS°j+1(x)CSj+1(x)CSJ(x) for all j > 1) gives for all x £ M
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Ofi(x) D 9Fj(x) D 3k(<KM)(x,t))

for all j > i G Z + for all k £ Z + and for all sufficiently small t > 0 .

Unless otherwise stated it is though convenient to remain with the original definition

of S°!(x), S,(x) - ie, if M near x is locally ZN(I;J), S°1(x)=I, S ; (x )=IUJ - in which

case the first of the two relations (3,(x) ^ Sj(x) f ° r a ^ j — i) is unaffected, the second

is S°i(x)CSo
2(^(M)(x,t))CS1(0(M)(x,t))CS j(x)for all x G M , for all i , jGZ + , for all

sufficiently small t > 0 .

(4) We might at this point mention two publications which we have been unable to

obtain:

(i) A paper by M.G. Chikin subsequent to [10]: On Tlie Existence of a Right

Derivative in the Solutions of a class of Discontinuous Systems, 1988 (in Russian), (ii)

The thesis of B. Cornet: Contributions a la theorie des mecanisms dynamiques

d'allocation des resources, Universite Paris IX Dauphine, 1981.

It seems likely that in (i) Chikin has proved a version of the part of Theorem 3.1

which says that D+<£(M)(x,t = 0) = X(M)<£(M)(x,t = 0), and (ii) may contain variants on

the existence-uniqueness result in [12].

Remark 3.2 This chapter provides us with a perspective on the iteration as a

"selecting" process. At the outset we have x E M , M locally represented as

ZN(S°i(x);S1(x)\S°1(x)), so we know that for small t > 0

0(M)(x,t)GZN(Su,(x);S1(x)\Su,(x)). Lemma 3.2(4) tells us that for small t > 0

0(M)(x,t)GZNP(S°O3(x);Soo(x)\Su
oo(x);S1(x)\Soo(x)). We recall that

ZNP(S0
i(x);S,(x)\S0

1(x);S1(x)\S1(x)) = Uso (x)CKCS](N)ZP(K;S I(x)\K)andso

ZNP(S0
i,(x);S i,(x)\S° i,(x);S1(x)\Sr(x))CZNP(S0

1(x);S i(x)\S0
i(x);S1(x)\S1(x))forall

i ' > i . We know therefore that <£(M)(x,t)CZNP(So
i(x);Si(x)\S°i(x);S1(x)\Si(x)) for all i.

at the ( i+l) th stage of the iteration we have therefore a better knowledge of where

$(M)(x) lies than at the ith.

The ordering we obtained in Remark 3.1(3) tells us that for any j > 0 that for all

sufficiently small t > 0 D,+^(M)(x,t) = Ds
j</)(K)(0(M)(x,t),s=O) some

S°O0(x)CKCSoo(x) (so since S°,(x)CS°co(x)CSK(x)C S;(x) we know at the ith stage

that the K in this expression lies in the range S°,(x)CKCS;(x) ), so the "selecting" is

for all the right hand derivatives of <£(M) on a right neighbourhood of t = 0 .

If S°oo(x) = Scu(x) Lemma 3.2(4) tells us ^(M)(x, t)CZNP(S°B(x);0;S1(x)\S a(x))

from which (eg using Remark 3.1(2) ) we could recover Theorem 2.1(1).
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Chapter Four

Tangencies, The Iteration, and a Refined Iteration

In this chapter we conclude (excepting Corollary 5.2) our study of the iteration.

We shall establish the relationship between the iteration and suitably generalised

versions of the classical tangency sets, establish the essential properties of the latter,

and consider also a generalisation (in fact a refinement) of the iteration which is better

suited to local questions.

Tangency Sets

If Vt is a Cr submanifold of V2 which is a C submanifold of Rn, and if X is a Cr

vector field on Rn we know by Lemma 2.1 that we can project X onto V; to form Cr

vector fields X(Vj) and so integrate these vector fields to obtain C flows <£(V;). We

shall set rk
x(Vj relative to V2)={xGV1:D^(V1)(x)t=0)=D t

i^(V2)(x,t=0) for all

i < k } . We have seen how to represent any submanifold with corners M near any

xGM locally as ZN(I;J); there are 3 | J ' pairs of sets of indices Ki,K2 with

ICKjCK^CIUJ and for each we set Î CK, r K2)=rk(Z(K!) relative to Z(K2)) =

{xGZ(Ki):D>(K1)(x,t=0)=Dl
i^)(K2)(x,t=0) for all i<k} . For example, if

xeZ(K,)CZ(l<£) then xE^^ r K2) iff X(K2)(x)=X(K,)(x) iff X(K^(x)ETxZ(Kl).

We observe that while classically tangency sets were defined with generic restrictions

on X our definitions are for any smooth vector field.

It will be evident that these sets are intimately bound up with the detailed behaviour

of the semiflow <£(M) in relation to the strata ZP(K;J\K). In the first place it will

seem likely, in view of the construction of the iteration, that they relate to the

iteration in a significant way; we obtain in Proposition 4.4 a formula which expresses

the subsets ("iteration sets") of M where the iteration achieves a particular value (ie, a

particular contracting sequence of sets of indices) in terms of intersections of these

tangency sets. Because of this formula and for other reasons we are interested in the

intersection of these sets. It is straightforward to check that, for example, if Z(l),

Z(2) are hypersurfaces in Rn then T2((l,2) r 0 ) = r 2 ( ( l ) r 0 ) n r 2 ( ( l , 2 ) r (1)) and that

also T2((l,2) r 0 )=r 2 ( ( l ,2 ) r (I))nr2(( l ,2) r (2)). In general expressions involving

F-sets cannot be simplified to a single term but can be simplified to some extent: we
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seek a canonical "simplification" which will also tell us when they are equal. This is

achieved in Proposition 4.1. Proposition 4.2 is concerned with the intersection

properties of these tangency sets when X satisfies certain generic conditions.

The iteration at a point does not in itself determine the local behaviour of the

semiflow (eg Figure 4.5) and we consider a refinement of the iteration which comes

closer to doing so. We show in Proposition 4.3 that this refinement of the iteration

(and hence a fortiori the iteration itself, and hence the iteration sets) is, unlike the

tangency sets (Example 4.2) preserved by a semiflow preserving diffeomorphism.

The reason for the following discussion will become evident when we state

Proposition 4.1 below. We recall from Chapter One that for I C K C K U L C I U J we

have defined a subcorner of ZN(I;J) to be a set of the form ZNP(K;L;IU J\(KUL)) =

{xeRn:(x,ni)=0 VieK,(x,n,)>0 Vi6L,(x,n ;)>0 Vi6IUJ\(KUL)} which is

evidently contained in ZN(I;J) and decomposes as

U0 CMcL{xeRn :(x,n i)=OVieKUM,(x,n i)>OViEIUJU(L\M)\(KUL)} =

UKCHCKULZP(H;IU AH). It follows from this decomposition that if the subcorner

ZNP(K;L;IUJ\(KUL)) is denoted s.c.(K;KUL) the intersection of two subcorners

s.c.(Ki;KiULi), i = l , 2 , is the subcorner s.c.(KlUK2;(K1\J'Ldn(K2\J'LJ).

If {ZP(I;;IU J\I;)} is a set of strata of ZN(I;J) the convex hull of the set is defined as

the intersection of all subcorners each containing all the strata. Since for any such

subcorner ZNP(K;L;IUA(KUL)) = UkcHCKuLZP(H;]\H) we must have

KCIi,KULDJ\Ii for all i, it equals ZNP(ni i ;UI i \n i i ; IUJ \UI i ) . If {cj is a set of

non-intersecting subcorners of ZN(I;J) and {Cjj}i=I I(j)J-=1 k is a collection of such sets

of non-intersecting subcorners we may define the interior intersection of the collection

by {c i(1)
1n..nc i(k)

k:i(s)e(l..I(s))each s = l, . . ,k}. If

( c^ /n . .Dc i ( k )
k nc^ . 1 n . . nc i ( k ) .

k )*0 then i®=i(j) ' vje(1..k) because ci(j)
j0cior

j = 0

if i(j) ^ i ® ' ; since (as noted above) the intersection of finitely many subcorners is a

subcorner we therefore have that the interior intersection of the collection is itself a

set of non-intersecting subcorners of ZN(I;J). If {a/} is a collection of sets of strata of

ZN(I;J) there exists at least one set of non-intersecting subcorners of ZN(I;J) with the

property that each set of strata in the collection is contained in a single subcorner,

namely the set with one element, ZN(I;J). We define the subcorner decomposition of

a collection of sets of strata to be the interior intersection of the collection of sets of

non-intersecting subcorners such that each set of non-intersecting subcorners in the

collection has this property.
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Schematic representation of the interior intersection of a collection of sets of

non-intersecting subcorners. We have here k=2; the set j = l consists of 3 subcorners

(regions bounded by dotted curves), the set j=2 of 5 subcorners (regions bounded by

full curves). The interior intersection of the collection is shaded.

Diagramatically we may represent a closed corner ZN(I;J) where J=(ji>-->jk) by the

following table

row 0 I

IUj, IUjk

IUj tUj2 IUj1Uj3. . IUjk.xUjk

row | J | IUJ

where the mth row consists of (' „ ') sets of indices, the set of indices K for any

ICKCIUJ representing the stratum ZP(K;IUJ\K) (Figure 4.1).

the subcorner ZNP(0;2,3;1) which is the
complement in ZN(0; 1,2,3) of ZN(l;2,3)

=ZN(1;2,3)

Figure 4.1. Representing a corner ZN(I;J) by a diagram (here I=0,J=(1,2,3)).
ZN(1;2,3) corresponds to the 4 sets of indices indicated because ZN(1;2,3) =
ZP(l,2,3;0)UZP(l,2;3)UZP(l,3;2)UZP(l;2,3)and each ZP(K;(1,2,3)\K) is
represented by K; similarly ZNP(0;2,3;1) is represented by the 4 sets of indices
indicated because ZNP(0;2,3;1)=ZP(0;1,2,3)UZP(2;1,3)UZP(1;2,3)UZP(3;1,2).
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The stratum closure ZN(K;IUJ\K) = UKCHCIUJZP(H;IUJ\H) is represented by the set

of sets of indices in the diagram containing K; a subcorner ZNP(K;L;IU J\(KUL)) by

those sets of indices which contain K and are contained in KUL - see Figure 4.1

above for ZN(0 ; 1,2,3).

Intuitively the convex hull of a set of strata is the smallest subcorner containing all of

them and the subcorner decomposition of a collection of sets of strata is the smallest

non-intersecting set of smallest subcorners satisfying the property that each set of

strata is contained in a single subcorner.

Examples 4.1 Consider the corner ZN(0;1,2,3). The convex hull of

{ZP(0;1,2,3),ZP(1,2;3)} is the subcorner s.c.(0;l,2) and of {ZP(1;2,3),ZP(2,3;1)}

is the whole corner corresponding to the set of all eight sets of indices;

(a) The subcorner decomposition of

{{ZP(0;l,2,3),ZP(l;2,3)},{ZP(3;l,2),ZP(l,2,3;0)}}is the non-intersecting pair of

subcorners s.c.(0;l),s.c.(3;l,2,3) -

•~ Correponding to s .c.(0;l)

Correponding to ZP(3;1,2) .

Correponding to s.c.(3;l,2,3)

The strata of one set are triangled and those of the other are squared; the subcorners
of the subcorner decomposition for these sets are the two sets of strata within smooth
curves.

(b) The subcorner decomposition of

{{ZP(l;2,3),ZP(l,2,3;0)},{ZP(l,3;2),ZP(3;l,2)}}is the whole corner of 8 sets of

indices.

We remind ourselves of our definition ot tangency set, which extends the classical

notion of tangency set (see eg [44,45,51,58]) which dealt with a single vector field

and was always accompanied by generic restrictions:
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Definition If functions (fi,..,4;fk+i,..,fk+m) are independent and X is a smooth vector

field on Rn, then setting I = (l,..,k) and J=(k+l , . . ,k+m) we define

rk
x(IUJ r J) = {xGZ(IUJ):Dt

i0(I)(x,t=O)=Dt
i</>(IUJ)(x,t=O) Vi<k} where 0(1) is the

integral flow of X(I) etc; we may abbreviate I\X(IU J r J) to I\(IU J r J).

The reason for making the above constructions (the subcorner decompositions etc) is

the following result, which is the canonical "simplification" of multiple intersections

of (generalised) tangency sets alluded to above:

Proposition 4.1 If I C I J C I J U J J C I U J . i = l,..,m, and r^IjUJ; r I;) is as defined above,

then if {s.c.(K°i;Ki):i = l,..,r} = the subcorner decomposition of

{s.c.(Ii;IiUJ1):i=l)..,m} we have ni=1,..,mrk(IiUJi r Ij)= ni=li..irTk(Ki r K.%

We observe that by definition of subcorner decomposition the subcorners

{s.c.(KOi;Ki):i=l,..,r} are disjoint.

Proof after lemma 4.3

Examples

Since the subcorner decomposition of {s.c.(l;l,2,3),s.c.(3;l,3)} is (s.c.(0;l,2,3)}

(=ZN(0 ;1 ,2 ,3 ) ) -
0

we have for all k that I\((l,2,3) r ( l ) )ni \ ( ( l ,3) r (3))=I\((1,2,3) r 0 ) .

Since the subcorner decomposition of {s.c.(0;l),s.c.(3;l,2,3)} is itself-

1,2

Tk(l r 0 )n r k ( ( l , 2 ,3 ) r 3) does not simplify.

Corollary 4.1 As special cases of Proposition 4.1 we have

(i) n j 6 J r k ( iu j r i )=r k ( iu j r i )

(2) n j 6 ]rk(IUJrIUJ\j)=rk(IUJrI)

(3) If I,C..CII+1 then O[=irk(Ii+1 r Ij)=rk(Ir+I r I,)
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Remarks 4.1 (i) We could extend the definition of rk(I;U J; r J;) to rk(G ; r Hj) where

each G; and H; are any pair of sets of indices with ICGj,H;CIU J, and in this case

Proposition 4.1 still holds (with exactly the same proof) replacing each s.cfo

with the pair {ZP(Gi;J\Gi),ZP(Hi;J\Hi)}.

(ii) By Lemma 2.2 and Corollary 4.1 Parts (i) and (ii) I \ ( IUJ r J) =

{xeZj(J):Dt% <KJ)(x,t=0)=0 for all j € I and for all 0 < i < k } =

{xeZ(IUJ):Dl
ifj<KIUJ\j)(x,t=O)=O for all j G I and for all 0 < i < k } .

If {cri
i}i=1 I(D is (for fixed j) a set of strata, denoted by o* say, and {ô } is a collection

of such sets, say (f, a* are linked in (a1,..,o*) if there exists a sequence of integers

p=s(l) , s(2),..,s(m)=q with each s(i)G(l,..,k) and such that a*(iV(i+1) have a stratum

in common,each i= l , . . ,m- l . If we say p,q are equivalent in (l,..,k) if <?,<fi are

linked in (o1,..,^) this yields an equivalence relation on (l..k) and we shall denote the

equivalence classes Ji,..,Jr, so ( l , . . ,k)=J1U..UJ r is a disjoint union. If {aj} is a

collection of sets of strata we now define a map F mapping one collection of sets of

strata to a new collection of sets of strata by F(a1,..,ok)

=(conv(U i e j 0i),..,conv(Ui€Ja
i)) where conv(Uieja

i) denotes the convex hull of all

the strata in U^cA If for example we had ff1 = {ZP(l;2,3),ZP(l,2,3;0)} and

o2={ZP(3;l,2),ZP(l,3;2)} (which is in fact exactly the data of Example 4.1(b)) then

F(ff1,o2) = {s.c.(l;l,2,3),s.c.(3;l,3)}andF{s.c.(l;l,2,3),s.c.(3;l,3)}=ZN(0;l,2,3)

0 Corresponding to oz 0 Corr. to s.c.(3;l,3)

Corresponding to a' Corresponding to s.c.(l;l,2,3) Corresponding to ZN(0;1,2,3)

Thus denoting the s.c.d. of {o\..,<f} by s.c.d.ia1,..,^} we therefore have in this

example F2(a1,o2) = s.c.d.{o-1,o2}, and in general -

Lemma 4.1 FXcr1,..,^) j = l,2,.. converges in a finite number of steps to

Proof What the process F involves at the jth stage is taking the collection of sets of

strata provided by the Q-\)th stage, P\a\..,aL) = (a\..,(fa) say, subdividing a1,..,6° into
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linked subsets and then taking the convex hull of each of these subsets. We claim that

the sets of strata we obtain at each stage are entirely contained within a subcorner of

the subcorner decomposition; this is by definition true initially, and if true up to the

jth stage where we have sets of strata a1,..,^1, if b* and a* have a stratum in common

they cannot be in different subcorners of the subcorner decomposition because these

are disjoint; hence the sets of strata in any linked subset of (a1 , . . ,^) , {a*}rej/ say,

must be in the same subcorner; we have defined the convex hull of {a*}^- as the

intersection of all the subcorners containing all strata in {(?},£]• and hence the

subcorner of the subcorner decomposition containing {(?}iey contains the convex hull

{a1}^}-- Hence it is true at the (j + l)th stage that the sets of strata o* in

P(a I,..,ak) = (ff1,.->5p) are each contained entirely within a single subcorner of the

subcorner decomposition and our claim is true by induction.

It follows straight from the definition of F that the number of sets of strata in

F^cr1,..,^) is no more than that in F^a 1 , . . , ^ ) - with the above notation, p < m < k -

and that each set in P'^a1,..,^) is contained in a set of FV 1 , . . , ^ ) - ie for any i

0iCoi'Cffi", some i', i", - so since there are only finitely many strata involved we

must reach in finitely many steps a stage where P(a1,..,ak)=Fs+1(a1,..,</). If any two

sets in F^ff1,..,^) intersected or any single set was not equal to its convex hull we

would have Fs(a1,..,oi)^Fs+1(o1,..,oI0, hence at the sth stage we have a disjoint set of

subcorners which by the above satisfies the property that each of the sets of strata we

began with is contained in a single subcorner; hence since each of these subcorners is

contained in a subcorner of the subcorner decomposition, we must by the definition of

the subcorner decomposition have s. c. d. (a1,.., <?) = P(a ! , . . , o*). —

(NB. We have of course that P(a1,..,oJc)=Fs(a1,..,ak) for all t > s , unlike the case with

iteration where we may have Si+1=S;, S°i+1=S°i before convergence.)

Lemma 4.2 Suppose a set (au..,a^) of strata of ZN(I;J) is represented by a set

S=(i!,. . ,1^ of sets of indices (ie o-=ZPft;JNJ;), IC I; CIU J ) satisfying

(I) If I t 6 S and I ,CI 2 6S, then KGS V I ,CKCI2

(II) If I,IUi,IUj GS then IUiUjGS

(III) If I,I\i,I\j G S, then I \ i \ j G S

then if S has the property that for each pair 1,1' GS 3 {Ij.}j=1..k with L DI; or Ij CI ;

for each i= l , . . , k ' - l , where 1^=1, 1^=1', and for all j IjGS, (*)

then conv(<x, U .. U CTJ = ax U.. U ak.
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Proof If (*) is satified and (I) is satisfied, then for any Il5I2GS 3 I1=I1,I2,..,Ik'=I2

with I ^ . - j f e S and each I1 containing one index more or one index less than Ii+1 -

call such a sequence a path from Ij to I2 (so (*) and (I) say S is path connected). A

path may contain type (a) sets of indices K satisfying r1=K\ji ,I i=K,r+ 1=K\j2 ,

K\h K\j2

type (b) sets of indices K such that F ^

as well as other types.

1 \ ^

1,2. 1,3^2*3

M,2,3
A path from (1,2,3) to 0

(A) If there exists a path l!->I2 without any type (a) sets of indices it must be of the

form

Ii-*Ii\ii-*..-»W-IiVUj f*..-I1\(JUK)=I2 (possibly with I,\J=I2),

so we have \ C\ I2=(I^J) U (I, n K) D ̂ V , so we have Ix D Ij n I2 D I,\J with Ij and

and hence by (I) that

(B) If there exists a path Ij-*^ without any type (b) sets of indices it must be of the

form 1,-^1,Ui1-*..-*I1UJ-*I,UJ\j1-*..-»I1UJ\JC=I2 (possibly with I,UJ=I2) so we

have I iC^UIzC^UJ with I, and I,UJ GS and hence by (I) that ^UIjGS.

If we begin with an initial path p! between I, and I2, and p, has a type (a) set of

indices, then by repeated application of (III) we may obtain a path Pm with each set of



66

indices in pm in S and such that pm contains no type (a) sets of indices; by (A) above

i.ni, es.

:=I1Ui1Ui2=I2Ui3Ui4

(l),(ii),(iii),(iv)are sets of indices (in fact (i) = (Ix Uij) n (I2Ui3) etc)

Eg for a path p t from Ij to I2 as shown above K is a type (a) set of indices. Since

K,K\I2=I1Uii, and K\I 4 =I 2 Ui 3 eS we may use III to infer (i)GS, and similarly

infer (ii),(iii), and finally (iv)GS: then Ii->(ii)->(iv)^(iii)-*I2 is without type (a) sets of

indices and as shown in (A) I j f l^ (=iv)GS.

If an initial path has a type (b) set of indices we may by repeated application of (II)

obtain a path pm. with each set of indices in S and such that pm. contains no type (b)

sets of indices: by (B) above I J U I J G S .

^K=I1\i5\i6=I2\i7\i8

Eg for a path p, I1-̂ >I2 as shown above K is a type (b) set of indices and using II and a

similar argument to the above we may infer that (i),(v),(vi),(vii)GS.

Henceif I i , I 2eS, l !n i 2 and ^UI jGS; hence if I , , . . ,IkeS n i=i i tkli and Ui=1? kIj£S,

and so by (I) and definition of convex hull, ax U.. U (rk=conv(a1 U. . U o^. -

In Lemma 4.3 below expressions of the form DtV>(K)(x,t=0) are abbreviated to

Dt
!<£(K) (and, to be consistent, gradf;(x) is abbreviated to gradQ.
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Lemma 4.3

(1) If xGZ(IUJ) and Dt^(IUJ)=Dt^(I) Vi<k then Dt
i<^(K)=Dt

i(I) VICKCIUJ

Vi<k.

(2) If xeZ(IU(m',m)) and Dt
i^(IUm')=Dt

i^(IUm)=Dt
i0(I) Vi<k then

Dt
i(IU(m',m))=Dt

i<^(I) Vi<k

(3) If m',mGI, xeZ(I), and Dt
i<^(I\m')=Dt^(I\m)=Dt

i(I)Vi<k then

^ ^ Vi<k

Proof

(a) Suppose IUJ=IU(l,..,j). We claim span{P(I)gradfi,..,P(IUJ\j)gradfj} =

span{P(I)gradfi,..,P(I)gradfj} (and hence by Remark 2.1(2) vectors

P(I)gradf1,..,P(IUJ\j)gradfjare independent). Inductively suppose that for some j '

withl<j'<jspan(P(I)gradf1,..,P(IU(l,..,j'-l))gradf.)=span(P(I)gradf1)..,Pa)gradfj,).

By Remarks 2.1 P(IU(l,..,j'))gradfj,+1-P(I)gradfj,+1Gspan{P(I)gradfi}ieii..J,, say =

Ei^XiPOgradf;. By Remark 2.1(2) PQgradfj^+Eil^PQQgradfj^O, so

O^P(IU(l,..,j'))gradfj,+1Gspan{P(I)gradfi}i=1..j,+1but

<P(I)gradfi,P(IU(l,..,j'))gradfj.+1)=Ofor all i= l , . . , j \ hence since

P(IU(l,..,j'))gradfj.+1^Owe must have

span{P(I)gradfi:i = l . . j ' + l} = span{P(I)gradfi:i=l..j'}eP(IU(l)..j'))gradfj,+1and

using the inductive assumption the result follows for j ' + l.

(b) Proofs of (l)-(3)

(1) True from definitions if k=0. Suppose true for k-1.

For any K such that ICKCIUJ there exists a sequence I,IU(1),IU(1,2),..,K,..,IUJ

so consider O=Dt^(I)-DtV(IUJ)=DlV(I)-Dt
k^(IU(l))+Dt

k^(IU(l))-..-

which by the inductive assumption and Lemma 2.2 is

O=Dt
k(f10(I))P(I)gradf1/ | Pffigradf, | 2+

Dt
k(f2<£(IUl))P(IU(l))gradf2/ | P(IUl)gradf2 | 2+.. . By (a) the vectors

P(IU(l))gradf2,.. are independent and hence for each i the premultiplier

Dt
k(f^(IU(l,..,i-l))=0, and hence D^(I)=D t^(K).

(2) We have Dt^(I)=Dt^(IU(m))=Dt^(IUm') for all i<k and claim

Dt
i0(I)=Dt

i</)(IU(m,m')) for all i<k.
This is true from definitions if k=0, suppose true for k-1.

Writing D,k<KIU(m,m'))-Dk<£(I)=Dk<£(IU(m,m'))-DtV(IUm^+D^^U

we know D,V(IUm')-D^(I)=0 by supposition. By the inductive assumption and
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Lemma 2.2 Dt
k<KIU(m,m'))-Dk<KIUm') =

Dt
k(fm<£aUm'))P(IUm')gradfm/ | P(IUm')gradfm | 2, however D,ty(IUm')=Dt\KI) for

all i < k and since Dk(fm<£(I))=0 (because using the supposition and Lemma 2.2 again

O=Dt
k0(IUm)-Dt

k^(I)=Dk(fm<^(I))P(I)gradfm/ | P(I)gradfm | 2)the result follows.

(3) By relabelling the sets of indices the assertion is equivalent to saying that if we

have Dt
i<^(IU(m',m))=Dl

i0(IUm')=Dt
i(IUm) for all i < k then

Dt
i<^(IU(m',m))=Dt

i^(I) for all i<k . This is true from definitions if k=0, suppose it

is true for k-1, and suppose

D t
i^(IU(m',m))=D t

i0(IUm')=D t
i(^(IUm) for all i < k . Then

Dt
k<£(I U (m' ,m))-Dk(I) =D k(^(I U (m', m))-Dk<^(I U (m)) +D t

k0(I U (m))-Dk<£(I)

=0+Dt
k<£(IUm')-Dt

k4>(I)

=Dt
k(fm<^(I))P(I)gradfm/ | P(I)gradfm | 2=Dk(fm,<HI))P(I)gradfmy | P(I)gradfm, | 2and

since (eg by Remark 2.1(2)) these vectors are independent the premultipliers must

both be zero. -

Proof of Proposition 4.1

We recall that we abbreviate the subcorner ZNPfoljIU J\(I ;U JJ) of ZN(I;J) to

s.c.(L;I;UJj). We have to show that if s.c.d.{s.c.(Ii;IiUJi)}i=1..m={s.c.(K°i;Ki)}i=1..r

then nf= 1rk(I iUJ ; r L) = n ^ r ^ K ; r K°j. We shall denote s.c.foLU JJ (we recall this

is a union of strata) by &. If {o-j}ieA are strata of ZN(I;J) with o-=ZP(Ki;J\Ki) some

I C K J C I U J , where xGZ(IUJ), then we shall say the flows on {a^ are (k-l)th order

tangent at x if Dt
j^(Kii)(x,t=0)=D,j^(Ki2)(x,t=0) for all i^ijGA and for all j < k .

(a) Lemmas 4.2 and 4.3 together tell us that if the flows on strata {ai}i€A are (k-l)th

order tangent at x and {Kj}i6A is path connected (in the sense of page 65) then

convfcrJigA consists of strata the flows on which are (k-l)th order tangent at x.

(b) By Lemma 4.3(i) if x G r ^ U I r I) the flows on all strata in ĉ  are (k-l)th order

tangent at x and it follows from (a) that if {o'JigH is linked the flows on the strata in

conv(Ui€Hoi) are (k-l)th order tangent at x.

(c) Since F(ff1,..,am) = (convUieH(i)°i>-->convUi6H(r)a
i), where the decomposition of

(l,..,m) into H(l)U..H(r) is as given on p.63 with each (UigH^aO is linked,

F(ff1,..,am) is a collection of sets (in fact subcorners) of strata with the property that

their flows at x are (k-l)th order tangent, inductively we see the subcorner of strata in
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have this property for all q > 0 and hence by Lemma 4.1 sx-d.^.-a"1) has

this property.

This tells us that if for each i = l,..,m the flows <£(!;),<£(IU JD are (k-l)th order

tangent at x then for each i = l,..,r each pair of flows <£(K°i),<£(Kj) are (k-l)th order

tangent at x, ie nr?=irk(I1UJ i r LJD nj=1rk(K; r K0^.

The opposite set inclusion follows from definitions - if xG n[=1rk(Kj r K0;) then for

each i= l , . . , r the flows <£(Kj), <£(K°j) are (k-l)th order tangent at x, so by Lemma

4.3(1) for each i= l , . . , r K^CK'.tfCKj the flows 4>(Kl),<l>(K2) are (k-l)th order

tangent at x, which is equivalent to saying that the flows on any two strata in the same

subcorner of {s.c.(K°i;Ki):i=l,..,r}=the subcorner decomposition of

{s.c.(Ii;IiUJi):i=l,..,m} are (k-l)th order tangent at x, and by definition of subcorner

decomposition this implies that for each i=l , . . ,m the flows <£(L),<£(IiUJj) are (k-l)th

order tangent at x. —

Tangency Sets in the Generic Case

Before proceeding to establish the relation between the iteration and tangency sets we

establish generic properties of the latter.

Definition

(1) For our purposes a polyhedron is a connected (not necessarily compact) subset of

Rn of the form H={xGRn:(x,n i)=p i V iGI^x .n^Pi ViGJ} for a finite set of vectors

{n;,iGIUJ} satisfying the property that if at a point xGH (x,ni)=pi ViGIUJ' the set

{n ;:iGIUJ'} is linearly independent (a special kind of submanifold with corners of

course). Thus we regard closed corners LC(I;J), n-dimensional cubes, simplices etc as

polyhedra.

(2) A r-polynomial vector field on Rn is a vector field X:Rn-*Rn such that in the usual

co-ordinates on RD Xi(x)=ao
i+Sj=i)..ina

1
ijXj+..+Ej J = 1 ...^a1^ jXj^.Xj. An r-polynomial

vector field on a polyhedron H (as above) is an r-polynomial vector field on

{xGRn:(x,ni)=pi for all iGIJ^R11-11'.

(3) If M,N are respectively smooth, analytic submanifolds with corners and H is a

polyhedron, Soo(M),Su(N))SUir(H) are the spaces of smooth, analytic, r-polynomial

vector fields on respectively M,N,H.

If M is a compact submanifold with corners or a polyhedron , M has a globally finite

stratifications into C submanifolds. By definition of submanifold with corners there
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exists a neighbourhood of each xGM of the form /3(UnLC(I;J)) where /3,U are as

defined in Chapter One: a stratum a=ZP(K;J\K) is locally /3(UnLO(K;J\K)) and we

may extend a locally in a Cr way to a=/3(UnL(K)) (=Z(K) in our local

representation) which contains ff; (corresponding to ZN(K;J\K)) in its (relative)

interior. Thus if a; is a stratum of M then at each xG ~aK X(a;)(x) = the projection of X

onto the tangent space (rather than the tangent cone) to ax at x. In the above we have

defined I\(Z(IU J) r Z(I)) and <£(I), but we can avoid the need to work via local

representations; if ax, <s2 are strata of M with axCda2 the objects of interest will be

I\(i7i r a2) and <f>(cr2) (=the integral flow of X(<r2) on o^.

We now generalise a classical theorem ([45,44,58] - see Remark 4.2 below) to show

that for generic X both the tangency sets themselves and certain intersections of them

are submanifolds of readily calculable dimension. This result is crucial for part of

Proposition 4.4 below and for Chapter Seven. The two cases - smooth and polynomial

- are treated in completely different ways.

Proposition 4.2 If M is respectively a smooth submanifold with corners, a polyhedron,

a compact polyhedron, then there exist subsets Sa,'(M),SU)i'(M) and if r > n Hur '(M),

open dense in Eoo(M),EMil(M),Hu,r(M) such that if {a;} are the strata of M as a

submanifold with corners, then

(a)If o-jCdo^ then rk(a t r a^ is a C°°, linear^" submanifold of ox of codimension

(b) For any sequence of strata au..,at with a;Cdcri+1 , ni=,..r.irk(i)(5-j r ai+1) is a

submanifold of ax of codimension Ei=1 I,1(K(i)-l)(dim<ri+rdimai)

Remark 4.2 (The relation between our tangency sets and classical ones ([45]) for

generic X). In [45] Pugh shows that for any smooth compact manifold M and smooth

submanifold V there exists an open dense subset H(V,M) of the space of smooth

vector fields A(M) on M such that for any X in this subset the sets defined inductively

byro(V,X)=V,r1(V,X) = {xeV:X(x)GTxV},

ri(V,X) = {xGr i l(V,X):X(x)GTxr i I(V,X)} are all submanifolds of M of codimension

in M of i times that of V in M. For M=Z(I) we have setting V=Z(IU J) (and

working locally, so compactness is not an issue) that r°(V,X)= our ^ ( I U J r I), and

in fact we now show that for X in Pugh's open-dense set we have

r i(v,x)=r i+1(iujri)vi=o,i,.. (*)



71

We have I\(IU J r I) = n j e j r k ( IUj r I) (by Proposition 4.1) and using Lx to denote

Lie derivatives (see [1, Chapter 4]) we have by Lemma 2.2 and using (from [1,

Section 4.2]) that if f is a differentiable function on Z(I) L^f=Dtftf>(I)( ,t=0) and that

if 4> is the flow of X and <j>1 the time t map of <f> (ie, <t>\x)=<j>(x,t)) then

^•"Lx^Lxf | s=t=0=DsDttf>
s+t*f | s=t=0 where <£l*f=f<£\ we obtain

LX(I)
kf=Dt

kf^(I)( ,t=0), and since by part (ii) of Remark 4.1 we know

n j 6 J I \ ( IUj r I) = njej{xeZ(I):Dt
ifj^(I)(x)t=O) for all i<k} it follows

n j e j r k ( IUj r I) = nj6J{xGZ(I):Lx(I)
ifj(x)=O Vi<k}. We have shown above that (*) is

true for k=0. Suppose now (*) is true up to k-1. We have then (with V=Z(IUJ),

M=Z(I))

rk(v,x)={xerkl(v,x):X(i)(x)eTxr
kl(v,x)} (i)

= {xGI\(IUJ r I):X(I)(x)GTxrk(IUJr I)} (2)

= {xGI\(IUJ r I):X(I)(x)GTx{xEZ(I):LX(I)
ifj(x)=O Vi<k, VjGJ}} (3)

= {xGrk(IUJ r I):d(Lxa)
ifJ)X(I)(x)=0 Vi<k, VjGJ} (4)

= {xEI\(IUJ r I):Lxa)
ifj(x)=0 Vi<k, VjGJ} (5)

= r k + 1 ( I U J r J ) (6)

where (1) holds by definition, (2) is true by the inductive hypothesis, (3) is true by the

above, (4) follows from [1,Section 3.5], (5) from [1,Section 4.2], and (6) by the

above again, and so the result is true for k. —

Suppose now for U a neighbourhood of a relatively compact boundaryless

sub manifold S in R" we define (where S refers to any of the spaces of smooth,

analytic or polynomial vector fields) PS:S(U)-*S(S) by, for XGE(U) and xGS

(PsX)(x)=P(TxS)X(x). We topologize S(U),S(S) in the usual way, ie two vector fields

are close if their derivatives of all orders are close at every point.

Lemma 4.4 P s is linear, onto and open

Proof Linearity is immediate from the way Ps is defined. For ontoness, we recall from

Chapter One the idea of X,.: if X is a Cr vector field on S and V is a neighbourhood in

Rn of a point in S, with VflS the zero set of Cr independent functions f1;...,fk, then eg

by [35, Section 4.5] each yGV is uniquely y = \pk
m..\pl

x(l)x some unique xGS where

i/'it<i)(x)=i/'i(t(i),x) and each ^ ( - e . ^ x V ^ R 1 is the solution to Dl^i(t,x)=gradfi^i(t,x).

As in Chapter One we set Xe(y)=^k
tOc)...^,t<1).X(x) which has the property that

PS(XC)=X. Hence Ps is onto; openness follows by the Banach-Schauder Open

Mapping Theorem [1] (it is to apply this that we need S relatively compact). _
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Lemma 4.5 Suppose X is the vector field x1=x2 ,x2=l on Rn and that

L(l) = {xGRn:(x,n1>=0}. Then T2(L(l) r Rn) = {xGL(l):x2=0}. We choose

coordinates (x2 ,x)£Rxr2
x(L(l) r Rn) on L(l), and we suppose Y is a smooth vector

field on Rn transverse to L(l). Then there exists eo>O, a neighbourhood U of 0 in

F2(L(1) r Rn) and a unique C°° map x2:(-e0,e0)xU->R such that for y near 0 in L(l)

<X(y)+eY(y),nx)=Oiff y=(x2(e,x),x), and the map (e,xMx2(e,x),x) is a

diffeomorphism on (-eo,e0)xU. In fact {(x2(e,x),x):xGU}=r2
x+cY(L(l) r Rn) near 0,

and {r2
x+£Y(L(l) r Rn):-e0<e<e0} foliates a neighbourhood of 0 in L(l) (see Figure

4.2).

x

S(0) S(e,) S(O S(e3)

u-*

0

\
where S(e) = {(x2(e,x),x):xGU}

=r2
x+£Y(L(l) r Rn)

and e0 > e3 > e2 > ex > 0

x2

= {xGRn:(x,ni)=0}

r2
x(L(l)rRn)DUZ)0

Figure 4.2

The way Lemma 4.5 is used is as follows, (i) By Remark 4.2 and Lemma 4.4 there

exists an open-dense subset of Soo(ZN(I;J)) such that if X is in this subset then for

each j ' G Z + , I C K C K U j C l U J r j (
x(jUK r K) is a codimension 1 submanifold of

Ty.^Q UK r K), and we can check furthermore that I\x(KUj r K) =

P ^ / o c u j r K ) ) ^ X(KUj r K) relative to Tk.2
x(KUj r K)) where X(rk.2

x(KUj r K)) is

the smooth vector field obtained by projecting X onto Fk.2
x(KUj r K). (ii) It is

straightforward to check (and this is used by Pugh in [45]) that if Y is a vector field

tangent to a submanifold S of Rn then F2
X+Y(S r Rn)=r2

x(S r Rn) and in general that if

Y is tangent to I Y ^ S r Rn) then I\X+Y(S r Rn)=rk
x(S r Rn).

Suppose now M=ZN(I;J), J=(l , . . ,m) and we wish to perturb X so that

{rk(j)
x(IUi r I)}i=i, .,m is in general position. We begin by perturbing X into the

open-dense subset of H^M) so that (i) holds. Inductively suppose that

{rj.x(IUi r I)}i=i,..jm are in general position for all j ; ' < j ; where each jj<k(i),
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i=l , . . ,m. If j;=k(i) for all i then result is shown; otherwise we may assume j j<k(l) ,

and we show how to perturb X so that {Fj x(IUi r I)} i=1 m are in general position for

a l l j 1 ' < j 1 +l , j i ' < j i i=2 , . . ) m.

Because {Fj x(IUi r I)} i=1 m are in general position for all j ; ' <jj we can find a

vector field Y on Rn tangent to each one of them near their common intersection, and

furthermore we may chose it so that Yi=Y | 1̂  X
X(IU 1 r I) is transverse to

Tj^CIU 1 r I). We then apply Lemma 4.5 with Rn, L, X, Y of Lemma 4.5 mapped by

a diffeomorphism to r J r l
x(IU 1 r I), FjX(IU 1 r), X(F J V 1

X ( IU 1 r I)), Y1 (as is possible

by classical canonical form theorems, eg [44,58]). By (i)

r jV
x+et(IUi r I)= rj,x(IUi r I) for all]7<j ; and all i=l , . . ,m. By Lemma 4.5 and the

basic transversality theorem (eg [22,Lemma 4.6]) we know that for almost all and

hence arbitrarily small e F2
X(IV>XauirI))+£?'(rjV1

x(IU 1 r I) relative to FjX(IU1 r I)) is

transverse (in Fj .xX(IU 1 r I)) to every intersection n i = , mFj x(IUi r I), j ; ' <j ; , (each

such intersection is a submanifold by the inductive assumption that they are in general

position). By (i) and (ii) we know

r2
X(rir.

X(IuirI))+^.(rJrl
x(IU 1 r I) relative to F ^ I U 1 r I)) =FJi+1

x+£?(IU 1 r I) and so

the result follows.

This method was used in a draft version of this thesis to prove a primitive version of

Corollary 4.1 and we use it below to prove Proposition 4.2(b) in the smooth case.

Proof of Lemma 4.5 For points (x2)x)6L(l) X | L(l):L(l)-*Rn has the form

X(x1=0,x2,x) = (x2,l,0) and hence (X(0,x2,x)+eY(0,x2,x),n1)=x2+(eY(0,x2,x),n1) =

F(x,x2,e) say, where x=(x3,..,xn). 3F/3x2=l at e=0 hence ?*0 for all sufficiently

small e, and by the Implicit Function Theorem there exists a unique smooth

x2:(-e0,e0)XU-* a neighbourhood of 0 in L(l) such that F(x,x2(e,x),e)=0 with

x2(x,0)=0.

It remains to show that (e,x)-»(x2(e,x),x) is a diffeomorphism on (-eo,eo)xU. By

[14,Chapter 10] we have for (e,x)6(-e0)e0)xU

dx2(e,x)2V ' '.=(d¥/dx2y
l

2 dF/dx

dF/de

(where x=(x3,..,xn), and both sides of this equation are column vectors of (n-2)

elements) so ax2/3e = (aF/ax2)-
1aF/3e, and since dF/de=(Y(0,x2,x),n,)^0 (since Y is
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transverse to L(l)) the derivative of the map (e,x)->(x2(e,x),x)

3x2/3e dx/de
is invertible.

dx/dx

Proof of Proposition 4.2 (smooth case)

By Remark 4.2 and Lemma 4.4 we can find an open-dense subset of lEa>(M) such

that (a) is satisfied, so we must prove part (b). If (a) is satisfied we know that since

there are only finitely many strata in M as a submanifold with corners and for any

distinct strata a,a' T^a r a') is empty if j >n, there can exist only finitely many

"chains" of strata ou..,ot with 0i+lC~ai and only finitely many non-empty tangency

sets rj(ai+1 r a^- The strategy for proving Proposition 4.2(b) is to select a chain

<ru..,<rtas above and a sequence of integers k j , . . , ^ (to guarantee stability of the

intersections the order in which the perturbations are made, ie the order in which the

chains and sequences are chosen, is critical, see pages 75-6 ) and use Lemma 4.5 to

find X' arbitrarily close to X such that {rk
x'(ai+i r o"j)n<xr };=,,..iM are in general

position; the conclusion of Proposition 4.2(b) then holds for this chain and sequence,

and since being in general position involves their satisfying a finite set of

transversality conditions the conclusion will still hold for any X" sufficiently near X'.

Thus if we select any other chain and sequence, since we may make the perturbations

(to force the tangency sets for this second chain into general position) as small as we

wish we can make them small enough to leave the result for the first chain and

sequence unaffected, and by making perturbations of diminishing size treat all of the

finitely many chains and sequences in this way.

Thus the result follows if we can show that applying Lemma 4.5 to any particular

chain and sequence we can perturb Fk .,(&,. r a r . , ) n , . n r k ( a 2 r ox) into general position

in crr with an arbitrarily small perturbation.

If <X;,o-i+1 is any pair of strata of M with a i+1Cda ; then there exist o{\ o?,..,o™ such

that o-i+1 = & i
1Ca i

2C..Ca i
m = ffi and dim a^'-dimo-j^l for all j = l , . . ,m-l, and by

Proposition 4.1 we may express each rk(i)(5"i+1 r 5̂ ) as

H {rk{0(a1'' r ffi
j+1):j = l,..,dimcri-dimai+1}. Thus without loss of generality we may

assume that we begin with tangency sets of the form rk(1)(5-2 r a}),

r"k(2)(o"3 r ^2))--)rk(r)(&r r OTA), where dim<rrdimai+1 = l. So we wish to show that there
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exists X' arbitrarily close to any smooth vector field X such that rk(1)
x'(a2 r &i) O.. fl

I\(r-i)X'(arr
 r K\) is a submanifold of at of codimension E[=}(k(i)-1).

As in our discussion during Lemma 4.5 of how to apply it, we construct the

perturbation X' from X by perturbing X in stages, so that if we begin a stage with

^i<;i<r-irj(ai+i r a) in general position in at we end it having "pushed" 1^(3^+1 r o"k)

5-0 in r^ff^, r aj (some l < k < r - l , jk<k(j)) so that I\+1(ak+1 r &k)n l s i sM>ir trJ i(Oj+1

r o-j) are in general position in <rr.

Example We can see how the idea works with a simple example.

Figure 4.3

Consider MCRn as illustrated in Figure 4.3. As we have observed above, by [44],

Lemma 4.4 and Remark 4.2 there exists an open-dense subset of H^M) such that for

X in this subset part (a) of Proposition 4.2 is satisfied. We begin by perturbing X into

this subset, so I\.(l r 0 ) is codimension k-1 in Z(l), I\((l,j) r 1) is codimension k-1

in Z(l,j) etc.

Consider a particular chain and a particular sequence, such as

T4(l r 0 ) n r 2 ( l , 2 r I )nr 3 ( l ,2 ,3 r 1,2). We would "push" these tangency sets into

general position in Z(l,2,3) as follows (the j , i at the beginning of each line are

explained below):

j = l , i=2 (1) With Y on Rn transverse to Z(l) push T2(l r 0 ) transverse to Z(l,2) and

to Z(l,2,3)

j = 1,1=3 (2) With Y tangent to Z(l) and transverse to T2(l r 0 ) push T3(l r 0 )

transverse to Z(l,2) and to Z(l,2,3)

j = l , i=4 (3) With Y tangent to T2(l r 0 ) and transverse to T3(l r 0 ) push T4(l r 0 )

transverse to Z(l,2) and Z(l,2,3)

j=2 , i=2 (4) With Y tangent to T3(l r 0 ) and transverse to Z(l,2) push T2(l,2 r 1)

transverse to T4(l r 0)DZ(1,2) and to T4(l r 0 )nZ( l , 2 ,3 )
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j=3 , i=2 (5) With Y tangent to T3(l r 0 ) n Z ( l , 2 ) and transverse to Z(l,2,3) push

r2(l,2,3 r 1,2) transverse to T4(l r 0 ) n r 2 ( l , 2 r l)nZ(l ,2,3)

j=3> i=3 (6) With Y tangent to T3(l r 0 )nZ( l ,2 ,3 ) and transverse to r2(l,2,3 r 1,2)

push r3(l,2,3 r 1,2) transverse to I\(l r 0 ) n T 2 ( l , 2 r l )nZ(l ,2,3)

(End of Example).

Continuing with our discussion before the example we see that in general if we are to

perturb rk(1)(<r2 r a,) O.. O rk(r)(ar r a^) into general position in aT there are E-=}(k(j)-l)

pushing stages and these are ordered

j=2,i=2,..,k(2)

etc down to

j=r- l i=2, . . ,k( r - l ) .

At the (j,i)th stage the inductive assumption is that we have pushed r^i^oj r o^)

transverse to rk(1)(<x2 r ffi)n.,nrt(j.2)(ffj.1 r 5j.2)noj, Vj<j '<r , where each

rk(1)(<r2 r cfx)H.. nTk(i.2)(^yi r 0j.2)n<7j. is a submanifold, and also T^^OJ+J r OJ)

transverse to rk(1)(a2 r ô ) n . . D rk(j.1)(3j r o-.,) n o-.Vj +1 < j ' < r (these OJ.J +2 < j ' < r

are the lower dimensional strata), where the first part of the inductive assumption

implies that rk(1)(a2 r a{) H.. n Tk(i.1)(ai r 5j.1)ncrj. are all submanifolds.

Then at the (j ,i)th stage

(a) If 2 < i proceed as follows: we know rk(1)(a2 r &j) H.. O T^^ia-j r ayX) C\ <jy is a

submanifold for each j +1 < j ' <r; these and rm(oj+1 r 5-) for m<i - l are left fixed by

Y tangent to I\(1H(a2 r a^D.. H rk(j.]H(5j r 5j.1)nri.2(3j+1 r 5-) and we can also choose

this Y transverse to rVi(5j+1 r a), and hence by Lemma 4.5 we may with an

arbitrarily small Y push T{(ai+1 r Oj) transverse to rk(])(<r2 r ai)n..nrk( j. ] )(oj r a-^Hay

Vj + l < j ' < r .

(b) If i=2 proceed as follows; we know that rk(1)(<r2 r a-i)n..nrk(j.1)(oj+1 r o^C\Oy

each j + 1 < j ' < r is a submanifold and is left fixed by Y tangent to

r"k(i)-i(̂ 2 r 5"i)ri.. nrk(j.1).1(oj+1 r OJ). We choose Y transverse to o-+1 and by Lemma

4.5 push r2(5j+1 r a) transverse to rk0)(a2 r a,)n..nTk&l)(a} r oiA)C\Oy Vj + l < j ' < r .

Proof of Proposition 4.2. Polynomial case

The methods used to prove Proposition 4.2 in the smooth case cannot readily be

applied in the polynomial case. Pugh's paper [45] and Remarks 4.2 were for the
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smooth case and, more seriously, to use Lemma 4.5 we needed to be able to select Y

at each stage tangent to certain tangency sets, which if Y is only allowed to be

polynomial will not generally be possible. Rather that refine the methods above to

circumvent this we adopt a quite different strategy. Our submanifold with corners M

is (by assumption) a polyhedron, which without loss of generality we can take to be of

codimension 0 in Rn, and by definition possesses a finite stratification into

submanifolds each of which is an open subset of some L(K) = {xGRn:(x,ni)=pi for all

iGK}.

For M codimension 0 in Rn Zu>I(M) = 'EajJ(R
D), which is for the rest of this proof

denoted H^r. We observe that part (a) of Proposition 4.2 is a special case of part (b)

(with s= l ) ; we shall therefore prove part (b).

Corresponding to each element of Su>r is a sequence

(aVaV-,a°i1,a1ii,a1i2,..,a1
nn,..,ar

1..i,.-,ar
n..n)which are the coefficients of XGSu>r, ie

X,(x)=a°i+Ej=1,..,na
1

ijxj+..+EJii..Jr=1,..,na
r
iJl..jxJi..xJr.

Suppose now we have a chain of tangency sets rk(1)(L(I2) r L^ ) ) ,

rk(2)(L(I3) r L(y),..,rk(s)(L(Is+1) r L(I5)) where U^^CLdd for all 1 < i < s and (k(i)}

are positive integers. After a translation we may suppose OEL(IS+J). Then the

condition that 0 G I\(1)
X(L(I2) r L(I,))n. . n I\(S)

X(L(IS+1) r I(LJ) or that X(Is+1)(0)=0

may be viewed as conditions on X. We shall show in (1) below that if r > n then

defining T*<»--k«(I1,..,Ii+1) =

{XeSu>r:Oerk(1)
x(L(I2) r La , ) )n . . nrk(,)

x(L(I,+1) r L(I8)) and X(I i+1)(0)*0} is an

analytic submanifold of S u r of codimension k(l) | I2\Ij | +..+k(s) | IS+1\IS | . For

given X we can map each point in L(IS+1) to 2 u r by x-*Gx(x)GSUI. where Gx(x) is the

vector field given by Gx(x)(y)=X(x+y). We see that

xGrk(1
x(L(I2)rL(I0)n..nrk(s )

x(L(I s+1)rL(I s))\{xGLa s+1):X(I8+1)(x)=0}iff

Gx(x)GTk(1)k(s)(I1,..,Is+1). We shall show in (2) that we can find X' arbitrarily close to

X such that Gx.^Tk(1)"kW(I,,..,Ii+1) and so that {x6L(Is+1):X'(I!+1)(x)=0} is disjoint

from all the tangency sets rk(i)
x'(L(Ii+1) r L(Ii)).

This has two consequences: firstly that Gx." 1 !* 0^^^! , , . . , !^^

rk(1)
x'(L(I2) r L(I,))n.. nrk(8)

x'(L(Is+I) r L(IS)) is a submanifold of L(I8+1) of the

required codimension, and secondly that so is

rk(1)
x"(L(I2) r L(I,))n..nrk(s)

x"(L(Is+1) r L(IJ) for all X" sufficiently near X'.

We can then conclude the proof of Proposition 4.2 by a similar argument to that

used in the smooth case: since there are only finitely many chains
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L(li)Dh(I2)D..Dh(Ji+i)and finitely many sequences {k(i)} with each k(i)<n+l by

making perturbations to the vector field of diminishing size we may adjust X for each

chain and sequence in turn, preserving at each stage the result obtained at all previous

stages. The codimension result implies in particular that rn+1(L(I) r L(I')) is empty for

all 1*1', so since by definition I\(L(I) r L(I'))C Lfc+1(L(I) r L(I')) for all k > n + l

Proposition 4.2 holds for all sequences (k(i)}.

(l)(i) By Proposition 4.1 T^L^) r L©) =

nj=1>..>prk(0(L(I/+1) r L(I/)) where Ti+l=irlDl?D

and | Ii+im+1\Jim | = 1 , so without loss of generality we may assume we begin with

| I i + i \ I i l =1 .

(ii) We may choose orthogonal unit vectors {r̂ } such that

= {xEL(I1):(x,n1)=0}

n3

1) = {x6L(I s) : (x,n s>=0}.

(iii) With the conventions of (i) and (ii)

oerk(1)
x(L(i2) r L(i1))n..nrk(s)

x(L(is+1) r

iff Dt
i(0(I,)(O,t=O),n1)=Ofor all i<k(l),....,Dt

i(^(Is)(0,t=0),ns)=Ofor all i<k(s)

(iv) If we express our vector field relative to co-ordinates x ^ x , ^ ) , supplemented if

necessary so that i runs from 1 to n, then since

(X(K)(x));=

we get

0 if i6K

°; if i6( l , . . ,

0 if iGK

a1
i ja° jifie(l,. . ,n)\K

0 if iGK
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2ijka°ja°k i f

0 if iGK

and in general if q < r + l then if i£ ( l , . . ,n ) \K then

(Dt^(K)(O,t=O))i=EJi,..^6(li..,n)VC(.... + a multiple of ).

(v) To show that T 1 ' " ' ^ . . . . ^ , ) is a submanifold we shall show that the set of

vectors {gradxgy(X), j = l,..,s, i=l,..,k(j)} is independent at every point XGHMr such

that X(Is+1)(0)*0, where gij(X)=Dt
i(</>aj)(x=0,t=0),nj).

This last condition means that if I2=I1U(l), . . ,I5 + 1=I sU(s)=I1U(l,. . ,s)C(l, . . ,n) then

there exists some jG(l, . . ,n)\(I1U(l, . . ,s)) such that a ^ O . Each XGSu , r corresponds

to a sequence a=(a°1,a0
2,..) and translating X's into a's so

grada=(a/3ao
1,a/3ao

2,..,a/aao
n,a/aa1

u,..)a/aar
n..n)we show that {gradllgs(a):j = l, . . )s,

i=l,..,k(j)} is an independent set for all a such that a ^ O some j .

We have grada(gu, g12,..,gis)=grada(a
0

1,..,a0
s) =

a/aaV

a/aa1,
etc

J<

1
0

0
0

•

•
1
1

0
1

0
0
•

•

0
0

•

•

0
0
•

•

0
0

1
6

•
I
\

and so gradagn,..,gradagls are independent.

We have grada(g21,..,g2s)=grada(EjgIa
1

lja°j,!:jg^a1
2ja

o
j,..,EjgIta

1
sja

o
j) and we know that

there exists j £ l s such that a°j^O, so we obtain grada(g21,..,g2s) =
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f ~ ~

1 0 0 0 0
0 1 0 0 0

0 0 0 0 1

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0

d/3a°;

i = n

k = l

k = n
k = l

k = l

k=n

j such that j & Is,
and hence a°j ̂  0

otherj 's

3/3a2
ijk etc

t

hence {gradag11,..,grad]1gls} are independent and continuing in this way we see that the

vectors {gradag;j(a)}j=1 ;=i,..,n+i are independent, and hence for any {k(i)};=, , with

each k( i )<n+l Tk(1)-k(s)(I1,..,Is+1) is a submanifold of the required codimension.

(2)

(i) For any particular chain L(Ij) D L(I2) D.. DL(I,+1) and sequence {k(i)} consider for

fixed X the map MnL(Is+1)xSUJ-*Su, r defined by (x,Y)-+Gx+Y(x), which is

differentiable (we recall that by definition Gx+Y(x)(y)=(X+Y)(x+y)). Fixing x,X the

map Y-*GX+Y(x) is the composition Y-»Y+X-*GX+Y(x) which has inverse

Z-+Z'EZa<nwhere Z' is the vector field Z'(y)=Z(y-x), followed by Z'-+Z'-X. Hence

Y->GX+Y(x) is a diffeomorphism for fixed x,X and so our original map (x,Y)-*Gx+Y(x)

is a submersion for fixed X.

Thus ([35]) for a.a. and hence arbitrarily small fixed Y and for fixed X the map

x-»Gx+Y(x) is transverse to our submanifold Tk(1)k(s)(I,,..,Is+1) as well as to

{XGSG,ir:X(I8+1)0=0} which we denote f(Is+1). We see ftls+1)= those polynomial

vector fields with aO;=O for all i£( l , . . ,n) \ I s + 1 so is certainly a submanifold of S u r .

Thus we have found X ' = X + Y arbitrarily close to X with Gxr
1Tk(1)--k(I)(I,,..,I1+1) and

Gx^ftlg+i) submanifolds of L(I,+1)nM, of respectively codimension > 0 and

dimension equal to 0; we can check from definitions that these submanifolds are

respectively I\(1)
X'(I2 r I,) fl . . n I\(s)

x'(I!+1 r I5) n M and
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(ii) If we now add to X' an arbitrarily small constant vector field Y' (ie, Y' £HU]0)

which is tangent to LCQ for all 1 < i < s + l , then as in the discussion of Lemma 4.5,

r2
x+Y '(Ii+i r I;) = r2

x '(I i+1 r I;), and we can therefore perturb any zeros of X'(I,+i) off

r2
x'(I£+1 r I;): in fact we replace X' by X '+Y ' such that the zeros of (X'+Y')(L+i) are

disjoint from r2
x '+Y '(I i+1 r IJ for all i, and since rk(I i+1 r I;)cr2(I i+1 r Ij) for all k > 2

these zeros are disjoint from all tangency sets. X " = X ' + Y ' may be such that Gx. is

no longer transverse to Tk(1)-k(s)(I,,..,Is+i) (because this submanifold is not closed), but

applying (i) again we obtain by an arbitrarily small perturbation Gx- which is

transverse to T10^-^^,..,!..,.!) and with the zeros of X"'(I,+1) now disjoint from

r2
x"(I i+1 r I;) for all i. This means Gx .(MnL(I,+1))nf(I !+1) is disjoint from

clos(Gx-(MnL(Is+I))nTk(1) ^(i! , . . ,!^!)) so we may remove a small open

neighbourhood U of ftL,+i) from S u r which is disjoint from

G x - C M n L a ^ n T ^ - ^ C I , , . . , ! ^ ) . Tk«--k«(I1,..,I,+1)\U is then a closed

submanifold of Su>r and hence by [35] Gx remains transverse to Tk(1)"k(s)(I1,..,I,+1)\U

for all X sufficiently near X'".

The linear case of Proposition 4.2 follows by straightforward linear algebra.

The Iteration Sets

Definition Suppose submanifolds with corners M,M' of Rn carry semiflows

respectively 4>u and 4>u, : we shall say these semiflows are differentiably equivalent if

there exists a diffeomorphism f:M-»M' such that f0M(x,t)=<£M.(fx,t) for all xGM and

for all tG [0 ,0 .

Example 4.2 In this example we show that there exists a submanifold with corners

M of R3 and vector fields X,X' on R3, and a diffeomorphism f:M->M such that

f0(M,X)(x,t)=<KM,X')(fx,t) for all x 6 M , and for all t > 0 , but rk
x(l ,2 r 2 ) ^ 0 any

k > 0 while rk
x ' ( l ,2 r 2) = 0 for all k - ie a differentiable equivalence need not

preserve tangency sets.

X ' - X

x2=0

Figure 4.4
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Take for our vector field the constant vector field X = (0,l,0) on

M = M' = {xGR':x,>0,x,+x2>0} and consider the invertible linear map f:M->M with

matrix

2

0

0

1

1

0

0

0

1

which clearly maps M to M and sends X to X'=(1,1,0) (see Figure 4.4): then

evidently the origin Grk
x( l ,2 r 2) for all k but £ r k

x ' ( l , 2 r 2) any k> 1.

In this example the tangency sets are not generic (and do not satisfy Proposition 4.2)

but by making the perturbation sufficiently large we can in a similar way construct an

example of a generic tangency set not preserved by differentiable equivalence.

We have in Remarks 3.1(3) defined 9fi(x) = {K:S°i(x)CKCSi(x)} where M locally is

ZN(S0
1(x);S,(x)\S°1(x)), and we now set S(x) = (^,(x),9!

2(x),..). We may regard Qf(x)

as a "contracting sequence" and for any given contracting sequence c= (Si.O^,--)

define the iteration set 5''(c) = {x£ZN(l;J):S(x)=c}.

Proposition 4.3 Differentiable equivalence preserves the iteration and hence the

iteration sets.

This will be proved after Lemma 4.8. It is completely straightforward to prove that

the (S;(x)} terms are preserved, and all the interest is in the {S°;(>0} half of the

iteration (the reason for this asymmetry is discussed below). This is in fact an

opportune moment to introduce a refinement of the (Su,(x)} half of the iteration which

will be called the algorithm sequence A1,,,A',,--A1,. =A2
0,A

2,,..,A2
k^ = A3

u,.. , where

each Arj is a set of strata of TxZN(S(l
r(x);Sr(x)\S°1.(x)) and is determined ultimately by

x,M,X. Each subsequence Ar
0,..,A

r
k is an algorithm for determining Su

r+1(x) given

S°r(x),Sr(x), and hence this subsequence Ar
0,A

r,,-.,Ar
k may be viewed as a refinement

of the consecutive pair of iterates S°,.(x),So
r+1(x) of the iteration.

The reason we introduce the algorithm sequence at this point is that we shall in fact

prove a strong form of Proposition 4.3, that the sequence (S,(x)} and the whole

algorithm sequence (and hence a fortiori the sequence {S0
;(x)} ) are preserved by
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differentiable equivalence. We have good reason to wish to refine the iteration in this

way. We saw in Theorem 2.1 covering most cases (and in Remark 3.2 for all cases)

that, crudely speaking, the iteration determines into which stratum or strata a

trajectory is heading. Thus in a situation such as in Figure 4.5 below on ZN(0;1,2)

where X(M)(x)=0, whether X(x) points in the direction (i),(ii), or (iii) makes no

difference to the iteration which is the same in all three cases (with S°1(x) = 0 ,

S1(x)=S2(x)=So
2(x) = (l,2)) despite the fact that the local flows in the three cases are

distinguished by differentiable equivalence (as well in fact by the so-called spfp

equivalence defined in Chapter Six).

Figure 4.5

Thus the iteration at a point tells us about the trajectory through that point and not

much about the local geometry of the semiflow. Our algorithm sequence however will

distinguish between such cases as illustrated in Figure 4.5 (see below).

Definition (1) A constant vector field X on LC(I;J) is one where XESWi0(LC(I;J))

(2) A stratum LO(K;J\K) in LC(I;J) is strictly active for a constant vector field X if

on LO(K;J\K) X(M)=X(K) (of course for a constant vector field if a property such as

X(LC(I;J))(y)=X(K)(y) holds for some y6L0(K;J\K) then it holds for all of

y£LO(K;J\K) ) and X(M) | LO(K;J\K)^X(K') | LO(K;J\K) any ICK'strictly

contained in K (see Figure 4.6); by Lemma 2.4 this pair of conditions is equivalent to

(X(0),P(K\j)nj) < 0 for all j GK\I .

The term "strictly active" is used because in other contexts (eg Chapter 6) one may

think of LO(1;2) in Figure 4.6 as active but not strictly active.

We shall show that the following algorithm provides us with the strictly active strata,



and has certain other properties.

M=LC(0;1,2)

strictly active strata
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LO(2;1)

*x3 X(M)(x2)=X(2)(x2)
X(M)(x3)=X(0)(x3)x;

i-—>• A constant vector field X

.0(1 ;2).
X(M)(x.)

r xi
not strictly active;
X(M)(x1)=X(l)(x,)but
also =X(0)(Xj)

\ not strictly active because
X(M)(0)*X(l,2)(0)

Figure 4.6

Algorithm Set M=LC(I;J) and A0=LO(I;J), X is a constant vector field. If

X(0) £ LC(I;J) stop; otherwise set Aj= those codimension 1 strata a of LC(I;J) (which

can individually be denoted A u , AI>2, etc) such that X(M) | a ^ X . If a=LO(K;J\K)

this means X(I;K\I)?iX. Setting A1{= affine span of Alh A] ;=closure of A, ; (ie if

AU=LO(K;J\K) Alii=L(K))A,ii=LC(K;J\JC)) then if for some i X(A, i)eA1)i stop,

otherwise set A2= those codimension 2 strata a of LC(I;J) such that X(M) | a

^X(Aji), j = 0 or 1, any i. Inductively if for some i X(A j i)6A j i stop, otherwise set

A^to be those codimension (j + 1) strata of LC(I;J) such that X(M) | a^X(AyX any

j ' < j , any i.

Figure 4.7

Examples 4.3 (Examples of the algorithm).

[1) A corner LC(0;1,2) in R2:
vLO(2;l)

L0(l;2)

a codimension 1
stratum a of M=
LC(I;J) such that

X(M)

AO=LO(0;1,2)
A, ,=LO(1;2),A,2=LO(2;1), where we stop,
since X(A, i l)=X(l)eA1>1=LC(l;2)

Constant vector field X
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(2) Suppose the corner is LC(0;1,2,3) (Figure 4.8(a)) and in cross-section the

constant vector field X impinges on the strata as shown in Figure 4.8(b), and suppose

<X(0),P(l,2)n3)>0.

LO(3;L2
LO(1;2,3)

LO(3;1,2)
\

O(l,2;3) 3)

O(l,2;3)

X(0)
(a) (b)

Figure 4.8

Then the algorithm gives AO=LO(0;1,2,3),A1 = {LO(3;1,2),

LO(1;2,3)},A2={LO(1,2;3)} and then we stop since X(1,2)GLC(1,2;3).

To prove Lemma 4.6 we shall need the following remark (which follows from

definitions)

Remark 4.3 If a=LO(H;J\H) is a stratum of M=LC(I;J), so

X(M) | a=X(LC(I;H))X, then if X(M) | a=X(K) where necessarily ICKCH then

X(M) | LO(H';J\H')=X(K) for all KCH'CH, ie if X(M) on LO(H;J\H) =X(K)

some K satisfying ICKCH then X(M) on LO(H';J\H')=X(K) for all H' satisfying

KCH'CH (see Figure 4.9).

,LO(1;2,3)

,2;3)

X(l) then X(M) | LO(1,2;3) = X(1)
X(M) | LO(1,3;2)=X(1)

X(M) | LO(1;2,3)=X(1)

-(1,2,3)

Figure 4.9. The corner is M = LC(0;l,2,3)CRn
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As a prelude to Lemma 4.6 below we may verify that in Example 4.3(2) above

(i) The strictly active strata are LO(0;1,2,3),LO(3;1,2),LO(1,2;3) and LO(1;2,3)

(ii) That the iteration (which will always have 3j(x) = 3?2(x) f° r all j > 2 if the vector

field is constant) at 0 is S°1(O) = 0,S1(O)=(1,2,3),SO
2(O)=(1,2) and S2(0) = (l,2)

(iii) That if Aj is known Aj+1 is determined by {sign(X(O),P(Kj.r)nk):j'^j, A^. is

strictly active, keAK^j.} where L(^ i i)=A j i i.

Eg having established that Ai = {LO(3;l,2),LO(l;2,3)} it follows

LO(3,2;1) is not in A2 because (X(0),P(3)n1)>0

LO(3,1;2) is not in A2 despite (X(0),P(3)n2)<0 because (X(0),P(l)n3>>0

but LO(1,2;3) is in A2 because <X(0),P(l)iO<0.

Lemma 4.6 If X is a constant vector field on LC(I;J) with the algorithm as defined

above then

(1) If the algorithm stops at the joth stage then for all j < j 0 Aj =set of codimension j

(in L(I)) strictly active strata

(2) The algorithm stops no later than the | J | th stage, if this is the joth stage there

exists a unique A: ; such that X(A; j)GA: = and this A: : =

LO(S0
2(origin,LC(I;J),X)AS0

2(origin,LC(I;J),X))

(3) If Aj is known Aj+1 is determined by {sign(X(O),P(Kj-i.)nk):j'^j, A^;. is strictly

active, kGAKj^} where L(Kjii)=Ajti.

Proof

(1) Since by definition the vector field X we begin with is on LC(I;J) this is true for

j = 0 . Suppose (1) is true up to j - 1 . We must show that if LO(K;J\K) is a codimension

j stratum of LC(I;J) then LO(K;J\K) is strictly active iff it is in Aj ie iff

X(M) | LO(K;AK)^X(M)LO(K';AK') any strictly active LO(K';J\K') with

| K' \J | < j . Since we must have X(M) | LO(K;AK)=X(H) some I C H C K and

since by Remark 4.3 we then have LO(H;J\H) strictly active, either H=K in which

case LO(K;J\K) is strictly active and

X(K)=X(M) | LO(K;AK)^X(M) | LO(K';AK') any K' such that | K ' \ I | < j , or

H is strictly smaller than K in which case the stratum LO(H;AH) is strictly active and

X(M) | LO(K;AK)=X(H)=X(M) | LO(H;AH).
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(2) By (1) above we know that each A^ is strictly active, and by the way the

algorithm is constructed any A^ where the algorithm stops satisfies X(A j i)EAj i. By

definition of the iteration P(LC(I;J))X=P(K)X iff

S°2(origin,LC(I;J),X)CKCS2(origin,LC(I;J),X). By Lemma 2.4 we know

P(LC(I;J))X=P(K)Xiff

(a) (X,P(K\j)nj)<0 for all jGK\ I , and

(b) P(K)XGLC(K;J\K) ie (P(K)X,nj)>0 for all j E J \ K .

If (X,P(K\j)nj)=0 then eg by Lemma 2.2 X(K)=X(K\j), hence S°2(origin,LC(I;J),X)

is characterised by

(a) <X,P(S°2\j)nj> < 0 for all j G S°2\I

(b) P(S°2)XGLC(S°2;J\S°2) ie (PCS^X.n^SsO for all jGJ\S°2 .

(a) is just the condition that LO(S°2;J\S°2) is strictly active, so comparing this

characterisation of S°2 with that above for the Aj; where the algorithm stops we see

that we must have any such Ajji=LO(S0
2;J\S02) (and so is unique), where

S°2=S°2(origin,LC(I;J),X).

(3) This follows from the construction of the algorithm and (1). _

The algorithm we have constructed, Ao, A1; A2,.. is determined by a constant vector

field X and corner LC(n1,..,nk;nk+1,..,nk+m), so written out in full Aj is an abbreviated

form of Aj(X,LC(n,,..,nk;nk+1,..,nk+m))=Aj(X,LC(I;J)), where X is a constant vector

field and I=(l , . . ,k), J=(k+l , . . ,k+m) .

From definitions we know that S°r+1(x,M,X)=S0
2(0,TxZN(S°r(x);Sr(x)\S0

r(x)),Xr),

where in this expression X, is interpreted as the constant vector field on the linear

corner TxZN(S°r(x);Sr(x)\S°r(x)) which takes the value

Dt
r<j!>(So

r(x))(x,t=O)-Dt
r<£(Sr(x))(x,t=O) a t every point. If we then set

Ar
j(x,M,X)=Aj(Xr,TxZN(S°r(x);Sr(x)\S°r(x))), j=0 , l , . . , r= l , 2 , . . , (where we see that

each Arj(x,M,X) will be a set of strata of the linear corner TxZN(S°r(x);Sr(x)\S°r(x)),

which is a subcorner of TxZN(S°,(x);S1(x)\S°1(x))) and

Ar(x,M,X) = {Ar
o(x,M,X),Ar

1(x,M,X),...}it follows from this fact and Lemma 4.6

that

Ar(x,M,X) = {Ar
o=TxZN(So

r(x);Sr(x)\So
r(x))=LC(gradf1(x),iGS°r(x);gradfi(x),iGSr(x)\

So
r(x))=LC(S°r(x);Sr(x)\S°r(x)), Ar

1,..,A
r
Jo=LO(S0

r+1(x);Sr(x)\S°r+1(x))} and so can be

viewed as an algorithm for (in effect) determining S°r+1(x) given S°r(x),Sr(x). We shall

call A(x,M,X)=A1(x,M,X),A2(x,M,X),.. the algorithm sequence and from the
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foregoing see that (at least if the (S;(x)} are known A(x,M,X) constites a refinement

of the sequence S°1(x),S°2(x),... Important for us is that the individual stages of each

Ar(x,M,X) may be used to distinguish between local flows not distinguished by the

iteration. We saw in Figure 4.5 three fields for which the iteration at a given point

was the same, but our algorithm sequence (in this case we need go no further than A1)

distinguishes between them -

(i)A1
o=LO(0;l,2),A1

1=LO(2;l),A1
2=LO(l,2;0)

(ii)A1
o=LO(0;l,2),A1

1={LO(l;2),LO(2;l)},A1
2=LO(l,2;0)

(iii)A1
o=LO(0;l )2),A1

1=LO(l;2),A1
2=LO(l,2;0)

(by construction of the algorithm and Lemma 4.6 the initial and final sets of strata in

each Ar are functions of the iteration, and since we specifically chose (i)-(iii) to have

the same iteration A1
0=LO(S°1(x);S1(x)\S°1(x)), A1

2=LO(S°2(x);S1(x)\S°2(x)) are the

same in every case).

We proceed to show that the iteration and the algorithm sequence are preserved by

differentiable equivalence, ie if f is a differentiable equivalence between 4>(M,X) near

x and $(M',X') near x', then up to suitable identification (see below) the iteration and

algorithm sequence for (x,M,X) are the same as those for (x',M',X'). In doing so we

shall be reversing the emphasis of Theorem 2.1, Remark 3.2 and Corollary 5.2 where

we are interested in establishing as much as possible about <£(M)(x) given the iteration

{S°i(x),Si(x)}i6z+; now we shall be determining the iteration from the semiflow.

We can readily show that the upper bound of the iteration, the Si5 are preserved by a

differentiable equivalence, and all the work goes into treating the S0; case. The reason

for this asymmetry arises from the fact that differentiable equivalence is a condition

on <j>(M), not immediately (if M is locally represented as ZN(I;J)) on the <£(K)'s for

I C K C I U J, and the link between the S;(x)'s and <j>(M) is much simpler than that

between the S°i(x)'s and <£(M). It is straightforward to show that

{Dt
+ifj<£(M)(x,t=0)}i6z+ determines {S;(x)}i€z+, and since a differentiable equivalence

preserves {Dt
+ifj^(M)(x,t=0)}iez+ (part(a) of the proof of Proposition 4.3) it preserves

{Si(x)}i6Z+. We see in fact that the only part of the semiflow which is used is the

single trajectory through <£(M)(x). <£(M)(x) is not though in itself enough to determine

{S°i(x)}i6z+. Intuitively speaking S;(x) is the largest set of indices K lying between

S°i.,(x) and Sui(x) for which D t
+ ( i l^(M)(x,t=0)= Dt

(il)0(K)(x,t=O) and S°,(x) is the

smallest such set; if we take the three fields on R2 with M={(x,,x2): x2>0} (a)

Xi = l,x2=0, (b) x1 = l,x2=-x1, (c) x, = l,x2=-l
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(a) (b) (c)

then to decide which is the smallest set of indices such that , for example,

Dt
+<£(M)(O,t=O)=Dt<KK)(O,t=O) or X(M)(0)=X(K)(0) we cannot just consider

<£(M)(0) but must look locally: we see that in (a) and (b) it is 0 , in (c) it is (1).

To infer from the existence of a differentiable equivalence that the {S°j} are preserved

we shall see that we need to find points xk-*x such that

Dt
iXM)(xk,t=0)=Dt

i>(S°i(x)\j)(xk,t=0) for all i' < i , ie we must show that a

sequence of points {xj with xk->x exist which satisfy this condition. We shall use the

algorithm sequence to do this, and will in fact in the process show the stronger result,

that the algorithm sequence is preserved.

We have seen above that Ar(x,M,X)=the set of strictly active strata for the

algorithm with data (Xr,TxZN(S°r(x),Sr(x)\S°r(x))). We shall make the identifications

Tx(ZN(S°r(x),Sr(x)\S°r(x))) with LC(S°r(x),Sr(x)\S°r(x)) etc in the obvious way. We

recall from Chapter Three that a funnel Fx(r,f) at x for a flow 4>x on a sub manifold Z

is a set f ^ ( n . r ) where n is the dimension of Z and f is a "straightening-out" map

f:Z-*Rn such that f.X=unit vector field ex on Rn,and Fc(n,r) = {(t ,x)GRxRn l : t>0 and

I x | <t'}.

Lemma 4.7 If M near x is locally represented as ZN(I;J) and if

L0(K;Sr(x)\K)6Ar(x,M,X) then there exists a funnel Fx(r,f) for the flow <KSr(x)eK)

in Z(K) about <£(Sr(x)) and a neighbourhood U of x in ZP(K;J\K) such that for all

yeF x ( r , f )nU X(M)(y)=X(K)(y).

At

P(K;J\K)

y, X(M)(y)=X(K)(y)

Figure 4.10
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Proof The result will follow if we can show that for smooth \/-:[0,T)->Z(K) (T small

and positive) with i/<0)=x and Dt
i\/'(t=0)=Dt

i<?!)(Sr(x))(x,t=0) for all i < r - l that

(X(K\jW(t),gradfjiKt))<0 for all small t > 0 and for all j6K\S°i(x), because if

yGZP(K;J\K) then TyZN(I;J)=TyZN(I;K\J) and so by Lemma 2.4

X(M)(y)=P(TyZN(I;J))X(y)=X(K)(y)iff (X(K\j)(y),gradfj(y))<0 for all j G K \ I . We

consider two cases

(a) jGS^xASVx) . Then jes°q00\So,.i(x) some q such that l < q < r and so by

Lemma 2.6

Dt
i(P(K\j)X<^(K)(x,t=0),gradfj^(K)(x,t=0))=0foralli<q-3, < 0 at i=q-2. The

supposition that LO(K;Sr(x)\K)GAr(x,M,X) implies S°r(x) C K C Sr(x) so by Corollary

2.1 Dt
i(£(K)(x,t=0)=Dt

i<£(Sr(x))(x,t=0) for all i< r , and hence we may replace <£(K)

by <£(Sr(x)) in the above.

(b) j GK\S°r(x). Then LO(K;Sr(x)\K) strictly active for Ar means <P(K\j)XrJnj> < 0

for all jGK\S°r(x) where Xr=Dt
r(0(S°r(x))(x,t=O)-0(Sr(x))(x,t=O))

Consider Dt
i(P(K\j)X^»(Sr(x))(x)t=0),gradfJc/)(Sr(x))(x,t=0)) =

Dt
i((P(K\j)X^(Sr(x))(x,t=0)-P(K)X<^(Sr(x))(x,t=0)),gradf>(Sr(x))(x,t=0)). (*)

From the definition of the iteration and the fact that S°r(x) C K\j C K C Sr(x) we have

as above that if i<r-2 then Dl
iP(K\j)X^(Sr(x))(x,t=O)=Dt

iP(K)X^(Sr(x))(x,t=O)and

so (*)=0if i<r-2.

By Lemma 2.3 P(K\j)Xr=Dt
r(^(K\j)(x,t=0)-^(Sr(x))(x,t=0)) and

P(K)Xr=Dt
r($(K)(x,t=0)-*(Sr(x))(x,t=0)), so if i=r- l

(*)=((P(K\j)Xr-P(K)Xr),gradfJ(x))=(P(K\j)Xr,gradfj(x))<0 by above.

Hence in either case (a) or (b) choosing ^:[0,T)-*Z(K) such that

D t^(t=0) =Dt
!^(Sr(x))(x,t=0) for all i< r - l we have for all sufficiently small t > 0 and

for all j G K\S°i(x) that (X(K\j)^(t),gradfj^(t)> < 0 as required.

Lemma 4.8 If j G Si(x)\S°i(x) then

(1) j eS^iCxAS^x) iff Dt
ifj0(S°i+i(x)\j)(x,t=O) < 0

(2) j G Si(x)\Si+1(x) iff Dt
ifj^(Si+1(x))(x,t=0) > 0

(3) jGSi+1(x)\S°i+1(x) iff Dl
ifj^(K)(x,t=0)=0 VS°i+1(x)CKCSi+1(x)

Proof (We use without further comment: if j G A Dt
ifj^>(A)=0 Vi, P is self adjoint and

idempotent, if I,DI2 P(I,)=P(Ii)P(I2), that S°i(x)CS°i+1(x)CSi+1(x)CSi(x)). For this

proof quantities of the form Dt'<^(K)(x,t=0) will be written Dt'</>(K).
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(1) We showj6S0
i+1(x)\S0i(x) implies Dt

if#(S°i+1(x)\j)<0: Consider S°i+I(x)\j, any

jGSo
i+1(x)\SOi(x). If P(So

i+1(x)\j)Xi=P(S°i+i(x))Xi, where as in the proof of Lemma

4.7 Xi=Dt
i(^(Si(x))-0(S°i(x))),then by construction of the iteration

^ which is a contradiction; hence

i. (Xi,P(S°i+1(x)\i)gradfj(x))<0 VjGS°i+i(x) by

Lemma 2.4, P(S°i+1(x)\j)Xi-P(S°i+1(x))Xi=

(P(S°i+i(x)\J)gradfJ)Xi)P(S°i+i(x)\j)gradfj(x)/ | P(S°i+1(x)\j)gradfj(x) | 2 by eg

Lemma 2.2; the left hand side is ^ 0 and so (P(S°i+1(x)\j)gradfj(x),Xi)^O, we know it

is <0 , hence (P(S0
i+1(x)\j)gradfJ(x),Xi)<0. {Dt

i(^(So
i+1(x)\j)-^(So

i+1(x))),gradfj(x)) =

Dt
ifj^(So

i+1(x)\j){P(S°i+i(x)\j)gradfJ(x),gradfj(x))/ | P(So
i+.(x)\j)gradfj(x) | 2 by

Lemma 2.2. The right hand side=Dt
ifj<£(S°i+1(x)\j),

but 0 > (P(S°i+1(x)\j)gradfj(x),X1)=<P(S°i+1(x)\j)Xi,gradfj(x)> =

<P(So
i+1(x)\j)XrP(S°i+1(x))Xi,gradfj(x)> (since j GS°i+1(x) CS i+1(x)).

By Lemma 2.3 P(So
i+1(x)\j)Xi=Dt

i(^(S°i+,(x)\j)>(Si(x)))

hence D^<l>(So
i+l(x)\^ equals (D^(Si+1(x)\j)-D^(S°i+1(x)),gradfJ(x))

and by the foregoing this last quantity is positive.

(2) We show that jGSi(x)\Si+1(x) implies Dt
ifj<^(Si+1(x))>0: By Corollary 2.1

D t^a)=D.^(J) for all S° i+i(x)CI,JCS i+1(x); hence Dt
i^(Si+1(x))=Dt

i(/)(Sco(x)) and

Lemma 2.5 gives the result.

(3) The fact that jGSi+1(x)\S°i+I(x) implies Dl
ifj<^(K)=0 VS°i+1(x)CKCSi+1(x) follows

from Corollary 2.1 and Lemma 2.2.

Reverse Implications:

(1) We need to show that if jGS,(x)\SOi(x) and j^So
i+1(x)\S° i(x) then

D/f^CS^CxAJXO. If jGS,(x)\S0
;(x) then jgSo

i+1(x)\SOi(x) iff jGS,(x)\S°i+i(x). If

jGSi(x)\S°i+i(x) then S°;+1(x)\j=S°i+i(x), therefore we must show that if

jGSi(x)\S°i+1(x) then Dl
ifj^(S°i+1(x))<0: in fact we have by (2) that if jGS;(x)\Si+1(x)

then Dt
ifj</)(S°i+1(x))>0 and by (3) that if jGSi+1(x)\S°i+i(x) then Dt

ifj^(S0
i+1W)=0,

so the result follows.

(2) We need to show that if j G S,(x)\SOi(x) and j£Si(x)\S i+1(x) then D/'fj^Smto^O.

Here the condition on j is equivalent to jGSi+1(x)\S°i(x), and hence Dl
ifj<^(Si+1(x))=0

by (3).

(3) Follows from the construction of the iteration. _
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Proof of Proposition 4.3

In Proposition 4.3 we are claiming that if we have a pair of systems (M,X) and

(M',X') and a diffeomorphism f:M-»M' such that f<£(M,X)(x,t)=<KM\X')(fx,t) for all

t £ [OjtJ then the iteration is preserved. If M near x is locally represented as

ZN(I;J)=ZN(f1,..fk;fk+1,..,fk+m)then since f:M->M' is a diffeomorphism M' locally is

ZN(f1f1,..,fkf1;fk+1f1,..,fk+mf1)and the sets of indices defining strata on M,M' can be

identified - near f(x) M' locally is ZN(f,',..,fk',fk+1',..,£+m') where fi'=fif
1. By

saying that the iteration is preserved we mean that for all i the pairs of sets of indices

(S^x.M.X^SiCx.M.X)), (S°i(f(x),M',X'),Si(f(x),M',X'))can be identified in this way;

similarly the algorithm is preserved if under the isomorphism TxM-»Tf(x)M' the strata

in Ar(x,M,X) can be identified with those in Ar(fx,M',X') for each r; we shall denote

these identifications with = . We show (a) that Si(x,M,X) = Si(fx,M',X') for all i and

(b) that Ar(x,M,X) = Ar(fx,M',X') for all r (and hence that S°i(x,M,X) = So
i(fx,M',X')

for all i).

(a) We know by Theorem 3.1 that Dt
+i<£(M)(x,t=0) exists for all i > 0 and equals

Dtty(K)(x,t=0) any S°i+1(x)CKCSi+1(x). By lemma 4.8(2) we know that if

jGSi(x)\S°i(x) then jGSi(x)\Si+1(x) iff Dt
if#(Si+1(x))(x,t=0)>0. In fact this result is

true merely requiring that j G S;(x), since if j G S°i(x) then j G Si+1(x) and hence

Dt
ifj^(Si+i(x))(x,t=0)=0. We know (since M' is diffeomorphic to M) that

S1(x,M,X) = S1(fx,M',X'). Suppose inductively that we know

Si(x,M,X) = Si(fx,M',X'). Then by the above if jGSj(x,M,X) then

jGSi(x,M,X)\Si+1(x,M,X)iffO<Dl
ifj^(Si+1(x,M,X))(x,t=O)=Dt

+ifj(/,(M)(x,t=O)

=Dt
+ifjf V(M')(fx,t=0) (by definition of f as differentiable equivalence)

=Dt
+ifj'^(M')(fx,t=O)=Dt

ifj^(Si+1(f(x),M',X')(fx)t=O)

which if jGSi(f(x),M',X') is > 0 iff j G S ^ M ' ^ X S i + ^ f x . M ' . X ' ) , and hence

(b) We wish to show that Ar(x,M,X) = Ar(f(x),M',X') for all r. The data needed for

Ar(x,M,X) are Xr=Dt
r(0(S°r(x))(x,t=O)-^>(Sr(x))(x,t=O)) and the corner

TxZN(S°r(x);Sr(x)\S°r(x)). We can infer S°r(x) from the algorithm Arl(x,M,X) (which

terminates in LO(S0
r(x),Sr.1(x)\S°r(x))) so if we know that Si(x,M,X) = Si(f(x),M',X')

for all i (which we do by (a)) and that S°1(x,M,X) = S°1(f(x),M',X') (which we do

because there exists a diffeomorphism M-»M' with x-*f(x)) it suffices to show that if

(for any fixed i > l ) S°i(x,M,X) = S°i(f(x))M',X') then Ai(x,M,X) = Ai(f(x),M',X'),
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because then the result will follow by induction. To show Ar(x,M,X) = Ar(f(x),M',X')

it suffices by Lemma 4.6(3) to show that if LO(K;Sr(x)\K) is a strictly active stratum

of LC(S°r(x);Sr(x)\S°r(x)) with respect to X, ie, LO(K;Sr(x)\K)GAr(x,M,X), then

sign(gradfj(x),P(K)Xr)=sign(gradfj'(f(x)),P(K)X/) for all j €S r(x)\K.

We have if S°r(x) CKCSr(x)

(gradfj(x),P(K)Xr)={gradfj(x),P(K)Dt
r(^(So

r(x))(x,t=0)-^(Sr(x))(x,t=0)))(by definition

ofXr)

=(gradfj(x),Dt
r(^(K)(x,t=O)-^.(Sr(x))(x)t=O))} by Lemma 2.3

=(gradfj(x),Dt
r(^(K)(x,t=O)-<^(KUj)(x,t=O)+^(KUj)(x,t=O)-0(KUjUj1)(x,t=O)-..

..-<KSr(x))(x,t=0))>

=(gradfj(x))Dt
r(fj^(K)(x,t=O))P(K)gradfj(x)/ | P^gradf /x) | 2+

Dt
r(fj^(KUj)(x,t=O))P(KUj)gradfJi(x)/ | P(KUj)gradfJi(x) | 2+..)by Lemma 2.2

=Dt
r(fj0x(K)(x,t=O))

and of course similarly that {gradfj'(x'),P(K)Xr')=Dt
r(fj'0x,(K)(x',t=O)), the suffices

X,X' on 4> in these formulae to remind us that <£(K) is in these cases the integral flow

of respectively X(K) and of X'(K).

We have shown in Lemma 4.7 that for any K such that S°t(x)CKCSr(x) and such

that LO(K;Sr(x)\K)G Ar(x,M,X) there exists a funnel about 0(Sr(x))(x) in Z(K) and a

neighbourhood U of x in ZP(K;T\K) such that for all y in this funnel and in U (see

Figure 4.11) X(M)(y)=X(K)(y).

Figure 4.11

Thus if y is such a point then for all small s > 0 $(M)(y,s)=(KK)(y,s) and so

Dt
+i^(M)(y,t=O)=Dl

i0(K)(y,t=O) for all i > 0 . Hence for each K such that

S°r(x)CKCSr(x) with LO(K;Sr(x)\K)eAr(x,M,X) there exists a sequence {xk} with

xk-^x such that for each xk Dt
+i0(M)(xk,t=O)=Dt^(K)(xk,t=O) for all i.

We know by the fact that (£(M) and <HM') are differentiably equivalent that (as in

(a)) Dt
+ifJc/>(M)(xk,t=O)=Dt

+ifjV(M')(f(xk),t=O) so we have Dl
if/<MK)(f(x),t=0) =
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Dt
ifj^x(K)(x,t=O) for all K as above, and the result follows.

The Relation Between Iteration Sets and (generalised) Tangencv Sets

We recall from earlier in this chapter the definition of rk(IU J r J) - if functions

(fi,..,fk+m) are independent and setting I=(l..k), J=(k+l..k+m)

Tk(IUJ r J) = {x6Z(IUJ):D#(IUJ)(x,t=0)=D#(J)(x,t=0) for all i<k}. In the same

context we the following open subsets of rk(IU J r J):

Tk
+(IUJ r J) = {xGrk(IUJ r J):Dt

kf^(J)(x,t=0)>0 VjGI}

rk(IUJ r J) = {xGrk(IUJ r J):Dt
kf^(IUJ\j)(x,t=0)<0 VjGI}.

Using Remark 4.1 (ii) we see

rk
+(IUJrJ) = {xGZ(J):Dt

mf^(J)(x,t=O)=OVsei,Vm<k,Dt
kW(J)(x,t=O)>OVsGI},

and r k ( IUJr J) =

{xGZ(IUJ):Dt
mfs<KJ)(x,t=O)=O VsGI,Vm<k, Dt

kf80(IUJ\s)(x,t=O)<O VsGI}.

Sets of this type with | I | =1 are used by Pugh [45].

As an example if (x,,x2,x3)=(x2,X3,l) and Z(J)=Rn, Z(IUJ) = {xGRn:x1=O}=L(l),

then these sets stratify L(l) (and hence RD) - r ,+(l r 0 ) = {xGL(l):x2>O},

IY(1 r 0 ) = {xGL(l):x2<O},..,r3
+(l r 0)=L(1,2,3) (=r3(l r 0 ) ) ,

r3"(l r 0 )=r 4 ( l r 0 ) = .. = 0 (Figure 4.12).

T2
+(l r 0 )

I

r,• ( i r 0)
I

I

3 (1 f

Yd r

0 )

( l r

0 )

0 )

Figure 4.12

We can check that Proposition 4.2 applies to these sets rk
±(IU J r J) as well as to

rk(IUJ r J), ie that if XGS'(M) (a) the sets rk±(IUJ r J) and (b) intersections of

them of the type considered in Proposition 4.2(b), are submanifolds (of the same

codimension as if the superscripts + or - were absent).
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We arrive at the result promised linking the iteration sets to the tangency sets. At the

same time we show that for X£E'(M) the iterationn sets are Cr submanifolds. We

recall that for given ZN(f1(..,fk;fk+1,..,fk+Jand vector field X on ZN(I;J), if

c=((So
1,S1))(S

o
2,S2))(S

O3,S3),..)S
o

nSr))is a contracting sequence, ie

IC S°! C S°2C.. C S°rC SrC SM C. . C Sj CIU J, then the iteration set

9f1(c) = {xeZNa;J):S0
i(x)=S°i, Si(x)=Si, i= l , . . , r } . We see 3-'(c)D3'(c') if c 'Dc.

To guarantee that the iteration sets are submanifolds we shall need X£H'(ZN(I;J)),

but the formula expressing an iteration set in terms of tangency sets holds for all X.

Proposition 4.4 If M locally is ZN(I;J) and c=((S°i,S1),(S
o

2,S2),..(S
o

r,Sr)) is a

contracting sequence, then locally 9f"1((Soi,S1)>(So
2,S2),..,(S

o
r,Sr))

=zp(Si;j\s1)nr1
+(s1 r s2)nry(s°2 r s ^ n i y ^ r s3)nr2-(s°3 r s°2)n..

.. n r M
+ (S r . x r Sr)nrM-(S°r r S°r.i)nrr(Sr r S°r) for any r > 1, and if furthermore

XeS'(ZN(I;J)) it is a Cr boundaryless submanifold of ZP(Si;ASi) of codimension

I SAS, | + | S°2\S°i | +2 | S2\S3 | +2 | S0
3\S°2 | + . .

.. + (r-l) | SM\S r | +(r-l) | S^S0,., | +r | Sr\S°r | in ZP(S,;ASi).

x EgifZN(I;J)=ZN(0;l,2) & c =

ZP(S i ;AS,) = ZP(1;2)

( l r 0 )

Figure 4.13

One implication of Proposition 4.4 is drawn in Corollary 4.2 - that if X£E'(M) then

the condition to apply Theorem 2.1, ie that S°00(x)=S0o(x), applies at every point of M.

Minor Remark In applications the expression for iteration sets in terms of tangency sets

would be used in the following form: if the contracting sequence

(s,,Sl,...s,^,..,82,83,....,sr)=(s1
i(1>,s2

i(2),..sr
iW)where si=(S°i,Si), then 3-1(s1

i(1),s2
i(2),..sr

iw) =

I V ^ r s2)nr i (1)-(s0
2 r s°1)nr j (1)+i(2)

+(s2 r s3)nri(1)+i(2)-(s0
3 r s° 2 )n . .

^ r " + ( S r S ) n r r.,)'(S r r S r-i)
(^rj;(i(j)j=1 r)(Sr r S r).
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Proof of Proposition 4.4 By definition

9f1((S0
1,S1)) = {x6ZN(I;J):S1(x)=SI}=ZP(Si;J\S1), so we suppose the result is true

up to r and show that then it is true for r + 1 . From Lemma 4.8 if

(So
r(x)!Sr(x)) = (S0

r!Sr)then(S0
r+1(x),Sr+1(x)) = (So

r+1)S r+1)iffVjGSo
r+1\So

r

D t
rf^(So

r+1\j)(x,t=0)<0 etc. Hence if (S°r(x),Sr(x))=(S°r,Sr) then using (in (i),(ii),

(iii) below respectively) the facts that So
rCS° r+,\jCS r, S r

0CS r+1UjCS r , and

S° rCS° r+1CS r+1CS rit follows that (S°r+1(x),Sr+1(x)) = (S°r+1,Sr+1) iff (i)

xeiY(S° r+1 r S°r+1\j) V jG S°r+1\S°r, (ii) x e r r
+ a u s r + 1 r Sr+1) V j e S r\S r+1 and (iii)

xGF r+1(S r+1 r S°r+j), and by the way I V ^ U J r J) have been defined this is so iff

xGT r
+(S r r Sr+])nrr-(S°r+1 r S° r)nr r+1(S r+1 r S°r+1). This is the required inductive

step: we have verified that the formula is true from definitions if r = l , our inductive

hypothesis is that we have for r the form given in the statement of the proposition,

and we have now shown that if additionally (S°r+1(x),Sr+1(x))=(S°r+1,Sr+1) then

xG»-1((s°1,s1),(S°2)s2),..(so
r,sr))nrr

+(srr sr+1)nrr-(s°r+1 r s° r)nr r + 1(s r + 1 r s°r+1).
Using then that I\(IUJ r flDT^CIUJ r J) and that I\(IUJ r J)2>rr+1(IUJ r J) (by

definitions) we get I\+(S r r Sr+1)niY(S°r+1 r S° r)nr r+1(S r+1 r S°r+1)

CTr(Sr r S r+1)nr r(S° r+1 r S° r)nr r(S r+1 r S°r+1) = r r(S r r S°r) (the last equality by

Corollary 4.1(3)) and hence in the formula we have obtained :

S-1((S0
1,S1),(S

02,S2),..(S°r+1,Sr+1)) =

zp(s1;j\s1)nr1
+(s1 r s2)nr1-(s°2 r so,)nr2

+(s2 r s3)nr2-(s°3 r s°2)n..
. . n r M

+ ( s M r sr)nrM-(s°r r s°M)nrr(sr r s°r)nrr
+(sr r sr+1)n

IY(S°r+i r S° r)nr r+1(S r+, r S°r+1) the Tr(Sr r S°r) term (which was the final term in

9r1((S°,,S1),..,(S°r,Sr))and now appears 4th from the end in 3-1((S°1,S1),..,(S°r+i,Sr+1))

is redundant and we obtain the desired expression for r + 1 . The codimension result

follows if XG H'(ZN(I;J)) from Proposition 4.2(2).

Corollary 4.2 For XGS'(M) we may decompose M into submanifolds each contained

in strata of M as a submanifold with corners, consisting of iteration sets ^"'(c) for

contracting sequences c, with $'1(c) = 0 if

I S,\S2 | + | S^XS0, | +2 | S2\S3 | +2 | S0
3\S°2 | + . .

. .+(r- l) | Sr.i\Sr | +(r-l) | S^XS0,., | +r | Sr\S°r | >dimension of M and hence for

all but finitely many contracting sequences. It follows that if XGS'(M) then

S°0=(x)=S00(x)forall

xGM and we may apply theorem 2.1 part 1 at every point of M.
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Chapter Five

A Theorem about Recurring Strata and some Implications

Almost every problem in the theory of trajectories is concerned mainly with dealing

with the situation where <£(M)(x,t) makes infinitely many stratum jumps in an

arbitrarily small time interval. If instead for 0 < t < 5 <£(M)(x,t) lies in a single stratum

a of M as a submanifold with corners, some 5>0, then we saw in Remark 3.1(2) that

<t>(M)(x,t)=(t>(a)(x,t) for all tG[0,5), and in particular 0(M)(x) is Cr on (0,5). Turning

from individual trajectories to the local semiflow a crucial result we shall need to

prove a local stability theorem (Chapter Seven) is that if there are no points of infinite

order tangency between flows on strata of M then the number of stratum jumps made

by trajectories in any compact set is bounded uniformly on that compact set. In this

chapter we shall establish a theorem (Theorem 5.1) covering both situations and

derive some implications.

Throughout this chapter M is a smooth submanifold with corners of Rn and X is a

smooth vector field on M.

Definition Suppose xGM with {o-} the strata of M as a submanifold with corners. A

recurring set of strata at x is a set of distinct strata (oo,..,ffr.i) such that there exists a

sequence of points {xj CM with X;-»x, where X£OJ for all 0 < j < r - l , and for each

i € Z + there exist 0=tj0<tf < . . < V<h ; where h ; i0, <t>(M)(Xi,tj)Gajmodr for all 0 <j < i

and the trajectory segments <^(M)(xi,[0,hi)) = {c/)(M)(xi,t):0<t<hi}Cconv(ao,..,ar.1),

where we recall from Chapter Four that conv(cr0,..,<rr.1)=(the intersection of all

subcorners of M containing UjioOj) = (the smallest subcorner containing UJiJo-).

Examples 5.1 (Examples of recurring strata).

(1) In Example 2.1 the strata ZP(0;1) and ZP(1;0) are recurring at the origin (take

x ~ origin Vi, h; any sequence iO)



0 xn x9 x7

ZP£0;1)
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Figure 5.1

(2) We can modify Example 2.1 to obtain an infinite number of hits on the left

ZP(0;1)

ZP(1;0) .
t7 t9

Q.
*1 l 3 t 5 17 u9

Figure 5.2

and again ZP(1;0) and ZP(0;1) are recurring at the origin - take X;=t2i+l!

n i = I *2i+I I

(3) We may find a field X such that X(1),X(2) have respectively the properties of

Examples (1) and (2) above (see Figure 5.3).

Figure 5.3

For this system we have on ZNP(2;3; 1) = ZP(2,3; 1)UZP(2; 1,3) X(M) = X(2) or

X(2,3),on ZNP(1 ;3;2) = ZP(1,3;2)UZP(1;2,3) X(M)=X(1) or X(l ,3) and the integral

curve through a point on ZP(2,3;1) has the form shown. Then the pair

(ZP(1;2,3),ZP(1,3;2)) is recurring at 0 and (ZP(2;1,3),ZP(2,3;1)) is recurring at 0,

but no subset of size three or more such as

(ZP(l;2,3),ZP(l,3;2),ZP(2;l,3),ZP(2,3;l))is recurring at 0.
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(4) Set

X(x1,x2,x3)-
(l,exp(-l/x3)sin(x1/x3),O) if x 3 >0

(1,0,0) if x 3 <0

on R3, with M={xGR3 :x2>0}.

Looking down onto the plane x2=0 we have trajectories <£(M)(x) parallel to the x^axis

(Figure 5.4a).

0

Figure 5.4a

Each trajectory $(M)(0,0,x3) with x3>0 looks like

x3exp(-l/x3)

Figure 5.4b

with x2(t)=x3exp(-l/x3)(l-cos(t/x3)) and on every compact neighbourhood of 0 any

single trajectory makes only finitely many transitions between int(M)=ZP(0;2) and

3M=ZP(2;0) , but (ZP(2;0),ZP(0;2)) are still recurring at 0 - take x i=(0,0,l/i2),

hi=i(27r/i2) and let i-»<».

2ir/i2

Figure 5.4c. Trajectory through (0,0,1/i2)

(End of Examples 5.1).

We can check that in each of the above examples if a set of strata (cro,..,crr_i) is
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recurring at x then for any j ,kG(0,. . ,r-l) Dt
i^(aj)(x,t=0)=Dl^(ak)(x,t=0) for all i, Sj

being (as in Chapter Four) the C extension of ay Intuitively we think of this as

meaning that the flows on the strata (or really the strata extensions since the strata

themselves are disjoint) are infinitely tangent at x.

Theorem 5.1 where we establish this fact in general is a key result in this thesis, the

implications of which occupy the second half of this chapter and Chapter Seven. It is

simpler to prove if M has only orthogonal corners (defined in Remark 2.5) and since

this covers the applications we shall restrict ourselves to this context.

Theorem 5.1 If M is a submanifold with orthogonal corners locally represented as

ZN(I;J) and if strata {ZP(Ij,J\Ij),j=O,..,r-l} are recurring at xGZN(I;J) then

D>(njiyj)(x,t=O)=Dt
i<^(UJ;JIj)(x,t=O) for all i > 0 ; equivalently if strata {oj}j=0,..,r-i

are recurring at xGM then the flows on all the strata in conv{oj}j=0 M are infinitely

tangent at x.

We re-iterate that the trajectory segments <^(M)(xj,[0,hj)) in the definition of recurring

strata can all be on the same trajectory or overlap (as in the case of Example 5.1(2)

where we can take Xj=t2i+1, h ;= | t2i+1 | , or Example 5.1(1), where we may take

x ;=0 for all i, h; any sequence 10 ).

To prove Theorem 5.1 we shall have to deal with the fact that the trajectory

segments arising in the definition of recurring strata are by their nature highly

non-smooth. Let us consider how we would prove it in a particular case.

Example 5.2

M={yGRn:yi,y2>0}. We shall set cro=int(M), <T1 = {yGRn:y1=0,y2>0},
ff2={y£Rn:y2=0,yi>0}, o-3 = {yeRn:y2=0,y1=0}. We suppose there exist

{Xj}jez+CM and {hj}jez+CR+ where Xj->xEa3, fylO and so that for each j the

trajectory segment <£(M)(Xj,[0,hj)) hits each of aua2 at least j times (see Figure 5.5).

We are claiming that

Dt^(l)(x,t=O)=Dt
i</»(l,2)(x,t=O)=Dt

i^(2)(x,t=O)=Dt
i0(0)(x,t=O) for all i > 0 .

If we were constructing an analytic (in the sense of concrete) example the following

symmetry relation would probably hold (this type of relation does in Examples 5.1(1,2

and 4)): if for points x ,y6M P(l,2)x=P(l,2)y then X(x)=X(y), ie the vector field is

independent of yr and y2. This implies X<£(M)(x,t)=X<£(l,2)(P(l,2)x,t) for all t, and

hence if <£(M)(x) re-enters aQ from ax and a2 j times on [0,T], ie (X<^(M)(x,t),nm) has j
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zeros on [0,T], m = l,2, then the smooth (X0(l,2)(P(l,2)x,t),nm) also has j zeros on

[0,T], m=l ,2 , and the result may be inferred directly. This special type of case

provides in fact no hint as to how one proceeds in general.

— on a, or a2

— in aQ

Figure 5.5

We make for fixed k the inductive hypothesis

(1) that there exists a subsequence {xkj} of {xj with xk-»x as j-*°°, for each j £ Z +

reals 0=Tk
j ) 0<Tk

j ) 1<..<Tk
j J l0 with points xk

jJ,=^(M)(xk
j,T

k
jJ,)

on ^(N^Cx^tO.T^j.)) such that if j ' is odd X(M)(xk
jJ,)=X(l)(xk

jj,) and if j ' is even

X(M)(xk
jJ,)=X(2)(xk

jJ,),and

(2) that (1/(1*J,+1-Tk
jJ,))

iDk-i(X(0)^(0)(xk
jj,,t=O),nm) (*)

is uniformly bounded for all integers j , for all 0 < i < k and for all 0 < j ' < j , m = l,2.

Since Tk
jJ.+1-T

k
jJ.-*0 and xk j.-*x as j-»oo for any {(j,j')} with j ' < j the inductive

hypothesis implies in particular that Dt
kl(X(0)<^(0)(x,t=O),nm)=O for m = l,2 which

using Lemma 2.2 tells us that Dt
k<£(l,2)(x,t=O)=Dt

k<£(0)(x,t=O) etc, ie, if we can

show the inductive hypothesis holds for all k then the result follows.

Evidently this inductive hypothesis is satisfied for k=0, taking x°j=Xj, T°jj

=hj, where Xj, hj are given to us by supposition, and x°jj. are points along <£(M)(Xj)

where the curve re-enters <x0 fr°m a\ (if j ' odd) and from cr2 (if j ' even) (see Figure

5.5) and we can fix T0^. by ^(M)(xj,T°jj.)=x°jj, (if k=0 condition (2) is satisfied so
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long as the points remain in a bounded set). Thus we must show that if the hypothesis

holds for k then it holds for k + 1 .

Using Lemmas 5.2 and 5.3 we can, if the inductive hypothesis is satisfied for k, for

each j fmd smooth curves ^k
j:[0,Tljj)-»M which are tangent to 0(M)(xk) at xkj. for

each j ' <j (and hence to ax for odd j ' and to <r2 f° r e v e n j ' ) a n ^ which furthermore

themselves satisfy certain uniform bound conditions of a form similar to (*) (see

Figure 5.6). For any r > 0 such that j > r+2k there are therefore between the pair of

points x k
r , xk

jr+2k along ^ k points of tangency between ^ and am, m = l,2, ie k

points where (X(0)^ j(t),nm)=O, and hence on [Tk
>r,T*j r+2k] there are k-i points where

D, i(X(0)^ j(t),nm)=O. This, (*) in the inductive hypothesis and Lemma 5.4 then tell

us that SuptenJc.r,Ticjr+2t](l/(T
k

j,r-T
k

j,r+2k))
i(Dk-i{(X(0)^j(t),nm)) remain uniformly

bounded as j-»°°, m = l,2 for all 0 < i < k , which combined with Lemma 5.5 tells us

that (l/(Tk.r-T
k

jir+2k))
i(Dt

k-i((X(0)<^(0)(xk-r,t=O),nin))is uniformly bounded as j^oo

for a l lO<i<k , m = l,2.

.*fj3

j.3

a smooth curve tangent to <£(M)(xk)
at each xkj.

Figure 5.6

is aIf we now set xk+1
j=xk

2jl: and T 4 + 1
j j .=T*^ w (so xk+1

jJ,=xk
2kj,2kj,) so { x ^

subsequence of {xk} and {xk+1jj.} is a subsequence of {xk
2jkJ.} (see Figure 5.7), we see

that this proves the inductive hypothesis for k+1 .

The only extra ingredient in the general case is that more work is involved in

selecting the points xOjj. (Lemma 5.1). Note incidentally that what the segments



103

<£(M)(Xj,[0,hj)) do in addition to intersecting o0,ou..ot.l cyclically in turn is irrelevant,

so long as they remain in conv(<ro,",0r-i): for example if in Example 5.2 in addition to

entering a0 from aua2 at Xjj. these curves intersect cr3 or have tangencies with cr3 it

makes no difference to the result or proof.

trajectory based at (xk
4k=xlc+1

2)

trajectory based at xk
t

1,1

Figure 5.7

(End of Example 5.2)

Lemma 5.1 generalises the fact that if a trajectory bounces several times between

strata then we can find a succession of points along the trajectory where certain vector

fields X(K) (in the case of Example 5.2, X(0 ) and X(l) or X(0 ) and X(2)) or their

smooth extensions coincide.

Lemma 5.1 If M is a submanifold with orthogonal corners with xGM,

0=t o <t 1 < . . <tj with <£(M)(x,[O,tj))CZN(I;J)= a local orthogonal representation of M

(with x in ZN(I;J) but not necessarily in Z(IUJ)), and if for ICI0 , . . ,L.iClUJ

<HM)(x,tOeZP(L,m^r)J\Iiimodr), for all 0 < i < j , then for each k € US;&\n! ;& and

for each m > 0 with (m+l) r< j there exists a point tE^jt^+j),.) such that

(X(n[ioIi)^(M)(x,t),gradf^(M)(x,t))=0.

Eg If in Figure 5.8 below <HM)(x,t)GZP(l,2;3) for even t and 0(M)(x,t)GZP(3;2,l)

for odd t, so n i j = 0 , UIi=(l,2,3), then on each interval (tj.tj+j) there exists for each

j = 1,2,3 a point t where <X(^(M)(x,t)),gradfj(^(M)(x,t))>=0
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Figure 5.8

Proof

(1) We show that if on the domain of the local orthogonal representation ZN(I;J)

fj(y)X) some iGJ then <X(M)(y),gradfj(y)> = (X(K)(y),gradf{y)) any KDI such that

i € J \ K , from which it follows that t->(X(M)<£(M)(x,t),gradfj(<KM)(x,t))) is continuous

for as long as fi^(M)(x,t)>0 (this is not the case if the corners are not orthogonal).

We recall that because X is defined on M locally represented as ZN(I;J) the vector

field X we begin with is identical to X(I). From Remark 2.5(1) we know that if

yEZN(I;J)

X(M)(y)=X(S1(y))(y) + Ei6Si(y)Mgradfi(y)max({gradfi(y)>X(0)(y))>O)/ | gradf;(y) | 2

where of course ICS^yJCIUJ. By Remark 2.1 we know that

X(S1(y))=X(I)(y)-EieSi(>)V\,gradf,(y) some reals {\} and

X(I)(y)-X(K)(y) = EjeKVP(I)gradfj(y) where the right hand side = Ej6KXIgradfj(y) if as

here {gradfj(y)}iejUj are orthogonal. Then if f;(y)>0 - ie i^S^y) - then since for our

submanifold with orthogonal corners (gradfi(y),gradfj(y))=O for all i ^ j we have for

all iEJ <X(M)(y),gradfi(y)> = (X(I)(y),gradfi(y)) = <X(K)(y),grad?(y)> if iEJ \K.

Continuity of HX(M)^(M)(x,t),gradf|(0(M)(x,t))) for as long as fi(^(M)(x,t))>0

follows from this and continuity of t->$(M)(x,t) and of y->X(I)(y).

(2) If kG U\-JQl\ny=l,l, then there exists k(0),k(+)6(0,..,r-l) such that kGIk(0) and

kEJ\Ik ( + ) . Hence for every m fk0(M)(x,tmr+k(CI))=O and fk<^(M)(x,tnir+k(+))>0, so

fk0(M)(x,t) is both zero and positive on any interval [t,lir,t(m+1)r) (it can never be

negative because kGIUJ and ^(M)(x,t)GZN(I;J)). If k 6 I 0 fk<£(M)(x,t,nr)=0 for all m7

so since by (1) Dl
+(fk^(M)(x,t)) = (X(M)</)(M)(x,t),gradfk4)(M)(x,t)) is continuous
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where fk(/>(M)(x,t)>0 (see Figure 5.9) there must be some t G ^ t ^ + D , ) where

f^(M)(x,t)>Oand(X(M)0(M)(x,t),gradfk0(M)(x,t))=Dt
+(fk0(M)(x)t))=O.

fk0(M)(x,t)

Figure 5.9

By (1) again at this t (X(K)^(M)(x,t),gradfk0(M)(x,t))=O for any KDI such that

kGJ\K, and K=n[iolj satisfies this condition since for each I ;DI

Alternatively if k<£l0 then k € J\I0 and fk<)i)(M)(x,tmr) > 0 for all m. We know that

there exists k(0)G(l,..,r-l) (k(0)^0 because k<£l0) with fk^>(M)(x,tmr+k(0))=0. Set

T=sup{te(tmr,t(m+1)r):fk^(M)(x,t)=O} (necessarily <tOn+1)r). Thus fktf(M)(x,T)=0, or

equivalently kGS1(<^(M)(x,T)). By Remark 2.5(2)

X(M) ^(M)(x,T)=X(S1(^(M)(x,T)))^(M)(x,T) so

<X(M)*(M)(x,T),gtadfk(0(M)(x,T))>=O. Since fk^(M)(x,t)>0 on (T,t(m+1)r), by (1)

again (X(n[i^Ii)^(M)(x)t),gradf^(M)(x)t))=(X(M)^(M)(x,t),gradfk^(M)(x,t)) on

(T,t(m+i)r), hence

<X(n[i&)<KM)(x,T),gradfk<KMXx,T)>

=limtiT<X(nuSri)*(M)(x,t),gradfk^(M)(x,t)> (by continuity of X(n[i&) and 4>(M))

=limUT(X(M)^(M)(x,t),gradfk0(M)(x,t)) (by foregoing)

=(X(M)c£(M)(x,T),gradfk<KM)(x,T)> (by Theorem 3.1))

=0 (by above).

We recall from our discussion of Example 5.2 that the kth inductive stage of the

proof of Theorem 5.1 involves finding smooth curves {1/^=1,2,.. where ^kj(O)=xkj for

all j , each passing through the points <£(M)(xkj,Tjj.) for all j ' < j , with i/^j=X(M) at

these points, and satifying certain extra conditions; in Lemma 5.2 and 5.3 below we

are concerned with constructing these curves.
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Lemma 5.2 Suppose X is a vector field on Z(I), {Xj} is a sequence of points in the

submanifold with corners M =ZN(I;J) such that Xj-»x as j-*oo,and suppose {Tj} is a

sequence of positive reals such that Tj 10 as j->oo t and that

(l/Tj)
kiDt

i(X^(I)(xj)t=0),gradfm<^(I)(xj,t=0)) is uniformly bounded for all i<k , for all

j G Z + and for all mEJ (ie, there exists A independent of j such that

| (l/Tj
ti)Dl

i(X<^(I)(xj,t=0),gradfm^(I)(xj,t=0)) | <Afor all j > 0 , for all i < k and for

all mGJ).

ThenSup{ | (l/Tj)
k(X(M)^(M)(xj,t)-X(I)^>(I)(xj,t)) | rteLO.TJ}

and Sup{ | (l/Tj)
k+1(^)(M)(xj,t)-</)(I)(xj,t)) | :t£[O,Tj]} are bounded uniformly over

Proof

(a) X(y), X(M)(y) are uniformly bounded in any compact region so

Sup{ | X(M)<^(M)(xj,t)-X(I)^(I)(xj,t) | :t6[0,Tj]}is uniformly bounded for all j - say

this quantity is bounded by A - then since for 0 < t < Tj

| (l/Tj)(^(M)(xj,t)-^(I)(xj,t)) | < ! (1/t) iVo(X(M)<^(M)(xj,s)-X(I)^(I)(xj,s))ds | <A

the result for k=0 follows.

(b) Suppose the result holds up to k-1.

Then we have X(M)0(M)(xj,t)-X(I)</>(I)(xj,t)=X(M)0(M)(xj)t)-X(M)</)(I)(^,t) +

X(M)<^(I)(xj)t)-X(I)^(I)(xj,t).By assumption the trajectory segments <^(M)(xj)[0,Tj))

are all contained in ZN(I;J) hence X(M)^(M)(xj)t)=X(K)^(M)(xj,t) some I C K C I U J

for all j for all t £ [O,Tj), and since there are only finitely many such K the fact that

supte[O(T]](l/Tj)
IC(X(M)0(M)(xJ)t)-X(M)^(I)(xj,t))is uniformly bounded over j G Z + will

follow if we show that supie[O,Tj](l/Tj)
k(X(K)^(M)(xj,t)-X(K)<^(I)(xi,t)) is uniformly

bounded over j 6 Z + for each ICKCIUJ .

By the Mean Value Theorem | X(K)(y)-X(K)(z) | < | y-z | supw6B | X(K)'(w) |

where we take B to be a compact convex region large enough to contain all the points

4>(M)(Xj,t) and 0(1)(Xpt) for 0 < t < T j (which can be taken to be compact since Xj-*x

and TjlO) and hence there exists a constant A< oo with supw(EB | X(K)'w | =A.

Thus | (l/Tj)
k(X(K)0(M)(xj)t)-X(K)^a)(xj)t)) | <A | (l/Tj)

k(<^(M)(xj,t)-0(I)(xj,t)) |

for all K such that ICKCIUJ , for all j and for all tG [O,Tj], and the right hand side

is uniformly bounded by assumed result for k-1.

We now show that supte[OT](l/Tj)
k(X(M)<^(I)(xj,t)-X(I)0(I)(xj,t))is uniformly

bounded over j G Z + . As above it suffices to show that for all I C K C I U J



107

supt6[0,Tj](l/Tj)
k(X(K)^(I)(xj,t)-X(I)^(I)(xj,t))is uniformly bounded over j G Z + .

By Remark 2.2 we know that for KDI X(K)(y)-X(I)(y)=-NMrNTX(I)(y) where

(NTX(I))k=(gradfk(y),X(I)(y)) and N(y)M(y)T is a matrix depending smoothly on y.

Hence (since {^(I)(Xj,t):jGZ+, t6[0,Tj]} is bounded) | X(K)<^(I)(xj)t)-Xa)^(I)(xj,t) |

is bounded over j G Z + , tGfOjTj], by some positive constant multiplied by
suPk6Kv I (gradfj<£(I)(Xj,t),X(I)<KI)(Xj,t)) I • The supposition of the lemma is that

(l/Tj)
k-iDt

i(X^(I)(xj,t=0),gradfm<^(I)(xj,t=0)) is uniformly bounded for all i<k , for all

j G Z + and for all mGJ. If we expand out (gradfj^(I)(xj,t),X(I)<^(I)(xj,t)) as a Taylor

series we get (gradfj^(I)(xj,t),X(I)0(I)(xj>t)> =

(gradfj0Q(xj,t=O),X(I)^(I)(xj,t=O))+iDt(gradfj0(I)(xj,t=O),X(I)*(I)(xj,t=O)> +
1/2t2Dt(gradfj^(I)(xj,t=0),X(I)<^(I)(xj,t-0)) +. . . +

(l/k!)tkDt
k(gradfj<^(I)(xj,0t),X(I)0(I)(xj,0t)) (some fie (0,1)) where all but the last term

are of the form t'x(a quantity < ATjki) some constant A where i=0, . . ,k-l ; since

tG[0,Tj] these terms are therefore uniformly bounded by Tjk. The last term is

^X multiplier where the multiplier is uniformly bounded by suposition at t=0 and

hence by continuity uniformly bounded on compact sets. Thus

| (l/Tj)
k(X(M)<^.(I)(xj,t)-X(I)^(I)(xj,t)) | is bounded uniformly over j G Z + , tG[0,Tj],

which combined with the first line yields that

| (l/Tj)
k(X(M)<^(M)(xj,t)-X(I)</)(I)(xj,t)) | is bounded uniformly over j G Z + , tG[0,Tj].

This is the first half of the result; for the second half, if 0 < t < T j then

I (1/t) f Uo(l/Tj)
k(X(M)0(M)(xj,t)-X(I)0(I)(xj,t))ds | , the integrand is less than or

equal to some constant A by the above and hence

supte[0,T.] I (l/Tj)
k+1(^(M)(xj,t)-^(I)(xj,t)) | <A

Remark With the same assumptions we can also show that

Sup{ | (l/Tj)
k+li(Dt

+i0(M)(xj,t)-Dt
+i

</)(I)(xj,t)) | : te[O,^]}is uniformly bounded as

j-*oo for all 0 < i < k + l , but this strengthening is not needed.

Lemma 5.3 Suppose a submanifold with corners M is locally represented near x as

ZN(I;J) with {XJ} a sequence in M such that Xj-*x as j-*°°, and suppose {Tjj} is a

sequence of non-negative reals with Tjj 10 as j->oo (

[O,TjJ = [0=^,0,^,) U [Tj,, ,Tj>2) U.. U Ujj.,,Tj J . If

sup{ | (l/(TjJ,+1-TjJ.))
kl(X(M)^(M)(xj)t)-X(I)<^(I)(0(M)(xj,Tjj,))t-TjJ.)) | :t£ITjJ.,TjJ.+1]}and
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sup{ | (l/(Tjj,+rTjJ.))
k(^(M)(xj,t)-^(I)(^(M)(xj,TjJ-),t-Tjj.)) | :tG[Tjj.,TjJ,+1]}are

uniformly bounded as j-»oo for all j '=O,. . , j- l (ie, there exists a constant A > 0 such

that for all j 6 Z+ and for all j ' <j both these quantities are less than A) then there

exist smooth curves i/'j:[0,Tj]->Z(I) satisfying

(1) ^(O)=Xj and ̂ j(TjJ.)=*(M)(XjSTjJ.) for all 0 < j ' < j

(2) ^j(TjJ.)=X(M)0(M)(x|.,TjJ.) for all 0 < j ' < j

(3) sup{ | DtVjCt) | :te[0,Tjj]} < A for all j , some A independent of j

(4) sup{(l/(TH,+1-Tji/))
ki I D,i(^i(t)-^©W(M)(xiiTii')»t-Tii.)) I :tG|TM.,TH.+1]}<A for

all 0 < j ' < j , for all j G Z + , for all 0 < i < k , some constant A.

Proof (a) The suppositions imply that if we set

G^tjJ'^CMXx^O + Ct-T^^

+(l/(k+l)!)(t-TjJ,)
k+1Dt

k+V(I)(^(M)(x,Tj,),t=O),and

G2(t,j,j')=^(M)(xj,TjJ,+1)-(TjJ,+1-t)X(M)^(M)(xJ,TjJ.+1)-

(l/CrjJ,+1-TjJ,))
iDt

k-i(G1(tJ,j')^(I)(0(M)(xj,TjJ.))t-TjJ,))and

(l/(TjJ,+1-TjJ,))
iDt

k-i(G2(t,j)j')-^(I)(^(M)(xj,Tjj.),t-TjJ.))are uniformly bounded as j - o o

fora l lO<j '< j - l , j ez + , t e iT j J . ,T j J . + 1 ] .

(b) We set g:R-^[0,l] to be a C°° function infinitely tangent at 0 and 1 to the maps

R-*0, R-*l respectively :

1 .
g(X)

and observe that supt6[OAT]Dt
ig(t/A)=(l/Ai)supl6[oiT]Dt

ig(t)

(c) If we now for any j S Z + , 0 < j ' <j-l set on tG ETjj.,Tjj.+1]

^(t) = (l-g((t-TjJ.)/(TjJ.+1-Tjij,)))G1(t,j)j')+g((t-TjJ.)/(TjJ.+1-TjJ,))G2(tj,j')then this ^ is

smooth and satisfies (1) and (2) (Figure 5.11).
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Figure 5.11. I/'J is a smooth curve coinciding with <£(M)(Xj,t) at t=T ij. for j ' = O , . . j

and at these points the time derivative ^j(TjJ.)=X(M)^(M)(xj,TjJ,).

Furthermore, for tG[TjJ.,TjJ.+1] Dt
m(^j(t)-0a)(^(M)(xj,TjJ,),t-TjJ,)) =

Dt
sg((t-Tj,j.)/(TjJ,+1-TjJ,))Dr(G2(t,j,j')-^(I)(^(M)(xj,TjJ,),t-TjJ.))) and hence by (a) and

(b)fortE[TjJ.,TjJ.+1]

sup{ | (l/(TjJ,+1-TjJ,))
k-mDt

m(^(t)^a)(^(M)(xj,TJ,j,),t-TjJ,)) | :te[TjJ..,TjJ.+1]} (*

is uniformly bounded over j ' < j , j G Z + . This gives (4) of the list of conditions we

claim i/-j satisfies (see Figure 5.12).

Figure 5.12

As for (3), under the assumptions of this lemma 0(I)(c/)(M)(xj,Tjj.),t-Tjj.) is contained

in a compact set for all tG[TjJ.,Tj-j, + I ] , j ' < j and j £ Z + , hence by smoothness of

there exists a constant A' >0 such that | D^MiMXx^^t-T^) | < A' for all

tG[T j J . ,T j j .+ 1] , j '<j , jGZ+ . We know that
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<A for all t€[T jj.,T jj.+ |], j ' < j , j G Z + , some constant A, by (*) with m set to k,

and it follows that for all j G Z+ and for all t € [O.TjJ | DtVj(t) | < A+A' .

Lemma 5.4 below is a quite general result saying that if {\pj} is a sequence of smooth

curves, i/'j:[0,Tj)->B (= a ball in Rn) where TjlO, and g is a smooth function g:Rn-*R

such that gi/'j has k zeros on [O,Tj) for each j , then so long as the kth time derivative

of ^j(t) is uniformly bounded over tG [O,Tj) and j G Z + , then for all 0 < i < k

is bounded uniformly in tG[O,Tj) and j G Z + .

Lemma 5.4 If {i/̂ } is a sequence of smooth functions ^J:[O,TJ)-»B (= a ball in Rn)

where TjlO, and f is a smoooth real valued function with non-vanishing gradient, such

that

(i) sup{ | D,Vj(t) I :tG[0,Tj]}<A for all j , some A > 0

(ii) (X(^(t)),gradf(^(t))) has k zeros on [O.TJ for all j

then sup{ | (l/Tj)
iDt

lc-i(X^J(t),gradfi/'J(t)) | :t€[0,T i]}<A' for all j , 0 < i < k , some

constant A' > 0.

Proof Between any pair of zeros of (Xi/'j(t),gradfi/'j(t)) there exists a zero of

Dt{X^j(t),gradfi/'j(t)), between any pair of which there exists a zero of

Dt
2(Xi/'j(t),gradfi/'j(t)) etc. Hence there exist t ^ . . , ^ G[0,Tj] with

Dt
i(X^j(t),gradf^j(t))=O at t=t;. Writing Xf^(t) for (X^(t),gradf^(t)) then if tGLO.TJ

(l/Tj)(Dt
k-IXf^j(t))=(l/Tj)(Dt

k-1X^j(t)-Dt
k-1XfrAj(tk.1)) = 1/Tj J UVi Ds

kXf^(s)ds, where

the integrand is bounded uniformly over j G Z+ since X,f are smooth and by

supposition the quantities sup{ | Dt
k^(t) | :tG[0,Tj]}, and hence by the Mean Value

Theorem sup{ | Dt^j(t) | :tG[0,Tj]} for all i<k , are bounded uniformly over j G Z + .

Hence sup{ | (l/T^D^'Xf^Ct) | :tG[0,Tj]} is bounded uniformly over j G Z + .

Similarly by induction, if sup{ | ( l /T^D^Xf^t ) | :tG[0,Tj]} is bounded uniformly

over j G Z + so is sup{ | ( l /T^^D^'Xf^Ct) | :tG[0,Tj]} (using that for tGCO.TJ,

Lemma 5.5 is another quite general result we shall need to prove Theorem 5.1.
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Lemma 5.5 If f:Rn->Rn is smooth, xGBCR" where B is a closed n-ball,

supy65>i:Sk | Dy'f(y) | =A < co5 {gj}, {hj} are sequences of smooth functions

gj,hj:R-^Rn with gj(0)=hj(0)=xj, Xj-»x as j-»<», {Tj} a sequence with TjiO and

gjCO.T .̂hjCO.T^CB, then if (l/Tj)
iDt

k-i(gj(t=O)-hj(t=O)) is bounded uniformly over

j G Z + , for all i<k , then (l/Tj)
i(Dt

ki(fgj(t=0)-fhj(t=0)) is bounded uniformly over

j G Z + , fora l l i<k .

Proof If h:R->Rn is a smooth function with h(0)=x, and writing D^hO^O) as h(i) and

Dx
jf(x) as f®(x), the chain rule for differentiating compositions of functions gives

Dtfh(t=0) =a finite sum of terms each of the form fi)(x)(h(k(1)),..,h(k(i))) where

E|=1k(s)=i. Thus with Xj^h^f as above (l/Tj)
iDt

k-i(fgj(t=O)-fhj(t=O)) is a sum of

terms (l/Tj)
if(m)(xj)(gj

(k(1))-hj
(k(1)),..,gj

(k(m))-hf(m))) where E?=1k(s)=k-i, which since the

{Xj} are in a compact set and all functions involved are smooth this typical term has

magnitude ^ ( l /T^A | g/MW-hj*™ | .. | g.«m))_h.(k(m» | _ W e k n o w b y s u p p o s i t i o n t h a t

I Dt
lci(gj(t=O)-hj(t=O)) | <CT/ for all 0 < i < k some C independent of j , hence each

typical term has magnitude <(l/Tj)
iA(C(Tj)

k-k(1))(C(Tj)
k-k(2))..(C(Tj)

k-k(m)) and so

| (l/Tj)
iDt

k'i(fgj(t=0)-fhj(t=0)) | <(l/Tj)
iA'(Tj)

E{k-k(s):s=1-m>Cm some A' independent of

j . We know Ef=1k(s)=k-i thus mk-I^=1k(s)=(m-l)k+i. Hence

S7=1(k-k(s)) = (m-l)k+i which is > i if m> 1, and hence

| (l/Tj)
iDt

ki(fgj(t=0)-fhj(t=0)) | is uniformly bounded over j G Z + for each 0 < i < k .

Proof of Theorem 5.1

We are claiming that if M is a submanifold with orthogonal corners with local

orthogonal representation ZN(I;J), then if there exists {Xj}j=1 ^CZNCIiJ) with

Xj-»xGZ(IUJ), reals hjlO and a subset {ZP(Ii;J\Ii):i=O,..,r-l} of strata in ZN(I;J)

such that for each j there exist 0=T j 0<T j > 1<. . <T j J <h j with

XjJO.hj))CconvJZPaiAI;), i=0,. . ,r-l} for each j G Z + and f|UBnARv

xj>Tjii) G ZP(L,modr;J\I;,mod r) for each i < j , then D t
k0(n U&)(x,t=0) = \

Dk0(U[:^Ii)(x,t=O) for all k > 0 .

For example in the case of Example 5.2 ZN(I;J) = {yGRn:y1>O,y2>O}=ZN(0;l,2),

r=2 , ZP(IO;J\IO)=ZP(0;1,2), ZP(II;J\I,)=ZP(1;2), ZP(I2;J\I2)=ZP(2;1), and there

existed { X J } C Z N ( 0 ; 1 , 2 ) such that Xj-*xGZ(l,2) as j^-oo and for each Xj we could
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find 0 <Tj^ < . . <Tjj where Tjd 10 as j-*oo such that tf (M)(Xj,Tjtl) G ZP(1 ;2),

,Tji2)GZP(2,l), ^(M)(x j,T j i3)GZP(0;l,2), <KM)(xj,Tji4)GZP(l;2),..,up to

J.TJJ); Theorem 5.1 tells us D t
k^(0)(x,t=O)=D t

k0(l,2)(x,t=O) for all k > 0 .

We can suppose throughout that n-ijl—l and U l ^ — I U J ( I JJ i as in the beginning

of this proof)- This is because we are assuming that

^(ZNas^Cx^LO^^CZNPCniiJI i jUIi^Xnii^AUJi^i) and we can check in

general that at every point yGZNPtKijK^JXtKjUK^) (a submanifold with corners

and a subcorner of ZN(I;J)), that

TyZNP(K1;K2;J\(K1UK2))=TyZN(K1;K2)CTyZN(I;J) and hence by Theorem 1.1 that

X(ZN((I;J))(y)=X(ZNP(K1;K2;A(K1UK2)))(y) for all y G Z N P O ^ K . A ^ U K , ) ) .

Hence if (HZNCIiJMx^T^CZNPCKijK^JV^UK^) then

D^(ZNa;J))(x,t)=X(ZN(I;J))^(ZN(I;J))(x,t)=X(ZN(Ki;K2))(^(ZNa;J))(x,t)forall

t£[0,T), so by uniqueness of trajectories (Theorem 1.1) we have

tf(ZN(I;J))(x,t)=0(ZN(K1;K2))(x,t) for all tG[0,T).

Additionally X(ZN(K1;K2))(y)=P(Ty(ZN(K1;K2)))X(K,)(y), and setting

Kx= n •iJIi,K1UK2= U jij^ we see that our trajectory segments are those of the vector

field X(n*;&) projected onto

(1) The inductive hypothesis (at the kth stage, so k is considered fixed in the

following) is that

(i) There exists a subsequence {xkj} of {xj} (so xkj-»x as j-*°°), and for each j reals

{"Fjj-Wsjj-iA.. such that 0=T k . 0 <T k
j l <. .<T k

j J 10 with points x\y on

<KM)(xk.,[0,Tk)) given by x ^ ^ ^)(M)(xk,Tk
J,) satisfying

(X(n[:to(xk
j,jO,gradfj,modm(xk

jJ,))=0 for all j ' = O , . . j where we have set

U[ i&\n[4 l i =(0 , . . ,m- l ) , and furthermore

(ii) that ( l / t T ^ r T ^ O y D ^

is uniformly bounded over j > 0 for all 0 < i < k , for all 0 < j ' < j , for all sG(O,..,m-l).

(2) We show that the inductive hypothesis is true if k=0 .

Lemma 5.1 tells us that under the suppositions (restated above) of Theorem 5.1 that if

sG U-iJIiXnjiili then for any interval (Tjqr,Tj(q+1)r) with (q+ l ) r< j , there exists a

point Tj q , such that

<X(nfiJIi)^(M)(xJ.,Tj,q,i),giadfI0(M)(xj>TJ.q,1)>=O> so taking x°j=^(M)(x(j+1)r,T(j+1)r,OiO)

for j = 1,2,.. and T°j,o=T(j+1)rAO-T(j+1)r,o,o=0,
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HP
~ J-(j

O >Ti rp

j j 1Q + l)r,jj modm"1(j + l)r,0,0

where T(j+1)ri)imodmG(T(j+1)r>ir,T(j+1)r(i+1)I) and hence all the right hand sides exist. This

gives (i). (ii) follows by the boundedness of X(n[ioli) on compact subsets.

(3) We show that if the inductive result holds for k then it holds for k + 1 .

(a). Using Lemma 5.2 with k,j,Tj,Xj in Lemma 5.2 set to respectively

k+l,(j,j')>Tkjj'+rTkjj',xk
jJ. ^ v s e t t ing j [n Lemma 5.2 to (j,j') here we have in mind

something like setting 1,2,3,4,5,.. to (1,0),(1,1),(2,0),(2,1),(2,2),..)we see that the

inductive hypothesis for k implies that there exists some constant A such that for all

<A,and

If we then apply Lemma 5.3 with k,^j,Xj,Tjj. in Lemma 5.3 set to k+l,^kj,xkj,Tkj]j. it

follows there exist smooth curves i/-k for each j 6 Z+ such that

(ii) j j J j j J

(iii) sup{ | Dk+Vkj(t) I itEtO.^jj]} < A for all j , some A > 0 independent of j

(iv) (l/CrjJ.+1-TJJ.))
k+w | D t^ j(t)-^(I)(xk,t-T i

jJ0) | < A ' for all

(b) By the inductive hypothesis for each s£(0,. . ,m-l) there are in every m(k+l)

points xk
jj-+1,..,xk

jJ+m(k+1) k+1 points xk
j>r where ( X ^ x ^ . , gradf,(xk

jJ.))=0 - in fact

those j " such that j " mod m =s. Inserting this and (3)(a)(iv) into Lemma 5.4, with

X,^j(t),Tj,gradfin Lemma 5.4 set to X(I),^jCI*jj.+t),1*jj.+q-T*jJ.,gradfi, where

q > m ( k + l ) , we infer (l/CI*jJ.+(1-'I*jj.))
i I D^'^XOO^CO.gradf.^Ct)) | <A for all

0<i<k+l, te[0,Tk
j J ,+ q-Tk

j J . ] ) s e (0 , . . ,m- l ) , j €Z + , some A > 0 .

(c) We obtain subsequences {xk+1
j}C{xk

j},{xk+1
jj,}C{xk

jj,}, {Tk+1
jJ,}C{Tk

J,}, as

follows.

By part (i) of the inductive hypothesis at k we know



114

(X(n[iJIi)xV.gradfj')modm(xk
jJ.))=0 for all j '=0 . . . j where U\L&\n\i$=(0,..,m-l),

xk
j0=xk

j, and if we now take xk+1
j=xk

jmac+1)+j,
Yk+1 _ Y k + l Yk+1 _ Y k Yk+1 _ v k n _ t r . Yk+1
A A A A ) A j j ' ~ A jm(k+l)+jj'(m(k + l) + l)v • U P Lu A jj

similarly Tk+1
jJ.=Tk

jm(k+1)J,(in(k+I)+1), we see these are all defined for j ' < j .

Thus as j'(m(k+l) + l),mod m =j ' , mod m, it follows that part (i) of the inductive

hypothesis holds for k+1 with this renumbering. We observe that (3)(a)(iv) will

continue to hold replacing j ' +1 by j '+q , any q which is both > 1 and such that

j ' + q < j , ie (l/(I*jJ.+q-T
k
jJ.))

k+1-i | D^CO-^Q^j.t-T^j.)) | <A for all j ' + q < j ,

jGZ+ , 0 < i < k + l , t G f r ^ T ^ + J , some A>0.

(d) If we take q=m(k+l) + l then (c) implies that

(l/(Tk
jJ.+nft+1)+rl*jj.))

k+1-i | D'C^aHQCx^t-T^)) | <A for a l lO<i<k+l ,

j '+m(k+l) + l< j , jGZ + , s6(0,..,m-l),tG[Tk
jJ.,)T

k
jJ,+m(k+1)+1],someA>0, and if we

apply Lemma 5.5 with k,f,gj(t),hj(t),Tj in Lemma 5.5 set to k+1, X(I)fs (=the Lie

derivative of f. with respect to X(I)), ^j(t+Tk+1
jj,)^(I)(xk+1

j,j-,t), Tk+1
jj.+rT

k+1
jJ.

respectively, where the quantities superfixed by k+1 are as given in (c), it follows

that (lf(Jk+\y+1-T
k+1^)y I D^^COf^jO-XCIJ^COCx^t-^j.)) | is bounded

uniformly over 0 < i < k + l , j ' <j , jGZ+ , sG(O,..,m-l). If we then combine this

expression with (b), we see that

( l /CI^W-T^jj . ) ) ' I Dt
k+1-i{X(I)^(I)(xk+1

jJ,,t=O),gradfs^(I)(xk+1
jj,,t=O)) | <Aforall

0 < i < k + l , j ' < j , jGZ+,sG(O,..,m-l), some constant A>0, which establishes part

(ii) of the inductive hypothesis for k+1.

(4) The inductive hypothesis which we now know holds for all k tells us that

Dt
k(X(n[:JIi)^(n[:JIi)(x

k
j,t=O),gradfs0(n-iIi)(x

k,t=O)) ->0 as j - » for all

sG(0..m-l) and hence since {xk} is a subsequence of {Xj} where Xj->x that

Dt
k(X(n[iJIi)^(n[:JIi)(x,t=O),gradfs^(n[:JIi)(x,t=O)) =0 for all k and for all

sG(0..m-l). It then follows from Lemma 2.2 that

Dt
k0(n[iJIi)(x,t=O)=Dt

k(^.(njiiIiUj)(x,t=O) for all jG(0,..,m-l) for all k, and hence

by Proposition 4.1 (in fact Corollary 4.1(1)) and the fact that we have set

(0,..,m-l) = UUjri\n[;Jri that Dt
k0(ni;JIl)(x,t=O)=Dk^(U[;JIi)(x,t=O) for all k.

Theorem 5.1 is the basis for Chapter 7 in the form of Corollary 5.1 below, which

says that in the absence of infinite order tangencies the number of stratum jumps made

by the trajectories on any compact set is bounded by a constant for that compact set

(cf example 5.1(4) where no such constant exists).
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Let us formalize "number of stratum jumps". We recall from the definitions of

Chapter 2 that if M locally is represented as ZN(I;J) then S1(x) = {iGIUJ:fi(x)=O}, ie

xGZP(S1(x);AS1(x)).

Definition | <£(M)(x,[0,h)) | =sup{k>l: there exists 0 < t 1 < t 2 < . . < t k < h with

S10(M)(x,ti)?^S1^(M)(x,ti+1) each i==l..k-l} if the quantity between the braces is

finite, and infinity otherwise.

There is evidently a link between this definition and that of recurrence:

Lemma 5.6 If M is a submanifold with corners, if there exists a sequence of points

{x;}CM with Xf-»x, reals h ; i0 with | < )̂(M)(xi,[O,hi)) | -><», then for some r > 1 there

exists a subset (ao, . . ,^) of strata which recur at x.

Proof We must remember that merely showing that there exist {xj,tjj.}j-;gjjez+

with <£(M)(Xj,tjj.)€:Oj.modm (where m is as in the proof of Theorem 5.1) is not

sufficient: we must also show ^(M)(xj)[0,tjj))Cconv((r0,..,ar.1).

Suppose (crO)--) ŝ-i) is the set of all strata a; with xGcrj. We are given that there exists

for each j 0 < i \ < t j
2 < . . <l!k(9<hj with S1<^(M)(xj,tji)*Si^(M)(Xj,tjii+i) for all

l< i<k( j ) , with k(j)->oo asj->°°.

For each j set tji0 =0 and inductively define for j ' = l ,2,. . tij.=inf{t>tjj..1:t<hj and

<£(M)(x,t)£ 0j.mods} if the right hand side exists, so we have

tj.o=tj,i = ..=tj,i0<tj,io+i = ..=t j iio+ii<t j>io+i i+i2=.. some io , i , , i 2 , . .^0 . Set

N(j)=max{k:tjj>exists for all 0 < j ' <k} if finite, and oo otherwise (it exists because

tjO=0 by definition).

(1) We show that if N(j)-*°° as j-*oo then (0o,..,<rs_i) recur.

(i) We first show that if t j j.=t j j l+1 = ...=t jJ(+k some j ' < j ' + k < N Q (eg, if

<KM)(xj,tiJ. + l/i)e0-j,+Iimod, for all i > l , then tjj.+1=tjJ.), then there exist

t j J . = t j /
< t j j ' + i ' < - < t i J ' + k ' ( < t j , j ' + 1 + k i f N ( j ) > j ' + l+k) such that

4>(M)(Xj,tjr) G a-. mod, for all j ' < j " < j ' +k. By definition of ^ j . above we have for each

j "= j ' , . . , j ' +k a sequence r'j.ltjj. (with possibly 7^=^ . for all i) such that for all i

4>(M)(*iJr)€<rjw We can therefore find t jJ.+k.1 '<^J.+k ' and ^+k.2'<^+k.i etc

with each t,.j. for j ' < j " < j ' + k satisfying tjJ.=t j J. '<t j J. '<t j J.+1 ' and

*(M)(x j>t jJ.')eoKinodi.

L
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(ii) If N(j)-*co as j->oo we can take a subsequence of {xj and renumber the j ' s so that

N(j)^j for each j . By definition tjA<tj2<.. <t,j and so by using (i) we can find

tj,i' <t,-,2' < •• <%j' with each t j / satisfying 0(M)(xj,tjj/)£oj.jmod4 and hence (because

(<xo,..,ai_l)=all the strata, so <^(M)(xj,[0,tjJ)) is guaranteed to be in conv^o,..,^.!))

(<ro,-,<7.-i) recur.

(2) If N(j) remains bounded as j-»°° we show there exists Xj'-*x, hj' 10 and a subset

(ob\..,<Vi') of (o-0,..,o-s-i) such that 4>(M)(xj,[Q,hi'))C(<TQ'U..Ucrli,_l'), some s '<s , and

such that | 0(M)(xj',[O,hJ')) | -*00 as j-»oo (ie, we show that in this case the

suppositions of Lemma 5.6 hold with M=(cr0U..Ua,_i) replaced by a0 'U..Uo-sM ', ie

reducing the number of strata by at least one). Setting tjn(j)+i=hj and decomposing

[O.hj) = [04,) U.. U [tj,N(D,tjiN(D+1) we have

I 0(M)(x j ,[O,h j)) I = I <^(M)(x j,[0,t i i l)) I + . . + I <^(M)(x j,[t j )NO>t j>N0+1)) I and since

I 0(M)(Xj,[O,hj)) I -»oo while N(j) remains bounded there exists some bounded

sequence {i(j),j = l,2,...oo} with | ^(M)(xj,[tji(j).1,tji0)) | -*oo. Since there are only

finitely many strata in (<x0,..,(rsA) there exists some stratum as.'G(cr0,..,as.i) and a

subsequence of this sequence, which we shall also denote {I(j), j = l,2,..,<»}, such

that s'=i(j) mod s for all j . By definition of tj0>1, t^ we must have 0(M)(Xj,t)^o-s/ for

all te[tM(D_1,tjii(D) and hence the sequence Xj# =0(M)(xj,tj>ia>.1),hj' =tj,io->-tj.i<D-i satisfies the

required properties.

(3) If N(j) as defined above -»oo then (a0,..,<rsA) recur: if N(j) remains bounded as

j-*oo we infer from (2) that there exists some strict subset (jT0',..,vt:i) of (<xo,..,aiA)

such that the suppositions of Lemma 5.6 are satisfied with additionally

^(MXXijIpjhi))C(cr0' U.. UovV) for all i. Hence replacing s by s' in the definition of

the sequence {t,j.} (and hence indirectly in the definition of N(j)) we can repeat the

process; either our new N(j)->a> and, arguing as in (1) above, (ob'>-->°V-i') recur, or

we can find a strict subset of (o'o'>-->0-s'-i') s u c n that the suppositions of Lemma 5.6 are

satisfied and additionally </)(M)(xi,[0,hi))Cthe union of these strata. Continuing in this

way we at each stage either obtain a recurring set of strata or a strictly smaller subset

with the suppositions of Lemma 5.6 holding for this subset; if no subset of size >2

recurs we get eventually some pair <r0", ax" with | <£(M)(xj",[0,hj")) | ->oo as j-»oo

and 0(M)(Xj",[0,h/')) C ao" Ua/ ' , and hence CTO", O\" must recur.

Theorem 5.1 and Lemma 5.6 provide us in the first place with Corollary 5.1 below,

which is the result upon which Chapter Seven hinges. We remark that since Theorem

5.1 was only proved for a submanifold with orthogonal corners (mainly because
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Lemma 5.1 was only proved for a submanifold with orthogonal corners - Lemmas 5.2

and 5.3 are true for any submanifold with corners) for all results which use Theorem

5.1 the corners must be orthogonal too.

V <^?

Definition If V is a neighboured of y in M set T(V,y)=sup{t>O:<£(M)(y,T)G V}, if

finite, and infinity otherwise

(ie T(V,y)=time it takes a trajectory starting at y € V to reach dV).

We recall that there is an infinite order tangency between flows on <TU<T2 at x if

and Dt'<f>(al)(x,t=0)=Di4>(a2)(x,t=0) for all i.

Corollary 5.1 If M is a submanifold with orthogonal corners, X is a smooth vector

field on M and xGM is such that X(M)(x) ?*0 and if there are no infinite order

tangencies between flows on strata at x, there exists a neighbourhood V of x in M and

N > 0 such that for all yGV | <£(M)(y,[0,T(V,y))) | <N .

Proof

(1) We show that if X(M)(x)*0 then if Vi=Br(i)(x)nM, where Br(x)=the open ball in

Rn of radius r and centre x, then sup{T(Vi,y):yGVi}-*0 as r(i)10.

If not there exists y;->x and r(i) 10 and constant 5>0 such that | <£(M)(y;,t)-x | <r(i)

for all i and for all tG[0,<5]. By continuous dependence on initial conditions (Theorem

1.1(3)) for fixed e>0 | <KM)(x,e)-<KM)(y;,e) | -*0 as y^x . For all i

| <£(M)(x,e)-<KM)(yi,e) | > | *(M)(x,e)-x | - | <KM)(y;,e)-x | and if 0 < e < 5 it

follows (since we know that if e < 5 that | <£(M)(y;,e)-x | < r(i) 10) by taking the limit

i-̂ -oo that | <£(M)(x,e)-x | =0 . By Theorem 3.1 #(M)(x,t)j*0 for all sufficiently

small t > 0 (because if it was zero for t; 10 then we would have

limt;o(l/ti)(^(M)(x,ti)-x)=O, contrary to X(M)(x)^0), hence result.

(2) If there was no V, N as claimed in Corollary 5.1 we could find Vi=Br(i)(x)nM

with r(i)*0 and y iGV ; such that | </)(M)(yi,[0,T(Vi,yi))) | -*°°, by (1) T(Vi)yi)^0 and

hence by Lemma 5.6 there exists a subset of strata which recur at x, and hence by

Theorem 5.1 the flows on these strata are infinitely tangent at x. —

We shall now derive some other implications of Theorem 5.1. As part of Theorem

3.1 we showed the trajectories <£(M)(x) to be C+o° and we now show them to be c"°°.

The idea is to show that if </>(M)(x,t) makes infinitely many stratum jumps in any left
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neighbourhood of some toG(0,tJ (and so we could not infer the result by a simple

argument) then the strata intersected infinitely often are recurring and so by Theorem

5.1 all the flows projected onto them are infinitely tangent at 4>(M)(x,to). We can then

put together an inductive argument somewhat similar to Theorem 3.1 to show that left

hand time derivatives of all orders exist, and in fact equal the two-sided time

derivatives at <£(M)(x,to) of the flows on any of the recurring strata.

Definition If xGM, M locally represented near <j>(M)(x,to) as ZN(I;J), ^ 6 ( 0 , ^ , set

I-(to) = U{K:3 {hjCK)^,,..,. with hj(K)IO as j - * « with K=S1(^(M)(x,Vhj(K))) Vj}

I.(to)= H {K:3 {hjCK)}^,,..,. with hj(K) 10 as j - « with K=S1(0(M)(x,Vhj(K))) Vj}

I+(to) = U{K: 3 {hjCK)}^,,.,. with hj(K)iO as j-*oo with K=S1(<^(M)(x,t0+hj(K))) Vj}

I+(to) = H {K: 3 (hjCK)^.!,.,. with hj(K) i 0 as j->oo with K=S1(^(M)(x,t0+hj(K))) Vj}

Eg. If M=ZN(0;1,3) is as illustrated in Figure 5.13 with vector field y3=f(yi

-y1=y2=l. where

f(y)=
(l/y2)exp(-l/|y|)(sin(l/y)-cos(l/y)) if

0 ify=O

then if x=( 1,4,0) and ^ = 1 , so xo=^(M)(x,t)=O, then £(M)(x) intersects ZP(3;1)

and ZP(0;1,3) infinitely often in any left neighbourhood of to, ZP(1,3;0) and

ZP(1;3) infinitely often in any right neighbourhood of to, and

I.(to) = 0,r(to)=(3), I+(to)=(l), and I+(to)=(l,3).

Figure 5.13
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We shall show in part (c) of the proof of Corollary 5.2 that S°oc(x)Cl+(0)CI+(0)CSoo(x).

The quantities I±(t0),I±(t0) satisfy the following lemma (it is straightforward to check that

its conclusions are satisfied with the data of the example above). For the same reason as

Corollary 5.1 Theorem 5.1 restricts us to submanifolds with orthogonal corners:

Lemma 5.7 Setting <£(M)(x,g=x0 with M a submanifold with orthogonal corners locally

represented near x0 as ZN(I;J)=ZN(S0
1(x0);S1(x0)\S°i(x0)) as usual, we have

(l)ICI(to)CI(to)CIUJand

I C I + ( t o ) C I + ( g c i U J

(2) Dtty(K)(Xo,t=0)=Dft(K')(Xo,t=0) for all L ( g C K , K ' c r ( g , I + ( g c K , K ' C I + ( g and

for all i

(3) For given xGM, ^ 6 ( 0 , ^ there exists h > 0 such that

(i)I-(g = U{S1(0(M)(x,t)):Vh<t<to}

(ii) I . (g=n{S1(^(M)(x,t)) :Vh<t<tJ

(iii)I+(g=U{S1(</>(M)(x,t)):to<t<to+h}

and such that

(v) for all t G ( V h , g I ± ( t )=I . (g , I ± ( t )c r (gand

(vi) for all te(to,to+h) I±(t)=I+(g,I±(t)CI+(t ().

Proof

(1) Follows from definitions (use that for any yGZN(I;J), ICS1(y)CIUJ)

(2) Since {ZP(K;J\K):there exist {hj(K)}jez+ with hj(K)IO as j->°o and

K=S,(^(M)(x,to-hj(K))) for all j} and {ZP(K;J\K):there exist {hj(K)}jgz+ with hj(K)*0 as

j-»oo and K=S1(^>(M)(x,t0+hj(K))) for all j} are plainly each recurring at x0, (2) follows

by Theorem 5.1.

(3) We do the first two as specimens:

(i) By definition I ( g c U{S1(<^(M)(x,t)):t0-h<t<t0} any h > 0 . If there does not exist

{hj(K)}jez+ with hj(K)IO such that K=S,(0(M)(x,to-hj(K))) Vj then there exists h(K)>0

such that K^S!(0(M)(x,t)) for all to-h(K)<t<to. Taking h=minKgr(to)h(K) we see that

k'e{S1(^(M)(x,t)):Vh<t<t0} iff

k'e{K:there exist hj(K)IO with K=S1(<^(M)(x,t0-hj(K)))}, hence

U{S10(M)(x,t):to-h<t<to} = U{K:thereexist {hj(K)}jez+ with hj(K)4 0 and

K=S1</>(M)(x,t0-hJ(K)) Vj} as required.

(ii) We have defined I.(g = n {K:there exist {hj(K)}j6z+ with hj(K) 10 and
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K=S1(</>(M)(x,t0-hj(K))) Vj} and we now show that I.(to) = {iGIU J:f^(M)(x,to-h)=0 for

all arbitrarily small h>0} . If i^{iGIUJ:f^(M)(x,to-h)=0 for all arbitrarily small h>0}

then there exists a sequence {hj(i)}jez+ s u ch that hj(i)iO as j-><» with

fi<^(M)(x,to-hj(i))^0, and since there are only finitely many values which

S1(^(M)(x,t0-hj(i))) may take on there exists a subsequence with S1(0(M)(x,to-hJ-(i))) equal

to some constant set of indices not including i, and hence i £ l (to). Conversely, if

iE{IUJ:fi<£(M)(x,to-h)=0 for all arbitrarily small h>0} then iGany K for which there

exists { h ^ ) } ^ with hj(K)*O and K=S1<^(M)(x,t0-hj(i))) Vj, so iGI.(to). Hence

I.(to) = {i:there exists h > 0 such that f#(M)(x,t)=0 for all to-h<t<tb}. Then since

S10(M)(x,t) = {i:fi<^(M)(x,t)=O}, it follows n{S1<^(M)(x,t):t0-h<t<t0} =

{i: fi<^(M)(x,t)=0 for all t0-h<t<t0}=I.(t0) which gives the required result. —

The following result may superficially appear to be a left hand version of Theorem 3.1:

an important difference is that while in Theorem 3.1 the right hand derivatives were

expresed in terms of the iterates S°;(x), S;(x), which were calculated by a simple algorithm

determined by X and the fj's defining M near x, the quantities I.(t), I"(t) are functions of

the trajectories (see definition above) and are not directly calculable

Proposition 5.1 If M is a submanifold with orthogonal corners and X is a smooth vector

field on M, then for each xGM at each tG(O,tJ <£(M)(x) is C00, and if M is represented

near *(M)(x,t) as ZN(I;J) then for all j > 0 Dt^(M)(x,t)=Ds
j0(K)(<^(M)(x,t),s=O), any

I.(t)CKCI(t).

Proof We shall prove the result at ^ 6 (O,tJ.

(a) We show there exists h > 0 such that if t£(to-h,to) then I(to)CSj^(M)(x,t)cr(g for

a l l j > l .

From Lemma 5.7 we know there exists h>0 such that fi<£(M)(x,t)=0 for all iGI.(to) for

all tG(to-h,to) and hence Dt
+jf^(M)(x,t)=0 for all iGI.(to), j > 0 , t E ^ - h , ^ ) . By Theorem

3.1 Dt^(Soo(y))(y,t=0)=Dt
+j</)(M)(y,t=0) for all i and for all j ; hence

D,jfi^(Soo(^(M)(x,t)))((^(M)(x,t),s=0)=0for all iGI.(to). However by Lemma 5.7(3,ii)

we have I^CSjOHMXXjt)) any tG(Vh,to), so if I (to) was not contained in

Soo(0(M)(x,t)) then for each iGI.(to)\Soo(0(M)(x,t)) there exists j G Z + such that

iGSj(<£(M)(x,t))\Sj+i(<£(M)(x,t)) and by Lemma 2.5 we would have

D,jfi^(Soo(</)(M)(x,t))(<?!)(M)(x,t),s=0)>0, a contadiction. By Lemma 5.7 again we know

S10(M)(x,t)CI(to) for all tG(to-h,to) so by the iteration property (specifically, S,(y)DSj(y)
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for all j > l ) w e have I.(to)CSj(^(M)(x,t))CS1(^(M)(x,t))CI-(g for all j> l , t e ( t o -h ,g , as

required.

(b) We show Dt"<£(M)(x,to) exists =Dt<£(K)(x0) any I.(to) C K C I"(to) where again we are

setting <£(M)(x,t)=Xo.

We have for any h > 0

< I h I Sup{ | X(M)^(M)(x,s)-X(K)(Xo) | :sG(to,to-h)}. By (a) for h > 0 sufficiently

small X(M)4>(M)(x,s)=X(K>(M)(x,s) some I.(to)CK'cr(to) and in fact if we set

lifK=S2(<KM)(x,s))
5(K,s)= .

0 otherwise

have for all s£(to-h,g that X(M)</>(M)(x,s)=EI(VCKcr(Va(K,s)X(K)^.(M)(x,s) (we are

using that X(M)(y)=X(S2(y))(y)). Thus with X(K'e0) the Cr extension of X(K') to Rn of

Chapter Two (we use X(K'e0) rather than X(K') because X(K')<£(M)(x,s) is only defined

if <£(M)(x,s)eZ(K'). Of course if <£(M)(x,s)<£Z(K') then 5(K',s)=0, so this change

makes no essential difference. A similar situation occurred in the proof of Theorem 3.1)

we have

| X(M)^»(M)(x,s)-X(K)(x0) | = | EI(to)CK,cr(y5(K',s)(X(K'e0)^(M)(x,s)-X(K)(xo)) |

<E I ( V C K , c r ( V | X(K'e0)<HM)(x,s)-X(K)(xo) | ->0as stto by Lemma 5.7(2), and the

result follows.

(c) Suppose the proposition is true up to j=k- l . Then by the (k-l)th result we know that

for 0<Vh<to<txD t-
(kl^(M)(x,Vh)=D t

k-1^(K)(^(M)(x,to-h),t=0) any

I.(to-h)CK cr(to-h). By Lemma 5.7(3) we know that for sufficiently small h > 0

I_(to-h)=I.(to)> and that r(to-h)cr(to). Thus for each sufficiently small h > 0 we can choose

a single K with I.(to)CKCI"(to) such that Dt-
(kl)^(M)(x,to-h)=Dk-V(K)(0(M)(x,to-h),t=O):

we set for each I . (gcKCI" (g 5(K,h) = l if K has been chosen at h, and 5(K,h)=0

otherwise. Thus for each fixed h EI(yCKCI(to)5(K,h) = l. Setting as usual xo=</>(M)(x,to) we

therefore have for any I.(to)CKCI(to)

D*-1)</>(K')(xo,-h)-Dt
(k-1)^(K')(Xo,-h)-hDt

k^(K)(xo,t=O)](in the second term <£(K'e0) is

used rather than 4>(K') for the same reason as in (b), to guarantee that the term is defined)

and the result (ie, that D t
k^(M)(x,g=D lV(K)(xo,t=O) any I.(to)CKCI(g)
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will follow if we can show that for every K,K' such that 1.(0 CK,K' cr(to) that

-*Oas hiO.

By Lemma 5.7(2) we know Dt
k^(K')(xo,t=O)=Dt

k0(K)(xo,t=O) any I . ( to)CK,K'cr(g

so,

(l/h)(D*-1)^(K')(xo,t=0)-Dt
(k-1^(K')(xo,-h)-hDt

k^(K')(xo,t=0))which -*0 as hlO by

smoothness of <£(K'). This takes care of the first, fourth and fifth terms of (*). We

know Dt-0(M)(Xo,t=O)-Dt0(K')(xo,t=O) any I ( O C K ' c r ( O

=UmhiO(l/h)(0(K')(xo,-h)-^(M)(x,Vh)), hence setting Y(x)=Dkl<KK'e0)(x,t=O),

which is smooth, and supposing B is a convex compact set containing $(M)(x,to-h')

and 4>(K')(xo,-h') v 0 < h ' <to, by the Mean Value Theorem

0(M)(x,to-h)-^(K)(xo,-h) | supx6B | DxY(x) | , hence using that

have (l/h)(D8
k-1^(K'e0)(<^(M)(x,to-h),s=O)-Dt

k0(K')(xo,-h))^Oas hlO, which deals

with the second and third terms of (*), and it follows that Dt"
k<£(M)(x,O exists and

equals Dt
k^»(K)(xo,t=0) any 1.(0 CKC 1 ( 0 .

We can now establish the following "approximation" result which has several

implications (see Corollaries 5.2 and 5.3 and Proposition 5.2 below):

Lemma 5.8 If M is a submanifold with orthogonal corners, xGM, x0=<£(M)(x,O, M

locally represented as ZN(I; J) near XQ, then for any real e > 0 and integer i > 0 there

exists h ;(e)>0 such that for any 0<h<hj(e) (the condition h > 0 is essential) and for

(1) | Dt

(2) | Dt±ty(M)(x,to+h)-Dfr(K)(xo,h) | <e^ any I + (0CKCI + (0

Proof

We observe we are making here four assertions. We shall do (1), (2) being similar.

Consider the following assertion, which will be called assertion (*):

For any given e>0 and non-negative integers i,j, there exists h(i,j,e)>0 such that for

all 0<h<h( i j , e ) | Dt
±j<^(M)(x,Vh)-Dl^(K)(xo,-h) | <eh i j for all I . ( 0 C K C I ( 0 .



123

Then Lemma 5.8 will follow if we show that for any given e > 0

(a) (*) holds with ( i = l j = 0 )

(b) That if (*) holds for (i-l j =0) with i-1 > 1 then it holds for (i,j) for all 1 <j < i

(c) That if (*) holds for (i,j = l) some i > 0 then it holds for (i,0)

since we can then take ho(e)=h1(e)=h2(e)=min{h(2,O,e),h(2,l,e),h(2,2,e)}, and for all

i > 2 hj(e)=min{h(i,j,€):0<j <i} . The figure below shows which part of the proof

verifies (*) for each (i,j). After showing (*) to hold (for any given e>0) for

( i=l , j=0) the first inductive step is to infer that it holds for ( i=l , j = l,2) (by (b)

below) and for ( i=l , j=0) (by (c) below), the second inductive step is to infer that

therefore it holds for (i=2,l <j <3) (by (b)) and for (i=2,j=0) (by (c)) etc. The

remark is: that if (*) holds for given e for (i,j) then (by inspection) it holds a fortiori

for all (i',j) with i ' < i .

j

Remark

0- (a)

(b)

(b)

(c)

(b)

(b)

(c)

1st inductive step 2nd inductive step

(a) We saw in part (c) of the proof of Proposition 5.1 that

limhlo(l/h)((KM)(x,Vh)-<KK)(xo,-h))=0 for all

I(to)CKCr(to) (where as usual xo=^(M)(x,to)), and hence for any e>0 there exists

h(l ,0)>0with | <^(M)(x,to-h)-^(K)(x0,-h) | <eh for all 0<h<h( l , 0 )

(b)

(i) We know that for each sufficiently small h > 0 and any j > 0 there exists K with

I.(to)CKCI(to) such that Dt
±j^(M)(x,to-h)=Dl

j^(K)(^(M)(x,t0-h),t=0). This is so in

the -j case because by Proposition 5.1 Dt-
j^(M)(x,to-h)=Dt

i^(K)(^(M)(x,to-h),t=0)

some I(to-h)cKcr(to_h) ^ ,̂y Lemma 5.7 for h > 0 sufficiently small

I.(t0-h)=I-(to)J"(to-h)cr(to), and in the +j case by part (a) of the proof of Proposition

5.1, where we showed I.(to)CS j(^(M)(x,t))CI(g for all tG^-h ,^) some h>0 ; then

by definition Dt
+J0(M)(x,t)=Ds^(Sj+1(^(M)(x)t)))(<^(M)(x,t),s=O).

(ii) We can therefore find ho>O and choose for each tG^-h^to) and I.(to)CKCI"(to)

5+(K,t), 5(K,t)=0 or 1 such that
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Dt
±j0(M)(x,t)=EI(VCKCI.(y5±(K,t)Ds

j0(Ke0)(^(M)(x,t),s=O) each tG (Vh^to) (again

we have replaced $(K) by <£(Ke0) to guarantee this term is defined even when

tf>(M)(x,t)£Z(K)) where for each fixed t EI(VcKcr(V5+(K,t)= 5 ^ ^ 1

Hence for 0<h<ho | Dt
±j0(M)(x,Vh)-DM(I.(g)(xo,-h) | =

Ds^(Ke0)(0(M)(x)Vh),s=O)-D>(K)(0(K)(xo,-h))s=O) | +

Ds^(K)(0(K)(xo,-h),s=O)-Dt^(I.(to))(xo,-h) | , and the result will follow

if we can show that for any given e>0, for each 1 <j < i and for all I.(to)CKCI"(to)

each of the two quantities between | | signs is < eh'~j for all 0 < h < some h(i,j) > 0.

(iii) We first deal with the

| D,^(Ke0)(^(M)(x,Vh),s=O)-Ds^(K)(<^(K)(xo,-h),s=O) | term. Setting

Y(x)=Dt
j(?!>(Ke0)(x,t=O) and B a compact convex set containing for all O<h<to

0(M)(x,to-h), <£(K)(xo,-h) we have by the Mean Value Theorem

rh) | Supx6B | DxY(x) | . However by the fact that (*) is true

for (i-l,j=0) we know there exists h(i-l,0)>0 such that for all 0<h<h(i- l ,0)

| 0(M)(x,Vh)-<KK)(xo,-h) I < eh'"1 any I.(to) C K C r(to) which gives

| Ds
j^(Ke0)(^(M)(x,to-h),s=O)-Ds

j^(Ke0)(^(K)(xo,-h),s=O) | <eh i jany 1 <j < i for

all sufficiently small h>0 .

(iv) We deal with the second term in the formula of (ii)

| D^(K)(^(K)(xo,-h),s=O)-Di0(I.(g)(xo,-h) | .We set

f(h)=Dt
j<KK)(x0,-h)-DtW.(to))(x0,-h) and we want to show that for any e>0 and

I.(to)CKCT(y that | f(h) | <eh i j for all 0<h<some h( i j )>0. We know by Lemma

5.7(2) that Dh
!f(h=0)=0 for all i, hence

f(h)=f(0)+hDhf(h=0) +. . + (hij/(i-j)!)Dh
ijf(eh) = (hij/(i-j)!)Dh

ijf(6h)some 6G(0,1),

where since Dh
ijf(0)=0 supee[OJ)Dh

ijf(0h)-^O as h-*0. Since there are only finitely

many possible K the result follows.

(c) We show that if (*) holds for j = 1, some fixed i > j , then it holds for j =0, same i

(ie that then | ^(M)(x,to-h)-(/)(K)(xo,-h) | <eh! for all I.(to) C KCf(to) and for all

sufficiently small h>O):this follows because we have

| <£(M)(x,to-h)-4>(K)(xo,-h)| = U t°h

and if I.(to)CKCI"(to) the integrand is <ehM by the result with j = l.
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We showed in Remark 3.2 that the iteration can be viewed as a selecting process,

and now we show that it is also providing us with an increasingly accurate

approximation to the location and (one-sided) derivatives of (/>(M)(x,t) for t small and

positive (Corollary 5.2 below). If given some data we do the calculation to find

S°m+i(x),Sm+1(x) f° r s ° m e rn>0 at a point xGM with M locally repesented as ZN(I;J)

we know from Remark 3.2 that for t sufficiently small and positive

</>(M)(x,t)€ Usom+i(x)CKCS^i(x)ZP(K;J\K); Corollary 5.2 is now telling us that in

addition for any e>0 there exists h > 0 such that for all 0 < t < h

| <£(M)(x,t)-<KK)(x,t) I <etm, and generally that

| Dt
±i^.(M)(x)t)-Dt

i(/)(K)(x,t) | <etm-i, any 0 < i < m , any S°m+1(x)CKCSm+1(x). In the

case of Example 5.1 (=Example 2.1) for instance where S°i(O) = 0 for all i,

S;(0) = (l) for all i, Corollary 5.2 below tells us (as we could in this case verify

directly) that for any e>0 and any m E Z + there exists h > 0 such that on 0 < t < h

| <£(M)(x,t)-(t,0) | <etm. From the point of view of applications the usefulness of this

result (and Remark 3.2) rests on only having to calculate finitely many iterates

(S°i(x),Si(x)); we do not need to know the whole series.

Corollary 5.2 For each xGM, M locally represented as ZN(I;J), i > 0 , e>0 there

exists h ; >0 such that for all 0<j < i and for all S°i+1(x)CICSi+1(x)
j j ) | <et'-jany 0 < t < h ; .

Proof

(a) We show that for all K such that I+(0)CKCI+(0)

Dt
i^(SCB(x))(x,t=0)=Dt

i</)(K)(x,t=0) for all i. By Theorem 3.1

limhi0Dt
+i<KM)(x,t=h )=Dl

+i(/)(M)(x!t=0) hence Dt
+i<^(M)(x,t=O)-Dl

i0(K)(x,t=O)

=limhiO(Dt
+i0(M)(x,t=h)-Dl

i<^(K)(x,t=h)) which by Lemma 5.8(2) =0 if

I+(0)CKCI+(0). Since also by Theorem 3.1 Dt
+i<^(M)(x,t=0)=Dl

i^(Sa(x))(x,t=0)

for all i we have Dt
ifJ^(SOJ(x))(x,t=0)=Dt

ifJ^(K)(x,t=0)=0 for all jGK and

Dt
ifj0(K)(x,t=O)=Dl

ifj0(Soo(x))(x,t=O)=Ofor all jGSoo(x), which by Lemma 2.2

imply respectively Dt
i^(SM(x))(x,t=0)=Dl

i(/)(Soo(x)UK)(x,t=0)and

D^(K)(x,t=0)=D l
i^(KUSo,(x))(x,t=0), for any set of indices K with

I+(to)CKCI+(to), for all i, which gives the result.

(b) We show that for any e > 0 there exists hj > 0 such that

h) | <eh i j any 0 < h < h ; any S V i W C K ^ ^ C S ^ ^ x ) .
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some 0G(O,1) with all terms but the last =0 by Corollary 2.1, while clearly

(c) From Lemma 2.3 and the construction of the iteration (or by other methods, eg, if

K does not lie between S°00(x) and S.(x) there exists jGK\S0o(x)US°0o(x)\K and the

result follows from Lemma 2.5 and 2.6) it follows that if

Dt^(K)(x,t=0)=Dt
i^(Soo(x))(x,t=0) for all i then S°0o(x)CKCS0O(x). Hence (a) tells

us that S0
o .(x)CI+(0)cr(0)CS0o(x) (these inequalities may be strict - see Remark 5.1

below). Then using the triangle inequality to combine Lemma 5.8(2) with part (b)

above the result follows. -

Remark 5.1 We showed in the above proof that

S°oo(x)CI + (0)cr(0)CS0 O(x). We note that the inclusions may be strict: in Figure

5.14(i) S^CO) is strictly contained in I+(0), in Figure 5.14(ii) I+(0) is strictly

contained in S^O) -

)
I _:

(i) x1 = l,x2=0, M={x:x2>0} (ii) *(M)(0,t)=(t,exp(-l/t)) for t>0 ,
S°OO(O) = 0,SOB(O) = (2)>I+(O) = (2). M={x:x2>0}, Sw(O)=(2),I+(O) = 0

Figure 5.14

We may also use Lemma 5.8 to show that the number of points t in (0,Q where

Dt
+i<£(M)(x,t)^Dt''<£(M)(x,t), some i, is countable (Proposition 5.2). An example will

put this result in perspective.

Example 5.3

Construct a middle 1/q Cantor set for q > 3 in the usual way, ie remove from [0,1]

A^centrally placed open interval of length 1/q, from the two closed intervals

[O.llXAj remove centrally placed open intervals A2 \ A2
2 of length 1/q2 etc. We see

measure(UijAi
j) = l/(q-2). We now set g(x)=6(3x-l)-9(3x-l)2, and X:R^[0,l] a

smooth bump function with graph
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1/3 2/3

and set h(x) = X(x)g(x). g(x) has zeros at x = l/3, 5/9 so if (x,y) = (l,h(x)) and

M = {(x,y)GR2:y>0} we obtain the integral curve shown in Figure 5.15.

0
173 5/9 1

Figure 5.15

If the left edge point of A/ is x/ define f; on [0,1] by f;=0 on [O,l]\UjAjJ, and on

each A/ set fi(x) = h(q'(x-xi
j)) ie, fit h into each segment A/ . Each f; is smooth on

[0,1], and setting Mj = supj<Lx6(Oil) | D,Jfj(x) | it follows by the usual uniform

convergence argument used in such situations (eg as in Proposition 4.8 of [22]) that

f:[0,l]-»R defined by f(x) = E?=, f,(x)/(2iMi) is smooth. We set Y(x,y) = (l,f(x)): if

M = {(x,y)£R2:y>0} we see <£(M)(0) has the form shown in Figure 5.16 below.

I"
y

0 A,1 A ' A, T A,3 A 2 A,4

Figure 5.16

(i) There are uncountably many points tG[0,l] such that for any h > 0

| 0(M)(x,[t-h,t)) | =oo and | <^(M)(x,[t,t+h)) | =oo, (ii) setting

D = {te[O,l]:DI-
i0(M)(O,t) ^D,+i(/)(M)(0,t) some i} D contains every point in (U

(since every point in [0,l]\U;jAij is a limit of points xo in UjjAj-1 with

Dt'0(M)(xo,O)^Dl
+</)(M)(X(),O)), so is uncountably infinite, (iii) if q=3

measure(D)=0, if q > 3 measure(D) >0 .

However by the way Y was constructed we see D is countable and this is always the

case.
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Proposition 5.2 If M is a submanifold with orthogonal corners and X is a smooth

vector field on M then for each xGM <£(M)(x) is smooth on an open-dense subset of

(O,tJ and the set {t£(O,tx):Dt
+i<£(M)(x,t);*£Dt'

i<£(M)(x,t)} is countable (including finite

or zero).

Proof The fact that $(M)(x) is smooth on an open-dense subset of ( 0 , ^ is immediate -

for each tG(O,tJ and iGS1(<^>(M)(x,t)) either f;<j!>(M)(x,t)=0 on (t-e,t+e) or arbitrarily

close to t there exists t' with f i^(M)(x,t')^0: then by continuity of <£(M)(x) in t and

of f{ we have fi0(M)(x,t)^O on (t'-e',t '+e'), some e '>0 . Repeating for all

iGS!(<£(M)(x,t)) we obtain to arbitrarily close to t such that for some 5>0 and for

each iGS!(^(M)(x,t)) either f$(M)(x,t") is zero on (to-5,to+5) or non-zero on

(to-5,to+5), ie <£(M)(x,t") G single stratum in this t-range, and hence by remark

3.1(2) is C00 there. Hence <£(M)(x) is smooth on an open-dense subset of (0 ,^ .

As regards the countability assertion, by Lemma 5.8 we obtain for each t o G ^ t J ,

positive integer i > j and e>0 a 5>0 such that on (to-5>to)U(to,to+5)

| Dt
+j<£(M)(x,t)-Dt-

j(KM)(x,t) | <e | t-to | i"j, and hence by

[14, Section 3.9] the set {tG(0,y: | Dt
+i<KM)(x,t)-Dt>(M)(x,t) | > 1/n} is countable

for fixed i,n, and hence { t G ^ Q : | Dt
+i0(M)(x,t)-Dt^(M)(x,t) | >O some i>0} is

countable. —

A second application of the ideas of this chapter is given in Corollary 5.3 below, for

which we shall need the following lemma, which is true for any submanifold with

corners (not necessarily with orthogonal corners), and is used again in Chapter Six:

Lemma 5.9 If M is a submanifold with corners then for each xGM and any e>0

there exists a neighbourhood U of x in M such that for all y G U

| X(M)x | 2-e< | <X(M)y,X(M)x> | < | X(M)y | 2+e.

M
The projection of X onto the
tangent cones to M at x and y:

i X a smooth vector field on M

V °W((M)(x)
\x(M)(y)

Figure 5.17
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Proof

(1) We show that if C ^ Q are closed linear corners of Rn with Q D C j and X a

vector in Rn then setting P(Cj)X=Vi and P(C2)X=v2 | Vj | ^ ( v ^ ) ^ | v2 | 2. For a

closed linear corner C P(C)X=P(L)X some linear subspace L (eg Lemma 1.2), so

since P(L) is self-adjoint and idempotent <X,P(C)X>= | P(C)X | 2 . By the

Characterisation of Projection we have (X-Vj,Vi-z)>0 for all z G C b hence since

C2CC1,(X-v1,v rv2)>0, hence (vi,v2)-(X,v2)>0 (use <X,v,)=<v,,vI>). Since

(X,v2)={v2,v2) this gives (v!,v2)- | v2 | 2 ^ 0 , and since we also have (v1-v2,v1-v2)>0,

adding this to (v1,V2>-(v2,V2>>0 we obtain | V! | M v ^ v ^ O , which are the two

inequalities required.

Figure 5.18

(2) Suppose near x M is represented as ZN(I;J). If y is a point in M near x then for

some K yGZP(K;J\K) (where ICKCIUJ) and X(M)(y)=P(TyZN(I;K\I))X(y). By

[13] the map y-»TyZN(I;K\I) is continuous in y for as long as yGZP(K;J\K), hence

for each I C K C I U J and for any e' > 0 there exists a neighbourhood of x in Rn whose

intersection U(K) with ZP(K;J\K) is such that if yGU(K) then

| PTxZN(I;K\I)X(x)-PTyZN(I;K\I)X(y) | <e ' . TXZN(I;K\I) is a closed linear corner

containing TXZN(I;J)=TXM and hence setting PTxZN(I;K\I)X(x)=v(K), so

v(IUJ)=X(M)(x), we have by (1) | v(K) | 2>(v(K),v(IUJ))> | v(IUJ) | 2for all

I C K C I U J . We have from the above that for any e' > 0 there exists

U(K)CZP(K;J\K) such that | v(K)-X(M)(y) | <e ' if yGU(K), so using

| v(K) | - | X(M)(y) | < | v(K)-X(M)(y) | we have

| X(M)(x) | 2<(X(M)(y)+v(K)-X(M)(y),X(M)(x))< | X(M)(y) | 2 + e ' 2 +

2e' | X(M)(y) | ; but
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(X(M)(y)+v(K)-X(M)(y))X(M)(x)}=(X(M)(y),X(M)(x))+(v(K)-X(M)(y),X(M)(x))

and (v(K)-X(M)(y),X(M)(x))<e' | X(M)(x) | , so for any e(K)>0 we may find U(K)

such that for all yGU(K)

| X(M)(x) | 2-e(K)< | (X(M)(y),X(M)(x)) | < | X(M)(y) | 2+e(K),and if we now

apply this result with e(K)=e for all of the finitely many K with ICKCIU J and take

U = nICKCIUJU(K) the result follows. —

We showed (in Theorem 3.1) that <j>(M)(x) is C+o° for all t€[O,tJ and (in Proposition

5.1) that <£(M)(x) is C00 for all tE(0,Q, so lim(Dt
+i0(M)(x,t),tito} = Dt

+itf>(M)(x,g

and lim{Dt'
i(?!)(M)(x,t),ttt0} = Dt"

i^(M)(x,t0): we can now deal with the two remaining

cases, lim{Dt
+i<£(M)(x,t):tTto} and lim{D;i(/)(M)(x,t):t4t0}- We shall also use Lemmas

5.8 and 5.9 to derive inequalites relating the magnitudes and scalar products of the

right and left first order time derivatives of <£(M)(x).

Corollary 5.3 If M is a submanifold with orthogonal corners then at any to 6 (0 , ^

(l)(i) lim{Dt
+i<£(M)(x,t),tTto} exists and = Dt^(M)(x,to)

(ii) lim{Dt^(M)(x,t),tlto} exists and = Dt
+i<£(M)(x,g

(2) | Dt"<KM)(x,g | 2>(Dt^(M)(x,t0),Dt
+(/»(M)(x,t0)) ^ I Dt

+<KM)(x,g | 2 with

| D t^(M)(x,g | = | Dt
+<KMXx,to) | iff X(M)<KM)(x) is continuous at to.

Proof

(l)(i) By Lemma 5.8(1) limtnDt
+^(M)(x,t)=Dt^(K)(xo,t) any I X g C K C I ^ , which

by Proposition 5.1 =Dt"
i(£(M)(x,t0)

(ii) By Lemma 5.8(2) limutoDt>(M)(x,t)=Dt^(K)(xo,t=O) any I + ( g C K C I + ( g

which by part (a) of the proof of Corollary 5.2 =Dt
+i<ji>(M)(x,t0).

(2) By Lemma 5.9 we may find e^O, ^ t to, such that for all i

| X(M)</>(M)(x,to) | 2-e;< | (X(M)4(M)(x£),X(M)*(M)(x,g) | <

| X(M)<^(M)(x,ti) | 2+e ;, by Theorem 3.1 X(M)^(M)(x,ti)=Dt
+^.(M)(x,ti) while by

(l)(i) limlttoX(M)()!)(M)(x,ti)=Dl"^(M)(x,g, and taking limits the inequality part of the

result follows.

Finally, X(M)<£(M)(x) is continuous at to iff

limlttoX(M)0(M)(x,t)=limlitoX(M)^(M)(x,t), which by (l) means iff

Dt'</)(M)(x,g=Dt
+</)(M)(x,g. It only remains to show that

| Dt-tf>(M)(x,g | = | Dt
+<KM)(x,g I implies Dt</)(M)(x,g=Dt

+(/>(M)(x,g: by the
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inequality we have just proved if they were equal we would have

(Dt-^(M)(x,t0),Dt"^(M)(x,t0)-Dt
+^(M)(x,t0))=Oand subtracting these gives the required

result. —

Chapters Two to Five represent the major part of the contribution made by this

thesis to understanding the class of system under investigation. It was however an

initial aim to study the local and global geometry of these semidynamical systems in

the spirit of the way that this was done for smooth unconstrained systems in [37,42],

and it is to these matters (including in Chapter Eight specific consideration of the

systems of this type occurring in [60]) that we turn in the remainder of this thesis.
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Chapter Six

Local Geometric Theory

In this chapter we shall investigate how far the local geometric results of

classical dynamical systems (see eg [42, Chapter 2] or [37, Chapters 4-6]) have

analogues for these systems. For classical systems we know that there exists a dense

subset of systems (i) which are differentiably stable at all points, (ii) where the flow

near each zero is homeomorphic to that of the linearization, and (iii) where the zeros

have C stable manifolds; furthermore we could always "straighten-out" away from

zeros. We shall show that naive generalisations of these all fail. In place of (i) we

shall consider stability with respect to a form of equivalence between semiflows

(stratum preserving flow preserving, or spfp, equivalence) which is weaker than the

existence of a diffeomorphism f:M->M' conjugating the semiflows, but which is still a

homeomorphism of M->M' which preserves strata (as a diffeomorphism would) and

semiflows, and we establish a necessary condition for two semiflows to be equivalent

in this sense. We find that even with this weaker equivalence straightening out (which

in the context of these systems we interpret as meaning that the semiflows <£(ZN(I;J))

on ZN(I;J) near x and 4>(LC(I;J)) on LC(I;J)=TXZN(I;J) near the origin are spfp

equivalent) is not usually possible but that there is still a useful relation between the

two. We shall generalise the definition of hyperbolic zero to regular zero and show

that regular zeros have most of the properties which hyperbolic zeros have on

boundaryless manifolds, and furthermore that in the case of submanifolds with

orthogonal comers (which are the only submanifolds with comers occurring in

applications ) have C1 but not generally C2 stable manifolds.

Stratum Preserving Flow Preserving Homeomorphisms and Stability

To simplify matters we suppose M is a compact submanifold with corners. Thus M

has a globally finite stratification into Cr submanifolds which we denote {ax,a2,..). If

M and M' are diffeomorphic the diffeomorphism f relating them preserves strata, ie

fcr^a/ where ((Ti',cr2',..) is the corresponding stratification of M'. In Chapter Four we

defined semiflows <£(M,X) and <£(M',X') on M,M' obtained by integrating

X(M),X'(M') to be differentiably
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equivalent if there existed a diffeomorphism f:M-*M' satisfying

f<£(M,X)(x,t)=<£(M',X')(fx,t) for all t>0. We may say that the semiflows 4>(M,X)

and <£(M',X') are differentiably equivalent at x.xf if there exists a neighbourhood U

of x in M and a diffeomorphism f:U-»U'=a neighbourhood of f(x)=x' in M' such

that for each y 6 U f<KM)(y,t)=<£(M')(fy,t) for all t > 0 with 0(M)(y,t)GU.

Definition A semiflow <£(X,M) is differentiably stable at x EM if for any X'

sufficiently near X there exists x' near x such that <£(M,X) and <£(M,X') are

differentiably equivalent at x,x'. <£(X,M) is locally differentiably stable if it is

differentiably stable at every xGM.

Examples 6.1 We show that by contrast with the classical unconstrained case locally

differentiably stable systems are not dense in E^M) or Su,r(M), any r>0. Take for

M the closed corner {xGR3: x^O^^OjXj-XpX^O} and suppose X(0) is chosen so

that 0 has a preimage by 4>(M) in int(M) and in each 2-dimensional stratum of M,

with furthermore X^O^O, i= 1,2,3 (Figure 6.1).

pre-image by the flow <j>(M) of the origin

2=x3-x1-x2=0,

pre-image (ie by the flow) of the origin in the
2-stratum x3-x,-x2=O,x, >0,x 2 >0

X(0)

Figure 6.1

Suppose X is perturbed to X, such that X,(0) = X(0) + (e,0,0). Any differentiable

equivalence f between <MM,X) and <f>(M,X,) is a diffeomorphism f:M-»M which must

preserve the strata ({xGR3:x,=x2 = 0,x3>0} etc) of M, and in particular map the

origin to the origin and hence (since it is flow preserving) preserve the preimages by

<£(M) of the origin in each stratum; furthermore as a diffeomorphism its derivative

map will be an invertible linear map at each point.
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Setting Df(O) =A, the fact that the 1-dimensional strata of M as a submanifold with

corners are preserved implies

1

0

1

0
1
1

0
0
1

=

X
0
X

0

A*

/*

0
0
V

some X,/*,J>^0, hence A=

X 0 0

\-v \t.-v v

The tangent spaces to the pre-images by the flow of the origin in int(M),

{x:x1=0,x2>0,x3-x1-X2>0} and {x:x2=0,x1>0,x3-x1-x2>0} are respectively

X(0),P(l)X(0) and P(2)X(0) which must be mapped by A to

(X,(0),P(l)X((0),P(2)X,(0)),ieifX(0) = (a,b,c)

0
b

c

a
0
c

a
b

c
= a

0
b

c

a+e

0
c

a+e

b

c

and these are incompatible unless e=0: hence for e^O there is no differentiable

equivalence between <£(M,X) and <£(M,X€) at the origin.

In this example the origin is a sink but we could re-work the example with the

non-right angle, which was acute in the above (we need a non right angle because if

the corner is orthogonal we can get a C1 differentiable equivalence at 0) replaced by

one which is obtuse, eg M={xGR3: x ^ O , x 2>0, X j + x ^ x ^ O } , and X chosen so

that the origin has pre-images in two of the 2-dimensional strata but is mapped by the

flow into the third (Figure 6.2). Then exactly as above we can show that for no X'

near X is there a differentiable equivalence at the origin between <f>(X) and

Looking down into M

Figure 6.2
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Differentiable equivalence is therefore too strong for most purposes, but it seems

reasonable to ask that any equivalence between two systems should at least preserve

strata and if in the notion of equivalence we replace "diffeomorphism" with

"homeomorphism" with no further conditions all points in 3M look the same.

Denoting for the moment the stratum occupied by x as a(x) we therefore make the

following definitions:

Definitions If M and M' are diffeomorphic submanifolds with corners of Rn (so with

the above convention, for each xGM f(cr(x)) = (fa)(f(x)) or the diagram

>(fo)(f(x)) «5-M'=fM

t
stratum occupying point commutes)

we shall say

(1) A homeomorphism h:M->M' is stratum preserving if for all xGM

(fo)(h(x))=f(a(x)), ie for each k dimensional stratum m of M (as a submanifold with

corners) h(m) is a k-dimensional stratum of M', and vice versa.

(2) A homeomorphism h:M->M' is flow-preserving if it preserves trajectories, ie

h$(M)(x)=<£(M')(hx) for all xGM, ie for each xGM there exists a continuous

strictly increasing r:[0,oo)->[0,oo) such that h^(M,X)(x,t)=0(M',X')(hx,r(t)) for all

xGM, for all t > 0

(3) 4>(M,X),<f)(M',X') are stratum preserving flow preserving (spfp) equivalent at x.x'

if there exists a neighbourhood U of xGM and a stratum preserving homeomorphism

h-.U-MJ' = neighbourhood of h(x)=x' in M', and for each yGU there exists a

continuous strictly increasing T:[0,T(U,y))-*[0,T(U',h(y))) (r will of course depend on

y) such that h<HM,X)(y,t)=<KM',X')(h(y),7(t))for all t > 0 such that 0(M)(y,t)GU.

(4) <f>(M,X),4>(M',X') are stratum preserving flow preserving (spfp~) equivalent if

there exists a stratum preserving flow preserving homeomorphism h:M-»M'.
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Definition A semiflow (/>(X,M) is (spfp) stable at x € M if for any X' sufficiently near

X there exists x' near x such that <£(M,X) and $(M,X') are spfp equivalent at x,x'. It

is locally spfp stable if it is spfp stable at every xGM. It is (spfp) stable if for any X'

sufficiently near X <£(M,X) and 4>(M,X') are spfp equivalent.

We show in Chapter Seven that for X linear and M an orthant or for r-polynomial X

with r > n and M a cube there exist open-dense subsets of HU>1(M) and S

respectively consisting of fields which are locally (spfp) stable.

Remarks (1) In the definition of stability what is being tweaked is X, not (directly)

X(M): in the unconstrained case we tweak X and must preserve </>(X); here we tweak

X giving rise to a tweak of X(M) and we must preserve <£(M,X).

(2) We could strengthen the definition of stability by tweaking the manifold at the

same time, but in applications the manifold is fixed (in fact it seems in the cases

considered in this thesis that we would get the same result with this strengthened

definition).

We obtain a necessary condition for two semiflows to be spfp equivalent which

incorporates the intuitive requirement that intersections with the strata of M made by

backward as well as forward trajectories must be preserved.

1(0)

M

complement of M

c(2)=c(4)

c(5)

Figure 6.3
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An invariant curve for (M,X) is (for our purposes) an absolutely continuous map

c:[0,5)=A1
+UA1"UA2

+U..-»M where each A;+ is an interval [S^Si), each A;" is an

interval [8^5;) and setting UA;- = A\ UA ;
+=A+ satisfies Dtc(t)=X(M)c(t) for almost all

tGA+ , Dtc(t)=-X(M)c(t) for almost all tEA" (Eg Figure 6.3).

If M,M' are diffeomorphic submanifolds with corners then invariant curves c:[0,5)->M,

c':[0,5')-*M' for (M,X),(M',X') are equivalent if there exists a continuous strictly

increasing r:[O,5)-»[O,5') such that r(A+)=A'+ , r(A")=A'" and such that for all tG[0,5)

f(a(c(t))) = (fcr)(c'(T(t))), where f is the diffeomorphism f:M-»M\ Then a necessary

condition for a homeomorphism h:M-*M' to be spfp is:

Lemma 6.1 If h is a spfp homeomorphism between <£(M,X) and <£(M',X') then for each

invariant curve c of (M,X) there exists an equivalent invariant curve c' of (M',X').

Proof (1) We know the result is true if the invariant curve is a trajectory segment

<£(M)(x,[0,5)) mapped by h to 0(M')(hx,[O,r(5))), since if h is a spfp homeomorphism

we have by definition that for each xGM there exists a continuous strictly increasing

T:[0,5)->[0,3') such that

h<KM)(x,t)=<KM')(hx,r(t)) for 0 < t < 5 , and (fa)(h(y))=f(a(y)) for all yGM,

which together give f(a(^(M)(x,t))) = (fo-)(0(M')(hx,r(t)))for each xGM, for all

0 < t < 5 , which means <£(M')(hx,T[0,8)) is equivalent to <£(M)(x,[0,5)) (with

(2) We have for each i Dtc(t)=X(M)c(t) a.a. tEA;+,

Dtc(t)=-X(M)c(t) a.a. tG A;". On each A-,+ c(t) satisfies the condition to be a trajectory

of X(M), hence we have for tGA ;
+ c(t)=0(M)(c(5i+),t-5i+). Similarly we have on tGA;',

setting s=5;~-t, Dsc(5i"-s)=-(-X(M)c(5i"-s)), hence c(5i'-s) satisfies the condition to be a

traSectory of X(M) and for tGAf c(t)=<£(M)(c(5f),5f-t).

(3) By (1) each trajectory segment {^>(M)(c(5i-),5i--t):5i<t<5i-} and

{<£(M)(c(5i
+),t-5i

+):5i
+<t<5i} of c is mapped by a spfp homeomorphism to respectively

{0(M')(hc(5r),r(5i--t)),6i<t<5i-},

their ends meet at c(5;), and so we may construct piecewise an invariant curve c' and a

continuous function r which (inductively in i) has the required properties.
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For example in the case of Figure 6.3 above we would set

A1
+ = [0,2),A1- = [2,3),A2

+ = [3,5),A2- = [5,6),5, + =0, S,- = 3,52
+=3, 8{=6, so

c(t) = c/>(M)(c(0),t)on [0,2), = <?(M)(c(3),3-t) on [2,3) etc, and

= h<£(M)(c(O),t) on [0.2), c'(t) = h</)(M)(c(3),3-t) on [2,3) etc.

If we say two points x,y G M are equivalent if for any invariant curve based at x

there exists an invariant curve equivalent to it bas£d at y, we may partition M into

equivalence classes all of which must (by Lemma 6.1) be preserved by a spfp

homeomorphism. A tame example is illustrated in Figure 6.4, where there are 17

equivalence classes ( 6 points, 8 1-manifolds, 3 2-manifolds).

Figure 6.4

In fact we show in Example 6.6(1) below that in some circumstances at least a spfp

homeomorphism will preserve the tangency sets I\(IUJ r I) too. These sets may then

be added to the strata of M in the foregoing to provide a stronger necessary condition

for a homeomorphism to be spfp.

We can see that the existence, even locally of a spfp homeomorphism between two

semiflows places exacting requirements upon them (and hence the requirements upon a

semiflow to be spfp stable are highly exacting too). We shall though show in Chapter

Seven that for M a polyhedron there exists an open-dense subset of polynomial vector

fields X with 0(M,X) locally spfp stable.

Constant Systems and Straightening-Out

A system (M0,X) is termed constant if Mo is a (linear) corner LC(I;J) and the vector

field X€H0,0(Mo) (so for all x,y£M0 X(x)=X(y)). We shall investigate the relation

between the semiflow of a system (M,X) near xEM and that of its straightening-out

at x, the constant system (TXM,XS), where X, is the constant vector field on TXM

given by Xs(y)=X(x) for all yGTxM (Figure 6.5).



M

A vector field on M near x Figure 6.5 The straightening-out at x

For (M0,X) a constant system we are interested in the different values which X(M0)

may take on - eg, in Figure 6.6 below X(Mo)=X(0) on LO(0;l ,2)ULO(l;2) and

X(M0)=X(2) on LO(2;1)ULO(1,2;0). We see that this set of possible values of

X(M0) may be strictly smaller than {K:X(Mo)(x)=X(K)(x) some xGM0} because , as

on LO(1;2) in Figure 6.6, more than one K might satisfy the condition

X(M0)(x)=X(K)(x).

SLO(2;1) LO(0;1,2)

LO(1;2)

Figure 6.6. If X is as shown on MO=LC(0;1,2), then S°2(LC(0;1,2),X) = {0,(1)}
and the regions on which S°2(x) is constant are:
LCO(0;1;2)=LO(0;1,2)ULO(1;2) (corresponding to K = 0 ) and
LC(2;1)=LO(1,2;0)ULO(2;1) (corresponding to K=(2))

To overcome this we recall that from the construction of the iteration we know that

S°2(x) = H (K:S°1(x) C KC S,(x) and X(M)(x) =X(K)(x)} and

S2(x) = U{K:S°,(x)CKCS1(x) and X(M)(x)=X(K)(x)}. Thus

{K:K=S°2(x) some x£M0} provides us with a set of sets of indices such that at each

point x 6 M 0 X(M0)(x)=X(K)(x) for one and only one K in this set, and in fact it

follows from Lemma 6.2 below that the set of distinct values of {So
2(x):xGMo}

corresponds exactly to the set of distinct values of X(Mo).

If (LC(I;J),X) is a constant system we call the set of distinct values of

{S°2(x):x£LC(I;J)} (these are necessarily in the range ICKCIUJ) S°2(LC(I;J),X). So

in Figure 6.6 S°2(LC(0;1,2),X) = {0,(2)}. We see that for K = 0 or (2) in Figure

6.6 {xeLC(0;l,2):S°2(x)=K} is a subcorner satisfying

LO(K;J\K)C{x€LC(I;J):S°2(x) = K}CLC(K;J\K), and this is always the case:
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Lemma 6.2 If (LC(I;J),X) is a constant system then for each K€S°2(LC(I;J),X)

{xeLC(I;J):S°2(x)=K} is a subcorner of LC(I;J) satisfying

LO(K;J\K) C {x G LC(L;J):S°Jx) =K} C LC(K;J\K).

Proof (1) We show that if x,Xo are points in LC(I;J) then x6LO(S0
2(Xo),J\S°2(xo))

implies S°2(x)=S0
2(x0). By Lemma 2.4 we know S°2(x) is characterised as the unique

set of indices S°i(x) C S°2(x) C St(x) such that

(i) (X(S°2(x)\j),nj) < 0 for all j G S°2(x)\S°1(x)

(ii) (X(S°2(x)),nj)>0 for all j E S ^ S ^ x ) .

If then xGLO(S°2(x0);AS0
2(x0)) we have S1(x)=S°2(x0), so S°2(Xo) is a candidate for

S°2(x) and since it satisfies (ii) vacuously (since S1(x)=S°2(x)) and (i) (because

S°i(xo)=S°1(x)=I for all x,x0ELC(I;J), and (i) is satisfied by XQ) we must therefore

have that S°2(x)=S°2(x0).

(2). We show S°2(x)=S°2(x0) implies xeLC(S0
2(x0);J\S°2(x0)). Since S ^ C S ^ x ) we

must have LO(S1(x);J\S1(x))C Uso2(x)CKCIUJLO(K;J\K) and so

x€LO(S1(x);J\S1(x))C Uso2(x)CKCIUJLO(K;J\K)=LC(S°2(x)AS°2(x)), so if then

S°2(x)=S°2(x0) the claim follows.

(1) and (2) together prove the inclusions

LO(K;J\K)C{xeLC(I;J):S°2(x)=K}CLC(K;J\K) if K=S°2(xo) some x0.

(3) We show {xGLC(I;J):S°2(x)=S°2(x0)} any fixed xo€LC(I;J) is a subcorner. First

we show that S°2(x) is a constant on strata. It follows from definitions (as we observed

above) that if xeLO(K;J\K) then S°2(x) = n {K':ICK' CK and

X(LC(I;J))(x)=X(K')(x)}. If xGLO(K;J\K) then

X(LC(I;J)Xx)=P(TxLC(I;J))X(x) (by definition)

=P(LC(I;K\I))X(x) (since TXLC(I;J)=TXLC(I;K\I))

=P(LC(I;K\I))X(0) (the vector field is constant, so X(x)=X(0))

so is independent of xELO(K;J\K). Returning to our characterisation above of S°2(x),

since X(K')(x)=P(TxL(K'))X(x)=P(K')X(x)=P(K')X(O) independent of x the

constancy of S°2(x) on strata follows. Returning to the claim that

{xELC(I;J):S°2(x)=S°2(x0)} is a subcorner, suppose we show that if

P(LC(I;K,\I))X=P(LC(I;K2\I))X=P(S°2(Xo))X then

(a) P(LC(I;K,UK2\I))X=P(S°2(x0))X and

(b) P(LC(I;K,nK2\I))X=P(S02(x0))X. Then since we have observed that if

xGLO(K;J\K) then S°2(x)= n {K':ICK'CK:P(LC(I;K\I))X=P(K')X} it follows that

if there exists x.GLCKK^AK,), i = l,2, with S°2(xi) = K0 some KQ, then for any
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xeLO(K,UK2;J\(K,UK2)) or xeLOCKjOKj-JX^nKj)) S°2(x)=Ko. We saw in

Chapter One that any subcorner of LC(I;J) is a union of strata UKgELOCKjjJXKj)

characterised by the fact that K^KjEE implies K J O K J and K,UK 2 6E, and so the

claim that {xeLC(I;J):S°2(x)=S0
2(Xo)} is a subcorner follows.

Setting Q=LC(I;Ki\I) for i = l , 2 , if P(C1)X=P(C2)X then by Lemma 1.1(1)

P(C i)X=P(C1nC2)X which gives (a). By Lemma 1.1(2) P(Ci)X=P(conv(CiUC2))X,

and since by a similar argument to that in Lemma 1.2 we obtain

iK^I) U LC(I;K2\I))X=P(LC(I;K! 0 K2\I))X, (b) follows.

For a constant system (LC(I;J),X) we saw in part (3) of the proof of Lemma 6.2

that S°2(x) depends only on which stratum x occupies; thus for any stratum

LO(K;J\K) we may define S°2(LO(K;J\K)) by S0
2(LO(K;J\K))=S°2(x), for any

x6LO(K;J\K) and K6S°2(LC(I;J),X). Then for each KGS°2(LC(I;J),X) set

E(K) = {K':S°2(LO(K';AK'))=S°2(LO(K;J\K))}. We know then by Lemma 6.2 that

U{LO(K';J\K'):K'eE(K)} = {xeLC(I;J):S°2(x)=K} is a subcorner, and that

KCE(K)CU{K':KCK'}.

Example 6.2

LO(1,;2,3)

X(1)=X(1,2)

LO(1,2;3)

Looking down into LC(0;1,2.3)

Figure 6.7
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On LC(0;1,2,3), with suitable vector field X (see Figure 6.7),

S°2(LC(0;l,2,3),X) = {0,(3),(2),(l)},ie S°2(x) may take on one of 4 possible values,

Kt = 0 , K2=(3), K3=(2), or K4=(l) , ie there are 4 distinct values which

X(LC(0;l,2,3))(x) may take on. Then by Lemma 6.2 {xGLC(0;l,2,3):S°2(x)=Ki}

is a subcorner containing LO(K;;(l,2,3)\Ki) and contained in LC(Ki;(l,2,3)\Ki). We

have in fact E(K1) = { 0 } , E(K2) = {(3)}, E(K3) = {(2),(2,3)},

If M is a submanifold with corners and xGM the straightening-out at x is the

constant system (TXM,X.) where X, is the constant vector field on TXM given by

X8(y)=X(x) for all yETxM. If M is locally represented as ZN(I;J) (with xGZ(IU J))

then TXM = LC(I;J). By the above we may partition the strata of TXM into subsets

{LO(K;J\K):KGE(Ki)} for i=l , . . , r , where {Ki}i=1_r=S°2(TxM = LC(I;J),X8) (this

will in fact be a notational convention throughout the remainder of this section). Then

for each Kj, i = l,..,r, we define M(x,Kj) = U l Z P ^ A ^ r K G E ^ } . By Lemma 6.2

each M(x,Ki) is a subcorner of ZN(I;J), and we see {M(x,Kj):i=l..r} is a partition of

M near x.

For instance, if a submanifold with corners M locally represented as ZN(0;1,2) and

vector field X straighten out at xGM to form a constant system as in Figure 6.6

above, then r=2 with M(x,K,)=ZP(0;l,2)UZP(l;2) and M(x,K2)=ZN(2;l). Thus

{M(x,Ki)} is a partition of M near x into unions of strata, where which strata go into

which union is determined by the straightening out at x.

The idea now (Lemma 6.3 and Proposition 6.1) is to infer as much as possible about

the original non-constant system near x from the straightening out at x (very much of

course in the spirit of classical geometric theory). As a constant system the

straightening out is very easy to analyse, and for example determining the subdivision

of the sets of indices K i n l C K C I U J into the (E(K;)} consists of finitely many

operations involving only a finite set of vectors.

Lemma 6.3 With K1,..,Kr=S°2(TxM = LC(I;J),Xs) and M(x,Kj) as defined above there

exists a neighbourhood U of x in M such that the relation > defined on

(M(x,Ki), i=l . . r} by M(x,Ki)>M(x,Kj) if there exists a trajectory from UnM(x,Ki)

to UOM(x,Kj) is a partial order (ie, for as long as a trajectory remains in some

neighbourhood of x once it has vacated M(x,Ki) it cannot return to it).

We observe this means that no trajectory can make more than r-1 transitions between
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the sets M(x,Kj) for as long as it remains in U.

Proof (1) We show if as x;-»x | X(M)(xj) | - | X(M)(x) | -*0 then

| X(M)(Xi)-X(M)(x) | -*0. From Lemma 5.9 we know given e > 0 there exists a

neighbourhood U of x such that for all y E U

| X(M)(x) | 2-e<(X(M)(y),X(M)(x))< | X(M)(y) | 2+e.Thus if

| X(M)(X;) | - | X(M)(x) | -*0 we must have | X(M)(x) | 2-(X(M)(Xj),X(M)(x))->0

and | X(M)(Xi) | 2-(X(M)(Xi),X(M)(x)>-*0and hence

| X(M)(x)-X(M)(Xi) | 2 = | X(M)(x) | 2 + | X(M)(Xi) | 2-2(X(M)(Xi),X(M)(x))-0.

(2) We show that given any e > 0 there exists a neighbourhood U of x in M so small

that Sup{ | X(M)(y)-X(Kj)(x) | :yEM(x,Ki)nU, i= l . . r }<e .

Beginning with the straightening out of (M,X) at x, since if KEE(K4)

S°2(y',TxM = LC(I;J),X8)=Ki for all y'ELO(K;J\K), and if y'ELO(K;J\K)

P(Ty.LC(I;J))Xs=P(LC(I;K\I))X8, and by definition

P(Ty.LCa;J))X8=P(S°2(y',LC(I;J),Xs))X8=P(Ki)Xs,we have for all KEE(Ki)

P(LC(I;K\I))X8=P(Ki)X8.

We have defined M(x,Kj) = U {ZP(K;J\JC):K6E(Kj)} where we recall

i) = {K:S°2(LO(K;J\K))=S°2(LO(Ki;J\K0)}. If y£M(x,Kj) yEZP(K;J\K) some

, so X(M)(y)=P(TyM)X(y)=P(TyZN(I;K\I))X(y). By [13] y-*P(TyM)X(y) is

continuous as long as yEa single stratum, hence as y-*x

X(M)(y)-*P(TxZN(I;K\I))X(x). Then since the constant vector field X8 takes the value

X(x) at all points, the result follows.

(3) Since by definition all the values TQQXS are distinct S^inf;^ | P(Ki)Xs-P(Kj)X8 |

is positive. The quantity

52=min{ | | P(Ki)Xs | - | P(KJ)X8 | | : | PCIQX, | ^ | P(Kj)X, | }is indisputably

positive, and we shall set 5 = min{5!,52} (the need for the ^ term will arise in (5)

below). By (2) we may choose our neighbourhood U of x in M so small that

sup{ | X(M)(y)-X(Ki)(x) | :yEM(x,K i)nU,i = l,..,r}
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^ Possible values of X(M)(y)
X(K,)(x) i i f y € M ( X ) K i ) n u

Values of X(M)(y) if
y G M(x,K3) n U R n

Values of X(M)(y)

etc.

Suppose y6M(x,K,)nU. Set tI=inf{t>O:<^(M)(y,t)€M(x,K1)}. <£(M)(y,t) is in

M(x,K!) for small t > 0 because 0(M)(y,t)Esome M(x,Kj), and by the foregoing if

^(M)(y,t)6M(x,Ki)then | X(M)<^(M)(y,t)-X(KO(x) | < 5/3, while | X(Kj)(x)-

X(Kj)(x) | >5 if i ^ j . Since (by Theorem 3.1) limu0X(M)tf>(M)(y,t)=X(M)(y) (and so

X(M)<£(M)(y,t) is close to X(M)(y) for t small and positive) we must by the above

have that <^(M)(y,t)6M(x,K1) for small t > 0 , and hence t ^ O .

(4) We claim there exists a neighbourhood U of x such that for any y E U and

0<t<T(U,y) , if on any left neighbourhood of t there exist points s such that

(^)(M)(x,s)EM(x,Ki), and on any right neighbourhood of t there exist points s such

that 0(M)(x,s)EM(x,Kj) (by (3) this means <KM)(x,t)EM(x,Kj)) then

| P(Kj)X, | < | P(Ki)X. | .

Suppose there exist sequences {Xk},^},!^01} with xk-*x, t^O, 0 < s k
m < ^ and s^^

for each k as m-*oo, such that <^(M)(xk,sk
m)-EM(x,Ki), ^(M)(xk,tk)EM(x,Kj) (see

Figure 6.8), and | P(Ki)X, | > | P ^ X , | . Since xk-*x and ttiO we have by (2)

X(M)^(M)(xk,tk)-X(Kj)(x) (as k-*oo) and X(M)^>(M)(xk,sk
m)^X(Ki)(x) (as k - « ) .

By Lemma 5.9 l i m , ^ | X(M)</>(M)(xk,sk
m) | > | X(M)<^(M)(xk,tk) | for all k, hence

we have | X(K0(x) | > | X(K3)(x) | . If we had equality then

| X(M)<KM)(xk,t0 | - I X(M)<^(M)(xk,sk
m) | ->O(as k - « ) and so by (1)

| X(M)0(M)(xk,tk)-X(M)0(M)(xk,sk
m) | -*O(as k-oo) and hence

| X(Kj)(x)-X(Kj)(x) | =0, which is only possible if i= j .
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{xk} - . . j v {0(M)(xk,sk
m),m=l,2,..}

Figure 6.8

(5) Since by (2) there exists a neighbourhood U of x such that if yEUnM(x,Kj) then

| X(M)(y)-X(Kj)(x) | < 5/3 and by (3) each maximally connected interval of

[0,T(U,y)) on which <£(M)(y,t) is contained in a single M(x,Kj) is of the form [T,T')

with T >T, if we choose a pair of adjacent such intervals [Ti.1,Ti) and [Tj,Ti+1) and

relabel the Kj's so that <^)(M)(y,t)GUnM(x,Kj) on [TJ^J+J) j= i - l , i , then for all

te[r ; ,T i + 1) I X(JQ(x) I - I X(M)<KM)(y,t) | < 5/3 while

| X(K;.,)(x) | - | X(M)<£(M)(y,t) | >5/3 (by definition of Ui,Ti+1) and (4)

| X(Ki.,)(x) | - | X(Kj)(x) | >0 , therefore by definition of 5 in (3)

| X(Ki.1)(x) | - | X(Kj)(x) | >5 , and add this to

| X(KV)(x) | - | X(M)<£(M)(y,t) | >-5/3). Hence inductively once a trajectory has

vacated a region M(x,Kj) it cannot return to it. —

a.Y ike offcp

Remark If (M,X) is a constant system (so equals its own straightening-out^ then we

may take U=M in Lemma 6.3, ie if we partition LC(I;J) into the subcorners

{ULO(K;J\K):KGE(ig}i=1,..,r then for any yGLC(I;J) once 0(LC(I;J))(y) has left

any such region it can never return to it (re-work the proof above or use that for a

constant system (M0,X), <£(Mo)(x,t) = (l/e)0(Mo)(ex,et), so the global result follows

from the local one near 0).

Examples 6.3

(1) If (M,X) straightens out at x to yield a constant system with the data as in

Example 6.2 above we have (denoting our partial order by > )

M(x,K0>M(x,K2)>M(x,K3)>M{x,¥^) where

M(x,KI) = ZP(0;l,2,3),M(x,K2) = ZP(3;l,2),
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= ZNP(2;3;l) = ZP(2;ll3)UZP(2,3;l),M(x,K4) = ZN(l;2,3)

(2) The partial order need not be a total order. If (M,X) straightens out at x (see

Figure 6.9) to yield a slightly different constant system to that in Example 6.2 (but on

the same corner LC(0;1,2,3) ),with S°2(LC(0;1,2,3),XJ = {0,(3),(2),(1,2)}, ie

S°2(y) now takes on 5 values as y varies over LC(0;1,2,3): K, = 0,K2 = (3), K3 = (2),

K4 = (l), ks = (l,2), and we have E(K,), E(K2), E(K3) as in Example 6.2,

E(K4) = {(1),(1,3)} and E(K5) = {(1,2),(1,2,3)}. M(x,K,),M(x,K2),M(x,K3), are as in

(1) above, with M(x,K4) = ZP(l;2,3)UZP(l,3;2) = ZNP(l;3;2)and

M(x,K5) = ZP(l,2;3)UZP(l,2,3;0) = ZN(l,2;3),and

M(x,K.)>M(x,K,)>
M(x,K3)

M(x,K4)
>M(x,K5)

LO(2;1,3)

LO(1,2;3)

Figure 6.9. The straightening out. Looking down into LC(0;1,2,3)

Remark Given this partial order and the fact that {M(x,K,):i= 1 ,..,r} is a finite

partition of M near x it follows that there must exist one or more M(x,K,) such that
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there is no M(x,Kj) with M(x,IQ >M(x,Kj) and j ^i (geometrically a union of strata

acting as a "sink" for the local flow - for example in Example 6.3(1) this is M(x,K4)

and in Example 6.3(2) it is M(x,K5)). Using Lemmas 2.4, 4.6 and 6.2 we can show

that there is in fact exactly one such set: it is

ZN(S°2(0,LC(I;J),Xs) AS0
2(0,LC(I;J),Xs), but we shall not use this fact.

We next show (Example 6.4) that even away from tangencies we cannot in general

establish a spfp homeomorphism between <£(M,X) near x E M and <j)(TxM.,X^) near the

origin , or for that matter necessarily be able to find any constant system for which

we can establish a spfp homeomorphism between <£(M,X) near xGM and <£(TXM,XS)

near the origin. Clearly no constant system can be locally (spfp) equivalent to a

neighbourhood of a point x where 3oo(x);«£Qf2(x) (crudely speaking a point where there

is a tangency between the semiflow and a lower dimensional stratum) (Figure 6.10),

but it may not be possible to establish an equivalence even when there are no

tangencies between flows and substrata (Example 6.4).

v

, where M = {xGRn:x,>0}

Figure 6.10

Example 6.4 Consider the orthogonal 3-dimensional corner {xGR3: x ;>0, i= 1,2,3}

and non-constant vector field X with constant part Xo close to (-1,1,1). Consider the

subsets of LO(1;2,3) V, = {xeLO(l;2,3):x=tf>(M)(y,t) some t > 0 , some

yGLO(2,3;l)} and V2 = {x6LO(l;2,3):x=^(l)(0,t) some t>0} (see figure below).

V! then is the intersection of LO(1;2,3) with the surface obtained by acting on

LO(2,3;1) (= span{n,}) with the unconstrained flow, and V2 is the image by the flow

of the origin in LO(1;2,3). In the straightening out at 0 (which in this case is obtained

by replacing X by Xs everywhere equal to Xo, since we already have

ToLC(0; 1,2,3) s L C ( 0 ; 1,2,3)) we see that the subsets in the straightening out

corresponding to V,,V2, which we shall denote V,,V2, are

V,=LO(l;2,3)flspan{n1,X(0)} which we see will coincide exactly with

V2 = {X(X(0)-(X(0),n,)n,):X>0}: in the original V, and V2 will



148

be tangent at 0 but not in general coincident (Figure 6.11).

V; intersection of LO(1;2,3) with the surface swept out by
1 V the action of 0(M) on LO(23;1)L
origin in LO(1;2,3)

the action of on LO(2,3;1)

LO(1 LO(2,3;1)

X(0)

Figure 6.11

By Lemma 6.1 there therefore cannot be a spfp homeomorphism between (M,X) and

(TxM=M,Xo) near the origin. We note also that this phenomenon cannot be perturbed

away. Within the class of constant systems the semiflow is spfp stable, and by suitable

choice of X we can make it spfp stable within for example the class of linear vector

fields, but the two classes are distinguished by spfp homeomorphism.

We have partitioned M near x E M locally represented as ZN(I; J) into regions

{M(x,Kj),i=l,..,r} with each M(x,Kj) a subcorner of ZN(I;J) such that at every point

of the corresponding subcorner in the straightening-out (TXM,X8), X5(TXM) is a

constant, and saw in Lemma 6.3 that once a trajectory has left M(x,K;) it cannot

return to it. In Proposition 6.1 we improve upon this. Suppose we denote the

subcorner in the straightening-out corresponding to M(x,Kj) by M0(Ki) (ie it equals

U{LO(K;J\K):KeE(Ki)}, cf M(x,Ki)=U{ZP(K;J\K):KEE(Ki)} ), we shall say

Mo(x,Ki)^Mo(x,Ki) if there exists a trajectory 0(Mo,Xs) of X, on M0=LC(I;J) passing

from Mo(Kj) to Mo(Kj). Since there are only finitely many K; we can partition MQ into

M0(Ki), and form a finite diagram (hereafter called the diagram of the straightening

out) of the form

M0(K,) — M0(K2)

We remarked after Lemma 6.3 that if the system is constant Lemma 6.3 applies
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globally, that is, having left a set ^ ( K J a trajectory cannot return to it, which means

that there are no loops in the diagram obtainable by following arrows. Some examples

of diagrams are given in Examples 6.5 below.

In Proposition 6.1 we establish the relation between the sequence of sets M(x,Kj) a

trajectory $(M,X)(y) may occupy near x, and the diagram of the straightening out at

x:

Proposition 6.1 If S°2(TxM = LC(I;J),Xa)=Ki,.,Kr and M(x,Ki), Mo(Kj) are as defined

above, then there exists a neighbourhood U of x £ M such that for any yGMDU we

can partition [0,T(U,y)) into [0,T1)U..U[Ti_,,TI) some s<r , such that for each

i = l,..,s <^(M)(y,[Ti.1,Ti)) is contained in a single set M(x,Kj(i)) and for each i = l..s-l

M0(Kj(i.1))-»M0(Kj(i)), ie the sequence of sets <£(M)(y) occupies is drawn from the

diagram of the straightening-out.

By the no-loops remark above Proposition 6.1 implies Lemma 6.3.

Examples 6.5

(1) Suppose the straightening-out at x is as illustrated in Figure 6.12a below, with

X s(LC(0; 1,2,3)) taking on 3 distinct values, Xs(0)=Xs(3),Xs(2)=Xs(3,2),

X,(l)=X i(3,l) with E ( 0 ) = {(0),(3)},E((2)) = {(2),(2,3)} and

E((1)) = {(1),(1,2),(1,3),(1,2,3)} and the diagram of the corresponding regions as

follows:

H ) ( 0 ) =LCO(0 ;3; 1,2)-*M0(2) =LCO(2;3; 1)

Mo(l)=LC(l;2,3)

Proposition 6.1 (and in fact in this case also Lemma 6.3) tells us that the only

transitions between subcorners M(x,Ki) a trajectory of the original can make near x

are ZNP(0;3;1,2)^ZNP(2;3;1) (ie, ZP(0;1,2,3)UZP(3;1,2)-*ZP(2;3,1)UZP(2,3;1))

or ZNP(0;3;1,2)-*ZN(1;2,3), or ZNP(2;3;1)-*ZN(1;2,3), for example this permits a

situation such as that in Example 5.1(3) (Figure 6.12b)
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Figure 6.12a. The straightening out at x

ZP(3;1,2)

Figure 6.12b

(2) If the straightening-out at x is as illustrated in Figure 6.13

with diagram LO(2,3;1) «- LCO(3;1,2) «- LCO(0;2;1,3)

\ ^ ^

LC(1,2;3) - LO(1;2,3) _ ^ r ( ;

then for some neighbourhood U of x in M the transitions made by 0(M)(y)'von U are

drawn from this diagram (replacing L,C,O by respectively Z,N,P).
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LO(1;2,3)

LO(2;1,3)

Figure 6.13. Looking down into LC(0;1,2,3)

Proof of Proposition 6.1

In Lemma 6.3 we saw there exists a neighbourhood U of x in M such that for any

yGU we can partition [0,T(U,y)) into [0,Ti)U.. U[Ts.i,TJ (s bounded by some

constant r on U) and reorder the K^..,!^ such that for each i= l , . . , s - l

</>(M)(y,[Ti.1,Ti))CM(x,Ki). To prove Proposition 6.1 we must show that in addition

that if arbitrarily close to x there exists y making the transition from M(x,Ki) to

M(x,Kj) then MoQQ-MoQty.

(1) We show that if there exists a sequence {x;} C ZP(K;J\K) with x^x and sequences

{^,{1/} with ts,ti'*O such that xi=^(Nf)(yi,ti), zi=^(M)(xi,ti') with

0(M)(yi,[O,ti))CM(x,K1) and <^(M)(x,(0,ti'))CM(x,K2) (see Figure 6.14), then

-X(K,)(x) points into TXZN(K!;K\K,) and X(K2)(x) points into TXZN(K2;K\K2).

-X(K,)(x) points into TX(ZN(K,;K\K,)) iff (X(K,)x,gradfi(x))<0 for all iGK\K, .

Suppose in fact (X(Kj)(x),gradfi(x))>0 some iGK\Kj. We have

U*)-fi(&)= I Mgradf^(M)(yj,t),X(M)^(M)(yj>t)>dt. We also have by Lemma 6.2

sup.6p.tp I X(M)(yj,t)-X(K1)(yj,t) | ->0as j - o o . Because (X(K1)(x),gradf,(x))>0 we

must have limj^ooinft€[0il](X(K1)</)(M)(yj,t),gradf^(M)(yj,t))>0, and hence

lim^<x>inft6[0l)(X(M)^(M)(yj,t),gradfi(^(M)(yj,t))>0, and hence there exists e>0 and

j o e z + such that for all j > j 0 lim^O)infte[O>vfi0(M)(xj)t)-fi^(M)(yj,t)>O f^-f^Xj) > ctj

which is a contradiction because f,(Xj)=0 for all iEK by construction, while fj(yj)>0

for all yjGZNCIjJ) for all iGIUJ.
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Similarly we get a contadiction if we suppose (X(K2)x,gradf;(x))<0 some i€K\K 2 , ie

if X(K2)(x) does not point into TXZN(K2;K\K2) .

M(x,K,)

Figure 6.14

(2) We show that if the conclusion of (1) holds then there exists a trajectory

<£(LC(I;J),X8) of the straightening-out at x passing from LC(Kj;J\Ki) through

LO(K;J\K) to LC(K2;J\K2). By (1) we know that if there are points on ZP(K;J\K)

arbitrarily close to x through which a trajectory makes the transition from M^Kj) to

M(x,K2) then -XS(K,) points into LC(K,;K\Ki) and XS(K2) points into LC(K2;K\K2).

Near any point yGLO(K;J\K) LC(I;J) is locally LC(I;K\I), so (1) tells us we have

-X.(K,)(y) pointing into Ty(LC(I;J)) and X/K^fy) pointing into Ty(LC(I;J)). By

Lemma 6.2, for all yeLO(Kj;J\Kj) S°2(y)=Ki, so for all y 6 L O ^ ; J N J Q

Xs(LC(I;J))(y)=Xs(Ki)(y), and hence we see {y-tXs(K!),y-l-tXs(K2):O<t<5} some

5>0 is a trajectory of the straightening-out passing through y.

Linearization

A system (M1(X) is linear if Mj is a (linear) corner LC(I;J) and XGE^CMi), ie for

each xGL(l) X(x)=a+Ax some aGL(I) and linear map A:L(I)-»L(I) (in fact it is the

vector field which is constant or linear if the system is described as such. In both

cases the f;'s forming M are linear, so our terminology is not ideal). The biological

model which inspired the thesis is of this form and we consider these further in

Chapter Eight. For the moment we merely show that linear systems have no

advantage over constant systems as far as representativeness of systems in general is

concerned.

We shall say that (M,X) can be linearized on a neighbourhood of xGM if there
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exists a neighbourhood U of x and a spfp homeomorphism h between the semiflows of

<£(M,X) on U and (£(TXM,XL) on a neighbourhood of the origin in TXM, where

XL(y)=X(x)+DX(x)y.

Example 6.6 We show that there is no dense subset of Hu>r(M) with r > 1 and M a

half-space of Rn consisting of fields each of which can be linearized on a neighbourhood

of each point in M.

(1) We show that if X,X' are vector fields on M=ZN(I;i), M'=ZN(I';i ') (where

| I | = | I' | ) with XGH'(M),X'GH'(M') then any spfp homeomorphism h:M^M'

preserves I \x(IUi r I), any k, ie hrk
x(IUi r I)=rk

x ' ( I ' Ui ' r I') any k.

Working with (M,X), set Z+ = {xGZ(IUi):there exists 5>0 such that f^(M)(x,t)>0 for

all tG(0,5)} and Z.={xGZ(IUi): there exists 5>0 such that f^(M)(x,t)=0 for all

tG[0,5)}. Plainly Z+ and Z., and hence Z+ , Z., are preserved by any spfp

homeomorphism. But for X6S B ' (M) we have from definitions that Z + = Uk>,rk
+(IUi r

I) and

Z + = r , + ( I U i r I ) u r 2 ( I U i r I), and that Z.= Uka lrk"(IUi r I) and

Z.=IY(IUi r I)Ur2(IUi r I) (see Figure 6.15), so

F2(IUi r I )=Z+DZ., and so must be preserved by h. Similarly since for XGSoo'(M)

and any integer k Tk(IUi r I) = closure(Z+nrk.1(IUi r I)) n closure(Z. 0 rk.i(I U i r I))

(see Figure 6.15) it follows by induction that each rk(IUi r I) is preserved by a spfp

homeomorphism h.

^~ Z(IUi)

Figure 6.15

(2) If M is locally represented as ZN(I;J) with xGZ(IUJ) then TXM = LC(I;J); we

show by example that in general, taking M = ZN(I;i), if XGS'(M) and

xGTk
x(Z(IUi) r Z(I)) then 0£rk

x
L(L(IUi) r L(I)) where (TXM = LC(I;J),X,) is the

linearization of X,M at x, and
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hence by (1) above linearization is not generally possible.

Consider M={xERn : (x,ni)>0}, n > 3 , and suppose near 0 XeS«,'(M) has the

form (x1,x2,X3)=(x2+f1(x),X3+f2(x),l+f3(x))each f^R^R is such that f;(0)=0,

Df;(0)=0, i= l ,2 ,3 . For x=0 we have then TxM = M,

XL(x1,x2,x3)=(xI,*2,*3)=(x2,x3,l), so XLEHU>1'(TXM). Then O G ^ l r 0 ) but for

(M,X) we have x1(0)=x2+f1(x) | x=o=O,x1(O)=x3+f2(x)+Lxf1(x) | x = 0=0 (written out

in co-ordinates we have Lxf1(0)=EXi(0)3fl(x)/3xfand hence =0) but in general

x1
(3)(0)^0 and hence 0Gr 2

x ( l r 0 ) but 0<£F3
x(l r 0 ) . This phenomenon is stable

under perturbations in X. If we perturb X we will perturb the location of points x in

3M such that in the linearization at x O G ^ l r 0 ) but such a point x will still not

generally be in F3
X(1 r 0 ) . Thus for a non-empty open subset of vector fields with M

a half space in Rn, n > 3 , there exists points where (M,X) cannot be linearized.

Example 6.6 leaves open the possibilities (1) that by perturbing M as well as X we

could everywhere linearize, and (2) that even if linearization in the given sense is not

always possible, we could find (for generic X,M) for each x E M some linear system

locally spfp equivalent to (M,X) near x. In fact neither of these two possibilities

holds:

Example 6.7 We show there exist M and XGEB(M) such that for any Y sufficiently

near X and N near M there exists x 6 N such that no linear system (M^Xj) exists for

which we can find a spfp homeomorphism h:N-*M! between the semiflows <£(N,Y) on

a neighbourhood of x in N and the semiflow </>(Mi,Xi) near any point xLEMi.

(1) Plainly in a linear system the set Fk(Ki r K2) (where K2CKj) is affine, ie a

translate of a linear subspace. If F^Kj r K2) = {xEL(I):(x,ni)=pi,i = l,..,r} where

K^DK^DI, some independent set {i iJCLQ, then the normal space to Fk(Ki r K2) in

L(I), denoted N(Fk(K, r K2) in L(I)), equals span{P(I)n;:i=l,..,r}. We show (still in

the context of linear systems) that if N(Fk(Ki r K2) in L(K2))CL(K) some KDK2 then

rk+1(K,UK r K)=Fk+1(K1 r K2)HL(K)

(i) First we show that if L^L^ are linear subspaces of L with X E L then

N(Lj in L)CL2 implies P(L2)XEL1nL2 iff XELj . Since if L,,!^, are subspaces of L

then L.CL,, iff N(L,, in L)CN(L, in L), and since N(N(L, in L) in L) = L,, we see

that the supposition N(L, in L)CL2 is equivalent to N ^ in L)CLj.

By Remark 2.1 P O ^ X - X E N ^ in L) so P ^ X - X E L , , therefore
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P(L,)(P(L2)X-X)=P(L2)X-X, and since if XGL, P(L1)(P(L2)X-X)=P(L1)P(L2)X-X if

P(L1)P(L2)X=P(L2)X and hence PO^XGI^f lLj . Conversely, if

L2 since P(L,)X-X £ N(Lj in L)CL, we must have XGLj.

(ii) The result is true by definitions if k=0 . Suppose it is true for k-1.

rk.,(K! r K^DTJK! r Kj), if N O T ^ r KJ in L(K2))CL(K) then NOr^K^ r I Q in

L(K2))CL(K) and so by the (k-l)th result rk(K,UK r K)=rk(K! r K^OI^K) and

hence Txrk(K,UK r K)=Txrk(K! r K^OLCK). Then using (i) with L set to LfK^, l^

set to L(K) and L, set to Txrk(K! r Kj) and using that KDK2 we obtain X(K)(x) =

P(L(K))X(K2)(x)GTxrk(Ki r K2)DL(K) iff X(K2)(x)GTxrk(K1 r Kj). Since

rk+,(KjUK r K) = {xGrk(K!UK r K): X(K2UK)(x)GTxrk(K!UK r K)} by the above

rk+1(K!UK r K) = {xGrk(K! r K2)nL(K):X(K2)(x)GTxrk(K1 r K2)}, and we obtain

r K)=rk+1(Kj r K2)OL(K) as required.

(2) We exhibit a vector field X and a submanifold with corners M of Rn (n > 4) such

that for any X' near X and any M' near M there is a point x of M' for which there is

no linear system (MlfXi) such that the semiflow <£(M',X') near x is equivalent to

^CM^X^ near some point xL of Mj.

If M = ZN(0;1,2) and xGZ(l,2) then we see that xGT2(l r 0 ) n r 2 ( l , 2 r 2) iff

(X(x),gradf1(x))=0and(X(x),gradf1(x))-(X(x),gradf2(x))(gradfi(x),gradf2(x)>=0

iff x£T 2 ( l r 0 ) (ie (X(x),gradf1(x))=O and either (i) xGT2(2 r 0 ) (ie

(X(x),gradf2(x))=0) (so by Proposition 4.1 xGT2(l,2 r 0 ) ) or (ii)

(gradf!(x),gradf2(x))=0 (Figure 6.16).

2(1,2)

{x'GZ(l,2):(gradf1(x'),gradf2(x'))=0}

"T2(l,2r2) ^ - .

r2(ir0)nz(i,2) f \

r2(l,2r0)

Figure 6.16

We now show that there is no linear system with a semiflow anywhere spfp
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equivalent to that near x in the Figure 6.16 above. By an argument similar to Example

6.6(1) we can show that F2(l,2 r 0 ) and one or more branches ending in x of each

of the curves T2(l r 0)fiZ(l,2) and F2(l,2 r 2) must be preserved by a spfp

homeomorphism.

If we now try to construct a linear system (M^Xj) with semiflow spfp equivalent

near some xL6M, to <t>(M,X) near x we must have M!=LC(0;1,2) with xL£L(l,2).

If L(i) has normal n; then either (nl!n2)^0 or (n1(n2)=0. If

xLEr2
x '(l,2 r 2)nr2

xi(l r 0 ) and (n^n^^O then by the above we must have case

( i ) , iex L Gr 2
x . ( l ) 2r0) :

r2
x.(lr0)nL(l,2)

Figure 6.17a. xLEF2
x>(l,2 r 2)nF2

x>(l r 0 ) and (n^ implies xLGF2(l,2 r 0 )

Alternatively, if <nj,n2)=0 then by (1) we have F2
X>(1,2 r 2)=F2

X>(1 r 0 )nL( l )

r 2
x . ( l r0 )nL( l , 2 ) :

1

r2
x.(l,2 r 2)=r2

x<l r 0)OL(1,2)

Fig. 6.17b. xLer2
x>(l,2 r 2)nr2

x.(l r 0 ) and (nl5n2)=0 implies
r2

x>(l,2 r 2)=r2
x.(l r 0)nL(l ,2)

The two possible candidates for a linear system locally spfp equivalent to (M,X) near

x in Figure 6.16 are as in Figures 6.17a and 6.17b near xL. But in a.xL£r2
x '(l r 0 )

and in b.r2
x>(l,2 r 2)=r2

x>(l r 0)DL(1,2), neither relation holding at x in Figure

6.16. This argument does not rest upon any special choice of X or M (special in the
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sense that any perturbation would destroy it) and the assertion follows.

Remark In view of the limitations of differentiable equivalence (Examples 6.1) it

would be worthwhile combining the idea of Example 6.6 part 1 (that if

XeS'(ZN(I;i)), X'62'(ZN(I ' ; i ' )) then an spfp homeomorphism h:ZN(I;i)-*ZN(I';i')

preserves rk(IUi r I ) ) with that of Proposition 4.3 (that differentiable equivalence

preserves the algorithm etc) to show that, under generic restrictions on X, spfp

homeomorphisms preserve the algorithm sequence and the iteration.

Regular Zeros and their Stable Manifolds

We recall that a zero of a smooth vector field X (ie, a point x such that X(x)=0) is

hyperbolic if DX(x) has no pure imaginary eigenvalue. The Stable (unstable) manifold

of a zero x is the set of points y such that | </>(y,t)-x | -*0 as t-*oo (t-»-oo) where 4> is

the flow of X; if X is Cr they are C injectively immersed sub manifolds tangent at x to

the stable and unstable manifolds of the linearization T7=DX(X)TJ, and if the vector

field X is a Cr function of XGRP (so by [42] the map X-*zero of X(X) is C1) the graph

of X->stable manifold of zero of X(X) is C ([42] for r = oo, [49] for r=w).

We make a straightforward generalisation of hyperbolicity as follows:

Definition If a submanifold with corners M is locally represented as ZN(I;J) a zero XQ

of X(M) in Z(IU J) is regular if

(1) X(IUJ) has a hyperbolic zero at x0

(2) For all KCJ S0
2(x0,ZNa;K\I),X)=S2(x0,ZN(I;K\I),X).

Via Lemmas 2.4 and 4.6 we see (2) is equivalent to

(2') If we straighten (M,X) out at x0 to give the constant system ( T ^ s L C f r J ^ X , )

then for all yGTxM S0
2(y,TxM,Xs)=S2(y,TxM,Xs), and to

(2") X(xo)e H{U(K):KCJ} where U(K) = {X:(X(K\j),nj)<0 for all j G K \ I implies

(X(K\j),nj) < 0 for all j 6 K \ I and {X(K),nj) * 0 for all j G J \K}. We can interpret (2)

geometrically as follows. For any constant system (LC(I;J),X) if

X(LC(I;J))(y)=X(K)(y) for some yGa stratum LO(K';J\K') then (eg by Part (3) of

the proof of Lemma 6.2) X(LC(I;J))(y)=X(K)(y) for all yG that stratum; we can

think of these X(K)'s as the "active" vector fields of the constant system, and

condition (2) in the definition of regularity says that if X,(K,), X,(K2) are active for

the straightening out then XS(K,)*X,(K2).
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Figure 6.18 illustrates two zeros of X(M) where condition (2) does not hold. We

observe that in the first, a trajectory could alternate infinitely often between ZP(1;2)

and ZP(0;1,2) on any left neighbourhood of x (as in Example 5.1(2) for example); in

the second, an arbitrarily small perturbation could destroy the zero entirely. Neither

phenomenon can occur if x is a regular zero (Remark 6.1 and Proposition 6.1(1)

respectively).

Neither
M=ZN(0;1,2)

ZP(2;1)

nor

M=ZN(0;1,2) /

ZP(2;1)

with straightening out at x

TXM
> LO(2;1)

X8(0)

-LO(1;2)

where X,(0)=X,(1)

TYM

with straightening out at x

X,(0)

— LO(1;2) -

I
whereX,(l)=X,(l,2)

Figure 6.18

is regular, but a system on a three dimensional corner with straightening out

• 0

X
\ LO(1,3;2)

LO(1,2;3)

Figure 6.19-^
is regular despite eg XS(2,3) = XS(2) if neither is "active"
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Remark 6.1 We can straightaway derive one useful property about the local flow near

a regular zero from Lemma 6.3. There we saw that given any x 6 M there exists a

neighbourhood U of x such that if y £ U then we could get a finite partition of

[0,T(U,y» into [O/rOUrT^T^U.. and reorder the K,,..,K reS°2(LC(I;J)sT, tM,X I)

such that on [TM,Ti) <£(M)(y,t)GM(x,IQ with 0(M)(y,t)£M(x,K;) for all t > T ; . Each

M(x,Ki) was a certain union of strata and in general on an interval [T;_1,Ti) the

trajectory could move about between these strata * for example, in Example 6.5(1)

(which was derived from Example 5.1(3)) a trajectory would make infinitely many

stratum jumps on the interval [Ti.1,Ti). However we can now show that in the case x

is a regular zero ^(M)(y,t)CZP(Kj,J\Kj) on (T^T;) and so intersects at most two

strata on [T^T;) .

By definition M(x,K i)=U{ZP(K;J\K):KeE(K i)} where EQQ was defined using data

from the straightening out at x, E(Ki) = {K:ICKCIUJ:S°2(y)=K i for all

yGLO(K;J\K)}. We saw in part (2) of the proof of Lemma 6.3 that as the

neighbourhood U shrinks to x so sup{ | X(M)(y)-X(IQ(y) | :yGUnM(x,Kj)}lO.

We saw in Lemma 6.2 that if KjGS^CLCXIjJXX) for X a constant vector field then

for all yGLCKKiAIQ X(LC(I;J))(y)=X(Ki)(y), so if K i G S ^ M , ^ ) XS(IQ is

active, so by condition (2) of regularity (X(Ki)(x),gradfj(x))^O for all jGJ \Kj . Hence

on a small enough neighbourhood U of x (X(Ki)(y),gradfj(y))^O for all

y 6 U n M ( x , K i ) J G A K i , hence (X(M)(y),gradfj(y));*O for all

y 6 U n M ( x , K i ) j 6 A K i . Hence for as long as <^)(M)(y,t)CM(x,Ki)nU fj0(M)(y,t) is

strictly monotone, and since fj(y)>0 for all j G J and yGM(x,K;)nU, if at t>T ; . i

fj(KM)(y,t)=0 then <£(M)(y) leaves M(x,Kj)nU at t, so since

Z P t K i A K j n U C M n U C Z N ^ A J Q for all tGCTi. , ,^ 0(M)(y,t)GZP(K i;J\K i) as

claimed.

In summary: if x is a regular zero of (M,X) there exists a neighbourhood U of x in

M such that if y GU then [0,T(U,y)) = [0,T,)U.. U [ T , . ^ ^ some finite s with each

Ti>Ti.i and such that for all tGCT^.Ti) <^>(M)(y,t)GZP(Ki;AKi). This fact is used in

proving our stable manifold theorem (see eg Figure 6.24). , ,

If x is a regular zero of X(M/we definelocal invariant manifolds ( for U a

neighbourhood of x in M) ^ .

-W s
s(x)|

flow <?!>(M)
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W,(x) = {yGU:<£(M)(y,t)=x some t>0}

W,'(x) = {y6U:<^(M)(y,t)eWs(x) some t>0}

W,u(x) = {y6U:^)(M)(y,t)eWu(x) some t>0}

where Ws(x) and W"(x) are the stable and unstable manifolds of X(IU J) at x. We see

W,s(x) = {yGU:^(M)(y,t)-*xas t-*oo}.

Proposition 6.2

(1) There exists an open-dense subset of So,(M) where M is a compact submanifold

with corners such that if X is in this subset all zeros of X(M) are regular. Regular

zeros are isolated ( and hence finite in number on a compact submanifold with

corners). Regular zeros survive as regular zeros on perturbing X (in fact X-*each

zero of X is Cr for each zero).

(2) If M is a submanifold with orthogonal corners the local invariant manifolds of a

regular zero ZQ are C1 not necessarily C2 piece-wise Cr submanifolds with corners,
t'j (telly nfWt+h/ ntt*1 Z-< a<; •ZJl

Codim(W,s'u(z0) in M)=codim(Ws'u(z0) in Z(IUJ)) J

TZoW,(z0)=NZo(IUJ in ^

T^W/CZQ) = (N^I U J in I) X F ) n T^M

TZoW,u(zo)=(NZo(IUJ in I J x E O n i ^ M where Es, Eu are the stable and unstable

manifolds of the linearization i]=DX(IU J)(ZO)TJ and we recall T^M is the tangent cone

to M at ZQ.

Remarks 6.2 While in Chapter Five the requirement that the submanifold had

orthogonal corners was merely to simplify the proof and exposition, here the

orthogonality condition is essential, as we now show.

We saw in Remark 2.5 that if M had only orthogonal corners the transitions possible

between strata were much restricted, and it turns out that whether the invariant

manifolds are C1 or not depends on the type of transitions which occur between strata.

Evidently our invariant manifolds are the preimage by the semiflow of an invariant

manifold of <£(IU J) in Z(IUJ). We can see in a crude way how orthogonality affects

whether pre-images are C1 or not by leaving aside for the moment both the fact that

Z(IUJ) is locally the deepest stratum, and the invariance with respect to <£(IUJ) of

the submanifold we begin with on Z(IUJ), and considering a point XQ near a

non-orthogonal intersection Z(l,2) of surfaces Z(l), Z(2) as shown in Figure 6.20. If

we consider the pre-images by the semiflow of the point XQ, we get a trajectory y
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running down ZP(1;2), across Z(l,2) and into ZP(2;1) (we saw in Remark 2.5 that

this would not happen if Z(l) and Z(2) intersected at right angles) and each of the

three Cr components 7HZP(1;2), 7HZ(1,2) and 7HZP(2;1) has a Cr pre-image Vls

V12, V2. If then we take the sequences (x i
1}C7nZP(l;2) with x ^ x and

{x ;
2}C7nZP(2;l) with x;

2^x then T^.V^spanlXCx^^radf^Xi1)},

Tx2V2=span{X(xi
2),gradf2(xi

2)}. Thus in the limit as i-*oo and x^X;2-**

limi_0oTxiVi=limj_O0Tx.2V2 iff X(x)Gspan{gradf1(x),gradf2(x)}; in general we get a

crease along V12 where V{ meets V2 (Figure 6.20).

Figure 6.20

We can construct an example in four or more dimensions where this phenomenon

prevents even a local invariant manifold such as we are considering being C1 on any

neighbourhood of the zero. The example will be on M=LC(0;1,2,3) in Rn, n>4 .

We shall use co-ordinates x = (PL(l,2,3)x,x-PL(l,2,3)x)=(Xj23,x,23') and will consider

a vector field X on M which is independent of x123. Hence for all x E M X(M)(x) is

independent of x123, so P(span{n1,n2,n3})^(M)(x,t) =

0(Mnspan{n1,n2,n3})(P(span{n1,n2,n3})(x),t) for all xGM, and we can represent the

system by the projection of X onto a cross-section Mnspan{n,,n2)n3}, thus exhibiting

it in R3. This is analogous to the way that if the vector field X in R3 is independent of

x12 with M=LC(0;1,2)CR3 (see Figure 6.21 below),

M

Mnspan{n1(n2}
Figure 6.21
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then P(span{n1,n2})0(M)(x,t) =

0(Mnspan{n1)n2})(P(span{n1,n2})(x),t) for all xGM, enabling us to represent the

system in R2.

Suppose the projection of our system onto span{n1)n2,n3} has straightening out

Figure 6.22

With diagram

LO(0;1,2,3)

LO(1,3;2)ULO(1;2,3) -VLO(1,2;3)ULO(2;1,3) LO(2,3;1)-*L(1,2,3).

Suppose X(l,2,3) has a hyperbolic repelling zero at x^ if the straightening-out is as

given this zero is then regular for X(LC(0;1,2,3)). The stable manifold

Ws
s(x0)=Ws(x0) is the pre-image by <f>(M) of XQ and is three-dimensional: by

Proposition 6.1 (or specifically Remark 6.1) we know that near enough to XQ the

sequence of strata the trajectories occupy on the way to XQ must be those which the

trajectories in the straightening out at XQ follow, ie working backwards along the

diagram of the straightening out (above) we see that Ws(xo) is formed by taking

(i) The pre-image by <f>(2,3) in LC(2,3;1) of XQ (ie,

{xeLC(2,3; l) :^(2,3)(x)nxo^0} = {^.(2,3)(xo,-t):t>O}):call this V(2,3) (it is a

1-dimensional manifold with corners)

(ii) The pre-image by <f>(2) of V(2,3) in LC(2;1,3): call this V(2) (it is a 2-dimensional

manifold with corners) and the intersection of V(2) with L(l,2), call this V(l,2)

(which is a 1-dimensional manifold with corners),

(iii) The pre-image by <£(1) of V(l,2) in LC(1;2,3): call this V(l) (it is a

2-dimensional manifold with corners)
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(iv) The pre-images by <j>(0) of V(2), V(l,2), V(l) in LC(0;1,2,3): call these

V(0;2) , V(0; l ,2) and V(0;1) (respectively 3,2 and 3 dimensional manifolds with

comers).

We recall that if V is a submanifold with comers we may denote the tangent space to

V at any xGV by TXV. We claim that in general if x6V(0;l ,2) \{xo) then

TXV(0;2) ?*TXV(0;1). At XQ itself the tangent spaces do coincide: because Xo is a

zero we must by Remark 2.1 or the Characterisation of Projection have

X(xo)espan{ni,n2,n3} so since TXoV(l,2)=P(2,3)X(x0)+XP(2)X(x0) some X we have

TXoV(l,2)Gspan{n1,n2,n3}. Then since 1 ^ ( 0 ;1) =span{TXoV(l,2),X(l)(xo)} and

1 ^ ( 0 ;2) =span{TxV(l,2),X(2)(xo)}wehaveTxV(0;l)=TXoV(0;2) =

span{n1)n2,n3}. However on V(0;l ,2)\{xo}, while by continuity the tangent spaces

TXV(0;1), TxV(0;2)-*TXoV(0;l),T]toV(0;2) as X-XQ, for general X (general, that

is, subject to the straightening out having the form illustrated) no relation binds them

to be equal and V(0; l ,2) represents a two-dimensional "crease" between the three

dimensional V(0;1) and V(0;2).

Remark 6.2(2) Even if M has orthogonal comers the local invariant manifolds need

not be C2. This should be evident from the way they are proved to be C1 (Proposition

6.1(2), see below) but for a concrete example consider x 2=-l , x 3=-l , x1=x3-x1-x2 on

the orthogonal comer {x£R3:x2>0,x3>0} which has a regular zero at the origin (see

figure 6.23).

Figure 6.23
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Its stable manifold contains i = {x:x1>0,x2=x3=0} which separates the stable

manifold W8
s(0) into two parts, W+=W,8(0)n{x:x2>x3}, W-=W,8(0)n{x:x2<x3}.

Suppose y GI \{0} and c is the intersection of Ws"(0) with the plane

{xGR3:x2+x3=y2+y3}, so c=c 'UyUc + where c + =W + n{x 2 +x 3 =y 2 +y 3 , x2>x3},

c-=Wn{x:x2+x3=y2+y3 , x2<x3}.

Then if X is a parameter along c with \(0)=y (such as X=x2-x3) then we can check

by a straightforward computation that dc(X)/d\ | Ieft=dc(X)/dX | ^^ (as we know from

Proposition 6.2(2)) but d2c(X)/dX2 | left^dc2(X)/dX2 | ^ , ie W,'(0) is not C2.

Proof of Proposition 6.2

(l)(i) Condition (2) in the definition of regular zero is a condition on x,M,X (without

necessarily requiring that X(M)(x)=0) and we show that for each stratum a of M the

set of xGa, smooth f;'s defining M and XGS00(M) such that x,M,X satisfies

condition (2), is open.

Suppose locally <x=Z(IUJ) with M locally ZN(I;J), then (using (2")) (2) is not

satisfied iff for some KC J (X(K\j)(x),gradfj(x)> < 0 for all j GK\I and either

(X(K\j)(x),gradfj(x))=O some j G K \ I or (X(K)(x),gradfj(x))=O some jGJ \K . Hence

by continuity of x-*X(x), x-»TxM for xG a (by [13] again), the set of points in

cr,XGSoo(M) and smooth real valued functions f;, iGIUJ, on Rn such that (2) is not

satisfied is closed.

(ii) We can see that if x is a regular zero of (M,X) with xG a then (with M,<x as in

(i)) X(IUJ)(x)=0 but X(K)(x)*0 for all ICK strictly contained in IUJ. For since

X(M)(x)=0 we must have X(K)(x)=0 some ICKCIUJ ; by Remark 2.1 if

X(K)(x)=0 some K strictly contained in IUJ then X(K')(x)=0 for all KCK' CIUJ.

By definition of S°2(0,TxM,X,), S2(0,TxM,X,) we would have

S°2(0,TxM,X8)CK'CS2(0,TxM,XJ for all KCK'CIU J so if K ^ I U J

S°2(0,TxM,X9)?iS2(0,TxM,Xs) which is a contradiction to condition (2) of regularity,

(iii) We can now show that regular zeros are isolated, and hence finite in number on

our compact M, and that if all the zeros of X(M) are regular and if X is perturbed to
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X' then for each regular zero x of X(M) in a there exists a regular zero x' of X'(M)

in a near x.

Consider the hyperbolic zeros of X(o) for each stratum a of M. We know from [42]

that these are isolated and hence finite in number on a. The regular zeros x of X(M)

on a are the subset of these satisfying (2), hence by (ii) are disjoint from da (because

X(a)(x)=0), by [42] again remain hyperbolic and move only slightly under

perturbations in X, and so by (i) remain regular under perturbations in X.

(iv) To complete the proof of Proposition 6.2(1) it remains to show that there exists

an open-dense subset of So«,(M) with all zeros regular. By [42] we know that for each

stratum a of M there exists an open dense subset of %rx>{<o) with all zeros of X(5)

hyperbolic, and hence by Lemma 4.4 an open dense subset of Soo(M) with all zeros of

X(o) hyperbolic for every a in M. For X in this subset each X(a) has only finitely

many zeros, and we can perturb the vector field such that each satisfies (2) (possibly

removing some entirely) as follows. Order the strata according to increasing

codimension in M (and strata of the same codimension arbitrarily) and taking each in

order we shall for a locally represented as Z(K) add to X an arbitrarily small vector

field SigK^Xigradf; which by Remarks 2.1 leaves X(K) and hence the location of the

zeros of X(a) unaffected. Using condition (2) in the form of (2") the result follows if

we show that we may perturb X in this way so that at each zero x of X(K) and for all

ICK' CK <X(K'\j)(x),gradfj(x)) * 0 for all j £ K ' \ I , and (X(K')(x),gradfj(x)) ^ 0 for

all j GK\K' , ie if for all ICK' CK and for all j 6 K \ K ' (X(K')(x),gradfj(x)) ^ 0 . If

(X(K')(x),gradfj(x)) =0 some j G K\K'

(P(K')(X(x)+Ei6]OaXi(x)gradfi(x)),gradfJ(x))=(EieKVX1P(K')gradfi(x),gradfj(x))and

choosing X^O Xj.=O for all j V j , the above=Xj | P(K')gradfj(x) | V 0 , and hence for

arbitrarily small Xj we can perturb X to X'=X+Xjgradfj so that

(X'(K')(x),gradfj(x))?£0.

By (iii), a regular zero of X stays regular for all X' near X and hence repeating the

above for all zeros of X(5) we may with perturbations of diminishing size perturb

each to be regular leaving the regularity of those already perturbed unaffected (since

here we're primarily interested in the smooth case we could alternatively have used

bump functions). By (ii) all zeros of X(a) are then disjoint from da, and hence we

may treat lower dimensional strata in 3a in a similar way leaving the result for a

unaffected.
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(2) The local invariant manifolds of a regular zero on a submanifold with orthogonal

corners are C1 submanifold with corners.

(a) We show that if z0 is a regular zero of a submanifold with orthogonal corners

locally represented as ZN(I;J) with ZoGZ(IU J) then on some neighbourhood U of ZQ

(i) (X(y),P(I)gradfj(y)}<0 for all j G J for all yGU, and

(ii) For all yGZP(K;J\K)nU X(M)(y)=X(K)(y), for all K such that ICKCIUJ .

(i) implies (ii): At yGZP(K;J\K) TyM=LC(I;K\I). Then by Lemma 2.4

P(TyM)X(y)=X(K)(y) iff (X(K\i)(y),gradfi(y))<0 for all iGK\I

but since the corner is orthogonal P(K\i)gradfi(y)=gradfi(y) and hence

PTyMX(y)=X(K)y iff (gradfi(y),X(y))<0 for all iGK\I , which follows from (i) (we

know X(y)=X(I)(y) because X is on ZN(I;J)).

Proof of (i): By continuity it suffices to show that for all j G J

(X(zo),P(I)gradfj(z0))<0. By Remark 2.1 we have

X(I)(zo)-X(IUJ)(zo)Gspan{P(I)gradfj(zo):jGJ} and since X(IUJ)(zo)=O

X(I)Gspan{P(I)gradfj(zo):jGJ}. By the Characterisation of Projection we have

(X(I)(zo)-P(IUJ)X(z0),P(IUJ)X(z0)-v)>Ofor all vGT^M.

(X(I)(zo)-P(IUJ)X(zo),P(IUJ)X(zo))=Oand since the corner is orthogonal

P(I)gradfj(z0) =gradfj(zo) G T^M for all j G J, hence (XOQz^PQgradf/Zo)) < 0 for all

j G J and equality for any jGJ contradicts (2") of the definition of regular zero, hence

the result.

(b) A partition (I,....LI of I.IUJ is a sequence of subsets I C L C I ^ C . Cl iCIUJ. A

positive time sequence on a partition (I1}..,Ir) is a sequence of r positive reals

(tCTj),..,t(Ir)). Call the set of all positive time sequences of all partitions of I,IU J T(J).

If ZQGZ(IU J) is a regular zero of X(M) and if S is any subset of Z(IU J)HU (where

U is as in (a) above) and S* ={yGZN(I;J)nU:0(M)(y)nS?i0} we show there

exists a bijection between T(J)xS and S*. First we show that for any yGS* there

exists a unique partition (I,,..,Ir) and sequence of positive times t^..,^ such that

y=0ar)-.0(l2)^ai)(P(y),-t(Ii)),-t(l2))--),-t(Ir))(which we shall abbreviate to

t(Ir)t(Ir.1)..t(I1)P(y)) for some unique P(y)GS. If xG ZP(K;J\K) then since by (a)(ii)

X(M)(x')=X(K)(x') for all x'GZP(K;J\K) it follows that if

t1=sup{t>O:^(K)(x,t)GZP(K;AK)} then on [0,t,) X(K)0(K)(x,t)=X(M)^(K)(x,t)and

hence by uniqueness of solutions </>(M)(x,t)=<HK)(x,t) o n [0>t,), and since at tj we

must have ^>(K)(x,t)GZP(K';AK') with K 'DKwe may repeat the argument and

inductively it follows for any xGU there exists K"D. .K'DK with
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^(K")(..^(K')(^(K)(x,ti))ti'),..),t1")eZ(IUJ)and hence that any xGS* may be

represented as a point in T(J)xS.

Conversely, if y=t(Ir)tIr.,)..t(I1)P(y) some P(y)GS then as long as each t(I;) is small

enough - say less than e - we claim yGS*. Since (0,e) is homeomorphic to (0,°°) it

will follow that there exists a bijection between T(J)xS and S*. Suppose x0GS and

inductively that for s - l>0 xs.1=t(Is.1)..t(I1)P(y)GS*. Then x^GZNft;J\I s) and by

a(ii) again X(Is)<^(Is)(xs.1,-t)=X(M)(/)(Is)(x8.i,-t)for all sufficiently small t > 0 , say for

all 0 < t < e . Hence setting x9=^)(Is)(xs.1,-t(I&)) for some 0<t(I s)<e we have

<£(I8)(xs,t)=<£(M)(xs,t) for all 0<t<t(I8) , and our claim follows by induction

(illustrated in Figure 6.24 with s=2).

x2=<HI2)(Xl,-t(I2))

x0 near z0, a regular zero of X(M)
in ZP(Io;J\Io)=Z(IUJ)

Figure 6.24

With this bijection in mind we shall for any point xGS* set (P(x)= the ordered set of sets of

indices (I,,..,Ir), t(x) = (t(I1),..,t(Ir)) and P(x)= projection along flow of x onto SCZ(IUJ).

(c) With I1DI2D..DI r as above we say <P'=(I1
1,..,I1

Bi,..,Ir
1,..,Ir".) subdivides (? = (Il,..,\) if

IUJDIi1D..DI1
si=I1Z)I2

1Z>..DI2
s2=I2D..Z)Ir

sr=ir.if (p(yi) subdivides <P(x) for {yi} a

sequence of points converging to x we say t(y;)-*t(x) if as i-»oo each tfts0-t(Ij)-*O and t(Ijj)->0

for all j < S;. We can then topologize T(J) xS by saying (t(y),P(y))->(t(x),P(x)) (-> in the

sense of converges to) if t(y)->t(x) and P(y)-»P(x). We claim that with this topology the

bijection of (b) above is a homeomorphism. We shall use the following fact: that there

exists 5 > 0 such that for all y in the submanifold with orthogonal corners ZN(I;J)

sufficiently near a regular zero Z Q G Z ( I U J )

inf{ | X(K,)(y)-X(K2)(y) | : ICK,^K 2 CIUJ}>5 . This is so because

X(ZN(I;K\I))(zo)=lim^wez(K)X(ZN(I;K\I))(y) (by [13])

=lim^vy€ZP(K;JNX)X(ZN(I;J))(y) any ICKCIUJ , so by (a)(ii)

X(ZN(I;K\I))(zo)=X(K)(zo) any ICKCIUJ . If X(K,)(zo)=X(K2)(zo) with K,^K2 we
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would therefore have X(ZN(I;K1\I))(z0)
:=X(ZN(I;K2\I))(z0) and both sides therefore

equal X(ZN(I;KiUK2\I))(zo) contrary to condition (2) of the definition of

regular zero. Therefore XCKJXZO)^XQ^^ZQ) for all ICK^KjCIUJ and by continuity

the result follows.

We have seen XQGS (S as in (b) above) is mapped by t(I,.)..t(Ii) to

t(Ir)..t(I1)x0=xrGZP(Ir;J\Ir) where each t(Ii)..t(I,)xoeZP(Ij;J\Ii). Suppose we show

that for any 1 <j < r and Xj+I' near xi+l there exists x/ near Xj and sequence

ipi^Dl^D. DI j+1V.=I j+1 such that xj+1'=t(Ii+1V.)..t(Ij+i1)xj' ( s e e F i S u r e 6-25>-

Then inductively for any x/ near xr in ZP(Ij;J\Ir) we may find a sequence (?'

subdividing (P(x) and x0' close to x0 and t(xo') close to t(x0) such that xr' corresponds

tO (t(Xo'),Xo')-

Figure 6.25

By continuous dependence on initial conditions we know that as Xj+1'->xj+1 with

x j+1 'GZP(I j+1;J\I j+1) we have 0(M)(x j+,',tW(M)(x j+1,t) for all 0<a<St(Ij+1). The

only strata intersecting the region

{^(M)(y,t'):yeZP(I j+iAlj+i) with y near xj+1) 0 < t ' < t } are ZP(K;J\K) with

I j+1CKCIj and since by the same argument as in (b) the only transitions <£(M)(y,t) for
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increasing t can make are those into strata of decreasing dimension we must have
xj+i'=t(Ij+i8i+1)--t(Ij+i1)Xj' for some I jDl j+1

1DI j+1
2D..DI j+1Vi=I j+i: furthermore since

xj+1=t(Ij+])Xj, if for for any k with 1 <k<Sj+ 1 t(Ii+^) does not tend to 0 as x/->Xj we

would have (since by the above X(Ij+1
k) is bounded away from X(Ij+1)) that xj+1' does

not tend to Xj+1, and hence as xj+1'->Xj+1 each t(Ij+1
k)->0 1 <k<s j + 1 , and so

t(Ij+1V.)-t(Ij+1).

(d) It follows from (c) that if z0", zj are regular zeros of sub manifolds with

orthogonal corners M", Mb locally represented as ZN(I,;JJ, ZN(Ib;Jb) respectively with

| T, | = j Ib j , | J, | = | Jb | , then if S,, Sb are homeomorphic submanifolds of

Z(IaUJ,), Z(IbUJb), then S*a, S*b are homeomorphic. In particular therefore W5
s(zo),

Ws
u(z0) and Ws(z0) are homeomorphic to

TZoW
s(z0)Xspan{gradfi(z0):iGJ},TZoW

u(z0)Xspan{gradfi(z0):iGJ}and

span{gradfi(zo):iGJ} respectively.

Finally we show these local invariant manifolds are C1.

We have for a point XfGZP^jJXl,) in S* a sequence Xo->x,->..-*xr with each

XiGZPfoAJi), I0=IUJZ)I1D..DI rDI, with x0GSCZ(IUJ). We shall denote a

neighbourhood of X; in S*nZP(Ii;AJi) by S © . Since S(I;) CS* each S(Ij) is invariant

by X(M) | ZP(Ij;Ali), and since X(M)(x)=X(Ii)(x) for all xEZPOfcAynU (by a(ii)

of course) this means that X(Ii)(x)GTxS(Ii) for all xGSft). We show by induction on i

that each S*(I;) is a C1 submanifold if SDS(I0) is.

Suppose this is true up to I;. Setting <£(K)(y,-t(K))=t(K)y we have by (b,c) that

S(Ii+i) = UliDI.+i.3..Di.+iJDI.+iUt'(Ii+1)t(Ii+I
j)..t(Ii+1

1)S(Ii)where the inner union is taken

over t'(Ii+1) near t(I;+,) and t(Ii+1
j), 1 < j ' < j , small and positive. We see that the outer

union consists of 2 ' W+i ' - l C manifolds ( one for each subdivision of i p . . DIi+j)

and we must show that their tangent spaces where they meet at Xj+iGtCfj+^S^i) are all

contained in a single space which is | Ii\Ii+i | dimensions larger than TxS(Ii).

For example, if ^ = (1,2) and Ii+1 = 0 (Figure 6.26)

the outer union consists of 22-l =3 manifolds

(t ' (0)t( l)S(l ,2): t ' (0) is near t ( 0 ) and t(l) is small and positive}

{t'(0)t(2)S(l,2):t '(0) is near t (0 ) and t(2) is small and positive}

( t ' (0)S(l ,2) : t ' (0) is near t (0 ) }
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ZP(0;1,2)

(t'(0)t(2)S(l,2):t'(0) near t(0)

and t(2) small and positive}-

(t'(0)t(l)S(».$:t'(0) near t(0),
t(l) small and positive}

(t'(0)S(l,2):t'(0) near t ( 0 ) k

ZP(1;2)

(t(l)S(l,2):t(l) small and positive}

{t(2)S(l,2):t(2) small and p o s i t i v e } ^ c s ( 1 > 2 ) c z p ( 1 > 2 . 0 )

Figure 6.26

we must show that the tangent spaces at xi+1 of these manifolds are contained in a

single (dimS(l,2)+2)-dimensional space.

(End of example)

Taking a member of the outer union (ie the inner union with the variables varying in

the outer union held fixed)

Ut'ai+1)n«rta1+1),tai+/')smai**positiveeachi<j'<jt'(Ii+i)t(Ii+ij)..t(Ii+1
1)S(Ii), and letting Xj ' ^q (so

each t(Ii+ij')-*0 ) we obtain a tangent space at xi+1

0(li+i)(-t(li+i)).span {TXsSai),X(Ii+1
1)(xi),..,Xa+1i)(xi)}, (where 4>(li+i)(-t) is defined by

<£(Ii+i)(-t)(x)=<KIi+i)(x,-t)). Since S(Ij) is invariant we have Xp^xJGT^S^i) and

hence since by Remarks 2.1 X(Ii+ij')(Xi)-X(Ii+1)(Xj)G

span{P(Ii+i)gradfj(xi):j GI i+1
j\I i+i} C spaniPg^Ogradf/x^j E W^} and

X(Ii)(xi)-X(Ii+1)xiGspan{P(Ii+1)gradfj(xi):jeiI\Ii+1} we must have

X(Ii+1
j')(xi)Gspan{TxS(Ii),P(Ii+1)gradfj(xi):jGI1\Ii+1} for all j ' < j . Hence each tangent

space is contained in </>(Ii+1)(-t(Ii+1)).span{TxS(Ii),P(Ii+i)gradfj(xi):jGIi\Ii+1} and the

result follows. _
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Chapter Seven

Polynomial Systems are Generically Locally Stable

We established in Lemma 6.1 and Example 6.6(1) necessary conditions for two

semiflows to be spfp equivalent, and used these results in Examples 6.4, 6.6(2) and

6.7 to exhibit semiflows which could not even locally be straightened out (in the sense

of establishing a spfp homeomorphism between a local flow near x and the

straightening out at x) or linearized, and these examples were not atypical and the

phenomena concerned could not be perturbed away. The impression may have begun

to form that establishing a spfp homeomorphism between two systems is rarely

possible in circumstances of interest. We show that in one important context the

opposite is true: we will show that polynomial systems on polyhedra with orthogonal

corners are generically locally spfp stable at points x where the projected vector field

X(M)(x)j^0. The original inspiration for working in this context was that the

biological systems considered in [60] are of this form.

M is a polyhedron with orthogonal corners means M is a connected subset of Rn

locally of the form {xER^x.iijHa; for all iEI,(x,ni)>ai for all iG J}, where {ai}i6IUJ

is a set of reals and {n;} is a set of independent vectors in Rn such that (n^n^O if

Figure 7.1. A polyhedron with orthogonal corners

Without much loss of generality we may suppose M is codimension 0 in Rn (ie that

1 = 0 ) and then since any polynomial vector field is globally determined by its value

on any open set we have AG,ir(M)=Sa,r(R
n)- We recall from Chapter 4 that Hur'(M) is

that open (by Proposition 4.2) subset of Hu?r(M) satisfying conditions concerning the

relation between the flows of X(CT) and X(a') for strata a,a' in M with ? f l c r ^ 0 , so

(unless M=Rn) Su,r'(M) is a strict subset of Su,r'(R
n)=2u,r(R

n)-
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We recall from Chapter 6 that the system (M,X) is spfp stable at xGM if there exists

a neighbourhood Ux of X in H^CM) and Ux of x in M such that for any X' G Ux there

exists a stratum preserving homeomorphism h:Ux-»Uh(x)' = a neighbourhood of h(x) in

M such that for each yGUx h<£(M,X)(y,t)=</>(M,X')(h(y),r(t)) some continuous

strictly increasing T:[0,T(Ux,y))-»[0,T(Ux',h(y))), where (as in Chapter Five) T(Ux,y)

is the time for which <£(M,X)(y,t) remains in Ux.

Proposition 7.1 If M is a polyhedron with orthogonal corners in Rn then there exists

(1) a residual subset HU/(M) of SUil(M), and

(2) if r > n and M is compact a residual subset Su>r"(M) of SUir(M),

such that the semiflow <£(M,X) is spfp stable at each xGM\{xGM:X(M)(x)=O}, and

in either case we may take r=identity.

The proof is after Lemma 7.2.

Throughout this chapter M is taken to be a polyhedron with orthogonal corners of

and codim 0 in Rn. If then dim(H^r(M))=p (a notational convention for this chapter)

the space of r-polynomial systems on M, Mx2B>r(M), is a finite dimensional

polyhedron with orthogonal corners of RQ+P, each leaf MX{X} of which represents an

individual system. We shall make the following definitions:

Xp:RnxSu,r(M)^RnxSa)r(M) is the r-polynomial vector field on RnxSu ,(M) (ie,

XpGSu,r(RnxSu,r(M))) defined by Xp(x,X) = (X(x),0). Since Mx2u,r(M) is a

submanifold with corners we may also define Xp(MxHUJ(M))=projection of Xp onto

MxS u r(M), defined in the same way as for X(M), ie

Xp(MxSu,r(M))(x,X)=PT(XjX)(MxSw,r(M))Xp(x,X), which since TxMx0,0xTx2u>r(M)

are orthogonal in Rn+P equals (P(TxM)X(x),0) = (X(M)(x),0). Thus if we define

correspondingly 0p:Rnx2ur(M)-*RnxHur(M) to be the integral flow of XP, and

f(MxSu , r(M)) to be the integral flow of Xp(MxHUir(M)), then by the above we have

0p(MxSu,r(M))((x,X),t)=((^(M,X)(x,t),X)and furthermore setting ZPN"PP(I;J;K) =

{(x,X)GRn+P:xG ZNP(I;J;K)} =ZNP(I;J;K) xSu>r(M) we obtain

0p(K)((x)X),t)=^(Zp(K))((x,X),t) = (<^x(K)(x,t))X)(where the suffix X in </>x

designates the vector field being projected onto Z(K) to yield <£(K)) etc.

If o-j are strata of M, a-xS^CM) are strata of the polyhedron MxS u r(M), and if a{

are the affine spans of a,, ajXE^^M) are the affine spans of 0;X2Uir(M). We have
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all i < k} which by the above equals

{(y,Y)6Mx2B,r(M):DM1)(y!t=0)=Dt
i^(a2)(y,t=0) for all i<k} and so

rk
x(o-! r &j) = T^^xS^XM) r a2xSu>r(M))nnx where

nx={(x,Y)6RnxSur(M):Y=X}. In particular if XG2-ir'(M), so by Proposition 4.2

for all X' near X I\x'(o-i r a^) = 0 for all but finitely many k,<rua2, it follows that if

V is a neighbourhood of (x,X) in Mx2Uit(M) then

r ^ ^ x S ^ C M ) r a2xS a , r(M))nV=0 for all but finitely many k,aua2, so there are

no infinite order tangencies on Vp and if Xp(MxSUiI(M))(x,X)^0 we can apply

Corollary 5.1 (with M.X.x.V in Corollary 5.1 set to MxEu,r(M), X", (x,X), V) to

infer that if Vp is small enough there exists N with

| ^(MxgUir(M))((y,Y),[O,T(VP,(y,Y)))) | <Nfor all (y,Y)6V.

We recall from Chapter Three the idea of the funnel at x about the trajectory

{0}xRq

flow of unit vector field eJj

Figure 7.2
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In the context of funnels f is a C straightening-out map between the flow < (̂S°00(x)) on

Z(S°0o(x)) and the unit flow on Rq, where as in Chapter Three q is the dimension of

Z(S°00(x)), ie there exists a q-1 dimensional section transverse to X(S°0o(x)) which f

maps Cr-diffeomorphically to {0} xR^'CR' , and for each point y near x and t small

<^(S°0o(x))(y,t) is mapped by f to f(y)+tej. The canonical (q,r) funnel was a set

Fc(q)r) = {(t,x)GR1XR"-1:t>0, | x | <t r}.

A funnel for <^>(S°co(x))(x) was a set f^F^q.r) where r was determined by 3X(X)- By

virtue of Lemma 3.2 and Theorem 1.1(3) (continuous dependence on initial

conditions) any y near x enters f'F,. near x. In summary, for the funnels of Chapter

Three, which we denote by f'F^q.r), the diffeomorphism f1 mapped

(ii)

(iii) The unit vector field 5, on R^the vector field X(S°0o(x))

(iv) The unit flow \p where i/ '(y,t)=y+te^ the flow 0(S°oo(x))

(v) {0}xRq-1^a section in Z(S°oo(x)) through x transverse to X(S°oo(x))

(vi) The canonical funnel Fc(q,r)-»f 'F^r)

(see Figure 7.2)

It follows from Lemma 3.2 that if we set Es={(t,x)6Fc(q,r):t=a} then for any a > 0

sufficiently small there exists a neighbourhood of x in M such that if

<^(M)(x,T)Ef1Sa, where f is the funnel map, then the trajectory based at any point y

in the neighbourhood has a unique point of intersection $(M)(y,t) with f !Ea near

$(M)(x,T) with t near T. f 'S, will be called a funnel cross-section (see Figure 7.3).

*(M)(y,t)

V

Figure 7.3

The point of making these constructions is that since (£p(Mx2u>r(M))((x,X),t) =

(<KM,X)(x,t),X), if we set Fc
p=Fc(q+p,r) (q+p is the dimension of Zp(S°oo(x,X))),

where r is determined by ^sXv(x,X), E / = {(t,x)6Fc
p:t=a} and f the straightening-out
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map between the flow <^p(S°0D(x,X)) and the unit flow on Rq+p( t n e n for ^ y ( y Y) near

(x,X) (f»p(MxSUir(M))(y,Y) has a unique point of intersection with (fp)"1E,p (see Figure

7.4).

(MxHu,r(M))nnY

Figure 7.4

Before proceeding further we sketch the strategy for proving Proposition 7.1. Suppose

X is an r-polynomial vector field and xGM. We want to show that if X(M)(x ) ^ 0

then we can find a r-polynomial vector field X' arbitrarily close to X such that for all

X" near X' there exists a spfp homeomorphism from a neighbourhood of x to itself

conjugating the flows of <£(M,X') and <£(M,X"). We have already established a

necessary condition for a homeomorphism to be spfp: in Chapter Six we showed how

to chop M up into subsets consisting of points which are "equivalent" insofar as the

trajectories and invariant curves through them make the same sequence of stratum

intersections, and we saw in Lemma 6.1 that any spfp homeomorphism must preserve

these subsets.

We shall construct a special stratification (a <HM,X)-compatible stratification,

defined below) of a neighbourhood of x in M with the property (this is part of the

proof of Proposition 7.1) that if a pair of systems (M,X) and (M',X') have compatible

stratifications (^(U.X) and (^(U'.X') of open subsets U,U' of M,M' and if there

exists a stratum preserving homeomorphism between ©j(U,X) and (^(U'.X') then

there exists a spfp homeomorphism between <£(M,X) on U and 4>(M',X') on U'. In

order to obtain a stratum preserving homeomorphism between <£(M,X)- and 4>(M,X')-

compatible stratifications of a neighbourhood of x in M, X' near X, we consider the

total space of all r-polynomial systems on M, MxSUi,(M), of which each system is a

leaf, Mx{X}. In Lemma 7.1 we show that if xeS u , r ' (M) and X(M)(x)^0 then there

exists a neighbourhood Up of (x,X) in MX Sur(M) for which a -compatible
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stratification @1(U
P,XP) exists (Corollary 5.1 and the fact that subanalytic sets admit

Whitney regular stratifications is used heavily in this) and furthermore that for all X'

near X nx.nS1(Up,Xp) is a 4>(M,X')-compatible stratification of U=ITx .nUp . In

Lemma 7.2 we show that if IIX rfi ©1(U
P,XP) then for all X' near X there exists a

stratum preserving homeomorphism between @1(Up,Xp)nnx and ©1(Up,Xp)nnx,; it

only remains (the other part of the proof of Proposition 7.1) to show that there exists

a covering of MxSu,r(M)\{(y,Y):Y(M)(y)=O} by such open sets IP such that for any

X in a residual subset of 2UiI(M), n x <\\ ^(U^X") for all IP. A couple of details

concerned with quantities yet to be defined have been omitted from this sketch. (The

feature of funnels that we use is that by Lemma 3.2, and continuing with the above

notation, if the quantity a is small then every point in a sufficiently small

neighbourhood of a point (x,X)GMxSUi,(M) has a unique point of intersection with

the funnel cross section (fp)"1E,p).

Suppose M is a submanifold with corners of Rn, X a Cr vector field on M.

Definitions

(a) If ® is a stratification of a subset M of Rn and Y is a vector field (not necessarily

continuous) on M we shall say a stratum s of S is

(I) Of type I if for all xGs Y(x)GTxs, ie Y is tangent to s

(II) Of type II if for all xG s Y(x) £ Txs ie Y nowhere tangent to s.

These of course are extreme possibilities, although it will be a feature of our

constuctions that all the strata in our flow compatible stratifications are of one or other

type.

We shall denote the strata as m^ m2,.. and if we wish to denote the dimension this

is done with a superfix ( ie m/i, etc), "r-dimensional stratum" is abbreviated to

r-stratum.

( b ) I f U C M a <b(M.X)- compatible stratification ®i(U,X) of U is a Whitney-regular

(see [59]) stratification of U refining the stratification of M | U as a submanifold with

corners satisfying

1. On each stratum m; of S ^ X ) the map x->X(M)(x) is Cr

2. Every stratum in &i(U,X) is of type I or type II

3. For each r-stratum m;
r of Si(U,X) there exists a continuous map nvt-l.iy^r-^R11

which is an analytic diffeomorphism on I r=(-l, l) r with mi
r=mi(I

r) and mi
r=mi(I

r)
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(Figure 7.5 below)*.

0

Tr-1

X l=-1

Figure 7.5

Furthermore if m;
r is of type I (so <£(M)= the Cr flow 4>(mf) on mf), if we then set

r 1
± = {xGRr:x1 = ± l , | Xj | < 1 for all j=2, . . , r} , then for each x G nV

(i) The quantities ta(x)=inf{teR:^(mJ0(x,s)Gmi
r for all t < s < 0 } and

tu(x)=sup{tGR:0(mi
r)(x,s)Gmi

r for all 0 < s < t } exist, are finite, and are continuous

in xGrrV, and there exist unique (r-l)-strata, which may be taken to be mi(F1
+),

m^F"1.), such that for all xGnV the projections along the flow

a(x)=lims^ (x)</)(mi
r)(x,s) is contained in m^P1.)

aj(x)=lims^(x)^(mi
I)(x,s)=<^(M)(x,t1J(x))is contained in m^rV)

and these maps are continuous in xGm/)- All strata in m i(r\P1
±) are of type I and in

mi(F1.\r"1
+) are of type II, the vector field X(M) is continuous on mi(FUF1.) and has

a continuous extension to nV.

(ii) The flow 4>(M) induces a homeomorphism (called H in part (3) of the proof of

Proposition 7.1) between the set m^FUr^.UFV) and m i(r1
+)x^ (and hence with

F ' x l ) by x-Kco(x),tB(X)/(tM(x)-ta(x))) (Figure 7.6)

r

Tr-1

Figure 7.6

* We observe that 1,1,1;,.. are sets of indices while r , r \ r > r 1 , r 1
± , r 1

± , I are subsets

of Euclidean space
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4. There exists a Cr submanifold with corners E and integer N such that for each point

y E U <£(M)(y) | U has a unique point of intersection with S, and 4>(M)(y) | U

decomposes into < N Cr segments

contained in a single stratum of

If y E stratum of type II (type I) the sequence of strata <£(M)(y) occupies is (after

renumbering the strata) of the form (m1
k),m2

k+1,m3k,m4
lc+1,..,mr(i)

k,mr(i)+1
lc'1,mr(1)+2

k,

%)«"" ' , • • ,mr(2)
k"1

)mr(2)+1
k-2,mr(2)+3

k-1
).. ,mr(j.1)

k-('-1)
)mr(j.1)+1

k-j,..,mr(j)
k-jE £ where r(j) <2N,

each mkj ' with i<r(j ') is of type I, each m^' with i^r(j ' ) of type II, and where m^

is mapped by the flow <j>(M) | m2
k+1 to m3

k, by <j>(M) \ mf+l to m5
k etc, until reaching

mr(1)
k itself part of a similar sequence of k-1 and k strata.

Eg.
k+1

m.

m
k-l

m
k-l k-l

m
k-l

k-2. k " 2 -

12

m
k-2

13

m 1 4

k-2

k-3

Figure 7.7a. m1
k,m3k,m6

k"1,m9
k2,mn

k2, are m14
k"3 of type II, the remaining strata are of

type I - if k= 1 the flow <t>(M) relates to the strata in the first part the sequence as

shown in a schematic way in Figure 7.7b



m2
k+1 m3

k m4
k+1

v m5
k

flow

Figure 7.7b

An example of a <£(M,X)-compatible stratification is given in Figure 7.14a.

We shall now (Lemma 7.1) construct a 0p(MxSu,r(M),Xp)-compatible stratification

©JCIP.XP) of UpCMxSo , (M) with special properties (in particular that each slice

Tx.n®1(Up,Xp) for X' near X is a <£(M,X')-compatible stratification).

Lemma 7.1 If x G M , x e 3 u > r ' ( M ) and X ( M ) ( x ) * 0 there exists a neighbourhood U x

of X in Su, r(M) and Up of (x,X) in M x S u , , ( M ) for which there exists an analytic

<£p(MxEu, r(M),Xp)-compatible stratification (^(WJP) of I F such that for any

X ' G U X , ® i ( U p , X p ) n n x . is an analytic <£(M,X')-compatible stratification of

U = U p n n x - , and the type (ie, I or II) of each stratum m 6 e i ( U p , X p ) is the type of

mnnxes1(up
)x

p)nnx.

Proof

This result hinges on Corollary 5.1 and the fact that subanalytic sets admit Whitney

regular stratifications [28-30,34]. A subset of RQ is semianalytic if it is locally defined

by finitely many real analytic equalities and inequalities, and subanalytic if a real

analytic image of a semianalytic set. Hardt [28-30] and Hironaka [34] have shown that

subanalytic sets admit (locally finite) stratifications into Cu strata (see Chapter One)

and that this stratification may be refined to satisfy the Whitney regularity conditions

(see [59],[57b]), and to have certain additional features. In particular it is shown in

[29] that the stratification may be refined in such a way that for each r-stratum m

there exists a continuous map fm:Ir-*m whose restriction to Ir is an analytic

diffeomorphism. [6] is a recent review of the theory of semianalytic and subanalytic

sets.

(1). We shall refer at intervals to the constructions and discussion in the preamble

earlier in this chapter. Beginning with xGM such that X(M)(x)^0 and X6Su, r '(M)
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we can choose (see the preamble) a ball Br (X) C SM>r(M) of radius r2 centred on X so

small and a ball Bf|(x)CR° so small that if X(M)(x) s*0 (and so

Xp(Mx£u,r(M))(x,X)=(X(M)(x),0) ;*0) that by Corollary 5.1 there is a uniform (over

(y,Y) 6 (Br (x)flM) xB r (X)) bound on the number of stratum intersections

<£p(MxBr(X))(y,Y) makes, and in fact also (see proof of Corollary 5.1) on

T((Bri(x)nM)XBr2(X),(y,Y)).

(2) We obtain a stratification {a/} of MxBrj(X) which has the property that

(y,Y)^Xp(MxSu,r(M))(y,Y) is analytic for as long as (y,Y)Go/. We saw in the

preamble that there exist only finitely many non-empty sets i y ^ ^ r a2), where here

(and henceforth) the o- are strata of MxB r (X) as a submanifold with corners, and by

Proposition 4.4 every iteration set is an intersection of some of these finitely many

sets. Rather than perturb X to ensure that all possible intersections and differences of

these sets form a stratification, since these sets are subanalytic and there are only

finitely many of them we can use [28-30] to stratify MxB r (X) in such a way that

each set formed by intersections and differences from these sets is a union of strata.

We shall call these strata {a/}. By Proposition 4.4 this stratification refines the

decomposition of MxB r (X) into iterations sets for Xp, and so in particular S2(y,Y) is

a constant on each a/ (from definitions if (B r(x)HM)xB r(X) is represented near

(y,Y) as ZPN^jJ) then S2(y,Y) has the property that

Xp(S2(y,Y))(y,Y)=Xp(MxH.,r(M))(y,Y)). Hence the map

(y,Y)-Xp(MxHur(M))(y,Y)) j s analytic on each a/.

(3) We construct a closed subanalytic neighbourhood Up of (x,X), with

(x,X)CUpC(B r(x)nM)xB r(X), as follows. In the preamble we constructed a funnel

(fp)'1Fc
p and a funnel cross section ( f ) " ^ / with the property that given any sufficiently

small a > 0 the trajectory based at any point (y,Y) in MxSU]r(M) sufficiently near

(x,X) crosses (fp)"1Ea
p in a unique point (see the preamble). By choosing the quantity

a > 0 sufficiently small we can arrange for (fp)'1S1
p to be contained in

(Br (x)nM)xBf2(X). If the strata of MxSUJ(M) as a submanifold with corners near

(x,X) are <xu..,aT and (y,Y) is near (x,X) the trajectory f(MxSUit(M))(y,Y) is a

union of components

«p(MxSUir(M))(y,Y)=^(ai(I))((y,Y),[O,t1))U^(dfi(2))((y,Y),[t1>t2))U.. etc where

</>p(MxSu,r(M))((y,Y),t)ea10 on (t^.tj) and (yjlYj)=^(o-i(j.I))((yj.1,Yj.1),VtH). We have
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arranged (in (1)) that the rt and r2 are so small that that we can apply Corollary 5.1 to

infer that there exists Noindependent of (y,Y) such that the number of analytic

components of any trajectory segment in (Br (x)DM)xB r (X) is <N0 . Since on each

stratum a/ of our stratification {a;'} of (1) the iteration is constant the region Rj of

(Br](x)nM)xB,2(X) on which Xp(MxSu>r(M))=X(ai) is for each i= l , . . , r a union of

strata {cr/}, and hence is subanalytic. If for (y,Y)EMxBTpi) we set

0-(&i)(y,Y) = {^p(ai)((y,Y),t):t<O}nRi we then take

Up=(BI.(x)nM)XBr(X))n(U^"(aj(I))^)"(ai(2))..^)"(o'i(«))((fp)1Ea
p) where the union is over

all possible sequences i(l),..,i(s), s<N0 , with each i(j) such that l< i ( j )< r . This is

evidently subanalytic (because Ea
p, Rj are subanalytic and <j>(a^), P are analytic) and is

closed (because Br (x) and E / are closed and f and <£(&;) are continuous) and by the

foregoing is a neighbourhood of (x,X) in MxSU),(M). A "slice" of IP (in fact

is illustrated in Figure 7.8 below.

Figure 7.8

We shall construct a <^p(MxSur(
M)>Xp)-compatible stratification of Up with E in part

4 of the definition of compatible stratification equal to (f )"1E,P, and denoting this

stratification by ©i(Up,Xp) will show that for any X' near X S1(Up,Xp)nnx, is a

<£(M,X')-compatible stratification of U=UpniTx., with E in the definition of

compatible stratification now equal to IIX. n
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(4) If U and 3U are subanalytic subsets of Ra with X a non-vanishing analytic vector

field on U and X; analytic vector fields on subanalytic subsets of 3U the following will

be our standard procedure for forming an analytic stratification of U which has the

property that all the strata of U are of type I or II and the (forward) projection

("projection" in this context always means forward projection along the flow) of each

stratum onto dU is a union of strata in 3U.

Since U is subanalytic we may by [28-30] obtain an analytic stratification of it into

strata each of which is by [29] C" diffeomorphic to (-l,l) r , some r, ie if a is a

r-stratum of U then a is the set of common zeros of r independent C" functions

gj:Rn->R. If we now form the subanalytic subsets of a by taking all equalities and

inequalities {x£cr: <gradgj(x),X(x))=0,>0,<0} (see Figure 7.9) we may by [28-30]

again form an analytic stratification of a compatible with these sets. We then take

each one of them of codimension > 0 and repeat, and keep going until we run out of

dimensions. We repeat for all strata a of U. We obtain a stratification of U such that

all strata are of type I or II. Finally we project forwards by the flow all these strata

onto aU, and (using [28-30] as above) form a stratification of d\J compatible with

these images.

"i
( a ) ^ 5 a C Rj

(b) A stratification of a compatible with
<gradgj(y),Xi>=0,>0,<0

(c) A stratification of the strata of codimension > 0 in a
by the same method

Figure 7.9
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(5) In (3) we constructed a subanalytic set Up in MxSUir(M) containing (x,X) and

subanalytic subsets Rj of (Br](x)nM)xBrj(X) such that Xp(MxSM,r(M))=Xp(ai) on Rj,

where each a{ was a stratum of Mx2U|I(M) as a submanifold with corners. We shall

now set Ui=RinUp, ie Ui={(y,Y)GUp:Xp(MxStJ,r(M))(y,Y)=Xp(aJ(y,Y)} and again

is subanalytic. Order the strata of MxH^CM) | Up as a submanifold with corners in

an arbitrary way, au..,at. For each i£( l , . . , r ) ffjnUj is subanalytic (possibly empty)

and for each i,j we stratify by the procedure of (4) the subanalyic set U^closfonUj)

(throughout part (5) of this proof each U, dU, U is as in part (4)) with the vector

field X in (4) set to Xp(ai). We recall that in (4) we finished by stratifying dU in a

way which would be compatible with the projection onto dU of each of the strata we

have formed in U. We then take any one of these strata, say a', and by the procedure

of (4) stratify the subanalytic set U where U = u ' n U t with X of (4) set to X^o^. We

carry on repeating until the process terminates (as we know by the construction of Up

it will do in a finite number of stages) with every point of IP mapped by a sequence

of projections onto (fp)"IEll
p. We have then obtained a stratification of Up such that

(i) Every stratum is of type I or II

(ii) The forward projection onto dU; of every stratum in U; equals a union of strata in

dUi5 and hence the forward projection onto any stratum a in any dU; of any a' in IP

either contains a or is disjoint from it.

(iii) The action of the flow </>p(M x Su>r(M)) on each stratum of MxSu,r(M) | IP as a

submanifold with corners is a union of strata.
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type II strata (dotted lines, points)

type I strata (full lines, regions)

(a) The strata of (3) with arrows indicating the direction of flow

(b) The refined stratification at the end of (5)

Figure 7.10

(6) Taking the stratification of (5) above we perform finally a sequence of projections in

the reverse direction to the flow, beginning with the stratification of (f)''Ea
p. For each

stratum in of (5) there exists a set of strata A (in) with the property that for any

m'GA(M), </)p(MxS l i,r(M))(m',t)nm^0 for arbitrarily small t > 0 (see Figure 7.11).

• m4G A(m3) .

, \ m3G A(m,)D A(m,

m, m7

Figure 7.11

We take each stratum m of (f')"'Sa
p of (5) and project backwards by the flow through

the strata A(m), and continue backwards until reaching dUp (Figure 7.12).
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Figure 7.12

By single valuedness of the flow each stratum of Up is reached by backwards

projection in exactly one way. By finiteness of the stratification (since Up is closed)

we reach 3UP in finitely many steps. Since the stratification of 3Uj refines the

projection onto 3U; of the stratification of U; and each stratum of (5) is either

invariant by the flow or nowhere tangent to it, we shall by taking pre-images in this

way further refine the stratification of (5), yielding a stratification of Up which we can

check satisfies (3) and (4) of the definition of c£p(MxE(jr(M),Xp)-compatible

stratification in addition to (1) and (2), and which is therefore the required

stratification ®,(UP,XP) (Figure 7.13).

Stratification at the beginning of (5)
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Stratification at the end of (5)

Stratification at the end of (6)

p 1

1

Figure 7.13

(7) It remains to show that £1(Up,Xp)niIx, is for any X' near X an analytic

0(M,X')-compatible stratification of U=U p nn x . . We saw above that for any x ' 6 M

0"(MxHu>r(M))((x',X'),t) = (0(M>X')(x',t)>X')and hence 0(M,X')(x',t) =

<£p(MxSu,r(M))((x',X'),t)nnx,. I f ^en w e f o l l o w th r0Ugh each stage of the

construction of the stratification (^(U.X') of M near x in the same way as that for our

<£p(MxHUir(M),Xp) compatible stratification ©i(Up,Xp), we will obtain the stratification

ejCUP.XODIIx, (and for the same reason the type of mGSi(Up,Xp) is that of

mnnxes,(up,xp)nnx).
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Definitions Suppose ©i(U,X) is a <£(M,X)-compatible stratification of UCM. If m,,

m2 are strata of (S^(\J,X) we shall say

(a) mj-̂ mz if m2C3clos(m1) (this is more or less the notation of [57])

(b) Continuing with the notation and conventions of part 3 of the definition of

<£(M,X)-compatible stratification, we shall say m^ir^ if either

(i) dim(m2)=dim(m1) + l=r with m2 of type I and m^m^"1.) (and hence ir̂  of type

II)'

or (ii) dim(m1)=dim(m2) + l=r with mj of type I and m2=m1(r1
+)

Example (of a 0(M,X)-compatible stratification, and of the above defintions)

m

Figure 7.14a

A </>(M,X)-compatible stratification
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Figure 7.14b

The strata of Fieure 7.14a with the relations -*,=> between them

To remind us that => is a feature of the flow we may suffix it by X: =>x.

We recall if (^(U) is a stratification of U C Rn x Su,r(R
n) that a stratum preserving

homeomorphism h ^ ^ n i l x - ^ ^ L O n r i x . is a homeomorphism of Unn x ->Unn x<

such that if the strata of (^(Ujnilx are (s, , . . ,sj then the strata of ^(UjHlIx' are

(hSij.-jhSn) ( and consequently S!-*s2 iff hs^hsj).

We constructed in Lemma 7.1 a <£p(MxEUir(M),Xp)-compatible stratification

^(IP.XP) of UpCMxSu, r(M) such that for all X' near X ®1(Up,Xp)nnx. is a

(f>(M,X')- compatible stratification.

Lemma 7.2

If ©i(Up,Xp) is the <^p(MxSo)>r(M),Xp)-compatible stratification of Up constructed in

Lemma 7.1 and if IIX i\\ ^(Uf,??) then for any X' near X there exists a stratum

preserving homeomorphism h:©i(Up,Xp)nnx-»S1(Up,Xp)nnx. and furthermore for

strata m; of £1(U
P,XP) m1 Dnx=*xm2nn

x iff m1nilx.=>x.m2nilx..

Proof

We recall we have set nx={(y,Y)eRnxSu , r(Rn):Y=X}=Rnx{X}, with the

consequence that n x n(MxS u r (
R " ) ) corresponds to the system (M,X). By Lemma 7.1
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we know that for any <£p(MxEur(M),Xp)-compatible stratificaton S1(U
P,XP) of

UpCMx3Bi t(M) and for any X' sufficiently near X that ( ^ ( I ^ X P ) n I I X . is a

<£(M,X')-compatible stratification of U"nilx . .

Up

strata1 of n x D ©,(UP,XP) flow of controlled vector

Figure 7.15

If IIX is transverse to &i(Up,Xp) (ie, n x is transverse to each stratum of (^(U

and so by [59] IIX, is transverse to (S1(U
P,XP) for all X' near X, we shall construct a

"controlled" (see [59,57b]) vector field on a surface joining U p n i l x to U p n n x , in IF

which will push the strata of ®,(Up,Xp)niIx onto those of ®1(Up,Xp)nnx. (see Figure

7.15).

1. Set IIxx'=affine span of (nx,IIx.) in RnxHur(R
n)- Since by hypothesis

IIX <\\ 61(U
p,X|1) it follows n x . rji ®1(U

P,XP) for all X' sufficiently near X, and that

IIxx' $ ®i(Up,Xp) on the convex hull of (IIX,IIX,). It follows from [59, 57b] that if

@!(UP,XP) is a Whitney regular stratification and L is a submanifold with boundary of

RnxSu,r(R
n) then if L,3L^ (£1(U

P,XP) then (^(UP.X^nL is a Whitney regular

stratification of L. Thus on convCnx.nxOniFCIIxx. it follows that Ilxx.ne^UP^p)

is a Whitney stratification. We now set Nxx' = (0,X-X') (where here we are regarding

X,X' as point vectors in 2^0*°) ) s o ^xx1 is a constant vector field on I I^ . , normal

in IIxx' to n x and nx-. We shall show that if s is any stratum of the stratification

convOLlx.nxOnS^UPjX11) then Nxx(s) is a smooth non-vanishing vector field on s,

where N ^ s ) is defined in the usual way, viz Nxx.(s)(y,Y)=PT(y^sN^., for all (y,Y)Gs.
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We are choosing X' so near X that srjiIIY for all Y£conv(X,X') which means that

for each (y,Y)£s the normal space to s in ITXX. is independent of the normal space to

nY in nx x . , ie their only point of intersection is 0 €T{yY)(R
nxECi, ,.(&"))• The normal

space to nY in n x x . is span{Nxx.}, so we must have Nxx.$: normal space to s in IIxx'.

However (eg by Characterisation of Projection) NXX'(s)=0 iff N x r € normal space to s

in r iw .

nYnup

conv(nX)nxonup

nv .nup

Figure 7.16 - Exactly as in Figure 7.15 above

2. We show we can find a non-vanishing vector field Z on conv(nx ,nx ,)nup

whose integral flow 4>z satisfies

(i) <j)z
T is a homeomorphism convCnx^xOnUP-^convOnx.nxOntP and a

homeomorphism nxnUp-»nx .nUp , some T>0, where 4>z is the time T map of the

flow 4>z

(ii) 0Z
T is a diffeomorphism of each stratum of IIxx'n@i(Up,Xp) to itself

(see Figure 7.16).

Consider a stratum s of (^(U^X^nconvCQ^nx') such that s=i , ie? contains no

lower dimensional strata in its boundary. By 1. we can find for each such stratum a

non-vanishing vector field Nxx(s) = projection onto s of Nxx-. Since for all (y,Y)Gs

0 * | Nxx.(s)(y,Y) | 2=<PT<yiY)sNxx.,Nxx.>we have (PT^sNxx-.Nxx^O for all

(y,Y)Gs and hence for each (y,Y)Gs there exists T(s,(y,Y))>0 such that

4>N .(8)((y.Y).T(s>(y>Y)))enx- Since (̂LPSX11) is locally finite the strata s such that
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s=? have the property that there exists 5>0 such that any pair

of such strata have disjoint 5-neighbourhoods. As in the proof of [57b,Lemma 2.3] we

can by rescaling N ^ s ) arrange that T(s,(y,Y)) is independent of (y,Y)6s. Then the

set of vector fields Nxx.(s) for such strata s form a controlled vector field (see [57b])

on the union of such strata and by [57b, Lemma 2.4] this may be extended to a

controlled vector field Z on Upnconv(nx,IIx.) whose integral flow is a

homeomorphism, is a diffeomorphism on each stratum, and again as in the proof of

[57b, Lemma 2.3] may be rescaled so that there exists T > 0 such that for any

(y,Y)enxnu" *z((y,Y),T)enx..
This shows that there exists a stratum preserving homeomorphism of

£1(Up,Xp)nnx-*(3:1(Up,Xp)nnx. ( and in fact that for some neighbourhood Ux of X in

Su>r(M) that ^ (

3. We show that under the hypotheses of the Lemma that for X' sufficiently near X

and strata mu m2 of ©1(U
P,XP), m 1nn x=> xm 2nn x iff mjnnx,=>x,m2nilx.. It suffices

to show that for any strata n^ in ©1(U
P,XP) mi=*xPm2 iff for any X' near X

ir^nnx^x.mini lx. . This follows from the definition of =>, the fact that

nx- <\i @i(Up,Xp) for all X' near X, so codim(minnx.)=codim(mi)+codim(nx.),

i = l , 2 , so dim(m,)-dim(m2)=dim(m1nnx.)-dim(m2nnx.), and from the fact that

f(MxHo,r(M))((x)X),t)=(^(M,X)(x)t),X) (for which see the preamble).

Proof of Proposition 7.1

(1). We show that {(y,Y)eMxHu,r(M):YeHu,r '(M), Y(M)y^0} is open in

MxEu, t(M).

We know that Sur '(M) is open in Sur(M) by Proposition 4.2. We must show that

{(y,Y)GMxEu,r(M):Y(M)(y)=O} is closed. If E1 and E^ are subsets of Euclidean

space a correspondence F (see [12]) is a map from F^ to the set of subsets of Ej. A

correspondence is closed at xEEj if for all sequences {xj CEj, {yn} CEj with x,,-**

and each yn6F(xn), limn^ooyn6F(x).

By [12] the map x-»(TxM)* is closed (where (TXM)* is the polar cone to TXM, ie

(TxM)*={yeRn:(y,v)<0 for all v€TxM}). From the Characterisation of Projection

we know X(M)(x)=0 iff X(x)€(TxM)*, hence if x;-*x, and X; is a sequence in Hu,r

with Xr»X and Xi(M)(x;)=0 for all i, so Xi(xOE(TxM)* for all i, by closedness of
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y-KTyM)' we have therefore X(x)G(TxM)*, so X(M)(x)=0, and the result follows.

(2). By Lemma 7.1 for each point (x,X) in the set MxSur '(M)\{(y,Y):Y(M)(y)=O}

(which we know by (1) to be open) there exists a neighbourhood IP and a

<£p(MxHur(M),Xp)-compatible stratification (^(IJ^XP) of IF such that for all X' near

X nx,n®i(Up,Xp) is a 4>(M,X')-compatible stratification of U = U p n n x . . If we take a

countable subcover of MxScjr'(M)\{(y,Y):Y(M)(y)=O} by such neighbourhoods the

result is a countable collection of finite collections of analytic strata, so a countable

number of analytic submanifolds of MxEOir(M) (not necessarily forming a

stratification). Therefore by [35, Theorem 2.7] we may find a residual subset of

Ewr'(M) (and hence of Hu>r(M) ) such that for all X in the subset n x is transverse to

every one of these submanifolds. If we choose X in this residual subset and if

X(M)(x);*0 then (x,X)Gsome Up with IIxr|iS1(Up,Xp), and so Lemma 7.1 combined

with Lemma 7.2 tells us that for all X' sufficiently near X there exists a

stratum-preserving type-preserving homeomorphism ( ^ ( U J X ^ Q ^ U ' J X ' ) (the "type"

alluded to is I or II) such that for any strata m1} m2 in ©!(U,X) m^xiriz iff mi'=>x,m2'.

(3). To complete the proof of Proposition 7.1 we shall use the following notions,

(i) An r-box of a compatible stratification is a pair of strata

m i(I r)Um i(r1.)=m i(I rur1.), where n^ is a type-I stratum

flow

m^PUP"1.) (= a "box" in our terminology)

Figure 7.17

(ii) If m^'Ur 'J j i r i i 'P 'Ur 1 . ) are r-boxes of stratifications © J C U J X ^ S ^ U ' . X ' ) and h is

a homeomorphism between m^F1^.) and m ^ F ^ ) (see Figure 7.17) the linear

extension of h to m^PUF1.) is defined as follows. By property 3(ii) of

<£(M,X)-compatible stratification £,(U,X) we know that the flow induces a

homeomorphism, say H:m,(I rUF1
+UF1.)^m1(F1

+)xIby x^(a>(x),tu(x)/(tu(x)-ta(x)))

(notation as in the definition of </>(M,X)-compatible stratification) and we may extend

the domain of definition of h to mi(PUr'1 + UP"1.) by requiring that the diagram
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1H
xld

commutes.

(a) We number the strata of (^(t^X) in a way which depends only on the types of the

strata in ®!(U,X) and the relations -»,=* between them, and therefore if (^(U^Xj),

i= 1,2, is a pair of <^(M;,XJ-compatible stratifications where there is a

stratum-preserving, type-preserving, =>-preserving homeomorphism beween them (as

is the case for (^(UjX), @i(U',X') of (2) above), then the numbering will also be

preserved by the homeomorphism. We observe that the existence of this numbering

follows directly from the "abstract" definition of <£(M,X)-compatible stratification.

We know (by property (3) of 0(M,X)-compatible stratification) that every stratum in

S^UjX), other than those in E (S as defined in the definition of compatible

stratification), is part of a box, and so if we number all the boxes we will have

numbered all the strata other than those in E.

Inductively, suppose we have numbered i boxes, l,2,..,i. We then select a box

satisfying

(i) There does not exist an un-numbered box of lower dimension

(ii) If the box is m(IrUF1.) then m(F"1
+) is a stratum of a numbered box or is a

stratum of E, (usually there will be several possibilities) and number the pair of strata

in this box (i+1). It follows from Property 4 in the definition of <£(M,X)-compatible

stratification that every stratum not in E eventually gets numbered, and from

single-valuedness of the flow that no stratum receives two numbers (see Figure 7.18

for an example).

(Arrows indicate direction of flow)

stratum E E
6

The numbers are for the pair of strata in each box -

eg, box number 1 is the pair
number 7 is the pair

Figure 7.18 etc.
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(b) We are finally going to show that with the data of (2) above we can establish a

spfp homeomorhism between ^(M,X) | U and tf>(M,X') | U', which proves the

proposition. We have by Lemma 7.2 a stratum preserving homeomorphism between

IIxn(S1(Up,Xp) and IIx.n(5;1(U
p,Xp) and in particular between

nxn(Ci(Up,Xp) | (f*>)-1S.p) and nx.n((E1(Up,Xp) | (f^E.*), and we extend this by

linear extension (as described above) to each stratum in IIxn©1(Up,Xp) = ©1(U,X), ie

to U p n n x = U , in the order of the numbering of the strata given above. Thus we get a

bijection h:U pnn x -»U pnn x . which maps the strata of ®i(Up,Xp)nnx onto those of

(^(IF.X^DIIx., and preserves the strata and relations -*,=> (it is a spfp bijection). We

must show it is continuous. Since there are only finitely many strata any sequence

{yJCU partitions into finitely many subsequences {yj1},..,{yj
k} with {y/} in a single

stratum m;. Thus it suffices to show that if {yj} C m; and Vj->y then hy^hy.

Lemma 7.2 has provided us with a homeomorphism of (fp)-1E,pnnx-*(f)"1St
pniIx.,

so assume inductively that for any sequence {yj} C m; with i < k, that yp>y implies

hyj-»hy. We show then that if yj->y for any sequence {yj C m ^ ' U r 1 . ) then hy^hy

(see Figure 7.19).

Because of condition (i) of the algorithm for numbering strata (that if an r-box is

numbered, so already have been all s-boxes for s<r) all boundary strata of mk
r except

mk(I
r'1.)have been numbered with some i < k and so h has already been extended by

linear extension to these and by the inductive hypothesis is a homeomorphism on their

union.

y--

mk(r)

Figure 7.19
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By the definition of linear extension to rn^FUr1.) we have hyj=H"1(h,Id)Hyj

(notation as above) where H(x) = (cj(x),tu(x)/(tu(x)-la(x))). We know by the inductive

assumption that for any sequence (zj}Cmk(I
r'1+) that hzj-»-hz as Zj-*z. By definition

{ci)(yj)}Cmt(I
r4

+), we have u(yj)->co(y) by continuity of CJ, therefore hw(yj)-»-ha)(y).

We know by property (3) of <£(M,X)-compatible stratification that ta(yj)->ta(y),

tu(yj)->tu(y) and that H"1 is a homeomorphism, so putting this together

hyj=H-1(hco(yj),tu(yj)/(tu(yj)-Uyi)))-*H-1(hw(y),tu(y)/(tu(y)-ta(y))))and by definition of H

the right hand side equals hy, hence the result. _

Example Willis Models (see [60] or the Introduction) satisfy the conditions for

Proposition 7.1(1)

Remark Using critically that for XGSur(M) the map X->(classical) stable or unstable

manifold of each regular zero of X is C in X (see [49]) we could by similar methods

treat the case X(M)(x)=0.
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Chapter Eight

Linear Systems

We recall from Chapter Six that we are calling a system (M,X) linear if XG SUil(M) and

M is a closed linear corner. We saw in Example 6.2 that linear systems are not even

locally representative of generic non-linear systems (unlike of course the classical

unconstrained case), but the biological models (see [60] or the Introduction) which

inspired the thesis are linear and we have therefore made special provision for this case,

or cases intermediate between it and general non-linear systems, in Example 2.3, parts

of Propositions 4.2 and 4.4, Examples 6.5 and 6.6, and proposition 7.1. All of these

results have been local, but in this chapter we establish an important global property of

a class of linear system occurring in mathematical biology (Proposition 8.1 below).

Before coming to that we make a few general observations about the special properties

(local and global) which the semiflow $(M,X) has when M and X are linear.

Generalities on Linear Systems

(1) Without much loss of generality we may suppose our closed linear corner is

M=LC(0;J) . Evidently each of the fields P(K)X for 0 CKC J is linear, but from the

point of view of integrating these systems the situation is much better just than that; if

X(x)=Ax+b one readily establishes that if on [S,T) X(M)(x(t))=P(Ii)X(x(t)) (some

IjCJ) then x(T)-x(S)=exp(-P©A(T-S))(x(O)-A"1b)+A"1b, the constant terms outside

the exponential are independent of L, and hence for 0 = t 1 < t 2 < . . < t r =T, with

X(M)(x(t))=P(Ii)X(x(t)) for all

x ( T ) =e-p(Ir .)A(VV,)

(2) Beginning with the linear corner LC(I;J) = {xGRn:(x,ni)=0 i £ I , (x,n i)>0 iGJ}

and linear vector field X(x)=Ax+b we may by a linear change of variables find

(piLeiuj such that each L(i) = {xGRn:(x,ni)=pi} and X(x)=Ax, and for these these

coordinates we have
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I\(IUJ r J) = {xeL(IUJ):((P(J)A)ix,P(J)nj)=O for all i=l , . . ,k- l , jGI} and in

particular is affine. Furthermore since the map x->$(I)(x,t) is affine in x if X is linear,

the manifold swept out by the action of X(I) on r2
±(IUj r I) is locally convex in L(I),

since it is locally convex near t=0 (it has supporting hyperplane L(IUj)). Hence also

the intersection of this codimension 1 submanifold of L(I) with any L(IUK) is also

locally convex. All of this would be very visible if one graphically portrayed

numerically integrated systems - one plot occurs in [60].

(3) We saw in our formula at the end of (1) above how to express x(t) in terms of

products of exponentials etP(1)A, and of course we know how to calculate these

quantities analytically once the eigenvalues and eigenvectors of P(I)A are known.

Because of the form of this formula, because in applications symmetries are likely to

exist in A (they do in [60]) making their eigenvalues and eigenvectors readily

obtainable and for other reasons connected with the analysis of these systems we are

interested in the relation between the eigenvalues and eigenvectors of P(I)A and those

of A. Setting K=(l. .k) so by Remark 2.2 P(K)X(x)=X(x)-NM1NTX(x) where

N=(n1,..,nk) and Mij=(ni,nj), and setting P(K)Identity =Id(K), an eigenvalue X and

eigenvector /? of P(K)A will satisfy (P(K)A-XId(K))/3=0 and since

P(K)Id(K)=P(K)2Identity=P(K)Identity=Id(K)we may write this as

P(K)(A-XId(K))/3=0, and hence if A-XId(K)GGL(n), we must have

/3€(A-XId(K))1span(n1,..,nk). We know also of course that /3GL(K). Define f:Rk-»Rn

by f(x) = (A-XId(K))1(n,..nk)x and g:Rn-»Rk by

g(x) =

Since ( n ^ . n j are independent grfiO, ie g is a submersion at 0, and we can use

[1, Section 3.5] ("if g rfi 0 then frjig-'(O) iff gf rfi 0") to infer that dim(im(f)nker(g))=0

iff det(Dgf)^0. Ker(g) is L(K) so we get a non-trivial /3 iff dim(im(f)nker(g))?iOiff

det(NT(A-XId(K))1N)=0, where as in Remark 2.2 N=(n,,..,nk), which provides a

(n-k)th order equation. We get X by solving these equations, and then /3 for each X is

given by the expression L(K)n(A-XId(K))"'(n1..nk).
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For example, in the biological models described briefly in the Introduction (and in

more detail in [60]) the submanifold with corners is an orthant and the vector field is

linear where the coefficients in the matrix A in X(x)=Ax+b are Aij=o;j.i+n!modn, for

ao,--,an.i GR. A has eigenvalues \k=a0+G>ka1 + ..+«(n'1)kan.1, k=0,.. ,n-l where

aj=exp(2?ri/n), and eigenvectors

1

If L={xGRn:x!=0} P(l)A has eigenvalues

eigenvectors given by

-»MQ-i g i v e n =0 and

i=l , . . ,n- l where Q*=fF = Q"1, Q;j= co(i-1)j

(up to uninteresting scaling factors) etc.

In summary we see that linear (some people might prefer the the terminology

"piece-wise" linear) constrained systems share with their classical counterparts the

possessing of several simplifying properties. Where the gulf becomes pronounced is

when we consider the global dynamics of the systems, since for constrained systems it

is clear that by judicious choice of linear vector field and arrangement of hyperplanes

forming the boundary the way that we are gluing together individual linear systems

means that in suficiently high dimensions we can conjure up some highly non-linear

phenomena. We can imagine a volume increment of flow perhaps beginning in int(M)

and hitting part of dM, sliding along and intersecting lower dimensional strata (and

dropping in dimension when it does so) or lifting off to higher dimensional ones. We

can see (an example in three dimensions below will make this clear, see Figure 8.2)

that interest centres on the iterated maps formed when a cross-section of the flow

maps into itself.
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From Theorem 2.1 and Corollary 4.2 we know that if XGSOJ>1'(LC(0;J)) the flow

on LO(K;J\K) enters a higher dimensional stratum LO(K';J\K'), K'CK, at x iff

Sx(x)=K and for sufficiently large m Sm(x)=S°m(x)=K\ Most of the flow on

LO(K;J\K) makes this type of transition along whichever iteration set has lowest

codimension, which by Proposition 4.4 is {IY(K r K') | LO(K;J\K): | K\K' | =1}

(where T2
+(K r K') | LO(K;J\K) means T2

+(K r K') restricted to LO(K;J\K) ). Such

sets are codimension 1 in LO(K;J\K) and the flow may induce an iterated map on

parts of them r2
+(Kx r K/) | L O t K f A K ^ r f t K , r KV) | LO(K2;J\K2)-»

T2
+(K2 r K2') | LO(K2;J\K2)-*.. . . ^ i y ^ r K/) | L O ^ i A K J where each K p K / ,

Ki'CKi+1, and | Kj | - | K/ | =1 for all i,j (see Figure 8.1).

1
r2

+(K; r K/)

Figure 8.1

For example we can choose a linear vector field on M=LC(0;1,2,3) in R3 such that

any trajectory initially in int(M)=LO(0;l,2,3) eventually intersects dM and thereafter

oscillates between LO(i;j,k) (i,j,k)G(1,2,3) and LO(0 ; 1,2,3); the flow on LO(3;2,1)

leaves LO(3;1,2) along F2
+(3 r 0 ) and subsequently intersects LO(1;2,3) along Q3

(see figure 8.2 below) flows along LO(1;2,3) until leaving it along F2
+(l r 0 ) and so

on in a circuit: we thereby obtain iterated maps on the sets F2
+(i r 0 ) (and under

some circumstances non-trivial periodic orbits).
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LC(1;2,3)

Q3=projection of I\(3 rl£5) onto L(l) by flow </>(0)
T2

+(l r 0 )

Figure 8.2a. A trajectory of X(M) intersects LO(1;2,3) at
X," and leaves LO(1;2,3) at x,+ e r 2

+ ( l r 0 )

Figure 8.2b. A trajectory beginning at x2 makes a complete circuit

We can see that in the general way the iterated maps we have formed on

T2
+(i r 0)DLO(i;(l,2,3)\i) will not be invertible -
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r 2 ( i r0)nLO(i ; ( l ,2 ,3) \ i )

r 2 ( i r0)nLO(i ; ( l ,2 ,3) \ i )

but a striking feature of the linear systems which arise in mathematical biology ([60]

or the Introduction) is

Proposition 8.1 Suppose M is the orthant {xeRn:x;>0, i=l , . . ,n} , XeSUil '(M)

(which is open-dense in SUjl(M) by Proposition 4.2), where the (nXn) matrix A in

X(x)=k-Ax is non-negative (ie A ; J > 0 for all i,j) and satisfies the following condition:

For each subset I of (l,..,n) with | I | <n and for any pair j , k £ l there exists

m(j,k)>0 such that ([(P(I)A)mnj],nk)>0, where ri; is the unit vector such that

(ni,x)=xi.

Then all iterated maps of the form T2
+(K, r K/)

T{(K2 r K/) | LO(K2;J\K2)-r2
+(K2 r K2') | LOC

..-^r2
+(K1 r K,') | LOCK^AKj), where each K iDK i ',K i 'CK i+1 and

| K; | = | Kj' I +1 for all i,j (see Figure 8.1) are invertible.

Remark The condition on the matrix A is clearly satisfied by any positive matrix (ie

one such that A ; j>0 for all i,j): in the Willis models certain coefficients may be zero,

but it is straightforward to check that in all cases of interest they still satisfy the

condition to apply Proposition 8.1.

Proof of Proposition 8.1

Each step in the iterated map desribed in the statement of Proposition 8.1 is of the

form r2
+(K; r K/) | LCKKVAKJ^rytK^ r K/) | LO(Ki+1;AKi+i)-

r2
+(Ks+1 r K;+1') | LO(Ki+1;AJCi+1). Let us suppose x ^ e r ^ r K/),

Q i=R+.r2(K i r K i ' )nr1(K i + 1 r Kj')=the projection along the flow of T2(Ki r Kj') onto

r,(Ki+1 r K;') (see Figure 8.3) and the flow maps Xi+er2
+(Ki r K/) to

x i +i-er,(K i + 1 r Kj+1') to ..to V^TfCKj r K/) to r2
+(Kj r K/). It follows from
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Lemma A.I that the induced map

r2
+(Ki r K/) | LCKKiAIQ-rfCK^ r K/)

r2
+(Ki+1 r Ki+1') | LO(Ki+1;AKi+1) r2(K; r K/) is locally a diffeomorphism at

(iv) XCKi+OCXi+x^^T^^rjCKi^ r Kj+1').

We shall show that the assumptions of Proposition 8.1 guarantee that these conditions

hold, and since the step and Xj+6r2(Kj r K;') were chosen arbitrarily we infer that the

iterated map from T2
+(K1 r K,') | LOCK^AKj) to itself is a diffeomorphism.

, an open subset of L(Kj+1)

i + i r

i + i

(i) is equivalent to Xi+£r3(Kj r K;'), (ii) is equivalent to x i+,-£r2(K i+1 r Kj'), (iv) is

equivalent to Xi+1
+£r3(Ki+1 r K;+1'). These conditions are satisfied automatically for

the type of trajectory described in the statement of Proposition 8.1, which leaves (iii);

we must show that under the assumption of Proposition 8.1 condition (iii) holds for

every Xi+eiy-CKjrKi').

R+.r2(Ki r K/) and ^ " ( K ^ r K/) are transverse at X;+1' by condition (ii): hence since

X(Ki+1)(xi+1-)^TXi+_Qiiff

<X(Kj+,)xi+r, normal to Tw[R+ . r 2(Ki r K i ')nr1-(K i+1 r K/)] in TXi+iL(Ki+1)}^0 and

we know by Remarks 2.1 that the

normal to T . ^ R + T , ^ r K ^ H I Y ^ r K/)] in Tx_+iL(Ki+1) =

P(Tx.+ T1(K i+1 r Ki'))Nx+i(R+.r2(Ki r K;') in L ^ ' ) ) , if condition (ii) applies then
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condition (iii) is equivalent to (X(Ki+1)(xi+r),P(Tx.+iL(Ki+1))Nx.+i(R
+.r2(Ki r K;') in

L(Ki')))^0, which is equivalent to (X(Ki+i)(xi+1-),N),s+i(R
+.r2(Ki r Kj') in L(K;')))^0

(using self-adjointness of P). Since Tx+i-R
+.r2(Ki r Ki')9X(Ki')(xi+f) (and so

(X(Ki')(xi+1-),N,+i(R+.r2(Kir IQ') in L(Ki'))>=0) and

X(Ki+1)(xi+r)=X(Ki')(xi+1-)-(X(Ki')(xi+1-),Hi+1(Ki+1 in K ^ ^ - C K ^ in K/), where

Nx+i(K i+1 in K/) is the unit normal to L(Ki+1) in L(Kj'), and using

| Kj | = | K,-' | +1 for all i,j (by supposition), this is true iff

0-(X(Ki')(xi+1-),NX;+1(Ki+1 in Kl')><^+1-(Ki+1 in K,'),Nw(R+ .r2(K, r K,') in L(K i ')))^0

and if condition (ii) is satisfied then (X(Ki')xi+1",Nx+]-(Ki+1 in Kj'))j*0, so this

condition holds iff (NX;+i(Ki+1 in Kj'),Nw(R+.r2(Ki r K/) in L(IQ'))>^0.

We have also T ^ R ^ K , r K/)= span{X(Ki')(xi+1-),^(Ki')
t.TXi+r2(Ki r K/)}

=^(Ki')
t.Tx+L(Ki) (where ^(K)l= time t map of 4>(K)) and hence condition (iii) holds

if condition (ii) holds and (Nx.+i(Ki+1 in K/),(normal to ^(Ktf.T^UIQ in

All of this has been true for any system, but if furthermore the vector field is linear,

with X(x)=k-Ax, then X(Ki')(x)=P(Ki')k-P(Ki')Ax, say = k'-A'x, and any vector v

in TXL(K/) is mapped by the flow ^(K^') to <^(Ki')
t.v=Dx<^(Ki')V=e-tA'v. Hence

N ^ - ^ K / y x a Q in L(IQ')) =exp(tA'T)Nx+(Ki in K,') (••)

since for any vjG^Q^'f.LQQ, w=<f>(Ki')
t.v with vGTx+L(Ki), we must have

w=e"tA'v, and hence (w.expCtA'^N^CK; in Kj')> =

(exp(-tA')v,exp(tA'T)Nx+(Ki in Kj')> =(v,NX;+(Ki in K i '))=0 since (e-tA')T=exp(-tA'T)

and vGTx+L(KV).

Inserting (**) into (*) we see that if condition (ii) holds then condition (iii) holds if

<Nw(Ki+1 in KiO.expCtA'^N^-CKi in K;')>^0.

If the suppositions of Proposition 8.1 are satisfied we have, possibly after

renumbering the vectors n1;..,nn, that A'=P(I)A, Nx+(Ki+1 in K i ')=n i+1,

Nx +(Kj in Ki')=n; where i , i+l ^ IC( l , . . , n ) . The condition above becomes

(ni+^exp^QA7)^) ^ 0 and expanding out the exponential

exp(tP(I)AT)=I+tP(I)AT+.. the condition on A guarantees that this above condition is

satisfied, and hence under the assumptions of Proposition 8.1 condition (iii) is

satisfied. «
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Remarks One implication of Proposition 8.1 is that the type of complexity arising in

non-invertible maps (tent-type maps ([23, Chapter 5] and their higher dimensional

analogues) cannot occur in the Willis models in the iterated maps of the type

described. Non-negativity of the matrix A has other implications - for example it is

easy to see that coupled with the fact that M is an orthant it means that for sufficiently

large | x | with xGM that (X(x),x) < 0 and hence that orbits are bounded - all

interesting behaviour occurs in a compact subset of M. Non-negativity also

suggests applying the Perron-Frobenius Theorem (see [21]) which implies that on each

subsystem {x£Rn:Xi=0 i=l , . . ,k , x ; >0 i=k+l , . . , n} , k < n , we get for

x=P(K)k-P(K)Ax a dominant eigenvector with all components positive and with

corresponding eigenvalue real and negative and exceeding in magnitude all other

eigenvalues. If this implies that for any periodic orbit y the codimension of the stable

manifold of 7 is codimension 1 in the deepest stratum through which it passes this

would have significant implications for the 4-dimensional Willis model (for example,

in conjunction with Proposition 8.1 it would rule out the possibility of chaos in the

form of sensitive dependence on initial conditions).
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Appendix

Remarks on The Global Properties of the Semiflows

In this appendix we shall sketch some global theory for these systems. We prove

Lemma A.I (which is needed in Chapter 8) but after *** the results are stated without

proof. In the case of Conjecture A.I there are questions outstanding in the local

theory we would need to settle first (although there is probably enough in Chapter 5 to

establish it on submanifolds with orthogonal corners),in the case of Conjecture A.2 (a

two-dimensional result not true in greater than two dimensions) the method of proof

we would adopt would provide negligible insight into the global behaviour of these

systems in general. In fact insofar as little use is made of the material in Chapters 2-5

this appendix is the least advanced part of the thesis.

We shall suppose we are working with a Cr submanifold with corners M and a Cr

vector field X. We observed in Chapter Four that since by definition of submanifold

with corners M for each xGM there exists a neighbourhood of x in M of the form

/3(UDLC(I;J)) (Chapter One) each stratum m; of M as a submanifold with corners

admits a smooth extension iftj containing m; in its (relative) interior. Thus for each

xGrnj, X(mi)(x)= the projection of X onto the tangent space (rather than tangent

cone) to rrii at x.

In constructing a global theory it is convenient to begin with a stratification of M

into strata {<x;} such that for each <X; the map x-»X(M)(x) is Cr for as long as x is in a{

- for example , any stratification {o} of M which refines the decomposition of M into

iteration sets (which itself of course refines the stratification of M as a submanifold

with corners) will do. In the case of submanifolds with orthogonal corners a simple

stratification with the above property may if XGH'(M) be constructed by exploiting

the fact that in this case if the manifold is locally ZN(I;J) and

I C I U K 1 C I U K 1 U K 2 C l U J w i t h K 1 n K 2 = 0 then T2(IUK,UK2 r IUK2) =

r2(IUKi r I)OZ(IUK2). This is so because in part (1) of Example 6.7 we saw that if

L,L,,L2 are linear subspaces of Rn then if X 6 L and N(Lj in I^CLj then

P(L2)XGL1nL2 iff XGLj. Since ZN(I;J) is orthogonal we know that for any

xGZ(IUK,UK2) N(TXZ(IUK2) in TXZ(I)) =

span{gradfi(x):iGK2}C{y:(y,gradf1(x))=0 for all iGIUKi}=TxZ(IUK,), so applying the

above with L,L,,L2 set to TXZ(I), TXZ(IUK,), TXZ(IUK2) respectively it follows that

x G Z(I U K, U K2) and X(x) G TXZ(I U K,) iff x G Z(I U K, U K2) and
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X(IUK2)(x)eTxZ(IUK,UK2), ie xEZQiUK^K^n^lUKi r I) (which by definitions

= Z f l U I Q n i V l U K ! r I)) iff xGr2(IUK!UK2 r IUKj), and the claim follows.

If XGS'(ZN(I;J)) and we take all possible intersections of sets

{xGZ(IUi):(gradfj(x),X(x))=O}

{xGZ(IUi):(gradfj(x),X(x))>0}

{xG z g u i):(gradfj(x),X(x» < 0}

for i j G J , each intersection is by virtue of the foregoing and Proposition 4.1 an open

subset of some F2(K r K') each of which is by Proposition 4.2 a submanifold of Z(I). If

the open subset had infinitely many components this would contradict classical normal

form theorems (see [44,45,58]) for classical tangency sets (since using

r2(IUKiUK2 r IUK2)=r2(IUK1 r I)HZ(IUK2) and Proposition 4.1 it follows that there

would exist some F2(K r I) with infinitely many components, which if XGH'(M) is

disallowed by classical normal forms), hence taking all intersections of the sets above

yields a locally finite decomposition of ZN(I;J) into submanifolds. Clearly the boundary

of the closure of any such set is a union of sets of lower dimension ot the same form, so

these sets form in fact a stratification. By its construction and Proposition 4.4 the second

iterate S2(y) is constant for as long as y is in any stratum in this stratification, and hence

(since by defintion X(M)(y)=X(S2(y))(y)) for any submanifold with orthogonal corners

M we have constructed a stratification refining the stratification of M as a submanifold

with corners and such that the map y-»X(M)(y) is Cr on each stratum.

If we are to establish geometric results which will be closely analogous to classical ones

[1,37,42] for the behaviour of the semiflow near a trajectory it will be evident that we

must exclude from consideration trajectories such as illustrated in Figure 2.3 (Example

2.1) Figures 5.1 - 5.4 (Examples 5.1) and Figure 5.16 (Example 5.3). If £ is our

stratification of M refining that of M as submanifold with corners and such that

x->X(M)(x) is Cr on strata, and if a trajectory segment <£(M)(x,[0,T)) satisfies the

regularity condition below with x E a £ ® , then if y £ a is sufficiently near x there is

(Lemma A. 1(1)) a T' near T and a ©-preserving homeomorphism of M-»M mapping

0(M)(x,[O,T)) to <KM)(y,[0,T')) (see Figures A.1-A.4). If additionally <KM)(x,[0,T))

satisfies condition (*) of Lemma A.I and £ is a section transverse to <£(M)(x) in a then

the map £->4>TS induced by the semiflow is a diffeomorphism (Lemma A. 1(2), see

Figures A.5 and A.6).

We shall set S0=the set of strata of S each of which is codimension 0 in the stratum of

M as a submanifold with corners which contains it.



207

Definition A trajectory segment <£(M)(x,[0,T)) is regular for © if [0,T) = UI?=1[ti.1,ti),

where the partition of [0,T) is finite on any bounded subset of [0,T) (so is finite if T

is finite) with each <£(M)(x,(ti.],ti)) contained in a single stratum a{ of (£<,, and if rrt; is

the stratum of M as a submanifold with corners containing <T; (SO a{ is open in m} by

defintion of @0, and ^(cri)(x)=0(mi)(x) on (tj.,,0 ) then 0(m;)(x) is transverse in rn; at

0(M,X)(x,t;) to the stratum o{ of & (which may be in <ri+l) occupied by 4>(M,X)(x,0 (see

Figures A.I - A.3).

The stratum a( must evidently be in ~oK and since </>(M)(x) has dimension 1 must

have codimension 1 in m;.

Not regular since Z(l,2) not

transverse to < (̂M)(x) in R2

ZP(1;2)

Regular since ZP(1;2) transverse to

</>(M)(x) in R2 and Z(l,2) transverse
to <KM)(x) in Z(l)

Figure A.I

r2(l r 0 )
T2(l r 0 )

Nor regular since I\(l r 0 ) not
transverse to <£(M)(x) in R2

Regular since Z(l) transverse to
(/>(M)(x) in R2 and T2(l r 0 )
transverse to <£(M)(x) in Z(l)

Figure A.2
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Figure A.3 shows a regular trtajectory <£(M)(x) on M=ZN(0;1,2) with

^(M)(x,t)eff1,ff2,ff3,..,o
:
q on respectively tetO.tO.Ctj^.Ctj . ts) , . . ,^^ where in the

figure q=6 and ff1=<r3 = (r6=ZP(0;lJ2), a2=a4=ZP(l;2), cr5=ZP(2;l),

ffl'=<r3'=ZP(l;2), a 2 '= r 2
+ ( l r 0 ) , <r4'=Z(l,2), o-5'=r2

+(2 r 0 ) .

-ZP(1;2)

t=0 ZP(0;1,2)

T= t
Figure A.3

Remark If M is a submanifold with orthogonal corners and X6E'(M) with © the

stratification constructed above then the condition that <£(M)(x,[0,T)) has a finite

decomposition into Cr segments U^(M)(x,[ti.1,ti)) with each <jb(M)(x,(ti.1,ti)) contained

in a single a{ of ©, where a- is open in some stratum of M as a submanifold with

corners, holds for any x 6 M and 0 < T < oo.

Proof By Theorem 5.1 if <£(M)(x) makes infinitely many stratum jumps on a

neighbourhood of any point there exists an infinite order tangency between the flows

obtained by projecting onto strata at that point, which is not allowed if XGS'(M).

Hence <£(M)(x) decomposes into finitely many segments, each contained in a single

stratum m; of M as a submanifold with corners; by Remark 3.1(2) <£(M)(x) is C as

long as it is contained in a single stratum of M as a submanifold with corners.

Finally, it follows from the way we constructed © that if XGS'(M) then no Cr

segment <£(mi)(x,(ti_1,ti)) can make infinitely many intersections with those strata of ©

which are contained in m;, and the result follows.

Lemma A.I For any submanifold with corners M and stratification S of M as above

(1) If <£(M)(x,[0,T)) is regular then if x is both near x and in the same stratum of S as

x, then $(M)(x,[0,T)) is regular some T near T and there exists strictly increasing

r:[0,T)-*[0,f) such that for 0 < t < T the stratum of © occupied by </>(M)(x,t) is that

occupied by <£(M)(x,T(t)), and hence if <£(M)(x) is single valued on [0,T] there exists

a ©-preserving homeomorphism of M which maps <KM)(x,[0,T))-*<£(M)(x,[0,f)) (Fig- A.4).
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x »-,

. c r , =

Figure A.4

(2) Suppose <£(M)(x,[0,T)) is regular and suppose with 0 = t o < t 1 < .. < t , n =T, with

each ^(M)(x,t i.i,t i))Cff iCS0 (where as above a, is codimension 0 in m^. Set

xi = ^(M)(x,t i) and denote the codimension 1 stratum in the boundary of a{ which the

trajectory intersects at X; when t = t; a-' (which may be a i+1). Suppose E is a section

transverse in <T, to </>(M)(x) at x, ie Txo-,=X(cr,)(x)©Tx£. Consider a sequence of

projections along the flow, of E onto the codimension 1 stratum a / of a, at x,, of this

image onto the codimension 1 stratum a2' of a2 at x2 etc (see Figure A.5). Call these

E,,E2,.. Then if X ^ ^ X X j ^ T . E , , ie if for each i

dimspan(X(h^1)(x i)TxE i) = dimTxEi +1 (*)

then there exists a neighbourhood U of x in E such that for each y G U the induced

map y G E-»y, G S, C (T,'->y,€ S, C ff2'..-*ynlS £,„ C <r,n', where y; is the intersection of

</>(M)(y) with ex/ at time t near t; (this is defined and unique for $(M)(x,[0,T)) regular

by Part (1) of the result) is a diffeomoq^hism.

Remark Clearly if a regular trajectory segment </>(M)(x,[0,T)) satisfies (*) and

(£(M)(x,[0,T)) passes through o-', i = l,. . ,q then dimE<dimff|' for all i = l , . . ,q - for

instance, if S was at x in Figure A.4 a trajectory as shown would not satisfy condition

(*) because a cross-section in E4 would have dimension less than that of E.

To apply Lemma A.I on the trajectory segment shown in Figure A.5 below there are

three regularity conditions R1-R3 and three (*) conditions *l-*3 which must be

satisfied, and if they are the conclusion of Lemma A.I is that the map induced by the

flow of E->E;, is a diffeomorphism. This is close to the form in which the lemma is
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used in Chapter Eight.

= ZP(l;3)
<r,=IY(l r 0)HZP(1;3)

Figure A.5

Rl XOTi.Xx,)^,' ie X(l)x,=X(x,)£ r3(l r 0 )

R2 X(m2)(x2)r]W ie X(x,)^r2(2 r 0 )

R3 X(m3)(x3)rjia3' ie X(3)x3 = X(x3)£r3(3 r 0 )

*1 X(x,)£T E, which is equivalent to Rl

*2X(3)(x,)?T5E2

*3 X(x3)gTx.E3 which is equivalent to R3

Proof of Lemma A. 1

(1) Inductively suppose the result holds up to xM, i> 1. Then xM is near xiA with

Xĵ GcTi.,' and by smoothness of X(m;) (where we recall ifij is the Cr extension of the

stratum m; of M as a submanifold with corners containing a-t as an open subset) and by

openness of transverse intersection if the trajectory <£(M)(Xj.,) intersects a{

transversely (in ifi;) at ^(M)(xi.1,ti-ti.i)=xi then so will 0(M)(Xi.,) at some time close to

tj-tj., (see Figure A.4).

(2) Suppose this result is true up to the ith stage, ie E-^E, is a diffeomorphism. We

know (by the remark at the end of the definition on page 207) that o-+1' is locally

{xGmi+1:f(x)=0} for some Cr f:mi+i-*R, so Ei+1 is locally
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{0(m;+1)(x,t):x£Ei, f^(mi+1)(x,t)=O}. By the Implicit Function Theorem we know

that ifDtfc£(£.1+L)(x,t)^O, ie if (gradf<^(mi+1)(x,t),X(mi+1)^(mi+i)(x,t))^O, which is the

case by regularity, then there exists a unique Cr t:mi+i->R with f^(mi+1)(x,t(x))=0.

Hence Ep"Ei+1 is Cr. For each x£E i + 1 near xi+1 we may map back to E; by

<£(mi+])(x,-t(x)), possibly with more than one value of t(x) for given x if condition (*)

does not hold (see Figure A.6)f

Figure A.6. Manifold and notation exactly as in Figure A.5, but

without condition (*) holding at b ' , where X(rn3)(b')£Tb.E2, with

the result that Ei-*E3 is Cr but not invertible.

However if condition (*) does hold then X(rfii+1)(y) is not tangent to TyS; for all

y £ E ; on a neighbourhood of x;, and hence we have a Cr submanifold S connecting a

neighbourhood of x; in E; with a neighbourhood of X;+i in Ei+1 formed by acting with

the flow </>(mi+1) on Ej, where Ej itself is codimension 1 in S (see for instance Figure

A.5). E; is locally of the form {x£S:g(x)=O} for some Cr g:S-^R, so near Xj E; is

locally the set {<Kmi+,)(x,-t):g0(mi+1)(x,t)=O,x6Ei+1}. By condition (*)

at x; (and hence on a
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neighbourhood of x^) and so by the Implicit Function Theorem again we obtain a

unique Cr map from Ei+1 to E;. Hence the induced map E;-»Ei+i is a diffeomorphism,

which is the required inductive step. ^»

* # #

We end with a discussion of some other global features of these semiflows. Suppose

7 is a periodic orbit, ie 7=<£(M)(x,[0,T)) for some xGM where

<£(M)(x,0)=x=<£(M)(x,T). To obtain analogues of classical results about periodic

orbits we will want the conditions to apply Lemma A.I to hold (so as to get a

diffeomorphism on a transverse section) and at its fixed point we will want this

diffeomorphism to be hyperbolic.

Defintion With E,x,E; and x; as in Lemma A.I a periodic orbit is regular if

(1) The segment c£(M)(x,[0,T)) is regular (in the sense defined above)

(2) Condition (*) of Lemma A.I applies, ie X(mi+1)(xi)£TxEj at each x;

(3) The diffeomorphism induced on E has a hyperbolic fixed point (see [42]) at x,

and we propose in the spirit of Proposition 6.2 part 1:

Conjecture A.I

(1) Under small pertubations in X a regular periodic orbit remains regular and

depends continuously on the vector field X

(2) There exists for any compact M a residual subset of &m(M) such that for any X in

this subset all zeros and periodic orbits are regular and respectively finite and

countable in number.

The following is (in view of Chapter Six) the inevitable definition of global structural

stability:
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Definition A system (M,X) is structurally stable if for any Y sufficiently close to X

there exists a spfp homeomorphism conjugating the flows of X(M) and Y(M).

By Lemma 6.1 it follows that if a system is structurally stable the iterated maps

obtained when transverse sections are mapped into themselves are stable also, an

exacting requirement when dimE> 1 (ie dimM>3) given that this map need not be

invertible and there exists all the scope for the complexity of tent-type maps (see [23,

Chapter 6]) and their higher dimensional analogues.

These complications do not arise if either X is gradient or dimM =2. In the gradient

case we have as mentioned in Chapter One that on each stratum a

grad(f | ff) = P(Txa)gradf(x) which implies f is monotone on trajectories , and so here

as much as in the unconstrained gradient case ([50]) for generic X or f the

non-wandering set is no worse than a finite set of regular zeros.

Finally let us briefly consider two-dimensional systems. To keep matters simple let

us suppose M is homeomorphic to D2. Let XGSO5(M). We may define Roman points

I-III as points where the flow is locally

dM

I > II

M

M III X
3M

and Arabic points 1-12 as given in Figure A.7. Let us say a system satisfies condition

A if all non-Roman points are Arabic. In the terminology of Chapter Six this means

that all the zeros are regular (this includes all the obvious requirements about zeros of

X being disjoint from dM etc) and that XESB ' (M). By Proposition 6.2 and Chapter 4

Arabic points are isolated and condition A holds on an open-dense subset

SA(M)CS0O(M). About each saddle x of X (which will be in int(M) if XGHA(M)) we

may choose a disc Bt(x) so small as to be disjoint from other zeros and dM: call the four

points on 3B£(x)n(Ws(x),Wu(x)) circle points. Then through any circle point or Arabic

point 1-6 there is exactly one trajectory of X | int(M) intersecting it. We say a system

satisfying condition A satisfies condition B if no such trajectory intersects another or

itself. From the foregoing and classical theory we obtain an open-dense subset HAI)(M)

of SM(M) of smooth vector fields such that X(M) satisfies A and B (if it does so no
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periodic orbit of X touches 3M etc).

A system satisfying A and B satisfies condition C if the non-wandering set of

X | int(M) consists of a finite number of hyperbolic zeros and hyperbolic periodic

orbits (regular = hyperbolic in this case) and again by classical theory the smooth

vector fields satisfying A,B and C, EABC(M) form an open-dense subset of E^M).

This gives Part (1) of the following; the necessity half of Part (2) is immediate.

Conjecture A.2 If M is a smooth 2-dimensional submanifold with corners of Rn

(1) The subset £ABC(M) of vector fields in S^M) such that X(M) satisfies A,B and C

is open-dense in Em(M)

(2) The system (M,X) is structurally stable iff XGSABC(M).



215

i"?

trajectory of X •>
trajectory of X(M)

Figure A .7
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Notes

Introduction

The type of constraint we consider arises in mechanics as Gauss's "Principle of Least

Constraint" ([11,2]): this says that if a body at p of mass m is constrained to lie in a

region M but is otherwise freely acted upon by a force-field F then the motion of the

body is such as to minimize G = in(p-F/m)2. It follows from the Characterisation of

Projection that if M is a submanifold with corners then this implies that the body

moves under an effective force-field FdT where Ft.ff(x) = P(TxM)F(x). The trajectories

of Theorem 1.1 are therefore those the body would follow in the limit m->0. Modern

treatments of mechanical constraints of this type may be found in the book Rational

Mechanics by C.W Kilmister and J.E. Reeve (London 1966) and in [39].

[60] is the only occurrence known to us of this type of system in mathematical

biology, but they occur frequently in mathematical economics - see for instance

[3,36,17], with [4, Sections 5.5 and 5.6] containing a good review.

A slightly different type of constraint has been considered by Takens [54-56]; in his

version the trajectory moves across a submanifold until encountering one of a set of

critical points, where it projects instantaneously across to another part of the

submanifold.

Chapter One

Three approaches to proving the results concerning differential equations with

discontinuous right hand side upon which Theorem 1.1 is based are due to

(i) Claude Henry, who establishes [31,32] existence of solutions (in our notation)

<£(M,X) for M an orthant. This result is based on the Lasota-Opial Existence Theorem

[38].

(ii) M.G. Chikin, who builds on various results of Filippov [19] to establish the result

[10] used as the starting point for our Theorem 1.1

(iii) Benard Cornet, in Existence of Slow Solutions For a Class of Differential

Inclusion [12]. A differential inclusion [4] is of the form x(t)£F(x) where x6R° and

F is a set valued map. Their connection with differential equations with discontinuous

right hand side arises in the following way. If x(t) = f(x) with f not necessarily
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continuous the regtilarisation of this equation is the differential inclusion x(t)EF(x)

defined [4] by taking F(x) = D(>uconv(f(x + eB)): F(x) then has certain desirable

properties (f(x)EF(x) for all x, if f is continuous at x then F(x) = {f(x)}, the map

x-»F(x) is upper semi-continuous with convex values, [4]). In the case

f(x) = P(TxM)X(x) with M a submanifold with corners we see that f(x) = (F(x))» = by

definition the unique element of F(x) with minimal norm, and hence the solution to

x(t)=P(TxM)X(x) is the "slow" solution

x(t) = [n,>0{P(TyM)X(y):yGx + eB}]». Cornet's work builds on that of Haddad [24].

For further discussion of differential equations with discontinuous right hand side,

multivalued differential equations, and differential inclusions, see in addition to the

above [20,4,9,25,33,18].

Chapter Six and The Appendix

The results and discussion of these chapters are related to classical work on the

geometric theory of unconstrained flows on manifolds with boundary. The Peixotos

characterised structurally stable flows on two-manifolds with boundary in [43].

Sotomayor generalised the Palis-Smale conditions for structural stability on

boundarlyless n-manifolds to manifolds with boundary in [51]. Percell characterised

structural stability on manifolds with boundary with empty non-wandering set (and so

was able to improve conjugating homeomorphism to conjugating diffeomorphism) in

[44]. Clark Robinson weakened the defintion of structural stability (his boundary is

not fixed) in [47].

Following the work of Newhouse, Palis, Sotomayor and Takens et al on bifurcations

of flows on boundarlyless manifolds some study has recently been made of bifurcations

of flows on manifolds with boundary, see [52,53]. Structural stability of semiflows in

general terms has been considered by Quandt in [46] (see also the references therein).
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Symbols, Notation and Notational Conventions

A(x,M,X) The algorithm sequence 82,87

Aj(X,LC(I;J)) abbr. to Aj 87

Aj.jCX.LCfrJ)) abbr. to Aj,; 84

Ar(x,M,X) abbr. to Ar 87

Arj(x,M,X) abbr. to Arj 87

A(m) for m a stratum of a <£(M,X)-compatible stratification 184

A, for A a stratum LO(K;J\K) of the closed linear corner LC(I;J) The affine span of

A , L(K) 84

Br(x) abbr. to B Open ball of centre x and radius r 22

c:[0,5)->M An invariant curve 137

clos(A) The closure of A

conv(S), for S a set of points Closure of convex hull of S 9

convex,.. ,ffs) or c o n v ^ U.. U as) for au.. ,as strata of a submanifold with corners 59

Cr 12

C ^ C smooth, analytic

c+»)C-oo rightj l e f t derivatives of all orders exist 43

dim(M) Dimension of M

Dt Differentiation with respect to t 17

Dtf(t=0) Derivative of f evaluated at t=0 29

Dt
+i,Dt"' ith one-sided derivatives 43

E(K) 141

ej unit vector (l,0)GRxRn-1 45

e"i unit vector field 45

f (in the context of funnels) the straightening-out map 45

f 174

Fc(n,r) Canonical r-funnel in Rn 45

Fc
p 174

' F / 175
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fr(y) 24

Fx(r,f), Fx Funnel at x 48

Fx' Intersection of Fx with ZN(S°oo(x);SOD(x)\S(Ux)) 48

Gx 77

H (in the context of <£(M,X)-compatible stratifications) 192

I,J,K,Ii,Ji,Ki etc Sets of indices 7

int(M) interior of M

ITN The iteration operator 31

^(to), I±(to) H8

r=(- i , iy , r=[- i , i ] r 177

r ± =rn{xGR r :x 1 =±i} 177

L^L.^nt) abbr. to L(I) if I=(l,..,k) Linear subspace of Rn 7

LC(nl5..,nk;nk+1,..,nk+Jabbr. to LC(I;J) if I=(l,..,k), J=(k+l,..,k+m) Closed

(linear) corner 7

LCO(Kj;K2;K3) (linear) Subcorner 7-8

LO(n1,..,nk;nk+1,..,nk+Jabbr. to LO(I;J) if I=(l,..,k), J=(k+l,..,k+m) Relatively

open (linear) corner 7

Lx Lie derivative

m, m;, m;r a stratum (the r denotes the dimension)

m^I1), forl r=(-l,l) r a stratum 177

m, for m a stratum of a submanifold with corners The Cr * extension of m 69, 206

M(x,IQ 142

M0(IQ 148

(M,X) 1

Mo A linear corner 138

Nx(Zt in Zj) where Zl is a submanifold of Zj 26

NX(IUJ in I) (= NX(Z(IUJ) in Z(I))) 26

N(L(IUJ) in L(I)) (=NX(L(IUJ) in L(I)) any x6L(IUJ)) 154

Nxx- 189

n!,n2,.. Independent vectors 7

P(C), for C a closed convex set Projection onto C 8

P(K), for K a set of indices Projection onto L(K) 11
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R,R+ Reals, positive reals

Ri 181

Rn n-dimensional Euclidean space 7

s.c.(I;IU J), for I,J sets of indices 59

s.c.d. = abbrn. for subcorner decomposition 63

SOj(x,M,X) abbr. to S°(x), Sj(x,M,X) abbr. to Sj(x) 30

S°1(x),S1(x) 30

S°00(x),S00(x) 30,36

S°2(LC(I;J),X) 139

S°2(LO(K;J\K)) 141

spfp equivalent 135

spfp homeomorphism 132,125

spfp stable 136

ta(x),tu(x) 177

t* Upper time limit for domain of definition of <£(M,X)(x) 17

TXM Tangent cone to submanifold with corners M at x E M 12,15

Txm tangent cone at x to the Cr * extension of a submanifold with corners m (m could

be a stratum or a stratum closure of a submanifold with corners) and so equals the

tangent space t o m a t x G m 69,163

T(V,y), for V a neighbourhood of a point y 117

T(s,(y,Y)), for s a stratum 190

^Xlu..,Is+1) 77

Uj 183

Up A subset of M X Sa>r(M) 180

W,(x), Ws
s(x), Ws

u(x) Invariant manifolds 159

{x*-}, {x^j.} 112

X(I) 25

X(IU Jel) Cr * extension of X(IU J) to Z(I) 25

Xe Cr * extension of vector field X 28

X(M), for M a submanifold with corners Projection of X onto M 16

X(M), for Cr boundaryless M Projection of X onto M, now a Cr vector field 58,70
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Xp Vector field on R"xEo,r(R") 172

XP(M X Ha,r(M)) Projection of Xp onto M X 2Uir(M) 172

Xr 37, 87

Xs 138

XL 153

X(a), X(m), for a,m strata of a submanifold with corners Cr * vector field defined

pointwise by X(5)(x)=P(Tx&)X(x), ie Cr * extension of X(cr) to a, etc 70,206

X(a) for a a stratum of a linear corner or of a polyhedron The projection of X onto

the affine span of a, 84

Z,Z+ Integers, positive integers

Z(f1,..,fk), for independent functins fi,.,^ abbr. to Z(I) if I = (l,..,k) Set of common

zeros of fx,.., fk 14

Z(IUJ,I,a) 24

ZN(f1,..,fk;fk+1,..,fk+Jabbr. to ZN(I;J) if I=(l , . . ,k) , J=(k+l , . . ,k+m) 15

Z N P ^ I K J - . K J ) a subcorner 15

ZP(f ls..,fk;fk+1,..,fk+Jabbr. to ZP(I;J) if I = (l,.. ,k), J = (k+l , . . ,k+m) 15

ZpNP(I;J) (=ZN(I;J)xH;u,r(R
n)CRnxSu,r(R

n) ) 172

A(m), for m a stratum of a ^(M,X)-compatible stratification 184

a(x) 177

/3 Cr map defining a submanifold with corners locally 12

i y ^ relative to V2) for V, a submanifold of V2 58

rk
x(K! r K2) abbr. to T&LX r K2) 58,62

rk(3-i r a2) 70

T^CK! r K2) 94

P(V,X) A classical tangency set 70

7 A periodic orbit 204,212
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Soo(M), H r̂QH) for M a submanifold with corners, H a polyhedron 69

Sc'CM), SUir'(H) for M a submanifold with corners, H a polyhedron 70

S'(M) 95

HL,i"(M), SU / (M) 172 .

«0.+i) 80

nx(=Rnx{X}CR°xSo , r(RQ)) 172

n ^ . Affine span of {nx,nx.} in RDxSu,r(R
n) 189

S (in context of <£(M,X)-compatible stratifications) 178

2. 174

£.p 174

a, a{ etc Strata

a, for a a stratum of a submanifold with corners Cr * extension of a 69,206

a, for a a stratum of a polyhedron Affine span of a 84, 172

cr(x) Stratum containing x 135

<j>x, for X a vector field integral flow of <f> 190

<£X(K), for X a vector field and K a set of indices Cr * integral flow of X(K) 190

4>(T) (= abbr. for <£X(I)) Cr * integral flow of X(I) 26

<£(IU Jel) Cr * integral flow of X(IU Jel) on Z(I) 26

4>\ for (̂  a flow Time t map of 0 71, 190

<£(M,X) abbr. to <£(M) (and once or twice to $(X)) Integral semiflow of X(M) 17

4>(M,X)(x) A trajectory of X(M) 17

^>(M,X)(x,t) A point on the trajectory <̂ >(M,X)(x) 17

<£(M)(x,[0,t)) A trajectory segment 17

<£(M,X)-compatible stratification of UCM 176

0P 172

(f>p(M x Su>r(M)) Integral semiflow of XP(M x Ha>r(M)) 172

w(x) 177
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Other

C*, for C a set Polar cone to C 9

r , for f a function Pull back by f

/3.Y, for (3 a function Push forward of Y by j3 14

X | V, for V a set X restricted to V 14

0 Zero vector 20

(v!,v2) Euclidean inner product 7

| v | Norm of a vector 7

| J | Number of elements in the set of indices J 8

| <HM)(x,[0,h)) | 115

© A stratification 7

(^(U.X) A <£(M,X)-compatible stratification 176

3(x) The iteration 80

$sA(c), for c a contacting sequence An iteration set 82

S;(x) The ith pair of iterates formed by the iteration 56

a, for a a stratum of a submanifold with corners The Cr extension of a 69,206

A, for A a stratum of a linear corner see under A

m ^ m j , for mIf m2 strata of a <£(M,X)-compatible statification 187

m1=>xm2 abbr. to mi=>m2, for mb m2 strata of a <£(M,X)-compatible

statification 187

a Closure of a

dA Boundary of A

AT, for A a matrix The transpose of A 13

<\\ Transverse

x time derivative

* Cr if the data is Cr (r= oo or u)
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Index

Absolutely continuous function 17

Active vector field 157

Admissable subset 17-18

Affine span 10,84

Algorithm 84

Algorithm sequence 82,87

Box 192

Canonical r-funnel 45

Characterisation of Projection 8

Characterisation of Projection for a linear subspace 9

Closed (linear) corner 7

Constant system 138

Constant vector field 83

Contracting sequence of (pairs of) sets of indices 82

Convex hull of a set of points 9

Convex hull of a set of strata of a corner 59

Diagram of the straightening out 148

Differentiably equivalent semiflows 81, 132-3

Differentiably stable, etc 133

Domain of the local representation of a submanifold with corners 15

Equivalent invariant curves 137

Equivalent points 138

Flow preserving 135

Funnel 45

Generalised tangency set abbreviated to tangency set (q.v.) 58, 62

Idempotent 9

Independent functions 14

Infinite order tangency, infinitely tangent flows 44,99-100, 117

Inner vector field 16

Interior intersection of a collection of sets of subcorners 59

Invariant curve 137
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Invariant manifolds 159-60

Iteration 30

Iteration sets 82

Linear corner 15,7

Linear system 152

Linear extension 192

Linearization 159

Locally differentiably stable 133

Locally spfp stable 136

Local representation of a submanifold with corners 15

Locally finite stratification 7

Normal spaces 26

Order of tangency between flows at a point 68

Orthant 6

Partition (of a pair of sets of indices) 166

Path between sets of indices 65

Polar cone 9

Polyhedron 69

Polyhedron with orthogonal corners 171

Polynomial vector field 69

Positive time sequence (on a partition) 166

Projection operator, projection 8

Recurring set of strata 97

Regular trajectory 207

Regular zero 157

Relatively open corner 7

Self-adjoint 9

Semidynamical system 5

Semiflow 5

Straightening out 138, 142

Stratification 7

Stratum 7

Stratum preserving 135

Stratum preserving flow preserving, abbr. to spfp 135
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spfp equivalent 135

spfp stable 136

Stable manifold (of a zero, classical) 157

Stable manifold (of a zero) 159-60

Strictly active stratum (for a constant vector field on a linear corner) 83

Subcorner (linear) 7

Subcorner 15

Subcorner decomposition (of a collection of sets of strata) 59

Subdivision of partition 167

Submanifold with corners of Rn 12

Submanifold with orthogonal corners of Rn 41

Tangent cone (to a submanifold with corners at a point) 12, 15

Tangent space (to a submanifold with corners at a point) 12, 15

Tangency set 58, 62

Trajectory of X(M) at x 17

Trajectory segment 100

Type I and II strata 176

Unstable manifold (of a zero) 157

Vector field (on a submanifold with corners) 13


