Holozäne Küstenentwicklung im Raum Darss-Zingst-Hiddensee und das Zusammenspiel von Eustasie, Neotektonik und Sedimentzufuhr

I N A U G U R A L D I S S E R T A T I O N

zur Erlangung des akademischen Grades eines doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald

> vorgelegt von Michael Naumann geboren am 17. September 1980 in Neubrandenburg

Greifswald, den 13. April 2012

Dekan:Prof. Dr. Klaus Fesser1. Gutachter:Prof. Dr. Reinhard Lampe2. Gutachter:Prof. Dr. Horst SterrTag der Promotion:08. November 2012

Vorwort und Danksagung

"Heute ist ein guter Tag zum Tauchen"

ein freundlicher telefonischer Ratschlag aus dem Institut Greifswald

Dieser Ratschlag diente dem Zweck, das Bohrgestänge über dem Grund des Boddengewässers abzuschrauben, während die Kolben-Liner-Bohrsonde in dicht gelagerten, pleistozänen Decksanden fest steckte (07. Aug. 2007, Bohrung: Werder Inseln 14 – Offshore). Daraufhin konnte eine Rückkehr ans Festland mit dem Bohrponton "Boreas" realisiert und am nachfolgenden Tag die Sonde mit zusätzlicher Unterstützung eines Hydraulikziehgerätes von 20 t Hubkraft geborgen werden.

An dieses und an die vielen weiteren Erlebnisse während der Geländekampagnen erinnere ich mich gern zurück und möchte in erster Linie meinen Betreuern Prof. Dr. Reinhard Lampe vom Institut für Geographie und Geologie, Ernst-Moritz-Arndt-Universität Greifswald (EMAU), und Prof. Dr. Jan Harff von der Sektion Marine Geologie, Leibniz Institut für Ostseeforschung Warnemünde (IOW) danken, die eine Bearbeitung dieses Themas ermöglichten und mich stets mit konstruktiven Anregungen für die vorliegende Arbeit unterstützten. Ihnen, sowie den weiteren Mitantragsstellern und Projektmitarbeitern des SINCOS-II Projekts (2006–2009) sei für die gute und horizonterweiternde interdisziplinäre Zusammenarbeit ebenfalls gedankt. Bei der Deutschen Forschungsgesellschaft (DFG) bedanke ich mich für die Finanzierung des Projektes und meiner Arbeit.

Für die technische Unterstützung während der Bohrarbeiten richtet sich mein Dank an eine Vielzahl von Personen, allen voran Johann Bastrop (stud. Hilfskraft, EMAU Greifswald), der mir bei den sowohl technisch-logistisch anspruchsvollsten als auch zeitaufwendigsten Bohrungen auf dem Windwatt, den angrenzenden Barriere-Inseln sowie in den Flachwasserzonen auch in schwierigen Situationen stets motiviert zur Seite stand. Jürgen Becker (EMAU Greifswald) sorgte für gut funktionierende Bohrtechnik und unterstützte vor allem als Schiffsführer der FS "Bornhöft" die Erkundungen in den rückseitigen Boddengewässern und vorgelagerten Schorre-Bereichen des Zingsts. Die IOW-Mitarbeiter Andreas Frahm und Michael Pötzsch bedienten das Vibrationskern-Bohrgerät an Bord der FS "Prof. Albrecht Penck" mit Hilfe der Crew unter der Schiffsführung von Uwe Scholz. Zusätzlich halfen Studenten des Instituts für Geographie und Geologie der Universität Greifswald während zweier physisch-geographischer Kartierpraktika im September 2007 auf Hiddensee sowie im Juni 2008 auf dem Darss und dem westlichen Teil des Zingsts das Bohrgitter zu verdichten.

Für die Möglichkeit zur Durchführung von geophysikalischen Messungen im vorgelagerten Seegebiet der südlichen Ostsee bedanke ich mich bei den Kollegen der Sektion Marine Geologie am IOW. Die Oberflächenerkundung mittels Side-Scan-Sonar wurde von Dr. Franz Tauber ausgeführt, und Dr. Rudolf Endler sowie Gerald Nickel stellten ein Sediment-Echolotsystem zur Darstellung von Lagerungsstrukturen im oberflächennahen Untergrund bereit. Dr. Grit Büttner (EMAU Greifswald) danke ich für die zur Verfügung gestellte Georadartechnik und die zahlreichen Hinweise zur Optimierung des Postprocessings.

Die Probenbearbeitung und Auswertung im Labor erhielt vielseitige und tatkräftige Unterstützung von Dr. Hinrich Meyer und Hannelore Rabe (EMAU Greißwald), für die ich mich herzlich bedanken möchte. Prof. Dr. Wolfgang Janke (EMAU Greißwald) verdanke ich Diatomeenanalysen an kalkfreien, schwierig einem genetischen Ablagerungsmilieu zuzuordnenden Sandablagerungen und anregende Diskussionsbeiträge, die in Teilgebieten wesentlich zur genaueren Definition der Teufenlage der marinen Basis geführt haben.

Mithilfe institutsübergreifender Kooperationen konnte der zeitliche Entwicklungshorizont des Nehrungssystems durch die Arbeit von Prof. Dr. Frank Preusser (damals Institute of Geological Sciences, Universität Bern) und Tony Reimann (Leibniz Institut für Angewandte Geophysik in Hannover, Abk. LIAG) anhand zahlreicher optisch stimulierter Lumineszenz-Datierungen (OSL) genauer gefasst werden. In dem Zusammenhang konnte ich während eines zweiwöchigen Aufenthalts an der Universität Bern einen tiefgreifenden Einblick in die OSL-Labormethodik beim Aufbereiten eigener Proben gewinnen. Beiden sei herzlich für ihr umfassendes Engagement gedankt.

Meinen Kollegen Anke Barthel, Dr. Gösta Hoffmann, Dr. Sebastian Lorenz, Mathias Küster, Dr. Ulrich Asprion und Dr. Carsten Schwarz sei für ein stets offenes Ohr und unzählige fachliche sowie persönliche Diskussionen besonders gedankt.

Ein "retardierendes Moment" trat mit dem Aufbruch nach Hannover und dem vorzeitigen Wechsel in das wirtschaftsnahe Großprojekt "Geopotenzial Deutsche Nordsee" zu Beginn 2009 ein. Es zeigte allerdings mit etwas Distanz betrachtet neue Blickwinkel und die überregionale Wertigkeit von großflächig angelegten interdisziplinären Forschungsarbeiten wie SINCOS, erhöhte jedoch neben vollberuflicher Tätigkeit den Schwierigkeitsgrad der Fertigstellung.

Der persönlichste Dank gilt meinen Eltern für ihre stete Unterstützung. In der letzten Zeit gilt dieser Dank in besonderem Maße meiner jungen Familie mit Ehefrau Kathrin sowie den Kindern Klaas und Maila, die mir familiär häufig "frei" gaben und damit wesentlich zur Fertigstellung der vorliegenden Arbeit beitrugen.

INHALTSVERZEICHNIS

Vorwort und Danksagung

Kapitel 1 - Ziele der Untersuchung	Seite 1
Kapitel 2 - Grundlagen und theoretische Hintergründe	Seite 3
2.1 Geographisch-geologischer Überblick	Seite 3
2.2 Neotektonische- und glazialisostatische Tendenzen im	
Untersuchungsraum	Seite 6
2.3 Verlauf der Meeresspiegelentwicklung	Seite 11
2.4 Modelle der Nehrungsentwicklung und frühere Arbeiten	
zur Küstenentwicklung im Gebiet	Seite 14
Kapitel 3 - Methoden	Seite 22
3.1 Kartierung	Seite 22
3.1.1 Bohrungen und Profilaufnahme	Seite 24
Rammkernsondierungen mit halboffenen Sonden	
Kolben-Liner-Kernbohrungen	
Vibrationskerngerät	
Klassifizierung der Sedimente und Beprobung	
3.1.2 Geophysikalische Messungen	Seite 29
Side-Scan-Sonar	
Sedimentecholot	
Georadar	
3.1.3 Lage und Höhenbezüge	Seite 34
3.2 Laborarbeiten	Seite 34
3.2.1 Korngrößenverteilung	Seite 36
Trockensiebung	
Laseroptische Partikelanalysen	
3.2.2 Glühverlust	Seite 37
3.2.3 Wassergehalt	Seite 37
3.2.4 Paläomilieuanalysen	Seite 37
Analysen der Makro- und Meiofauna	
Diatomeenanalysen	
3.2.5 Geschiebezählungen	Seite 39
3.2.6 Geochronologische Methoden	Seite 39
Radiokohlenstoff-Datierung	
Optisch stimulierte Lumineszenz	
3.3 Auswertung, Modellierung, Visualisierung	Seite 42

Kapitel 4 - Geologischer Aufbau des Arbeitsgebiets	Seite 43					
4.1 Lithostratigraphie und geologische Normalabfolge der Sedimentation						
4.2 Das südliche Festland						
4.3 Die rückseitigen Boddengewässer						
4.4 Nehrungen und Inseln	Seite 55					
4.4.1 Der Darss	Seite 55					
4.4.2 Der Zingst	Seite 59					
4.4.3 Das Windwatt und Barriere-Inseln	Seite 62					
4.4.4 Die Insel Hiddensee	Seite 68					
4.5 Das angrenzende Seegebiet der südlichen Ostsee	Seite 72					
Kapitel 5 - Modellierung der Transgressionsbasisfläche (marine Basis)	Seite 81					
5.1 Datenbasis						
5.2 Modellierung	Seite 82					
Kapitel 6 - Volumenkalkulation der marinen Sedimentakkumulation	Seite 88					
6.1 Räumliche Verteilung des Gesamtvolumens	Seite 88					
6.2 Volumenverteilung der Faziestypen anhand von Beispielregionen	Seite 91					
Kapitel 7 - Geochronologische Einordnung der Sedimentablagerungen	Seite 93					
7.1 Radiokohlenstoff-Datierung (AMS)	Seite 93					
7.2 Optisch stimulierte Lumineszenz (OSL)	Seite 96					
Kapitel 8 - Genesemodell für den Raum Darss-Zingst-Hiddensee	Seite 107					
Kapitel 9 - Synthese und Ausblick	Seite 114					
Zusammenfassung	Seite 121					
Summary	Seite 124					
Literaturverzeichnis	Seite 127					
Abbildungsverzeichnis	Seite 141					
Tabellenverzeichnis	Seite 144					
Anhang						
A – Sedimentaufschlüsse						

- B Geophysikalische Messungen
- C-Laborergebnisse
- $D-Datenbasis \; der \; Modellierung$
- E Eidesstattliche Erklärung

Kapitel 1 - Ziele der Untersuchung

Die geologische Entwicklung der Küstenzone ist aus demographischer Sicht von übergeordneter Bedeutung. Im weltweiten Vergleich liegen etwa 65 % der Großstädte (>2,5 Mio. Einwohnern) in Küstengebieten (OUMERACI 2001). Nach aktuellen Schätzungen leben etwa 200 Mio. Küstenbewohner unterhalb von 5 m NHN mit steigender Tendenz auf etwa 400-500 Mio. gegen Ende des 21. Jahrhunderts (MARIBUS, Hrsg. 2010). Klimastudien des Intergovernmental Panel on Climate Change (IPCC) prognostizieren je nach zugrunde gelegtem Emissionsszenario einen globalen Meeresspiegelanstieg von 0,18 m bis 0,59 m bis zum Jahr 2100 (IPCC 2007). SCHIRMER et al. (in Lozán et al., Hrsg. 2011) diskutieren Forschungsergebnisse einer großen Anzahl von Autoren, die einen wesentlich beschleunigteren Anstieg vorhersagen. So sind nach Aussagen von GRINSTED et al. (2009) die Angaben des IPCC (2007) etwa dreifach unterschätzt. Aus diesen Zukunftsszenarien lässt sich die Sicherheitsproblematik des Siedlungsraumes Küste erkennen. In Deutschland sind laut internationalem Vulnerabiltätsvergleich etwa 3,5 % der Fläche und 2,8 % der Einwohner durch diese Auswirkungen gefährdet (BEHNEN 2000). Die deutsche Nord- und Ostseeküste wird als besonders vom Meeresspiegelanstieg betroffener Küstenabschnitt klassifiziert (KELLETAT 1999, MARIBUS, Hrsg. 2010).

Rezente Morphodynamik und damit verbundene Küstenschutzbestrebungen rücken daher im globalen Kontext in den Focus und stellen zukünftig in noch stärkerem Maße Daueraufgaben dar. Im regionalen Maßstab, bezogen auf das Gebiet der südlichen Ostsee, wird das Gefahrenpotenzial in einigen Teilen zusätzlich durch glazio-isostatische Absenkungsprozesse verschärft. Paläogeographische Studien sind notwendig, um Grundlagendaten und lokales Systemverständnis über Änderungsprozesse der Küstenmorphologie zur Verfügung zu stellen, auf deren Basis zukünftige Entwicklungen abgeschätzt werden können.

Im Rahmen des interdisziplinären Verbundprojektes mit dem Akronym SINCOS, das ausgeschrieben "Sinking Coasts: Geosphere, Ecosphere and Anthroposphere of the Holocene Southern Baltic Sea" bedeutet, wurden die Interaktionen zwischen Klima, Geosystem, Ökosystem und Sozioökonomischen System an der südlichen Ostseeküste im Verlauf der letzten 9.000 Jahre näher untersucht (HARFF et al. 2005). Das Projekt erstreckte sich von 2002 bis 2009 über zwei Phasen. Die vorliegende Arbeit ist in das Teilprojekt "Analyse der Küstenentwicklung anhand von Raum und Zeit Modellierung" integriert. Hiermit steht die Entwicklung einer Vielzahl von Nehrungen entlang der deutschen Ostseeküste in Abhängigkeit von dem glazial geprägten Ausgangsrelief und nacheiszeitlichem Meeresspiegelanstieg im Zusammenhang. Der entstandene Akkumulationsraum wurde zu terrestrischen Landformen aufgefüllt, gebunden an die lokale Verfügbarkeit erodierten Materials aus nahe gelegenen Kliffen sowie küstennahen Flachwasserzonen und deren Transportsystemen. Die Beschreibung dieser Landschaftsgenese

1 _

bildet den Schwerpunkt der Untersuchungen und dient zur Charakterisierung der rezenten Entwicklungsphase, des Stabilitätszustandes oder der Ableitung zukünftiger Küstenveränderungen. Das Arbeitsgebiet umfasst das Nehrungssystem Darss-Zingst, die Insel Hiddensee, das angrenzende Seegebiet der offenen Ostsee, rückseitige Lagunen und die Anbindung an das südliche Festland. Für diesen Raum soll der interne geologische Aufbau der holozänen Ablagerungen untersucht und ein flächendeckendes Modell der Sedimentationsbasis erstellt werden. Das akkumulierte Sedimentvolumen resultiert aus Energiezufuhr, Küstenerosion und Materialtransportprozessen. Speziell die Sedimentquelle und auch die Transportrichtung bilden die entscheidende Fragestellung für das Genesemodell. In diesem Küstengebiet, insbesondere im Teilbereich Zingst, ist die potenzielle Materialbereitstellung durch den Rückgang nahe gelegener pleistozäner Kliffbereiche stark eingeschränkt. Im Vergleich ragen Kliffe teilweise über 40 m NHN in direkter Nähe von umliegenden Nehrungsbildungen der Inseln Rügen und Usedom auf. Nach aktuellen Studien zur Sedimentbilanz ist die Größe des Liefergebietes in Korrelation von Abrasionsraten und Volumina der Nehrungen für diese Bereiche schlüssig (Hoffmann & Lampe 2007). Die pleistozänen Erhebungen des Fischlandes und Altdarss weisen eine wesentlich geringere Ausdehnung auf. Sie können lediglich Teile des akkumulierten Volumens bereitgestellt haben, die zur Aufschüttung des rezenten Nehrungssystems Fischland-Darss-Zingst führten (Abb. 2.1 - Kartendarstellung B, vgl. Kliffsignaturen). Zusätzliche morphologische Strukturen sind als Liefergebiet für eine ausgeglichene Sedimentbilanz notwendig, deren potentielle Lage eine der Kernfragestellungen während der Kartierung des in weiten Teilen bisher gering untersuchten Raumes bildet. Generell müssen in diesem Gebiet zusätzliche Prozessmechanismen gewirkt haben, die vom allgemein gültigen Modell einer durch Küstenlängstransport dominierten Nehrungsgenese an der südlichen Ostsee abweichen. Zusätzlich ist die Gezeitenbeeinflussung für das Arbeitsgebiet zu vernachlässigen, wodurch die Interaktion der zwei Parameter Meeresspiegelanstieg und Sedimentverfügbarkeit modellhaft untersucht werden kann. Diese Erkenntnisse können anschließend in weitaus komplexer agierenden Küstenbereichen genutzt werden, um weitere Parameter wie z.B. das Wirken von Gezeiten besser aufzulösen.

Zusammengefasst werden in der vorliegenden Studie folgende Aspekte näher untersucht:

- Kartierung der holozänen Ablagerungen im Untersuchungsgebiet
- Erstellung der Transgressionsbasisfläche (weitgehend auch Holozänbasis) als Grundlage für weiterführende Modellierungen der Sedimentdynamik
- Abschätzung des im Holozän umgelagerten Sedimentvolumens
- Untersuchung möglicher Materialtransportsysteme, die zum Aufbau der rezenten Küstenmorphologie geführt haben
- Ableitung eines schlüssigen Modells der paläogeographischen Entwicklung für den Gesamtraum Darss-Zingst-Hiddensee

Kapitel 2 - Grundlagen und theoretische Hintergründe

2.1 Geographisch-geologischer Überblick

Das Untersuchungsgebiet Darss-Zingst-Hiddensee befindet sich im Zentrum der nordostdeutschen Küste an der südlichen Ostsee. Im Kartenabschnitt (B) der Abbildung 2.1 ist die geographische Lage des Küstenabschnittes von rund 54,5° nördlicher Breite und 12,5° östlicher Länge sowie die lokale morphologische Situation dargestellt.

Abb. 2.1: Lage des Untersuchungsgebietes. Der Kartenausschnitt (B) zeigt die morphologische Situation an der nordostdeutschen Ostseeküste und die Zuordnung der geographischen Lage in Nordeuropa, während die Karte (A) das Untersuchungsgebiet Darss-Zingst-Hiddensee detailliert abbildet.

Generell ist das Relief in Aufragungen pleistozänen Ursprungs im Wechsel mit nur knapp über dem Meeresspiegel aufgeschütteten holozänen Barrieresystemen (Barriere-Inseln, Hakenbildungen, Nehrungen und aufwachsende Windwatten) stark gegliedert. Diese jungen Küstenabschnitte bestehen zu großen Anteilen aus Sandablagerungen mit nur geringem kiesigen Nebengemenge (Abb. 2.1 - gepunktete Flächensignaturen). Die Kliffbereiche und das Küstenhinterland sind hauptsächlich aus Moränenmaterial (Geschiebemergel /-lehm, auch als "till" aus dem Englischen bezeichnet) und anderen glazialen Ablagerungen des Gletschervorfeldes (glazifluviatile Sande, glazilimnische Tone, Schluffe und Sande, sowie Flugsanddecken) aufgebaut. Eine Ausnahme bilden die kreidezeitlichen Aufschiebungen der Halbinsel Jasmund im Osten der Insel Rügen. Diese Gebiete weisen im Gegensatz zu den Nehrungssystemen nur geringmächtige Holozänauflagen auf und sind insgesamt nur wenig überprägt worden. Infolge der Küstenentwicklungsprozesse wurden in rückseitiger Lage dieser neu entstandenen Barrieren eine Vielzahl an Lagunen von der offenen Ostsee abgegrenzt, die im lokalen Sprachgebrauch als "Boddengewässer" bezeichnet werden. Die holozänen Küstenabschnitte verdanken ihre Existenz zum größten Teil der im Küstenlängstransport verlagerten Sedimentmassen aufgrund von Abrasion der sandigen oder lehmigen Steilufer entlang pleistozäner Aufragungen. Kliffbereiche, an denen die jungen Barrieren anknüpfen, dienen als Aufhänger und Drehpunkte. Dort unterliegen benachbarte proximale Nehrungsteile rezent ebenfalls dem Küstenrückgang. Die Entwicklung distaler Nehrungsbereiche verhält sich hingegen anders. Sie ist lokal abhängig von der Wellendynamik, Sedimentzufuhr und dem Volumen bzw. der Tiefe des zu füllenden Akkumulationsraumes.

Das Nehrungssystem Fischland-Darss-Zingst ist eine von Südwest nach Nordost und anschließend von West nach Ost in der Form eines stumpfen Winkels verlaufende Halbinsel, die nach Südwesten mit dem Festland verbunden ist (Abb. 2.1: Kartenausschnitt A). Das Fischland schließt dort direkt an die Steilufer der Rostocker Heide an. Diese Nehrungen verbinden einzelne pleistozäne Aufragungen (auch als Inselkerne bezeichnet) von unterschiedlicher räumlicher Ausdehnung und Erhebung, die noch heute aus den holozänen Ablagerungen hervorstechen oder von ihnen während des anhaltenden Meeresspiegelanstiegs begraben wurden. Das Fischland (A) und der Altdarss (B) stellen die primären Inselkerne dar, die aus spätweichselzeitlichen Beckenablagerungen bestehen (KAISER 2001). Der Vor- /Neudarss (1) verbindet diese beiden und setzt sich als Hakenbildung mit einer Abfolge von Strandwällen, sowie vermoorten Riegen oder durch Verlandung gekennzeichneter Strandseen nördlich des Altdarsskliffs fort. Östlich des Darss schließt sich die Nehrung Zingst an, die in der Vergangenheit durch das Seegatt des Prerower Stroms losgelöst existierte und erst durch dessen künstliche Schließung im Jahre 1874 (BILLWITZ & PORADA, Hrsg. 2009) Anbindung erhielt. Der Zingst ist eine in weiten Teilen relativ flache, unstrukturierte Meeressandebene. Die Geländehöhen variieren in eingedeichten Flächen nahe der rückseitigen Boddengewässer von knapp unterhalb des Meeresspiegels bis zu 1–2 m NHN in verdünten Bereichen entlang der nördlichen Küstenlinie der Ostsee. Die höchsten Erhebungen sind zwei Dünengürtel: Hohe Düne Prerow und Hohe Düne Zingst. Die Hohe Düne Prerow liegt im Westteil und ist bis zu 10 m NHN, die Hohe Düne Zingst an der Ostspitze in der Nähe des Seegatts Pramort ist 8–9 m NHN hoch (nach DGM 50, MEYER et al. 2008). Im Osten schließt sich eine Windwattfläche von etwa 25 km² an. Deren Höhenlage schwankt in Abhängigkeit von Windstärke und -richtung zwischen knapp über dem Meeresspiegel bis 0,5 m Wasserbedeckung. Entlang der Südgrenze des Windwatts ziehen sich die Inselkette der Werder (7 & 8) und die Insel Bock (9), die von weiteren kleineren Seegatten unterbrochen werden. Die Küstenlinien dieser Inseln folgen der West-Ost Ausrichtung des Zingst. Im Süden wird das Lagunensystem der Darss-Zingster Boddenkette von der Halbinsel Fischland-Darss-Zingst zur offenen Ostsee abgegrenzt. Von West nach Ost ziehen sich der Saaler Bodden, der Bodstedter Bodden, der Barther Bodden sowie der Grabow und der Kubitzer Bodden, die alle miteinander verbunden sind. In den überwiegend sehr flachen Gewässern reicht die Wassertiefe bis maximal -3 m NHN. Neben einer Reihe von Untiefen sind in diesen Lagunengebieten holozäne Bildungen auch über den Wasserspiegel hinaus aufgewachsen, wie z.B. die Hakenbildung Bliesenrade (2), die Inseln Kirr (3) und Oie (4), die Salzwiese Graue Wiese (5) und andere.

Auf dem südlich angrenzenden Festland dominieren pleistozäne Ablagerungen, mit Ausnahme einiger kleinerer Holozänbildungen in Uferbereichen der Boddengewässer (Bsp. Graue Wiese). Sowohl in östlichen Gebieten der Ortslage Barth als auch an der Südgrenze des Untersuchungsraumes steht an der Oberfläche in geringer Mächtigkeit von durchschnittlich 2 m Geschiebelehm /-mergel an, der nach Angaben von JANKE (2005) Grundmoränenablagerungen des Mecklenburger Stadiums der Weichselvereisung zugeordnet wird. Liegend lagern mächtige Sande, die sowohl Vorschüttsande desselben Eisvorstoßes als auch ältere Schmelzwassersande sein können. Das westlich gelegene Gebiet wird als Barther Heide bezeichnet. Dort stehen glazilimnische bzw. glazilimnisch-fluviatile Beckensedimente an. Zusammen mit den Oberflächenvorkommen des Altdarss und großen Teilen des Fischlandes lassen sie sich auch im Untergrund der Boddengewässer sowie des westlichen Zingsts bis in das Gebiet der Ostsee verfolgen. Sie bilden ein zusammenhängendes, großes Seebecken, das nach KAISER (2001) vermutlich eine Fläche von mehr als 700 km² einnahm. Dieser Eisrandsee wird dem Rückzug des Mecklenburger Stadiums mit einer längeren Existenz bis in die frühe spätglaziale Folgezeit zugeordnet (KAISER 2001, JANKE 2005, BILLWITZ & PORADA, Hrsg. 2009).

Die Insel Hiddensee stellt mit seinen rückseitigen Lagunen Schaproder und Vitter Bodden die östliche Grenze des Untersuchungsraumes dar. Hiddensee besteht im Norden aus dem Dornbusch (D), einem 72,5 m NHN aufragenden pleistozänen Inselteil mit nach Nordwesten steil abfallender Kliffküste sowie daran nach Südosten aufgehängten Hakenbildungen Alt-Bessin (11) und Neu-Bessin (12). Der Hauptteil der Insel schließt sich nach Süden gerichtet an den Dornbusch an und mündet mit dem Gellen (10) sowie einer unter Schutzwirkung des Bocks

entstandenen Windwattfläche in den Kubitzer Bodden. Im Zentrum stützt die Fährinsel (C), eine kleine Pleistozänaufragung im rückseitigen Bodden, die morphologische Ausrichtung der Nehrung gegenüber der größtenteils aus westlichen Richtungen einwirkenden Wellendynamik. Die Geländehöhe weist Maxima von 4–5 m NHN auf und ist im Mittel signifikant höher als die Situation auf dem Zingst. Die Oberflächenstrukturen variieren vielfältig zwischen auffälligen Strandwallfächern, Dünenbildungen, Vermoorungen und rückseitigen Salzwiesenlandschaften.

Das angrenzende Küstenvorfeld der südlichen Ostsee weist in weiten Teilen eine flach abfallende Schorre mit Neigungswinkeln von rund 0,05° auf und dehnt sich bis zur gegenüberliegenden Küste Dänemarks aus. Dieses Gebiet von größtenteils sandiger Oberflächensedimentverteilung wird als Falster-Rügen-Platte bezeichnet. Sie ist im Zentrum nur durch die schmale, bis -32 m NHN eingeschnittene Kadetrinne unterbrochen. Die Bathymetrie fällt nach Westen über die Darsser Schwelle (gedachte Linie Darss-Falster) in die zentrale Mecklenburger Bucht ab. Nordöstlich schließt sich im Norden Rügens das Arkona-Becken an. Die bathymetrische Situation wird in den Karten der Abbildung 2.1 anhand des Verlaufs der -5 m, -10 m und -20 m Isobathen deutlich. Eine charakteristische morphologische Struktur in äußeren Teilen des Untersuchungsgebietes ist der von pleistozänen Restsedimenten geprägte Plantagenetgrund.

Insgesamt betrachtet umfassen die quartären Ablagerungen Mächtigkeiten zwischen 50–100 m im Untersuchungsgebiet (KAISER & LAMPE, in BILLWITZ & PORADA, Hrsg. 2009). Pleistozäne Sedimente der Elster- und Saale-Inlandvereisungen bilden dabei den größten Volumenanteil, während weichselzeitliche nur in geringen Mächtigkeiten auflagern. Der tiefere geologische Untergrund des Arbeitsgebietes besteht aus Sedimentgesteinen des Tertiärs, der Kreide und des Juras. Die geologische Entwicklung von der Erdurzeit bis zum Quartär wird zusammenfassend für den nordeuropäischen Raum zuletzt von ŠLIAUPA & HOTH (in HARFF et al., Hrsg. 2011) zusammenfassend beschrieben. Ein detailliertes lokales Bild liefert zum Beispiel KATZUNG (Hrsg. 2004).

2.2 Neotektonische- und glazialisostatische Tendenzen im Untersuchungsraum

Generell befindet sich das Arbeitsgebiet im Übergangsbereich von Hebungen des skandinavischen Raums und Senkungen Zentraleuropas (HARFF et al. 2001 - Kartendarstellung S.244), deren Bewegungstendenzen sich nach LAMPE (2005) aus tektonischen und glazialisostatischen Komponenten zusammensetzen. Aus tektonisch-strukturgeologischer Sichtweise liegt das Untersuchungsgebiet am Nordostrand der Westeuropäischen Plattform. Nach Norden schließen sich zwei parallel verlaufende Störungszonen an, die von NW nach SO streichen. Die Kaledonische Deformationsfront verläuft etwa 30 km nördlich von Rügen und bildet den Übergang zur Osteuropäischen Plattform. Es folgt die Sorgenfrei-Tornquist-Zone im Untergrund von Südschweden, die ein internes Störungssystem dieses Kratons darstellt. Im weiteren Verlauf nach Südosten schneidet sie im spitzen Winkel die Kaledonische Deformationsfront im Küstenbereich Polens und wird ab hier Tornquist-Teisseyre-Zone genannt (KATZUNG, Hrsg. 2004 - Kartendarstellung S.11). Von dem Schnittpunkt aus bildet sie die Grenze zwischen West- und Osteuropäischer Plattform mit Ausdehnung bis ins Schwarze Meer. Neben diesen Großstrukturen ist der gesamte südliche Ostseeraum von einer Vielzahl kleinerer Bruchstörungen aus unterschiedlichen Streichrichtungen durchzogen. Für das Arbeitsgebiet sind die kartierten präquartären Störungen nach Untersuchungsergebnissen von Möbus (1996) in Abbildung 2.2 dargestellt. Er unterscheidet dabei in Anlehnung an die variscische Grundgebirgsbildung Mitteleuropas vier Streichwinkelklassen: herzynisch (NW-SO), erzgebirgisch (NO-SW), eggisch (NNW-SSO) und rheinisch (NNO-SSW).

Abb. 2.2: Bruchtektonische Störungen im tieferen Untergrund des Arbeitsgebiets (nach Möbus 1996)

Die zeitliche Veränderung des Spannungsfeldes vom Präkambrium bis ins Quartär und die daraus resultierende Entstehung von Störungen werden zum Beispiel von KRAUSS (1994), KATZUNG (Hrsg. 2004) oder zuletzt von ŠLIAUPA & HOTH (in HARFF et al., Hrsg. 2011) beschrieben. Hauptbeanspruchungen wechseln zwischen N-S und O-W gerichteten Stressgefügen. In wieweit die Bruchtektonik Einfluss auf die rezenten Krustenbewegungen im südlichen Ostseeraum ausübt, kann zum derzeitigen Untersuchungsstand nicht genau quantifiziert werden. Nach FJELDSKAAR et al. (2000) sind die postglazialen Hebungen Skandinaviens hauptsächlich isostatischen Ursprungs. Selbst wenn nur 80 % des Hebungsbetrages dieser Prozesskomponente zugeordnet werden, ergibt sich in seinen Modellierungen regional ein ähnliches Bild neotektonischer Krustenbewegungen. Er schreibt weiterhin, dass die Seismizität Skandinaviens die höchste im nordwesteuropäischen Raum ist. Aus diesen Befunden ist für das Arbeitsgebiet im südlichen Ostseeraum noch ein wesentlich stärkeres Übergewicht der Glazialisostasie in den Krustenbewegungen zu erwarten.

Zur Analyse von postglazialen Beträgen wurden entlang der Küste und im angrenzenden Seeraum an unterschiedlichen Lokationen holozäne Ablagerungen untersucht. KOLP (1979) erkundete die Schrägstellung submariner Uferterrassen und berechnete isostatische Beträge von 0 m für die Darsser Schwelle im Zuge der Littorina-Transgression. Der Südrand des Arkonabeckens hob sich um 5 m an (Abb. 2.1 – Kartenausschnitt B), während die Lübecker Bucht im Zeitraum der letzten 9.000 Jahre um 3 m absank. Er beschreibt aufgrund der fast gleichmäßigen Kippung der Terrassen ein ganz allmähliches Abklingen der isostatischen Vertikalbewegung im südlichen Ostseeraum und schlussfolgert daraus eine längere Gültigkeit der gegenwärtig feststellbaren Beträge. In einer weiteren Veröffentlichung (KOLP 1981) zeigt er einen NW-SO Verlauf der isostatische Nulllinie im Bereich zwischen Fehmarn Belt und dem südlichen Fischland. Spätere Untersuchungen zur Rekonstruktion lokaler relativer Meeresspiegelkurven ergaben im Vergleich mit Kurven anderer Gebiete, die hauptsächlich eustatische Komponenten enthalten, ein ähnliches Bild der Krustenbewegung. Die Autoren Schumacher & Bayerl (1999) untersuchten die Nehrung Schaabe im Nordosten Rügens und entwickelten eine relative Meeresspiegelkurve für dieses Gebiet. Sie wurde mit den Arbeiten von Tooley (1974) im Nordwesten Englands und der Kurve von Mörner (1980) für den Baltischen Raum, die als annähernd eustatisch beschrieben wird, verglichen. Der Vergleich zeigt für den Nordostteil Rügens einen Hebungsbetrag von etwa 6 m zwischen 7.000 und 5.000 BP an (7.850–5.715 cal. BP, kalibriert mit CalPal-2007^{online}). Diese Hebung wird für die anschließende Zeitspanne als abgeklungen mit Tendenz zur leichten Subsidenz geschlussfolgert. Der Nordwestteil Englands zeigt in der gleichen Zeitspanne eine ähnliche isostatische Bewegung. LAMPE et al. (2007, 2010) entwickelten für die drei Küstenabschnitte der Wismarer Bucht, des Fischlands und für N-Rügen/Hiddensee relative Meeresspiegelkurven. Zur Abschätzung der Krustenbewegung wurde der Meeresspiegelanstieg der belgischen Küste herangezogen (DENYS & BAETEMAN 1995, KIDEN et al. 2002). Die Region liegt tektonisch auf dem London-Brabant-Massiv und wird in Bezug auf Krustenbewegungen als relativ stabil angesehen. In Abbildung 2.3 sind die für das Arbeitsgebiet relevanten Ergebnisse von Lampe et al. (2007, 2010) vom Fischland und der Region N-Rügen/Hiddensee abgebildet. Kapitel 7 (Abb. 7.1 - B) enthält zusätzlich die zugrunde liegenden relativen Meeresspiegelkurven. Die Autoren bildeten die Hüllkurvenmittelpunkte dieser relativen Meeresspiegelkurven und subtrahierten die belgische Kurve jeweils von den drei lokalen Ergebnissen des südlichen Ostseeraums, um die Krustenbewegungen zu erhalten. Für N-Rügen/Hiddensee ergab sich auch in diesem Vergleich eine Hebung von 6 m über den gesamten Zeitraum. Das Fischland war von geringeren Krustenbewegungen betroffen, die bis etwa 5.000 cal. BP allmählich abklingen und für den anschließenden Zeitraum zu vernachlässigen sind. Anhand eines Vergleichs der Uferlinienverschiebung dieser drei Untersuchungsgebiete wird in LAMPE et al. (2007, 2010) die Aussage getroffen, dass keine größeren tektonischen Ereignisse die relative Bewegung zwischen diesen Gebieten während des betrachteten Zeitraums beeinflusste. Daher sind die Krustenbewegungen hauptsächlich glazialisostatischen Ausgleichsbewegungen zugeordnet worden.

Abb. 2.3: Erdkrustenbewegungen (überwiegend isostatisch) im Arbeitsgebiet für den Zeitraum der letzten 8.000 Jahre (nach LAMPE et al. 2007, 2010). Diese Autoren subtrahierten die Hüllkurvenmittelpunkte der belgischen relativen Meeresspiegelkurve (gilt als wenig beeinflusst von tektonischen Bewegungen) von denen der relativen Meeresspiegelkurven der Teilarbeitsgebiete N-Rügen/Hiddensee (A) und Fischlands (B). Zusätzlich sind die dazugehörigen Ausgleichskurven (gestrichelte Linien) abgebildet.

AMONTOV et al. (in HARFF et al., Hrsg. 2011) zeigen Modellierungen über absolute Beträge der Krustenbewegung für den Gesamtzeitraum nach Ende des Weichselglazials in Nordeuropa und angrenzenden Bereichen Mittel- und Osteuropas. Im Arbeitsgebiet ergab sich eine Hebung von etwa 80 m bis 90 m. Berechnungen entlang der benachbarten polnischen Küste zeigen ähnliche Hebungsbeträge (UŚCINOWICZ 2003) und stützen damit diese Modellierungen. Nach Aussagen von UŚCINOWICZ (2003) ist der Hauptanteil dieses Hebungsprozesses im südlichen Ostseeraum bereits zwischen 14.000–11.000 BP (17.250–12.910 cal. BP, kalibriert mit CalPal-2007^{online}) geschehen und wird nach 4.000 BP (4.480 cal. BP) unbedeutend.

Die rezente Krustenbewegung wurde von HARFF & MEYER (2008, 2011) großflächig modelliert und ist als Ausschnitt in Abbildung 2.4 für das Arbeitsgebiet dargestellt. Unter Verwendung neuerer Pegelmessungen und Meeresspiegelkurven aus unterschiedlichen, die Ostsee umspannenden Regionen in Kombination mit früheren Daten von EKMAN (1996) sowie DIETRICH & LIEBSCH (2000) erstellten ROSENTAU et al. (2007) eine Karte zur gegenwärtigen relativen Meeresspiegeldynamik. Um isostatische Beträge zu berechnen, wurde von dieser Datengrundlage ein eustatischer Betrag von 1,0 mm/a abgezogen, der nach HUPFER et al. (2003) relativ konstant innerhalb des letzten Jahrhunderts im westlichen Ostseeraum ist. Anschließend wurden die Ergebnisse für das Gebiet der südlichen Ostsee durch Korrekturen der Pegeldaten und weiteren Modellierungsschritten zu einem hochauflösenden Raster interpoliert (HARFF & MEYER 2008, 2011).

Abb. 2.4: Vertikale Erdkrustenbewegung während des 20. Jahrhunderts im Arbeitsgebiet (nach HARFF & MEYER 2008, 2011).

Die Karte (Abb. 2.4) zeigt einen NW-SO Verlauf der Nulllinie rezenter Krustenbewegung im Süden des Fischlands in ähnlicher Position wie zum Beispiel frühere Ergebnisse von Kolp (1981). Der Verlauf ist jedoch wesentlich differenzierter, und die Richtung schwenkt im südlich angrenzenden Festland Mecklenburg-Vorpommerns nach ONO um. Sie schneidet den zentralen Teil Usedoms und verläuft parallel zur Küstenlinie Polens. Der Norden Hiddensees weist nach diesen Ergebnissen rezent leichte Hebungstendenzen von 0,5 mm/a auf.

Anhand der vorgestellten Untersuchungsergebnisse kann die neotektonische Situation im Arbeitsgebiet insgesamt als dominiert von glazialisostatischen Ausgleichsbewegungen im Gegensatz zu geringen bruchtektonischen Einflüssen bewertet werden. Das Verhältnis zwischen beiden Prozessen ist jedoch nicht exakt quantifizierbar. Seit dem Atlantikum ist das Gebiet nur um geringe Beträge zwischen 3 m und 6 m gehoben worden (Abb. 2.3). Die Hebungsraten sind generell rückläufig, und im südlichen Raum sind Krustenbewegungen ab etwa 5.000 cal. BP zu vernachlässigen. Rezent ist das Gesamtgebiet nur von geringen Krustenbewegungen geprägt (Abb. 2.4). Der Einfluss von Neotektonik auf die Entwicklung und Größe des Akkumulationsraumes ist daher für die Zeitspanne der Genese von Barrieren im Untersuchungsgebiet (vgl. Kap. 7, 8) als gering zu bewerten, so dass er für die weiteren Betrachtungen vernachlässigt werden kann.

2.3 Verlauf der Meeresspiegelentwicklung

Die Thematik der postglazialen Meeresspiegelentwicklung im südlichen Ostseeraum ist in der Vergangenheit intensiv untersucht worden. Hauptsächlich wirkt der eustatische Anteil dieses Prozesses mit lokal unterschiedlich stark ausgeprägten isostatischen sowie tektonischen Komponenten zusammen. Neben einer Vielzahl von Detailuntersuchungen zu den Wasserständen einzelner Entwicklungsstadien sowie Zufluss- und Abflussbahnen, geben unter anderem die zusammenfassenden Arbeiten von Björk (1995), LAMPE (2005) und zuletzt ANDRÉN et al. (in Harff et al., Hrsg. 2011) einen allgemeinen Überblick. Die Wasserspiegelentwicklung im Ostseebecken ist charakterisiert durch Wechsel von Süßwasser- und brackisch-marinen Phasen mit schwankendem Wasserspiegelniveau. Anhand von sedimentologischen und biostratigraphischen Untersuchungsergebnissen wird dabei eine Abfolge von vier Hauptphasen unterschieden (Baltischer Eisstausee, Yoldia-Meer, Ancylus-See, Littorina-Meer). Abbildung 2.5 zeigt markante Zeitpunkte dieser Entwicklung nach Kartendarstellungen von Björk (1995) und Meyer (2002). Die zeitliche Einordnung variiert geringfügig zwischen einzelnen Publikationen und wurde nachfolgend aus LAMPE et al. (2010) entnommen. Zu deren Angaben in christlicher Zeitrechnung wurden 1950 Jahre addiert, um Altersangaben innerhalb dieser Arbeit einheitlich in kalibrierten Kalenderjahren (cal. BP) anzugeben.

Infolge von Klimaerwärmung setzte der Abschmelzprozess und Rückzug nach Norden der weichseleiszeitlichen Inlandvereisung um 21.000 bis 20.000 BP (etwa 25.000-24.000 cal. BP, kalibriert mit CalPal-2007^{online}) ein (EHLERS et al., in EHLERS et al., Hrsg. 2011). Dadurch entstanden eine große Anzahl marginaler Eisrandseen, die sich im späteren Verlauf zu einem überregional großen Süßwassersee vereinigten. Dieser wird als Baltischer Eisstausee bezeichnet und entwickelte sich ab 13.500 BC (15.450 cal. BP). Zusätzlich wurde er durch einmündende Flüsse, wie zum Beispiel Oder, Weichsel und Memel, gespeist. Der Wasserspiegel schwankte durch eine zwischenzeitliche Entwässerung ins Weltmeer und erneute Isolierung zwischen -15 bis -40 m NHN. Dies geschah über tief liegende Gebiete Mittelschwedens infolge des Eisrückzugs sowie einem kurzeitig erneuten Eisvorstoß im Zeitraum der Jüngeren Dryas. Der endgültige Abfluss ereignete sich um 10.200 BC (12.150 cal. BP). Die beiden Regressionen werden nach Mt. Billingen als Billingen 1 und 2 bezeichnet. Durch die erneute Verbindung zum Weltozean konnte salzreiches Wasser in den Raum eindringen, wodurch sich ein marin-brackisches Wassermilieu einstellte. Der höchste Wasserstand betrug etwa -40 m NHN. Diese Phase wird nach der marinen Muschelart Yoldia arctica als Yoldia-Meer bezeichnet und erstreckt sich zeitlich bis 8.900 BC (10.850 cal. BP).

Abb. 2.5: Hauptphasen der Ostsee-Entwicklung (Kartendarstellungen nach Björk 1995, Meyer 2002, zeitliche Einordnung nach LAMPE et al. 2010).

Landhebungsprozesse schlossen erneut diese Meerverbindung im Bereich Mittelschwedens. Durch Süßwassereintrag der einmündenden Flüsse bildete sich wieder ein limnisches Wassermilieu. Diese Phase umfasst den Zeitraum von 8.900–7.200 BC (10.850–9.150 cal. BP) und wird aufgrund der Verbreitung der Süßwasserschnecke *Ancylus fluviatilis* nach ihr als Ancylus-See benannt. Der Höchststand des Seespiegels war wissenschaftlich sehr umstritten. Während KLIEWE & REINHARD (1960) eine Ausdehnung bis weit in den Raum der Inseln Rügen und Usedom beschreiben und KOLP (1986) einen Höchststand des Ancylus-Sees von -12 m NHN prognostiziert, widerlegt LEMKE (1998) diese Theorie mit einer Angabe von maximal -18 m NHN.

Nach seiner Meinung sowie nach Auffassung von BENNIKE & JENSEN (1998) sind alle höher nachgewiesenen Süßwassersedimente, wie z.B. die von KLIEWE & JANKE (1982, 1991) in -8 m NHN, als lokale Seebildungen zu bewerten. Im weiteren Verlauf der Ostsee-Entwicklung floss dieser Großsee ins Weltmeer aus, deren lokale Entwässerungsbahn nach LEMKE (1998), LEMKE et al. (2001) noch nicht eindeutig nachgewiesen werden kann. Aktuelle Ergebnisse von FELDENS & Schwarzer (2012) weisen auf eine Schwelle westlich des Fehmarn Belt hin, die den Ancylus-See von der Nordsee trennte. Der Wasserstand nach der Regression des Ancylus-Sees betrug etwa -32 m NHN (LEMKE et al. 1998, 2001, 2002). An diesen Wasserspiegelabfall schloss sich im südbaltischen Küstenraum eine etwa 800 jährige Festlandsperiode an (KLIEWE & JANKE 1982), in der die wasserbedeckten Bereiche als Mastogloia-Meer bezeichnet werden (*Mastogloia smithii –* Salzwasser-Diatomeenart). Nach DUPHORN et al. (1995) befand sich in dieser Zeit die Spiegelhöhe auf einem Niveau von unter -22 m NHN.

Beim Abgleich der bathymetrischen Situation (Abb. 2.1) mit den bisher beschriebenen Maximalwasserständen wird deutlich, dass die frühen Phasen der Ostseeentwicklung das Arbeitsgebiet nicht beeinflusst haben können. Nachdem der postglaziale Weltmeeresspiegel um etwa 7.200 BC (9.150 cal. BP) über das Niveau niedrig gelegener Festlandsflächen der Dänischen Beltsee gestiegen war, ist das Ostseebecken dauerhaft mit der Nordsee verbunden (BENNIKE et al. 2004, Rössler 2006). Die anschließende Transgression führt zur Entwicklung des Littorina-Meeres, bezeichnet nach der Brackwasser-Schneckenart Littorina littorea. Dabei wurde die gegenwärtige Küstenlandschaft entlang der südlichen Ostsee durch intensive Sedimentumlagerungen geformt. Die Littorina-Transgression verlief in zwei Phasen mit unterschiedlichen Anstiegsraten. Zu Beginn erfolgte ein rapider Anstieg von zunächst 2,5 cm/a und im weiteren Verlauf bis 4.500 BC (6.450 cal. BP) von 0,3 cm/a, mit dem auf Rügen bereits ein Niveau von -1 m NHN bis -0,5 m NHN erreicht wurde (KLIEWE & JANKE 1982). Dieser Abschnitt mit einem durchschnittlichen Meeresspiegelanstieg von 0,9 cm/a wird von den Autoren als erste littorine Hauptphase bezeichnet. Jüngere Arbeiten zur lokalen Meeresspiegelentwicklung (z.B. LAMPE et al. 2007, 2010) bestätigen diesen Kurvenverlauf, jedoch ergeben kalibrierte Datierungen eine mittlere Anstiegsrate von etwa 0,5 cm/a für diese Phase. Der anschließende Transgressionsverlauf erfolgte für mehrere tausend Jahre mit nur sehr geringen Anstiegsgeschwindigkeiten. Für diesen Zeitraum wird in einigen Arbeiten eine oszillierende Meeresspiegelbewegung mit Wechsel von transgressiven und regressiven Phasen beschrieben (z.B. Kliewe & Janke 1982, Kolp 1982, Schumacher 2000). Die Pendelbewegung wird hingegen in jüngeren Arbeiten nicht bestätigt (LAMPE 2005, LAMPE et al. 2007, 2010). Vor etwa 1.000 Jahren begann der Meeresspiegel erneut stärker zu steigen. Die postlittorine Phase wird als Subatlantische Transgression bezeichnet und erstreckt sich bis in die Gegenwart (LAMPE & JANKE 2004, LAMPE 2005). Laut Berechnungen aus Langzeit-Pegelmessungen von Dietrich & LIEBSCH (2000) weist der Anstieg im Arbeitsgebiet rezent eine mittlere Rate von 0,7 mm/a auf (siehe Abb. 7.1 – Kartenausschnitt A).

Im Verlauf der wissenschaftlichen Auseinandersetzung mit diesem Thema wurden neben der generellen Wasserspiegelentwicklung eine Reihe von lokalen relativen Meeresspiegelkurven entlang der südlichen Ostseeküste abgeleitet. Durch die küstennahen Untersuchungsgebiete erfassen sie hauptsächlich den Verlauf seit dem Einsetzen der Littorina-Transgression. Zu den untersuchten Regionen zählen die Wismar Bucht, das Fischland, N-Rügen/Hiddensee, NO-Rügen, SO-Rügen/Usedom und die benachbarte polnische Küste (KLIEWE & JANKE 1982, SCHUMACHER & BAYERL 1999, UŚCINOWICZ 2003, 2006, LAMPE et al. 2007, HOFFMANN et al. 2009, LAMPE et al. 2010). Für das Untersuchungsgebiet sind die Anstiegskurven von N-Rügen/Hiddensee und des Fischlands in Kapitel 7 näher vorgestellt.

2.4 Modelle der Nehrungsentwicklung und frühere Arbeiten zur Küstenentwicklung im Gebiet

Allgemein sind Nehrungen, Hakenbildungen und Barriereinseln als Akkumulationskörper zu verstehen, die in Lockergesteinküsten gebildet werden können. Dieser Küstentyp umfasst nach DAVIS & FITZGERALD (2004) etwa 15 % der weltweiten Küstenlänge, dessen Verbreitung in Abbildung 2.6 als Überblick dargestellt ist. Es wird deutlich, dass Lockergesteinsküsten, mit Ausnahme der Antarktis, auf allen Kontinenten vorkommen. Die Verbreitung ist nicht an bestimmte Tideverhältnisse gebunden. An den meisten Küstenabschnitten dominieren jedoch mittlere bis geringe Tidenhübe.

Abb. 2.6: Weltweite Verbreitung von Lockergesteinsküsten (verändert nach Davis & Fitzgerald 2004)

Allgemeine Grundlagen über die Entstehung von morphologischen Formen, Hydrodynamik und Umweltbedingungen an Lockergesteinsküsten werden unter anderem von Davis (Hrsg. 1985),

CARTER (1991), CARTER & WOODROFFE (1994), PYE (1994), The Open University (Hrsg. 1999), SCHÄFER (2005), NICHOLS (2009) umfassend dargestellt. Abbildung 2.7 zeigt schematisch verschiedene Situationen entlang von Lockergesteinsküsten als Überblick. Im hinteren Bereich ist eine steil abfallende Bathymetrie im Küstenvorfeld zu sehen, wo der entsprechend große Akkumulationsraum mit nur kleinräumigen Hakenbildungen aufgefüllt und kleinere Buchten vom Meer abgetrennt wurden. Im mittleren Teil ist ein gemäßigt geneigtes Küstenvorfeld dargestellt. Durch Klifferosion und Materialverdriftung entstanden größere Nehrungssysteme und Barriere-Inseln mit dazwischen liegenden Seegatten (schmale, teilweise tief eingeschnittene Strömungsrinnen), die rückseitig Lagunen oder Strandseen vom Meer isolieren. Dieser Prozess führte zu einer stärker begradigten Küstenlinie und spiegelt die regionale Situation in der südlichen Ostsee wieder, die lokal-spezifisch vom Fischland bis zur Insel Usedom als Boddenausgleichsküste bezeichnet wird. Der Vordergrund zeigt eine Küstenebene mit einem Flusssystem, das eine Deltaschüttung als progradierende Küstenlinie ins offene Meer vorbaut.

Abb. 2.7: Morphologische Formen des Küstenausgleichs (verändert nach Roy et al., in CARTER & WOODROFFE, Hrsg. 1994)

Die allgemeingültigen Erläuterungen in diesen Werken erfolgen häufig bezogen auf Küstenabschnitte, die unter Gezeiteneinfluss stehen, der als Prozesskomponente auf den überwiegenden Teil von Lockergesteinsküsten zutrifft. Hingegen ist die Ostsee durch ihre Lage als Randmeer nur geringen Gezeiten unterworfen und wird allgemein auch als gezeitenlos bezeichnet. Zum Verständnis des lokalen morphodynamischen Systems lassen sich die Raum- und Prozessgrenzen nach COWELL & THOM (in CARTER & WOODROFFE, Hrsg. 1994) wie folgt für das Arbeitsgebiet definieren:

Die räumlichen Grenzen werden landwärts durch Ufererosionen am südlichen Festland und seewärts durch den Übergang der Falster-Rügen-Platte zu tieferen Seegebieten markiert. Das Arkona Becken im Nordosten und die Mecklenburger Bucht im Westen haben vermutlich nicht als Materiallieferanten gewirkt. Vertikal stellt die Untergrenze den Wasserstand vor Flutung des Küstenvorfelds zu Beginn der Littorina-Transgression dar, der nach LEMKE et al. (1998, 2001, 2002) bei etwa -32 m NHN gelegen hat. Die Obergrenze des Systems bilden das Meeresspiegelniveau und kurzeitige Sturmflutwasserstände, die durch Pegelmessungen der letzten 200 Jahre bis maximal 2,80 m NHN belegt sind (Sturmflut 1872). Die Tidebeeinflussung beträgt im südlichen Ostseeraum weniger als 10 cm und ist zu vernachlässigen (Staatliches Amt für Umwelt und Natur, Rostock 2009). Neotektonische und glazialisostatische Bewegungen des Untergrundes sind im Arbeitsgebiet während des betrachteten Zeitraums ebenfalls gering (vgl. Kap. 2.2). Als wirkende Prozessfaktoren verbleiben das glazial geprägte Ausgangsrelief und die postglaziale Meeresspiegelentwicklung mit wechselnden Anstiegsraten (vgl. Kap. 2.3). Nach Roy et al. (in CARTER & WOODROFFE, Hrsg. 1994) ist der Neigungswinkel des Ausgangsreliefs der sensibelste Parameter innerhalb transgressiver Küstenentwicklung. Abbildung 2.8 zeigt Simulationsergebnisse dieser Autoren von unterschiedlichen Neigungswinkeln bei gleich starkem Meeresspiegelanstieg. Dabei wurden quantitativ die Verschiebung der Küstenlinie, der Betrag des jährlich aufgearbeiteten Materials und die Größe der Barriere abgeschätzt. Generell nehmen die Werte aller Faktoren mit zunehmendem Neigungswinkel ab. Bei flachen Winkeln verbleibt das erodierte Material fast ausschließlich im Küstenraum und wird kaum in tiefere Beckenregionen abtransportiert. Damit geht eine starke Verschiebung der Küstenlinie einher. Allerdings führen laut ihren Modellierungen Neigungswinkel von unter 0,1° zwar zu einer weiter beschleunigten Verschiebung der Küstenlinie, jedoch erhöhen sich die Reibungskräfte zur Schorre. Daraus folgen tendenziell die Verringerung der angreifenden Wellenenergie und die Abnahme der Größe von Barrieren. Schlussfolgernd erhält der sehr flache Neigungswinkel des angrenzenden Küstenvorfelds im Arbeitsgebiet eine hohe Bedeutung innerhalb des Wirkungsgefüges (~ 0,05° Neigung der Falster-Rügen-Platte).

Abb. 2.8: Entwicklung von Barrieren in Abhängigkeit vom Neigungswinkel der Schorre (nach Roy et al., in Carter & Woodroffe, Hrsg. 1994).

Ein für diese Ausgangsbedingungen anwendbares Genesemodell wird von FORBES et al. (1995) beschrieben, das glazial vorgeprägte Küsten ("paraglacial coasts"), die unter Transgressionseinfluss stehen, betrachtet. Als lokales Beispiel dient die Küste der Halbinsel Nova Scotia im Südosten Kanadas. Darüber hinaus gibt es weitere Arbeiten aus dem kanadischen Raum, die im Golf von St. Lawrence oder entlang der arktischen Beaufort See unter ähnlichen Grundparametern die Küstenentwicklung untersuchen (z.B. ARMON & MCCANN 1979, HÉQUETTE et al. 1995, MANSON et al. 2005). Das Modell von FORBES et al. (1995) unterscheidet drei Entwicklungsstadien (Initial-, Reife-, Abbaustadium) und die hydrodynamischen Einflüsse von Tidenhub und Küstenlängstransport, die zur Ausprägung unterschiedlicher Küstenmorphologien führen. Neben einseitiger Beeinflussung können diese zwei Faktoren im Verlauf der Haken- und Nehrungsgenese auch variieren. Die Entwicklung stellt keinen abgeschlossenen, sondern einen zyklischen Prozess dar, der über die Meeresspiegelentwicklung und Sedimentzufuhr kontrolliert wird (BALLANTYNE 2002). Das Abbaustadium ist gleichzeitig das Initialstadium einer neuen Generation von Barrieren, die im Zuge des Meeresspiegelanstiegs landwärts migrieren und neben neu erschlossenen

Sedimentquellen aus dem aufgearbeiteten Material der vorangehenden Barrierengeneration gespeist werden.

KLIEWE & JANKE (1991) stellten ein konkretes Konzept für das südliche Ostseegebiet auf, das teilweise ähnliche Zustandsstadien beinhaltet, die aber für die Boddenausgleichsküste Vorpommerns präzisiert dargestellt sind. Sie greifen Vorstellungen von Davis (Hrsg. 1985) auf, unterteilen die Entwicklung im Vergleich zu Forbes et al. (1995) in vier Phasen (Initial-, Wachstums-, Reife-, Abbaustadium) und nennen die gleichen prozessbestimmenden Faktoren. Nach Auffassungen der Autoren hatte der zweigeteilte Verlauf der Littorina-Transgression eine hohe Bedeutung für Gestaltung der Küstenmorphologie. Der erste Abschnitt führte durch hohe Anstiegsgeschwindigkeiten zu einem Ertrinken der Landschaft, während erst nach 6.500 cal. BP durch niedrigere Anstiegsraten horizontale Ausgleichsprozesse für die Bildung von Haken und Nehrungen möglich waren. In der Initialphase kommt es zur Aufhöhung des submarinen Ablagerungsraums und Bildung von Schaaren an den Flanken pleistozäner Inselkerne, gefolgt vom Wachstumsstadium. Dort tritt der Akkumulationskörper über die Wasseroberfläche hinaus und weist einen deutlichen Längenzuwachs auf. Die Küstenlinie wird in dieser Phase als deutlich konkav beschrieben, die im Reifestadium sanft geschwungen und somit geradliniger verläuft. Das Reifestadium stellt nach ihrer Aussage sowie den Auffassungen von Forbes et al. (1995) einen Gleichgewichtszustand zwischen Sedimentation und Erosion dar. Dieser Zeitraum ist daher durch geringen Flächenzuwachs geprägt. Die Erosion während des Abbaustadiums wird für das Gebiet auf Überschwemmungen, Uferabbrüche, Rinnenbildung und Wasserdurchbrüche aufgrund von Sturmfluten beschränkt. Käme es zu einem erneut starken Transgressionsverlauf, wie während des Optimums der ersten littorinen Hauptphase, prognostizieren die Autoren ein ähnliches Ertrinken der Landschaft, wie sie es für diesen Zeitraum annehmen.

Ein weiteres Modell für diesen Raum wurde von HOFFMANN et al. (2005) vorgestellt, das allgemeingültige Ansätze mit dem bisherigen Kenntnisstand sowie neueren Untersuchungsergebnissen des lokalen Wirkungsgefüges kombiniert. Die Grundlage dafür bilden detaillierte Kartierungen auf der Insel Usedom und im Südosten Rügens. Abbildung 2.9 zeigt deren Genesemodell anhand von vier Blockbildern. Im ersten Stadium (Blockbild A) wird das Landschaftsbild vor dem Einsetzen der Littorina-Transgression gezeigt. Neben hervorstechenden glazialen Aufragungen aus Geschiebemergel wurden Senken mit gut sortierten Fein- bis Mittelsanden infolge limnischer sowie fluviatiler Prozesse gefüllt. Somit sind tiefere Reliefeinheiten eingeebnet worden, in denen kleinere Seen und Entwässerungsbahnen existierten. Im Zuge des rapiden Meeresspiegelanstiegs der frühen Littorina-Transgression wurden tiefer gelegene Bereiche überflutet. An den Aufragungen entwickelten sich durch Erosion und Materialverdriftung kleinere initiale Hakenbildungen. Sie lagen seewärts der rezenten Küstenlinie und wurden im Laufe der Transgression wieder aufgearbeitet. Rückseitig stellten sich Stillwasserbedingungen ein, und es kam zur Ablagerung von schluffig-tonigen Brackwassermudden. Es gibt jedoch keine Hinweise auf voluminöse Barrieren, die in der Lage waren, den schnell wachsenden Akkumulationsraum zu kompensieren. Die nacheiszeitliche Landschaft und frühen marinen Bildungen unterlagen dem Ertrinken (Blockbild B).

Abb. 2.9: Genesemodell holozäner Barrieren entlang der südwestlichen Ostseeküste (nach HOFFMANN et al. 2005). (A) Landschaftsbild vor Einsetzen der Transgression – glaziale Ablagerungen, Senken sind teilweise gefüllt mit Süßwassersedimentation von Fein- bis Mittelsand, (B) Frühe Transgressionsphase mit rapidem Meeresspiegelanstieg -Flutung tiefer gelegener Gebiete, (C) Intensive Erosion und erhöhte Sedimentumlagerung, (D) Strandwälle verbinden sich zur geschlossenen Küstenlinie und Lagunen werden vom Meer abgegrenzt.

Um etwa 6.800 cal. BP erreichte der Meeresspiegel bereits ein Niveau von -2 m NHN. Mit deutlich abnehmenden Anstiegsraten begann an den pleistozänen Aufragungen verstärkt Erosion mit Materialverdriftung entlang der Küste sowie Ablagerung. Eine zusätzliche Sedimentquelle bilden die am Meeresboden anstehenden Süßwassersande, die im ausgehenden Glazial abgelagert wurden. Aufgrund der Korngröße konnten sie durch Wellenenergie einfach erodiert und landwärts umgelagert werden. Das Verhältnis der Zulieferung zwischen beiden Sedimentquellen ist unklar. Dabei sind im Schutz von Strandwällen Flachwasserzonen (Schaarbereiche und Windwatten) aufgeschüttet worden (Blockbild C). Durch das Fehlen von Gezeiten wird der Wasserspiegel über die Windstärke und -richtungen kontrolliert. Der Wasserspiegel steigt bei auflandigem Wind schnell an und verursacht Windstaueffekte entlang der südlichen Ostseeküste, die im Sturmfall mehrere

Tage andauern können (Hupfer et al. 2003, Hupfer 2010). Infolge der flachen Wassertiefen kann die winderzeugte Wasserbewegung bis zum Meeresgrund reichen, so dass keine Wasserschicht für den Rückstrom zur Verfügung steht und sich landwärts gerichtete Bodenströmungen für den Materialtransport ausbilden. Ab einer Wassertiefe, die der halben Wellenlänge der Tiefenwasserwelle entspricht, wirkt sich Bodenreibung auf die Orbitalbewegung der Wasserteilchen aus und führt zu stark asymmetrischen Wellen bis hin zum Brechvorgang (HUPFER et al. 2003). Dadurch wird Sediment am Meeresboden abradiert, transportiert und auch sortiert. Während Grobmaterial als Restsediment zurück bleibt, werden sandige Korngrößen in Richtung Küste transportiert. Schluffigtonige Anteile verbleiben hauptsächlich in Schwebfracht und werden vom Rückstrom in tiefere Beckenbereiche mit beruhigter Hydrodynamik verlagert (NIEDORODA et al. 1985, HUPFER et al. 2003). Die im Sturmfall etwa 30 % höheren Brecher führen nur geringfügig zu einer landwärts Verlegung der Brecherzone, die in 100 m bis 200 m Uferentfernung entsteht, aber zu höheren Brandungsstromturbulenzen mit erhöhten Strömungsgeschwindigkeiten (Hupfer et al. 2003). In den Seegatten wird die Strömungsgeschwindigkeit durch räumliche Einengung weiter erhöht, Material bis in rückseitige Flachwasserzonen transportiert und dort abgelagert. Der Vorbau von Strandwällen (Längenwachstum der Barrieren) schließt stückchenweise die Meerverbindungen (Seegatten) und etabliert eine geschlossene Küstenlinie, die Lagunen und Strandseen von der offenen See abtrennt. Das Aufwachsen rückseitiger Windwatten reduziert sich anschließend erheblich, und die umfangreiche Sedimentzulieferung führt zur Progradation der Küstenlinie. Diese Entwicklung erstreckt sich etwa bis vor 1.000 Jahren. In Gebieten mit andauernder Erosion werden auch die jungen Barrieren bereits erodiert und in Akkumulationszonen entstehen neue Strandwälle und Hakenbildungen (Blockbild D). Die Windwattentwicklung findet in der Nähe zu Seegatten weiterhin statt. Überspülungen infolge von Sturmfluten führen nicht maßgeblich zur Veränderung der räumlichen Lage von Barrieren. Sie sind relativ ortsfest.

LAMPE et al. (2007, 2011) greifen die Thematik der Küstenentwicklung im südlichen Ostseeraum erneut auf und diskutieren die Genese des Gesamtraumes durch zusätzlich gewonnene Informationen aus dem Vergleich lokaler relativer Meeresspiegelkurven. Diese wurden von Ihnen in mehreren kleinräumigen Gebieten entlang der Küste abgeleitet.

Zusätzlich liegen durch frühere Untersuchungen bereits eine Vielzahl von Erkenntnissen und Entwicklungsvorstellungen für Teile des Arbeitsgebiets vor, die hilfreiche Information für die Planung eigener Arbeiten und Auswertung der Ergebnisse gaben. Die Gebiete des Darsses, des Zingsts mit angrenzendem Windwatt und der Barriereinseln wurden zum Beispiel von Otto (1913), Schütze (1939), Reinhard (1953), Groba (1954, 1957), Kolp (1978, 1982), Krbetschek (1995), Janke & Lampe (1998), Tiarks (1999), Tiepolt & Schumacher (1999), Schumacher (2000), Lampe (2002) und Kaiser et al. (2006) untersucht. Auf der Insel Hiddensee arbeiteten Schütze (1931), Hurtig (1954), Reinhard (1956), Jacob (1987), Möbus (2000), Barthel (2002)

sowie Marten (2007). Ergebnisse des südlichen Festlandes, die diese Arbeit betreffen, erforschten Skandera (1989), Kaiser (2001) und Janke (2005). Angrenzende Seegebiete der Ostsee erkundeten Gromoll (1994), Tauber & Lemke (1995), Lemke (1998) und südliche Boddengewässer Müller (1996, 1997) sowie Lampe et al. (1998). Erste Ansätze zur morphodynamischen Modellierung der paläogeographischen Entwicklung für das Gebiet Darss-Zingst wurden von Meyer et al. (2008) vorgestellt. Zusätzlich modellierten Weilbier & Zielke (1999), Stephan & Schönfeldt (1999) sowie Schönfeldt & Stephan (2000) das rezente Sedimenttransportsystem und die Küstendynamik für die Anwendung in der Planung von Küstenschutzmaßnahmen.

Im Wesentlichen stützt sich die bisherige Rekonstruktion der Küstengenese im Arbeitsgebiet auf die Kartierung von Oberflächenstrukturen, die Auswertung historischer Karten und die Korrelation zu benachbarten Nehrungssystemen (vgl. Schütze 1939, Kolp 1982, Janke & Lampe 1998, TIEPOLT & Schumacher 1999, Schumacher 2000, Lampe 2002). Im Bereich Darss-Zingst ergeben alle Ansätze einen ähnlichen Geneseverlauf mit Dominanz von West-Ost gerichtetem Küstenlängstransport des Materials. Dabei werden nahe gelegene pleistozäne Kliffe oder ehemals unmittelbar vorgelagerte Inselkerne größeren Volumens erodiert und das Material nur über kurze Distanzen zu dem jungen holozänen Barrieresystem akkumuliert. Tiefreichende Untersuchungen zum Sedimentaufbau gestalteten sich in der Vergangenheit schwierig, da große Teile des Untersuchungsgebiets bis 1991 militärisches Sperrgebiet waren und anschließend als Kernzone des Nationalparks Vorpommersche Boddenlandschaft deklariert wurden.

Kapitel 3 - Methoden

3.1 Kartierung

Die Bearbeitung der Fragestellung erforderte einen umfassenden Einsatz von sedimentologischen und geophysikalischen Kartierungsmethoden, um den geologischen Aufbau des etwa 1000 km² großen Untersuchungsgebietes detailliert zu erkunden. Das Hauptaugenmerk der Erkundung lag auf den größtenteils unter marinen Bedingungen abgelagerten holozänen Sedimenten und deren interne Charakterisierung in lithofazielle Einheiten sowie auf der Ermittlung der Basisteufe. Zusätzlich ist die Ansprache der liegend anstehenden pleistozänen bis frühholozänen Deckschicht zur Interpretation der paläogeographischen Gegebenheiten vor Transgressionsbeginn von Interesse.

In der Vergangenheit erhobene Datensätze beschränken sich ausschließlich auf kleinräumige Areale (vgl. Kap. 2.6) und konnten nach Sichtung, sowie kritischer Bewertung teilweise in die Planung integriert werden. Eine Übersicht an verfügbaren Daten zu Beginn der Arbeiten liefert Abbildung 3.1, die im Rahmen der ersten SINCOS-Projektphase von Anke Barthel (IOW) recherchiert wurden. Es handelt sich dabei um Schichtenverzeichnisse von Sedimentkernen und interpretierte punktuelle Informationen anhand von Flachseismikmessungen (Sediment-Echolot, Boomer). Ihre Aufgabenstellung befasst sich mit der Akquise und Qualitätssicherung von externen sowie Altdatenbeständen zur Modellierung der spätpleistozänen Paläolandschaft anhand der weichselzeitlichen Geschiebemergeloberfläche entlang der südlichen Ostseeküste. Diese wird zur Bilanzierung von Materialerosion, Transport und Beckenfüllungen seit Ausgang des Weichselglazials verwendet. Ergebnisse dieser Arbeit sind zum Beispiel in Meyer et al. (2008) und HARFF et al. (2011, im Druck) dargestellt und diskutiert. In grüner Signatur (Abb. 3.1) sind Lokationen mit Eindringung in die Geschiebemergeloberfläche belegt, während rot gekennzeichnete Daten diese nicht erreichen. Eine weitere Differenzierung wurde im Rahmen dieser Zielsetzung nicht vorgenommen. Schlussfolgernd durchteufen grün dargestellte Daten die marine Sedimentabfolge, erreichen pleistozäne Deckschichten und können für die im Rahmen dieser Arbeit gestellte Aufgabe verwendet werden. Diese Lokationen dienten als Planungsgrundlage eigener Geländearbeiten in den Teilgebieten Hiddensee und Ostzingst, um das bestehende Netz an Bohrungen sinnvoll zu ergänzen.

Abb. 3.1: Qualitätsgesicherter Datenbestand von Sedimentkernen und interpretierten Flachseismikprofilen im Untersuchungsraum zu Beginn der Kartierung (frdl. Mitteilung von A. Barthel; Juni 2006).

Für große Areale des Untersuchungsgebiets wurde die Strategie jedoch grundlegend entworfen. Anhand von geologischen Profilzeichnungen soll ein generalisierter Überblick über den Aufbau der Nehrungskörper und deren Verzahnung in umliegende Gewässerbereiche sowie mit dem pleistozänen Untergrund entstehen. Zusätzlich ist eine weitgehend gitternetzartige Datenverteilung für die Modellierung von faziellen Grenzflächen und Volumenberechnungen erforderlich. Die konkrete Anzahl von Sedimentaufschlüssen wurde einerseits von der Durchführbarkeit und Interpretationsfähigkeit von Geophysikmessungen sowie andererseits von der lateral variablen Schichtabfolge in den einzelnen Teilarbeitsgebieten gesteuert. Eine Konzentration der Arbeiten erfolgte auf den Zingst, das Windwatt mit Barriere-Inseln, das angrenzende Ostseegebiet der Falster-Rügen Platte, das Grabow Boddengewässer und die Festlandsniederung Graue Wiese.

In diesem Zusammenhang ist der verhältnismäßig hohe Logistikaufwand für die Kartierung zu erwähnen. Die Erkundung des vorgelagerten Seegebietes, der Flacherwasserzonen und Boddengewässer gestaltete sich dabei als logistisch besonders aufwendig und erforderte je nach Wassertiefe den Einsatz unterschiedlicher Transportmittel. Die "Offshore"-Erkundung in Wassertiefen größer als 5 m konnte in 6 Expeditionen (à 4–6 Tage) von Bord des IOW-genutzten Forschungsschiffes "Professor Albrecht Penck" durchgeführt werden. Für küstennahe Arbeiten

bis 1 m Wasserstand und in Boddengewässern kam das Forschungsschiff "Bornhöft" (EMAU Greifswald) zum Einsatz. In Flachwasserzonen bis etwa 25 cm Wasserbedeckung wurden die Bohrarbeiten sowie das Übersetzen der Technik zu den Werder-Inseln, Bock und dem Windwatt mit Hilfe des Bohrpontons "Boreas" ausgeführt (ebenfalls EMAU Greifswald). Terrestrisch half mir in unwegsamem Gelände ein kleines Raupenfahrzeug der Marke Bertolini zum Materialtransport.

Insgesamt wurden im Rahmen dieser Arbeit eine Vielzahl an Geländekampagnen im Zeitraum September 2006 bis Oktober 2008 durchgeführt und dabei 234 Aufschlüsse sowie 404 km Geophysikmessungen in unterschiedlichen Verfahren als wesentlicher Bestandteil der Datengrundlage erhoben. Die Abbildung 3.2 und die Tabellen 3.1; 3.2 zeigen die räumliche Verteilung dieser Daten, gekennzeichnet nach verwendeten Methoden. In Anhang A und B sind entsprechende Metadaten vollständig aufgelistet und kartographisch dargestellt. Nachfolgend werden die angewandten Methoden im Einzelnen technisch beschrieben.

Abb. 3.2: Kartographische Übersicht von durchgeführten Geländearbeiten, differenziert nach eingesetzten Erkundungsmethoden, zur Kartierung des Untersuchungsgebietes im Zeitraum 2006–2008.

3.1.1 Bohrungen und Profilaufnahme

Für eine direkte Erkundung und Beprobung der holozänen Sedimentabfolge kamen drei unterschiedliche Bohrverfahren je nach technischer Möglichkeit und Fragestellung an der

jeweiligen Lokation zum Einsatz (Abb. 3.2: rote Punktsignatur; Tab. 3.1). Von insgesamt 220 Bohrungen wurden 124 mit halboffenen Rammkernsonden (RKS), 41 Rammkernsondierungen mit geschlossenen Kolben-Liner-Systemsonden (Liner-B.) sowie 55 Vibrationskernbohrungen (VKG) durchgeführt. Räumlich sind dabei 127 terrestrische und 93 marine Standorte erkundet worden, von denen 186 Bohrungen die pleistozäne Deckschicht erreicht haben (siehe Anhang A). Die konkrete Verteilung auf die einzelnen Teilarbeitsgebiete ist Tabelle 3.1 zu entnehmen. Eine maximale Endteufe von 14,85 m unter Geländeoberkante wurde in der Bohrung Zingst-Osterwald 3 (ZiOw-3) erzielt. Zusätzlich wurden 14 Schürfe (1 auf dem Darss, 4 auf dem Zingst, 4 auf den Werder-Inseln, 5 auf Hiddensee) bis maximal 2,30 m Endteufe angelegt, um interne Lagerungsstrukturen an Strandwällen, Dünenbildungen und in Salzwiesen oberflächennah zu erkunden (Abb. 3.2: blaue Oktaedersignatur; Tab. 3.1; Anhang A).

Arbeitsgebiet	RKS	Liner-B.	VKG	Schürfe	Aufschlußkurzbezeichnung [AKBEZ]
Darss	10			1	Da-1 bis 10 / Ahoop-1
Zingst	56	4		4	Zi-1 bis 43 / ZiOw-1 bis 11 / Zi-HD-1 bis 3 / Zi-S1 bis 4
Kirr, Oie	5				Ki-1 bis 3 / Oie-1, 2
Windwatt und Barriere Inseln	9	8		4	Werl-1 bis 12 / Bock-1 bis 5
Hiddensee	20	1		5	Hi-1 bis 19 / Hi-OSL-1 bis 9
südl. Festland	15	3			GrWi-1 bis 16 / Kbh-1 / Kb-1
Boddengewässer	3	25			Werl-13-OS bis 15 / Gra-1 bis18 / RS-1 bis 4 / Hi-SchaBo-1 bis 3
Seegebiet der Ostsee	6		55		Zi-OS-1 bis 56 / Li-1 bis 5

Tab. 3.1: Übersicht über die Anzahl an Aufschlüssen und eingesetzte Methoden in den Teilarbeitsgebieten.

Rammkernsondierungen mit halboffenen Sonden

Für die Bohrarbeiten an terrestrischen Standorten wurde zum größten Teil Rammkernsondierung im Teleskopverfahren mit halboffenen Sonden (RKS) gewählt. Das Verfahren ist besonders geeignet, relativ schnell und effektiv große Areale zu erkunden, da es in der Ausführung eine erhebliche Zeitersparnis zu geschlossenen Kernbohrverfahren bietet. Abhängig von der logistischen Erreichbarkeit des Bohrstandortes fanden unterschiedliche Bohrhämmer (elektrisch-, hydraulischund benzingetrieben) und ein hydraulisches Ziehgerät oder Handziehgerät Anwendung. Es wurde mit Sondenaußendurchmessern von 80 mm, 50 mm und 36 mm in Abhängigkeit vom Eindringwiderstand gearbeitet. Der obere Meter wurde aufgrund gelegentlich vorkommender grobklastischer Ablagerungen mit der 80 mm Sonde erbohrt, um Versperrungen zu vermeiden. Bis zu einer Teufe von 5 m bis 7 m, selten auch 9 m, kam die 50 mm Rammkernsonde zum Einsatz, während tiefere Bereiche durch den zunehmenden Eindringwiderstand nur mit einem Außendurchmesser von 36 mm erreicht wurden. Handelsübliche Sonden weisen im Abstand von 50 cm Stabilitätsstege an der geöffneten Seite auf, die häufig zu Verschleppung von Kernmaterial während des Bohr- und Ziehvorgangs führen können und eine Ansprache von Schichtgrenzen im Kern erschweren. Um diesen Effekt zu reduzieren, wurden diese Stege an den 50 mm und 36 mm dicken und 2 m langen Sonden entfernt. Dies führte zu wesentlich verbesserten Sondierergebnissen, besonders in größeren Teufen von über 5 m unter Geländeoberkante. Stabilitätsprobleme in Form von verbogenen oder gequetschten Sonden konnten im Rahmen dieser Arbeit nicht festgestellt werden.

Zur Qualitätssicherung der Bohrergebnisse dieses Verfahrens wurde ein Standort im westlichen Teil des Zingst mit oberflächennaher mariner Basis und heterogenem Sedimentspektrum (z.B. eingeschaltete Schluffschichten und organische Lagen) gewählt. Hauptsächlich sollte verglichen werden, ob die Teufenlage von Schichtgrenzen zwischen halboffener und geschlossener Bohrtechnik stark variiert, um die Verlässlichkeit der halboffenen Sondierungen einschätzen zu können. Im Umkreis von etwa 3 m wurden eine halboffene RKS (Zi-42) und zwei Kolben-Liner-Kernbohrungen für Laboranalysen sowie OSL-Datierungen (Zi-36 und Zi-43) abgeteuft. Es wurde jeweils der gleiche Grundaufbau vorgefunden, in dem Schichtgrenzen durchschnittlich 20 cm bis maximal 37 cm voneinander abweichen. Die Varietät liegt im Rahmen verfahrenstechnischer Fehlerquellen und Messungenauigkeiten (z.B. exakte Teufenbestimmung im Teleskopbohrverfahren, leichte Winkelablenkung im Bohrfortschritt, minimale Bohrlochverfüllungen beim Ziehvorgang) oder einer möglichen lateralen geologischen Schichtänderung. Die Bohrergebnisse mit halboffenen Sonden können zusammenfassend als für die Fragestellung geeignet bewertet werden.

Kolben-Liner-Kernbohrungen

Zur Erkundung flachmariner Standorte bis etwa 5 m Wassertiefe wurden Rammkernsondierungen mit geschlossenen Kolben-Liner-Systemsonden (Firma STITZ) von Bord der FS "Bornhöft" und des Bohrpontons "Boreas" durchgeführt. Die Sonde (Abb. 3.3) besteht aus einem geschlossen Stahlrohr, in das ein passgenaues Plastikrohr (Liner) für die Kernentnahme gesteckt wird. An der Innenseite der Schneide (Sondenunterkante) befindet sich eine Nut, in die ein kegelförmiger Kolben per Exzenter Kugeln zur Arretierung hineindrückt und dadurch das Kernrohr verschließt. Im Innenraum der Sonde führt ein Stahlseil vom Kolben entlang nach oben durch eine Öffnung nach außen, das weiter parallel zum Bohrgestänge geführt wird. Mit dieser Sondenkonstruktion kann bis in eine gewünschte Teufe verschlossen gebohrt werden, ohne Kernmaterial aufzunehmen. In der Zielteufe kann über das Stahlseil der Exzenter bewegt und damit die Arretierung des Kolbens gelöst werden. Nach dem Lösen wird das Stahlseil am Bohrtisch arretiert, um im weiteren Bohrvorgang den Kolben auf konstanter Teufe zu halten. Dadurch zieht er sich im Innenraum des Liners nach oben, und die Sonde wird in gleichem Maße mit Sediment gefüllt. Ein Dichtring am Kolben erzeugt ein Vakuum, das als Kernfänger fungiert und das Kernmaterial beim Ziehvorgang im Liner hält.

Abb. 3.3: Schematische Darstellung der Kolben-Liner-Systemsonde (verändert nach Firma STITZ)

Von dieser Funktionsweise wurden Sonden mit unterschiedlichen Außenrohrdurchmessern von 80 mm und 50 mm je nach Eindringwiderstand verwendet, die in zwei Sondenlängen Kernentnahmen von 1 m oder 2 m zuließen. Der Bohrablauf und Technikeinsatz ähnelt ansonsten dem Teleskopverfahren von RKS an terrestrischen Standorten, allerdings wird der Ziehvorgang hauptsächlich über die Krananlage des Schiffes bzw. über ein auf dem Ponton fest installiertes Dreibein und elektrische Winden realisiert. Bei grenzwertig hoher Kraftwirkung unterstützte das hydraulische Ziehgerät den Vorgang. Spülverluste von erbohrtem Material werden beim Durchqueren des Wasserkörpers durch das geschlossene Sondensystem und die Saugwirkung des Kolbens verhindert. Auf eine Verrohrung des Wasserkörpers wurde bei maximalen Wassertiefen von 5 m verzichtet, da in den geschützten Boddengewässern eine relativ geringe Wellendynamik vorherrscht und die Schiffs- /Pontonpositionierung über dem Bohrloch mit drei- bis vierseitig abgespannten Verankerungen am Meeresboden gut gehalten werden konnte. Zusätzlich wurde dieses Verfahren an einigen ausgewählten terrestrischen Standorten genutzt, um in den Linern unbelichtetes Probenmaterial für OSL-Datierungen und ungestörte Proben für Laboranalysen aus Kernen zu gewinnen.

Diese Bohrtechnik wurde im Vorfeld in mehreren Seen der Mecklenburgischen Seenplatte erfolgreich eingesetzt und Eindringtiefen bis zu 20 m erzielt (LORENZ 2007, LAMPE et al., 2009). Die Anwendung im Küstenraum mit vorrangig feinsandigen und teilweise schluffig-organischen Ablagerungen ließ im Rahmen dieser Arbeit nur Endteufen von maximal 6,05 m zu. Mit einer relativ geringen Eindringung von durchschnittlich 5 m konnte jedoch das Ziel, die marinen Ablagerungen in den Flachwasserzonen zu durchteufen, erreicht werden. Im Vergleich zu diesen Standorten mit vollständig wassergesättigter Sedimentation stieg der Eindringwiderstand terrestrisch schon ab 3 m erheblich an, so dass der weitere Bohrvorgang an die technische Belastungsgrenze stieß. Zusätzlich wurde ein weiteres geschlossenes Kernbohrverfahren der Firma GEOTOOL getestet, das für terrestrische Standorte konzipiert ist. Es basiert ebenfalls auf Sonden mit innen liegendem Plastikliner und bringt zusätzlich eine Stahlverrohrung in den Sedimentkörper ein. Dazu ist ein Rammgerät, das mit maximal 75 kg Fallgewicht arbeitet, notwendig. Die Eindringung in Küstenablagerungen erwies sich als unproblematisch (GrWi-1: Endteufe 6,80 m), jedoch führte das Verfahren zu großen Stauchungen von bis zu 20 % Kernlänge und zu Komplikationen in der

Handhabung von wassergesättigten Schichten, die Material von unten in die Verrohrung spülten. Diese Einspülungen geschehen, während die 1 m langen Sonden zur Kernentnahme und zum Nachladevorgang gezogen sind. Sie verursachen beim weiteren Bohrfortschritt Verklemmungen zwischen Verrohrung und Sonde, die ein technisch bedingtes Bohrende bedeuten. Da eigene Gerätemodifikationen und weitere Tests keine effektiven Verbesserungen hervorbrachten, wurde die Methode nicht weiter für die Kartierung verwendet.

Vibrationskerngerät

Anhand der Sedimentverteilungskarte am Meeresboden (TAUBER & LEMKE 1995) stehen im angrenzenden Ostseegebiet der Falster-Rügen-Platte vorrangig Feinsande oberflächennah an. Das Vibrationskerngerät (abgekürzt VKG oder Vibrocorer) gilt nach Angaben von Holler (1995) seit den 60er Jahren als standardisiertes Bohrverfahren für grobkörnige Sedimente (Sande, Kiese) in der marinen geowissenschaftlichen Erkundung und wurde jenseits der 5 m Wasserlinie von Bord der "FS Prof. A. Penck" im Küstenvorfeld eingesetzt. Dabei wurde ein Gerät der Firma WISSENSCHAFTLICHER GERÄTEBAU THOMAS SCHMIDT mit maximal 4 m Kernlänge und 120 mm Durchmesser verwendet, das sowohl mit Schlauchfolie als auch Plastiklinern bei der Kernentnahme arbeiten kann. Im Rahmen der Kartierung wurde mit Schlauchfolie gebohrt, um die gewonnenen Kerne möglichst zeiteffizient an Bord des Schiffes zu bearbeiten und darauf abgestimmt Entscheidungen für die Positionierung nachfolgender Bohrlokationen zu treffen. Im Gegensatz zu den voran beschriebenen Verfahren ist das Bohrgerät eine Gesamteinheit, bestehend aus Führungsgestell, Elektromotor mit federnd gelagerten Gewichten und Kernrohr. Ein per Stromkabel verbundener Schaltschrank mit Messgeräten für Motorlast und Eindringtiefe dient zur Fernsteuerung von Bord. Für den Bohrvorgang wird das Gerät per Krananlage des Schiffes ausgebracht und auf dem Meeresboden abgestellt. Durch Aktivierung des Motors werden die Gewichte in hochfrequente Schwingungen versetzt, die das Kernrohr gleitend gelagert an zwei parallel verlaufenden Führungsstangen senkrecht in das Sediment treiben. Nach 4 m Eindringung oder bei zu hoher Motorlast resultierend aus hohem Eindringwiderstand schaltet sich das Gerät automatisch ab. Anschließend wird per Krananlage das Kernrohr aus dem Sediment zurück in das Führungsgestell gezogen und das Gerät vom Meeresboden an Deck gehoben.

Im Vergleich wirken Beprobungsverfahren zum Erkunden schluffig-toniger Sedimente von breiiger bis weicher Konsistenz (z.B. Beckenbereiche der Ostsee) mit nur einem einzigen Stoß und hoher Schwerkraft zur Kernentnahme auf den Meeresboden ein (Schwere-, Kolbenlote). Diese einmalige Krafteinwirkung wird von den Lagerungseigenschaften grobkörniger Sedimente weitgehend absorbiert (HOLLER 1995) und führt zum Umkippen des ungefüllten Gerätes am Meeresgrund.

Schlussfolgernd konnte mit dem 4 m langen Kernrohr des Vibrationskerngerätes im angrenzenden

Ostseegebiet der Nehrungen, mit Ausnahme von Bohrungen um die Prerowbank, die Mächtigkeit der marinen Sedimentation durchteuft werden.

Klassifizierung der Sedimente und Beprobung

Die geologische Schichtansprache aller Bohrkerne und angelegten Schürfe erfolgte nach DIN 4022 (1998) und in Anlehnung an die Bodenkundliche Kartieranleitung (AG Boden 1994). Dabei wurden anhand der Körngrößenzusammensetzung, des Kalkgehalts (halbquantitative Bestimmung mit 10 % Salzsäure), der Färbung und des Vorkommens pflanzlich-organischer Bestandteile sowie der Artenzusammensetzung an faunistischen Makrofossilien lithologischfazielle Einheiten abgegrenzt, die in Kapitel 4 ausführlich beschrieben sind.

Die Beprobung fand größtenteils direkt im Gelände an den halboffenen Rammkernen und Vibrocorerkernen statt, während Linerbohrkerne im Labor geöffnet, beschrieben und beprobt wurden. Bei der Probenentnahme lag das Hauptaugenmerk auf zwei Fragestellungen. Um die lithofazielle Beschreibung der Sedimentabfolge durch Laboranalysen zu unterstützen, wurde in unregelmäßigen Abständen nach Schichtwechseln beprobt. Den anderen Schwerpunkt bildet die geochronologische Einordnung der Ablagerungen im Arbeitsgebiet, für die autochtone Torfe zur Radiokohlenstoffdatierung und sandige Ablagerungen für optisch stimulierte Lumineszenzdatierungen entnommen wurden. Insgesamt sind 154 Standorte mit 892 Einzelproben aus der holzänen Schichtabfolge sowie pleistozänen Deckschichten beprobt worden.

Alle Aufschlüsse wurden fotodokumentiert, Schichtenverzeichnisse digital mit dem Softwareprodukt GeoDIN 5 (Firma FUGRO) im SEP1-Format (Schichten-Erfassungs-Programm) nach dem Symbolschlüssel Geologie (PREUSS et al. 1991) erfasst und im Bohrdatenarchiv der Arbeitsgruppe physische Geographie im Institut für Geographie und Geologie (EMAU Greifswald) abgelegt.

3.1.2 Geophysikalische Messungen

Zur lateralen Konnektierung der punktuellen Daten von Sedimentaufschlüssen fanden drei geophysikalischen Erkundungsmethoden Anwendung, um Oberflächen- und interne Ablagerungsstrukturen der oberen Sedimentschichten zu untersuchen. Terrestrisch wurde dabei mit dem Georadar (GPR) gearbeitet, während im marinen Raum das Side-Scan-Sonar (SSS) und das Sediment-Echolot (SES) eingesetzt wurde. Die Geophysik konnte häufig als Vorerkundung für sedimentologische Untersuchungen durchgeführt werden, da in einem relativ geringen Zeitfenster große Areale linienartig vermessen werden und ein erster Gesamteindruck über die Ablagerungsstrukturen des Gebietes entsteht. Bei guten Messergebnissen ist anschließend nur eine relativ geringe Anzahl an Bohrungen notwendig, um die Profilaufnahmen interpretieren zu können und den Aufbau des Teilgebietes zu verstehen. Abbildung 3.2 zeigt in unterschiedlich farbigen Liniensignaturen die Profilverläufe dieser Messungen, die in Tabelle 3.2 nach Methode und Arbeitsgebiet mit jeweilig gemessener Profilanzahl sowie Wegstrecken aufgelistet sind. Im Anhang B sind die Metadaten zu den einzelnen Messprofilen enthalten.

Arbeitsgebiet	SSS - Profile	SES - Profile	GPR - Profile
	Anzahl / Länge	Anzahl / Länge	Anzahl / Länge
Hiddensee	-	-	26 / 11,2 km
Graue Wiese (südl. Festland)	-	-	11 / 5,9 km
Seegebiet der Ostsee	3 / 109 km	28 / 278 km	-

Tab. 3.2: Übersicht über die Anzahl an Geophysikprofilen und eingesetzte Methoden in den Teilarbeitsgebieten.

Side-Scan-Sonar

Side-Scan-Sonar-Systeme dienen einer flächenhaften Charakterisierung der Meeresboden oberfläche. Sie werden neben geowissenschaftlichen und geotechnischen Aspekten (z.B. Relief des Meeresbodens, Vermessung von Kolkwirkungen um Bauwerke) auch für die Objektsuche von zum Beispiel Schiffswracks, Munitionsresten oder der Lageortung von Pipelines verwendet. Side-Scan-Sonar ist ein hydroakustisches Verfahren, bei dem von einem Schleppfisch ausgehend akustische Signale von zwei Schwingern (Backboard- und Steuerbordseitig) in einem vertikal großen Öffnungswinkel von bis zu 50° nach unten gerichtet ausgesendet werden. Die von Oberflächenstrukturen und Objekten reflektierten und rückgestreuten Signale werden ebenfalls von den Schwingern empfangen und über ein Datenkabel zur Bordeinheit (bestehend aus Elektronik zur Bedienung von Sender und Empfänger und einem Rechner zur Datenverarbeitung) übertragen und bildlich dargestellt. Im Sonogramm werden diese Reflexionen in Form von Grautönen flächig dargestellt. Objekte, die über den Meeresboden herausragen, werden durch eine starke Reflexion (dunklere Färbung) und einem dahinter liegenden akustischen Schatten (weiße Flecken) aufgrund der schräg einfallenden Schallwellen gekennzeichnet. Vertiefungen weisen einen Schatten unmittelbar vor der Struktur auf. Es können Strukturen ab einer Größe von 1/400 des seitlichen Aufnahmebereiches aufgelöst und konkret abgeschätzt werden. Dieser Aufnahmebereich ist variabel einstellbar und kann bis zu 600 m zu jeder Seite des Schleppfisches betragen, ist aber zusätzlich abhängig von der Schlepptiefe über dem Meeresgrund (nach HOLLER 1995).

Im Zeitraum November 2006 bis Mai 2007 konnten innerhalb von drei Schiffsexpeditionen insgesamt 109 km Side-Scan-Sonar-Messungen im unmittelbaren Küstenvorfeld des Zingst bis zur -15 m NHN Wasserline durchgeführt werden (Abb. 3.2: blaue Liniensignatur). Dabei wurde das Zweikanalsystem DF1000 der Firma EG&G eingesetzt und mit den Signalfrequenzen 100 kHz sowie

384 kHz gleichzeitig gemessen. Der Schleppfisch lieferte Aufnahmen von 80 m zu jeder Seite und kann mit dieser Einstellung Strukturen ab etwa 20 cm als kleinstes akustisches Echoelement im Sonogramm gut auflösen. Für die Bearbeitung der Fragestellung wurden an 71 Positionen mit hohem Informationsgehalt Bildausschnitte aus den Sonogrammen vorgenommen, im GIS erfasst und über die gefahrene Schiffsroute die Nordausrichtung in den Bilddateien korrigiert. Die Lageungenauigkeit der Aufnahme beträgt, bedingt durch den Schleppfisch, etwa 20 m nach Achtern (Steuerbord) zur GPS-Position des Schiffes. Sie variiert abhängig von Länge und Winkel des Kabels je nach Wassertiefe des Gerätes und Strömung. Zum Abgleich der geophysikalischen Messungen mit den am Meeresgrund anstehenden Strukturen ("ground truthing") wurde an 7 Positionen ein Tauchroboter der Firma HYDROVISION (HyBall-offshore ROV) verwendet (Abb. 3.2: grüne Quadratsignatur). Das Gerät ist ausgestattet mit einer 360° um die Horizontalachse schwenkbaren CCD Videokamera, vier Scheinwerfern sowie einem Greifarm zur Probenentnahme und kann über vier Antriebsschrauben mit bis zu 3 Knoten Geschwindigkeit bis in 300 m Wassertiefe operieren. Es wird zur Objektsuche, Probennahme und Taucherunterstützung verwendet.

Die mit Side-Scan-Sonar vermessene Meeresbodenfläche, auf der unter anderem Rippelstrukturen, Torfvorkommen und Grundzüge eines mäandrierenden Paläoflusslaufes erkannt wurden, beträgt insgesamt etwa 17 km². Diese Ergebnisse werden in Kapitel 4.5 vorgestellt und diskutiert. Im SINCOS-Gesamtprojekt sind seit dem Jahr 2002 etwa 340 km² Side-Scan-Sonar-Aufnahmen im südlichen Ostseeraum durchgeführt worden, die in der Publikation von TAUBER (2011, im Druck) beschrieben werden.

Sedimentecholot

Ein weiteres hydroakustisches Verfahren sind Sedimentecholote, die durch horizontal stark gebündelte Schallausbreitung in den Meeresboden eindringen und dadurch in die Gruppe der marinen reflexionsseismischen Methoden gehören. Mit Hilfe der Reflexionsseismik wird der Verlauf von Schichtgrenzen im Untergrund erkundet, an denen die eindringende P-Welle (Primär-, Longitudinalwelle) reflektiert und die Amplituden in Abhängigkeit von den Laufzeiten gemessen werden. Um ein von Null verschiedenes Amplitudenverhältnis (Reflexionskoeffizient) zu erhalten, sind zwei aneinander angrenzende geologische Schichten mit unterschiedlichen seismischen Impedanzen notwendig (BORTFELD 1960). Die Impedanz ist das Produkt aus Ausbreitungsgeschwindigkeit der seismischen Welle und der Dichte des durchdrungenen Mediums. Das Amplitudenverhältnis (Reflexionskoeffizient) beschreibt den Impedanzkontrast. Es ist daher nicht immer möglich mit Hilfe der Reflexionsseismik minimale Korngrößenunterschiede abzubilden, da auch eine sprunghafte Änderung der Lagerungsdichte innerhalb einer Schicht abgebildet sein kann. Eine geologische Interpretation des Reflexionsmusters der Messungen

ist daher zwingend in Korrelation mit Sedimentdaten gebunden. Die Eindringtiefe dieser Messmethode wird neben den akustischen Eigenschaften des Meeresbodens (Signaldämpfung, schallharte/schallweiche Sedimente) von der Sendeleistung und dem Frequenzbereich der P-Welle bestimmt. Niederfrequente Wellen mit höherer Leistung (z.B. initiiert von Boomer oder Air Guns) besitzen eine tiefere Eindringung in den Sedimentkörper als höherfrequent arbeitende Systeme (z.B. Chirp-Sonar, Sedimentecholot). Das höhere Frequenzspektrum löst jedoch den oberen Schichtbereich bis etwa -20 m unterhalb des Meeresbodens detaillierter auf und ist daher für die Erkundung der holozänen Sedimentation im Untersuchungsgebiet gut geeignet.

Für die Messungen wurde das parametrisch arbeitende Sedimentecholot SES-96 (Sediment-Echo-Sounder) der Firma INNOMAR verwendet, bestehend aus einem außen an der Bordwand angebrachten Sendeempfangsschwinger und einer Bordeinheit zur Steuerung und Datenverarbeitung. Nach Angaben von HOLLER (1995) besitzt der Schwinger von parametrischen im Gegensatz zu konventionellen Echoloten nur einen geringen Öffnungswinkel von etwa 5°, um den Einfluss störender Seitenreflexionen zu reduzieren. Der Schwinger sendet gleichzeitig zwei benachbarte hohe Frequenzen aus. In der Wassersäule mischen sich beide Frequenzen zu einer einzelnen Frequenz, die der Differenz der beiden ausgesendeten entspricht. Dieses wird als Parametrischer Effekt bezeichnet und entsteht, da Wasser kein ideales Medium für die Wellenausbreitung ist. Das resultierende niederfrequente Signal kann tiefer in die Sedimentation eindringen, bietet jedoch aufgrund der kleinen Wellenlänge den Vorteil einer hohen Auflösung von Lagerungsstrukturen. Nachteilig ist der Verlust des Signals, sobald das Relief des Meeresbodens steiler als der Öffnungswinkel des Schwingers abfällt.

Innerhalb von zwei weiteren Schiffsexpeditionen (Oktober 2007, März 2008) wurden 28 Profile von 278 km Gesamtlänge im Küstenvorfeld des Zingsts und der Insel Hiddensee sowie in der nordöstlich benachbarten Libben-Bucht gemessen (Abb. 3.2: rote Liniensignatur). Es wurde eine Frequenz von 6 kHz verwendet und anschließend die Laufzeiten der Messergebnisse mit dem Faktor 1500 m/s in Tiefen konvertiert. Diese Einstellungen lieferten Reflexionsmuster bis etwa 10 m unterhalb des Meeresbodens, die ausschlaggebend für die Positionierung von Bohrungen zur Interpretation des geologischen Aufbaus waren. Signale aus größeren Tiefen wurden hauptsächlich als Multiplen angesprochen. Diese Ergebnisse fanden Anwendung in der Entwicklung von geologischen Schnitten sowie Modellierung (vgl. Kap. 4, 5) und trugen maßgeblich zum geologischen Verständnis des Küstenvorfeldes der Nehrungen bei.

Georadar

Das Georadar (Ground Penetrating Radar – GPR) ist ein elektromagnetisches Impulsreflexionsverfahren, das auf ähnlichen Grundlagen wie die Reflexionsseismik beruht (BLINDOW et al. 2005). Dieses Verfahren strahlt elektromagnetische Wellen von breitbandigen Dipolantennen in den Untergrund ab, die anhand von Änderungen der Dielektrizitätskonstante der jeweilig durchdrungenen geologischen Schichten reflektiert und an den Empfänger zurückgeleitet werden. Ursache für Veränderungen der Dielektrizitätskonstante können beispielsweise sprunghafte Korngrößen-, Bodenwassergehaltsänderungen, erhöhter Salzwassereinfluss oder Veränderungen der Mineralzusammensetzung sein. Die Messgrößen sind Laufzeiten und Amplituden der elektrischen Feldstärke dieser Impulse. Möglichkeiten zur Tiefenkonvertierung der Laufzeiten sind im Gelände separat durchzuführende Common-Mid-Point-Messungen (CMP) oder die Krümmungsanpassung von Diffraktionshyperbeln in den Radargrammen. Nach BLINDOW et al. (2005) treten Diffraktionen an Diskontinuitäten von Reflexionen (Unterbrechungen, Störungen mit Versatz) sowie an Objekten auf, deren Abmessungen klein gegenüber der Wellenlänge sind. Bei diesem Verfahren kann mit verschiedenen Frequenzbereichen von 10 MHz bis 1000 MHz gearbeitet werden, wobei analog zur Reflexionsseismik niedrige Frequenzen größere Teufen erreichen und hochfrequente die Oberfläche detaillierter auflösen.

Für die Kartierung wurde das RAMAC-GPR-Gerät der schwedischen Firma MALÅ verwendet und neben einigen wenigen Messungen mit 200 MHz, hauptsächlich die 100 MHz Antenne eingesetzt. Die Eignung dieses Frequenzspektrums ist bereits in vorangehenden Untersuchungen an dieser Küste und in westlich gelegenen Küstenregionen Schleswig-Holsteins nachgewiesen (KLUG & LORRA 1996, LAMPE et al. 2004, NAUMANN et al. 2009). Insgesamt sind 37 Profile von 17,1 km Gesamtlänge auf der Insel Hiddensee und der Festlandsniederung Graue Wiese aufgezeichnet worden (Abb. 3.2: gelbe Liniensignatur). Nur auf Hiddensee sind jedoch nutzbare Ergebnisse entstanden. Dort wurde ein Netz früherer Messungen verdichtet, um ältere Dünengenerationen und Strandwallformationen im Untergrund zu erkunden. In den Radargrammen sind Reflektoren mit einer Laufzeit (two-way-travel-time – TWT) von bis zu 300 ns aufgezeichnet worden, und die Tiefenkonvertierung erfolgte mit dem durch CMP-Messungen bestimmten Umrechnungsfaktor von v = 0,07 m/ns in Tiefen. Mit den gewählten Messparametern ergaben die Georadarmessungen einen Einblick in die oberen 10 m Sedimentbedeckung. In der Grauen Wiese war eine starke Signaldämpfung unmittelbar unterhalb der Geländeoberfläche zu verzeichnen, die GPR-Aufnahmen unbrauchbar macht. Im Vergleich zu dem Messgebiet auf Hiddensee ist die Topographie hier deutlich tiefer und nahe dem Meeresspiegel gelegen, so dass der erhöhte Ionengehalt des Salzwassers im Untergrund die Leitfähigkeit beeinflusst. Der Befund deckt sich mit der Aussage von Blindow et al. (2005), wo ein Versagen des Verfahrens bei an der Oberfläche anstehenden gut leitenden Substraten (feuchte Tone und Schluffe, Wässer mit Salzfracht, eisenhaltige Schlacken etc.) beschrieben ist. Aufgrund einer ähnlichen Geländesituation von nur knapp um das Meeresspiegelniveau herum liegenden Geländehöhen und Salzwasser gesättigtem Untergrund wurde entlang des Darss-Zingst-Nehrungssystems auf Messungen verzichtet.

3.1.3 Lage und Höhenbezüge

Die Lageeinordnung und Orientierung im Gelände erfolgte anhand topographischer Karten im Maßstab 1:25.000 und 1:10.000 (Landesvermessungsamt Mecklenburg-Vorpommern 2003-2005) und mit Hilfe von GPS-Messungen mit dem Handgerät GARMIN Foretrex 201. An Bord der Forschungsschiffe wurde per elektronischer Seekarte und differentiellen GPS-Messungen (DGPS) navigiert. Die Positionen von Aufschlüssen und Geophysikmessungen sind einheitlich mit Hochund Rechtswerten des Gauß-Krüger-Koordinatensystems mit Bezug auf den vierten Meridianstreifen des Deutschen Hauptdreiecksnetzes (DHDN, Bessel Referenz-Ellipsoid) erfasst worden.

Die Tiefenangaben der Kernbeschreibungen, Sedimentproben und Geophysikinterpretationen sind auf die Geländeoberkante (GOK) bezogen. Die Höhenbezüge variieren jedoch nach lokalem Arbeitsgebiet. Im Küstenvorfeld sind die Schiffsecholotmessungen als Tiefenangabe verwendet worden, die nicht mit landseitigen Pegelhöhen korrigiert werden können. Die nächste Pegelmessung an der Außenküste liegt etwa 60 km entfernt in Rostock-Warnemünde, und die in den rückseitigen Lagunen befindlichen Pegel in Barth und Barhöft unterliegen zeitlich verzögert und nicht in gleichem Maße den Wasserstandsschwankungen der freien Ostsee. Lottiefen von Bohrungen in den Lagunen wurden mit den stündlichen Pegelmessungen der Ortschaften Barth oder Barhöft nach Angaben des Wasser- und Schifffahrtsamtes Stralsund auf m NN (Normalnull, Pegel Amsterdam) korrigiert. Terrestrische Standorte wurden ebenfalls in m NN aus dem digitalen Geländehöhenmodell mit 50 m Gitternetzgröße (DGM 50) abgetragen.

Für das Arbeitsgebiet Darss-Zingst-Hiddensee wurde am Leibniz Institut für Ostseeforschung dieses DGM 50 anhand von topographischen und bathynmetrischen Daten erstellt (publiziert in MEYER et al. 2008) und für diese Fragestellung zur Verfügung gestellt. Es umfasst ein Verschneidung von Datensätzen des Amtes für Geoinformation, Vermessungs- und Katasterwesen im Landesamt für innere Verwaltung Mecklenburg-Vorpommern (2006), des Bundesamtes für Seeschifffahrt und Hydrographie (2006) sowie IOW-eigener bathymetrischer Vermessungen (SEIFERT et al. 2001). Nach eigener Validierung dieses Modells mit den gemessenen Wassertiefen und Geländehöhenangaben aus topographischen Karten im Maßstab 1:10.000 (Landesvermessungsamt Mecklenburg Vorpommern, Hrsg. 2004) an den jeweiligen Datenpunkten ist eine gute Korrelation feststellbar, so dass alle verwendeten Datensätze für die Modellierung (vgl. Kap. 5, 6) einheitlich auf diese Bezugsfläche kalibriert wurden. Die Abweichung zwischen den Höhenbezügen Normalnull und Normalhöhennull (NHN) beträgt nach Angaben des Staatlichen Amtes für Umwelt und Natur in Rostock (2009) für das Küstengebiet 1 cm. Zur Vereinfachung wurden alle Höhenangaben auf das amtliche Bezugsniveau des Deutschen Haupthöhennetzes (DHHN92) in m NHN korrigiert.

3.2 Laborarbeiten

Zur näheren Untersuchung der im Arbeitsgebiet angetroffenen lithologisch-faziellen Einheiten

wurden an Proben aus insgesamt 18 Bohrungen, die repräsentativ im Arbeitsgebiet verteilt liegen, Korngrößenverteilungen und Glühverluste bestimmt (Abb. 3.4: blaue Punktsignatur). An 8 ausgewählten Proben lagunärer Sedimentation im Seegebiet westlich Hiddensees ist darüber hinaus der Wassergehalt gemessen worden, um anschließend Aussagen über deren Kompaktion treffen zu können. Für die Einschätzung der Paläoumweltbedingungen, in denen die unterschiedlichen Sedimenttypen sich ablagerten, wurden in 19 Bohrungen und ergänzend zwei Methoden der Bioindikation eingesetzt. Artenbestimmungen der makro- und meiofaunistischen Fossilien, hauptsächlich Mollusken, dienten zur Rekonstruktion des vorherrschenden Wassermilieus (Abb. 3.4: gelbe Oktaedersignatur). Für eine genetisch-stratigraphische Ansprache basaler Sandablagerungen von mehreren Metern Mächtigkeit, kalkfrei und ohne Faunenreste, wurde das Vorkommen von Diatomeen überprüft (Abb. 3.4: graue Oktaedersignatur). Zusätzlich sind Geschiebemergelfunde an 5 Kernen mit Hilfe von Geschiebezählungen stratigraphisch untersucht worden (Abb. 3.4: orange Quadratsignatur). Für die geochronologische Einordnung der Ablagerungen wurden Proben aus 10 Schürfen und 20 Bohrkernen entnommen und mit zwei unterschiedlichen Verfahren (Radiokohlenstoff- und optisch stimulierte Lumineszenz-Datierungen) bearbeitet. Abbildung 3.4 zeigt die Lage der Proben, gekennzeichnet nach angewendeten Methoden in roter Punktsignatur und grünen Dreiecken. Alle Analyseergebnisse sind im Anhang C aufgeführt.

Abb. 3.4: Kartographische Übersicht von Probenlokationen mit durchgeführten Laboranalysen im Untersuchungsgebiet.

3.2.1 Korngrößenverteilung

Für die Messung von Korngrößenverteilungen (KGV) wurden 109 Proben aus 7 "Offshore"-Kernen und 11 terrestrisch gelegenen Bohrungen entlang des Nehrungssystems Darss-Zingst mit angrenzenden Barriereinseln ausgewählt. Zu diesem Zweck fanden zwei Verfahren Anwendung: Trockensiebung bei 10 Proben mit sandig bis kiesigen Hauptgemengeanteil sowie Laserlichtbeugungsmessung mit Hilfe des Laser-Partikel-Sizer ANALYSETTE 22 (Firma FRITSCH) bei 101 Proben mit vorrangig feinklastischem Korngrößenspektrum. Zur näheren Bewertung der Korngrößenverteilungen wurden anschließend die Parameter Median und Sortierung nach Trask berechnet (Füchtbauer & Müller 1970). Zwei Proben (Kern: Zi-OS-46/08; Proben-Nr.: 832, 834), deren Korngrößenspektren im Grenzbereich liegen, wurden zum Vergleich mit beiden Methoden bearbeitet. Der Median weicht zwischen beiden Verfahren um etwa 35–40 µm ab, mit Tendenz zu gröberen Ergebnissen der Laser-Partikel-Sizer Messung. Abweichungen dieser Größenordnung sind im Rahmen der Fragestellung zu vernachlässigen und bei so einem Methodenübergang zu erwarten. Die Korngrößenergebnisse sind in Kapitel 4 eingeflossen und in Anhang C konkret aufgelistet.

Trockensiebung

Zur Vorbereitung wurden alle Proben 48 Stunden im Trockenschrank bei 105 °C bis zur Gewichtskonstanz getrocknet und anschließend mit dem Mörser schonend homogenisiert. Wegen geringer Probemengen (Einwaagen von 64 g bis 158 g), die den teilweise kleinen Sondendurchmessern während der Bohrarbeiten geschuldet sind, wurde das gesamte Probenmaterial verwendet. Es fand eine Intervallsiebung mit einem Siebsatz der ¹/₃ Phi-Reihe (Siebmaschenweiten: 0,063 / 0,10 / 0,16 / 0,20 / 0,4 / 0,63 / 1,0 / 1,6 / 2 mm) von jeweils 10 min Zeitdauer und einem Hub von 2 mm statt. Anschließend wurden die Siebrückstände ausgewogen und entsprechende Fraktionsgewichte sowie der Siebverlust berechnet.

Laseroptische Partikelanalysen

Die Probenaufbereitung zur Gewinnung von rein klastischem Ausgangsmaterial erfolgte mit Hilfe der Bestimmung des Glühverlustes sowie anschließender Carbonatauflösung durch Zugabe von verdünnter Salzsäure (10 %). Das Probenmaterial wurde in die Dispergierungseinheit des Laser-Partikel-Sizers gefüllt, bis die Absorption 10 % bis 15 % erreichte. Nach dem Dispergiervorgang mittels drei-minütiger Ultraschalleinwirkung erfolgte die Korngrößenmessung basierend auf Lichtbeugung. Die Ergebnisse sind als Kornsummenkurven und zusätzlicher Berechnung spezifischer Interpolationswerte (nach Korngrößenfraktionen und Perzentile als Massenanteile) von der Gerätesoftware ausgegeben worden. Bei der Anwendung dieser Methode gilt der Vorbereitung von Proben besonderes Augenmerk. Im Falle einer unzureichenden Dispergierung

wird ein nicht der Realität entsprechendes gröberes Korngrößenspektrum gemessen.

3.2.2 Glühverlust

Die Bestimmung des Glühverlustes dient als Maß des organischen Anteils von Sedimentschichten. An 103 Proben erfolgte die Analyse nach DIN 18128 (1998), die auf Verbrennung des organischen Materials zu Asche unter Freisetzung von CO₂ basiert. Dafür wurden leer eingewogene Porzellantiegel mit 2 g Probenmaterial befüllt und 24 Stunden im Trockenschrank bei 105 °C bis zur Gewichtskonstanz getrocknet. Anschließend wurden die Tiegel mit Probeninhalt abgewogen. Es folgte ein Glühvorgang im Muffelofen bei 550 °C mit einer Zeitdauer von 2 Stunden, an den sich eine Abkühlphase im Exsikkator anschloss. Danach konnten durch erneutes Auswiegen der Porzellantiegel die Glührückstände berechnet werden. Nach Umrechnung in Gewichtsprozent erhält man den organischen Anteil der Probe, der gemäß AG Boden (1994) Bodenarten zugeordnet werden kann und als Indikator für die Paläoproduktivität anzusehen ist.

3.2.3 Wassergehalt

Der Wassergehalt wird durch Trocknung eines definierten Sedimentvolumens bestimmt. Dafür wurden mit Hilfe eines 10 cm³ fassenden Stechzylinders Sedimentproben entnommen (Feuchtvolumen – FV) und eingewogen. Nach Trockenvorgang bei 105 °C erfolgte die Berechnung des Wassergehaltes (WG) aus Feuchtgewicht (FG) und Trockengewicht (TG).

Berechnung des Wassergehalts:
$$WG[Gewichts-\%] = \frac{(FG[g]-TG[g]) \times 100}{FG[g]}$$

3.2.4 Paläomilieuanalysen

Biostratigraphische und paläoökologische Analysen können anhand von makroskopisch bis mikroskopisch kleinen Resten von Organismen, die in Sedimentschichten enthalten sind, durchgeführt werden. Dabei sind die Artenzusammensetzung von botanischen Großresten, Pollen, Diatomeen, Meiofauna (Ostrakoden, Foraminiferen) und Makrofauna (Bryozoen, Mollusken, Echinodermen, Wirbeltiere) Bestandteil der Untersuchungen, um Umweltverhältnisse in der Vergangenheit und deren Veränderung zu rekonstruieren. Die Anpassung der einzelnen Arten (Toleranzbereiche) an bestimmte Umweltparameter (z.B. Salinität, Temperatur, Wassertiefe, Strömung, Sauerstoff- und Nährstoffgehalt) wird für die jeweilige Sedimentschicht verschnitten, um mögliche Hinweise auf die Sedimentationsprozesse, Trophieverhältnisse, Meeresspiegelschwankungen, Vegetationsentwicklung, Landnutzung und Klimaentwicklung zu erhalten. Mit diesen Analysen kann die genetisch-stratigraphische Zuordnung von Ablagerungen unterstützt werden. Eine absolute Altersdatierung ist jedoch nicht möglich.

Analysen der Makro- und Meiofauna

Auf Makro- und Meiofaunabestandteile wurden 24 Proben aus 7 Bohrungen näher analysiert (Abb. 3.4: gelbe Oktaedersignatur, Anhang C). Davon sind 15 marine und 9 glazi-limnisch bis fluviatil angesprochene Ablagerungen. Die Proben wurden dazu per Nass-Siebung in 2 Fraktionen (> $200 \ \mu\text{m} / > 63 \ \mu\text{m}$) geteilt, zwei Tage bei 35 °C im Trockenschrank schonend getrocknet. Die einzelnen Fraktionen sind mit Hilfe eines Lichtmikroskops auf Organismenreste durchsucht worden und unter Zuhilfenahme von Bestimmungsliteratur (STRESEMANN 1992, WEHNER & GEHRING 1995, FRENZEL et al. 2010) weitestgehend identifiziert. Abundanzen der Arten sind mit numerischen Quantifikatoren von 1 (sehr wenig) bis 5 (sehr viel) – in Anlehnung an die prozentuale Verteilung bezogen auf das Vorkommensverhältnis in der Gesamtschicht nach Symbolschlüssel Geologie (PREUSS et al. 1991) – angegeben. Zusätzlich sind die Organismenfunde nach Art der Erhaltung (Zerstörungsgrad) mit z.B. "doppelklappig", "einklappig erhalten" und "Bruchstücke" charakterisiert, um ein objektives Bild entstehen zu lassen. Die Bestimmung der Umweltparameter, speziell der Salinitätstoleranzen, dieser Organismen erfolgte nach Angaben von PEACOCK (1993), VIEHBERG et al. (2008), FRENZEL & OERTEL (2002), FRENZEL (2006) und FRENZEL et al. (2010).

Diatomeenanalysen

Diatomeen sind einzellige Algen mit Zellwenden aus Siliziumdioxid von 10 µm bis 500 µm Größe, die sowohl benthisch als auch planktonisch vorkommen und damit als Nachweis für Sedimentationsbedingungen in einem aquatischen Milieu dienen. Insgesamt sind an 33 Proben von 12 Kernen entlang des Darss-Zingster-Nehrungssystems und rückseitigen Inseln Kirr und Oie durch Drittleistung von Prof. Dr. Wolfgang Janke (EMAU Greifswald) Diatomeenanalysen vorgenommen worden, deren Ergebnisse das vorgefundene Artenspektrum sowie Deutung der Umweltparameter beinhalten (Abb. 3.4: graue Oktaedersignatur, Anhang C). Die intensive Probenaufbereitung von zwei Kochvorgängen unter Zugabe von Wasserstoffperoxid sowie Kaliumpermanganat zur Herstellung von Dauerpräparaten erfolgte nach Vorgaben von KALBE & WERNER (1974) und BARSCH et al. (Hrsg. 2000) durch Frau H. Rabe im Labor des Instituts für Geographie und Geologie (EMAU Greifswald). Untersuchungsbestandteil waren basale Feinsandablagerungen der Bohrungen, teilweise auch mit schluffigen Nebengemenganteilen, in denen während der Bohrkernbeschreibung die Basis der marinen Ablagerungen aufgrund fehlender Makrofossilien und Kalkanteile über mehrere Meter hinweg schwierig rekonstruierbar war. Unter den Proben befinden sich zum Abgleich auch 11 Proben, die relativ sicher dem Spätglazial zugeordnet sind. 7 Proben stammen aus der marinen Sequenz.

3.2.5 Geschiebezählungen

Die Bestimmung von Leitgeschiebe zur stratigraphischen Zuordnung von Ablagerungen innerhalb der Glazialzyklen wurde an 7 Geschiebemergelproben aus 5 Bohrkernsegmenten des Küstenvorfeldes vorgenommen (Abb. 3.4: orange Quadrate; Gebiete: nördlich Zingst, westlich Hiddensee, Libben-Bucht). Diese Methode kann neben stratigraphischen Aussagen auch Informationen zur glazialen Dynamik im Untersuchungsgebiet, wie z.B. Eisvorstoßrichtung und Ablagerungsbedingungen (Deformations-, Absetztill oder Mischformen), liefern und wurde im benachbarten Gebiet der Insel Rügen erfolgreich eingesetzt (KRIENKE 2003, 2004). Die Rekonstruktion der Eisvorstoßrichtung im Gebiet ist jedoch nach Angaben von KRIENKE (2004) als vage zu betrachten. Terrestrisch eingesetzte Bohrverfahren lieferten durch die geringen Sondendurchmesser generell zu wenig Material für diese Art von Analysen. Auch die "Offshore"-Proben von etwa 5000 cm³ Sedimentvolumen (40 cm bis 50 cm lange Kernsegmente von 12 cm Durchmesser) enthielten generell zu geringe Kiesanteile für eine gesicherte lithostratigraphische Einordnung, so dass der Einsatz dieser Methode keine verwertbaren Ergebnisse im Rahmen dieser Arbeit lieferte. Die Untersuchung wurde als Drittleistung von Dr. Kay Krienke (Baugrund Stralsund Ingenieurgesellschaft mbH) durchgeführt.

3.2.6 Geochronologische Methoden

Geochronologie, auch als absolute Altersdatierung bezeichnet, versucht die Ereignisse der Erdgeschichte exakt zeitlich zu fassen. Aus dem breiten Methodenspektrum wurden die Radiokohlenstoffdatierung, die in die Gruppe der Isotopenmessungen gehört, und die optisch stimulierte Lumineszenz gewählt. Nach Einschätzung von KAISER (2001, KAISER et al. 2006), der Paläobodenbildungen auf dem Altdarss bereits mit beiden Methoden datierte, sind die Ergebnisse annähernd vergleichbar. Insgesamt konnten 58 Proben von 30 Standorten analysiert werden (vgl. Anhang C).

Radiokohlenstoff-Datierung

Diese Methode ist für organische Probenbestandteile geeignet und basiert auf dem Zerfall des Kohlenstoffisotops ¹⁴C nach dem Ableben von Organismen. Aufgrund der Halbwertszeit von 5730 \pm 40 Jahren und einem Zeitbereich von Isotopen-Datierungen, der dem 10-fachen davon entspricht, können die letzten 60.000 Jahre gemessen werden. Für die Durchführung sind zwei Möglichkeiten etabliert: In der konventionellen Messung wird in den Proben enthaltener Kohlenstoff zu CO₂ verbrannt und die Anzahl der ¹⁴C-Zerfalle pro Zeiteinheit, bezogen auf die Gesamtmasse der Probe, mit Hilfe eines Geiger-Müller-Zählrohres gemessen, um anschließend das Alter zu berechnen. Es erfordert jedoch lange Messzeiten und große Probenvolumen, weil insgesamt 5 g reiner Kohlenstoff umgesetzt werden muss (Zöller & WAGNER 2002). Eine

Weiterentwicklung stellt die Beschleuniger-Massenspektrometrie (Accelerator Mass Spectrometer – AMS) dar, wobei die Bestimmung des direkten Anteils an ¹⁴C-Atomen pro Probe erfolgt und nur eine Mindestmenge von 1 mg Kohlenstoff für präzise Datierungen benötigt wird (Zöller & WAGNER 2002). Diese wesentlich kleineren Probenmengen sind deutlich vorteilhafter. Einzelne pflanzliche Makroreste können aus wesentlich geringeren Schichtmächtigkeiten beprobt und exakt gemessen werden, wodurch sich im Vergleich zu volumigeren "bulk"-Proben der konventionellen Datierung der Ablagerungszeitrum weiter einschränken lässt und sich somit die Genauigkeit der Aussage wesentlich erhöht.

Im Arbeitsgebiet sind an 16 Proben aus 13 Bohrungen und 1 Schurf AMS-Datierungen am Leibniz-Labor für Altersbestimmung und Isotopenforschung der Universität Kiel durchgeführt worden. Das datierte Material beinhaltet ausgelesene Pflanzenreste von Torfschichten sowie zweiklappig erhaltene, als in situ angesprochene Mollusken. Davon befinden sich 10 Proben pflanzlicher Makroreste in Torfen von basaler Stellung der marinen Ablagerungen, die Meeresspiegelindikator dienen und als Basistorf nach Streif (2004), BUNGENSTOCK (2005) bezeichnet werden. Eine Probe lieferte ein unbrauchbares Datum infolge Kontamination von Bombenresten (vgl. Anhang C, Tab. 7.1: KIA 35280, Zingst – Osterwald: Schurf Zi-S3). Zum Abgleich von OSL-Datierungen der geochronologischen Bearbeitung des Bohrkerns Zi-43 am Leibniz-Institut für Angewandte Geophysik (Hannover) wurden drei konventionelle Datierungen an Mudde und Torfablagerungen vorgenommen. Dabei konnte ein Torf durch plausible OSL-Alter liegender und hangender Proben als umgelagert identifiziert werden (REIMANN et al. 2011). Die Kalibrierung der Daten erfolgte auf der Datengrundlage von WENINGER & JÖRIS (2008) mit der Softwareanwendung "CalPal-2007 online" (DANZEGLOCKE et al. 2007) und ist als Anpassung aufgrund von nachgewiesenen Schwankungen der atmosphärischen ¹⁴C-Konzentration im Verlauf der letzten Jahrtausende notwendig (FAIRBRIDGE 1983). Für die letzten Jahrhunderte bestehen jedoch Kalibrierungsschwierigkeiten aufgrund kurzzeitiger ¹⁴C-Gehaltsschwankungen, verursacht durch Veränderungen der Sonnenaktivität, durch klimatische Bedingungen und durch Einflüsse der zunehmenden Industrialisierung (Stuiver 1978, Hua 2009). Folglich ist die Bearbeitung besonders junger Sedimente unter 450 Jahren nach vergleichenden Studien mit OSL-Methodiken von NIELSEN et al. (2006), MADSEN et al. (2007) und MADSEN & MURRAY (2009) mit größeren Unsicherheiten verbunden. Dieser nachteilige Zeitraum wurde beachtet und Radiokohlenstoff-Datierungen hauptsächlich an wesentlich älteren Ablagerungen vorgenommen, die zur Rekonstruktion des Transgressionsbeginns an verschiedenen Positionen des Arbeitsgebietes und lokaler Meeresspiegelentwicklung dienen.

Optisch stimulierte Lumineszenz

Lumineszenz-Datierungen ermöglichen eine Altersbestimmung von klastischen Sedimenten und stellen im Arbeitsgebiet aufgrund von generell stark eingeschränkten Vorkommen von datierfähigen organischen Ablagerungen (eingeschränkte Bildungsbedingungen, oder Erosion, Aufarbeitung,

Umlagerung) eine hilfreiche Alternative zu Radiokohlenstoffanalysen dar. Zusätzlich kann damit die gesamte Sedimentsequenz geochronologisch bearbeitet und auch die methodisch bedingte Unsicherheit der Radiokohlenstoff-Datierung junger Ablagerungen umgangen werden. Einen Methodenüberblick über das breite Spektrum unterschiedlicher Lumineszenz-Datierungsverfahren geben zum Beispiel AITKEN (1985,1998), DULLER (2004) und sehr umfangreich PREUSSER et al. 2008. Neben Anregung durch Hitze (Thermolumineszenz – TL) wird hauptsächlich mit unterschiedlichen Lichtquellen gearbeitet, wovon Infrarot stimulierte Lumineszenz (IR-OSL) für Feldspat und blaues Licht für Quarz (optisch stimulierte Lumineszenz – OSL) Anwendung findet. Die mögliche Zeitspanne der Datierungsmethode umfasst angefangen von 10 bis etwa vor 500.000 Jahren abgelagertes Material. Für die Fragestellung wurden OSL-Datierungen aufgrund der guarzreichen Küstenablagerungen durchgeführt. Die Methode bestimmt den Zeitpunkt der letzten Exposition des Mineralkorns zum Tageslicht. Bei Umlagerungsprozessen reichen einige Sekunden Sonnenlicht aus, um das gespeicherte Signal auf Null zu setzen, wodurch verlässliche Altersangaben des beprobten Standortes entstehen. Man spricht hierbei von Bleichung des Materials. Auch in subaquatischen Ablagerungsräumen mit geringer Suspensionsfracht des Wasserkörpers finden solche Bleichungsprozesse statt. Daher muss zwingend auf Lichtabschluss während der Beprobung geachtet werden. Vereinfacht dargestellt basiert die Messung auf Ladungsdifferenzen im Kristallgitter des Quarzes, verursacht durch Gitterbaufehler oder Fremdatome, die Elektronenfallen darstellen. Abhängig von Dauer und Stärke natürlicher Lichteinwirkung, werden dort Elektronen gefangen und damit ein Anteil der natürlichen Radioaktivität durch angeregte, metastabile Elektronenzustände gespeichert. Im Labor versetzt gezielte äußere Lichteinwirkung diese Elektronen in den nächst höher angeregten Zustand, von dem sie unter Lichtabgabe in den Grundzustand zurückkehren. Ein Sekundärelektronenverstärker misst mit Hilfe kalibrierter Betaund Gammaquellen die dabei abgegebene Energiedosis (Äquivalenzdosis), die sich äquivalent zur Paläodosis verhält. Das Alter der Probe lässt sich anschließend aus dem Verhältnis von Paläodosis und Dosisleistung berechnen.

Insgesamt wurden 39 Proben aus 9 Bohrkernen und 9 Schürfen im Arbeitsgebiet untersucht (Abb. 3.4: grüne Dreieckssignatur), die zur Abschätzung von Sedimentationsraten und Alter von Strandwall- sowie Dünenbildungen dienen (vgl. Kap. 7). Für eine Teilmenge von 17 Proben, die der Insel Hiddensee und dem Zingst entstammen, erfolgte die Messung an der Universität Bern durch Drittleistung von Prof. Dr. Frank Preusser. Die übrigen 22 Proben (Windwatt, Zingst) wurden von Tony Reimann (LIAG, Hannover) im Rahmen seiner auf die Weiterentwicklung der OSL-Methodik ausgerichteten Promotion bearbeitet (REIMANN 2011). In beiden Labors ist Quarz im Korngrößenspektrum von 100 bis 250 µm und das "single-aliquot regenerative-dose"- Verfahren (SAR-Protokoll) nach MURRAY & WINTLE (2000, 2003) sowie WINTLE & MURRAY (2006) für die Messungen herangezogen worden. Dieses Verfahren liefert Datierungen mit Abweichungen von 5-10 % zum Ablagerungszeitpunkt (MURRAY & OLLEY 2002). Zum Abgleich beider Labors wurden

zwei Proben (vgl. Tab. 7.2: Labor-Nr. MN 353, Zi-O5) aus dem Schurf Zingst-S3 in 5 cm vertikaler Distanz zueinander gemessen. Die Ergebnisse zeigten unter Einbeziehung des angegeben Messfehlers den gleichen Ablagerungszeitraum an. Zusätzlich ist an 7 Proben vergleichend zu Datierungen der Quarzfraktion, Kalifeldspat mit zwei Infrarot stimulierten Methodiken (IRSL, post-IR IR) experimentell bearbeitet worden (REIMANN et al. 2011), deren Ergebnisse jedoch für die Diskussion im Rahmen dieser Arbeit nicht verwendet werden.

3.3 Auswertung, Modellierung, Visualisierung

Unter dem Einsatz nachfolgender Hilfsmittel wurden die akquirierten Daten erfasst und bearbeitet sowie anschließend zu Ergebnissen dieser Arbeit erstellt. Alle Bohrdaten wurden mit der Software GeoDin 5 (Firma FUGRO) bearbeitet, verwaltet und Darstellungen von Schichtenverzeichnissen sowie Bohrsäulen erzeugt. Die Signatur der Schichten basiert dabei auf DIN 4023 (1998). Die räumliche Datenverwaltung und Kartenerstellung in einem geographischen Informationssystem (GIS) erfolgte mit ArcGIS Version 9.2 (Firma ESRI). Zur zweidimensionalen Darstellung von geologischen Transekten sowie zur Zeichnung von Abbildungen und zur Fotobearbeitung wurde CorelDraw-Graphics-Suite Version 12 genutzt. Für die Modellierung von dreidimensionalen Oberflächen, Volumenberechnung und Darstellung der Ergebnisse stand Surfer Version 8 (Firma GOLDEN SOFTWARE) zur Verfügung. Die Auswertung der Korngrößenbestimmungen wurde für die Ergebnisse der Trockensiebung mit der Software SEDIVISION 1.0 (Firma BEGUMA) durchgeführt, die Kornsummenkurven, prozentuale Siebfraktionsanteile und statistische Werte nach den drei Berechnungsverfahren TRASK, INMAN und FOLK & WARD erzeugt. Aus den Interpolationswerten der Laser-Partikel-Sizer Ergebnisse sind die Anteile der Sandfraktion (> 63 μ m), Schlufffraktion (< 63 μ m) und Tonfraktion (< 2 μ m) entnommen worden. Um die Ergebnisse beider Analysemethoden zu verbinden, sind die jeweiligen prozentualen Anteile der Kies-, Sand-, Schluff- und Tonfraktionen, sowie zusätzlich die Ergebnisse der Glühverlustbestimmung durch das Programm PANPLOT, programmiert am Alfred Wegener Institut für Polar und Meeresforschung in Bremerhaven (DIEPENBROEK et al. 2001), in zusammenhängenden Darstellungen zu den jeweiligen Bohrungen visualisiert worden. Das Postprocessing und die Interpretation der aufgenommenen Georadarprofile wurden mit REFLEX-Win Version 3.5 (Firma SANDMEIER Software) vorgenommen. Für die weitere Datenerfassung und -haltung sowie generelle Erstellung dieser Arbeit kam OFFICE 2003 (Firma MICROSOFT) mit den Programmen Access, Excel und Word zum Einsatz, sowie ADOBE InDesign.

Kapitel 4 - Geologischer Aufbau des Arbeitsgebiets

4.1 Lithostratigraphie und geologische Normalabfolge der Sedimentation

Die Auswertung der Geländeaufnahme von Sedimentaufschlüssen sowie deren eher punktuelle Beprobung mit gezielt durchgeführten Laboranalysen führte zur Abgrenzung von insgesamt sieben verschiedenen lithofaziellen Einheiten im Arbeitsgebiet. Dafür wurden die nachfolgenden Unterscheidungsmerkmale verwendet. Die Korngrößenverteilung und die daran abgeleiteten Parameter Median und Sortierung geben Aufschluss über die Transport- und Ablagerungsdynamik. Zusätzlich dienten Anteil und Ausprägung von organischer Substanz in den Schichten als Anzeiger für Sedimentation unter gemäßigtem Klima und schwach dynamischen Bedingungen. Ein niedriger beziehungsweise fehlender Kalkgehalt zeigt, dass ursprünglich pleistozänes Material Verwitterungsprozessen während der Aufarbeitung und Umlagerung ausgesetzt war. Die Artenzusammensetzung von Makro- und Meiofauna, hauptsächlich Mollusken, liefert anhand der Salinitätstoleranzen dieser Organismen einen Hinweis auf die Paläoumweltbedingungen. Der unterschiedliche Zerstörungsgrad der Schalen spiegelt die Wasserdynamik der Faziestypen wieder. In Tabelle 4.1 wird ein Überblick dieser lithologischen Einheiten mit zu Grunde liegenden Klassifizierungsmerkmalen und zugeordneten Faziestypen gegeben. Die Laborergebnisse der Einzelproben sind im Anhang C aufgeführt und für diese Darstellung zusammengefasst worden. In nachfolgenden Abschnitten werden die Ergebnisse von typischen Bohrungen der jeweiligen Teilarbeitsgebiete in Abbildungen dargestellt und die lokale geologische Situation anhand von ausgewählten Profilschnitten detailliert beschrieben.

Die geologische Standardabfolge der zu erkundenden oberflächennahen Sedimentsequenz (bis etwa -15 m GOK) beginnt im Liegenden mit einem Diamikton, bestehend aus einer tonig bis sandigen Matrix und Nebengemengeanteilen von gröberen Korngrößenfraktionen wie Kies und Steinen. Zusätzlich ist dieser Sedimenttyp durch starken Kalkgehalt geprägt, der auch als in Bröckchen gebundener Kalk auftreten kann und aufgearbeiteten kreidezeitlichen Ablagerungen entstammt. Diese stehen teilweise durch die glaziale Ausschürfung des Ostseebeckens im Quartär am Meeresgrund an (EHLERS 2011). Biologische Bestandteile treten nicht auf. Korngrößenanalytisch ergibt sich eine bimodale Verteilung mit schlechter Sortierung. Insgesamt wird diese Schicht dem glazialen Faziestyp zugeordnet und genetisch als Geschiebemergel bzw. oberflächlich entkalkt, als Geschiebelehm angesprochen. Die Bezeichnungen Mergel und Lehm beziehen sich vorrangig auf tonig bis schluftige Hauptgemengeanteile in der Matrix, jedoch kommen teilweise auch höhere Feinsandanteile vor. In der deutschen Fachsprache hat sich für diese Sedimenttypen auch der allgemeiner gehaltene Begriff Till aus dem Englischen etabliert. Stratigraphisch kann dieser Sedimenttyp in zeitlich unterschiedlichen Vereisungsstadialen im Arbeitsgebiet abgelagert worden sein und wird daher nur allgemein dem Pleistozän zugeordnet.

		0		
Faziestyp	Korngrößenspektrum Md - Median So - Sortierung	Organogengehalt [Gewichtsprozent]	Kalkgehalt	Fauna Art / Abundanz / Zerstörungsgrad der Schalen / Salinitätsbe (Abundanz: 1-sehr wenig, 2-wenig, 3-mittel, 4-viel, 5-sehr viel)
glazial	tonig-sandige Matrix, Kies, Steine, Kreide	keine	sehr stark kalkhaltig	keine Proben analysiert
	Md: 0.236 mm (tonige Matrix) So: 3.982 (tonige Matrix)		,	
	Schluff	~ 2.5 %	kalkhaltig bis	kleine Bruchstücke – nicht bestimmbar
glazi-limnisch	Md 0.02 mm So: 1.858		stark kalkhaltig	
	Feinsand, schwach schluffig	keine	kalkhaltig bis	kleine Bruchstücke – nicht bestimmbar
giazi-iimniscn / fluviatil	Nic: 0.141 mm So: 1.371		stark kaiknalug	
brackisch - marin	Schluff, hangend zunehmend feinsandig	5 – 15 %	kalkfrei	Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU Cerastoderma edule / 3 / Bruchstücke - doppelklappig / >5 PSU
Stillwasser	Md: 0.047 mm			Hydrobia ulvae / 2 / Bruchstücke - ungebrochen / >4 PSU
	30. 1.87			Littorina littorea / 1 / Bruchstücke / >9 PSU
				Cyprideis torosa / 2 / einzelne Klappen - doppelklappig / 8 - 9 PS
	Fein- bis Mittelsand	keine, gelegentlich	kalkfrei	Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU
brackisch - marin Flachwasser	Md: 0.179 mm So: 1 378	dünne organische Bänder von ∼ 10%		Cerastoderma edule / 3 / Bruchstücke & einzelne Klappen / >5 P Mva arenaria / 2 / Bruchstücke / >6 PSII
				Macoma balthica / 1 / Bruchstücke & einzelne Klappen / >2 PSU
				Hydrobia ulvae / 2 / / >4 PSU
	Mittel- bis Grobsand, Kies,	keine, gelegentlich	kalkfrei	Mytilus edulis / 3 / Bruchstücke / 15 – 40 PSU
brackisch - marin	kleine Steine	botanische		Cerastoderma edule / 2 / Bruchstücke / >5 PSU
Strand	Md: 0.422 mm	Makroreste des		Hydrobia ulvae / 1 / Bruchstücke / >4 PSU
	So: 1.529	Spülsaums		
pedogen /	Fein- bis Mittelsand	(keine Proben	kalkfrei	keine
äolisch /	(keine Proben analysiert)	analysiert)		
"overwash""				

Tab.4.1: Faziestypen und Merkmale der Klassifizierung aus dem Gebiet Darss-Zingst-Hiddensee.

Im angrenzenden Ostseegebiet der Nehrung Darss-Zingst konnte oberflächennah anstehend in einer gut abgrenzbaren Fläche kalkhaltiger Schluff, der Organogengehalte von durchschnittlich 2,5 % enthält, kartiert werden. Korngrößenanalysen ergaben eine schlechte Sortierung mit unimodalem Kurvenverlauf. Diese Schicht lässt sich in gleicher Höhenlage unter dem südlichen Nehrungssystem (Darss-Zingst) in einem Teufenintervall von etwa -10 m NHN bis -12 m NHN weiter verfolgen (Abb. 2.1; 4.1). Die Ablagerungen werden einem Seesystem unter wärmeren Klimabedingungen im Spätglazial bis frühen Holozän zugeordnet und als glazi-limnisch beschrieben.

In großen Teilen des Untersuchungsgebietes schließt sich hangend kalkhaltiger Feinsand mit gering schluffigem Nebengemenge an. Die Korngrößenverteilung ist unimodal und gut sortiert. Auch fehlen weitestgehend biologische Bestandteile. Eine Ausnahme bilden geringe organische Bestandteile aus sporadisch auftretenden, geringmächtigen Bodenbildungen am Top dieser Einheit. Sie sind nicht charakteristisch für die Gesamtschicht. Diese Sandschicht wird (glazi-) fluviatilem oder limnischem Ursprung mit teilweise äolischer Überprägung zugeordnet. Sie ist bereits aus weiteren Untersuchungen des Arbeitsgebietes und der angrenzenden Küstenabschnitte mit Sandablagerungen gleichen Charakters und Höhenlage bekannt (z.B. Möbus 2000, HOFFMANN 2004 b, HOFFMANN et al. 2005, KAISER et al. 2006, NAUMANN et al. 2009).

Im Gebiet des Darss-Zingster-Nehrungssystems treten an 29 Bohrpositionen teilweise mächtige Entkalkungen von über 2 m Mächtigkeit am Top dieser homogenen Sandablagerungen auf. Davon war die Abgrenzung zur hangend anschließenden marinen Sedimentation an 14 Positionen während der Geländeansprache nicht präzise definierbar. In den übrigen 15 Bohrungen ist die marine Basis durch Bodenbildungen, autochthone Torfbildungen oder typisch ausgeprägten Transgressionskontakten eindeutig belegt. Mit Hilfe von Diatomeenanalysen sollte eine Zuordnung erreicht werden. Die Ergebnisse von 33 Proben aus 12 Bohrkernen, analysiert durch Prof. W. Janke, sind im Anhang C aufgeführt und für die Fragestellung bewertet worden. Insgesamt ist nur in 12 Proben eine quantitative Präparatauszählbarkeit gegeben. Vier Proben sind völlig frei von Diatomeen, in den übrigen 17 wurden nur kleinere Anteile gefunden. In diesen 17 Fällen ist die Milieubewertung etwas vorsichtiger zu betrachten. Die Ergebnisse sind dennoch bis auf 11 Einschätzungen von 6 Bohrstandorten plausibel zu den Geländeaufnahmen. An 4 dieser 6 Standorte (Zi-16; Zi-34; Zi-OW-4, Kirr-1/08) sind Proben als marin-brackisch eingestuft worden, obwohl hangend Bodenbildungen und autochthone Torflagen folgen, die den Transgressionskontakt eindeutig in geringerer Teufenlage zu diesen Proben belegen. In den zwei weiteren Bohrungen Kirr-3/08 und Oie-2/08, sowie zusätzlich in Zi-16 und Kirr-1/08, sind in stark kalkhaltigen Proben marin-brackische Diatomeenarten festgestellt worden. Nicht auszuschließen sind Verschleppungen durch das halboffene Bohrverfahren oder das Einwaschen von Diatomeen in benachbarte, tiefere Sedimentschichten infolge steigender Porenwasserdrücke durch Wasserauflast und deren Wellendynamik (aus eigener Erfahrung sind in Wattbereichen der Nordsee erhebliche Porenwasserdruckschwankungen in Teufen > 6 m beim Bohrvorgang infolge der Gezeiten zu verzeichnen). Ein anderer Erklärungsansatz wären Kliffabrüche pleistozänen Materials mit nur lokal kleinräumiger Umlagerung, so dass während des kurzeitigen Ereignisses nur geringe Diatomeenmengen gebildet werden und keine vollständige Entkalkung des marin umgelagerten Materials stattfinden konnte. Die einheitliche Optik und die Schichtmerkmale sprechen bis auf den fehlenden Kalkgehalt zumindest für die zusammenhängende Klassifizierung als glazi-fluviatil/ limnisch mit geringfügig äolischer Überprägung. Für die Modellierung der Transgressionsbasis-fläche wurde an diesen Standorten die Höhenlage aufgrund der Geländebefunde verwendet. Der potentiell entstandene kleinräumige Fehler ist im Vergleich zur Größe des Arbeitgebietes und der Datendichte für die Volumenkalkulationen als marginal anzusehen.

Diese drei lithofaziellen Einheiten bilden die Basis der marinen Sedimentation, deren räumliches Vorkommen in Abbildung 4.1 dargestellt ist. Die Aussagetiefe der Sedimentverteilungskarte beträgt 50 cm, so dass geringmächtige Ablagerungen von weniger als 50 cm Mächtigkeit nicht berücksichtigt wurden und liegend folgende in die Kartenauswertung eingingen. Anhand der Isobathen wird das Paläo-Relief der marinen Basis, die eine mehr oder weniger durch Erosion überprägte Geländeoberfläche darstellt, im Vergleich zur rezenten Küstenlinie (rote Liniensignatur) verdeutlicht.

Abb. 4.1: Sedimentverteilungskarte der liegenden Ablagerungen der marinen Basis für das Gebiet Darss-Zingst-Hiddensee mit einer Aussagetiefe von 50 cm.

Der Übergang von terrestrischen oder limnischen zu marinen Umweltbedingungen ist häufig durch das Auftreten von Torf gekennzeichnet, der sich semi-terrestrisch in geschützten Zonen nahe des Meeresspiegels oder schon zeitlich eher entlang von Flussauen des paläohydrographischen Gewässernetzes entwickelt hat (telmatische Fazies). Oft treten nur geringmächtige Lagen von 3 cm bis 15 cm oder in rückseitigen Lagunen auch bis zu 1 m auf. Sie wurden in unterschiedlichen Teufenniveaus in der Regel zwischen -5 m NHN und -10 m NHN auflagernd zu variierenden Ablagerungen (Geschiebemergel, Feinsand, Schluff) erbohrt.

Die hangend folgende Sedimentation wurde unter marinen Umweltbedingungen abgelagert. An der Basis der marinen Sequenz sind verfestigte, dunkelgrau bis schwarz gefärbte Schluffablagerungen typisch, die durchschnittlich 5 % bis 15 % organische Substanz enthalten.

Diese beinhalten basal gelegentlich aufgearbeitete Torf und botanische Makroreste. Im unteren Teil treten als charakteristisches Kennzeichen dieser Schicht massenhaft Schill mariner Mollusken (Cerastoderma sp., Mytilus edulis, Hydrobia ulvae, Scrobicularia plana, Littorina littorea) und Ostrakoden (Cyprideis torosa) auf. Der Molluskenschill ist vorwiegend lagig angeordnet und besteht größtenteils aus Schalenbruchstücken, zwischen denen auch häufig doppelklappige Exemplare mit intaktem Ligament zu finden sind. Sowohl die feine Korngrößenfraktion mit schlechter Sortierung als auch die lagigen Schillvorkommen mit teilweise guter Schalenerhaltung weisen auf Sedimentationsbedingungen in relativ ruhiger Hydrodynamik unterhalb der Wellenbasis von Stürmen hin. Diese Ablagerungen unterliegen nur gelegentlichen Aufarbeitungsund Umlagerungsprozessen (Stillwasser-Fazies). Im oberen Schichtabschnitt verringert sich der Organogengehalt, das Vorkommen von Molluskenschill und der Median wird aufgrund höherer Feinsandanteile allmählich etwas gröber. Dieser Sedimenttyp ist im Untergrund der Barrieren weit verbreitet und füllt rückseitige Boddengewässer sowie küstennahe Senken im Teufenspektrum zwischen -2 m NHN bis -13 m NHN. Er wurde ursprünglich als Schlick (breiige Konsistenz, hohe Wassersättigung) abgelagert und im Laufe der Zeit durch Auflast der hangenden Sedimentation konsolidiert. In Vorgängerarbeiten aus dem südwestlichen Ostseeraum wird diese Ablagerung als Mudde bezeichnet (z.B. Möbus 2000, Schumacher 2000, Hoffmann 2004b) und aus Konsistenzgründen im Rahmen dieser Arbeit übernommen. Jedoch ist die Begrifflichkeit Mudde nach HINZE et al. (1989), AG Boden (1994) und MURAWSKI & MEYER (1998) genetisch einem limnischen Milieu zugeordnet und wird aus Fehlen einer Terminologie für marin-brackische Bildungen auf diese übertragen. Im Nordseeraum wird der Begriff Klei als Sammelbegriff für gesetzte Marschböden und diesen, dort unter marinen Milieubedingungen abgelagerten Sedimenttyp, verwendet (HINZE et al. 1989). HOFFMANN (2004 b) diskutiert den Begriff Mudde bereits für diese Küstenregion und bezieht sich auf GROSSE-BRAUCKMANN (1961), der ihn im Gegensatz rein deskriptiv ohne genetische Deutung beschreibt.

Die Flachwasser-Fazies ist aus kalkfreiem Fein- bis Mittelsand mit zahlreichen 1 cm bis 5 cm mächtigen wechsellagernden Bändern aus organischem Detritus und /oder Molluskenschill aufgebaut. Häufig sind Molluskenbruchstücke auch als untergeordneter Nebengemengeanteil im Sediment enthalten. Bruchstücke von *Cerastoderma sp.* und *Mytilus edulis* oder gelegentlich vorkommende Überreste von *Mya arenaria, Macoma balthica, Hydrobia ulvae* sind leicht bestimmbar und kennzeichnen ein marin-brackisches Ablagerungsmilieu. Feinsand in guter Sortierung ist die vorherrschende Korngrößenfraktion und weist auf Flachwasserbedingungen hin, in denen Sedimenttransport hauptsächlich als Schwebfracht stattfindet. Zum Hangenden ist innerhalb der Schicht ein leichter Anstieg der mittleren Korngröße (coarsening upward) sowie die Abnahme von Detritus- und Molluskenschillbändern zu beobachten. Dieses deutet auf zunehmende hydrodynamische Verhältnisse und Umlagerungsprozesse hin. Im vorgelagerten Seegebiet überdeckt diese Fazies großflächig die nicht marinen Faziestypen (Abb. 4.2) und bildet

den größten Anteil der Barrieresysteme. Insgesamt umfasst diese Einheit etwa 70 % bis 80 % des holozänen Sedimentvolumens (vgl. Kap. 6, Abb. 6.3).

Die hangend folgende lithofazielle Einheit umfasst ein gemischtes, weniger gut sortiertes Korngößenspektrum aus kalkfreiem Mittel- bis Grobsand sowie kiesige und steinige Nebengemengeanteile. Das fehlende feinklastische Material und Auftreten von fast ausschließlich stark beschädigten Molluskenschalen zeigt ein raues, bewegtes Wassermilieu und verstärkte Sedimentdynamik an. Diese Merkmale sind charakteristisch für Umweltbedingungen am Land-Meer-Übergang und führen zur Klassifikation als Strand-Fazies. Die räumliche Verbreitung ist vorwiegend an die Barrieresysteme im Arbeitsgebiet gebunden, aber lokal sehr unterschiedlich stark ausgeprägt. Das Darss-Zingst-Nehrungssystem weist nur einen geringen und sporadisch auftretenden Anteil dieser grobklastischen Sedimentation auf, der größtenteils in dem 2 m NHN aufragenden südlichen Strandwall der Insel Großer Werder konzentriert ist (Abb. 4.10). Auf Hiddensee tritt Strand-Fazies gehäufter auf und ist an großflächig ausgebildete Strandwallsysteme im zentralen und südlichen Teil der Insel gebunden (Abb. 4.14). Vertikal reichen diese Ablagerungen von der Landoberfläche hinunter bis in Teufen von etwa -2 m NHN bis -3 m NHN.

Zusätzlich steht in terrestrischen Gebieten an der Geländeoberfläche in der Regel eine etwa 30 cm mächtige Auflage aus Fein- bis Mittelsand an, die häufig durch Bodenbildungsprozesse entstandene organische Anteile aufweist. In den meisten Fällen kann diese Sedimentschicht genetisch nicht konkret zugeordnet werden. Der Sand könnte durch äolische Einflüsse abgelagert oder infolge von Überspülungen während Sturmfluten ("overwash"-Prozesse) umgelagert worden sein. Auch beides ist möglich. Ausnahmen bilden höher aufgeschüttete Dünengürtel auf dem Darss bei Prerow und im Nordosten des Ostzingsts, sowie im zentralen Teil von Hiddensee (Dünenheide). Dort sind äolische Prozesse eindeutig belegbar. Generell wurden diese Ablagerungen zu einer lithofaziellen Einheit zusammengefasst, die geprägt ist von äolischen, "overwash" und bodenbildenden Komponenten.

Nachfolgend sind zwei Sedimentverteilungskarten dargestellt, die einen Überblick der räumlichen Verteilung im Gesamtgebiet der beschriebenen holozänen Ablagerungen liefern. Abbildung 4.2 zeigt die hangend an der marinen Basisfläche anstehenden Sedimenttypen. Torfablagerungen sind dabei als semi-terrestrische Bildungen mit enthalten, da sie größtenteils holozänen Ursprungs sind und sich im Zuge der Transgression entwickelten (vgl. Kap. 7). Dabei wird deutlich, dass kleinräumig pleistozäne Bildungen hervortreten, deren Holozänauflage bereits rezent erodiert und daher nicht rekonstruierbar ist. Diese Bereiche können aber auch im Holozän nicht überdeckt worden sein, beziehungsweise einer stetigen Erosion unterliegen.

Im Vergleich liefert die Sedimentverteilung der Geländeoberfläche (Abb. 4.3) durch die Aussagetiefe von 50 cm einen ersten Eindruck, wie geringmächtig die marine Sequenz in weiten Teilen des vorgelagerten Ostseeraumes ist. Generell muss bei diesen Karten die Genauigkeit der räumlichen Abgrenzung von Flächen berücksichtigt werden, da in einigen Gebietsteilen den Kartenwerken nur eine geringe Datendichte zu Grunde liegt (Abb. 5.1). Nicht erkundete Bereiche wurden als Datenlücken gekennzeichnet. Der Abgleich mit bereits bestehenden Kartenwerken für das Gebiet Darss-Zingst von TAUBER & LEMKE (1995) und für das gesamte Seegebiet Mecklenburg-Vorpommerns, erweitert und stärker generalisiert von LEMKE & NIEDERMEYER (in KATZUNG, Hrsg. 2004 - S. 354), zeigt generelle Übereinstimmung eines vorrangig feinsandigen Meeresbodens. Auffällig unterschiedlich stellt sich jedoch ein von diesen Autoren kartiertes Gebiet dar, das als Restsediment/Geschiebemergel mit Kiessowie Steinvorkommen klassifiziert wurde. Es erstreckt sich etwa von 1 km bis 4 km nördlich der Küstenlinie des zentralen Ostzingst mit einem Durchmesser von 3 km bis 4 km (vgl. TAUBER & LEMKE 1995). Im Vorfeld der eigenen Kartierung diente diese Information als Anhaltspunkt zur Klärung der Liefergebietssituation für den Zingst. Dieser Befund konnte aber durch die Auswertung der Side-Scan-Sonar-, Sedimentecholot-Aufnahmen und in der Nähe abgeteuften Bohrungen nicht bestätigt werden.

Abb. 4.2: Sedimentverteilungskarte der hangend anstehenden Ablagerungen an der marinen Basis für das Gebiet Darss-Zingst-Hiddensee.

Abb. 4.3: Karte der Sedimentverteilung an der Geländeoberfläche für das Gebiet Darss-Zingst-Hiddensee mit einer Aussagetiefe von 50 cm.

Ergänzend zu dieser allgemeinen Vorstellung der Normalabfolge von Lithofaziestypen stellen die folgenden Abschnitte den geologischen Aufbau des Arbeitsgebiets differenziert nach Teilräumen dar. Anhand von ausgewählten Typusbohrungen, geologischen Profilschnitten sowie interpretierten geophysikalischen Messungen werden die räumliche Verbreitung und die internen Lagerungsstrukturen verdeutlicht.

4.2 Das südliche Festland

Ein kurzer geologischer Überblick des nahezu aus pleistozänen Ablagerungen aufgebauten Gebietes wurde in Kapitel 2.1 gegeben. Generell fand nur eine geringfügige Überprägung durch terrestrisch wirkende Prozesse wie Abspülungen von Hanglagen, äolische Umlagerungen oder Bodenbildungen während des Holozäns statt. Die Veränderung durch Küstenbildungsmechanismen ist bis auf kleinere Abschnitte entlang der Uferlinie zu den Boddengewässern aufgrund der Höhenlage ausgeschlossen. Dieses wird auch im Vergleich der Sedimentverteilungskarten deutlich (Abb. 4.3 und 4.2), wo an der Geländeoberfläche bereits in den oberen 50 cm Teufe bis auf kleinräumige Ausnahmen pleistozänes Material ansteht. Als Untersuchungsbestandteil der verfolgten Fragestellung wurde die Graue Wiese als Beispiel für Küstengenese in diesem Teilgebiet gewählt, um diese Ergebnisse mit Befunden aus den Boddengewässern über die Nehrungen hinweg bis in das Ostseegebiet verbinden zu können (Abb. 4.6). Die Niederung ist im Süden des Grabow-Boddengewässers gelegen und wird von den pleistozänen Aufragungen des Höwtberg im Osten, Ützberg im Süden und des Fahrenkamp im Westen umgeben (Abb. 4.4: Kartenausschnitt). Der Fahrenkamp ragt dabei als Sporn in die Boddengewässer hinein und grenzt den Grabow vom Barther Bodden ab. Die Entstehung dieser Höhenzüge von knapp über 20 m NHN wird Grundmoränen der Velgaster Eisrandlage (Mecklenburger Vorstöße, Weichsel-Hochglazial) zugeordnet (JANKE 2005). Im Zuge des steigenden Meeresspiegels fungierten diese Aufragungen als Materiallieferanten und wurden während der frühen Phase von Küstenbildungsprozessen abradiert. Zu diesem Zeitpunkt hat in dem Gebiet vermutlich eine wesentlich höhere Wellendynamik aufgrund der noch nicht vollständig geschlossenen Küstenlinie der heutigen Nehrung Darss-Zingst geherrscht. Dabei wurden Kliffe abradiert und flache Buchten an den Südufern der heutigen Boddengewässer durch marin umgelagerte Sedimente zu jungen Küstenniederungen (Salzwiesen) aufgeschüttet. JANKE (2005) beschreibt, dass die Kliffe von Fahrenkamp und Höwtberg noch vor 2.000 bis 1.000 Jahren der Abrasion unterlagen. Die Abbildung 4.4 zeigt anhand von Bohrungen einen von Nord nach Süd gerichteten geologischen Schnitt durch die Graue Wiese mit Fortsetzung bis in zentrale Bereiche des Grabow. Geophysikalische Messungen mit dem Georadar zur Konnektierung dieser Aufschlüsse waren aufgrund erhöhter Signaldämpfung nicht zielführend (vgl. Kap. 3, Abschnitt 1.2). Die marine Basisfläche fällt von etwa 0 m NHN im Süden nordwärts auf -4 m NHN ab und reicht im südlichen Grabow bis maximal -8 m NHN. Der Untergrund der Grauen Wiese wird durch Geschiebemergel und glazi-limnischen Schluff gebildet, deren Oberfläche nach Norden abfällt und im Boddenbereich von glazi-limnisch/fluviatilen Feinsanden überlagert wird. Die marine Sedimentsequenz beginnt gewöhnlich mit Torf, der im Süden der Niederung bis über 2 m Mächtigkeit (Bohrung Nr. 19) erreicht, nordwärts zum Boddenufer bis auf wenige Zentimeter auskeilt und erst in tieferen Boddengebieten wieder an Mächtigkeit zunimmt. Im zentralen Teil (Bohrungen Nr. 16-18) durchzieht von Nordwesten kommend und westwärts gerichtet ein Strandwall die Graue Wiese. Dieser lagert hangend auf dem Torf und hat rückseitig für beruhigte Sedimentdynamik und weiteres Aufwachsen des Torfes als Küstenüberflutungsmoor gesorgt. Der Beginn dieser Strandwallbildung wurde erstmals in der bodenkundlich – agrarwirtschaftlich thematisierten Kartierung von Skandera (1989) durch Pollenanalysen von Prof. W. Janke am Top der Torfbildung auf 3.730 BP datiert (4.080 cal. BP; kalibriert mit CalPal-2007^{online}). Diese Oberflächenkartierung mit durchschnittlichen Endteufen der Aufschlüsse von etwa 1,5 m und deutlich geringerer Aufschlussdichte diente als Arbeitsgrundlage. Eigene Radiokohlenstoff-Datierungen mittels AMS an der Oberkante dieser Torfablagerung ergaben in ähnlicher räumlicher Lage ein Alter von 4.125 ± 30 cal. BP in -1,30 m NHN bis -1,35 m NHN Teufe (Bohrung Nr. 16 /AKBEZ: GrWi-8) und bestätigen damit annähernd das Palynoalter. Am Übergang zum Boddengewässer ergab die Torfoberkante in größerer Teufe von -3,62 m NHN bis -3,64 m NHN mit 6.585 ± 30 cal. BP (Bohrung Nr. 10 / AKBEZ: GrWi-1) ein höheres Alter und kennzeichnet damit in etwa den Entstehungsbeginn dieser Küstenniederung. Im Vorfeld des Strandwalls hat ein Keil von Feinsanden der Flachwasser-Fazies die Ebene bis über das Meeresspiegelniveau aufgeschüttet, dem liegend eine geringmächtige Muddeschicht der Torfoberfläche auflagert. Am Übergang zum Grabow ist dieser Sandkeil mit Muddeablagerungen verzahnt, die geschützt vom Kavelhaken in Stillwasserbedingungen den Bodden auffüllen.

Abb. 4.4: Geologischer Nord-Süd-Schnitt durch die Graue Wiese und den südlichen Grabow anhand von 21 eigenen Bohrungen. Für alle Profilschnitte sind die originären Aufschlussbezeichnungen der dargestellten Bohrungen zusammen mit einer Metadatenauswahl im Anhang A geordnet nach Abbildungsnummer sowie Schnittbezeichnung aufgelistet.

4.3 Die rückseitigen Boddengewässer

Der Aufbau der holozänen Schichtenabfolge variiert in den Boddengewässern generell zwischen Uferrandbereichen sowie zentralen Gebieten und ist zusätzlich abhängig vom lokalen Paläorelief. In eigenen Untersuchungen wurde der Grabow mit 18 Bohrungen sehr intensiv untersucht und zusätzlich ein Transekt von 3 Bohrungen in dessen Zufluss südlich des Großen Werders (als Am Bock bezeichnet) abgeteuft. Im Schaproder Bodden wurden ergänzend zu bestehenden Bohrungen 3 weitere zur Verdichtung der Stützpunkte für die 3D-Modellierung durchgeführt. Die westlichen Gewässer der Darss-Zingster Boddenkette wurden nicht weiterführend untersucht, sondern auf bestehende Datensätze aus Vorprojekten (z.B. KLIBO – Klimaänderung und Boddenlandschaft) zurückgegriffen. Von Nord nach Süd verlaufende geologische Schnitte sind für den Grabow in Abbildung 4.6, der Zufluss Am Bock in Abbildung 4.9 und der Koppelstrom südlich des Altdarss in Abbildung 4.5 (Schnitt A - nach Kaiser & Lampe (2009) ergänzt mit unpublizierten Untersuchungsergebnissen des Instituts für Geographie und Geologie der Universität Greifswald zu Schlickmächtigkeiten der westlichen Bodden) integriert. Der Aufbau variiert zwischen den einzelnen Gewässern und ist stark an das Paläorelief gebunden. In den westlichen Gewässern bestand durch die pleistozänen Erhebungen der Rostocker Heide, des Fischlands und des Altdarsses schon seit Beginn der Entwicklung eine hohe Schutzwirkung vor offen-mariner Hydrodynamik. Es stellten sich nahezu Stillwasserbedingungen ein. Der Transgressionskontakt ist dort von Muddeablagerungen (verfestigter Schlick) geprägt, die basalen Torfen auflagern und in zentralen Bereichen die Boddengewässer bis zum rezenten Meeresboden hin auffüllen. Dieses wird anhand der Oberflächensedimentkarte (Abb. 4.3) deutlich. Eine Ausnahme bilden ufernahe Bereiche zu benachbarten Kliffen oder mit liegenden glazi-limnischen bzw. fluviatilen Sanden, wo sich basal eine Strand-Flachwasserfazies als Transgressionskontakt ausbildete. Nach Angaben von LAMPE et al. (1998) sind Randbereiche des Saaler Boddens zum Fischland von bis zu 3 m mächtiger Flachwasserfazies geprägt, während in Bereichen, in denen das Meer in bereits bestehende Gewässer eindringt, sich diese in der Regel nicht ausbilden konnte. Entlang der Darss-Zingster Boddenkette konnte östlich eine ähnliche geologische Situation im Grabow festgestellt werden. Die Profilschnitte Abbildung 4.6 und südliche Teile als Auszug davon in Abbildung 4.4 zeigen im Untergrund des Grabows und Ostzingsts ein unruhiges pleistozänes Relief mit Aufragungen. Diese haben in zentralen und südlichen Gebieten des Boddens ebenfalls Schutz vor starker Hydrodynamik des Meeres geboten. In südlichen Bereichen sind mächtige Basaltorfe von teilweise über 1 m ausgebildet. Die Obergrenze wurde in Bohrung Gra-11 (vgl. Abb. 4.4: Bohrung Nr. 4; Abb. 4.6: Bohrung Nr. 28) in -6,80 m NHN auf 7.100 ± 35 cal. BP datiert. Hangend füllen Muddeablagerungen diese Senke bis zum rezenten Meeresgrund. Zum Ufer gerichtet und hangend ist die Stillwassersedimentation ab einer Teufe von etwa -3 m NHN mit Sanden der Flachwasserfazies verzahnt, die einen Wechsel zu einem höher dynamischen Sedimentationsmilieu darstellen. Müller (1997) beschreibt, dass bereits geringe Windgeschwindigkeiten von 5 m/s (3 Bft) ausreichen, um den Wasserkörper der heutigen Boddengewässer von max. 3-4 m Tiefe bis zum Grund zu durchmischen. Für die Erosion und den Transport von Feinsand ist nach Нуисьтком (1935) eine Bodenströmung von mindestens 15 cm/s notwendig, die sich vermutlich schon bei mittlerer Windeinwirkung (4-5 Bft) einstellt. Vom Zingst setzt sich nach Südwesten eine Schaarfläche bis in den zentralen Grabow fort, die als Kavelhaken bezeichnet und deren Verlauf von pleistozänen Aufragungen im Untergrund bereits vorgezeichnet wird (Abb. 4.4). Solche subaquatischen Nehrungsfortsätze sind im Raum typisch und lassen sich anhand des Verlaufs der -1 m Isobathe in den Kartenausschnitten der Abbildungen 4.4, 4.7 und 4.9 verfolgen. In Richtung der Seegatts nimmt die Hydrodynamik weiter zu, so dass Muddeablagerungen nahezu fehlen und sandige Ablagerungen dominant hervor treten. Diese Rinnenstrukturen können bis zu -5 m NHN eingeschnitten sein (eigene Handlotung zwischen den kleinen Werder Inseln: 15 m breit und bis -4,90 m tief; vgl. Abb. 4.10: östlich von Bohrung Nr. 33) und tragen wesentlich zum Wasseraustausch der Boddengewässer bei. Ein Beispiel für diesen Sedimentationsraum ist der rückseitige Bereich der Werder-Inseln und des Bock, der auch noch rezent durch eine große Anzahl von Seegatten gekennzeichnet ist (Abb. 4.9: Karte). Abbildung 4.9 zeigt die geologische Situation als Nord-Süd-Schnitt. Im Süden steht Geschiebemergel mit einer Kiesauflage unmittelbar am Meeresgrund an, dessen Oberfläche nach Norden hin abfällt und sandige Ablagerungen liegend vorkommen. Die holozäne Sequenz beginnt im nördlichen Teil mit 40-50 cm mächtigem Basaltorf in -6 m NHN, dem vorrangig marine Feinsande mit nur selten vorkommenden Wechsellagerungen von dünnen Schluff-Bändern auflagern. Diese Flachwassersedimentation hat sich als Keil progradierend von der im Süden steil ansteigenden Pleistozänoberfläche vorgebaut. Eine Schutzwirkung durch nördlich vorgelagerte Aufragungen bestand dabei nicht.

Vergleicht man den geologischen Aufbau der Boddenkette von West nach Ost, lässt sich eine Abnahme der Schutzwirkung vor der Hydrodynamik des offenen Meeres durch die Formung des Paläoreliefs als Trend feststellen. Im Abgleich der Sedimentverteilungskarten, Abbildungen 4.2 (marine Basis – hangend anstehend) und 4.3 (Oberfläche – Aussagetiefe 50 cm), nehmen die Schlickmächtigkeiten ostwärts deutlich ab. Vom Ostteil des Grabows bis in die nördlichen Boddengewässer Hiddensees ist das Vorkommen mit einer Mächtigkeit von weniger als 50 cm in Bohrungen belegt.

4.4 Nehrungen und Inseln

4.4.1 Der Darss

Der Darss gliedert sich morphologisch in den zentral gelegenen pleistozänen Inselkern des Altdarsses, die angrenzenden holozänen Bildungen des Vor- /Neudarsses mit der Hakenbildung Darßer Ort und die Prerow-Wiecker Boddenniederung (Abb. 4.5: Kartenausschnitt). Untersucht

wurden die Prerow-Wiecker Boddenniederung im Ostteil des Darsses mit 10 Bohrungen sowie das nördlich angrenzende Seegebiet mit 6 Kernen und Sedimentecholotmessungen (Abb. 3.2). In den übrigen Teilen wurde auf Altdatenbestände früherer Studien zurückgegriffen. Abbildung 4.5 zeigt zwei von Nord nach Süd verlaufende geologische Schnitte, die den Aufbau der unterschiedlichen Struktureinheiten des Gebietes verdeutlichen. Zusätzlich ist die Bohrung Da-1, die eine typische Sedimentabfolge der holozänen Teilgebiete aufweist, korngrößenanalytisch untersucht worden. Deren Ergebnisse sind zusammenfassend mit weiteren Bohrungen anderer Nehrungen in Abbildung 4.11 dargestellt. Profilschnitt A zeigt die Verzahnung des Altdarss mit den holozänen Ablagerungen, beginnend im nördlichen Seegebiet bis in das südliche Boddengewässer des Koppelstroms verlaufend. Die Zeichnung basiert auf einem Entwurf von KAISER & LAMPE (in BILLWITZ & PORADA, Hrsg. 2009) und wurde nach Norden mit eigenen Befunden seeseitig verlängert, sowie nach Süden durch externe Untersuchungsergebnisse aus dem Koppelstrom ergänzt (Institut für Geographie und Geologie, EMAU). Der Altdarss besteht im Untergrund aus etwa 20-25 m mächtigen spätglazialen Beckenablagerungen. Sie sind aus der Abfolge von glazilimnischen Tonen, Schluffen und Sanden über Geschiebemergel, mit einer allerødzeitlichen Bodenbildung auf der Paläolandoberfläche aufgebaut, die von jungen 1-2,5 m mächtigen Flugsanden überdeckt wird (KAISER 2001, KAISER et al. 2006). Die Oberfläche ist überwiegend eben, ragt durchschnittlich 6-7 m über NHN auf und fällt nach Süden bis an die Uferlinie der Boddengewässer ab. Auffälligstes Reliefmerkmal ist das fossile Meereskliff am Nordrand des Altdarsses, wo die Beckenablagerungen infolge der Littorina-Transgression bis in eine Teufe von ca. -9 m NHN abradiert wurden. SCHUMACHER (2000) beschreibt eine aktive Rückschneidung dieses Kliffs bis vor etwa 3.000 Jahren (3.200 cal. BP; kalibriert mit CalPal-2007^{online}), was mit dem Einsetzen der marinen Sedimentation im Gebiet des heutigen Prerowstroms vor 3.500 Jahren korreliert (Abb. 4.10: Bohrung Nr. 5; Kap. 7: Tab. 7.2 – Standort Z-1; REIMANN et al. 2011).

Im Schutz des Altdarsses sind im Zuge des Meeresspiegelanstiegs großflächig bis zu 4 m mächtige holozäne Torfe in rückseitigen Gebieten gebildet worden (z.B. Abb. 4.5 - Profil B: Bohrung Nr. 10). Die südwestliche Verbindung zum Fischland wird als Vordarss bezeichnet und entstand durch den nach Nordost gerichteten Küstenausgleich infolge der Abrasion von Kliffen der Rostocker Heide und des Fischlands. Nördlich schließt sich der Neudarss als nahezu dreieckige Ebene an, dessen Spitze die nach Nordosten abgelenkte Hakenbildung des Darßer Ort bildet. Anhand der -5 m NHN Linie wird im Kartenausschnitt (Abb. 4.5) das subaquatische Ausmaß dieser Struktur deutlich. Die Basis, hauptsächlich bestehend aus glazi-limnischen Schluffen, fällt von -9 m NHN auf -14 m NHN im Küstenvorfeld ab. Hangend bauen etwa 10 m mächtige marine Sedimente von vorwiegend Flachwasserfazies den Nehrungskörper auf. An der Oberfläche des Neudarsses treten zwei aus unterschiedlichen Richtungen ineinander greifende Strandwallfächer, bestehend aus etwa 120 Strandwällen, charakteristisch hervor (vgl. Abb. 4.5: Kartenausschnitt – schwarze Liniensignatur). Der westliche ist nur reliktisch erhalten und unterliegt einer jährlichen Rückschneidung nach

Osten von 0,6 m/a bis 0,9 m/a (Staatliches Amt für Umwelt und Natur, Rostock 2009). Das abradierte Material verbleibt im Küstenlängstransport und führt zum Längenwachstum und zur Entstehung neuer Strandwälle im Bereich der Nordspitze. Der östliche Strandwallfächer füllt durch Sedimentzufuhr vom Zingst in großen vollständig erhaltenen Bögen die Prerower Bucht auf. Die Strandwälle sind im Laufe der Zeit durch Dünenbildungen äolisch überprägt worden und trennen zahlreiche Riegen (dazwischen geschaltete lang gestreckte Senken) und Strandseen vom Meer ab. Im zunehmenden Entwicklungsprozess verlanden diese Hohlformen und es setzt oberflächlich erneut Torfbildung infolge der subatlantischen Transgression ein. Der östlich in der Prerow-Wiecker Boddenniederung gelegene, parallel verlaufende Profilschnitt B (Abb. 4.5) zeigt eine ähnliche Situation. Im Untergrund stützen die in diesem Teil bereits abgeflachten Ausläufer des Altdarsses die Nehrungsbildung. In beruhigten Lagen konnte sich an der marinen Basis Torf ausbilden, dem nur lokal geringmächtige Muddevorkommen auflagern. Es stehen auch in diesem Teilgebiet hauptsächlich marine Feinsande an.

Insgesamt gilt der Darss durch seinen kleinräumigen Formenwandel und ausgeprägten Reff-Riegen Strukturen als Musterbeispiel für junge Hakengenese. In Bezug auf Bodenbildung und Vegetation stellt er ebenfalls einen höchst abwechslungsreichen Naturraum dar.

Abb. 4.5: Geologische Nord-Süd-Schnitte durch den Darss. Profil A stellt die Verbindung des Altdarsses mit dem Neudarss und nördlichen Seeraum, sowie die südliche Verlängerung in das rückseitige Boddengewässer des Koppelstroms dar (nach KAISER & LAMPE in BILLWITZ & PORADA (Hrsg, 2009), ergänzt mit weiteren Bohrungen). Profil B zeigt die Situation im östlichen Teil der Nehrung (Datenbasis: 10 eigene Bohrungen, 1 ext. Bohrung).

4.4.2 Der Zingst

Die Geländeoberfläche des Zingsts ist im Vergleich zum Darss flacher über den Meeresspiegel aufgeschüttet und eher unstrukturiert. Es treten keine pleistozänen Inselkerne hervor. Räumlich erstreckt sich entlang des Prerower Stroms der westliche Teil mit der Ortslage Zingst. Ostwärts folgt die Straminke Niederung am Zingster Strom (ein bereits geschlossenes Seegatt) sowie der Osterwald und daran fortsetzend der Ostzingst bis zum Seegatt Pramort. Die Abbildungen 4.6 und 4.10 zeigen mit zwei geologischen Schnitten den grundlegenden Aufbau der Nehrung. Der Nord-Süd Schnitt (Abb. 4.6) vom Plantagenetgrund im nördlichen Seeraum kommend, schneidet die Nehrung und setzt sich im Grabow bis in die Graue Wiese fort. Er stellt mit 45 Bohrungen und Sedimentecholotmessungen eines der Kernuntersuchungsziele zum Verständnis der Ablagerungsstrukturen im Gesamtgebiet dar. Verfolgt man in beiden Schnitten den Verlauf der marinen Basisfläche, ist die Teufenlage stark schwankend zwischen -13,25 m NHN im zentralen Osterwald und -1,05 m NHN auf der Sundischen Wiese des Ostzingsts (vgl. Abb. 4.10: Bohrungen Nr. 17, 21). Eine Reihe von Aufragungen, bestehend aus Geschiebemergel oder Feinsanden glazi-limnischen bis fluviatilen Ursprungs, bilden Aufhänger für Sedimentakkumulationen und zeichnen die rezente Lage des Nehrungskörpers bereits im Untergrund vor. Solche bis -5 m NHN begrabenen Inselkerne wurden am Ostufer des südlichen Prerower Stroms, am Zingster Strom unterhalb der Ortslage Zingst, westlich des Osterwaldes nahe der Ortslage Müggenburg sowie weiter östlich auf der Sundischen Wiese erbohrt und deuten insgesamt auf ein lebhaft gegliedertes Ausgangsrelief hin (Abb. 4.10). Auf der Nord-Südachse befinden sie sich generell in zentralen bis südlichen Teilen. Abbildung 4.6 zeigt die Situation auf dem Ostzingst, wo die marinen Ablagerungen nach Norden progradierend gegen diese Strukturen abgelagert worden sind. Altersdatierungen der pleistozänen Decksande mit Hilfe optisch stimulierter Lumineszenz ergaben einen Ablagerungszeitraum von vor 13.690 ± 780 Jahren (Älteste Dryas – Bölling) in -4,95 m NHN östlich des Prerower Stroms (vgl. Abb. 4.10: Bohrung Nr. 5; Kap. 7: Tab. 7.2 - Standort Z-1; REIMANN et al. 2011). Diesen Sanden lagert eine allerødzeitliche Torfbildung von 13.150 ± 60 cal. BP (Standort Z-1) auf. Insgesamt treten basale Torfbildungen jedoch nur sporadisch und geringmächtig auf, was ein Anzeichen für hohe hydrodynamische Einflüsse an einer durch viele Seegatten geprägten ungeschlossenen Küstenlinie zu Beginn der Transgression ist. In den Bohrungen Zi-OW-2 im Osterwald, Zi-2 (vgl. Abb. 4.6: Bohrung Nr.13) sowie Zi-9 (vgl. Abb. 4.10: Bohrung Nr. 23) auf der Sundischen Wiese wurden Basistorfe in Teufenniveaus von -7,32 m NHN (im Osterwald) bis -5,02 m NHN (Sundische Wiese) angetroffen und auf atlantische Alter datiert (vgl. Kap. 7: Tab. 7.1). Die marine Sequenz besteht hauptsächlich aus Feinsanden der Flachwasserfazies, während an Senken gebundene Muddeablagerungen vom Gesamtvolumen nur geringe Vorkommen aufweisen. Grobklastische Bestandteile fehlen weitestgehend. Dieser Befund ist ein wichtiges Indiz und lässt erste Rückschlüsse auf den Aufbau des Liefergebietes zu.

Abbildung 4.11 zeigt Korngrößenverteilungen von Proben aus der Bohrung Zingst-9, die alle für den Zingst typische Sedimentschichten enthält. Im Vergleich zum Darss (Bohrung Darss-1) werden relativ hohe Sandanteile und nur geringe organische Bestandteile in den Stillwasserablagerungen deutlich. Dieses stützt die Annahme von nur geringer Schutzwirkung durch das Ausgangsrelief und bewegter Hydrodynamik zu Beginn der Nehrungsbildung. Die hangend folgende Flachwasserfazies besitzt eine sehr homogene Korngrößenverteilung, da anhand der Medianwerte ein Trend von für Nehrungen typischer Kornvergröberung zum Hangenden ("coarsening up") nur wenig erkennbar ist.

Auf der Nehrungsoberfläche sind Strandwallstrukturen selten zu finden und lassen sich durch ihren feinsandigen Aufbau von flachen Dünenkuppen nur schwer unterscheiden. Im nördlichen Osterwald wurden nach Südosten abgelenkte Strandwallstrukturen oberflächennah auf Alter von 1.900 bis 1.500 Jahren vor heute datiert (vgl. Kap. 7: Tab. 7.2 – Schürfe Zingst-Osterwald S1 bis S4), was eine Aussage über die Schließung des zwischen den Inselkernen am Westrand bei Müggenburg und der Sundischen Wiese vermuteten Seegatts zulässt (vgl. Abb. 4.10: Verlauf der marinen Basis). Oberflächennahe Sedimente im Westen (nahe des Prerower Stroms) und rückseitig der Hohen Düne bei Pramort am Ostrand des Zingsts weisen in einer Teufe von -0,9 m NHN etwa gleiche OSL-Alter von 600 bis 700 Jahren auf (vgl. Kap. 7: Tab. 7.2 – Standorte Z-1, Z-9). Die Morphologie der Küstenlinie ist unterschiedlich ausgeprägt, dabei fallen durch Küstenschutzmaßnahmen eingedeichte und von Strandaufspülungen überprägte Abschnitte vom Westrand bis zum Osterwald aus der Betrachtung heraus. Der Ostzingt weist eine nahezu unbeeinflusste Außenküste auf, auch zentrale und boddenseitige Gebiete unterliegen seit kurzem wieder einer natürlichen Genese. In einer Bauphase im Zeitraum 2007-2008 wurde der Seedeich geschlitzt sowie die ehemalige Militärstrasse entlang der zentralen Mittellinie und der Boddendeich zurückgebaut. Entlang der Küste findet man flache, überdünte Strandwallstrukturen mit rückseitigem Strandmoor (Dünenrehmel), Küstenwald, der erosiv dem Meer ausgesetzt ist, bis hin zu 8–9 m NHN aufgehöhte Dünengürtel (Hohe Düne) am Seegatt Pramort (Abb. 4.7: Fotos B, C, D). Die Zingster Küstenlinie unterliegt rezent erheblichen Küstenrückgangsraten von bis zu 1,2 m/a mit Ausnahme des Seegatts Pramort, dessen Gebiet eine ausgeglichene Sedimentbilanz aufweist (Staatliches Amt für Umwelt und Natur, Rostock 2009). Zum Boddenufer fällt die Geländehöhe des Zingsts seicht bis auf das Meeresspiegelniveau ab und ist sogar in einigen Teilen knapp darunter gelegen. Diese Salzwiesenstandorte sind häufig mit Wasser überflutet und als semiterrestrisch zu bezeichnen.

Abb. 4.7: Der Ostzingst (Fotodokumentation unterschiedlicher Landschaftsformen).

4.4.3 Das Windwatt und Barriere Inseln

Das ostwärts anschließende Windwatt mit den Inseln des Großen Werders, den Kleinen Werder-Inseln sowie des Bocks stellt einen der jüngsten Teile des Nehrungssystems Fischland-Darss-Zingst dar. Es ähnelt generell dem geologischen Aufbau des Zingsts. Intensiv wurden dabei das Windwatt und der Große Werder untersucht, wo neben der generellen Erkundung des geologischen Aufbaus besonders die Datierung oberflächennaher Sedimente im Fokus stand, um kleinräumig das Ablagerungsszenario einschätzen zu können. Abbildung 4.10 zeigt im östlichen Teil einen Schnitt parallel zur Küstenlinie entlang des südlichen Strandwallsystems des Großen Werders (bis 2,5 m NHN durch Überdünung aufgehöht) und durch ostwärts anschließende Barriere-Inseln. Die Situation senkrecht zur Küste mit der Verzahnung von Inseln und dem Windwatt, dem Küstenvorfeld sowie dem rückseitigem Bodden ist am Beispiel des Großen Werders dargestellt (Abb. 4.9). Einen Überblick über den Teilraum liefert ein Schrägluftbild (Abb. 4.8: Foto A). Auf dem Großen Werder wird der beschriebene mächtige Strandwall im Süden deutlich (1), an den sich nordwärts ein flacher aufgeschüttetes Strandwallsystem aus 7 Reffen mit zwischengeschalteten, oberflächlich vermoorten Riegen anschließt. Die Windwattfläche ist
mit diesem Ausmaß einzigartig an der deutschen Ostseeküste und stellt im Arbeitsgebiet das größte rezente Akkumulationsgebiet dar. Nach Angaben des Staatlichen Amtes für Umwelt und Natur in Rostock (2009) unterliegt es einer Progradation von etwa 4 m/a. Foto B (Abb. 4.8) zeigt die ebenerdige Situation im trocken gefallenen Zustand unter südwestlichem bis südöstlichem Windregime. Eine initiale Nehrungsbildung wird anhand typischer Pioniervegetation mit leeseitig äolischer Sandakkumulation und großflächig verbreitetem Molluskenschill deutlich. Die Flutung geschieht bei auflandigen Windrichtungen innerhalb weniger Stunden. Während der Geländearbeiten wurden Wasserspiegelschwankungen von etwa 5 cm/h schon bei geringeren Windstärkeveränderungen (<10 kn) beobachtet.

Abb. 4.8: Das Windwatt mit Barriere-Inseln (A: Schrägluftbild des Windwatts mit Seegatt Pramort und der Insel Großer Werder mit charakteristischen Strandwallstrukturen (1) im Vordergrund (Prof. R. Lampe – Befliegung 2006), B: Das Windwatt – trocken gefallen).

Der geologische Aufbau dominiert auch in diesem Gebiet mit marinen Feinsanden, die sich progradierend gegen das im Untergrund nach Süden ansteigende pleistozäne Relief vorgebaut haben (vgl. Abb. 4.9: Verlauf marine Basis). Unter dem Ostteil des Großen Werders ragt ein Inselkern, bestehend aus Geschiebemergel bis -5,80 m NHN auf (Abb. 4.10: Bohrung 32), der ebenfalls als Aufhänger des Nehrungssystems gedient hat. An der marinen Basis konnten sich nur sporadisch geringmächtige Torfe ausbilden, deren Vorkommen an Senken und rückseitige Boddenbereiche gebunden ist. Depressionen wurden bis auf ein Niveau von etwa -7,5 m NHN mit Stillwasserfazies aufgefüllt (Abb. 4.9, Abb. 4.10) und hangend von Flachwasserfazies überlagert. Grobklastische Bestandteile treten im südlichsten und am stärksten ausgeprägten Strandwall des Großen Werders im Gegensatz zum übrigen Arbeitsgebiet deutlich hervor. Etwa 50 cm mächtige Flugsande bedecken dessen Oberfläche. Die Korngrößenverteilungen von Proben der Bohrung Werder-Inseln-1 geben diesen Aufbau wieder und zeigen ein typisches "coarsening up" (Abb. 4.11). Stillwassersedimentation ist im Vergleich zum Zingst ebenfalls mit nur geringen Organogengehalten von unter 5 % vorgefunden worden. Der Ablagerungszeitraum der rezenten Oberfläche bis in eine Teufe von etwa -0,8 m NHN umfasst nach OSL-Datierungen in etwa die letzten 500 Jahre (vgl. Kap. 7: Tab. 7.2 – Standorte W-1 bis W-6). Ein typisches Progradieren

nach Norden ließ sich anhand der Daten nicht eindeutig nachweisen, da schon die nördlichsten Bereiche des Windwatts in diesem Altersbereich liegen. Dies ist ein Anzeichen für hohe Sedimentdynamik im gesamten Raum, wo auch distale Bereiche durch Überspülungen infolge von Stürmen rezent einem Aufwachsen unterliegen. Die mächtige Strandwallbildung im Süden des Großen Werders wurde auf ein Alter von etwa 900 Jahren datiert (vgl. Kap. 7: Tab. 7.2 – Standort W-1). Als Ausnahme muss die Insel Bock betrachtet werden, deren natürliche Genese bis zum Schaarstadium reicht und seit 1896 anfallendes Baggergut der Gellenfahrrinne (Westansteuerung der Hansestadt Stralsund) im östlichen Teil aufgespült wurde (REINHARD 1953, BILLWITZ 2009). Das führte zur Aufhöhung der Insel bis etwa 2 m NHN (BILLWITZ 2009). Nach Recherchen dieses Autors umfassten die Maßnahmen bereits zwischen 1906 und 1951 ein Sedimentvolumen von etwa 5 Mio. m³.

Abb. 4.9: Geologischer Nord-Süd-Schnitt über das Windwatt und den Großen Werder, beginnend im Ostseegebiet mit Anbindung an das Festland (Datenbasis: 16 eigene Bohrungen, Sedimentecholotprofil SES_Zi_S-N_8/08).

Als zusammenfassender Überblick des Darss-Zingster-Nehrungssystems dient ein küstenparalleler West-Ost-Schnitt (Abb. 4.10) sowie die vergleichende Darstellung von Laborergebnissen dreier charakteristischer Bohrungen der Teilgebiete (Abb. 4.11). Es wird der detailliert beschriebene, vorrangig feinsandige Aufbau mit im Untergrund begrabenen Inselkernen deutlich, deren Lage den Nehrungskörper bereits vorzeichnen.

4.4.4 Die Insel Hiddensee

Die Insel Hiddensee gliedert sich in den steil aufragenden Inselkern des Dornbuschs im Norden mit den südöstlich anschließenden jungen Hakenbildungen des Alt- und Neubessins, sowie dem sich nach Süden fortsetzenden Hauptnehrungskörper (Abb. 4.12: Foto A, Foto B, Abb. 4.13: Kartenausschnitt).

Abb. 4.12: Die Insel Hiddensee (A: Das Dornbuschkliff im Nordwesten, B: Schrägluftbild des zentralen Inselteils mit Dünenheide (1) im Vordergrund, Strandwallfächer (2) und Fährinsel im Hintergrund (3) (Prof. R. Lampe - Befliegung 2006).

Ergänzend zu bereits bestehenden und sehr umfangreichen Datensätzen wurden im zentralen bis südlichen Teil 21 Bohrungen, 5 Schürfe sowie Georadarmessungen durchgeführt. Auf Basis eigener Daten wurde ein W-O-Schnitt (Abb. 4.13) im Zentrum der Nehrung mit Fortsetzung in das westwärts anschließende Seegebiet entwickelt, während für den küstenparallelen Süd-Nord-Schnitt (Abb. 4.14) hauptsächlich externe Daten genutzt wurden. Anhand dieser Darstellungen wird der interne Aufbau der Insel deutlich. Im Vergleich zum Darss-Zingster-Nehrungssystem fällt das Relief der Küstenlinie mit wesentlich steilerem Winkel in das Küstenvorfeld ab (Abb. 4.13, 4.9, 4.6, 4.5). Abrasionen sind mit durchschnittlich -0,4 m/a und sogar einigen ausgeglichenen Bereichen von geringerer Auswirkung (Staatliches Amt für Umwelt und Natur, Rostock 2009). Ursache könnte die westlich vorgelagerte Flachwasserzone sein, die den Hauptnehrungskörper vor starker Wellendynamik zu schützen scheint und anhand der -5 m NHN Linie deutlich

wird (Abb. 4.13: Kartenausschnitt). Positive Sedimentbilanzen kennzeichnen den Gellen, den Neubessin und in geringem Ausmaß den Altbessin. Zusätzlich wird im Vergleich mit Darss-Zingster Profilschnitten das vertikal wesentlich höhere Aufschüttungsniveau der holozänen Inselteile von durchschnittlich etwa +1,5 m NHN deutlich (Abb. 4.14, 4.10). Im Untergrund ist die marine Basisfläche ebenfalls sehr strukturiert und hauptsächlich geprägt von Geschiebemergel-Hochlagen, die im Bereich der Fährinsel und des Gellens bis -3,20 m NHN aufragen (Abb. 4.14: Bohrungen 2, 6, 9). Möbus (2000) beschreibt den Dornbusch als Stauchmoräne und zeigt kartographisch die östlich von Rügen bis unter den Nehrungskörper reichende Fährinsel- sowie Gellen-Schwelle mit zwischengeschalteter Nord- und Südsenke. Diese Senken verbinden sich weiter westwärts und stellen ehemalige Entwässerungsbahnen des Schmelzwassers dar, die nach Nordnordwesten in Beckenbereiche der Ostsee mündeten. LEMKE (1998) konnte mit Hilfe von geophysikalischen Messungen (Boomer) diese Bahnen als verfüllte Rinnenstrukturen bis -50 m NHN im Untergrund der Falster-Rügen-Platte verfolgen.

Abb. 4.13: Geologischer West-Ost-Schnitt über den zentralen Nehrungskörper der Insel Hiddensee mit Ver-zahnung in das Ostseegebiet (Datenbasis: 10 eigene Bohrungen, Sedimentecholotprofil SES_Zi_W-O_9/08).

Infolge der Transgression wurden diese tieferen Bereiche im Untergrund Hiddensees mit Muddeablagerungen bis auf ein Niveau von etwa -5 m NHN verfüllt und können Schichtmächtigkeiten von bis zu 10 m erreichen (Abb. 4.14: Bohrung 20). Basale Torfbildungen treten nur vereinzelt auf (Abb. 4.2) und konnten zum Beispiel in Bohrung Hi-7/07 in einer Teufe von -9,42 m NHN auf 8.404 \pm 16 cal. BP datiert werden (Abb. 4.13: Bohrung 7, Abb. 4.14: Bohrung 16).

Feinsande der Flachwasserfazies bilden auch im Gebiet Hiddensee den größten Anteil des holozänen Sedimentvolumens. Grobklastische Sedimente der Strandfazies treten in diesem Teilarbeitsgebiet jedoch wesentlich signifikanter hervor. Sie sind teilweise nicht nur unmittelbar an der rezenten Sedimentoberfläche in Form von Strandwällen zu finden, sondern es lassen sich auch frühere Stadien der Inselentwicklung anhand mehrerer Strandwallbildungen im Untergrund erkennen, die teilweise bis zu 7 m überdeckt wurden (Abb. 4.13). Abbildung 4.15 zeigt eine Georadaraufnahme dieser Situation entlang der Küstenlinie im Übergang zur Dünenheide (vgl. Kartenausschnitt rote Linie, Abb. 4.12: Foto B). Das Reflexionsmuster konnte mit Hilfe von Bohrung Hi-4/07 eindeutig interpretiert werden. Unmittelbar an der Oberfläche befindet sich ein hartes Reflektorenband, das mit grobklastischen Sedimenten der Bohrung einhergeht. Liegend wird das Reflexionsmuster diffuser mit vereinzelten harten Reflektoren, die Grobsandlagen innerhalb einer von Feinsand dominierten Schicht darstellen. In etwa -7 m bis -8 m Teufe folgt ein stark ausgeprägtes horizontales Reflektorband von aneinander gereihten Aufwölbungen, das anhand der Bohrung aus Mittel- bis Grobsanden mit Nebengemengeanteilen von Kiesen besteht. Es lässt auf einen begrabenen Strandwallfächer schließen. Befunde dieser Art wurden häufig im zentralen Inselteil angetroffen.

Abb. 4.15: Exemplarischer Ausschnitt aus Georadarmessungen der Insel Hiddensee im Gebiet der Dünenheide. Das Reflexionsmuster zeigt im Abgleich mit Bohrungen begrabene Strandwälle früherer Nehrungsstadien.

Die starke Verbreitung grobklastischer Bestandteile in Schnitt 4.14 beruht auf der Lage der Schnittlinie entlang der Küstenlinie. In rückseitigen Salzwiesenstandorten treten diese zurück,

und Feinsande der Flachwasserfazies dominieren den Aufbau. Zur zeitlichen Abschätzung der Genese Hiddensees wurden oberflächennahe Sedimente vielfältiger morphologischer Strukturen (Dünenbildungen, Strandwälle, Salzwiesen) mit optisch stimulierter Lumineszenz datiert. Danach ist zum Beispiel die Bildung der älteren Dünengenerationen im Untergrund der Dünenheide (Braundünen) vor 200 Jahren abgeschlossen. Anhand der Datierung unterschiedlicher Strandwallfächer wird der Vorbau nach Süden deutlich. So sind zum Beispiel die Strandwallbildungen südlich der Fährinsel etwa 260 Jahre älter als nördlich von Neuendorf (vgl. Kap. 7: Tab. 7.2 – Standorte H-2, H-3). Datierungen rückseitiger Salzwiesenstandorte zeigen ebenfalls die südgerichtete Inselentwicklung an.

Der geologische Aufbau Hiddensees ähnelt generell der Situation des Darss-Zingster-Nehrungssystems, wo marine Sedimente gegen pleistozäne Aufragungen vorgebaut wurden. Als Beispiel zeigt Abbildung 4.13, dass der zentrale Inselteil im Untergrund durch die Geschiebemergel-Ausläufer der Fährinsel gestützt wird.

4.5 Das angrenzende Seegebiet der südlichen Ostsee

Der geologische Aufbau des angrenzenden Seegebiets der Falster-Rügen-Platte ist regional variierend und in Auszügen in den Schnitten der Nehrungen und Inseln, die weit in das Küstenvorfeld vordringen, dargestellt (vgl. Abb. 4.5, 4.6, 4.9, 4.13). Abbildung 4.16 zeigt 5 Bohrungen, die stellvertretend den abwechslungsreichen Aufbau einzelner Teilgebiete anhand von gezeichneten Bohrsäulen aus Schichtenverzeichnissen und Laboruntersuchungen verdeutlichen sollen. Insgesamt wurde der Seeraum durch 109 km Side-Scan-Sonaraufnahmen, 7 Tauchrobotereinsätze sowie 257 km Sedimentecholotmessungen und 56 Bohrungen, die zur Interpretation der Seismogramme dienten, erkundet.

Die marinen Ablagerungen sind im Gesamtraum geringmächtig und weisen nur im Gebiet der Prerowbank (Abb. 4.16: Bohrung Zi-OS-36) und in Schorrebereichen von Nehrungen und Inseln Beträge über 2 m auf. Mit Blick auf die Sedimentverteilung am Meeresboden (Abb. 4.3), deren Aussagetiefe 50 cm beträgt, wird ein großer zentraler Bereich von geringer mariner Sedimentation deutlich. Kleinräumig stehen im Zentrum und am Plantagenetgrund pleistozäne Sedimente sogar rezent an (Abb. 4.2). Die marine Basisfläche fällt im Seeraum flach geneigt um rund 4 m vom Schorrebereich der Küste nach Norden kontinuierlich ab. In äußeren Bereichen erreicht sie ein Niveau von etwa -12 m NHN. Einzig nachgewiesene flache Aufragung stellt der Plantagenetgrund dar. Die liegende pleistozäne Deckschicht besteht großflächig aus Feinsanden glazi-limnischen bis fluviatilen Ursprungs, während im Zentrum Schluffe anstehen, die als zusammenhängendes Seebecken kartiert werden konnten (Abb. 4.1, 2.1, 4.16: Bohrung Zi-OS-38). Geschiebemergel wurden in nördlichen Bereichen angetroffen (Abb. 4.16: Bohrung Zi-OS-34). In der marinen Sequenz treten basale Torfbildungen nur sehr selten und kleinräumig

im Seegebiet auf (z.B. im Vorfeld Hiddensees) und umfassen erst im südlichen Küstenvorfeld größere Flächen, die sich bis in den Untergrund des Zingst und des Windwatts verfolgen lassen (Abb. 4.2). Die Datierung von Basistorf in etwa 7,5 km Entfernung von Hiddensee und dem Windwatt liefert ein Alter von 8.245 ± 53 cal. BP in -9,60 m NHN Teufe (vgl. Kap. 7: Tab. 7.1 – Standort O-2). Zusätzlich wurde die Oberkante einer Paläobodenbildung im nördlichen Küstenvorfeld Hiddensees auf 8.060 \pm 68 cal. BP in ähnlicher Teufenlage von -9,20 m NHN datiert (Standort O-5). Anhand des Basistorfalters aus Bohrung Zi-OS-15 muss die marine Beeinflussung unmittelbar anschließend erfolgt sein. Die hangend folgende marine Sedimentation besteht großflächig aus einer Feinsandauflage der Flachwasser-Fazies, die nur sporadisch dünne Lagen von Detritus, aufgearbeiteten Muddeablagerungen oder gröberen Korngrößenfraktionen enthält (Abb. 4.16: Bohrungen Zi-OS-36, 46, 54). Ausnahmen bilden Muddeablagerungen im Vorfeld Hiddensees und südlich des Plantagenetgrundes (Abb. 4.2), die teilweise Mächtigkeiten von über 3 m erreichen (Abb. 4.16: Bohrung Zi-OS-31). Die Organogengehalte sind mit 10-15 Gewichtsprozent deutlich höher als auf dem Zingst und dem Windwatt (Abb. 4.11: Bohrungen Zi-9, WerI-1) und nach DIN 14688-2 (2004) als "mittel organisch" anzusprechen. Das kann zum Beispiel durch aufgearbeitete Torfe umliegender Areale oder eine lokal höhere Primärproduktion hervorgerufen worden sein. Diese im Seeraum anstehende und einem lagunär beruhigtem Wassermilieu entsprechende Sedimentation ist im Vergleich zu benachbarten Arbeitsgebieten entlang der südlichen Ostseeküste untypisch. Aufgrund der großen Mächtigkeiten und der rezent offen marinen Lage lassen diese Befunde auf die Existenz einer vor hoher Wellendynamik geschützten Zone von größerer Ausdehnung in der Vergangenheit schließen. Gegenwärtig lassen sich keine Überreste vorgelagerter initialer Barrieresysteme am Meeresboden auffinden, die eine Schutzwirkung zur Ablagerung von rückseitigen lagunären Sedimenten erzeugt haben könnten.

Abb. 4.16: Typische Bohrungen aus dem Seegebiet der Ostsee, die anhand gezeichneter Bohrsäulen aus Schichtenverzeichnissen sowie Korngrößenverteilungen und Organogengehalten von untersuchten Proben dargestellt werden.

Mit Hilfe von Datierungen sehr gut erhaltener zweiklappiger Mollusken an der Basis und im Top dieser Muddeschicht konnte an zwei Standorten ein Bildungszeitraum von etwa 7.450 cal. BP bis 4.900 cal. BP eingegrenzt werden (vgl. Kap.7: Tab. 7.1 – Standort O-4, O-5). Granulometrische Untersuchungen dieser Schicht ergaben Schluffgehalte von 81 bis 95 Gewichtsprozent mit geringen tonigen und teilweise auch feinsandigen Nebengemengeanteilen, die schlechte Sortierungen zwischen 1,56 bis 1,82 nach Füchtbauer & Müller (1970) aufweisen (Anhang C – Ergebnisse KGV: Proben-Nr. 555-557, 562, 564, 566-568). Die gemessenen Wassergehalte bewegen sich in diesen Proben zwischen 15 und 19 Gewichtsprozent. Sie sind als gering gesättigt für am Meeresboden anstehende Sedimente zu bewerten. Aus geotechnischer Sicht sind nach DIN 18196 (1988) Schluffe mit organischen Beimengungen durch eine niedrige Plastizitätszahl gekennzeichnet (DIN 18196: Abb.1 - Plastizitätsdiagramm nach CASAGRANDE). Zusammengefasst werden diese Sedimenteigenschaften von PRINZ (1997) als besonders anfällig für Setzungen eingestuft. Im Vergleich zu stark wassergesättigten breiigen Schlickablagerungen zum Zeitpunkt der Ablagerung weisen diese Mudden eine steife bis halbfeste Konsistenz anhand der makroskopischen Geländeansprache nach DIN 14688-1 (2003) auf. Diese Konsistenz und der geringe Wassergehalt zeigen eine Konsolidierung durch Wirkung von Auflast an. Rezent fehlen jedoch weitestgehend hangende Ablagerungen, die zu diesem Prozess geführt haben. Die Mächtigkeit bzw. das Volumen dieser ehemals auflagernden Schichten lässt sich nicht genau rekonstruieren, da für Berechnungen zu Setzungserscheinungen entweder die auflagernde Schichtmächtigkeit und Sedimenttyp oder die Eigenschaften der unkonsolidierten Schicht zusätzlich zu den gemessen Größen notwendig sind. Daher konnten gängige Berechnungsansätze aus der Geotechnik oder der Ansatz von Schmedemann (2006, Schmedemann et al. 2008) nicht angewendet werden, um die Annahme über initiale Barrieresysteme, die zur Ablagerung dieser Mudden geführt haben und im späteren Geneseverlauf über sie hinweggedriftet sind, mit einer Volumenabschätzung zu guantifizieren. Ihre zeitweilige Existenz ist jedoch durch die genannten Befunde unstrittig. Vom Dornbusch bis zum Plantagenetgrund zieht sich am Meeresboden eine Fläche von marinen Mittel- bis Grobsanden, die aus aufgearbeiteten Moränen entstammen könnten und den Ursprung der vermuteten Barrieren im nördlichen Seeraum markieren (Abb. 4.2).

Nördlich des Zingsts wurden zentrale Bereiche des angrenzenden Seegebietes mittels Side-Scan-Sonarmessungen als erstes erkundet, um einen Überblick von den Strukturen der Meeresbodenoberfläche zu erhalten und darauf basierend den Einsatz weiterer Kartiermethoden zu planen. Der Meeresboden ist größtenteils nahezu eben. Im näheren Vorfeld des Zingsts wurden dabei Rippelstrukturen sowie kleinere Flächen von hoher Rauhigkeit erkannt. Mit Hilfe des Tauchroboters unter Einsatz dessen Greifarms konnten diese Positionen als oberflächlich anstehende Torfflächen angesprochen wurden. In den Aufnahmen stachen vereinzelt linienartige Strukturen hervor, die zum Teil auch als zwei parallele Züge im Abstand von bis zu 25 m vorgefunden wurden. Abbildung 4.17 zeigt drei Beispiele dieser Strukturen.

Abb. 4.17: Exemplarische Ausschnitte von Side-Scan-Sonarmessungen (Karte: Punkte auf roter Liniensignatur), die linienartige bis mäandrierende Strukturen nördlich des Zingsts abbilden und anhand von Luftbildern (Prof. R. Lampe – Befliegung 2006) zur Küstenlinie verfolgt werden können. Der Kartenausschnitt zeigt ein daraus rekonstruiertes Paläoflussbett (schwarze Liniensignatur).

Diese Begrenzungen wurden durch Tauchrobotereinsätze überprüft und als Relikte von flach eingeschnittenen Rinnenstrukturen gedeutet. Die Kanten ragen teilweise bis etwa 1,5 m auf, nach außen schließen sich häufig Torfbildungen an. Teilweise sind auch die Sedimente an den Flanken der Struktur völlig erodiert und es verbleibt einzig die Torfbildung aufgrund der schlechteren Erodierbarkeit durch in sich verwachsene Pflanzenreste. Mit weiteren Profilmessungen wurden diese Einzelbefunde verfolgt und die Informationen im Vorfeld der Ortslage Zingst bis hin zur -10 m NHN Wasserlinie nach Norden flächenhaft verdichtet (Abb. 4.17: Kartenausschnitt). Als Ergebnis konnte eine nach Nordost gerichtete mäandrierende Struktur rekonstruiert werden, die in geringer Wassertiefe unmittelbar im Strandbereich westlich der Seebrücke von Zingst beginnt. Dort ist sie bereits anhand von Luftbildern erkennbar (Abb. 4.17: Luftbild). Insgesamt wird dieser Befund als Paläoflusslauf interpretiert, der beispielsweise die Entwässerungsbahn der auf dem südlichen Festland entspringenden Barthe oder anderer ehemaliger Abflusssysteme in das nördlich rekonstruierte Seebecken darstellt. Oberflächlich anstehender Torf an den Randbereichen dieser Struktur wurde mit einer Probe aus Bohrung Zi-OS-12 in -7,79 m NHN auf 10.588 ± 56 cal. BP datiert (vgl. Kap. 7: Tab. 7.1 – Standort O-1). Zusätzlich wurde weiter östlich im Küstenvorfeld des Gellens für eine Torfbildung in einer Teufe von -10,45 m NHN ein Alter von 13.470 ± 114 cal. BP gemessen (vgl. Kap. 7: Tab. 7.1 – Standort O-3), so dass insgesamt von einer nacheiszeitlichen Flussauenlandschaft im südlichen Seeraum auszugehen ist.

Subaquatische Strukturen von größerem Ausmaß sind die Prerowbank, der Plantagenetgrund, sowie eine zur Küste von Hiddensee parallele Flachwasserzone. Aufgrund von zu geringen Wassertiefen (< 5 m) konnten zentrale Teile der Prerowbank sowie das Gebiet vor Hiddensee, bedingt durch den Tiefgang des eingesetzten Forschungsschiffes, nicht erkundet werden. Randbereiche der Prerowbank weisen marine Feinsande von über 4 m Mächtigkeit auf (Abb. 4.16: Bohrung Zi-OS-36). Für das Zentrum liegt die Vermutung eines Pleistozänkerns nahe, da eine davon losgelöste Akkumulation mächtiger lagestabiler Holozänablagerungen im freien Raum untypisch für das Ablagerungssystem des Gesamtgebiets wäre. Die Flachwasserzone im Vorfeld von Hiddensee ist nur mit geringmächtigen marinen Sedimenten umgeben. Die Auswertung von Luftbildern einer Befliegung dieses Gebietes im Jahr 2006 (Prof. R. Lampe) lassen in einigen Teilen dieser Struktur größere längliche und kleinere runde dunkle Strukturen an der Meeresbodenoberfläche erkennen. Aufgrund ihrer Größe können sie als Baumstämme und Stümpfe angesprochen werden. Abbildung 4.18 zeigt eine dieser Aufnahmen mit rot markierten potentiellen Positionen von Baumstümpfen. In einer späteren Schiffsexpedition konnten durch Dr. F. Tauber Randbereiche dieser Struktur mit dem Side-Scan-Sonar vermessen werden. Durch Tauchrobotereinsätze sowie Entnahme von Holzproben wurde die Luftbildauswertung bestätigt. Dieser Befund und noch weitere wesentlich ausgedehntere Gebiete mit Baumresten vor dem Fischland, Warnemünde, sowie in der Wismarer Bucht sind zusammenfassend mit allen Side-Scan-Sonarmessungen des SINCOS-Projektes in TAUBER (2011, im Druck) vorgestellt. Insgesamt führen diese Ergebnisse zu der Vorstellung, dass es sich hier um ein nacheiszeitlich entstandenes Waldgebiet entlang von Flussauen handeln könnte. Nach mündlichem Hinweis von Dr. T. Förster (Ozeaneum Stralsund) wurden bei Taucheinsätzen bisher jedoch noch keine fest verwurzelten

Baumstümpfe in diesem Gebiet vorgefunden, die diese These eindeutig bestätigen und eine mögliche Umlagerung der Baumstämme aus anderen Gebieten widerlegen. Die Aussagen von RHEINHARD (1956) stützen die These eines pleistozänen Ursprungs dieser subaquatischen Struktur mit Verweis auf vereinzelte Wasserbohrungen des Wasserstrassenamtes Stralsund. Deren Schichtenverzeichnisse sind gegenwärtig allerdings nicht mehr recherchierbar. Er schreibt zusätzlich, dass dieses Gebiet Findlingsfelder aufwies, die für den Bau von Hafenanlagen in Stralsund und Sassnitz, sowie von Uferschutzwerken in der Vergangenheit abgeräumt wurden.

Abb. 4.18: Schrägluftbild (Wasseroberfläche entspiegelt) der vorgelagerten Flachwasserzone westlich der Insel Hiddensee (Prof. R. Lampe - Befliegung 2006). Das Foto zeigt dunkle Strukturen an der Meeresbodenoberfläche, die aufgrund ihrer Form und Größe als Baumstümpfe (A) und -stämme (B) interpretiert werden.

Insgesamt führte die Kartierung durch Kombination dieser unterschiedlichen Methoden zu einem detaillierten geologischen Überblick im Seegebiet. Besonders die Interpretation von Sedimentecholotmessungen in Korrelation mit Bohrkernen trug wesentlich zur Rekonstruktion dieser in der Fläche variierenden Sedimentabfolge bei. Abbildung 4.19 zeigt drei exemplarische Ausschnitte von Sedimentecholotmessungen, deren Reflexionsmuster anhand von Bohrungen interpretiert werden konnte. Beispiel A zeigt einen Abschnitt im Küstenvorfeld des Zingsts, wo im südlichen Teil die subaquatischen Ausläufer des Nehrungssystems nach Norden in den offenen Seeraum übergehen. Er ist durch eine Abfolge von etwa 2 m mächtigen marinen Sedimenten gekennzeichnet, die den typischen Aufbau von Nehrungen zeigen und einen Übergang von Stillwasserbedingungen zu höherer Hydrodynamik dokumentieren. Nördlich schließt sich ein Gebiet von nur gering mit marinen Ablagerungen überdeckten pleistozänen Schluffen an, die mit Hilfe dieser Messungen zu einem zusammenhängenden Seebecken kartiert werden konnten. Ausschnitt B zeigt den östlichen Rand dieses Beckens. Durch Korrelation mit südlicheren Bohrungen auf diesem Profil konnte das liegende Reflexionsmuster als Schluff angesprochen werden, dem hangend glazi-limnisch bis fluviatile Feinsande auflagern. Die Oberfläche ist von marinen Feinsanden geprägt, die teilweise bis 2,5 m hoch zu Sandriffen aufgeschüttet sind.

Abb. 4.19: Exemplarische Ausschnitte von Sedimentecholotmessungen (Karte: rot markierte Segmente) die anhand von Bohrungen geologisch interpretiert und Stützpunkte (z.B. SEL-24) für flächenhafte Modellierungen gesetzt wurden. Diese Informationen wurden in geologische Profilschnitte integriert (vgl. Abb. 4.6: N-S Ostzingst; Abb. 4.9: N-S Werder; Abb. 4.13: W-O Hiddensee).

Der Profilausschnitt C wurde im nördlichen Teil vor Hiddensee gemessen. Im Untergrund konnte der aufwölbende harte Reflektor durch die Bohrung Zi-OS-49 als Geschiebemergel interpretiert werden, dem sich hangend pleistozäne Feinsande anschließen. Im östlichen Teil geht der subaquatische Sockel Hiddensees in das offene Seegebiet über. Marinen Feinsanden lagern im westlichen Teil bis zu 1,5 m mächtige Mittel- bis Grobsande mit Nebengemengen von Kies auf. Diese grobklastischen Sedimente entstammen vermutlich der Abrasion des Dornbuschkliffs, die aufgearbeitet und anschließend nach Süden verdriftet wurden. Die Interpretationsergebnisse der Sedimentecholotmessungen wurden in geologische Profilzeichnungen übernommen. Zusätzlich konnten 208 Stützpunkte ergänzend zu den Bohrungen als Datenbasis für die Modellierung gesetzt werden (vgl. Abb. 4.6: N-S Ostzingst; Abb. 4.9: N-S Werder; Abb. 4.13: W-O Hiddensee; Abb. 4.19: Ausschnitt A – SEL-24).

Kapitel 5 - Modellierung der Transgressionsbasisfläche (marine Basis)

5.1 Datenbasis

Zur Erweiterung des durch eigene Geländearbeiten erhobenen Datensatzes wurden Ergebnisse vorheriger Untersuchungen sowie Datenbestände von öffentlichen Behörden recherchiert und für die Aufgabenstellung interpretiert. Abbildung 5.1 zeigt die räumliche Verteilung der Datenpunkte unterteilt nach verwendeten Datentypen. Insgesamt besteht die Datenbasis aus 1.343 Datensätzen mit Informationen aus 781 Bohrungen, 208 Datenpunkten von interpretierten Sedimentecholotmessungen aus dem vorgelagerten Seegebiet (Abschnitt 4.5) sowie 354 zusätzlichen Stützpunkten basierend auf gewonnener Ortskenntnis durch die eigene Kartierung und von geologischen Karten (HECK 1957, BREMER & SCHULZ 2000). Diese Stützpunkte wurden zum Beispiel an Klifffüßen gesetzt, wo pleistozäne Sedimente zu Tage treten, um dort während der Interpolation ein Überschwingen der Funktion zu reduzieren. Das wird durch die steilen Hangneigungen verursacht und führt zu unnatürlichen Senken im Vorfeld dieser Kliffe. Zusätzlich sind Informationen zu Schlickmächtigkeiten in den westlichen Boddengewässern eingeflossen, um das Modell zu verbessern (unpublizierte Ergebnisse des Instituts für Geographie und Geologie, Universität Greifswald). Dort steht im Liegenden das Pleistozän an.

Abb. 5.1: Datenbasis für die Modellierung (204 eigene Bohrungen, 577 Bohrungen externer Datenhalter, 208 Stützpunkte anhand interpretierter Sedimentecholotaufnahmen, 354 Datenpunkte von Auswertungen geologischer Karten und Ortskenntnissen).

Der Bohrdatenbestand umfasst 204 eigene Kerne (Abb. 5.1: rote Punktsignatur) und 577 Bohrungen externer Datenhalter (schwarze Punktsignatur), die nachfolgend aufgezählt werden. Für die Modellierung war dabei die eindeutige Erkennung oder Möglichkeit zur Nachinterpretation der marinen Basis Grundanforderung zur Übernahme in den Datensatz. Zusätzlich wurden auch weitere Faziesgrenzen innerhalb der pleistozänen Deckschicht und marinen Sequenz erfasst. Übrige Datensätze mit für diese Fragestellung unzureichender petrographisch-genetischer Bohrgutansprache mussten verworfen werden. Aus dem Bohrdatenarchiv der Arbeitsgruppe physische Geographie des Instituts für Geographie und Geologie der Universität Greifswald waren 144 von insgesamt 284 im Arbeitsgebiet befindlichen Bohrungen verwendbar. Die Recherche in Diplomarbeiten und Forschungsarbeiten des Instituts lieferte weitere 59 Bohrdaten (TIARKS 1999 - 30 Stk., Barthel 2002 - 23 Stk., Kaiser et al. 2006 - 6 Stk.). Das Staatliche Amt für Umwelt und Natur in Rostock (StAUN – Abteilung Küste) stellte 130 Aufschlussinformationen vom Buhnenbau an der Nordküste des Zingsts und Erkundung mineralischer Rohstoffvorkommen auf dem Plantagenetgrund bereit, von denen 44 für die Fragestellung der Arbeit interpretiert werden konnten. Vom Landesamt für Umwelt, Naturschutz und Geologie in Güstrow (LUNG) sind 532 Bohrungen eingegangen, von denen 330 in die Datenbasis übernommen wurden. Insgesamt sind 1.011 externe Bohrungen akquiriert und bewertet worden.

Im Anschluss wurden zur Herstellung eines konsistenten Höhenbezuges von allen Punkten des Datensatzes die Geländehöhen der Ansatzpunkte aus dem digitalen Geländemodell (MEYER et al. 2008) im GIS abgegriffen und alle Schichtgrenzen damit auf m NHN korrigiert (vgl. Abschnitt 3.1.3). Diese Geländeoberfläche des Arbeitsgebietes ist als Karte in Abbildungen 5.3 (B) und in Abbildung 5.4 (B) als 3D-Oberfläche dargestellt. In Anhang D ist die Datenbasis aufgelistet.

5.2 Modellierung

Für die Rekonstruktion der Basisfläche des marinen Akkumulationskeils ist es notwendig, die räumlich unregelmäßig verteilten Datenpunkte in ein gleichförmiges Datenraster ("grid") zu überführen. Die Interpolation dieses Rasters wurde mit Kriging unter Verwendung eines Semi-Variogramm-Modells durchgeführt. Im Vorfeld wird auf Grundlage der punktuellen Daten eine räumlich-statistische Datenanalyse (Semi-Variogrammanalyse) durchgeführt, die aus zwei Vorgängen besteht. Zuerst wird das experimentelle Variogramm berechnet, das die gemittelte Abweichung zweier Datenpunkte in Abhängigkeit von ihrem Abstand zueinander graphisch darstellt. Dabei werden in einem definierbaren Umkreis alle Datensätze miteinander verglichen. Das Verfahren dient zur Beschreibung der räumlichen Varianz einer Messgröße (SCHAFMEISTER 1999). Anschließend wird eine Modellfunktion an den Graphen angepasst, die später im statistischen Interpolationsverfahren Anwendung findet und die Qualität der Schätzung erhöhen soll. Eine Experimentierphase war zur Modellierung der finalen Version notwendig, um

Auswirkungen verschiedener Parametereinstellungen wie zum Beispiel die Größe des Suchradius, Richtungsabhängigkeit der Messwerte, Funktionstypen oder unterschiedliche Gitterpunktabstände des zu berechnenden Rasters zu analysieren. Dabei erwiesen sich Hinweise aus folgender Literatur als hilfreich: Schafmeister (1999), GOLDEN SOFTWARE (Hrsg. 2002) und Barnes (2003). Zusätzlich wurden Informationen aus Diskussionsbeiträgen im sehr gut moderierten Support Forum des Programmpaketes SURFER verwendet.

Insgesamt sind 18 Raster interpoliert worden, in denen die drei Funktionstypen des quadratischen, sphärischen und Gauß'schen Modells einzeln oder in Kombination miteinander Anwendung fanden. Dabei zeigen die jeweiligen Funktionstypen ein spezifisches räumliches Verhalten von Variablen, z.B. das vom Ursprung steil ansteigende sphärische, sowie quadratische Modell mit scharfer Sättigungsgrenze oder das durch flacheren harmonischeren Anstieg geprägte Gauß'sche Modell. Die zwei Kenngrößen Reichweite ("length") und der vertikale Maßstab ("scale") definieren die Anwendung des jeweiligen Funktionstyps innerhalb des Semi-Variogramm-Modells. Falls der Ursprung des erstellten Modells nicht den Wert Null einnahm, wurde der Nugget-Effekt mit einbezogen, der eine Sonderform des linearen Funktionstyps darstellt. Er gestaltet den Kriging-Prozess mit einer stärkeren Glättung, wodurch geringeres Vertrauen in individuelle Messwerte im Vergleich zum allgemeinen Trend der Daten impliziert wird (GOLDEN SOFTWARE, Hrsg. 2002). Je höher der eingesetzte Wert ist, umso mehr wird das berechnete Raster geglättet. SCHAFMEISTER (1999) spricht in diesen Fällen von einer "Punkt"-Variabilität, die entweder durch Mess- und Analysefehler hervorgerufen wird oder ein Hinweis auf bereits hohe Variabilität auf engstem Raum ist. Der Suchradius schränkt in der Berechnung einzelner Gitterpunkte die zugrunde liegenden Datenpunkte ein und ist zwischen 6.000 m und 275.000 m variiert worden, um verschiedene Glättungen lokaler Strukturen wie Senken und Aufragungen auszuprobieren. Kleine Radien grenzen weit entfernte Werte im Schätzvorgang aus, da sie aus geomorphologischer Sicht vermutlich wenig mit lokalen Strukturbesonderheiten in Verbindung stehen. Zum Test der Richtungsabhängigkeit des Datensatzes wurde mit elliptischen Suchfeldern in West-Ost-, Nord-Süd- und Nordost-Südwest-Ausrichtung experimentiert, die mögliche Materialtransportwege im Untersuchungsgebiet beschreiben. Zusätzlich erfolgte die Interpolation mit unterschiedlichen Gitterpunktabständen von 50 m, 100 m und 150 m, um eine sinnvolle Auflösung des Rasters für die durchschnittliche Datendichte von 1,5 Messpunkten pro km² zu finden. Um einen Vergleich zu einfacheren und häufiger in geowissenschaftlichen Fragestellungen gebräuchlichen Interpolationsmethoden zu gewinnen, wurde die "Natural Neighbour"-Funktion getestet. Die wesentlichen Parametereinstellungen der einzelnen Interpolationen sind in Tabelle 5.1 aufgelistet.

Г		1	1	1	1	1			1	1		1		1			_		1
17	16	15	14 14	13	12	1	10	9	œ	7	ი	ഗ	4	ω	N	<u> </u>	No.		
MarBasis_V7_4	MarBasis V7 3	MarBasis_V7_2	MarBasis_V7_1	MarBasis_V6_6	MarBasis V6 5	MarBasis_V6_4	MarBasis_V6_3	MarBasis_V6_2	MarBasis_V6_1	MarBasis V5 2	MarBasis_V5	MarBasis_V4	MarBasis_V3	MarBasis V2 2	MarBasis_V2	MarBasis_V1_test	Version		
13438 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1343 pts.	1230 pts.	1230 pts.	1156 pts.	1133 pts.	1133 pts.	1133 pts.	759 pts.	Dataset		
Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Natural Neighbour	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Kriging, Semi-Variogram Model	Gridding Method		(
Nugget Effect: 7	Nugget Effect: 7	Nugget Effect: 7	Nugget Effect: 10	Gaussian (L: 650; Sc: 15)		Gaussian (L: 650; Sc: 15)	Spherical (L: 1500; Sc: 31)	Spherical (L: 1500; Sc: 31)	Spherical (L: 2200; Sc: 25)	Nugget Effect: 4	Nugget Effect: 10	Nugget Effect: 1	Nugget Effect: 1	Function (Length, Scale)	Component 1	,			
Quadratic (L: 1300; Sc: 47.5)	Quadratic (L: 1300; Sc: 47.5)	Quadratic (L: 1300; Sc: 47.5)	Quadratic (L: 1400; Sc: 45)	Spherical (L: 1800; Sc: 50)		Spherical (L: 1800; Sc: 50)	Gaussian (L: 800; Sc: 35)	Gaussian (L: 800; Sc: 35)	Gaussian (L: 800; Sc: 40)	Gaussian (L: 880; Sc: 58)	Quadratic (L: 3500; Sc: 52)	Quadratic (L: 3500; Sc: 60)	Spherical (L: 500; Sc: 12)	Function (Length, Scale)	Component 2	(
																Gaussian (L: 2000; Sc: 20)	Function (Length, Scale)	Component 3	
10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	10, 5000		10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	10, 5000	16, 5000	max. Distance)	Lags (Number,	
90, 90, 10	90, 90, 10	90, 90, 10	90, 90, 10	90, 30, 10	90, 30, 10	90, 30, 10	90, 30, 10		90, 30, 10	90, 30, 10	90, 30, 10	90, 30, 10	90, 30, 10	40, 40, 10	40, 40, 10	0, 40, 20	Tolerance, Step Amount)	Lag Direction (Direction,	
10000	6000	5000	275000	275000	60000	45000	15000		31800	31800	31800	31800	31800	31800	31800	31800	Radius [m]	Search	
1	150	150	150;	150;	150;	150>	150>	150x	150x	150>	100,	100;	100;	100;	50>	100	Spa [r		

Tab. 5.1: Überblick verwendeter Parametereinstellungen zur Interpolation der Transgressionsbasisfläche (marine Basis).

Anschließend wurden diese unterschiedlichen Modellrechnungen bewertet. Optisch beste Ergebnisse lieferte die Interpolation von Version 7.5 (vgl. Tab. 5.1: No. 18), deren experimentelles Variogramm mit angepasster Modellfunktion in Abbildung 5.2 dargestellt ist. Der Funktion liegt ein quadratisches Modell mit einem eingeschränkten Suchradius von 7.000 m ohne Richtungsabhängigkeit zu Grunde. Für die Berechnung der Gitterpunkte wurde eine Mindestanforderung von 4 Datenpunkten innerhalb dieses Suchfeldes definiert.

Abb. 5.2: Semi-Variogrammfunktion zur Berechnung der marinen Basisfläche.

Weitere Interpolationen mit Nord-Süd-beschränkter Richtungsabhängigkeit (vgl. Tab. 5.1: Interpolationen No. 4-13) lieferten teilweise auch sehr brauchbare Ergebnisse. Das kreisförmige Suchgebiet der finalen Version stellt hingegen ein allgemein gültiges Ergebnis dar und lässt die Diskussion über Transportrichtungen des Materials offen. Anderenfalls müsste die These eines Nord-Süd-gerichteten Sedimenttransports für das gesamte Arbeitsgebiet belegt werden.

In den Abbildungen 5.3 (A) und 5.4 (A) ist die finale Version der Transgressionsbasisfläche (Marine Basis), die im südlichen Festlandsbereich der Holozänbasis entspricht, optisch als Kartendarstellung oder 3D-Strukturen dargestellt. Zum Vergleich wird in beiden Abbildungen die gegenwärtige Landoberfläche (B) veranschaulicht (erstellt durch MEYER et al. 2008). Bei näherer Betrachtung des rekonstruierten Paläoreliefs an der Basis des marinen Akkumulationskeils werden die Positionen von Senken (südlich des Dornbuschs, Prerower Strom, Zingster Strom, Ostzingst) und Aufragungen (zentrale Teile des Zingsts, Fährinsel, Gellen) im heutigen Untergrund deutlich. Die Lage dieser Reliefstrukturen wurde im Entwicklungsprozess vererbt und zeichnet spätere Positionen von Seegatten und Barrieren vor.

Größere Fehler der Interpolation sind im zentralen Gebiet der Prerowbank und in der westlich von Hiddensee vorgelagerten Flachwasserzone zu erwarten, wo Geländearbeiten technisch bedingt

nicht durchgeführt werden konnten. An diesen Positionen müsste die Basisfläche etwas mehr aufragen (vgl. Abschnitt 4.5). Mangels an Datenpunkten ist zusätzlich ein kleinräumiger Fehler im Küstenvorfeld des Fischlandkliffs entstanden (vgl. Abb. 5.1, 5.3). Dort orientiert sich die Interpolation im Seegebiet an der Höhenlage von Stützpunkten des Klifffußes, anstatt sich in Richtung Westen weiter abzusenken. Für die Gesamtbetrachtung ist dieser Fehler jedoch vernachlässigbar.

Abb. 5.3: Topographische Karten der marinen Basis (A) und der rezenten Geländeroberfläche (B).

Abb. 5.4: Ansichten von digitalen Geländehöhenmodellen der marinen Basis (A) und rezenten Geländeroberfläche (B), die mit einem Gitterpunktabstand von 150 m berechnet wurden.

Kapitel 6 - Volumenkalkulation der marinen Sedimentakkumulation

6.1 Räumliche Verteilung des Gesamtvolumens

In der Küstenzone werden Sedimentationsprozesse von relativen Meeresspiegelschwankungen, der Größe des Akkumulationsraums, der Sedimentzufuhr und durch die Formung des Paläorelief gesteuert. Um ein besseres Verständnis der Interaktion dieser Parameter zu erhalten, ist die Untersuchung der Volumenbilanz durch Quantifizierung der Sedimentationsprozesse in Raum und Zeit von großer Bedeutung (HOSELMANN & STREIF 2004). Für die Berechnung der marinen Massenbilanz wurde das südliche Festland ausgeklammert, da aufgrund seiner Höhenlage nur eine geringe Überprägung durch den ansteigenden Meeresspiegel stattfinden konnte. Anschließend wurde das DGM 50 der rezenten Geländeoberfläche auf 150 m Gitterpunktabstand transformiert, damit die Datenpunkte deckungsgleich über denen der marinen Basisfläche liegen und beide Flächen voneinander subtrahiert werden konnten. Als Ergebnis der Volumenberechnung ergab sich ein Gesamtvolumen von rund 2 Mrd. m³ mariner Sedimentation für ein Gebiet von etwa 870 km² (vgl. Tab. 6.1). Die räumliche Varianz der Differenz dieser zwei Geländeoberflächen ist kartographisch in Abbildung 6.1 als Verteilung der marinen Sedimentmächtigkeit im Arbeitsgebiet dargestellt. Daran wird die rezente Füllung des Akkumulationsraums deutlich.

Abb. 6.1: Räumliche Verteilung der Sedimentmächtigkeit mariner Ablagerungen im Arbeitsgebiet.

Das vorgelagerte Ostseegebiet der Falster-Rügen-Platte zeigt dabei nur eine ziemlich dünne Sedimentbedeckung von durchschnittlich 0 bis 1 m Mächtigkeit. Die einzigen Ausnahmen sind die Prerowbank und die westlich vor Hiddensee gelegene Flachwasserzone. In den Abschnitten 4.5 und 5.2 sind diese Zonen bereits diskutiert, da in zentralen Teilen dieser Strukturen die marine Basisfläche durch das Fehlen von Erkundungsdaten nur relativ ungenau interpoliert werden konnte. Das Gebiet vor Hiddensee und der zentrale Teil der Prerowbank müsste geringere Mächtigkeiten als dargestellt aufweisen, während in Randbereichen der Prerowbank über 4 m marine Feinsande in Bohrungen vorgefunden wurden. Die generelle Kartenaussage von einem Anlandungsgebiet mariner Sedimente ist für dieses Teilgebiet jedoch stimmig. Insgesamt sind 60 % der Fläche des Arbeitsgebietes mit nur 30 % des marinen Sedimentvolumens bedeckt (vgl. Tab. 6.1).

Innerhalb der Barrieren werden Mächtigkeiten von bis zu 14 m erreicht, die durchschnittlichen Ablagerungshöhen der Teilgebiete variieren aber räumlich sehr. Unter dem Vor-/Neudarss und zentralen Teilen Hiddensees ist die marine Sedimentsequenz als etwa 8 bis 10 m mächtig kartiert worden. Dieser Befund deckt sich mit anderen Untersuchungsergebnissen an umliegenden Barrieren entlang der südwestlichen Ostseeküste (HOFFMANN 2004 a, HOFFMANN et al. 2005, HOFFMANN & LAMPE 2007, NAUMANN et al. 2009, LAMPE et al. 2011). Im Vergleich weisen der Zingst, das östlich angrenzende Windwatt mit Barriere-Inseln und der Gellen nur eine durchschnittliche Bedeckung von etwa 6 m auf. Detaillierte Volumenberechnungen und mittlere Sedimentmächtigkeiten sind für die terrestrischen Teilgebiete und Seegebiete näher bestimmt worden und in Tabelle 6.1 angegeben. Dabei wurden nur dicht angrenzende Teile der Boddenkette betrachtet, die mit dem vom Seegebiet zur Küste gerichteten Materialtransport beeinflusst werden. Südliche Gebiete werden durch die Abrasion des Festlandes beziehungsweise durch Sedimenteintrag von Barthe und Recknitz sowie kleinerer Flusssysteme beliefert.

Gebiet	Fläche [km²]	Fläche [%]	Volumen [10 ⁶ m³]	Volumen [%]	Mittlere Mächtigkeit [m]
Arbeitsgebiet ohne südl. Festland	873	100	2018	100	2,31
Darss	74	8	391	19	5,28
Zingst, Kirr, Oie	52	6	348	17	6,69
Windwatt, Werder Inseln , Bock	19	2	118	6	6,21
Hiddensee (südl. Barriere)	10	1	111	6	11,10
Alt- & Neu-Bessin	2	0,2	14	1	7,00
Seegebiet der Ostsee	535	61	599	30	1,12
Boddengewässer	181	21	437	22	2,41

Tab. 6.1: Räumliche Verteilung des marinen Sedimentvolumens im Arbeitsgebiet.

Die Tabelle zeigt eine Verteilung des marinen Gesamtvolumens, von dem 30 % im offenen Seegebiet und Schorrebereichen, 43 % in den über das Meeresspiegelniveau aufgeschütteten Barrieren und 22 % in angrenzenden Teilen der Boddengewässer lagert. Frühere gröbere Volumenabschätzungen des Zingster Nehrungssystems mit angrenzendem Windwatt und Inseln von 450 Mio. m³ in LAMPE et al. (2011) wurden mit dieser auf einem wesentlich umfassenderen Datensatz beruhenden Berechnung annähernd bestätigt (466 Mio. m³). Um die vertikale Volumenverteilung zu quantifizieren, wurde der marine Akkumulationskeil virtuell in 1 m mächtige Intervalle zerlegt. Diese reichen von der tiefsten vorgefunden Ablagerung in -17 m NHN im nördlichen Seeraum bis hin zu 6 m NHN auf der Insel Hiddensee. Dafür sind eine große Anzahl von einzelnen Rechenschritten notwendig gewesen, in denen zuerst Rasterdaten für die Trennflächen modelliert und anschließend das dazwischen liegende Volumen bestimmt wurde. Die Ergebnisse sind in Abbildung 6.2 als Diagramm mit prozentualen und absoluten Volumenangaben dargestellt.

Abb. 6.2: Vertikale Verteilung des marinen Sedimentvolumens zerlegt in 1 m Intervalle.

Der Anteil des abgelagerten Sedimentvolumens steigt nahezu linear bis zum Tiefenintervall zwischen -3 m NHN bis -2 m NHN an und umfasst dort rund 9,33 % des Gesamtvolumens (225,82 Mio. m³). Darüber verringert es sich bis zum Intervall -1 m NHN bis 0 m NHN auf 6,83 % (165,26 Mio. m³) und beschreibt den in weiten Teilen der Nehrungssysteme nicht komplett bis zum Meeresspiegelniveau gefüllten Akkumulationsraum. Diese Bereiche sind zum Beispiel das Windwatt sowie zahlreiche rückseitige Schaarflächen des Zingsts und des Gellens. Ingesamt lagert der Hauptteil von etwa 50 % des Volumens zwischen 0 m NHN und -6 m NHN.

Die Abnahme der Volumenanteile setzt sich hangend stetig fort und umfasst im Intervall von 1 m NHN bis 2 m NHN gerade noch 2 %. Bis in 6 m Höhe folgen nur noch Bruchteile von unter 1 %. Diese Sedimente sind dort durch Aufspülung von Strandwällen bzw. Überspülungen ("overwash") während Sturmflutereignissen und anschließender äolischer Überprägung (z.B. Aufhöhung zu Dünen) abgelagert worden. Es befinden sich nur 8 % des Volumens oberhalb des Meeresspiegels, die eine eher untergeordnete Rolle in der Gesamtverteilung spielen. Das Bild dieser Volumenverteilung gleicht Studien im Küstengebiet der Nordsee, wo HOSELMANN & STREIF (1997, 2004) südöstlich des Jadebusens für das TK25-Blatt Elsfleth und später für die gesamte Niedersächsische Küste ähnliche Kurvenverläufe berechneten. Der maximale Volumenanteil liegt in beiden Untersuchungen im Intervall von -1 m bis -2 m.

6.2 Volumenverteilung der Faziestypen anhand von Beispielregionen

Obwohl beabsichtigt, konnte eine umfassende Berechnung von Volumenanteilen der verschiedenen Faziestypen für das gesamte Arbeitsgebiet nicht durchgeführt werden. Die notwendige räumliche Abgrenzung einzelner Einheiten ist anhand des verfügbaren Datensatzes nicht genau genug möglich, um ein präzises Ergebnis für den Gesamtraum zu erzeugen. Zusätzlich ist das im Projekt bereitgestellte Softwareprodukt SURFER hauptsächlich zur Modellierung dreidimensionaler Flächen vorgesehen. Diese können zusammen mit hangenden und liegenden Flächen dargestellt werden, so dass sich dazwischen befindliches Volumen errechnen lässt. Durch das stark variierende Vorkommen einzelner Faziestypen müsste für jede lokale Ablagerung eine Teilfläche einzeln berechnet werden. Diese lückenhaften Teilflächen erschweren die Volumenberechnung und würden einen unverhältnismäßig höheren Arbeitsaufwand bedeuten. Die Berechnung in Verzahnung mit anderen Einheiten wäre unübersichtlich und vermutlich auch ungenau. Für derartige Aufgabenstellungen eignen sich Softwarelösungen, die echte Körper im Raum definieren, wie z.B. PETREL, GOCAD oder Gsi3D, deutlich besser.

Aus diesen Gründen wurden zwei Teilbereiche aus dem Arbeitsgebiet selektiert, die über eine hohe Datendichte und gut kartierte interne Lagerungsstrukturen verfügen (Abb. 6.3: Kartenausschnitt). Beide Gebiete sind vom Aufbau charakteristisch für die gesamte Region und besitzen eine zuverlässige Datengrundlage von Teufe sowie Beschaffenheit der Grenzflächen zwischen den Faziestypen. Die zwei oberflächennahen Faziestypen, die als Überspülungen, äolische Überprägung, Bodenbildung und als Strand-Fazies angesprochen wurden, konnten aufgrund des lokal begrenzten Vorkommens und geringer Datengrundlage nicht separat bestimmt werden. Sie sind zusammen mit der Flachwasser-Fazies zur "Strand+Flachwasser-Fazies" in den Berechnungen und Darstellungen kombiniert worden. Abbildung 6.3 zeigt dreidimensionale Darstellungen und berechnete Volumina dieser ausgewählten Gebiete, die sich senkrecht vom Seeraum zur Küstenlinie des Ostzingsts (A) und Hiddensees (B) erstrecken. Das obere Teilgebiet (A) beinhaltet außerdem den rückseitigen Bodden Grabow und die Salzwiese Graue Wiese auf dem südlichen Festland, um eine Volumenverteilung, die alle Landschaftsformen des Arbeitsgebietes repräsentiert zu gewähren. Dabei wird die Dominanz klastischer Sedimente sehr deutlich. Die Strand- und Flachwasser-Fazies umfasst gerundet 76 %, die Stillwasser-Fazies etwa 23 % des durch marine Prozesse abgelagerten Sedimentvolumens. Basale Torfe sind nur geringfügig im Bereich des Zingster Nehrungssystems ausgebildet. Die Berechnungsergebnisse für die Insel Hiddensee und das angrenzende Seegebiet zeigen eine ähnliche Verteilung. Der Anteil von Stillwasser-Fazies ist etwas geringer, weil rückseitige Boddengewässer aufgrund der dort teilweise geringen Datengrundlage nicht mit einbezogen wurden. Basale Torfbildungen sind mit rund 9 % des Volumens in diesem Gebiet aber häufiger anzutreffen. Die Ergebnisse beider Teilgebiete sind vergleichbar und deuten damit auf eine generelle Verteilung der Faziestypen innerhalb des marinen Akkumulationskeils hin. Dieser besteht damit zu ¾ aus sandigen Flachwasser- und Strandmaterialen, zu rund 20 % aus schluffigen Stillwasser-Ablagerungen und zu etwa 5 % aus organischen Bestandteilen.

Abb. 6.3: Das Volumenverhältnis einzelner Faziestypen innerhalb der marinen Sedimentsequenz anhand von Beispielregionen mit hoher Datendichte (Ostzingst (A), Hiddensee (B).

Kapitel 7 - Geochronologische Einordnung der Sedimentablagerungen

7.1 Radiokohlenstoff-Datierung

Zur Validierung der Ergebnisse von Radiokohlenstoff-Datierungen wurden die lokalen relativen Meeresspiegelkurven von N-Rügen/Hiddensee und dem angrenzenden Fischland herangezogen, die durch LAMPE et al. (2007, 2010) im Rahmen der ersten SINCOS-Projektphase seit 2002 erstellt wurden. Der Abgleich mit eigenen Datierungen liefert Informationen über Anstiegsraten des Meeresspiegels, Veränderungen des Akkumulationsraumes und den zeitlichen Bezug von Sedimentakkumulationen. Abbildung 7.1 zeigt im Diagramm (B) diese beiden Kurven mit darauf dargestellten Altern basaler Torfbildungen. Zusätzlich sind die Ergebnisse von allen datierten Proben in Tabelle 7.1 detailliert aufgelistet. Der Kartenausschnitt (Abb. 7.1 - A) stellt die Positionen der ¹⁴C-Datierungen aus Tabelle 7.1 (rote Punktsignatur), die Untersuchungsgebiete der lokalen Meeresspiegelkurven (rote Rechtecke 1, 2) und die Isolinien des rezenten relativen Meeresspiegelanstiegs basierend auf Langzeit-Pegelmessungen an der südlichen Ostsee (verändert nach DIETRICH & LIEBSCH 2000) dar.

Grundlegend folgen die Altersdatierungen der basalen Torfbildungen dem Trend dieser Kurven. Die Ausnahme bilden drei wesentlich ältere Beprobungsstandorte, (vgl. Tab. 7.1: Z-1, O-1, O-3) die einen Zeitraum von 10.588 ± 56 cal. BP bis 13.150 ± 60 cal. BP beschreiben. Sie brechen damit aus der Meeresspiegeltrendlinie aus. Diese Torfe bildeten sich im Präboreal bis Allerød entlang von Flussauen glazio-fluviatiler Landschaften (z.B. Prerower Strom (Z-1), Barthe – Paläoflusslauf (O-1), Ausfluss des Strelasund (O-3)) schon zeitlich früher und waren in ihrer Entstehung daher nicht an den Meeresspiegel gekoppelt. Andere Proben in Teufenniveaus von -9,60 m NHN bis -9,20 m NHN zeigen Atlantische Alter zwischen 8.420 cal. BP und 8.000 cal. BP (vgl. Tab. 7.1: O-2, O-5, H-6), die den Start der Transgression im Arbeitsgebiet belegen und als Basistorfe bezeichnet werden können.

Die Datierung mariner Mollusken aus der Basis und dem Topbereich von Stillwasser-Ablagerungen im Küstenvorfeld (vgl. Tab. 7.1: O-4, O-5) schränken den Akkumulationszeitraum zwischen 7.450 cal. BP und 4.900 cal. BP ein und wurden in Kapitel 4.5 bereits beschrieben.

Im Vergleich von Altersbestimmungen an der Basis dieser Mudden zu Basistorfen des näheren Umfelds von maximal 10 km Distanz und gleichem Teufenniveau von etwa -9,50 m NHN kann ein Hiatus von etwa 750 bis 950 Jahren im Sedimentationsprozess angenommen werden (vgl. Tab. 7.1: O-4 mit -7.404 \pm 55 cal. BP; O-2: -8245 \pm 53 cal. BP). Dieser Befund zeigt durch den zeitlichen Versatz bis zum Einsetzen der marinen Sedimentation einen offenen Akkumulationsraum an. Eine möglicherweise geringfügige Erosion der Torfoberfläche infolge der Transgression und daraus resultierende ältere Daten des verbleibenden Tops, die nicht exakt das Ende der Torfbildung markieren, muss dabei als Fehlerquelle mit beachtet werden. Basistorfe im

Grabow zeigen im Vergleich zur Oberkante der Mudde-Ablagerungen bei gleicher Teufe von etwa -6,70 m NHN und 26 km lateraler Entfernung einen Altersunterschied von rund 3000 Jahren (vgl. Tab. 7.1: G-1 mit 7924 \pm 39 cal. BP; O-4 mit 4957 \pm 62 cal. BP).

Abb. 7.1: (A) Die Karte zeigt Isolinien des gegenwärtigen relativen Meeresspiegelanstiegs [mm/a] anhand von Pegelmessstationen der südlichen Ostsee (nach DIETRICH & LIEBSCH 2000) sowie die Untersuchungsgebiete der lokalen Meeresspiegelkurven [1, 2] und Positionen aller Radiokohlenstoff-Datierungen im Arbeitsgebiet (rote Punktsignatur). (B) Relative Meeresspiegelkurven aus den Gebieten N-Rügen/Hiddensee [1] und Fischland [2] nach LAMPE et al. (2007, 2010) dargestellt mit Datierungen an basalen Torfbildungen im Arbeitsgebiet (rote Punktsignatur, dabei repräsentieren horizontale Balken die zweifache Standardabweichung (20) der Altersbestimmung).

2. Metad et al. 20C	aten Außchlüsse) entnomme: 17) genutzt, die auf der Daten;	n werden. Z grundlage v	Zur Kalibrierung de on Weninger & Jö	er Radiokarbonalter v eris (2008) beruht.	vurde die Softwarear	iwendung ,	,CalPal-2007 ^{online} " (DANZEGLOCKE
ID Lokation	Lokation	Labor-Nr.	Radiokarbonalter	Alter, kalibriert	Methode	Teufe [m NHN]	Material
GW-1	Graue Wiese	KIA 35290	4125 ± 30 BP	4688 ± 94 cal. BP	¹⁴ C Datierung, AMS	-1,32	Torf, Oberkante
GW-2	Graue Wiese	KIA 35289	6585 ± 30 BP	7484 ± 28 cal. BP	¹⁴ C Datierung, AMS	-3,63	Torf, Oberkante
G-1	Grabow, zentraler Boddenteil	KIA 35288	7100 ± 35 BP	7924 ± 39 cal. BP	¹⁴ C Datierung, AMS	-6,81	Holz, (Rinde), an Torfoberkante
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-A	2400 ± 50 BP	2500 ± 160 cal. BP	¹⁴ C Datierung, konv.	-2,13	Mudde
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-B	5970 ± 90 BP	6780 ± 110 cal. BP	¹⁴ C Datierung, konv.	-4,00	Torf
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-C	11270 ± 60 BP	13150 ± 60 cal. BP	¹⁴ C Datierung, konv.	-4,75	Torf
Z-2	Zingst; Osterwald Schurf Zi-S3	KIA 35280	>1954 A.D.*		¹⁴ C Datierung, AMS	0,40	Torf, Unterkante
Z-5	Zingst-Osterwald	KIA 35277	7005 ± 40 BP	7858 ± 56 cal. BP	¹⁴ C Datierung, AMS	-5,82	Torf, Holzreste, Oberkante
Z-7	Ostzingst	KIA 35276	7020 ± 30 BP	7878 ± 42 cal. BP	¹⁴ C Datierung, AMS	-5,02	Torf, Oberkante
Z-8	Ostzingst	KIA 35275	7195 ± 40 BP	8008 ± 30 cal. BP	¹⁴ C Datierung, AMS	-7,32	Torf, Oberkante
W-2	Großer Werder - Riege vor südl. Strandwall	KIA 35278	160 ± 30 BP	144 ± 114 cal. BP	¹⁴ C Datierung, AMS	-0,35	Torf, Unterkante
9-Н	Hiddensee	KIA 35279	7600 ± 35 BP	8404 ± 16 cal. BP	¹⁴ C Datierung, AMS	-9,42	Torf, Unterkante
0-1	offshore; Zingst - Paläoflusslauf	KIA 35281	9355 ± 40 BP	10588 ± 56 cal. BP	¹⁴ C Datierung, AMS	-7,79	Torf, Holzreste, Oberkante
0-2	offshore; Zingst - Windwatt	KIA 35282	7395 ± 40 BP	8245 ± 53 cal. BP	¹⁴ C Datierung, AMS	-9,57	Torf, Oberkante
O-3	offshore; Hiddensee - Paläoflusslauf	KIA 35283	11590 ± 55 BP	13470 ± 114 cal. BP	¹⁴ C Datierung, AMS	-10,45	Torf, Oberkante
0-4	offshore; Hiddensee	KIA 35284	4385 +/- 35 BP	4957 ± 62 cal. BP	¹⁴ C Datierung, AMS	-6,65	Muscheln, Mudde, Oberkante
0-4	offshore; Hiddensee	KIA 35285	6500 +/- 50 BP	7404 ± 55 cal. BP	¹⁴ C Datierung, AMS	-9,50	Muscheln, Mudde, Unterkante
0-5	offshore; Hiddensee	KIA 35286	4455 +/- 35 BP	5123 ± 119 cal. BP	¹⁴ C Datierung, AMS	-8,52	Muscheln, Mudde, Oberkante
0-5	offshore; Hiddensee	KIA 35287	7220 + 55/-50 BP	8060 ± 68 cal. BP	¹⁴ C Datierung, AMS	-9,20	A-Horizont, Wurzelreste, Oberkante

Tab. 7.1: Ergebnisse von Radiokohlenstoffdatierungen im Gebiet Darss-Zingst-Hiddensee in SINCOS-II. Die räumliche Lage ist im Kartenausschnitt von Abbildung 7.1 verdeutlicht (ID Lokation). Die Zuordnung sowie Metadaten der Aufschlüsse können in den Anhängen A und C (1. Datierungen Übersicht,

Aus den Datierungen der Oberkante einer Mudde (O-4) im entfernten Seegebiet und Basistorf in der Grauen Wiese (GW-1), die annähernd gleiche Alter um 4.800 Jahren vor heute aufweisen, lässt sich aufgrund der vertikalen Variation beider Teufenniveaus ein offener Akkumulationsraum von etwa 5 m zu dieser Zeit abschätzen. Grundlage bildet die generelle Annahme, dass sich der Meeresspiegel annähernd auf dem Niveau des Torfwachstums befindet. Insgesamt unterstützt dieses Ergebnis die These von KLIEWE & JANKE (1991), HOFFMANN et al. (2005) und LAMPE et al. (2007), dass die Sedimentzufuhr bedingt durch hohe Meeresspiegelanstiegsraten in der frühen Transgressionsphase nicht ausgereicht hat, den sich schnell vergrößernden Akkumulationsraum zu füllen.

7.2 Optisch stimulierte Lumineszenz

Ergänzend zu Radiokohlenstoff-Datierungen wurden vorrangig an oberflächennahen Sandablagerungen optisch stimulierte Lumineszenz-Datierungen durchgeführt, um jüngere Ablagerungsmechanismen im Arbeitsgebiet einschätzen zu können, die zur Ausprägung der gegenwärtigen Küstenlandschaft geführt haben.

Quarzreiche Sande sind als datierbares Material für OSL-Datierungen bereits an vielen Küstenabschnitten erfolgreich erprobt und entsprechend verwendbar (JACOBS 2008). Diesen Sachverhalt belegen beispielsweise die Arbeiten aus dem benachbarten Nordseegebiet unter anderem von BALLERINI et al. 2003, BUNGENSTOCK et al. 2004, BUNGENSTOCK 2005, MADSEN et al. 2005, 2007, NIELSEN et al. 2006, MAUZ & BUNGENSTOCK 2007, ROBERTS & PLATER 2007 oder im internationalen Raum von van HETEREN et al. 2000, MURRAY-WALLACE et al. 2002, LOPEZ & RINK 2007. Neben Untersuchungen an postglazialen äolischen Ablagerungen und Paläobodenbildungen auf dem Altdarss (KAISER et al. 2006, HILGERS 2007) zählen diese Ergebnisse von jungen Küstenablagerungen mit zu den ersten auf Basis von OSL datierten Proben im südlichen Ostseeraum. KRBETSCHEK (1995) testete das Thermolumineszenz-Verfahren an Dünensanden von Strandwällen des Vor- und Neudarsses, bei dem die Proben durch Hitzeeinwirkung von etwa 450 °C angeregt werden. Nach PREUSSER et al. (2008) stellt dieses Verfahren zum gegenwärtigen Zeitpunkt aber signifikante Nachteile gegenüber OSL dar und geriet seit Mitte der 1990er Jahre in den Hintergrund.

Die Beprobung fand an Strandwallbildungen, Dünen und Salzwiesenstandorten im westlichen Teil des Zingsts, am zentral gelegenen Osterwald, Ostzingst, Windwatt mit Barriere Inseln sowie auf der Insel Hiddensee statt. Als Zielstellung sollte über dem jeweiligen Bildungszeitraum des Teilgebiets die Richtungen des Materialtransports nachvollzogen werden. Einzige Ausnahme bildet der Standort im westlichen Zingst. Dort wurde an einem Kern (Bohrung: Zi-43/08) die vertikale Abfolge, beginnend mit der pleistozänen Deckschicht im Untergrund und die gesamte marine Sequenz bis zur Oberfläche hin, bearbeitet. Insgesamt sind 39 Proben gemessen worden, deren Ergebnisse in Tabelle 7.2 aufgelistet sind. Da das international festgelegte Kürzel BP (before present) auf das Bezugsjahr 1950 definiert ist, müssen für die vergleichende Verwendung von kalibrierten ¹⁴C-Datierungen 70 Jahre zu deren Alter hinzugezählt werden.

ID					Teufe	
Lokation	Lokation	Labor-Nr.	Alter	Methode	[m NHN]	Material
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-1	690 ± 50 a	OSL, SAR-Protokoll	-0,95	Feinsand, Quartz
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-2	680 ± 70 a	OSL, SAR-Protokoll	-1,25	Feinsand, Quartz
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-3	2690 ± 100 a	OSL, SAR-Protokoll	-2,70	Feinsand, Quartz
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-4	3180 ± 140 a	OSL, SAR-Protokoll	-3,45	Feinsand, Quartz
Z-1	Zingst; westl. Ortslage Zingst	W-Zi-5	3270 ± 240 a	OSL, SAR-Protokoll	-4,30	Feinsand, Quartz
Z-1	Zingst: westl. Ortslage Zingst	W-Zi-6	13690 ± 780 a	OSL. SAR-Protokoll	-4.95	Feinsand, Quartz
7-1	Zingst: westl. Ortslage Zingst	W-7i-7	13650 + 800 a	OSI SAR-Protokoll	-5.05	Feinsand Quartz
7-2	Zingst: Osterwald - Schurf 3	7i-05	1730 ± 100 a	OSL SAR-Protokoll	0.25	Feinsand Quartz
7-2	Zingst: Osterwald - Schurf 3	MN 353	1610 ± 80 a	OSL SAR-Protokoll	0.20	Feinsand Quartz
7_2	Zingst: Osterwald - Schurf 3	7i-06	1700 ± 100 a	OSL SAR-Protokoll	0,20	Feinsand Quartz
73	Zingst, Osterwald - Schuff 1	Zi-00	1540 + 90 a	OSL, SAR-I TOLOKOII	0,00	Feinsand, Quartz
Z-3	Zingst, Osterwald - Schuff 1	ZI-01 Zi-02	1040 ± 000	OSL, SAR-FIOLOKOII	0,05	Feinsand, Quartz
Z-3		21-02	1680 ± 100 2	OSL, SAR-PIOLOKOII	0,45	Feinsand, Quartz
Z-4	Zingst; Osterwald - Schuff 2	21-03	$1000 \pm 100 a$	OSL, SAR-Protokoli	0,55	Feinsand, Quartz
Z-4	Zingst; Osterwald - Schurf 2	ZI-04	1790 ± 100 a	OSL, SAR-Protokoli	0,35	Feinsand, Quartz
Z-6	Zingst; Osterwald - Schurf 4	MN 354	1550 ± 70 a	OSL, SAR-Protokoll	0,55	Feinsand, Quartz
Z-9	Zingst; Hohe Düne /Ostzingst	MN 587	210 ± 20 a	OSL, SAR-Protokoll	0,75	Feinsand, Quartz
Z-9	Zingst; Hohe Düne /Ostzingst	MN 588	190 ± 15 a	OSL, SAR-Protokoll	0,35	Feinsand, Quartz
Z-9	Zingst; Hohe Düne /Ostzingst	MN 589	230 ± 20 a	OSL, SAR-Protokoll	-0,05	Feinsand, Quartz
Z-9	Zingst; Hohe Düne /Ostzingst	MN 590	310 ± 20 a	OSL, SAR-Protokoll	-0,50	Feinsand, Quartz
Z-9	Zingst; Hohe Düne /Ostzingst	MN 591	600 ± 30 a	OSL, SAR-Protokoll	-0,90	Feinsand, Quartz
W-1	Großer Werder; südl. Strandwall	Zi-W1	280 ± 20 a	OSL, SAR-Protokoll	1,44	Feinsand, Quartz
W-1	Großer Werder; südl. Strandwall	Zi-W2	890 ± 60 a	OSL, SAR-Protokoll	0,97	Feinsand, Quartz
	Großer Werder; Riege vor südl.					
W-2	Strandwalls	Zi-W3	500 ± 40 a	OSL, SAR-Protokoll	-0,70	Feinsand, Quartz
M/ 0	Großer Werder; nördlichste	7: \\\/	200 1 20 5		0.04	
VV-3	Riege	21-004	290 ± 30 a	OSL, SAR-PIOLOKOII	-0,01	
VV-4	Windwatt, nordi. Gr. Werder	21-005	220 ± 20 a	OSL, SAR-Protokoll	-0,34	Feinsand, Quartz
VV-4	Windwatt; nordi. Gr. Werder	21-00	470 ± 30 a	OSL, SAR-Protokoli	-0,87	Feinsand, Quartz
VV-5	Bock; westl. Nordufer	ZI-W7	40±5a	OSL, SAR-Protokoll	-0,32	Feinsand, Quartz
W-5	Bock; westl. Nordufer	ZI-W8	290 ± 30 a	OSL, SAR-Protokoll	-0,84	Feinsand, Quartz
W-6	Windwatt; nördl. Bock	Zi-W9	500 ± 30 a	OSL, SAR-Protokoll	-0,78	Feinsand, Quartz
	Hiddensee; Gellen Leuchtturm -	MN 340	265 ± 25 2	OSI SAR Protokoll	0.80	Eningand Quartz
11-1	Hiddensee: Gellen Leuchtturm -	WIN 340	205 ± 25 a	USL, SAR-FIULOKUI	0,00	
H-1	Schurf Salzwiese	MN 341	450 ± 30 a	OSL. SAR-Protokoll	0.55	Feinsand. Quartz
	Hiddensee; Strandwall nördl.				- ,	,
H-2	Neuendorf	MN 342	1850 ± 80 a	OSL, SAR-Protokoll	1,90	Feinsand, Quartz
	Hiddensee; Strandwall nördl.					
H-2	Neuendorf	MN 343	1710 ± 90 a	OSL, SAR-Protokoll	1,30	Feinsand, Quartz
L 2	Hiddensee; Strandwall sudi.	MNI 245	1090 ± 110 o	OSI SAR Brotokoll	1 25	Eaincord Quartz
11-5	Hiddensee: Strandwall südl	10110 345	1900 ± 110 a	USL, SAR-FIULOKUI	1,20	
H-3	Heiderose	MN 346	2080 ± 120 a	OSL. SAR-Protokoll	0.50	Feinsand, Quartz
	Hiddensee; Salzwiese westl.				- /	
H-4	Fährinsel	MN 585	1290 ± 80 a	OSL, SAR-Protokoll	0,00	Feinsand, Quartz
	Hiddensee; Salzwiese westl.					
H-4	Fährinsel	MN 586	2120 ± 140 a	OSL, SAR-Protokoll	-0,70	Feinsand, Quartz
	Hiddensee; Dünenheide -	MNI 220	205 + 15 2		4.05	Foincard Quart-
с-п	Hiddensee: Überflutungsrinne	1111 338	205±158	USL, SAK-PIOLOKOII	1,95	reinsanu, Quartz
H-7	nördl Vitte	MN 344	1150 + 50 a	OSI SAR-Protokoll	0 40	Feinsand Quartz
					0,40	

 Tab. 7.2: Ergebnisse von optisch stimulierten Lumineszenz-Datierungen im Arbeitsgebiet.

In den Abbildungen 7.2 bis 7.5 werden der Reihe nach die Beprobungstandorte einzeln dargestellt, um eine konkrete Vorstellung über die jeweilige lokale Situation zu geben. Die Bohrung Zi-43/08 befindet sich im westlichen Teil des Zingst an einem rückseitig zur Küstenlinie gelegenen Salzwiesenstandort (-0,72 m NHN) nahe des künstlich geschlossenen Seegatts des Prerower Stoms (Abb. 7.2: Kartenausschnitt). Der geologische Schichtaufbau besteht liegend aus glazi-limnisch bis fluviatilen Feinsanden, deren Oberfläche durch humose Bestandteile und Durchwurzelung als Paläobodenbildung angesprochen wurde. Hangend folgt Torfmudde, die in einen Moostorf übergeht, dem sich ab -4,73 m NHN marine Feinsande mit Molluskenschill anschließen. Innerhalb dieser Feinsandschicht ist von -4,39 m NHN bis -4,01 m NHN eine Torfschicht mit scharfen Übergängen eingelagert, die als allochthon angesprochen wurde. Weitere Hinweise auf eine Umlagerung liefern aufgearbeitete Torfreste in den hangenden Feinsanden. Die Abfolge weist ab -3,23 m NHN bis -2,03 m NHN Muddeablagerungen der Stillwassers-Fazies auf, denen marine Feinsande bis zur Geländeoberfläche folgen. Dieser Sedimentsequenz wurden 7 klastische Proben für OSL-Datierungen und 3 organische Proben aus der Mudde und den beiden Torfbildungen für ¹⁴C-Datierungen entnommen (Abb. 7.2; Tab. 7.1; 7.2).

Abb. 7.2: Datierungen im westlichen Teil des Zingst – Geochronologie am Bohrkern Zi-43/08.

Die Ergebnisse der zwei Proben aus glazi-limnischen bis fluviatilen Sanden zeigen gleiche Alter mit einer Zeitspanne zwischen 13.000 und 14.500 Jahren an (Labor-Nr. W-Zi-6, 7). Stratigraphisch entspricht das einem Ober-Weichselzeitlichen Alter der Klimaperioden Altere Dryas, Bølling und der Ältesten Dryas. Auf dem Altdarss wurden glazi-limnische bis fluviatile Sande von HILGERS (2007) auf geringere Alter der Jüngeren Dryas bis Allerød datiert. Durch Änderungen des
Wassergehalts in den Proben sind diese Ergebnisse als methodisch unterschätzt beschrieben, da prä-allerødzeitliche Alter erwartet wurden. Die Datierungen auf dem westlichen Zingst bestätigen die Annahme von HILGERS (2007) für diese Schicht, da die Ergebnisse W-Zi-6, 7 den früheren Klimaperioden entsprechen.

Der hangend lagernde Torf bestätigt diese OSL-Daten mit einer Radiokohlenstoff-Datierung allerødzeitlichen Alters von 13.150 ± 60 cal. BP (Labor-Nr. W-Zi-C) und gliedert sich zeitlich in die Ergebnisse von Kaiser (2001), Görsdorf & Kaiser (2001) und Kaiser et al. (2006) ein. Die auflagernde marine Sandablagerung ist wesentlich jünger und beginnt etwa vor 3.500 Jahren (Labor-Nr. W-Zi-5). So ergibt sich ein großer Hiatus von etwa 10.000 Jahren und ein offener Akkumulationsraum von etwa 3 m zu dieser Zeit. In untersuchten Gebiet fehlen zum Beispiel die von Kaiser et al. (2006) und Hilgers (2007) auf dem Altdarss vorgefundenen äolischen Ablagerungen. Insgesamt bestätigt dieser Befund den aus Radiokohlenstoffdaten ersichtlichen Prozess einer verzögerten Füllung des Akkumulationsraums im Vergleich zum steigenden Meeresspiegel. Die Sedimentation beginnt daher erst mit geringeren Anstiegsraten in der zweiten Phase der Littorina-Transgresssion. In wieweit es zu früheren Ablagerungen gekommen ist, die wieder aufgearbeitet wurden, lässt sich nicht abschätzen. Die hangende Torfbildung innerhalb der marinen Feinsande wurde mit 6.780 ± 110 cal. BP (Labor-Nr. W-Zi-B) bestimmt. Im Abgleich mit OSL-Datierungen an auflagernden Sanden, die Alter von 3.180 ± 140 Jahren und $2.690 \pm$ 100 Jahren aufweisen (Labor-Nr. W-Zi-4, 3), konnte dieser Torf als umgelagert bestätigt werden. Die Datierung der hangenden Muddeschicht gliedert sich mit einem Alter von 2.500 ± 160 cal. BP (Labor-Nr. W-Zi-A) in die liegenden und zur Geländeoberfläche folgenden OSL-Daten ein (Labor-Nr. W-Zi-3, 2, 1). Die Sandablagerungen in -1,25 m NHN bzw. -0,95 m NHN Teufe weisen Alter zwischen 750 und 600 Jahren auf. Aus diesem Vertikalprofil von Datierungen lässt sich für diesen Standort die mittlere Sedimentationsrate in der marinen Sequenz bestimmen. Sie liegt bei 0,14 cm/a für den beprobten Teufenbereich von -4,30 m NHN bis -0,95 m NHN. Im Vergleich von liegenden mit hangenden Bereichen nimmt die durchschnittliche Sedimentationsrate in Richtung Geländeoberfläche ab. Mittlere Beträge zwischen den Proben W-Zi-5 und W-Zi-3 umfassen 0,42 cm/a, während im Bereich von W-Zi-3 zu W-Zi-1 die Werte auf 0,09 cm/a zurückgehen. Der Sedimentationsprozess ist als unstetig anzunehmen und wird größtenteils von Überflutungsereignissen gesteuert, die abhängig von Starkwindphasen sind.

Im zentralen Teil der Nehrung Zingst wurden im nördlichen Osterwald nahe der Küstenlinie vereinzelt Überreste von Strandwallstrukturen entdeckt, die von NNW nach SSO verlaufen. Eine Häufung tritt dabei im nordwestlichen Osterwald auf. Dort wurden drei Schürfe mit einer maximalen Endteufe von 1,30 m bis zum Erreichen des Grundwasserstandes angelegt, um interne Lagerungsstrukturen zu erkunden und Proben für Datierungen zu gewinnen (Abb. 7.3: Z-2 bis 4). Etwa 1,5 km östlich davon befindet sich ein kleineres Gebiet mit Strandwallrelikten, in dem ein weiterer Schurf (Z-6) angelegt wurde. Abbildung 7.3 zeigt diese Aufschlüsse zusammen

mit den Datierungen. Insgesamt sind an 8 Proben OSL-Datierungen gemessen worden, während eine zum Abgleich geplante ¹⁴C-Messung an hangenden oberflächennahen Torfbildungen durch Kontamination von Bombenresten keine Ergebnisse brachte (vgl. Tab. 7.1: Labor-Nr. KIA-35280, Kap. 3.2.6). Alle OSL-Alter sind stratigraphisch konsistent zueinander, da sie am gleichen Außchluss vertikal zur Geländeoberkante hin abnehmen oder sich gleiche Ablagerungszeiträume unter Betrachtung des Messfehlers ergeben. Die Strandwälle im nordwestlichen Teil weisen innerhalb der Messfehler annähernd gleiche Alter auf und beschreiben einen Ablagerungszeitraum zwischen 1.500 bis 1.900 Jahre im Älteren Subatlantikum. Der östlichere Standort Z-6 umfasst 1.500 bis 1.600 Jahre und gliedert sich damit in den Zeitraum ein, der in den westlich gelegenen Strandwällen gefunden wurde. Vergleicht man Datierungen in gleicher Geländehöhe ergibt sich eine etwa 100 Jahre spätere Ablagerung des östlichen Strandwalls (Tab. 7.2: Labor-Nr. Zi-O3, MN354). Einzeln betrachtet erlauben die Datierungen im Osterwald aufgrund geringer bis unbedeutender lateraler Altersunterschiede keine Aussage über die Materialtransportrichtung bzw. das Nehrungswachstum. Sie stellen eine eher synchron abgelagerte Strandwallformation dar.

Abb. 7.3: Datierungen im zentralen Teil des Zingsts – reliktische Strandwälle im Osterwald.

Entlang des Zingster-Nehrungssystems wurde auf dem Ostzingst nahe des Seegatts Pramort rückseitig zu den hoch aufgeschütteten Dünenbildungen ein weiterer Sedimentkern (Bohrung: Zi-HD-2) intensiver vertikal geochronologisch untersucht (Abb. 7.4: Standort Z-9). Auf den Teufenbereich +1 m NHN bis -1 m NHN wurden 5 Proben in eine Sequenz aus marinen Feinbis Mittelsanden mit grobsandig, vereinzelt kiesigen Nebengemengeanteilen verteilt, die Alter zwischen 190 und 630 Jahren im Jüngeren Subatlantikum ergaben (Tab. 7.2). Die mittlere Sedimentationsrate beträgt rund 0,43 cm/a für den gesamten Teufenbereich von -0,90 m NHN bis 0,75 m NHN. Innerhalb des Aufschlusses ist ein starker Anstieg der Raten vom Liegenden ins Hangende von 0,15 cm/a (Labor-Nr.: MN591, MN590) über 0,76 cm/a (Labor-Nr.: MN590, MN589) bis 2,67 cm/a (Labor-Nr: MN589, MN587) zu beobachten. Im Abgleich mit dem Vertikalprofil am Standort Z-1, das bis -0,95 m NHN aufragt und sinkende Sedimentraten in Hangende verzeichnet, ergibt sich im östlichen Teil des Zingsts ein steigender Trend in höheren Geländeniveaus. Vergleicht man die Ergebnisse lateral entlang der Nehrung, ergeben sich für die rückseitig zur Küstenlinie gelegenen Salzwiesenstandorte Z-1 im Westen (Abb. 7.2) und Z-9 im östlichsten Teil annähernd gleiche Altersbestimmungen zwischen 570 bis 740 Jahren, die in einem Teufenniveau von -0,90 m NHN bis -0,95 m NHN liegen (vgl. Tab. 7.2: Labor-Nr. W-Zi-1, MN591). Die Strandwälle des Osterwaldes sind jedoch wesentlich älter und etwa 1.600 Jahre früher entstanden (Tab. 7.2: Labor-Nr. Zi-O4, MN588). Vermutlich stellen sie Relikte des Längenwachstums im initialen Barrierestadium dar. Sie entwickelten sich ausgehend von einem Pleistozänkern im Untergrund des westlichen Osterwaldes bei Müggenburg, der als Aufhänger diente (vgl. Abb. 4.10, 5.3, 5.4).

Die Ergebnisse des unmittelbar östlich angrenzenden Windwatts ergaben ähnlich junge Altersbestimmungen. Dort wurden Strandwälle und Riegen entlang eines von Süden nach Norden gerichteten Profils, vom Großen Werder ausgehend bis an den Nordrand des Windwatts reichend, beprobt (Abb. 7.4: Standorte W-1 bis 4). Parallel wurden etwa 7,5 km ostwärts davon an zwei Standorten Proben entnommen, am Nordrand des Bocks und an der vorgelagerten Windwattfläche (Abb. 7.4: Standorte W-5, 6). Im Gegensatz zum Osterwald verlaufen die Strandwälle in W-O-Richtung parallel zur Küstenlinie und treten signifikanter in langen, bis zu 2 m NHN aufgeschütteten Strukturen an der Geländeoberfläche des Großen Werders hervor. Insgesamt wurden in diesem Gebiet 9 Proben mit OSL datiert, um Ablagerungsprozesse nachzuvollziehen, die bereits in REIMANN et al. (2010) diskutiert sind. Die beim Anblick der Oberflächenstrukturen zu erwartende nordwärts gerichtete Progradation konnte nicht eindeutig belegt werden. Vergleicht man die Datierungen ausgehend vom südlichsten Strandwall des Großen Werders nach Norden, zeigen die Ergebnisse der Proben Zi-W2, Zi-W3 und Zi-W4 diesen progradierenden Trend im Zeitraum 900 bis 260 Jahren vor heute an (vgl. Tab. 7.2, Abb. 7.4). Der etwa 1 km entfernte Nordrand des Windwatts (Abb. 7.4: Standort W-4) ist jedoch im vergleichbaren Teufenniveau von -0,87 m NHN etwa 180 Jahre früher abgelagert worden

(vgl. Labor-Nr. Zi-W6, Zi-W4). Die Überdünung des südlichen Strandwalls setzte vor rund 300 bis 260 Jahren ein (Labor-Nr. Zi-W1). Im Parallelprofil vor dem Bock ergibt sich in gleicher Teufe ein ähnliches Bild für der Entstehung des Nordrandes vor rund 500 Jahren (Labor-Nr.: Zi-W9). Die rückseitigen Strandwälle am Nordufer des Bocks sind um den gleichen Betrag jünger und im Zeitraum vor 320 bis 260 Jahren abgelagert worden (Labor-Nr. Zi-W8). Die oberflächennahe Probe Zi-W7 am Standort W-5 ist sehr jungen Datums. Sie zeigt, dass das Ablagerungssystem auch rezent noch sehr aktiv ist und durch Überspülungen, ausgelöst durch Sturmereignisse, Material bis in diese inneren Bereiche des Windwatts transportiert. Die mittlere Sedimentationsrate wurde für nördliche und zentrale Teile dieses Gebiets an zwei Standorten (W-4, W-5) mit annähernd gleichen Beträgen zwischen 0,21 cm/a bis 0,23 cm/a im Teufenbereich von -0,87 m NHN bis -0,32 m NHN bestimmt. Südlich nimmt der Mittelwert bis auf 0,13 cm/a ab (W-2). Diese Werte lassen sich mit dem Standort Z-9 parallelisieren, wo Sedimentationsraten auf vergleichbarem Geländeniveau von 0,15 cm/a hangend bis auf 0,76 cm/a ansteigen.

Insgesamt sind in diesem Gebiet an allen Standorten die oberflächennahen Sedimente wesentlich jünger als Liegende. Entgegen den Befunden an den Strandwällen im Osterwald spricht das für eine mehrphasige Entwicklung dieser Oberflächenstrukturen. Das Ablagerungssystem funktioniert komplexer, da im Zuge der Progradation bereits abgelagerte Sedimente erneut erodiert und durch Überspülungen in zentrale Bereiche verlagert werden. Generell ist die Füllung des Akkumulationsraumes bis auf Meeresspiegelniveau in diesem Raum nur geringfügig jünger im Vergleich zu Datierungen gleicher Teufenniveaus an den Standorten Z-1 und Z-9. Die Verzögerung umfasst eine Zeitspanne von etwa 200–300 Jahre (vgl. Labor-Nr.: W-Zi-1, MN591, MN590, Zi-W4, 6, 8, 9). Eine der Ursachen könnte ein größer zu füllendes Volumen des lokalen Akkumulationsraumes im Unterschied zu westlicheren Nehrungsteilen sein. Dies wird anhand der Tiefenlage der marinen Basisfläche im Gebiet des Ostzingsts und östlich folgenden Teilen in den Abbildungen 4.10, 5.3 und 5.4 deutlich.

Abb. 7.4: Datierungen im östlichen Teil des Zingsts und angrenzendem Windwatt mit Barriere Inseln.

Auf dem Hauptnehrungskörper der Insel Hiddensee wurden eine Bohrung und fünf Schürfe an unterschiedlichen morphologischen Strukturen für OSL-Datierungen beprobt (Abb. 7.5: Kartenausschnitt). Es handelt sich dabei um eine Dünenbildung (H-5), zwei Strandwälle (H-2, H-3) und drei Salzwiesenstandorte (H-1, H-4, H-7), deren Ergebnisse bereits in Kapitel 4.4.4 kurz genannt sind. Der Datensatz umfasst insgesamt 10 Proben, die alle Subatlantische Alter haben (vgl. Tab. 7.2). Im Süden wurde auf dem Gellen in der Nähe des Leuchtturms die rückseitige Salzwiese mit 2 Proben untersucht. Sie ergaben einen Ablagerungszeitraum zwischen 480 und 260 Jahren für das Geländeniveau von 0,55 m NHN bis 0,80 m NHN (Tab. 7.2: Labor-Nr. MN340, MN341). Vergleicht man diese Ergebnisse mit dem Standort H-4, der sich im zentralen Inselteil

zwischen Dünenheide und Fährinsel befindet, sind dort wesentlich höhere Alter von 2.260 bis 1.210 Jahren gemessen worden (Tab. 7.2: Labor-Nr. MN585, MN586). Allerdings ist hier auch ein niedrigeres Geländeniveau vorhanden, da die Probenteufen in 0 m NHN und -0,7 m NHN liegen. Ein weiterer Salzwiesenstandort befindet sich an einer Überflutungsrinne im nördlichen Inselteil und zeigt oberflächennah einen ähnlichen Ablagerungszeitraum von 1.100 bis 1.200 Jahren in 0,40 m NHN an (Tab. 7.2: Labor-Nr. MN344). Das Alter entspricht ungefähr der oberen Probe MN585 am Standort H-4, die jedoch mit 0 m NHN niedriger liegt. Die Ergebnisse der Strandwälle zeigen eine ähnliche Tendenz südgerichteter Ablagerung. Der NNW-SSO ausgerichtete Strandwallfächer südlich der Fährinsel (H-3) ist vor etwa 2.030 Jahren entstanden. Mit den Enden von Hakenbildungen zeichnet er die vom Dornbusch ausgehende südgerichtete Entwicklung nach. Die Ergebnisse beider Proben sind unter Beachtung der Messfehler gleich alt (Tab. 7.2: Labor-Nr. MN345, MN346) und weisen auf eine synchrone Ablagerung innerhalb eines Sturmereignisses hin. Etwa 1,5 km südlich befindet sich im Norden der Ortschaft Neuendorf ein West-Ost orientierter Strandwallfächer, der nach Darstellung von Schütze (1931, S.138) ein Relikt aus dem Vorbau eines Liefergebietes des südwestlichen Seeraumes ist. Dort wurden ebenfalls zwei Proben aus einem Aufschluss (H-2) gemessen, die ein ähnliches Bild von einer synchronen Ablagerung vor etwa 1.770 Jahren zeigen (Tab. 7.2: Labor-Nr. MN342, MN343). Es ergibt sich ein Alterunterschied von 260 Jahren beider Strandwallsysteme. Die Schließung des dazwischen liegenden Seegatts muss geringfügig jünger sein. Der Befund einer synchronen Ablagerung innerhalb einer Struktur spiegelt die Ergebnisse aus dem Osterwald wieder, die dort im Mittel vor 1.650 Jahren abgelagert wurden.

Abb. 7.5: Datierungen auf Hiddensee – Dünenbildungen, Strandwälle und Salzwiesen.

In der nördlichen Dünenheide wurde am Standort H-5 die Oberkante von Braundünen mit einem Alter von 205 ± 15 Jahren datiert (Tab. 7.2: Labor-Nr. MN338). Dieses Ergebnis schränkt die Bildungszeit der auflagernden jüngeren Gelb- und Weiß-Dünengenerationen ein, die an diesem Standort eine Mächtigkeit von 1,25 m aufweisen. Daraus ergibt sich eine durchschnittliche Dünenakkumulation von über 0,6 cm/a. Die Salzwiesenstandorte H-1 und H-4 weisen im Gegensatz nur geringe Sedimentationsraten zwischen 0,1 cm/a und 0,15 cm/a auf. Im Vergleich mit den auf gleichem Geländeniveau liegenden genetisch ähnlichen Standorten des Windwatts (W-4, W-5)

und des Ostzingsts (Z-9) ist das boddenseitige Ufer Hiddensees in der jüngeren Entwicklung von geringerer Sedimentdynamik geprägt. Ursache ist vermutlich die höhere Aufschüttung der Küstenlinie dieses Nehrungskörpers, die Überspülungen nur in geringerer Häufigkeit während Extremereignissen zulässt.

Insgesamt betrachtet liefert der Einsatz von optisch stimulierter Lumineszenz wertvolle Hinweise über die Sedimentdynamik in diesem Raum und unterstützt die Ableitung eines paläogeographischen Genesemodells. Strandwälle wurden bis auf die Bildungen des Windwatts vorrangig als geochronologisch synchrone Ablagerungsformen, gebunden an kurzeitig verstärkte Sedimentdynamik innerhalb von Starkwindphasen belegt. Im Gegensatz lieferten die Salzwiesenstandorte deutlich erkennbare vertikale Altersunterschiede, deren Sedimentation aber anhand von Ergebnissen der intensiver erkundeten Standorte Z-1 und Z-9 nicht als kontinuierlich einzustufen ist. Zusammenfassend zeigen die Ergebnisse im Bereich des Zingster Nehrungssystems keinen gerichteten W-O Vorbau innerhalb der initialen Barriereentwicklung an. Auf der Insel Hiddensee lässt sich allerdings eine vorrangig von Küstenlängstransport dominierte Genese nachvollziehen. Zusätzlich ergänzen die vorliegenden OSL- und Radiokohlenstoff-Datierungen frühere geochronologische Ergebnisse aus diesem Raum (Möbus 2000, Kaiser 2001, Barthet 2002, LAMPE 2005, Lübke 2005, Kaiser et al. 2006, Hilgers 2007, LAMPE et al. 2007).

Kapitel 8 - Genesemodell für den Raum Darss-Zingst-Hiddensee

Entsprechend der Zielstellung konnte anhand vorliegender Kartierungsergebnisse in Verbindung mit geochronologischen Befunden für den Gesamtraum Darss-Zingst-Hiddensee ein schlüssiges Modell der paläogeographischen Entwicklung während des Holozäns abgeleitet werden. Die Küstengenese dieses Raums ist in Form von Blockbildern aus sieben charakteristischen Zeitabschnitten in den Abbildungen 8.1 bis 8.4 dargestellt. Diese Entwicklung steht in enger Beziehung zu den bereits entwickelten Modellvorstellungen für Küstenlandschaften mit glazialer Vorprägung von KLIEWE & JANKE (1991), FORBES et al. (1995), HOFFMANN et al. (2005) und LAMPE et al. (2007, 2011). Die räumlichen Faktoren und Prozessgrenzen dieses morphodynamischen Systems sind in Anlehnung an COWELL & THOM (in CARTER & WOODROFFE, Hrsg. 1994) bereits in Kapitel 2.4 beschrieben.

Blockbild A (Abb. 8.1) zeigt die Tiefenlage der Basis der marinen Sedimentsequenz mit den anstehenden Sedimenttypen, bestehend aus Geschiebemergel, glazio-limnischen Schluffen sowie glazio-limnischen/-fluvialen Feinsanden. Diese aus Geländebefunden modellierte Oberfläche muss als Landoberfläche betrachtet werden, von der Material abbradiert und durch Küstenbildungsprozesse zu neuen Landformen akkumuliert wurde. Aufgrund dessen sind die Morphologie der Paläolandoberfläche und insbesondere die Volumina potentieller Liefergebiete nicht exakt rekonstruierbar, da die rezent hangend auflagernden Sedimente sowie das in distale Bereiche außerhalb des Arbeitsgebiets verlagerte Volumen in dieser Darstellung fehlen.

Pleistozäne Hochlagen des Fischlands, des Altdarsses, des südlich gelegenen Festlands sowie des Dornbuschs auf Hiddensee sind am Verlauf der 0 m - Isohypse erkennbar. Kleinere Aufragungen (häufig aus Geschiebemergel aufgebaut) bestimmten als Aufhänger für Sedimentakkumulationen bereits den heutigen Verlauf der Küste und werden am undulierenden Verlauf der -5 m - Isobathe sichtbar.

Um etwa 14.000 BP (etwa 17.000 cal. BP, kalibriert mit CalPal-2007^{online}) wird nach Görsdorf & KAISER (2001) das Gebiet eisfrei und das Landschaftsbild ist in der Phase vom ausgehenden Spätglazial bis Boreal hauptsächlich terrestrisch geprägt (Abb. 8.1: Blockbild B). Niederungen im nördlichen Teil waren von einem großen Seensystem bedeckt. Zuflüsse aus dem Strelasund und der Barthe bildeten ausgedehnte Flußauenlandschaften. Datierungen an Torfen ergaben Allerød bis präboreale Alter, gestützt durch OSL-Datierungen von glazio-fluviatilen/äolischen Sanden aus dem Bereich des Prerower Stroms (Abb. 7.2, REIMANN et al. 2011). Das Volumen pleistozäner Aufragungen und weiterer möglicher Liefergebiete ist im Blockbild B auf vermutlich realistische Ausdehnung vergrößert dargestellt. Zwei Gebiete (die heutige Prerowbank und die unbenannte Flachwasserzone westlich von Hiddensee) wurden mit Fragezeichen versehen, da aufgrund fehlender Aufschlüsse deren Aufbau nicht exakt belegt werden konnte (vgl. Diskussion Kap. 4.5). Eine Funktion als Liefergebiet ist jedoch für diese Strukturen anzunehmen.

Abb. 8.1: Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (A) Marine Basis – modellierte Höhenlage und vorgefundene Sedimentverteilung basierend auf den Ergebnissen der Kartierung, (B) Spätglazial bis Boreal – zeigt das Landschaftsbild vor Einsetzen der Transgression mit Flussauen entlang von nordgerichteten Entwässerungsbahnen, die in eine Paläoseenlandschaft münden.

Im frühen Atlantikum setzte die Littorina-Transgression mit rapidem Meeresspiegelanstieg ein und flutete äußere Bereiche der Falster-Rügen-Platte (Abb. 8.2: Blockbild C). Das führte zu Torfbildung in geschützten Lagen entlang der transgredierenden Küstenlinie. Zeitgleich setzte Abbrasion an exponierten Landformen im Norden ein (z.B. Dornbusch, Plantagenetgrund, Prerowbank). Es entstanden initiale Küstenbarrieren, die mit dem steigenden Wasserspiegel schnell südwärts migrierten. In ihren rückseitigen Flachwasserzonen lagerte sich Brackwassermudde ab, deren Bildung durch Datierungen auf einen Zeitraum von 7.450 cal. BP bis 4.900 cal. BP eingegrenzt werden kann.

Im Zuge des weiteren Meeresspiegelanstiegs wurden diese jungen Barrieren kontinuierlich aufgearbeitet und mit dem Transgressionskontakt weiter nach Süden verlagert (Abb. 8.2: Blockbild D). Rezent sind diese Barrieren gänzlich aufgearbeitet und lassen sich nur anhand der am Meeresboden anstehenden marinen Mudden verfolgen. Mit dieser Entwicklung wurden auch südlich gelegene Pleistozän-Aufragungen aktiviert, die als Materiallieferanten und Aufhänger für das rezente Barrieresystem dienten. Als Beispiel setzt die marine Sedimentation im westlichen Teil des Zingsts vor etwa 3.500 Jahren ein (Abb. 7.2).

Abb. 8.2: Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (C) Frühes Atlantikum – Einsetzen der Littorina-Transgression mit Erosionswirkung an nördlichen Gebieten und Bildung von kleinräumigen Barrieresystemen, (D) Atlantikum – die Littorina-Transgression erreicht -5 m NHN und startet die Entwicklung im Gebiet der heutigen Küstenlinie.

Um ca. 6.500 cal. BP erreichte der Meeresspiegel bereits -2 m NHN. Anschließend verringerte sich der Anstieg erheblich anhand der Meeresspiegelkurven nach LAMPE et al. (2007, 2010). Ab diesem Zeitraum begannen Akkumulation und küstennahe Material-Transportsysteme zu dominieren. Die südwärtige Verlagerung der Barrieren kam an pleistozänen Aufragungen zum Erliegen und ging in Progradation und Längenwachstum des Barrieresystems sowie Schließung von Seegatten über (Abb. 8.3: Blockbild E). Am Dornbusch-Kliff entwickelte sich zeitgleich die Nehrung Hiddensee in südlicher Ausrichtung. Diese Nehrungsbildungen sorgten für die Abgrenzung von Lagunen (rückseitig geschützte Flachwasserzonen), in denen sich die Mudde-Akkumulation fortsetzte.

Blockbild F (Abb. 8.3) stellt die anhaltende Entwicklung zu einer geschlossenen Küstenlinie für die Nehrung Darss-Zingst und die Insel Hiddensee dar. Diese Phase ist gekennzeichnet durch intensiven Küstenlängstransport und Isolierung der Boddengewässer. Sturmhochwasser führten zu zahlreichen Überflutungen der Barrieren, wodurch Oberflächenstrukturen eingeebnet und Material in die Lagunen transportiert wurde. Meeressandebenen wuchsen auf und das großflächig ausgedehnte Windwatt östlich des Zingsts entwickelt sich. Der Sedimentationsprozess konnte in dieser Zeit mit dem Meeresspiegelanstieg mithalten.

Abb. 8.3: Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (E) Atlantikum bis Subatlantikum – die Littorina-Transgression erreicht -2 m NHN mit Ausprägung initialer Nehrungen, (F) Atlantikum bis Subatlantikum – der geringe Meeresspiegelanstieg seit 6.000 cal. BP führt zu intensiven Umlagerungen von Material im Küstenraum und Etablierung der Nehrungssysteme.

Die gegenwärtige Situation ist durch einen erneut schneller steigenden Meeresspiegel gekennzeichnet (Abb. 8.4: Blockbild G). Dieser Prozess wird als Subatlantische Transgression bezeichnet und setzte vor etwa 1000 Jahren ein (LAMPE & JANKE 2004, Lampe 2005).

Damit verbunden ist die Tendenz zu einer südwärts gerichteten Verlagerung der Küstenlinie mit Abrasionswirkung an großen Teilen dieser jungen Küstenlinie. Folglich hat die Nehrungsgenese die Reifephase bereits überschritten, da rezent Akkumulationen nur auf die Hakenbildungen des Neudarsses und des Gellens sowie das Windwatt beschränkt sind. Diese werden vorrangig durch Küstenlängstransport und Überspülungen gespeist.

Abb. 8.4: Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (G) Subatlantische Transgression – zeigt die gegenwärtige Situation, in der die Reifephase überschritten ist und in großen Bereichen der Nehrungssysteme bereits Erosion vorherischt.

Kapitel 9 - Synthese und Ausblick

Anhand der im Arbeitsgebiet durchgeführten Untersuchungen konnten die holozäne Sedimentabfolge und liegende pleistozäne Deckschichten sowohl im Bereich der Nehrungen als auch im angrenzenden Seegebiet und in rückseitigen Lagunen detailliert kartiert werden (vgl. Kap.4). Weiterführend wurde auf der Basis dieser Ergebnisse und in Ergänzung mit externen Daten die Transgressionsbasisfläche mit Hilfe geostatistischer Verfahren interpoliert. Anschließend konnten entsprechende Volumenabschätzungen vorgenommen werden (vgl. Kap. 5, 6). Dabei wurde das marine Gesamtvolumen vertikal zerlegt, aber auch die Volumenverhältnisse zwischen einzelnen lithofaziellen Einheiten untersucht. Für die Schlussfolgerung der paläogeographischen Entwicklung konnte auf einen umfangreichen geochronologischen Datensatz zurückgegriffen werden, der einerseits die Meeresspiegelentwicklung im Untersuchungsraum belegt und andererseits Rückschlüsse über Ablagerungsmechanismen in diesem Gebiet zulässt (vgl. Kap. 7).

Das Genesemodell enthält zwei Sedimentquellen, die Material zur Ablagerung im marinen Bereich der rezenten Küstenlinie geliefert haben. Ein westliches System bestehend aus Rostocker Heide (in südwestlicher Richtung außerhalb des Untersuchungsgebietes gelegen), Fischland, Altdarss und der Prerowbank lieferte Material zur Verbindung der Kliffe mit der Entstehung des Vordarsses, sowie Aufschüttung des Neudarsses und westlichen Teilen des Zingsts. Die Abrasion des Altdarsskliffs stoppte während dieser Entwicklung mit dem Einsetzen der Progradation von Vor-/Neudarss vermutlich sehr früh. KOLP (1982) beschreibt den Ablagerungsbeginn dieser Strandwallfächer um etwa 4.000 BP (4.475 cal. BP; kalibriert mit CalPal-2007^{online}) auf Basis von Pollenanalysen und ¹⁴C-Datierungen an Torfbildungen in den Riegen. Aufgrund dieser Tatsache kann der Altdarss nur als kleinere Sedimentquelle im Gesamtsystem gewirkt, und dementsprechend geringere Materialmengen in der initialen Phase der Küstengenese bereitgestellt haben. Benachbarte Kliffe (z.B. der Dornbusch auf Hiddensee und Wittow im Norden Rügens) lagen im Vergleich ähnlich exponiert, so dass bezogen auf den Altdarss nicht von kleinräumig erhöhten Abrasionsraten auszugehen ist. In der frühen Transgressionsphase wurden vermutlich keine größeren Materialmengen als an umliegenden Kliffen erzeugt. Eine Unterbrechung dieses westlichen Sedimenttransportsystems bildete der in das nördliche Seegebiet entwässernde Paläoflusslauf der Barthe. Dieser Befund weist auf einen geringfügigen Einfluss von Küstenlängstransport zum Aufbau östlicher Nehrungsteile des Zingsts sowie Windwatt und Barriere-Inseln hin. Anderenfalls sollte dieses Flussbett im Zuge des Küstenlängstransports aufgearbeitet und rezent nicht mehr nachweisbar sein. Dagegen sprechen allerdings die Ergebnisse der Side-Scan-Sonarmessungen (vgl. Kap. 4.5). Dieser Aspekt stellt beispielsweise eine Neuerung zu den Genesevorstellungen von SCHUMACHER (2000) dar. Ausgehend vom Darss beschreibt Schumacher (2000) eine nach Osten gerichtete Schließung der Seegatten entlang des Zingsts und damit eine Küstenlängstransport dominierte Entwicklung bis zum Bock. Zusätzlich kann das holozäne Sedimentvolumen dieser

östlichen Gebiete nicht ausschließlich durch Abrasion nahe gelegener Kliffe erklärt werden. Nach HOFFMANN & LAMPE (2007) ist ein Küstenrückgang von maximal 2,4 km im Holozän durch Untersuchungen an umliegenden Nehrungen belegt, wenn nach Auffassung von Schwarzer et al. (2003) etwa ¹/₃ des abradierten Materials aus dem Küstensaum in tiefere Meeresbereiche abtransportiert wurde. Unter Verwendung des Gesamtvolumens erhält man einen Wert von 1,8 km. Dieser Betrag entspricht annähernd den Aussagen entlang der benachbarten polnischen Küste mit 1 km bis 1,5 km Rückgang (Uścinowicz 2003, 2006), so dass für den südlichen Ostseeraum von Kliffabrasionen in diesen Ausmaßen auszugehen ist. Berechnet man das Volumen des Zingster Nehrungssystems mit angrenzendem Windwatt und Inseln mit rund 466 Mio. km³ und bezieht es auf den Rückgang des Altdarsses, dann müsste dieser zwischen 16,6 km (Gesamtvolumen der Barriere) und 22,2 km (Gesamtvolumen zuzüglich ¹/₃ abtransportiertes Volumen) zurückgeschnitten worden sein. Schon diese stark vereinfachte Beispielrechnung zeigt den Bedarf von zusätzlichen Sedimentguellen und/oder Transportsystemen für diesen Raum. Fehlende gröbere Korngrößenfraktionen im geologischen Aufbau in diesen Teilen der Barriere geben einen weiteren Hinweis auf das Liefergebiet. Neben dem Dornbusch und zu kleineren Anteilen auch der Plantagenetgrund existieren offensichtlich keine Kliffe, die Sedimente für die Entstehung dieser östlichen Gebiete zugeliefert haben könnten. Das angrenzende Küstenvorfeld ist großflächig von schluffigen Sedimenten glazi-limnischen Ursprungs bedeckt, das somit keinen Sand zum Aufbau der Barrieren bereitstellen konnte (Abb. 8.1: Blockbild A). Die angenommenen initialen Barrieren im nördlichen Seeraum wurden aus abradiertem Material der genannten Quellen oder schon früher, als glazi-limnisch/-fluviatile Sandkörper aufgebaut (Abb. 8.2: Blockbild C). Diese Sande können im Uferbereich der nacheiszeitlichen Paläoseenlandschaft beziehungsweise kleinräumige Deltas umrandend, wie sie analog im Untergrund der rezenten Barrieren vorgefunden werden, abgelagert sein. Form und Größe dieser Sedimentkörper können nicht genau rekonstruiert werden, da sie rezent vollständig erodiert sind. Der Nachweis für deren Vorkommen sind die Ablagerungen von Brackwassermudde in großer Distanz zur Küste (etwa 15 - 20 km), die den Transgressionsweg dieser intialen Barrieren nachzeichnen (vgl. Kap. 4.5, Abb. 4.3). Anhand der Datierungen dieser lagunären Sedimente (vgl. Kap. 7.1) wird ein Bildungszeitraum zwischen 7.450 cal. BP und 4.900 cal. BP im nördlichen Seeraum deutlich. Der Befund zeigt eine frühe, noch unter Abklingen des schnellen Meeresspiegelanstiegs der Littorina-Transgression stattfindende Entstehung von initialen Nehrungen. Errechnet man die Anstiegsraten für die beiden lokalen Meeresspiegelkurven im Zeitraum zwischen 7.500 und 6.500 cal. BP erhält man Werte von 2 mm/a für das Gebiet N-Rügen/Hiddensee sowie 1,46 mm/a für das Fischland (siehe Abb. 7.1). Die Untersuchungen von Kliewe & Janke (1991), Hoffmann et al. (2005), Lampe et al. (2007) gehen von diesem Entstehungsprozess unter geringen Anstiegsraten von rund 1,5 mm/a erst nach 6.500 cal. BP aus. Die Anstiegsraten im Arbeitsgebiet passen annähernd zu diesen Szenarien, so dass die frühe Bildung initialer Barrieren nicht konträr dazu steht. Ob die Sedimentmenge

jedoch ausgereicht hat, den zu dieser Zeit noch schneller wachsenden Akkumulationsraum bis über das Meeresspiegelniveau anzufüllen, kann nicht genau geklärt werden. Einen Anhaltspunkt bietet zum Beispiel die mittlere Sedimentationsrate der Mudde von rund 0,12 cm/a in dieser Zeitspanne (Tab. 7.1: Standort O-4). Die Sandakkumulationen hatten vermutlich höhere Sedimentationsraten zu verzeichnen. Ein Indiz dafür ist das durchschnittliche Kornspektrum des Liefergebiets, mit größerem Sandanteil gegenüber Schluff. Subaquatische Flachwasserformen mit vergleichbarer Aufhöhung, wie die rezenten Schaarbereiche und Windwatten als Fortsätze von Nehrungen, müssen in jedem Fall bestanden haben. Sie wirkten als Barriere dämpfend auf die starke Hydrodynamik des offenen Meeres und schufen rückseitig ein beruhigtes Wassermilieu zur Ablagerung von lagunären Sedimenten. Ob sich jedoch nach Auffassung von Hurtig (1954) schon unter den starken Anstiegsraten der initialen Transgressionsphase Strandwälle aufgebaut haben, die im Anstiegsverlauf vor sich her bewegt wurden und schon damals Nehrungen bildeten, bleibt weiterhin zu bezweifeln (siehe z.B. Diskussion in KLIEWE & JANKE 1991).

Dieser Prozess stellt eine Ausnahme innerhalb der allgemeinen Entwicklung der südlichen Ostseeküste dar und ist an das großflächig von geringen Wassertiefen mit flachem Neigungswinkel geprägte Küstenvorfeld der Falster-Rügen-Platte geknüpft. Das übliche System zur Entwicklung von Nehrungen wird dominiert vom Küstenlängstransport des an nahe gelegenen Kliffbereichen abradierten Materials (KLIEWE & JANKE 1991, HOFFMANN et al. 2005, LAMPE et al. 2007, 2011). In LAMPE et al. (2011) sind die wesentlichen Prozesse die zur Küstenbildung führten mit Strandung, Progradation und Längenwachstum in Abhängigkeit vom Ausgangsrelief beschrieben. Nach deren Meinung migrierten die Nehrungen im Zuge der Transgression nur geringfügig. Nur wenn die Liefergebiete ertranken, völlig aufgearbeitet wurden, oder die Distanz zwischen Aufhängepunkten und den Barrieren groß war, kam es zu derartigen Verlagerungen.

Der anschließende und auch rezent im Untersuchungsgebiet zu beobachtende Prozess von Materialtransport entlang der Küstenlinie wurde durch die Subatlantische Transgression ausgelöst. Das führte zur heutigen morphologischen Ausprägung des Nehrungssystems, löste aber zusätzlich auch Abrasionen in großen Abschnitten dieser jungen Küstenbildungen aus. Eine frühere Progradation der Küstenlinie kehrt sich in Retrogradation um. Die Aufarbeitung von Barrieren des Holozäns, die aus gut sortierten Sanden aufgebaut wurden, ist viel effektiver und dynamischer als die Küstenentwicklung in der Vergangenheit. Damals belieferten pleistozäne Landformen von stärker konsolidierten Materialien mit schluffig-tonigen Nebengemengeanteilen den Küstenlängstransport und erforderten eine vergleichsweise höhere Abrasionsleistung. Das Hjulström-Diagramm (HJULSTRÖM 1935) belegt die Erosion eines sandigen Kornspektrums schon bei geringeren Fließgeschwindigkeiten als vergleichsweise bindige Kornspektren mit Schluff-Tonanteilen, die eine höhere Kohäsion der Körner aufweisen. Im Arbeitsgebiet weisen gegenwärtig etwa 54 km der Außenküste Rückgangswerte auf, 23 km hingegen befinden sich

unter Akkumulationsbedingungen (Staatliches Amt für Umwelt und Natur, Rostock 2009: Kartendarstellung S.16). Ohne Küstenschutzmaßnahmen würde die weitere Entwicklung beispielsweise zu einem Zerbrechen des Zingsts in zentralen Teilen führen und auch der Gellen von Hiddensee abgetrennt werden. Die Folge wäre eine höhere Hydrodynamik in den derzeit beruhigten Boddengewässern, womit zusätzlich zur Aufarbeitung der rezenten Barrieren neue Sedimentquellen im Hinterland erschlossen werden können. Die Aufarbeitung führt zu einem erneuten Initialstadium und landwärts Verlagerung der Küstenlinie im Zuge der neu entstehenden Barrierengeneration. Der von BALLANTYNE (2002) beschriebene morphologische Zyklus würde damit erneut starten (vgl. Kap. 2.4)

Betrachtet man die abgeleitete Genesevorstellung unter sequenzstratigraphischen Aspekten, kann sie zusammenfassend als ein sich selbst versorgendes System von transgressiver Erosion bezeichnet werden (nach Roy et al., in CARTER & WOODROFFE Hrsg. 1994, Cowell et al. 1995, EMERY & MYERS 1996, SCHÄFER 2005, NICHOLS 2009). Regionale Beispiele solcher Entwicklungen sind von Trincardi et al. (1994) für das Adria Becken im Mittelmeer oder von Hampson et al. (in HAMPSON et al. Hrsg., 2008) für kreidezeitliche Abfolgen in den U.S.A. beschrieben. Abbildung 9.1 stellt die relative Meeresspiegeldynamik im Arbeitsgebiet und das konzeptionelle Modell der Küstenentwicklung anhand von drei lokalen Situationen dar. Die verwendeten Meeresspiegelkurven beruhen auf Untersuchungsergebnissen von BENNIKE & JENSEN (1998) im Arkona Becken sowie von Lampe et al. (2007, 2010) für das Fischland. Bennike & Jensen (1998) stellen eine lokale Meeresspiegelkurve für tiefere Beckenbereiche der Ostsee auf und datieren den Abfluss des Ancylus-Sees im Arkona Becken bei einem Wasserstand von -28 m NHN, während LEMKE et al. (1998, 2001, 2002) diesen Wasserspiegel anhand seismischer Kartierungen auf der westlich gelegenen Darsser Schwelle sowie in der Mecklenburger Bucht bei -32 m NHN interpretieren. Beide Ergebnisse widersprechen sich jedoch nicht für die Kernaussage, dass frühere Ostseeentwicklungsphasen das heutige Küstengebiet nicht erreicht haben, sondern die Falster-Rügen-Platte erst im Zuge der Littorina-Transgression geflutet wurde. Im Diagramm (Abb. 9.1 – A) lassen sich anhand der Trendlinie die lokal wirksamen, relativen Systemtrakte klar erkennen. Nach dem Abfluss des Ancylus-Sees, der von Leмке et al. (1997) als ein Tiefstand-Systemtrakt beschrieben ist, folgt der transgressive Systemtrakt der Littorina-Transgression mit steilem Anstieg bis etwa 7.500 cal. BP. Anschließend reduzierten sich die Raten deutlich und es folgt für etwa 5.000 Jahre ein nur geringer Anstiegstrend, der einen Hochstand-Systemtrakt darstellt. Weltweit zeigen alle Meeresspiegelkurven aus tektonisch-isostatisch gering beeinflussten Gebieten in der Zeitspanne von 7.000 cal. BP bis 6.000 cal. BP diesen erheblichen Rückgang der Anstiegsgeschwindigkeit (siehe: PIRAZZOLI 1991, 1996). Mit dem Einsetzen der Subatlantischen Transgression vor etwa 1.000 Jahren, startet eine neue transgressive Phase, deren Umlagerungen bis heute andauern. Nach Modellrechnungen des IPCC (2007) wird eine Beschleunigung der Anstiegsraten prognostiziert, so dass sich Küstenveränderungen weiter intensivieren werden.

Abb. 9.1: Konzeptionelles Modell für die abgeleitete Küstenentwicklung im Arbeitsgebiet. (A) Das Diagramm zeigt anhand der Untersuchungsergebnisse von BENNIKE & JENSEN (1998) im Arkona Becken und der lokalen Meeresspiegelkurve für das Fischland von LAMPE et al. (2007, 2010) die relative Meeresspiegeldynamik im Gebiet. (B) Konzeptionelles Modell der Ablagerungen im Arbeitsgebiet mit Darstellung von drei charakteristischen Situationen: die Prerower Bucht auf dem Darss (1), der zentrale Teil des Zingsts (2) und das Windwatt im Osten des Zingsts (3).

Allgemein ist die spätglaziale und holozäne Meeresspiegelentwicklung eine einfache Sequenz 6. Ordnung (< 20.000 Jahre), die nach VAIL et al. (1991) und SCHÄFER (2005) nur regional ausgeprägt ist. Innerhalb dieser Sequenz kann die Küstengenese im Arbeitsgebiet aufgrund des beschriebenen Anstiegsverlaufs in zwei Abschnitte unterteilt werden (Littorina- und Subatlantische Transgression).

Das konzeptionelle Modell (Abb. 9.1 - B) repräsentiert drei stark überhöhte Profilschnitte entlang des Darss-Zingster Nehrungssystems, die sich ausgehend von der Barriere bis in nördliche distale Seegebiete erstrecken. Profilschnitt 1 zeigt die Situation in der Prerower Bucht auf dem Darss. Er verläuft im Seeraum zwischen den Ausläufern des Neudarsses und der Prerow-Bank. Der zentrale Teil des Zingsts, ergänzt mit den Ablagerungen im südlich angrenzendem Boddengewässer, sowie die Situation der ostwärts gelegenen Barriere-Inseln mit Windwatt sind in den Profilschnitten 2 und 3 dargestellt. Die liegende Sequenzgrenze der Küstenentwicklung bildet die marine Überflutungsfläche des folgenden HST (Transgressionsfläche), die aus pleistozänen bis frühholozänen Sedimenten besteht. Sie ist in großen Teilen der Falster-Rügen-Platte als Transgressionsfläche mit nur geringer bis fehlender mariner Überdeckung ausgeprägt. Das Meeresspiegelniveau definiert die Obergrenze des Systems und den zur Verfügung stehenden Akkumulationsraum. Mit Abklingen des transgressiven Systemtrakts und hauptsächlich während des Hochstand-Systemtrakts der Littorina-Transgression entwickelten sich die gegenwärtigen Barrieren, wie im Genesemodell beschrieben (vgl. Kap. 8). Dabei kam es zur Ausbildung initialer Barrieren, die im Zuge der transgredierenden Küstenlinie einer ständigen Aufarbeitung und Umlagerung nach Süden unterlagen. Sie lieferten für große Teile des Zingsts Material zum Aufbau der rezenten Barriere hinzu. Die Profilschnitte 2 und 3 in Abbildung 9.1 – B zeigen mit den Vorkommen von Brackwassermudde Hinweise auf diese Entwicklung. An Aufragungen des Untergrundes kam es zur Aggradation bis auf das Meeresspiegelniveau und Progradation nach Norden. Durch die anfangs noch nicht geschlossenen Seegatten wurden rückseitige Bereiche im Süden gefüllt, das Festland geringfügig erodiert sowie Material vorgebaut (Abb. 9.1 – B, Profilschnitt 2). Nach Etablierung einer geschlossenen Küstenlinie im Zuge der Entwicklung von Barrieren beruhigten sich die hydrodynamischen Verhältnisse in den abgegrenzten Lagunen. Als Folge reduzierte sich die Erosionsleistung an südlichen Festlandsteilen erheblich. Der Sedimenteintrag aus Richtung Festland ist durch das Fehlen größerer Abflusssysteme nur geringfügig, so dass der lokale Akkumulationsraum im Wesentlichen durch Überspülungen der Barriere weiterhin beliefert wurde. Seit Einsetzen der Subatlantischen Transgression unterliegen die entstandenen Barrieren größtenteils der Erosion (Abb. 9.1 - B, Profilschnitt 2). Es bildet sich dadurch eine zweite Aufarbeitungsfläche (ravinement surface). Neben erheblicher Retrogradation kommt es zur weiteren Aggradation dieser Barrieren. Während Sturmfluten, die im relativ abgeschlossenen Ostseebecken auch Hochwasserstände von mehreren Tagen Dauer verursachen können, kommt es zu Ablagerungen, die leicht über das mittlere Meeresspiegelniveau hinausgehen. Dabei werden

Strandwälle aufgeschoben und Überspülungen transportieren Material in rückseitige Bereiche. Nur einige wenige Standorte wie zum Beispiel die Prerower Bucht und das Windwatt unterliegen weiterer Progradation (Abb. 9.1 – B, Profilschnitte 1, 3) durch Akkumulation des aufgearbeiteten Materials aus anderen Teilen der Barriere und des Küstenvorfeldes.

Die Sequenzgrenzen dieser Entwicklung sind in geophysikalischen Messungen und der Sedimentabfolge nur bedingt erkennbar. Durch die größtenteils homogene Korngrößenverteilung von vorrangig Feinsand (vgl. Kap. 4, 6) können typische Kornvergröberungen (coarsening upward sequence) nur schwierig erkannt werden.

Weiterführend können die beschriebenen Beziehungen von Ursache und Wirkung des konzeptionellen Genesemodells sowie die geostatistisch basierten Volumenberechnungen zur Ableitung zukünftiger Szenarien der Küstenentwicklung dieses Raumes Anwendung finden. In den Untersuchungen von ZHANG (2010) und HARFF et al. (2011, im Druck) wurde bereits auf die erhobenen Datengrundlagen und Ergebnisse dieser Arbeit zurückgegriffen und diese mit Ansätzen der morphodynamischen Prozessmodellierung kombiniert. Dabei wurden digitale Geländehöhenmodelle unterschiedlicher paläogeographischer Entwicklungsstadien mit isostatischen, eustatischen, klimatischen und sedimentären Parametern verknüpft und Modellrechnungen des Küstenwandels bis zum Jahr 2300 erstellt. Die Modelle SEDSIM (SEDimentary basin SIMulataion, siehe TETZLAFF 1987, TETZLAFF & HARBAUGH 1989, LI et al. 2003, 2004) und PRD-LTMM (Pearl River Delta – Long Term Morphodynamic Model, siehe Wu et al. 2006) kamen zum Einsatz. Diese Ergebnisse künftig möglicher Entwicklungsszenarien können zur Abschätzung des Gefahrenpotenzials durch den steigenden Meeresspiegel und damit für die Auslegung von Küstenschutzbauwerken zur Sicherung der ortsansässigen Bevölkerung von hoher Bedeutung sein.

Die derzeitigen Berechnungen berücksichtigen in den Szenarien jedoch noch nicht die Auswirkungen bereits bestehender Küstenschutzmaßnahmen (MEYER et al. 2011) und zeigen einen anthropogen unbeeinflussten Entwicklungsverlauf. Es können darin aber Bereiche erkannt werden, in denen derartige Aktivitäten sinnvoll wären.

NureinekleineFragestellungbleibtoffen.EsfehltdereindeutigeNachweis,dassdieFlachwasserzonen der Prerowbank und westlich Hiddensees als Liefergebiete für das Ablagerungssystem gewirkt haben. Dafür ist die Kartierung des internen geologischen Aufbaus dieser Strukturen mit Hilfe in Flachwasser operierender Forschungsschiffe notwendig, was sich im entfernten Seegebiet organisatorisch als schwierig erwies. Neben morphodynamischen Modellierungen bieten sich weitere Möglichkeiten zur Nutzung der erhobenen Daten an. Zum Beispiel könnten sie mit entsprechender Software in ein 3D Model, bestehend aus Sedimentkörpern, umgesetzt werden. Aus derzeitiger Sicht fehlen solche Modellierungen auch überregional entlang der Küste.

Zusammenfassung

Die vorliegende Arbeit behandelt die holozäne Küstenentwicklung im Raum Darss-Zingst-Hiddensee, die eng an die Interaktion von eustatischen Meeresspiegelschwankungen, neotektonischen Bewegungen der Erdkruste und dem zugeführten Sedimentvolumen gebunden ist. Es sind mehrere Ziele der Untersuchungen zu nennen: Zunächst relevant ist die Kartierung der holozänen Sedimentabfolge und der liegenden pleistozänen Deckschichten im Untersuchungsgebiet, das neben den Nehrungen auch das angrenzende Seegebiet der Ostsee und die rückseitigen Lagunen umfasst. Anschließend ist die Modellierung der Transgressionsbasisfläche notwendig, um das im Holozän unter marinen Bedingungen umgelagerte Sedimentvolumen abschätzen zu können. Eine Kernfragestellung bildet die Sedimentbilanz. Vor allem für das Teilgebiet Zingst mit östlich angrenzendem Windwatt und Barriere-Inseln sind die Sedimentquellen, die zur Aufschüttung dieses Nehrungskörpers geführt haben, unklar. Die potentielle Materialbereitstellung umliegender Kliffe (Fischland, Altdarss) ist im Verhältnis zum Nehrungsvolumen relativ gering. In Kombination mit geochronologischen Untersuchungen der Sedimentsequenz ergeben sich im Gesamtraum Schlussfolgerungen über die Ablagerungsdynamik, die zur Ausbildung der gegenwärtigen Küstenlandschaft geführt hat. Anhand der Befunde wurde ein paläogeographisches Modell der Küstenentwicklung für das Gebiet abgeleitet. Diese Ergebnisse bilden die Grundlage zur Entwicklung zukünftiger Szenarien der Küstengenese mit Hilfe von morphodynamischen Prozessmodellen, die weiterführende Aufgabenstellungen bieten. Aus Sichtweise des Küstenschutzes und vor dem Hintergrund beschleunigter Anstiegsprognosen des Meeresspiegels sind die gewonnenen Erkenntnisse von hoher Bedeutung.

Für die Kartierung des internen geologischen Aufbaus der quartären Deckschichten waren zunächst intensive Geländearbeiten an terrestrischen und marinen Standorten notwendig. Hierzu kam ein breites Spektrum geowissenschaftlicher Methoden zum Einsatz. Neben 220 Bohrungen mit unterschiedlichen Bohrverfahren sowie 14 Schürfen, die zur direkten Erkundung und Beprobung der Sedimentabfolge dienten, kamen drei geophysikalische Messmethoden zur Anwendung. Diese dienten der lateralen Konnektierung punktueller Sedimentaufschlüsse, um interne Lagerungsstrukturen zu untersuchen. Es wurden im Seegebiet 3 Side-Scan-Sonarprofile von insgesamt 109 km und 28 Sediment-Echolotmessungen von 278 km Gesamtlänge aufgenommen. In terrestrischen Gebietsteilen sind 37 Georadarprofile von zusammen 17 km Länge gemessen worden. Gestützt durch sedimentologische Laboruntersuchungen und Paläomilieuanalysen konnte die vorgefundene Sedimentation nach Ablagerungsbedingungen klassifiziert werden. Die stratigraphische Zuordnung an den Sedimenten erfolgte anhand von 19 Radiokohlenstoff-Datierungen und 39 Altersbestimmungen durch optisch stimulierte Lumineszenz (OSL).

Im geologischen Aufbau wurden 7 verschiedene lithofazielle Einheiten abgegrenzt, die im Kontext zu früheren Untersuchungen des Arbeitsgebietes und den angrenzenden Küstenabschnitten gleichen

Charakters stehen. Liegend beginnt die Abfolge mit glazialen Ablagerungen von Geschiebemergel bzw. Geschiebelehm und wird von glazi-limnischen Schluffen oder als glazi-limnisch/fluviatil eingestuften Feinsanden überlagert. An der marinen Basis sind gelegentlich semi-terrestrische Torfe ausgebildet. Die hangend anschließende marin-brackische Sequenz ist am Transgressionskontakt häufig von Stillwasser-Ablagerungen (Schluff mit organischem Nebengemenge) geprägt. Während Feinsandschichten der Flachwasser-Fazies folgen, befinden sich am Top nur in sehr seltenen Fällen gröbere Korngrößenfraktionen der Strand-Fazies. Sie werden in terrestrischen Teilen häufig von Fein- bis Mittelsanden aus Boden-, Dünenbildungen oder Überspülungen überdeckt. Eine Kornvergröberung zum Hangenden, wie allgemein für Nehrungsbildungen typisch, wird deutlich. Diese spätpleistozäne und holozäne Sedimentabfolge ist jedoch im Vergleich der Teilräume vertikal und horizontal unterschiedlich ausgeprägt. Sie wird anhand von erstellten Sedimentverteilungskarten, geologischen Profilschnitten sowie beispielhaften Ausschnitten von interpretierten geophysikalischen Messungen verdeutlicht. Auffällig sind häufige Wechsel in der Tiefenlage der marinen Basis. Ein ungewöhnlicher Befund ist die in Entfernung zur Küste am Meeresboden anstehende lagunäre Sedimentation im Vergleich zu benachbarten Abschnitten der südlichen Ostsee. Zusammen mit einem nordwärts gerichteten Paläoflusslauf im Küstenvorfeld des Zingsts (rekonstruiert anhand Side-Scan-Sonarmessungen) stellen diese Ablagerungen ein wichtiges Indiz zur Rekonstruktion der Liefergebiete und Materialtransportsysteme dar.

Die ermittelten Ergebnisse wurden durch die Akquisition externer Datenbestände aus früheren Forschungsarbeiten und öffentlichen Behörden zu insgesamt 1.343 Datenpunkten ergänzt. Im Arbeitsgebiet entspricht das einer durchschnittlichen Datendichte von 1,5 Messpunkten pro km². Mithilfe von geostatistischen Verfahren wurde die Transgressionsbasisfläche als Raster von 150 m Gitterpunktabstand interpoliert und anschließend ein marines Gesamtvolumen von rund 2 Mrd. m³ berechnet. Um eine räumliche Vorstellung zu gewinnen, wurde dieses Volumen horizontal nach Teilarbeitsgebieten und vertikal in 1 m mächtige Intervalle zerlegt. Für zwei selektierte Gebiete von hoher Datendichte, eines auf dem Zingst und eines auf Hiddensee, konnte zusätzlich das Verhältnis zwischen den einzelnen lithofaziellen Einheiten bestimmt werden. Die Ergebnisse beider Teilgebiete sind vergleichbar. In etwa 75 % des Gesamtvolumens dominieren sandige Flachwasser- sowie Strandmaterialen.

Die geochronologischen Daten belegen die von LAMPE et al. (2010) untersuchte Meeresspiegelentwicklung im Raum und zeigen innerhalb des Zingster Nehrungssystems keinen gerichteten W-O Vorbau der initialen Barriereentwicklung an. Auf der Insel Hiddensee lässt sich allerdings eine vorrangig von Küstenlängstransport dominierte Genese aus Abrasionen des Dornbuschkliffs nachvollziehen. Für die lagunären Sedimente im nördlichen Seeraum wird ein Bildungszeitraum zwischen 7.450 cal. BP und 4.900 cal. BP deutlich. Diese Ablagerungen weisen auf die Existenz von initialen Barrieren hin, die für ein rückseitig beruhigtes Wassermilieu zur Sedimentation dieser feinklastischen Korngrößen gesorgt haben. Die frühe, noch unter Abklingen des schnellen

Meeresspiegelanstiegs der Littorina-Transgression stattfindende Entstehung von initialen Barrieren stellt ein wesentliches Indiz zur Aufklärung der Sedimentbilanz des Zingster Nehrungssystems dar. Im Verlauf der Transgression migrierten sie mit der Küstenlinie nach Süden und lieferten Material, das an bereits bestehende kleinere pleistozäne Aufragungen angelagert wurde. Diese Aufhänger der rezenten Barriere unterlagen zeitgleich ebenfalls der Erosion und Küstenbildung. Sie sind im Untergrund der Nehrungen nachweisbar. Hingegen wurden die initialen Barrieren des nördlichen Seeraumes während dieser Entwicklung völlig erodiert, so dass gegenwärtig keine Überreste mehr zu finden sind. Nach dieser Phase von Materialanlandung setzte unter geringfügigem Meeresspiegelanstieg Progradation und Längenwachstum zum Aufbau des rezenten Nehrungssystems ein. Das umfasst die Zeitspanne vom ausgehenden Atlantikum bis in das Ältere Subatlantikum. Der nordwärts gerichtete Paläoflusslauf der Barthe teilte vermutlich dieses Transportsystem. Westliche Teile des Zingsts sowie des Vor-/Neudarsses wurden aus Kliffabrasionen von Rostocker Heide (südwestlich vom Arbeitsgebiet gelegen), Fischland und Altdarss durch Küstenlängstransport beliefert. Aus dem zweigeteilten Transportsystem ergibt sich eine schlüssige Erklärung für die Kernfragestellung zur Sedimentbilanz. Es stellt allerdings eine Ausnahmesituation im Vergleich zum üblichen System der Nehrungsentwicklung entlang der südlichen Ostsee dar, das durch Küstenlängstransport des an nahe gelegenen Kliffbereichen abradierten Materials dominiert wird (KLIEWE & JANKE 1991, HOFFMANN et al. 2005, LAMPE et al. 2007, 2011). Seit dem Einsetzen der Subatlantischen-Transgression, vor etwa 1.000 Jahren unterliegen bereits große Abschnitte dieser jungen Küstenbildungen der Abrasion und haben die Reifephase ihrer Entwicklung überschritten, während kleinräumig erhebliche Akkumulationen innerhalb des Prozesses zu verzeichnen sind (Neudarss, Windwatt, Gellen). Die beschriebene Entwicklung wird in Form von Blockbildern aus sieben charakteristischen Zeitabschnitten dargestellt. Neotektonische oder glazialisostatische Bewegungen sind nach Untersuchungen von KOLP (1979, 1981), LAMPE et al. (2007, 2010), HARFF & MEYER (2008, 2011) für den Zeitraum dieser Genese unbedeutend. Im Untersuchungsraum verbleiben als primäre Faktoren die Meeresspiegeldynamik und die aus einer Vielzahl von Liefergebieten stattfindende Sedimentzufuhr.

Summary

The present thesis deals with the Holocene coastal evolution of the Darss-Zingst-Hiddensee area at the southern Baltic Sea. This development is an interplay of eustatic sea-level variations, neotectonic movements of the earth's crust and sediment supply. Beside terrestrial parts of the barriers, the adjacent offshore area of the Baltic Sea and back lagoons are included in the study area. The objective was the mapping of the Holocene sediment sequence and depth of the marine base. Additionaly the underlying composition of Pleistocene cover layers in the subsurface had to be investigated. Subsequently, the base of the marine accumulation wedge was reconstructed and modelled as an area wide surface by geostatistical methods. This grid was needed to calculate the sediment volume deposited in the Holocene under marine conditions as a result of coastal erosion, sediment transport and energy. The spatial origin of the supplied volume and transport direction is the key issue of the genesis model, especially for the Zingst and adjacent wind flat with smaller barrier islands. At this local coastal zone the retreat of adjacent cliff sections (Fischland, Altdarss) is very limited compared to the barrier volume. The combination with geochronological analysis of the sediment sequence has drawn conclusions about former deposition processes in the entire region, which led to recent morphology. On the basis of these results a palaeogeographic model of coastal evolution was deduced. This basic knowledge can be used to develop scenarios of the future coastline by applying morphodynamic models, which provides continuative tasks. From the perspective of a predicted acceleration of sea-level rise, resulting in adjustments of coastal protection these results are of importance.

For mapping the internal geological structures of these Quarternary cover layers several intensive field campaigns were needed at terrestrial as well as offshore sites. A wide spectrum of geoscientific methods was applied. In addition to 220 sediment cores performed with different techniques and 14 pits, which served for direct investigation and sampling of the sediment sequence, 3 different geophysical methods were used. They were applied to determine bedding structures within the upper sediment layers and lateral connection of borehole data. In the offshore area 3 side-scansonar tracks with a total of 109 km and 28 sediment-echosounding (SES) transects of 278 km total length were recorded. Onshore ground-penetrating-radar (GPR) surveys were conducted (37 profiles of 17 km total length). The classification into lithological units of different depositional conditions, was supported by lab analysis of these discovered sediments and the determination of palaeo-environments using faunal remnants. To establish a chronostratigraphic frame of these sedimentation, 19 radiocarbon-data and 39 optical stimulated luminescence (OSL) data were measured.

The investigation of geological structure led to the identification of 7 different lithoface units, which are connected to earlier studies in this area and in adjacent coastal zones. Glacial deposits of till

are at the beginning of the sediment sequence in the subsurface. These are overlain by freshwater sediments of silty and fine sandy grain sizes, which were classified into glacio-lacustrine /fluvial facies units. The marine base follows on top where semi-terrestrial peat layers are developed occasionally in sheltered areas. The marine-brackish sequence begins usually with slack-water deposits (silt with organic content) at the transgression contact, followed by fine sand layers of the shallow-water facies. At the top coarser grain-size fractions of beach facies are only rarely found. Terrestrially, it is often covered by a thin layer of fine to middle sand, deposited by pedogenic, aeolian or overwash processes. The marine-brackish sequence is characterised by coarsening up. That is typical for coastal barriers. However, this Late Pleistocene to Holocene sequence is vertical and horizontal differently developed in comparison of local areas. Maps of sediment distribution, geological cross sections as well as examplary sections of interpreted geophysical measurements show the described depositions and their bedding structures in detail. The depth of the marine base changes noticeable often. Lagoonary sediments detected at the seafloor farther offshore are an unusual observation compared to adjacent areas of the southern Baltic Sea are. Together with a northing palaeo river-bed, proven by side-scan-sonar in front of the Zingst, these deposits are the crucial sign for the question of sediment supply and transport systems.

This collected dataset was extended by integrating results of previous studies and from databases of public authorities to a total of 1,343 datapoints. It equates to a data density of 1.5 points per km² in average. The interpolation of the marine base was done to an area wide surface of 150 m grid-cell resolution and leads to a calculated total volume of ~ 2 billion m^3 of marine sediments. For a spatial view this volume was sliced horizontal into subareas as well as vertical into 1 m thick intervals. Two spatial limited subareas characterized by high data density and well known internal geological structures were selected at the Zingst and Hiddensee to discover the volume distribution of different facies types. The results of both areas are comparably and show a dominance of sandy shallow-water as well as beach materials of 75 % within the total volume. The geochronological measurements proved the research on the local relative sea-level development of LAMPE et al. (2010) and showed no W-E directed sediment transport along the shore in the initial barrier development of the Zingst. At the island Hiddensee a southwards directed longshore transport can be reconstructed (abrasion of the Dornbusch cliff). The lagoonary sediments in the northern offshore area are deposited between 7,450 to 4,900 cal. yr. BP. These deposits indicate the existence of micro barriers, which created backside calm hydrodynamic conditions and allowed sedimentation of silty material (slack-water facies). The evolution of these initial barriers in the early stage of the Littorina-transgression, but in the last phase under decreasing of its characteristic rapid sea-level rise, is an important fact of the sediment balance reconstructed for the Zingst area. They migrated southwards with the transgressive coastline and delivered material, deposited at smaller Pleistocene elevations. At this time erosion and coastel evolution was already started at these hinged points of the recent barrier system. These elevations can be detected today in the

subsurface of the barriers in contrast to the initial barriers of the northern offshore area, which are completly eroded during this evolution and no remnants can be proven. After this phase of material landing is the next stage characterized by progradation of beach ridges and intensive longshore transport to build up the recent barrier system. This process happenend in the time span from the Late Atlantic to Subatlantic under marginal sea level rising rates. The northing palaeo river-bed in front of the central Zingst had probably divided this transport system. Western parts of the Zingst as well as Vor-/Neudarss are build up by longshore transport of the abraded cliff sections Rostocker Heide (southwestern of the investigation area), Fischland and Altdarss. For the crucial question of the sediment balance this splited transport system delivers a conclusive explanation. However it demonstrates exceptional circumstances compared to common evolution models of Holocene barriers along the southern Baltic Sea. In general abrasion of adjacent cliff sections and longshore transport are dominating (KLIEWE & JANKE 1991, HOFFMANN et al. 2005, LAMPE et al. 2007, 2011). Since the onset of the Subatlantic transgression around 1,000 years ago, large sections of these young coastal barriers are in abrasion and have already reached the destruction phase of their evolution. Accumulation appears only spatially limited, but in some cases of large amounts (Neudarss, the eastern part of the Zingst and adjacent wind flat, Gellen). Characteristic stages of the described palaegeographic evolution are shown in block diagrams. Neotectonic or glacioisostatic movements can be neglected for this investigation area in the explored time span after results of KOLP (1979, 1981), LAMPE et al. (2007, 2010), HARFF & MEYER (2008, 2011). The prime factors of this genesis are the relative sea-level development and sediment supply of multiple sources in the area.

Literaturverzeichnis

AG Boden (1994): Bodenkundliche Kartieranleitung (4. Auflage). – Hannover, 392 S.

- AITKEN, M.J. (1985): Thermoluminescence Dating. Academic Press, London, 359 S.
- AITKEN, M.J. (1998): An Introduction to Optical Dating. Oxford University Press, Oxford, 280 S.
- Амантоv, A., FJELDSKAAR, W., CATHLES, I. (2011): Glacial Erosion/Sedimentation of the Baltic Region and the Effect on the Postglacial Uplift. – in: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 53-74.
- Amt für Geoinformation, Vermessungs- und Katasterwesen im Landesamt für innere Verwaltung Mecklenburg-Vorpommern (2006): Digitales Geländemodell 25 (DGM 25), Schwerin.
- ANDREN, T., BJÖRCK, S., ANDREN, E., CONLEY, D., ZILLEN, L., ANJAR, J. (2011): The Development of the Baltic Sea Basin During the Last 130 ka. – in: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 75-98.
- ARMON, J.W. & McCANN, S.B. (1979): Morphology and landward sediment transfer in a transgressive barrier island system, southern Gulf of St. Lawrence, Canada. Marine Geology, 31(3/4), S. 333-344.
- BALLANTYNE, C. (2002): Paraglacial geomorphology. Quarternary Science Reviews, 21, S. 1935-2017.
- BALLARINI, M., WALLINGA, J., MURRAY, A.S., VAN HETEREN, S., OOST, A.P., BOS, A.J.J., VAN EIJK, C.W.E. (2003): Optical dating of young coastal dunes on a decadal time scale. – Quarternary Science Reviews, 22, S. 1011-1017.
- BARNES, R. (2003): Variogram Tutorial. Golden Software Inc., 23 S.
- BARSCH, H., BILLWITZ, K., BORK, H.-R. [Hrsg.] (2000): Arbeitsmethoden der Physiogeographie und Geoökologie. Klett-Perthes, Gotha, 612 S.
- BARTHEL, A. (2002): Aufbau und Entwicklung der holozänen Sedimente der Insel Hiddensee und deren Modellierung mit geostatistischen Methoden. – Diplomarbeit, Universität Greifswald, 109 S.
- BEHNEN, T. (2000): Der beschleunigte Meeresspiegelanstieg und seine sozio-ökonomischen Folgen: Eine Untersuchung der Ursachen, methodischen Ansätze und Konsequenzen unter besonderer Berücksichtigung Deutschalnds. – Hannoversche Geographische Arbeiten, 54, 225 S.
- BENNIKE, O. & JENSEN, J.B. (1998): Late- and postglacial shore-level changes in the south-western Baltic Sea. – Bulleton of the Geological Society of Denmark, 45, S. 27-38.
- BENNIKE, O., JENSEN, J.B., LEMKE, W., KUIJPERS, A., LOMHOLT, S. (2004): Late- and postglacial history of the Great Belt, Denmark. Boreas, 33, S. 18-33.
- BILLWITZ, K. (2009): Einzeldarstellung (Suchpunkte) B6 Großer Werder und Kleine Werder, Bock. – in: BILLWITZ, K. & PORADA, H.T. [Hrsg.] : Die Halbinsel Fischland-Darss-Zingst und das Barther Land: Böhlau Verlag, Köln, Weimar, Wien, S. 186-189.

- BILLWITZ, K. & PORADA, H.T. [Hrsg.] (2009): Die Halbinsel Fischland-Darss-Zingst und das Barther Land. – Böhlau Verlag, Köln, Weimar, Wien, 447 S.
- Вјörck, S. (1995): A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quarternary International, 27, S. 19-40.
- BLINDOW, N., RICHTER, T., PETZOLD, H. (2005): Bodenradar. in: KNÖDEL, K., KRUMMEL, H., LANGE, G. [Hrsg.] Geophysik Band 3 - Handbuch zu Erkundung des Untergrundes von Deponien und Altlasten: Springer Verlag, Berlin, Heidelberg, New York, S. 389-424.
- BORTFELD, R. (1961): Approximations to the reflection and transmission coefficents of plane, longitudinal and transverse waves. Geophysical Prospecting, 9, S. 485-502.
- BREMER, F. & SCHULZ, W. (2000): Geologische Übersichtskarte 1:500.000 Oberfläche. Landesamt für Umwelt, Naturschutz und Geologie M-V, Güstrow.
- Bundesamt für Seeschifffahrt und Hydrographie (2006): Topograpische Karten des Seegrundes für Nord- und Ostsee, 2.Auflage, Rostock.
- BUNGENSTOCK, F., MAUZ, B., SCHÄFER, A. (2004): The late Holocene sea level rise at the East Frisian coast (North Sea): New time constraints provided by optical ages of coastal deposits. – Coastline Reports, 1, S. 37-41.
- Вимдемятоск, F. (2005): Der holozäne Meeresspiegelanstieg südlich der ostfriesischen Insel Langeoog, südliche Nordsee - hochfrequente Meeresspiegelbewegungen während der letzten 6000 Jahre. – Dissertation, Universität Bonn, 122 S.
- CARTER, R.W.G. (1991): Coastal Environments. Academic Press, London, 617 S.
- CARTER, R.W.G. & WOODROFFE, C.D. [Hrsg.] (1994): Coastal Evolution Late Quaternary shoreline morphodynamics. Cambridge University Press, Cambridge, 517 S.
- COWELL, P.J. & THOM, B.G. (1994): Morphodynamics of coastal evolution. in: CARTER, R.W.G. & WOODROFFE, C.D. [Hrsg.]: Coastal Evolution – Late Quarternary shoreline morphodynamics: Cambridge University Press, Cambridge, S. 33-86.
- COWELL, P.J., ROY, P.S., JONES, R.A. (1995): Simulation of large-scale coastal change using a morphological behavior model. Marine Geology, 126, S. 45-61.
- DANZEGLOCKE, U., JÖRIS, O., WENINGER, B. (2007): CalPal-2007online. http://www.calpal-online. de, (2009-2011).
- DAVIS, R.A. [Hrsg.] (1985): Coastal Sedimentary Environments. Springer Verlag, New York, 716 S.
- DAVIS, R.A. & Fitzgerald, D.M. (2004): Beaches and Coasts. Blackwell Publishing, Malden, 419 S.
- DENYS, L. & BAETEMAN, C. (1995): Holocene evolution of relative sea level and local mean high water spring tides in Belgium a first assessment. Marine Geology, 124, S. 1-19.
- DIEPENBROEK, M., GROBE, H., SIEGER, R. (2001): PanPlot. Software Manual, 25 S.
- DIETRICH, R. & LIEBSCH, G. (2000): Zur Variabilität des Meeresspiegels an der Küste von Mecklenburg-Vorpommern. – Zeitschrift für geologische Wissenschaften, 28, S. 615-623.

- DIN 18196 (1988): Erd- und Grundbau Bodenklassifikation f
 ür bautechnische Zwecke. in: DIN Deutsches Institut f
 ür Normierung e.V. [Hrsg.]: DIN-Taschenbuch 36 – Erd- und Grundbau: Beuth Verlag GmbH, Berlin, S. 409-412.
- DIN 4022 (1998): Baugrund und Grundwasser Benennen und Beschreiben von Boden und Fels, Teil 1 & 3. – in: DIN Deutsches Institut für Normierung e.V. [Hrsg.]: DIN-Taschenbuch 113 – Erkundung und Untersuchung des Baugrundes: Beuth Verlag GmbH, Berlin, S. 153-171 / 177-180.
- DIN 4023 (1998): Baugrund- und Wasserbohrungen Zeichnerische Darstellung der Ergebnisse.
 in: DIN Deutsches Institut f
 ür Normierung e.V. [Hrsg.]: DIN-Taschenbuch 113 Erkundung und Untersuchung des Baugrundes: Beuth Verlag GmbH, Berlin, S. 181-191.
- DIN 18128 (1998): Baugrund, Versuche und Versuchsgeräte Bestimmung des Glühverlusts. in: DIN Deutsches Institut für Normierung e.V. [Hrsg.]: DIN-Taschenbuch 113 – Erkundung und Untersuchung des Baugrundes: Beuth Verlag GmbH, Berlin, S. 329-331.
- DIN 14688-1 (2003): Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Böden Teil 1: Benennung und Beschreibung (EN ISO 14688-1:2002). in: DIN Deutsches Institut für Normierung e.V. [Hrsg.]: DIN-Taschenbuch 113 Erkundung und Untersuchung des Baugrundes: Beuth Verlag GmbH, Berlin, 15 S.
- DIN 14688-2 (2004): Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden Teil 2: Grundlagen für Bodenklassifizierungen (EN ISO 14688-2:2004). in: DIN Deutsches Institut für Normierung e.V. [Hrsg.]: DIN-Taschenbuch 113 Erkundung und Untersuchung des Baugrundes: Beuth Verlag GmbH, Berlin, 14 S.
- DULLER, G.A.T. (2004): Luminescence dating of Quaternary sediments: recent advances. Journal of Quaternary Science, 19(2), S. 221-235.
- DUPHORN, K., KLIEWE, H., NIEDERMEYER, R.O., JANKE, W., WERNER, F. (1995): Die deutsche Ostseeküste. – Sammlung Geologischer Führer 88, Gebrüder Bornträger, Berlin, Stuttgart, 281 S.
- EHLERS, J. (2011): Das Eiszeitalter. Spektrum Akademischer Verlag, Heidelberg, 332 S.
- EHLERS, J., GRUBE, A., STEPHAN, H.-J., WANSA, S. (2011): Pleistocene Glaciations of North Germany
 New Results. in: EHLERS, J., GIBBARD, P.L., HUGHES, P.D. [Hrsg.]: Quaternary glaciations
 extent and chronology: Developments in Quaternary Science: Elsevier, Amsterdam, S. 149-162.
- Екман, M. (1996): A consistent map of the postglacial uplift of Fennoscandia. Terra Nova, 8, S. 158-165.
- EMERY, D. & MYERS, K.J. (1996): Sequence stratigraphy. Blackwell Science, Oxford, 297 S.
- FAIRBRIDGE, R.W. (1983): The Pleistocene-Holocene Boundary. Quarternary Science Reviews, 1, S. 215-244.
- FELDENS, P. & SCHWARZER, K. (2012): The Ancylus Lake stage of the Baltic Sea in Fehmarn Belt: Indications of a new threshold? – Continental Shelf Research, 35, S. 43-52.

- FJELDSKAAR, W., LINDHOLM, C., DEHLS, J.F., FJELDSKAAR, I. (2000): Postglacial uplift, neotectonics and seismicity in Fennoscandia. – Quarternary Science Reviews, 19, S. 1413-1422.
- FORBES, D.L., ORFORD, J.D., CARTER, R.W.G., SHAW, J., JENNINGS, S.C. (1995): Morphodynamic evolution, self-organisation, and instability of coarse-clastic barriers on paraglacial coasts. – Marine Geology, 126, S. 63-85.
- FRENZEL, P. & OERTEL, P. (2002): Die rezenten Ostracoden und Foraminiferen des Strelasundes (südliche Ostsee). Rostocker Meeresbiologische Beiträge, 11, S. 23-37.
- FRENZEL, P. (2006): Organismenreste aus holozänen Sedimenten der Ostsee als Paläomilieuindikatoren [Organism remains from Holocene sediments of the Baltic Sea as palaeoenvironmental indicators]. – Meyniana, 58, S. 97-128.
- FRENZEL, P., KEYSER, D., VIEHBERG, F.A. (2010): An illustrated key and (palaeo)ecological primer for Postglacial to Recent Ostracoda (Crustacea) of the Baltic Sea. – Boreas, 39(3), S. 457-647.
- FÜCHTBAUER, H. & MÜLLER, G. (1970): Sediment-Petrologie. Teil II Sedimente und Sedimentgesteine. – Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 726 S.
- GOLDEN SOFTWARE [Hrsg.] (2002): Surfer User's Guide. Golden Software, Inc., 539 S.
- Görsdorf, J. & Kaiser, K. (2001): Radiokohlenstoffdaten aus dem Spätpleistozän und Frühholozän von Mecklenburg-Vorpommern. Meyniana, 53, S. 91-118.
- GRINSTED, A., MOORE, J.C., JEVREJEVA, S. (2009): Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynamics, 34(4), S. 461-472.
- GROBA, E. (1954): Beitrag zur Entstehung des Neu-Darß und die Entwicklung der hohen Dünen auf dem Darß und Zingst. - Wasserwirtschaft, Wassertechnik, 4, S. 210-214.
- GROBA, E. (1957): Neue geologische Ergebnisse vom Fischland-Darß und Zingst (Bohrungen 1954/55). Geologie, 6, S. 664-673.
- GROMOLL, L. (1994): Fossile Küstenlinien als Wasserstandsmarken in der südlichen Ostsee Effekte von Isostasie, Eustasie und Neotektonik. – Zeitschrift für Geologische Wissenschaften, 22(3), S. 287-304.
- GROSSE-BRAUCKMANN, G. (1961): Zur Terminologie organogener Sedimente. Geologisches Jahrbuch, 79, S. 117-144.
- HAMPSON, G.J., PROCTOR, E.J., KELLY, C. (2008): Controls on isolated shallow-marine sandstone deposition and shelf construction: Late Cretaceous Westen Interior Seaway, northern Utah and Colorado, U.S.A.. in: HAMPSON, G.J., STEEL, R.J., BURGESS, P.M., DALRYMPLE, R.W. [Hrsg.]: Recent advances in models of siliciclastic shallow-marine stratigraphy: SEPM (Society for Sedimentary Geology), Tulsa, S. 355-390.
- HARFF, J., FRISCHBUTTER, A., LAMPE, R., MEYER, M. (2001): Sea-level change in the Baltic Sea: Interrelation of climatic and geological processes. – in: GERHARD, L.C., HARRISON, W.E., HANSON, B.M. [Hrsg.]: Geological Perspectives of Global Climate Change, Studies in Geology: Ammerican Association of Petroleum Geologists, Tulsa, S. 231-250.

- HARFF, J., LAMPE, R., LEMKE, W., LÜBKE, H., LÜTH, F., MEYER, M., TAUBER, F. (2005): The Baltic Sea - A Model Ocean to Study Interrelations of Geosphere, Ecosphere, and Anthroposphere in the Coastal Zone. – Journal of Coastal Research, 21(3), S. 441-446.
- HARFF, J. & MEYER, M. (2008): The interplay of neotectonics and climate change as triggers for coastal hazards - Examples from the Baltic. – in: WALLENDORF, L., EWING, L., JONES, C., JAFFE, B. [Hrsg.]: Solutions to Coastal Disasters 2008 – Proceedings of sessions of the conference, Hawaii, S. 73-84.
- HARFF, J. & MEYER, M. (2011): Coastlines of the Baltic Sea Zones of Competition Between Geological Processes and a Changing Climate: Examples from the Southern Baltic. – in: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 151-166.
- HARFF, J., MEYER, M., WENYAN, Z., BARTHEL, A., NAUMANN, M. (2011, im Druck): Holocene sediment dynamics at the southern Baltic Sea. Berichte der Römisch-Germanischen Komission, 92, 39 S.
- HECK, H.-L. (1957): Geologische Karte des Norddeutschen Flachlandes 1:100.000, Blatt: Stralsund-Bergen a.R.-Barth. - Staatliche Geologische Komission der Deutschen Demokratischen Republik.
- HÉQUETTE, A., RUZ, M.-H., HILL, P.-R. (1995): The effect of the Holocene sea level rise on the evolution of the southeastern coast of the Canadian Beaufort Sea. – Journal of Coastal Research, 11, S. 494-507.
- HILGERS, A. (2007): The chronology of Late Glacial and Holocene dune development in the northern Central European lowland reconstructed by optically stimulated luminescence (OSL) dating. – Dissertation, Universität Köln, 304 S.
- HINZE, C.; JERZ, H.; MENKE, B.; STAUDE, H. (1989): Geogenetische Definitionen quartärer Lockergesteine für die geologische Karte 1:25000 (GK25). – Geologisches Jahrbuch, 112, 243 S.
- HJULSTRÖM, F. (1935): Studies of the morphological activity of rivers as illustrated by the river Fyris. – Bulletin of the Geological Institute, University of Uppsala, 25, S. 221-527.
- HOFFMANN, G. (2004a): Postglacial to Holocene sedimentation history and Palaeogeographical development of a barrier spit (Pudagla lowland, Usedom Island, SW Baltic coast). Polish Geological Institute Special Papers, 11, S. 83-90.
- HOFFMANN, G. (2004b): Rekonstruktion und Modellierung der Küstenevolution im Bereich der Pommerschen Bucht in Abhängigkeit von holozänen Meeresspiegelschwankungen. – Dissertation, Universität Greifswald, 112 S.
- HOFFMANN, G., LAMPE, R., BARNASCH, J. (2005): Postglacial evolution of barrier spits along the West Pomeranian coast (NE Germany). Quaternary International, 133/134, S. 47-59.
- HOFFMANN, G. & LAMPE, R. (2007): Sediment budget calculation to estimate Holocene coastal changes on the southwest Baltic Sea (Germany). Marine Geology, 243, S. 143-156.

HOFFMANN, G., SCHMEDEMANN, N., SCHAFMEISTER, M.-T. (2009): Relative sea-level curve for SE Rügen and Usedom Island (SW Baltic Sea coast, Germany) using decompacted profiles. – Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 160(1), S. 69-78.

HOLLER, P. (1995): Arbeitsmethoden der marinen Geowissenschaften. – Enke Verlag, Stuttgart, 150 S.

- HOSELMANN, C. & STREIF, H. (1997): Bilanzierung der holozänen Sedimentakkumulation im niedersächsischen Küstenraum. Zeitschrift der Deutschen Geologischen Gesellschaft, 148(3/4), S. 431-445.
- HOSELMANN, C. & STREIF, H. (2004): Holocene sea-level rise and its effect on the mass balance of coastal deposits. Quaternary International, 112, S. 89-103.
- Hua, O. (2009): Radiocarbon: a chronological tool for the recent past. Quaternary Geochronology, 4, S. 378-390.
- HUPFER, P., HARFF, J., STERR, H., STIGGE, H.-J. (2003): Der Wasserstand an der Transgressionsküste der südwestlichen Ostsee. Entwicklung – Sturmfluten – Klimawandel. – Die Küste, Sonderband, 66, 332 S.
- HUPFER, P. (2010): Die Ostsee kleines Meer mit großen Problemen. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 262 S.
- HURTIG, T. (1954): Die mecklenburgische Boddenlandschaft und ihre entwicklungsgeschichtlichen Probleme. Ein Beitrag zur Küstengeschichte der Ostsee. – Deutscher Verlag der Wissenschaften, Berlin, 148 S.
- IPCC (2007): Climate Change 2007: The Physical Science Basis. Working Group 1 Contribution to the Fourth Assessment. Cambridge University Press, Cambridge, 996 S.
- JACOB, H.-E. (1987): Die Fährinsel bei Hiddensee Geomorphologie und Genese. Petermanns Geographische Mitteilungen, 131, S. 85-92.
- JACOBS, Z. (2008): Luminescence chronologies for coastal and marine sediments. Boreas, 37, S. 508-535.
- JANKE, W. & Lampe, R. (1998): Die Entwicklung der Nehrung Fischland Darß Zingst und ihres Umlandes seit der Litorina-Transgression und die Rekonstruktion ihrer subrezenten Dynamik mittels historischer Karten. – Z. Geomorph. N.F., Suppl.Bd. 112, S. 177-194.
- JANKE, W. (2005): Die Landschaften des Barther Raumes und ihre Entwicklung. in: Scheffelke, J. & GARBER, G. [Hrsg.]: Stadt Barth – Beiträge zur Stadtgeschichte: Thomas Helms Verlag, Schwerin, S. 31-38.
- KAISER, K. (2001): Die spätplesitozäne bis frühholozäne Beckenentwicklung in Mecklenburg-Vorpommern. Untersuchungen zur Stratigraphie, Geomorphologie und Geoarchäologie.
 – Dissertation, Universität Greifswald, 176 S.
- KAISER, K., BARTHELMES, A., CZAKO PAP, S., HILGERS, A., JANKE, W., KÜHN, P., THEUERKAUF, M. (2006): A Lateglacial palaeosol cover in the Altdarss area, southern Baltic Sea coast (northeast Germany): investigations on pedology, geochronology and botany. – Netherlands Journal of Geosciences, 85(3), S. 197-220.
- KAISER, K. & LAMPE, R. (2009): Erdgeschichtliche Entwicklung. in: Billwitz, K. & Porada, H.T.

[Hrsg.] (2009): Die Halbinsel Fischland-Darss-Zingst und das Barther Land: Böhlau Verlag, Köln, Weimar, Wien, S.6-13.

- KALBE, L. & WERNER, F. (1974): Sediment des Kummerower Sees. Untersuchungen des Chemismus und der Diatomeenflora. Internationale Revue der gesamten Hydrobiologie, 56, S. 755-782.
- KATZUNG, G. [Hrsg.] (2004): Geologie von Mecklenburg-Vorpommern. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 580 S.
- KELLETAT, D. (1999): Physische Geographie der Meere und Küsten Eine Einführung. Teubner Studienbücher Geographie, 2. Auflage, Stuttgart, 258 S.
- KIDEN, P., DENYS, L., JOHNSTON, P. (2002): Late Quaternary sea-level change and isostatic and tectonic land movements along the Belgian-Dutch North Sea coast: geological data and model results. – Journal of Quaternary Science, 17(5/6), S. 535-546.
- KLIEWE, H. & REINHARD, H. (1960): Zur Entwicklung des Ancylus-Sees. Petermanns Geographische Mitteilungen, 104(2/3), S. 163-172.
- KLIEWE, H. & JANKE, W. (1982): Der holozäne Wasserspiegelanstieg der Ostsee im nördlichen Küstengebiet der DDR. – Petermanns Geographische Mitteilungen, 126, S. 65-74.
- KLIEWE, H. & JANKE, W. (1991): Holozäner Küstenausgleich im südlichen Ostseegebiet bei besonderer Berücksichtigung der Boddenausgleichsküste Vorpommerns. – Petermanns Geographische Mitteilungen, 135, S. 1-15.
- KLUG, H. & LORRA, S. (1996): Das Georadarverfahren und seine Einsetzbarkeit zur landschaftsgenetischen Kartierung im Küstenraum. – Hannoversche Geographische Arbeiten, 52, S. 34-44.
- KOLP, O. (1978): Das Wachstum der Landspitze Darsser Ort. Petermanns Geographische Mitteilungen, 122, S. 103-111.
- KOLP, O. (1979): Eustatische und isostatische Veränderungen des südlichen Ostseeraumes im Holozän. – Petermanns Geographische Mitteilungen, 123, S. 177-187.
- KOLP, O. (1981): Die Bedeutung der isostatischen Kippbewegung für die Entwicklung der südlichen Ostseeküste. Zeitschrift für geologische Wissenschaften, 9, S. 7-22.
- KOLP, O. (1982): Entwicklung und Chronologie des Vor- und Neudarßes. Petermanns Geographische Mitteilungen, 126, S. 85-94.
- KOLP, O. (1986): Entwicklungsphasen des Ancylus-Sees. Petermanns Geographische Arbeiten, 130, S. 79-94.
- KRAUSS, M. (1994): The Tectonic Structure below the Southern Baltic Sea and its Evolution. -Zeitschrift für geologische Wissenschaften. 22(1/2), S. 19-32.
- Киветсьнек, М. (1995): Lumineszenz-Datierung quartärer Sedimente Mittel-, Ost- und Nordostdeutschlands. – Dissertation, TU Bergakademie Freiberg, 120 S.
- KRIENKE, K. (2003): Südostrügen im Weichsel-Hochglazial. Lithostratigraphische, lithofazielle, strukturgeologische und landschaftsgenetische Studien zur jüngsten Vergletscherung im Küstenraum Vorpommerns. – Greifswalder Geowissenschaftliche Beiträge, 12, S. 3-148.

- KRIENKE, K. (2004): Das Geschiebeinventar der weichselhochglazialen Tills von Südostrügen
 Hilfsmittel zur Lithostratigraphie sowie zur Rekonstruktion von Ablagerungsbedingungen und glazialer Dynamik. – Archiv für Geschiebekunde, 3(8/12), S. 701-711.
- LAMPE, R., SCHUMACHER, W., JANKE, W., BAYERL, K.A., REISCH, F., MÜLLER, A., GUSEN, R. (1998): KLIBO - Klimaänderung und Boddenlandschaft. Holozäne Entwicklungsgeschichte ausgewählter Boddenlandschaften Mecklenburg-Vorpommerns unter besonderer Berücksichtigung von Klima, Eustasie und Isostasie. – Forschungsbericht, Universität Greifswald, S. 31.
- LAMPE, R. (2002): Holocene evolution and coastal dynamics of the Fischland-Darss-Zingst peninsula. Greifswalder Geographische Arbeiten, 27, S. 155-163.
- LAMPE, R. & JANKE, W. (2004): The Holocene sea-level rise in the Southern Baltic as reflected in coastal peat sequences. Polish Geological Intitute Special Papers, 11, S. 19-30.
- LAMPE, R., ZIEKUR, R., SCHURICHT, R., HOFFMANN, G. (2004): Georadaruntersuchungen zur Erkundung der Faziesarchitektur im Küstenholozän NE-Deutschlands unter Einbeziehung von Rammkernsondierungen und geoelektrischen Messungen. – Zeitschrift für geologische Wissenschaften, 32(2/4), S. 97-112.
- LAMPE, R. (2005): Late-glacial and Holocene water-level variations along the NE German Baltic Sea coast review and new results. Quaternary International, 133/134, S. 121-136.
- LAMPE, R., MEYER, H., ZIEKUR, R., JANKE, W., ENDTMANN, E. (2007): Holocene evolution of the irregularly sinking southern Baltic Sea coast and the interactions of sea-level rise, accumulation space and sediment supply. Berichte der Römisch-Germanischen Komission, 88, S. 15-46.
- LAMPE, R., LORENZ, S., JANKE, W., MEYER, H., KÜSTER, M., HÜBENER, T., SCHWARZ, A. (2009): Zur Landschafts- und Gewässergeschichte der Müritz. Forschung und Monitoring 2, S. 92.
- LAMPE, R., ENDTMANN, E., JANKE, W., MEYER, H. (2010): Relative sea-level development and isostasy along the NE German Baltic Sea coast during the past 9 ky. Eiszeitalter und Gegenwart, Quaternary Science Journal, 59(1/2), S. 3-20.
- LAMPE, R., NAUMANN, M., MEYER, H., JANKE, W., ZIEKUR, R. (2011): The Holocene evolution of the southern Baltic Sea coast and the interplay of sea-level variation, isostasy, accommodation and sediment supply. – in: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 235-256.
- Landesvermessungsamt Mecklenburg-Vorpommern (2003 2005): Topographische Karte 1:25000, Blatt-Nr: 1444, 1540-1544, 1640-1644, 2. Auflage, Schwerin.
- Landesvermessungsamt Mecklenburg-Vorpommern (2004): Topographische Karte 1:10000, 1. Auflage, digital als ATKIS-Basis-DLM, Schwerin.
- LEMKE, W.; JENSEN, J. B.; BENNIKE, O.; WITKOWSKI, A. (1997): Sequence stratigraphy of Late Pleistocene and Holocene deposits in the Mecklenburg Bay, south-western Baltic Sea. – Sveriges Geologiska Undersökning, 86, S. 117-122.
- LEMKE, W. (1998): Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression. – Habitilationsschrift, Universität Greifswald, 186 S.
- LEMKE, W., ENDLER, R., TAUBER, F., JENSEN, J.B., BENNIKE, O. (1998): Late- and postglacial sedimentation in the Tromper Wiek north-east of Rügen. Meyniana, 50, S. 155-173.
- LEMKE, W., JENSEN, J.B., BENNIKE, O., ENDLER, R., WITKOWSKI, A., KUIJPERS, A. (2001): Hydrographic thresholds in the western Baltic Sea: Late Quarternary gerlogy and the Dana River concept. Marine Geology, 176, S. 191-201.
- LEMKE, W., SCHWARZER, K., DIESING, M. (2002): Quaternary development of Tromper Wiek, Rügen Island. Greifswalder Geographische Arbeiten, 27, S. 61-67.
- LEMKE, W. & NIEDERMEYER, R.O. (2004): Sedimente der Ostsee und der Bodden. in: KATZUNG, G.[Hrsg.]:GeologievonMecklenburg-Vorpommern:Schweizerbart'scheVerlagsbuchhandlung, Stuttgart, S. 347-362.
- LI, F., DYT, C., GRIFFITH, C. (2003): A coastal morphodynamic model for cross-shore sediment transport. Coastal Engineering, S. 335-344.
- LI, F., DYT, C., GRIFFITH, C. (2004): 3D modelling of the isostatic flexural deformation. Computers and Geosciences, 30, S. 1105-1115.
- LOPEZ, G.I. & RINK, W.J. (2007): Characteristics of the burial environment related to quartz SAR-OSL dating at St. Vincent Island, NW Florida, USA. – Quarternary Geochronology, 2, S. 65-70.
- LORENZ, S. (2007): Die Spätpleistozäne und Holozäne Gewässerentwicklung im Bereich der Pommerschen Haupteisrandlage Mecklenburgs. – Dissertation, Universität Greißwald, 194 S.
- LÜBKE, H. (2005): Vorbericht zu den Sondierungen submariner steinzeitlicher Fundstellen in den nördlichen Boddengewässern Rügens. – Bodendenkmalpflege in Mecklenburg-Vorpommern, Jahrbuch 2004, S. 211-220.
- MADSEN, A.T., MURRAY, A.S., ANDERSEN, T.J., PEJRUP, M., BREUNING-MADSEN, H. (2005): Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. - Marine Geology, 214, S. 251-268.
- MADSEN, A.T., MURRAY, A.S., ANDERSEN, T.J. (2007): Optical dating of dune ridges on Rømø, a barrier island in the Wadden Sea, Denmark. – Journal of Coastal Research, 23(5), S. 1259-1269.
- MADSEN, A.T. & MURRAY, A.S. (2009): Optically stimulated luminescence dating of young sediments: a review. Geomorphology, 109, S. 3-16.
- MANSON, G.K., SOLOMON, S.M., FORBES, D.L., ATKINSON, D.E., CRAYMER, M. (2005): Spatial variability of factors influencing coastal change in the Western Canadian Arctic. Geo-Marine Letters, 25(2), S. 138-145.

MARIBUS [Hrsg.] (2010): World ocean review 2010. – Mare-Verlag, 1. Auflage, Hamburg, 234 S.

MARTEN, M. (2007): GIS-gestützte Rekonstruktion der holozänen Küstenentwicklung im Bereich Vitte-Neuendorf, Insel Hiddensee: basierend auf GPR-Messungen und Rammkernsondierungen. – Diplomarbeit, Universität Greifswald, 54 S.

- MAUZ, B. & BUNGENSTOCK, F. (2007): How to reconstruct trends of late Holocene relative sea level: A new approach using tidal flat clastic sediments and optical dating. – Marine Geology, 237, S. 225-237.
- MEYER, M. (2002): Modellierung der Entwicklung von Küstenlinien der Ostsee im Holozän -Wechselspiel zwischen Isostasie und Eustasie. – Dissertation, Universität Greifswald, 63 S.
- MEYER, M., HARFF, J., GOGINA, M., BARTHEL, A. (2008): Coastline changes of the Darss-Zingst Peninsula – a modelling approach. – Journal of Marine Systems, 74, S. 147-154.
- MEYER, M., HARFF, J., DYT, C. (2011): Modelling Coastline Change of the Darss-Zingst Peninsula with Sedsim. IN: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 283-302.
- Möвus, G. (1996): Tektonische Erbanlagen im Quartär des südlichen Ostseeraumes eine Richtungsanalyse. Zeitschrift für geologische Wissenschaften, 24(3/4), S. 325-334.
- Möвus, G. (2000): Geologie der Insel Hiddensee (südliche Ostsee) in Vergangenheit und Gegenwart – eine Monographie. – Greifswalder Geowissenschaftliche Beiträge, 8, 150 S.
- MÖRNER, N.A. (1980): Late Quarternary sea-level changes in north western Europe: a synthesis. – Geologiska Föreningens i Stockholm Förhandlingar, 100(4), S. 381-400.
- Müller, A. (1996): Zu Sedimentationsgeschichte und Paläomilieu ausgewählter lagunärer und ästuariner Küstengewässer im südlichen Ostseeraum als Ausdruck der Klimaentwicklung im Holozän. – Dissertation, Universität Greifswald, 161 S. und Anlagenband.
- Müller, A. (1997): Zu Sedimentationsgeschichte und Paläomilieu der Darß-Zingster Boddenkette (Barther Bodden und Grabow). – Zeitschrift für geologische Wissenschaften, 25(5/6), S. 465-480.
- Murawski, H.; Meyer, W. (1998): Geologisches Wörterbuch. Ferdinand Enke Verlag, Stuttgart, 278 S.
- MURRAY, A.S. & WINTLE, A.G. (2000): Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32, S. 57-73.
- MURRAY, A.S. & OLLEY, J.M. (2002): Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. – Geochronometria, 21, S. 1-16.
- MURRAY, A.S. & WINTLE, A.G. (2003): The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements, 37, S. 377-381.
- MURRAY-WALLACE, C.V., BANERJEE, D., BOURMAN, R.P., OLLEY, J.M., BROOKE, B.P. (2002): Optically stimulated luminescence dating of Holocene relict foredunes, Guichen Bay, South Australia. Quarternary Science Reviews, 21, S. 1077-186.
- NAUMANN, M., LAMPE, R., HOFFMANN, G. (2009): Coastal evolution of a Holocene barrier spit (Bug peninsula/NWRügen) deduced from geological structure and relative sea-level. – Eiszeitalter und Gegenwart, Quaternary Science Journal, 58(2), S. 164-173.
- NICHOLS, G. (2009): Sedimentology and Stratigraphy. Wiley-Blackwall, 2. Auflage, Oxford, 419 S.
- NIEDORODA, A.W.; SWIFT, D.J.P.; HOPKINS, T.S. (1985): The Shoreface. in: DAVIS, R.A. [Hrsg.]: Coastal sedimentary environments: Springer Verlag, New York, S. 533-624.

- NIELSEN, A., MURRAY, A.S., PEJRUP, M., ELBERLING, B. (2006): Optically stimulated luminescence dating of al Holocene beach ridge plain in Northern Jutland, Denmark. Quaternary Geochronology, 1, S. 305-312.
- Отто, T. (1913): Der Darß und Zingst: Ein Beitrag zur Entwicklungsgeschichte der vorpommerschen Küste. – 13. Jahresbericht der Geographischen Gesellschaft Greißwald 1911-1912, S. 237-485.
- Oumeraci, H. (2001): Küsteningenieurwesen. in: Lecher, K., Lühr, H.-P., Zanke, U.C.E. [Hrsg.]: Taschenbuch der Wasserwirtschaft: Parey Verlag, 8. Auflage, Berlin, S. 657-742.
- PEACOCK, J.D. (1993): Late Quaternary marine Mollusca as palaeoenvironmental proxies: A compilation and assessment of basic numerical data for NE Atlantic soecies found in shallow water. Quaternary Science Reviews, 12, S. 263-275.
- PIRAZZOLI, P.A. (1991): World Atlas of Holocene Sea-Level Changes. Oceanography Series, 58, 300 S.
- PIRAZZOLI, P.A. (1996): Sea level changes: The last 20,000 years. Wiley & Sons, New York, 211 S.
- PREUSS, H., VINKEN, R., VOSS, H.-H. (1991): Symbolschlüssel Geologie Symbole für die Dokumentation und automatische Datenverarbeitung geologischer Feld- und Aufschlußdaten.
 Niedersächsisches Landesamt für Bodenforschung und Bundesanstalt für Geowissenschaften und Rohstoffe [Hrsg], Hannover, 328 S.
- PREUSSER, F., DEGERING, D., FUCHS, M., HILGERS, A., KADEREIT, A., KLASEN, N., KRBETSCHEK, M.,
 RICHTER, D., SPENCER, J. (2008): Luminescence dating: Basics, methods and applications.
 Eiszeitalter und Gegenwart, Quaternary Science Journal, 57(1/2), S. 95-149.
- PRINZ, H. (1997): Abriß der Ingenieurgeologie mit Grundlagen der Boden- und Felsmechanik, des Erd-,Grund- und Tunnelbaus sowie der Abfalldeponien. – Ferdinand Enke Verlag, Stuttgart, 475 S.
- Pye, K. (1994): Sediment Transport and Depositional Processes. Blackwell Scientific Publications, Oxford, 397 S.
- REIMANN, T., NAUMANN, M., TSUKAMOTO, S., FRECHEN, M. (2010): Luminescence dating of coastal sediments from the Baltic Sea coastal barrier-spit Darss-Zingst, NE Germany. – Geomorphology, 122, S. 264-273.
- REIMANN, T. (2011): "The riddle of the sands" Luminescence dating of coastal sediments from the southern Baltic Sea and southern North Sea coast. Dissertation, Freie Universität Berlin, 159 S.
- REIMANN, T., TSUKAMOTO, S., NAUMANN, M., FRECHEN, M. (2011): The potential of using K-rich feldspars for optical dating of young coastal sediments e A test case from Darss-Zingst peninsula (southern Baltic Sea coast). Quarternary Geochronology, 6, S. 207-222.
- REINHARD, H. (1953): Der Bock: Entwicklung einer Sandbank zur neuen Ostseeinsel. Petermanns Geographische Mitteilungen, v. Erg.-H., S. 128.
- REINHARD, H. (1956): Küstenveränderungen und Küstenschutz der Insel Hiddensee. Deutscher Verlag der Wissenschaften, Berlin, 215 S.

- ROBERTS, H.M. & PLATER, A.J. (2007): Reconstruction of Holocene foreland progradation using optically stimulated luminescence (OSL) dating: an example from Dungeness, UK. The Holocene, 17, S. 495-505.
- ROSENTAU, A., MEYER, M., HARFF, J., DIETRICH, R., RICHTER, A. (2007): Relative Sea Level Change in the Baltic Sea since the Littorina Transgression. – Zeitschrift für Geologische Wissenschaften, 35(1/2), S. 3-16.
- Rössler, D. (2006): Reconstruction of the Littorina Transgression in the Western Baltic Sea. Dissertation, Universität Greifswald, 135 S.
- ROY, P.S., COWELL, P.J., FERLAND, M.A., THOM, B.G. (1994): Wave dominated coasts. in: CARTER,
 R.W.G. & WOODROFFE, C.D. [Hrsg.]: Coastal Evolution Late Quaternary shoreline
 morphodynamics: Cambridge University Press, Cambridge, S. 121-186.
- Schäfer, A. (2005): Klastische Sedimente Fazies und Sequenzstratigraphie. Elsevier, Spektrum Akademischer Verlag, München, 414 S.
- SCHAFMEISTER, M.-T. (1999): Geostatistik in der hydrogeologischen Praxis. Springer-Verlag, Berlin, Heidelberg, 152 S.
- SCHIRMER, M., SCHUCHARDT, B., STERR, H. (2011): Meeresspiegelanstieg und hydrologische Problem der Küstenzonen. – in: Lozán, J., GRASSL, H., HUPFER, P., KARBE, L., SCHÖNWIESE, C.-D. [Hrsg.]: Warnsignal Klima: Genug Wasser für Alle?: E-Buch: www.climate-servicecenter.de, S. 358-367.
- SCHMEDEMANN, N. (2006): Numerisches Modell zum Kompaktionsverlauf in oberflächennahen Lockersedimenten. – Diplomarbeit, Universität Greifswald, 89 S.
- SCHMEDEMANN, N., SCHAFMEISTER, M.-T., HOFFMANN, G. (2008): Numeric de-compaction of Holocene sediments. – Polish Geological Institute Special Papers, 23, S. 87-94.
- SCHÖNFELDT, H.J. & STEPHAN, M. (2000): Einfluss des Windklimas auf die Küstenveränderungen an der Ostseeküste Mecklenburg-Vorpommerns zwischen Warnemünde und Hiddensee.
 Meteorologische Zeitschrift, 9(5), S. 299-308.
- SCHUMACHER, W. & BAYERL, K.A. (1999): The shoreline displacement curve of Rügen Island (Southern Baltic Sea). Quaternary International, 56, S. 107-113.
- SCHUMACHER, W. (2000): Zur geomorphologischen Entwicklung des Darsses ein Beitrag zur Küstendynamik und zum Küstenschutz an der südlichen Ostseeküste. – Zeitschrift für geologische Wissenschaften, 28(6), S. 601-613.
- Schütze, H. (1931): Die Haken und Nehrungen der Außenküste von Rügen. Beiheft Jb. d. Pomm. Geogr. Ges., 1931/32, 155 S.
- Schütze, H. (1939): Morphologischer Beitrag zur Entstehung des Darß und Zingst. Geologie der Meere und Binnengewässer, 3, S. 173-200.
- Schwarzer, K., Diesing, M., Larson, M., Niedermeyer, R.O., Schumacher, W., Furmanczyk, K. (2003): Coastline evolution at different time scales examples from the Pomeranian Bight, southern Baltic Sea. Marine Geology, 194, S. 79-101.

- SEIFERT, T., TAUBER, F., KAYSER, B. (2001): A high resolution spherical grid topography of the Baltic Sea – 2nd edition. – Baltic Sea Science Congress, Stockholm, Poster 147.
- SKANDERA, U. (1989): Kartometrische sowie luftbildgestützte Erfassung und kartographische Modellierungdes abspülrelevanten, insbesondere morphographischen Landschaftsinventars mit dem Ziel praxisorientierter Dispositionskennzeichnungen von Ackerflächen dargestellt am Beispiel des küstennahen Jungglazials. – Dissertation, Universität Greifswald, 106 S.
- ŠLIAUPA, S. & HOTH, P. (2011): Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. – in: HARFF, J., BJÖRCK, S., HOTH, P. [Hrsg.]: The Baltic Sea Basin: Springer Verlag, Berlin, Heidelberg, S. 13-52.
- Staatliches Amt für Umwelt und Natur, Rostock (2009): Regelwerk Küstenschutz Mecklenburg-Vorpommern. – Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz [Hrsg.], Schwerin, 102 S.
- STEPHAN, M. & SCHÖNFELDT, H.J. (1999): Küstenentwicklungsmodell zur langfristigen Berechnung des Sedimenttransports in Abhängigkeit von Windverteilung und welleninduziertem Brandungsstrom an der Ostseeküste Mecklenburg-Vorpommerns zwischen Warnemünde und Hiddensee. – Die Küste, 61, S. 149-174.
- STREIF, H. (2004): Sedimentary record of Pleistocene and Holocene marine inundations along the North Sea coast of Lower Saxony, Germany. Quarternary International, 112, S. 3-28.
- STRESEMANN, E. (1992): Exkursionsfauna von Deutschland, Band 1 Wirbellose (ohne Insekten). – Volk und Wissen Verlag, Berlin, 637 S.
- STUIVER, M. (1978): Radiocarbon timescale tested against magnetic and other dating methods. – Nature, 273, S. 271-274.
- TAUBER, F. & LEMKE, W. (1995): Meeresbodensedimente in der westlichen Ostsee Blatt Darß, Leibniz Institut für Ostseeforschung, Warnemünde.
- TAUBER, F. (2011, im Druck): Search for palaeo-landscapes in the south-western Baltic Sea with sidescan sonar. Berichte der Römisch-Germanischen Komission, 92, 26 S.
- TETZLAFF, D.M. (1987): Simulation model of clastic sedimentary processes. Dissertation, Stanford University, 367 S.
- Tetzlaff, D.M. & Harbaugh, J.W. (1989): Simulating clastic sedimentation. Von Nostrand Reinhold Co. Inc., New York, 202 S.
- The Open University [Hrsg.] (1999): Waves, Tides and Shallow-Water Processes. Elsevier, 2. Auflage, Oxford, 224 S.
- TIARKS, H. (1999): Modellierung der Küstenentwicklung des Neudarß unter besonderer Berücksichtigung der Massenbilanz. – Diplomarbeit, Universität Greifswald, 54 S.
- TIEPOLT, L. & SCHUMACHER, W. (1999): Historische bis rezente Küstenveränderungen im Raum Fischland-Darß-Zingst-Hiddensee anhand von Karten, Luft- und Satellitenbildern. – Die Küste, 61, S. 21-46.
- TOOLEY, M. (1974): Sea-level changes during the last 9000 years in northwest England. - Geographical Journal, 140, S. 18-42.

- TRINCARDI, F., CORREGGIARI, A., ROVERI, M. (1994): Late Quarternary transgressive erosion and deposition in a modern epicontinental shelf: the Adriatic Semienclosed Basin. – Geo-Marine Letters, 14, S. 41-51.
- UŚCINOWICZ, S. (2003): Relative sea level changes, glacio-isostatic rebound and shoreline displacement in the southern Baltic. Polish Geological Institute Special Papers, 10, 79 S.
- UŚCINOWICZ, S. (2006): A relative sea-level curve for the Polish Southern Baltic Sea. Quarternary International, 145-146, S. 86-105.
- VAIL, P.R.; AUDEMARD, F.; BOWMAN, S.A.; EISNER, P.N.; PEREZ-CRUZ, C. (1991): The stratigraphic signatures of tectonics, eustasy and sedimentology – an overview. – in: EINSELE, G.; RICKEN, W.; SEILACHER, A. [HISG.]: Cycles and Events in Stratigraphy: Springer Verlag, Berlin, Heidelberg, New York, S. 617-659.
- VAN HETEREN, S., HUNTLEY, D.J., PLASSCHE, O., LUBBERTS, R.K. (2000): Optical dating of dune sand for the study of sea-level change. Geology, 28(5), S. 411-414.
- VIEHBERG, F.A., FRENZEL, P., HOFFMANN, G. (2008): Succession of Quaternary ostracod assemblages in a transgressive environment: a study at an inshore locality in the southern Baltic Sea (Germany). – Palaeogeography, Palaeoclimatology, Palaeoecology, 264(3/4), S. 318-329.
- WEHNER, R. & GEHRING, W. (1995): Zoologie. Georg Thieme Verlag, Stuttgart, 861 S.
- WEILBER, H. & ZIELKE, W. (1999): Modellierung großräumiger und morphologischer Prozesse an den Außenküsten von Fischland, Darß und Zingst. Die Küste, 61, S. 177-194.
- WENINGER, B. & JÖRIS, O. (2008): A 14C age calibration curve for the last 60 ka: The Greenland-Hulu U/Th time scale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. – Journal of Human Evolution, 55, S. 772-781.
- WINTLE, A.G. & MURRAY, A.S. (2006): A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols.
 – Radiation Measurements, 41, S. 369-391.
- WU, C., BAO, Y., REN, J., SHI, H.Y. (2006): A numerical simulation and morphodynamic analysis on the evolution of the Pearl River delta in China: 6000 - 2500 a BP. - Acta Oceanologica Sinica, 28(4), S. 64-80.
- ZHANG, W. (2010): A multi-scale morphodynamic modeling methodology for long-term evolution of wave-dominated coasts. Dissertation, Universität Guangzhou, 167 S.
- ZHANG, W.; SCHNEIDER, R.; HARFF, J. (2012): A multi-scale hybrid long-term morphodynamic model for wave-dominated coasts. Geomorphology, 149-150, S. 49-61.
- ZÖLLER, L. & WAGNER, G.A. (2002): Datierungsmethoden. in: BLUME, H.-P., FELIX-HENNINGSEN, P., FISCHER, W.R. [Hrsg.]: Handbuch der Bodenkunde: Ecomed-Verlag, Landsberg, 13. Ergänzungslieferung (5/02), S. 1-25.

Abbildungsverzeichnis

Abb. 2.1:	Lage des Untersuchungsgebietes.	Seite 3
Abb. 2.2:	Bruchtektonische Störungen im tieferen Untergrund des Arbeitsgebiets.	Seite 7
Abb. 2.3:	Erdkrustenbewegungen (überwiegend isostatisch) im Arbeitsgebiet für den Zeitraum der letzten 8.000 Jahre.	Seite 9
Abb. 2.4:	Vertikale Erdkrustenbewegung während des 20. Jahrhunderts im Arbeitsgebiet.	Seite 10
Abb. 2.5:	Hauptphasen der Ostsee-Entwicklung.	Seite 12
Abb. 2.6:	Weltweite Verbreitung von Lockergesteinsküsten.	Seite 14
Abb. 2.7:	Morphologische Formen des Küstenausgleichs.	Seite 15
Abb. 2.8:	Entwicklung von Barrieren in Abhängigkeit vom Neigung- swinkel der Schorre.	Seite 17
Abb. 2.9:	Genesemodell holozäner Barrieren entlang der süd- westlichen Ostseeküste.	Seite 19
Abb. 3.1:	Qualitätsgesicherter Datenbestand von Sedimentkernen und interpretierten Flachseismikprofilen im Unter-suchungsraum zu Beginn der Kartierung.	Seite 23
Abb. 3.2:	Kartographische Übersicht von durchgeführten Gelände- arbeiten, differenziert nach eingesetzten Erkundungs- methoden, zur Kartierung des Untersuchungsgebietes im Zeitraum 2006-2008.	Seite 24
Abb. 3.3:	Schematische Darstellung der Kolben-Liner-Systemsonde	Seite 27
Abb. 3.4:	Kartographische Übersicht von Probenlokationen mit durch- geführten Laboranalysen im Untersuchungsgebiet.	Seite 35
Abb. 4.1:	Sedimentverteilungskarte der liegenden Ablagerungen der marinen Basis für das Gebiet Darss-Zingst-Hiddensee.	Seite 47
Abb. 4.2:	Sedimentverteilungskarte der hangend anstehenden Ablage- rungen an der marinen Basis für das Gebiet Darss-Zingst- Hiddensee.	Seite 50
Abb. 4.3:	Karte der Sedimentverteilung an der Geländeoberfläche für das Gebiet Darss-Zingst-Hiddensee.	Seite 51
Abb. 4.4:	Geologischer Nord-Süd-Schnitt durch die Graue Wiese und den südlichen Grabow.	Seite 53
Abb. 4.5:	Geologische Nord-Süd-Schnitte durch den Darss.	Seite 58

Abb. 4.6:	Geologischer Nord-Süd-Schnitt über den Ostzingst, beginnend im Ostseegebiet (Plantagenetgrund) mit südlicher Verlängerung durch den Grabow und Anbindung an das Festland.	Seite 60					
Abb. 4.7:	Der Ostzingst (Fotodokumentation).	Seite 62					
Abb. 4.8:	Das Windwatt mit Barriere-Inseln (Fotodokumentation).	Seite 63					
Abb. 4.9:	Geologischer Nord-Süd-Schnitt über das Windwatt und den Großen Werder, beginnend im Ostseegebiet mit Anbindung an das Festland. Se						
Abb. 4.10:	Geologischer West-Ost-Schnitt über das Darss-Zingster Nehrungssystem und östlich anschließenden Windwatt.	Seite 66					
Abb. 4.11:	Typische Bohrungen des Darss-Zingster-Nehrungssystems.	Seite 67					
Abb. 4.12:	Die Insel Hiddensee (Fotodokumentation).	Seite 68					
Abb. 4.13:	Geologischer West-Ost-Schnitt über den zentralen Nehrungskörper der Insel Hiddensee mit Verzahnung in das Ostseegebiet.	Seite 69					
Abb. 4.14:	Geologischer Süd-Nord-Schnitt mit küstenparallelem Verlauf über die Insel Hiddensee. Se						
Abb. 4.15:	Exemplarischer Ausschnitt aus Georadarmessungen der Insel Hiddensee im Gebiet der Dünenheide.	Seite 71					
Abb. 4.16:	Typische Bohrungen aus dem Seegebiet der Ostsee.	Seite 74					
Abb. 4.17:	Exemplarische Ausschnitte von Side-Scan-Sonarmessungen.	Seite 76					
Abb. 4.18:	Schrägluftbild (Wasseroberfläche entspiegelt) der vorgela- gerten Flachwasserzone westlich der Insel Hiddensee.	Seite 78					
Abb. 4.19:	Exemplarische Ausschnitte von Sedimentecholotmessungen.	Seite 79					
Abb. 5.1:	Datenbasis für die Modellierung	Seite 81					
Abb. 5.2:	Variogrammfunktion zur Berechnung der marinen Basisfläche.	Seite 85					
Abb. 5.3:	Topographische Karten der marinen Basis und der rezenten Geländeroberfläche.	Seite 86					
Abb. 5.4:	Ansichten von digitalen Geländehöhenmodellen der marinen Basis und rezenten Geländeroberfläche.	Seite 87					
Abb. 6.1:	Räumliche Verteilung der Sedimentmächtigkeit mariner Ablagerungen im Arbeitsgebiet.	Seite 88					
Abb. 6.2:	Vertikale Verteilung des marinen Sedimentvolumens zerlegt in 1 m Intervalle.	Seite 90					

Abb. 6.3:	Das Volumenverhältnis einzelner Faziestypen innerhalb der marinen Sedimentsequenz anhand von Beispielregionen mit hoher Datendichte.	Seite 92
Abb. 7.1:	Zeit-Tiefen-Diagramm vo relativen Meeresspiegelkurven und Datierungen an basalen Torfbildungen im Arbeitsgebiet	Seite 94
Abb. 7.2:	Datierungen im westlichen Teil des Zingst – Geochronologie am Bohrkern Zi-43/08.	Seite 98
Abb. 7.3:	Datierungen im zentralen Teil des Zingst – reliktische Strandwälle im Osterwald.	Seite 100
Abb. 7.4:	Datierungen im östlichen Teil des Zingst und angrenzendem Windwatt mit Barriere Inseln.	Seite 103
Abb. 7.5:	Datierungen auf Hiddensee – Dünenbildungen, Strandwälle und Salzwiesen.	Seite 105
Abb. 8.1:	Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (A) Marine Basis – modellierte Höhenlage und vorgefundene Sedimentverteilung, (B) Spätglazial bis Boreal – zeigt das Landschaftsbild vor Einsetzen der Transgression.	Seite 108
Abb. 8.2:	Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (C) Frühes Atlantikum – Einsetzen der Littorina-Transgression, (D) Atlantikum – die Littorina-Transgression erreicht -5 m NHN.	Seite 110
Abb. 8.3:	Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (E) Atlantikum bis Subatlantikum – die Littorina-Transgression erreicht -2 m NHN, (F) Atlantikum bis Subatlantikum – geringer Meeresspiegelanstieg seit 6.000 cal. BP.	Seite 112
Abb. 8.4:	Küstenentwicklung im Gebiet Darss-Zingst-Hiddensee: (G) Subatlantische Transgression.	Seite 113
Abb. 9.1:	Konzeptionelles Modell für die abgeleitete Küstenentwicklung im Arbeitsgebiet.	Seite 118

Tabellenverzeichnis

Tab. 3.1:	Übersicht über die Anzahl an Aufschlüssen und eingesetzte Methoden in den Teilarbeitsgebieten.	Seite 25
Tab. 3.2:	Übersicht über die Anzahl an Geophysikprofilen und einge- setzte Methoden in den Teilarbeitsgebieten.	Seite 30
Tab. 4.1:	Lithofaziestypen aus dem Gebiet Darss-Zingst-Hiddensee und Merkmale der Klassifizierung.	Seite 44
Tab. 5.1:	Überblick verwendeter Parametereinstellungen zur Interpo- lation der Transgressionsbasisfläche (marine Basis).	Seite 84
Tab. 6.1:	Räumliche Verteilung des marinen Sedimentvolumens im Arbeitsgebiet.	Seite 89
Tab. 7.1:	Ergebnisse von Radiokohlenstoffdatierungen im Gebiet Darss-Zingst-Hiddensee in SINCOS-II.	Seite 95
Tab. 7.2:	Ergebnisse von optisch stimulierten Lumineszenz-Datierungen im Arbeitsgebiet	Seite 97

Anhang A - Sedimentaufschlüsse

Bohrungen - Metadaten

						Höhe	Lot-	End-			
Lfd- Nr.	NAME	AKBEZ	Datum	RW [GK4]	IGK41	[m NHN; DGM501	tiefe [m]	feufe [m]	Strati- graphie	Bohr- verfahren	Gebiet
1	Darss 1	Da-1 /08	5.6.2008	4540486	6033272	0,55	[]	9,00	qp	RKS	Darss
2	Darss 2	Da-2 /08	5.6.2008	4540290	6032507	-0,63		9,00	qp	RKS	Darss
3	Darss 3	Da-3 /08	9.6.2008	4539932	6031916	0,92		9,00	qp	RKS	Darss
4	Darss 4	Da-4 /08	5.6.2008	4539777	6032525	-0,71		5,00	qp	RKS	Darss
5	Darss 5	Da-5 /08	5.6.2008 9.6.2008	4539877	6033450	1,21		7,00	db db	RKS	Darss
7	Darss 7	Da-7 /08	5.6.2008	4538915	6033033	-0,94		9.00	ap	RKS	Darss
8	Darss 8	Da-8 /08	5.6.2008	4538698	6034131	0,63		9,00	qp	RKS	Darss
9	Darss 9	Da-9 /08	5.6.2008	4538358	6034734	0,07		7,00	qp	RKS	Darss
10	Darss 10	Da-10 /08	9.6.2008	4537401	6033952	0,60		5,00	qp	RKS	Darss
11	Zingst Schurf 1 Refffuß	Zi-S1 Refffuß	1.2.2007	4548466	6034516	1,19		2,00	qh	RKS	Zingst
12	Zingst Schurf 1 Mitteinang	ZI-S1 Mitteinang	1.2.2007	4548472	6034529	1,19		2,00	qn	RKS	Zingst
13	Zingst Schun T Reinop	Zi-31 Relitop	24.1.2007	4554438	6034355	0.50		2,00	ap	RKS	Zingst
15	Zingst 2	Zi-2	24.1.2007	4554425	6034133	0,27		8,00	qp	RKS	Zingst
16	Zingst 3	Zi-3	24.1.2007	4554405	6033893	-0,78		8,00	qp	RKS	Zingst
17	Zingst 4	Zi-4	23.1.2007	4554346	6033586	0,07		9,00	? qh / qp	RKS	Zingst
18	Zingst 5	Zi-5	23.1.2007	4554323	6033281	0,57		7,00	qp	RKS	Zingst
19	Zingst 6 Zingst 7	∠I-6 7i 7	23.1.2007	4554299	6033046	1,56		8,00	db db	RKS	Zingst
20	Zingst 8	Zi-7	16.8.2007	4553838	6033711	0,30		4 90	ap	RKS	Zingst
22	Zingst 9	Zi-9	16.8.2007	4553827	6033485	0,57		6,65	qp	RKS	Zingst
23	Zingst 10	Zi-10	16.8.2007	4553856	6033229	0,56		6,50	qp	RKS	Zingst
24	Zingst 11	Zi-11	20.6.2007	4553513	6033509	0,43		3,00	qp	RKS	Zingst
25	Zingst 12	Zi-12	20.6.2007	4553373	6033261	0,58		9,00	qp	RKS	Zingst
26	Zingst 13	Zi-13	19.6.2007	4552121	6031784	0,20		9,00	qp	RKS	Zingst
21	Zingst 14 Zingst 15	ZI-14 Zi-15	20.6.2007	4549060	6032256	0,52		10 10	db db	RKS	Zingst
20	Zingst 16	Zi-16	26.6.2007	4548303	6032702	0,07		8.85	ap	RKS	Zingst
30	Zingst 17	Zi-17	26.6.2007	4547845	6033522	0,50		5,00	qp	RKS	Zingst
31	Zingst 18	Zi-18	15.8.2007	4548283	6033491	0,47		5,00	qp	RKS	Zingst
32	Zingst 19	Zi-19	17.8.2007	4547993	6033585	0,50		5,65	qp	RKS	Zingst
33	Zingst 20	Zi-20	17.8.2007	4547284	6034391	0,50		8,00	qp	RKS	Zingst
34	Zingst 21 Zingst 22	ZI-21 7i 22	22.8.2007	4547225	6034723	0,35		8,00	db db	RKS	Zingst
36	Zingst 22 Zingst 23	Zi-22	30.8.2007	4546128	6033772	0,21		7.35	ap	RKS	Zingst
37	Zingst 24	Zi-24 /08	6.6.2008	4542560	6034840	0,91		7,00	qp	RKS	Zingst
38	Zingst 25	Zi-25 /08	2.6.2008	4543203	6032648	0,20		7,00	qp	RKS	Zingst
39	Zingst 26	Zi-26	26.6.2007	4543277	6031124	0,67		7,00	qp	RKS	Zingst
40	Zingst 27	Zi-27 /08	13.5.2008	4542178	6033190	-1,35		8,00	qp	RKS	Zingst
41	Zingst 28 Zingst 29	ZI-28 /08	3.6.2008	4540426	6035411	0,41		6,00 9,00	db db	RKS	Zingst
43	Zingst 30	Zi-30 /08	4.6.2008	4539077	6035599	1,33		7.00	ap	RKS	Zingst
44	Zingst 31	Zi-31 /08	2.6.2008	4543125	6031913	0,08		8,50	qp	RKS	Zingst
45	Zingst 32	Zi-32 /08	4.6.2008	4542779	6034149	0,46		8,00	qp	RKS	Zingst
46	Zingst 33	Zi-33 /08	3.6.2008	4542330	6031992	0,22		5,00	qp	RKS	Zingst
47	Zingst 34	Zi-34 /08	4.6.2008	4542383	6034073	0,12		8,80	qp	RKS	Zingst
40	Zingst 36	ZI-35 /08	13 5 2008	4541639	6033965	-0.72		6,35 5,00	an	Liner	Zingst
50	Zingst 37	Zi-37 /08	3.6.2008	4540708	6034672	-0,91		8,00	ap	RKS	Zingst
51	Zingst 38	Zi-38 /08	4.6.2008	4539947	6035112	0,12		8,35	qp	RKS	Zingst
52	Zingst 39	Zi-39 /08	4.6.2008	4539119	6035327	1,06		6,70	qp	RKS	Zingst
53	Zingst 40	Zi-40 /08	5.6.2008	4537998	6035331	1,07		6,90	qp	RKS	Zingst
54	∠ingst 41 Zingst 42	∠I-41 /08 7i-42/08	3.6.2008	4541182	603306F	-0,86		7,00	db db	RKS	∠ingst Zingst
56	Zingst 42	Zi-43/08	25.6,2008	4541301	6033965	-0.72		- ,00 5.00	ab ab	Liner	Zingst
57	Zingst HoheDüne 1	Zi-HD-1	15.8.2007	4558658	6035151	0,54		7,00	qh	RKS	Zingst
58	Zingst HoheDüne 2	Zi-HD-2	15.8.2007	4558658	6035151	0,54		2,00	qh	Liner	Zingst
59	Zingst HoheDüne 3	Zi-HD-3	15.8.2007	4558658	6035151	0,54		2,00	qh	Liner	Zingst
60	Zingst-Osterwald 1	ZiOw-1	13.6.2007	4550010	6034795	0,82		11,00	qp	RKS	Zingst
61	Zingst-Osterwald 2	ZIOW-2 ZiOw-3	7.6.2007	4549889	6033686	0,80		9,85	db db	RKS	Zingst
63	Zingst-Osterwald 4	ZiOw-4	12.6,2007	4549662	6033217	0,03		9.00	ab db	RKS	Zingst
64	Zingst-Osterwald 5	ZiOw-5	12.6.2007	4549568	6032780	0,58		13,00	qp	RKS	Zingst
65	Zingst-Osterwald 6	ZiOw-6	12.6.2007	4549459	6032298	0,57		9,00	qp	RKS	Zingst
66	Zingst-Osterwald 7	ZiOw-7	14.6.2007	4547876	6034784	0,76		10,65	qp	RKS	Zingst
67	Zingst-Osterwald 8	ZiOw-8	13.6.2007	4549000	6034774	1,12		11,00	qp	RKS	Zingst
68	Zingst-Osterwald 9	∠IOW-9 ZiOw-10	18.6.2007	4550948	6032002	1,85		12,40	db db	RKS	∠ingst Zingst
70	Zingst-Osterwald 10	ZiOw-10	16.8,2007	4551974	6034625	1.81		8.85	ч Р ар	RKS	Zingst
71	Werder Inseln 1	Werl-1	10.7.2007	4560948	6034717	1,91		12,75	qp	RKS	Großer Werder
72	Werder Inseln 2	Werl-2	10.7.2007	4560950	6034717	1,87		1,00	qh	Liner	Großer Werder
73	Werder Inseln 3	Werl-3	12.7.2007	4560928	6034758	0,98		9,80	qp	RKS	Großer Werder
74	Werder Inseln 4	Werl-4	12.7.2007	4560930	6034759	0,98		1,00	qh	Liner	Großer Werder
75	vverder Inseln 5	Werl-5	16.7.2007	4560915	6035124	0,42		1,00	qh	Liner	Großer Werder

Bohrungen - Metadaten Fortsetzung

Lfd- Nr.	NAME	AKBEZ	Datum	RW [GK4]	HW [GK4]	Höhe [m NHN; DGM50]	Lot- tiefe [m]	End- teufe [m]	Strati- graphie	Bohr- verfahren	Gebiet
76	Werder Inseln 6	Werl-6	16.7.2007	4560921	6035155	0,24		10,60	qp	RKS	Großer Werder
77	Werder Inseln 7 Offshore	Werl-7-OS	17.7.2007	4560874	6035579	-0,64		12,00	qp	RKS	Windwatt
78	Werder Inseln 8 Offshore	Werl-8-OS	17.7.2007	4560881	6035564	-0,64		1,00	qh	Liner	Windwatt
/9	Werder Insein 9	Werl-9	18.7.2007	4562436	6034859	1,55		8,90	qp	RKS	Großer Werder
80	Werder Inseln 10 Offshore	Werl-10-05	18.7.2007	4563129	6034867	-0,55		1,00	qn ab	Liner	Windwatt kleine Werder
82	Werder Inseln 12	Werl-12	18.7.2007	4563104	6034867	0,11		8.85	an	RKS	kleine Werder
83	Werder Inseln 13 Offshore	Werl-12-OS	7.8.2007	4561579	6033053	-1.48	-1.44	3.51	ap	Liner	Am Bock (Bodden)
84	Werder Inseln 14 Offshore	Werl-14-OS	7.8.2007	4561476	6033774	-1,30	-1,32	6,41	qp	Liner	Am Bock (Bodden)
85	Werder Inseln 15 Offshore	Werl-15-OS	9.8.2007	4561137	6034275	-0,74	-0,74	6,19	qp	Liner	Am Bock (Bodden)
86	Bock 1	Bock-1	19.7.2007	4564898	6035091	1,23		12,00	qp	RKS	Bock
87	Bock 2	Bock-2	19.7.2007	4564695	6035600	-0,52		10,00	qp	RKS	Bock
88	Bock 3	Bock-3	20.7.2007	4564695	6035600	-0,52		1,00	qh	Liner	Bock
89	Bock 4 Offshore	Bock-4-OS	20.7.2007	4564539	6036475	-0,70		1,00	qh	Liner	Windwatt
90	Bock 5	Bock-5	28.8.2007	4568106	6035666	1,23		12,00	qp	RKS	Bock
91	Kirr 1	Ki-1 /08	24.9.2008	4546908	6031925	-0,47		11,00	qp	RKS	Kirr
92	Kiff 2	KI-2/08	24.9.2008	4545546	6032429	-0,56		5,00	qp	RKS	Kiff
93		Oie-1 /08	24.9.2008	4544047	6031036	-0,55		0,60	db db	RKS	
94	Oie 2	Oie-2 /08	25.9.2008	4546793	6031030	0,92		7.00	an an	RKS	Oie
96	Kreigenbarg 1	Kb-1 /08	9.6.2008	4545978	6030875	2.01		7,00	ap	RKS	südl. Festland
97	Grabow 1	Gra-1	9.8.2007	4554303	6032726	-0.69	-1.28	5.48	ap	Liner	Grabow (Bodden)
98	Grabow 2	Gra-2	9.8.2007	4554273	6032567	-0,68	-0,68	6,05	qp	Liner	Grabow (Bodden)
99	Grabow 3	Gra-3	10.8.2007	4554238	6032378	-0,79	-1,98	6,17	qp	Liner	Grabow (Bodden)
100	Grabow 4	Gra-4	10.8.2007	4554212	6032196	-1,88	-2,88	3,89	qp	Liner	Grabow (Bodden)
101	Grabow 5	Gra-5	13.8.2007	4554191	6032019	-2,79	-3,39	3,75	qp	Liner	Grabow (Bodden)
102	Grabow 6	Gra-6	13.8.2007	4554148	6031812	-3,23	-3,39	4,47	qp	Liner	Grabow (Bodden)
103	Grabow 7	Gra-7	14.8.2007	4554102	6031584	-3,15	-3,24	2,12	qp	Liner	Grabow (Bodden)
104	Grabow 8	Gra-8	13.9.2006	4553898	6030549	-3,11	-3,63	5,45	qp	Liner	Grabow (Bodden)
105	Grabow 9	Gra-9	13.9.2006	4553804	6029882	-1,96	-1,83	3,75	qp	Liner	Grabow (Bodden)
106	Grabow 10	Gra-10	12.9.2006	4553370	6029196	-3,27	-3,6	4,58	qp	Liner	Grabow (Bodden)
107	Grabow 12	Gra 12	13.9.2006	4002041	6028463	-3,00	-3,5	4,50	db db	Liner	Grabow (Bodden)
100	Grabow 12 Grabow 13	Gra-12 Gra-13	13.9.2000	4551976	6028266	-2,41	-2,73	4 26	ap	Liner	Grabow (Bodden)
110	Grabow 14	Gra-14	19.9.2006	4551784	6028178	-2.01	-1.95	4.63	ap	Liner	Grabow (Bodden)
111	Grabow 15	Gra-15	20.9.2006	4551598	6028077	-1.75	-0.75	6.03	ap	Liner	Grabow (Bodden)
112	Grabow 16	Gra-16	21.9.2006	4551413	6027965	-1,72	-0,38	6,05	qp	Liner	Grabow (Bodden)
113	Grabow 17	Gra-17	14.8.2007	4552721	6030577	-1,02	-0,3	5,90	qp	Liner	Grabow (Bodden)
114	Grabow 18	Gra-18	14.8.2007	4557397	6028772	-0,63	-0,84	2,10	qp	Liner	Grabow (Bodden)
115	Graue Wiese 1	GrWi-1	2.10.2006	4551138	6027793	0,43		6,80	qp	Liner	südl. Festland
116	Graue Wiese 2	GrWi-2	1.11.2006	4551105	6027600	0,42		5,00	qp	RKS	südl. Festland
117	Graue Wiese 3	GrWi-3	1.11.2006	4551070	6027437	0,52		4,00	qp	RKS	südl. Festland
118	Graue Wiese 4	GrWi-4	1.11.2006	4551012	6027226	0,99		3,70	qp	RKS	südl. Festland
119	Graue Wiese 5	Grwi-5	1.11.2006	4551003	6027090	0,68		4,00	qp	RKS	sudi. Festiand
120	Graue Wiese 7	GrWi-7	10.11.2000	4551046	6027348	0,43		4,30	ap.	RKS	südl Festland
122	Graue Wiese 8	GrWi-8	16 11 2006	4551030	6027289	0,99		4 10	ap	RKS	südl Festland
123	Graue Wiese 9	GrWi-9	16.11.2006	4550971	6026932	0,66		3.00	ap	RKS	südl. Festland
124	Graue Wiese 10	GrWi-10	16.11.2006	4550962	6026776	0,67		1,40	qp	RKS	südl. Festland
125	Graue Wiese 11	GrWi-11	22.11.2006	4551117	6027707	0,41		4,35	qp	RKS	südl. Festland
126	Graue Wiese 12	GrWi-12	24.4.2007	4551030	6027279	0,99		4,50	qp	Liner	südl. Festland
127	Graue Wiese 13	GrWi-13	11.6.2007	4551030	6027279	0,99		4,59	qp	Liner	südl. Festland
128	Graue Wiese 14	GrWi-14	12.6.2007	4550888	6027304	1,20		1,00	qp	RKS	südl. Festland
129	Graue Wiese 15	GrWi-15	12.6.2007	4550930	6027300	1,00		3,00	qp	RKS	súdl. Festland
130	Graue Wiese 16	GrWi-16	12.6.2007	4551400	6027280	1,14		3,00	qp	RKS	südl. Festland
131	Kinnbackennagen 1	KDN-1/08	25.6.2008	4561921	6031984	1,57	2.20	2,65	qp	RKS	sudi. Festiand
132	Zingst Offshore 2/08	Zi-OS-2/08	18.6.2008	4554168	6035250	-2,00	-3.90	4.00	db db	RKS	angrenz Ostseegebiet
134	Zingst Offshore 3/08	Zi-OS-3/08	18.6.2008	4554224	6035487	-5.38	-5,00	3 65	ap	RKS	angrenz Ostseegebiet
135	Zingst Offshore 4/08	Zi-OS-4/08	18.6.2008	4554193	6035754	-5.79	-5.50	2.40	ap	RKS	angrenz. Ostseegebiet
136	Zingst Offshore 5/08	Zi-OS-5/08	18.6.2008	4554168	6036071	-6,19	-6,30	1,50	qh	RKS	angrenz. Ostseegebiet
137	Zingst Offshore 6/08	Zi-OS-6/08	18.6.2008	4561251	6036220	-3,17	-2,80	4,00	qp	RKS	angrenz. Ostseegebiet
138	Zingst Offshore 7	Zi-OS-7/07	15.2.2007	4545372	6036366	-7,55	-8,4	3,80	qp	VKG	angrenz. Ostseegebiet
139	Zingst Offshore 8	Zi-OS-8/07	15.2.2007	4547445	6038958	-9,52	-9,3	3,95	qp	VKG	angrenz. Ostseegebiet
140	Zingst Offshore 9	Zi-OS-9/07	15.2.2007	4554621	6037120	-6,49	-6,5	3,00	qp	VKG	angrenz. Ostseegebiet
141	Zingst Offshore 10	Zi-OS-10/07	15.2.2007	4554590	6040375	-8,78	-9,3	4,00	qp	VKG	angrenz. Ostseegebiet
142	Zingst Offshore 11	Zi-OS-11/07	15.2.2007	4563011	6040576	-5,39	-6,2	3,75	qp	VKG	angrenz. Ostseegebiet
143	∠ingst Offshore 12	ZI-US-12/07	5.10.2007	4545514	6036070	-7,81	-7,7	3,10	qp	VKG	angrenz. Ostseegebiet
144	Zingst Offshore 13	ZI-US-13/07	5.10.2007	4547060	6020025	-7,52	-12,7	4,00	db db	VKG	angrenz. Ostseegebiet
145	Zingst Offshore 15	ZI-03-14/07	6 10 2007	4562555	6041591	-9,77	-9,9	3,35 3 1 F	цр ap	VKG	
140	Zingst Offshore 16	Zi-OS-15/07	6 10 2007	4555370	6044722	-0,02	-0,7	4 00	ap	VKG	angrenz. Ostseegebiet
148	Zingst Offshore 17	Zi-OS-17/07	6,10,2007	4550518	6046435	-13 14	-13.2	4.20	ap	VKG	angrenz, Ostseegebiet
149	Zingst Offshore 18	Zi-OS-18/07	6.10.2007	4547478	6039410	-9.79	-9.6	3.80	ap	VKG	angrenz. Ostseegebiet
150	Zingst Offshore 19	Zi-OS-19/07	6.10.2007	4547442	6039826	-9,99	-9,9	3,65	qp	VKG	angrenz. Ostseegebiet

Bohrungen - Metadaten Fortsetzung

Lfd- Nr.	NAME	AKBEZ	Datum	RW [GK4]	HW [GK4]	Höhe [m NHN; DGM50]	Lot- tiefe [m]	End- teufe [m]	Strati- graphie	Bohr- verfahren	Gebiet
151	Zingst Offshore 20	Zi-OS-20/07	6.10.2007	4547435	6041597	-11,04	-10,9	3,95	qp	VKG	angrenz. Ostseegebiet
152	Zingst Offshore 21	Zi-OS-21/07	6.10.2007	4542412	6041525	-10,34	-9,7	3,65	qp	VKG	angrenz. Ostseegebiet
153	Zingst Offshore 22	Zi-OS-22/07	6.10.2007	4539841	6036671	-7,36	-6,9	3,60	qp	VKG	angrenz. Ostseegebiet
154	Zingst Offshore 24	ZI-03-23/07 ZI-08-24/07	7.10.2007	4561122	6040034	-7,55	-1,0	3,30	qp	VKG	angrenz. Ostseegebiet
155	Zingst Offshore 25	Zi-OS-25/07	7.10.2007	4555318	6052513	-10.97	-10,3	3.40	an	VKG	angrenz. Ostseegebiet
157	Zingst Offshore 26	Zi-OS-26/07	7.10.2007	4569445	6044981	-5.52	-5.8	3.30	ap	VKG	angrenz. Ostseegebiet
158	Zingst Offshore 27	Zi-OS-27/07	7.10.2007	4569628	6045756	-7,09	-7,1	3,45	qp	VKG	angrenz. Ostseegebiet
159	Zingst Offshore 28	Zi-OS-28/07	7.10.2007	4569782	6046302	-7,46	-8,0	3,15	qh	VKG	angrenz. Ostseegebiet
160	Zingst Offshore 29	Zi-OS-29/07	7.10.2007	4570012	6047005	-7,16	-7,6	3,20	qp	VKG	angrenz. Ostseegebiet
161	Zingst Offshore 30	Zi-OS-30/07	7.10.2007	4570460	6048339	-7,47	-7,5	3,50	qp	VKG	angrenz. Ostseegebiet
162	Zingst Offshore 31	Zi-OS-31/07	7.10.2007	4570570	6048891	-6,55	-6,3	3,50	qh	VKG	angrenz. Ostseegebiet
163	Zingst Offshore 32	Zi-OS-32/07	7.10.2007	4570697	6049716	-7,07	-6,9	3,80	qp	VKG	angrenz. Ostseegebiet
164	Zingst Offshore 33	Zi-OS-33/07	7.10.2007	4569689	6049868	-8,19	-8,0	4,05	qp	VKG	angrenz. Ostseegebiet
165	Zingst Offshore 34	ZI-US-34/08	19.6.2008	4532750	6041197	-13,50	-12,5	2,67	qp	VKG	angrenz. Ostseegebiet
160	Zingst Offshore 35	ZI-05-35/08 Zi-0S-36/08	19.6.2008	4534251	6041123	-11,43	-9,0	3,65	qn	VKG	angrenz. Ostseegebiet
168	Zingst Offshore 37	Zi-OS-37/08	19.6.2008	4536386	6038977	-0,99	-6.1	3 20	ah	VKG	angrenz. Ostseegebiet
169	Zingst Offshore 38	Zi-OS-38/08	19.6.2008	4545051	6038407	-8.55	-9,1	3.80	ap	VKG	angrenz. Ostseegebiet
170	Zingst Offshore 39	Zi-OS-39/08	20.6.2008	4550399	6038424	-8.31	-8,5	2.00	ap	VKG	angrenz. Ostseegebiet
171	Zingst Offshore 40	Zi-OS-40/08	20.6.2008	4562369	6038487	-5,89	-5,5	2,10	qp	VKG	angrenz. Ostseegebiet
172	Zingst Offshore 41	Zi-OS-41/08	20.6.2008	4553090	6040450	-9,15	-8,5	4,00	qp	VKG	angrenz. Ostseegebiet
173	Zingst Offshore 42	Zi-OS-42/08	19.6.2008	4540846	6041489	-7,22	-6,1	3,80	qh	VKG	angrenz. Ostseegebiet
174	Zingst Offshore 43	Zi-OS-43/08	20.6.2008	4554817	6042719	-10,40	-8,5	3,25	qp	VKG	angrenz. Ostseegebiet
175	Zingst Offshore 44	Zi-OS-44/08	20.6.2008	4555335	6052183	-11,27	-10,0	3,30	qp	VKG	angrenz. Ostseegebiet
176	Zingst Offshore 45	Zi-OS-45/08	20.6.2008	4562912	6044375	-8,17	-7,9	3,33	qp	VKG	angrenz. Ostseegebiet
177	Zingst Offshore 46	ZI-OS-46/08	20.6.2008	4565111	6048525	-8,83	-8,0	3,90	qp	VKG	angrenz. Ostseegebiet
178	Zingst Offshore 47	ZI-05-47/06 Zi-05-48/08	20.6.2008	4566743	6048481	-7,90	-7,0	4,02	qn	VKG	angrenz. Ostseegebiet
179	Zingst Olishore 40	Zi-OS-49/08	20.6.2008	4568875	6048370	-0,62	-3,3	3,40	qp	VKG	angrenz. Ostseegebiet
181	Zingst Offshore 50	Zi-OS-50/08	20.6.2008	4568338	6043670	-7,49	-4.8	3,05	dh dh	VKG	angrenz. Ostseegebiet
182	Zingst Offshore 51	Zi-OS-51/08	20.6.2008	4568448	6050279	-9.79	8,6	3.85	ap	VKG	angrenz. Ostseegebiet
183	Zingst Offshore 52	Zi-OS-52/08	20.6.2008	4567421	6051283	-9,48	-9,0	3,40	qp	VKG	angrenz. Ostseegebiet
184	Zingst Offshore 53	Zi-OS-53/08	20.6.2008	4569317	6054827	-15,90	-14,8	3,80	qp	VKG	angrenz. Ostseegebiet
185	Zingst Offshore 54	Zi-OS-54/08	19.6.2008	4544197	6045758	-14,48	-14,3	3,70	qp	VKG	angrenz. Ostseegebiet
186	Zingst Offshore 55	Zi-OS-55/08	19.6.2008	4536780	6045808	-9,53	-9,0	3,46	qh	VKG	angrenz. Ostseegebiet
187	Zingst Offshore 56	Zi-OS-56/08	20.6.2008	4559084	6040520	-7,79	-7,0	3,05	qp	VKG	angrenz. Ostseegebiet
188	Libben 1	Li-1/08	21.6.2008	4576280	6052276	-5,0	-5,0	3,60	qp	VKG	angrenz. Ostseegebiet
189	Libben 2	Li-2/08	21.6.2008	4577207	6052936	-5,2	-5,2	3,70	qn	VKG	angrenz. Ostseegebiet
190	Libben 4	LI-3/06	21.6.2008	4576000	6056701	-5,5	-5,5	3,30	qn	VKG	angrenz. Ostseegebiet
191	Libben 5	Li-4/08	21.6.2008	4576251	6053957	-9,0	-9,0	2 35	db db	VKG	angrenz. Ostseegebiet
192	Rassower Strom 1/08	RS-1/08	12.6.2008	4577848	6049966	-3.8	-3.80	6.60	ap	RKS	Rassower Strom (Bodden)
194	Rassower Strom 2/08	RS-2/08	17.6.2008	4578254	6049622	-4.8	-4.8	4.00	ap	RKS	Rassower Strom (Bodden)
195	Rassower Strom 3/08	RS-3/08	17.6.2008	4578254	6049622	-4,8	-4,8	2,00	qp	Liner	Rassower Strom (Bodden)
196	Rassower Strom 4/08	RS-4/08	17.6.2008	4578768	6049703	-7,0	-7,0	1,53	qp	RKS	Rassower Strom (Bodden)
197	Hi - Schaproder Bodden 1	Hi-SchaBo-1/07	12.10.2007	4571615	6044579	-1,11	-1,75	5,87	qh	Liner	Schaproder Bodden
198	Hi - Schaproder Bodden 2	Hi-SchaBo-2/07	19.10.2007	4572671	6045288	-1,63	-1,80	5,93	qp	Liner	Schaproder Bodden
199	Hi - Schaproder Bodden 3	Hi-SchaBo-3/07	19.10.2007	4572671	6045288	-1,63	-1,80	5,93	qp	Liner	Schaproder Bodden
200	Hiddensee 1	Hi-1/07	10.9.2007	4571693	6047198	1,76		13,00	qp	RKS	Hiddensee
201	Hiddensee 2	HI-2/07	11.9.2007	45/1454	6047094	1,74		8,50	qn	RKS	Hiddensee
202	Hiddensee 3	HI-3/07	12.0.2007	4570991	6046410	3,10		12,00	db db	RKS	Hiddensee
203	Hiddensee 5	Hi-4/07	13 9 2007	4571006	6047034	2,09		13.00	an	RKS	Hiddensee
205	Hiddensee 6	Hi-6/07	13.9.2007	4571118	6047615	2,10		12 00	an	RKS	Hiddensee
206	Hiddensee 7	Hi-7/07	13.9.2007	4571430	6047940	1.84		11.85	ap	RKS	Hiddensee
207	Hiddensee 8	Hi-8/07	14.9.2007	4571676	6047880	1,50		11,00	qh	RKS	Hiddensee
208	Hiddensee 9	Hi-9/07	14.9.2007	4572179	6047060	0,08		6,00	qp	RKS	Hiddensee
209	Hiddensee 10	Hi-10/07	14.9.2007	4571917	6047125	0,33		7,50	qp	RKS	Hiddensee
210	Hiddensee 11	Hi-11/07	15.9.2007	4571561	6046328	1,82		14,00	qp	RKS	Hiddensee
211	Hiddensee 12	Hi-12/07	15.9.2007	4571504	6046185	3,09		8,00	qp	RKS	Hiddensee
212	Hiddensee 13	Hi-13/07	15.9.2007	4571326	6045908	0,51		9,00	qp	RKS	Hiddensee
213	Hiddensee 13a	HI-13a/07	15.9.2007	4570508	6045525	1,45		6,00	qp	RKS	Hiddensee
214	Hiddensee 14	пI-14/07 Ці 15/07	16.9.2007	45/1451	0045256 6045101	0,40		8,00	db db	RKS	Hiddensee
210	Hiddensee 16	Hi-16/07	17 9 2007	4571100	6045642	0,71		0,00	чр an	RKS	Hiddensee
210	Hiddensee 17	Hi-17/07	17.9.2007	4570975	6045202	1 10		10.00	ap	RKS	Hiddensee
218	Hiddensee 18	Hi-18/07	17.9.2007	4570530	6045038	1.03		11.50	ap	RKS	Hiddensee
219	Hiddensee 19	Hi-19/07	18.9.2007	4570513	6044471	0.94		11.00	gh	RKS	Hiddensee
220	Hiddensee OSL 2	Hi-OSL-2	19.9.2007	4572049	6047092	0,25		1,00	qh	Liner	Hiddensee

Schürfe - Metadaten

Lfd- Nr.	NAME	AKBEZ	Datum	RW [GK4]	HW [GK4]	Höhe [m NHN; DGM50]	End- teufe [m]	Gebiet
1	Ahrenshoop 1 (Baugrube)	Ahoop-1	04.12.2007	4528107	6028591	2,05	4,35	Darss, Ahrenshoop
2	Zingst Schurf 1	Zi-S 1	08.05.2007	4548474	6034512	1,19	1,10	westl. Osterwald
3	Zingst Schurf 2	Zi-S 2	14.05.2007	4548551	6034700	1,00	1,25	westl. Osterwald
4	Zingst Schurf 3	Zi-S 3	14.05.2007	4548323	6034748	1,05	1,30	westl. Osterwald
5	Zingst Schurf 4	Zi-S 4	15.05.2007	4550175	6034747	0,72	1,15	zentr. Osterwald
6	Werder Inseln 1	Werl-1	10.07.2007	4560950	6034717	1,90	1,50	Großer Werder, Strandwall
7	Werder Inseln 2	Werl-2	08.07.2007	4560930	6034759	0,97	0,40	Großer Werder, Riege
8	Werder Inseln 3	Werl-3	12.07.2007	4560915	6035124	0,42	1,30	Großer Werder, Strandwall
9	Werder Inseln 4	Werl-4	08.07.2007	4563104	6034867	0,11	0,40	Kleine Werder
10	Hiddensee 1	Hi-OSL-1	14.09.2007	4571266	6047570	3,58	2,30	Hiddensee,Dünenheide
11	Hiddensee 2	Hi-OSL-3/4	19.09.2007	4569854	6042445	0,62	0,60	Hiddensee, Gellen Leuchtturm
12	Hiddensee 3	Hi-OSL-5/6	19.09.2007	4570892	6045500	1,28	1,00	Hiddensee, nördl. Neuendorf
13	Hiddensee 4	Hi-OSL-7	19.09.2007	4571939	6050034	0,10	0,50	Hiddensee, nördl. Vitte
14	Hiddensee 5	Hi-OSL-8/9	19.09.2007	4571735	6046216	1,51	1,00	Hiddensee, südl. Heiderose

Geologische Schnitte $^{\circ}$ Metadaten verwendeter Bohrungen

Abbildung	Profilname	Nr.	AKBEZ	Name	Datenhalter	RW [GK4]	HW [GK4]
Abb. 4.4	N-S_Grabow-GraueWiese	1	Gra-8	Grabow 8	eigene Bohrung	4553898	6030549
Abb. 4.4	N-S_Grabow-GraueWiese	2	Gra-9	Grabow 9	eigene Bohrung	4553804	6029882
Abb. 4.4	N-S_Grabow-GraueWiese	3	Gra-10	Grabow 10	eigene Bohrung	4553370	6029196
Abb. 4.4	N-S_Grabow-GraueWiese	4	Gra-11	Grabow 11	eigene Bohrung	4552841	6028887
Abb. 4.4	N-S_Grabow-GraueWiese	5	Gra-12	Grabow 12	eigene Bohrung	4552184	6028463
Abb. 4.4	N-S_Grabow-GraueWiese	6	Gra-13	Grabow 13	eigene Bohrung	4551976	6028266
Abb. 4.4	N-S_Grabow-GraueWiese	7	Gra-14	Grabow 14	eigene Bohrung	4551784	6028178
Abb. 4.4	N-S_Grabow-GraueWiese	8	Gra-15	Grabow 15	eigene Bohrung	4551598	6028077
Abb. 4.4	N-S_Grabow-GraueWiese	9	Gra-16	Grabow 16	eigene Bohrung	4551413	6027965
Abb. 4.4	N-S_Grabow-GraueWiese	10	GrWi-1	Graue Wiese 1	eigene Bohrung	4551138	6027793
Abb. 4.4	N-S_Grabow-GraueWiese	11	GrWi-11	Graue Wiese 11	eigene Bohrung	4551117	6027707
Abb. 4.4	N-S_Grabow-GraueWiese	12	GrWi-2	Graue Wiese 2	eigene Bohrung	4551105	6027600
Abb. 4.4	N-S_Grabow-GraueWiese	13	GrWi-6	Graue Wiese 6	eigene Bohrung	4551088	6027522
Abb. 4.4	N-S_Grabow-GraueWiese	14	GrWi-3	Graue Wiese 3	eigene Bohrung	4551070	6027437
Abb. 4.4	N-S_Grabow-GraueWiese	15	GrWi-7	Graue Wiese 7	eigene Bohrung	4551046	6027348
Abb. 4.4	N-S_Grabow-GraueWiese	16	GrWi-8	Graue Wiese 8	eigene Bohrung	4551030	6027289
Abb. 4.4	N-S_Grabow-GraueWiese	17	GrWi-13	Graue Wiese 13	eigene Bohrung	4551030	6027279
Abb. 4.4	N-S_Grabow-GraueWiese	18	GrWi-4	Graue Wiese 4	eigene Bohrung	4551012	6027226
Abb. 4.4	N-S_Grabow-GraueWiese	19	GrWi-5	Graue Wiese 5	eigene Bohrung	4551003	6027090
Abb. 4.4	N-S_Grabow-GraueWiese	20	GrWi-9	Graue Wiese 9	eigene Bohrung	4550971	6026932
Abb. 4.4	N-S_Grabow-GraueWiese	21	GrWi-10	Graue Wiese 10	eigene Bohrung	4550962	6026776
Abb. 4.5	N-S_Darss	1	Zi-OS-55/08	Zingst Offshore 55	eigene Bohrung	4536780	6045808
Abb. 4.5	N-S_Darss	2	Zi-OS-36/08	Zingst Offshore 36	eigene Bohrung	4538359	6041106
Abb. 4.5	N-S_Darss	3	Zi-OS-37/08	Zingst Offshore 37	eigene Bohrung	4536386	6038977
Abb. 4.5	N-S_Darss	4	Zi-OS-22/07	Zingst Offshore 22	eigene Bohrung	4539841	6036671
Abb. 4.5	N-S_Darss	5	Zi-40/08	Zingst 40	eigene Bohrung	4537998	6035331
Abb. 4.5	N-S_Darss	6	Da-9/08	Darss 9	eigene Bohrung	4538358	6034734
Abb. 4.5	N-S_Darss	7	Da-8/08	Darss 8	eigene Bohrung	4538698	6034131
Abb. 4.5	N-S_Darss	8	Da-10/08	Darss 10	eigene Bohrung	4537401	6033952
Abb. 4.5	N-S_Darss	9	Da-7/08	Darss 7	eigene Bohrung	4538915	6033033
Abb. 4.5	N-S_Darss	10	Da-6/08	Darss 6	eigene Bohrung	4539163	6032001
Abb. 4.5	N-S_Darss	11	B2/79	Urlauberrestaurant Born	Universität Greifswald	4534776	6028827
Abb. 4.6	NS-Profil_Ostzingst	1	Zi-OS-25/07	Zingst Offshore 25	eigene Bohrung	4555318	6052513
Abb. 4.6	NS-Profil_Ostzingst	2	Zi-OS-44/08	Zingst Offshore 44	eigene Bohrung	4555335	6052183
Abb. 4.6	NS-Profil_Ostzingst	3	Zi-OS-16/07	Zingst Offshore 16	eigene Bohrung	4555379	6044722
Abb. 4.6	NS-Profil_Ostzingst	4	Zi-OS-43/08	Zingst Offshore 43	eigene Bohrung	4554817	6042719
Abb. 4.6	NS-Profil_Ostzingst	5	Zi-OS-10/07	Zingst Offshore 10	eigene Bohrung	4554590	6040375
Abb. 4.6	NS-Profil_Ostzingst	6	Zi-OS-9/07	Zingst Offshore 9	eigene Bohrung	4554621	6037120
Abb. 4.6	NS-Profil_Ostzingst	7	ZI-OS-5/08	Zingst Offshore 5/08	eigene Bohrung	4554168	6036071
Abb. 4.6	NS-Profil_Ostzingst	8	∠I-OS-4/08	Zingst Offshore 4/08	eigene Bohrung	4554193	6035754
Abb. 4.6	NS-Profil_Ostzingst	9	ZI-OS-3/08	Zingst Offshore 3/08	eigene Bohrung	4554224	6035487
Abb. 4.6	NS-Profil_Ostzingst	10	∠I-OS-2/08	Zingst Offshore 2/08	eigene Bohrung	4554168	6035250
Abb. 4.6	NS-Profil_Ostzingst	11	∠I-OS-1/08	Zingst Offshore 1/08	eigene Bohrung	4554185	6035000
Abb. 4.6	NS-Profil_Ostzingst	12	∠i-1	Zingst 1	eigene Bohrung	4554438	6034355
Abb. 4.6	NS-Profil_Ostzingst	13	∠1-2	Zingst 2	eigene Bohrung	4554425	6034133
Abb. 4.6	NS-Profil_Ostzingst	14	∠i-3	∠ingst 3	eigene Bohrung	4554405	6033893
Abb. 4.6	NS-Profil_Ostzingst	15	∠i-4	∠ingst 4	eigene Bohrung	4554346	6033586
Abb. 4.6	NS-Profil_Ostzingst	16	∠1-5	Zingst 5	eigene Bohrung	4554323	6033281
Abb. 4.6	NS-Profil_Ostzingst	17	∠1-6	∠ingst 6	eigene Bohrung	4554299	6033046
Abb 46	NS-Profil Ostzinast	18	Gra-1	Grahow 1	eigene Bohrung	4554303	6032726

Abbildung	Profilname	Nr	AKRE7	Name	Datenhalter	RW [GK4]	HW [GK4]
Abb 4.6	NS-Profil Ostzingst	19	Gra-2	Grabow 2	eigene Bohrung	4554273	6032567
Abb. 4.6	NS-Profil Ostzingst	20	Gra-3	Grabow 2	eigene Bohrung	4554238	6032378
Abb 4.6	NS-Profil Ostzingst	21	Gra-4	Grabow 4	eigene Bohrung	4554212	6032196
Abb 4.6	NS-Profil Ostzingst	22	Gra-5	Grabow 5	eigene Bohrung	4554191	6032019
Abb. 4.6	NS-Profil Ostzingst	23	Gra-6	Grabow 6	eigene Bohrung	4554148	6031812
Abb. 4.6	NS-Profil Ostzingst	24	Gra-7	Grabow 7	eigene Bohrung	4554102	6031584
Abb. 4.6	NS-Profil Ostzingst	25	Gra-8	Grabow 8	eigene Bohrung	4553898	6030549
Abb. 4.6	NS-Profil Ostzingst	26	Gra-9	Grabow 9	eigene Bohrung	4553804	6029882
Abb. 4.6	NS-Profil Ostzingst	27	Gra-10	Grabow 10	eigene Bohrung	4553370	6029196
Abb. 4.6	NS-Profil Ostzingst	28	Gra-11	Grabow 11	eigene Bohrung	4552841	6028887
Abb. 4.6	NS-Profil Ostzingst	29	Gra-12	Grabow 12	eigene Bohrung	4552184	6028463
Abb. 4.6	NS-Profil Ostzingst	30	Gra-13	Grabow 13	eigene Bohrung	4551976	6028266
Abb. 4.6	NS-Profil_Ostzingst	31	Gra-14	Grabow 14	eigene Bohrung	4551784	6028178
Abb. 4.6	NS-Profil_Ostzingst	32	Gra-15	Grabow 15	eigene Bohrung	4551598	6028077
Abb. 4.6	NS-Profil_Ostzingst	33	Gra-16	Grabow 16	eigene Bohrung	4551413	6027965
Abb. 4.6	NS-Profil_Ostzingst	34	GrWi-1	Graue Wiese 1	eigene Bohrung	4551138	6027793
Abb. 4.6	NS-Profil_Ostzingst	35	GrWi-11	Graue Wiese 11	eigene Bohrung	4551117	6027707
Abb. 4.6	NS-Profil_Ostzingst	36	GrWi-2	Graue Wiese 2	eigene Bohrung	4551105	6027600
Abb. 4.6	NS-Profil_Ostzingst	37	GrWi-6	Graue Wiese 6	eigene Bohrung	4551088	6027522
Abb. 4.6	NS-Profil_Ostzingst	38	GrWi-3	Graue Wiese 3	eigene Bohrung	4551070	6027437
Abb. 4.6	NS-Profil_Ostzingst	39	GrWi-7	Graue Wiese 7	eigene Bohrung	4551046	6027348
Abb. 4.6	NS-Profil_Ostzingst	40	GrWi-8	Graue Wiese 8	eigene Bohrung	4551030	6027289
Abb. 4.6	NS-Profil_Ostzingst	41	GrWi-13	Graue Wiese 13	eigene Bohrung	4551030	6027279
Abb. 4.6	NS-Profil_Ostzingst	42	GrWi-4	Graue Wiese 4	eigene Bohrung	4551012	6027226
Abb. 4.6	NS-Profil_Ostzingst	43	GrWi-5	Graue Wiese 5	eigene Bohrung	4551003	6027090
Abb. 4.6	NS-Profil_Ostzingst	44	GrWi-9	Graue Wiese 9	eigene Bohrung	4550971	6026932
Abb. 4.6	NS-Profil_Ostzingst	45	GrWi-10	Graue Wiese 10	eigene Bohrung	4550962	6026776
Abb. 4.9	NS-Profil_WerderInseln	1	ZI-OS-24/07	Zingst Offshore 24	eigene Bohrung	4561122	6049920
Abb. 4.9	NS-Profil_WerderInsein	2	ZI-OS-46/08	Zingst Offshore 46	eigene Bonrung	4565111	6048525
Abb. 4.9	NS-Profil_WerderInsein	3	ZI-OS-23/07	Zingst Offshore 23	eigene Bonrung	4564068	6046034
ADD. 4.9	NS-Profil_werderinsein	4	ZI-US-45/08	Zingst Offshore 45	eigene Bonrung	4562912	6044375
ADD. 4.9	NS-PIOIII_WerderInsein	5	ZI-US-15/07	Zingst Offshore 11	eigene Bohrung	4502555	6041561
ADD. 4.9	NS-PIOIII_WerderInsein	0	ZI-05-11/07	Zingst Offshore 40	eigene Bohrung	4503011	6029497
Abb. 4.9	NS Profil WerderInsein	/ 8	ZI-03-40/08	Zingst Offshore 6/08	eigene Bohrung	4502509	6036220
Abb. 4.9	NS Profil WerderInsein	0	21-03-0/08 Worl OS 7	Werder Inseln 7 Offshore	eigene Bohrung	4560874	6035570
Abb. 4.9	NS Profil WerderInsein	10	Werl 6	Werder Inseln 6	eigene Bohrung	4560021	6035155
Abb. 4.9	NS-Profil WerderInseln	11	Werl-3	Werder Inseln 3	eigene Bohrung	4560928	6034758
Abb. 4.9	NS-Profil WerderInsein	12	Werl-1	Werder Inseln 3	eigene Bohrung	4560948	6034717
Abb 4.9	NS-Profil WerderInseln	13	Werl-OS-15	Werder Inseln 15 Offshore	eigene Bohrung	4561137	6034275
Abb 4.9	NS-Profil WerderInseln	14	Werl-OS-14	Werder Inseln 14 Offshore	eigene Bohrung	4561476	6033774
Abb. 4.9	NS-Profil WerderInseln	15	Werl-OS-13	Werder Inseln 13 Offshore	eigene Bohrung	4561579	6033053
Abb. 4.9	NS-Profil WerderInseln	16	Kbh-1/08	Kinnbackenhagen 1	eigene Bohrung	4561921	6031984
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	1	Da-10/08	Darss 10	eigene Bohrung	4537401	6033952
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	2	Da-8/08	Darss 8	eigene Bohrung	4538698	6034131
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	3	Zi-28/08	Zingst 28	eigene Bohrung	4540426	6034214
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	4	Zi-41/08	Zingst 41	eigene Bohrung	4541182	6034035
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	5	Zi-36/08	Zingst 36	eigene Bohrung	4541301	6033965
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	6	Zi-34/08	Zingst 34	eigene Bohrung	4542383	6034073
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	7	Zi-32/08	Zingst 32	eigene Bohrung	4542779	6034149
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	8	1/65	Saegewerk Zingst	Universität Greifswald	4543900	6034394
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	9	Mbl. 1542 /25	Zingst 25	Universität Greifswald	4545659	6034209
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	10	2/75	Zentrag-Ferienheim	Universität Greifswald	4525989	6024200
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	11	Zi-23	Zingst 23	eigene Bohrung	4546128	6033772
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	12	Mbl. 1542 /18	Zingster Strom 18	Universität Greifswald	4543340	6031109
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	13	Zi-21	Zingst 21	eigene Bohrung	4547225	6033970
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	14	∠i-17	∠ingst 17	eigene Bohrung	4547845	6033522
Abb. 4.10	wo-Protil_Darss-Zingst-Windwatt	15	∠i-19	∠ingst 19	eigene Bohrung	4547993	6033585
Abb. 4.10	WO-Protil_Darss-Zingst-Windwatt	16	ZI-18	Zingst 18	eigene Bohrung	4548283	6033491
ADD. 4.10	wo-Protil_Darss-Zingst-Windwatt	17	ZIUW-3	Zingst-Osterwald 3	eigene Bohrung	4549771	6033686
ADD. 4.10	WO Profil Darss-Zingst-Windwatt	18	210W-10	Zingst-Osterwald 10	eigene Bonrung	4551775	6032903
ADD. 4.10		19	0/95	vvonn- und Geschaettshaus Zingst	Universität Greifswald	4544970	6034730
ADD. 4.10	WO-Profil Darss-Zingst-Windwatt	20	23 7:10	لک Zinget 12	oniversitat Greifswald	4552679	6022264
Abb 4.10	WO Profil Darse Zingst-Windwatt	21	ZI-1Z 7:11	Zingst 12		40000/3	6022500
Abb. 4.10	WO-Profil Darss Zingst-WindWatt	22	ZI-11 7i_0	Zingst 9		4000010	6033309
Abb 4 10	WO-Profil Darss Zingst Windwatt	23	7i_4	Zinget 4		455/3/6	6033586
Abb 4 10	WO-Profil Darss-Zingst-Windwatt	24	727	797	Universität Greifewald	4554750	6033850
Abb 4 10	WO-Profil Darss-Zingst-Windwatt	20	72	72	Universität Greifewald	4552182	6033000
Abb 4 10	WO-Profil Darss-Zingst-Windwatt	27	718	718	Universität Greifswald	4557658	6033816
Abb 4 10	WO-Profil Darss-Zingst-Windwatt	28	717	717	Universität Greifswald	4558985	6033740
Abb. 4 10	WO-Profil Darss-Zingst-Windwatt	29	Z15	Z15	Universität Greifswald	4558990	6033370
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	30	Mbl. 1543 /10	Pramort 10	Universität Greifswald	4559949	6033844
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	31	Werl-1	Werder Inseln 1	eigene Bohrung	4560948	6034717
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	32	Werl-9	Werder Inseln 9	eigene Bohrung	4562436	6034859
Abb. 4.10	WO-Profil Darss-Zingst-Windwatt	33	Weri-12	Werder Inseln 12	eigene Bohrung	4563104	6034867

Geologische Schnitte - Metadaten verwendeter Bohrungen Fortsetzung

Abbildung	Profilname	Nr.	AKBEZ	Name	Datenhalter	RW [GK4]	HW [GK4]
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	34	Bock-1	Bock 1	eigene Bohrung	4564898	6035091
Abb. 4.10	WO-Profil_Darss-Zingst-Windwatt	35	Bock-5	Bock 5	eigene Bohrung	4568106	6035666
Abb. 4.13	WO-Profil_Hiddensee	1	Zi-OS-46/08	Zingst Offshore 46	eigene Bohrung	4565111	6048525
Abb. 4.13	WO-Profil_Hiddensee	2	Zi-OS-47/08	Zingst Offshore 47	eigene Bohrung	4566743	6048481
Abb. 4.13	WO-Profil_Hiddensee	3	Zi-OS-48/08	Zingst Offshore 48	eigene Bohrung	4567603	6048439
Abb. 4.13	WO-Profil_Hiddensee	4	Zi-OS-49/08	Zingst Offshore 49	eigene Bohrung	4568875	6048370
Abb. 4.13	WO-Profil_Hiddensee	5	Zi-OS-30/07	Zingst Offshore 30	eigene Bohrung	4570460	6048339
Abb. 4.13	WO-Profil_Hiddensee	6	Hi-6/07	Hiddensee 6	eigene Bohrung	4571118	6047615
Abb. 4.13	WO-Profil_Hiddensee	7	Hi-7/07	Hiddensee 7	eigene Bohrung	4571430	6047940
Abb. 4.13	WO-Profil_Hiddensee	8	Hi-8/07	Hiddensee 8	eigene Bohrung	4571676	6047880
Abb. 4.13	WO-Profil_Hiddensee	9	Hi-10/07	Hiddensee 10	eigene Bohrung	4571917	6047125
Abb. 4.13	WO-Profil_Hiddensee	10	Hi-9/07	Hiddensee 9	eigene Bohrung	4572179	6047060
Abb. 4.14	SN-Profil_Hiddensee	1	Hi 8	Hiddensee 8 (Südspitze Gellen)	Universität Greifswald	4569190	6036923
Abb. 4.14	SN-Profil_Hiddensee	2	HU 4/53	HU 4/53	Universität Greifswald	4569500	6039400
Abb. 4.14	SN-Profil_Hiddensee	3	Hi 9	Hiddensee 9 (Karkensee)	Universität Greifswald	4569297	6040636
Abb. 4.14	SN-Profil_Hiddensee	4	HU 3/52	HU 3/52	Universität Greifswald	4569400	6041875
Abb. 4.14	SN-Profil_Hiddensee	5	Hi 12	Hiddensee 12 (südlich Schwarzer Peter)	Universität Greifswald	4570049	6042830
Abb. 4.14	SN-Profil_Hiddensee	6	Hi 5	Hiddensee 5 (Süderhaus bei Plogshagen)	Universität Greifswald	4570404	6043996
Abb. 4.14	SN-Profil_Hiddensee	7	Hi-19/07	Hiddensee 19	eigene Bohrung	4570513	6044471
Abb. 4.14	SN-Profil_Hiddensee	8	Hi-18/07	Hiddensee 18	eigene Bohrung	4570530	6045038
Abb. 4.14	SN-Profil_Hiddensee	9	Hi-13a/07	Hiddensee 13a	eigene Bohrung	4570508	6045525
Abb. 4.14	SN-Profil_Hiddensee	10	Hi 05/10	Hi 05/10	Universität Greifswald	4570628	6045832
Abb. 4.14	SN-Profil_Hiddensee	11	Hi 05/12	Hi 05/12	Universität Greifswald	4570869	6046248
Abb. 4.14	SN-Profil_Hiddensee	12	Hi-4/07	Hiddensee 4	eigene Bohrung	4570787	6046419
Abb. 4.14	SN-Profil_Hiddensee	13	Hi-3/07	Hiddensee 3	eigene Bohrung	4570991	6046717
Abb. 4.14	SN-Profil_Hiddensee	14	Hi-5/07	Hiddensee 5	eigene Bohrung	4571006	6047034
Abb. 4.14	SN-Profil_Hiddensee	15	Hi-6/07	Hiddensee 6	eigene Bohrung	4571118	6047615
Abb. 4.14	SN-Profil_Hiddensee	16	Hi-7/07	Hiddensee 7	eigene Bohrung	4571430	6047940
Abb. 4.14	SN-Profil_Hiddensee	17	Hi 27/63	Hi 27/63	Universität Greifswald	4571374	6048358
Abb. 4.14	SN-Profil_Hiddensee	18	Hi 50/82	Hi 50/82	Universität Greifswald	4571350	6049100
Abb. 4.14	SN-Profil_Hiddensee	19	Hi 29/6	Hi 29/6	Universität Greifswald	4571510	6049500
Abb. 4.14	SN-Profil_Hiddensee	20	Hi AM 2/94	Hi AM 2/94	Universität Greifswald	4571460	6049850
Abb. 4.14	SN-Profil_Hiddensee	21	Hi 14	Hiddensee 14 (Harter Ort)	Universität Greifswald	4571405	6050448
Abb. 4.14	SN-Profil_Hiddensee	22	Hy KHdd -/-	Hy KHdd -/-	LUNG M-V	4571300	6051200
Abb. 4.14	SN-Profil_Hiddensee	23	Hy KHdd -/904	Hy KHdd -/904	LUNG M-V	4571320	6051260
Abb. 4.14	SN-Profil_Hiddensee	24	Hy KHdd -/951	Hy KHdd -/951	LUNG M-V	4571490	6051410

Geologische Schnitte - Metadaten verwendeter Bohrungen Fortsetzung

Tauchrobotereinsätze - Metadaten und Beobachtungen

ID	Stations- bezeichnung	Schiffs- Expedition	Datum	Position [RW / HW; GK4]	Beobachtung
HYB-1	IOW-Nr. 339510	40/06/27	04.11.2006	4545276 / 6036789	Keine Sicht, Wasser völlig getrübt.
HYB-2	IOW-Nr. 339520	40/06/27	04.11.2006	4546982 / 6037278	Sichtweite 0,3 m, Sandrippeln. Nach Sidescanauswertung lokalisierte Sedimentplatte nicht gefunden.
HYB-3	IOW-Nr. 339530	40/06/27	04.11.2006	4546981 / 6037384	Sedimentplatte und Kante, dunkles geschichtetes Sediment, vermutlich Torf. Sichtweite gering, wechselnd 0 bis 0,5 m. Seegang geht bis Meereboden, schaukelnde Bewegung des Hyball erschwert Steuerung. Bei Greiferkontakt mit Sediment werden Fasern gelöst.
HYB-4	IOW-Nr. 339540	40/06/27	04.11.2006	4552920 / 6038951	Keine Sicht, am Meeresboden völlig dunkel.
HYB-5	IOW-Nr. 341680	07PE_07_05	15.02.2007	4545366 / 6036363	Torfaufragung (etwa 0,5 m hoch), geschichtet, in mehreren Stufen abfallend, an der Basis Muschelschill. In der Umgebung Sandrippeln, kleinere Torffläche, etwa 1 m Durchmesser
HYB-6	IOW-Nr. 341690	07PE_07_05	15.02.2007	4547388 / 6039025	Sandrippeln, dann etwa 20 m breiter Torfstreifen (alter Flusslauf), an beiden Seiten Schichten leicht schräg nach oben, oben teilweise mit Sandrippeln bedeckt
HYB-7	IOW-Nr. 341700	07PE_07_05	15.02.2007	4547432 / 6038958	unter dem Schiff: dünne Schicht Sandrippeln, Torfplatte in den Rippeltälern sichbar, daneben geschichtete Torfkante (alter Flusslauf)

Anhang B - Geophysikalische Messungen

Profilbezeichnung	Ausfahrt	Datum	Profillänge [km]	Profilbeginn [RW / HW; GK4]	Profilende [RW / HW; GK4]
SSS_Zingst_03-11-2006	40/06/27	03.11.2006	42,0	4541555 / 6037937	4556447 / 6042840
SSS_Zingst_04-11-2006	40/06/27	04.11.2006	53,0	4553970 / 6038950	4544584 / 6037620
SSS_Zingst_15-02-2007	07PE_07_05	15.02.2007	14,0	4548198 / 6040179	4545236 / 6036615

Side-Scan-Sonarprofile - Metadaten

Sedimentecholotprofile - Metadaten

Profilbezeichnung	Ausfahrt	Datum	Profillänge [km]	Profilbeginn [RW / HW; GK4]	Profilende [RW / HW; GK4]
Zi_S-N_1/07	07PE_07_23	05.10.2007	8,665	4547354 / 6037760	4547135 / 6046418
Zi_NW-SE_2/07	07PE_07_23	05.10.2007	17,590	4547061 / 6046049	4562440 / 6041438
Zi_NE-SW_3/07	07PE_07_23	06.10.2007	13,575	4547419 / 6047675	4539774 / 6036548
Zi_W-E_4/07	07PE_07_23	06.10.2007	14,920	4539817 / 6036556	4554432 / 6036932
Zi_S-N_5/07	07PE_07_23	06.10.2007	15,910	4554484 / 6036984	4555220 / 6052783
Zi_W-E_6/07	07PE_07_23	06.10.2007	3,075	4555297 / 6052895	4558365 / 6053106
Zi_NW-SE_7/07	07PE_07_23	06.10.2007	9,030	4558535 / 6053034	4563960 / 6045829
Zi_ESE-WNW_8/07	07PE_07_23	07.10.2007	6,295	4560927 / 6049748	4555184 / 6052322
Zi_SW-NE_9/07	07PE_07_23	07.10.2007	3,245	4555119 / 6052335	4558280 / 6053072
Zi_W-O_10/07	07PE_07_23	07.10.2007	11,890	4558562 / 6053112	4570450 / 6053183
Zi_N-S_11/07	07PE_07_23	07.10.2007	8,430	4570364 / 6052994	4569312 / 6044803
Zi_W-E_1/08	07PE_08_27	04.03.2008	7,180	4531933 / 6040954	4539112 / 6040811
Zi_NE-SW_2/08	07PE_08_27	04.03.2008	3,920	4539112 / 6040811	4535862 / 6038623
Zi_W-E_3/08	07PE_08_27	04.03.2008	26,750	4535862 / 6038623	4562611 / 6038328
Zi_S-N_4/08	07PE_08_27	04.03.2008	2,100	4562643 / 6038339	4562933 / 6040417
Zi_E-W_5/08	07PE_08_27	04.03.2008	22,105	4562922 / 6040456	4540820 / 6040170
Zi_S-N_6/08	07PE_08_27	05.03.2008	1,245	4540812 / 6040181	4540926 / 6041419
Zi_W-E_7/08	07PE_08_27	05.03.2008	21,790	4540939 / 6041421	4562728 / 6041576
Zi_S-N_8/08	07PE_08_27	05.03.2008	6,920	4562749 / 6041586	4563597 / 6048453
Zi_W-E_9/08	07PE_08_27	05.03.2008	6,580	4563630 / 6048449	4570206 / 6048190
Zi_SE-NW_10/08	07PE_08_27	05.03.2008	15,100	4570206 / 6048190	4574260 / 6056459
Li_NW-SE_11/08	07PE_08_27	05.03.2008	4,765	4574280 / 6056404	4575863 / 6051908
Li_SW-NE_12/08	07PE_08_27	05.03.2008	1,915	4575895 / 6051912	4577480 / 6052988
Li_SE-NW_13/08	07PE_08_27	05.03.2008	5,010	4577501 / 6053010	4575497 / 6057602
Li_SW-NE_14/08	07PE_08_27	05.03.2008	1,695	4575491 / 6057632	4577035 / 6058333
Li_NW-SE_15/08	07PE_08_27	05.03.2008	3,920	4577108 / 6058358	4577999 / 6054538
Li_NE-SW_16/08	07PE_08_27	05.03.2008	3,215	4577991 / 6054488	4574970 / 6053383
Zi_E-W_17/08	07PE_08_27	06.03.2008	30,920	4564359 / 6046048	4533441 / 6045497

Georadarprofile - Metadaten

Profilbezeichnung	Arbeitsgebiet	Datum	GPS Profillänge [km]	Triggerrad Profillänge [km]	Profilbeginn [RW / HW; GK4]	Profilende [RW / HW; GK4]
GrWi_N-S_1_100MHz	Graue Wiese	05.10.2006	0,435	0,432	4551155 / 6027879	4551066 / 6027450
GrWi_N-S_2_100MHz	Graue Wiese	05.10.2006	0,975	(TrRad gesperrt)	4551053 / 6027416	4550836 / 6026476
GrWi_S-NO_3_100MHz	Graue Wiese	05.10.2006	1,475	(TrRad gesperrt)	4550832 / 6026476	4551442 / 6027815
GrWi_W-O_1_Profil4_100MHz	Graue Wiese	05.10.2006	0,450	(TrRad gesperrt)	4550879 / 6027777	4551325 / 6027741
GrWi_W-O_2_Profil5_100MHz	Graue Wiese	05.10.2006	0,375	(TrRad gesperrt)	4550883 / 6027509	4551255 / 6027430
GrWi_N-S_1_200MHz	Graue Wiese	05.10.2006	0,145	0,145	4551151 / 6027909	4551119 / 6027764
GrWi_N-S_2_200MHz	Graue Wiese	05.10.2006	0,305	0,300	4551113 / 6027745	4551057 / 6027447
GrWi_N-S_3_200MHz	Graue Wiese	05.10.2006	0,455	(TrRad gesperrt)	4551038 / 6027416	4550955 / 6026969
GrWi_N-S_4_200MHz	Graue Wiese	05.10.2006	0,160	0,156	4550951 / 6026963	4550932 / 6026812
GrWi_N-S_5_200MHz	Graue Wiese	05.10.2006	0,375	0,375	4550973 / 6026795	4550819 / 6026459
W-O_100MHz_GrWi1_14-17uhr	Graue Wiese	04.06.2007	0,760	0,736	4550835 / 6027314	4551575 / 6027305
p1007 (SW-NO)	Hiddensee	18.09.2007	0,735	0,700	4570825 / 6046185	4571171 / 6046789
p1071 (ONO-WSW)	Hiddensee	18.09.2007	0,940	0,880	4571603 / 6046542	4570738 / 6046303
p2107 (N-S)	Hiddensee	18.09.2007	0,165	0,130	4570738 / 6046303	4570702 / 6046146
p2207 (W-O)	Hiddensee	18.09.2007	0,120	0,125	4570713 / 6046184	4570823 / 6046181
p2307 (E-W)	Hiddensee	18.09.2007	0,305	0,280	4571179 / 6046752	4570904 / 6046753
p2407 (N-S)	Hiddensee	18.09.2007	0,200	0,200	4570904 / 6046750	4570843 / 6046560
p2507 (W-O)	Hiddensee	18.09.2007	0,580	0,570	4570843 / 6046573	4571416 / 6046505
p2607 (S-N)	Hiddensee	18.09.2007	0,500	0,470	4571441 / 6046511	4571625 / 6046628
p2707 (S-N)	Hiddensee	18.09.2007	0,800	0,780	4571607 / 6046640	4571787 / 6047383
p2807 (N-S)	Hiddensee	18.09.2007	0,220	0,220	4571787 / 6047383	4571738 / 6047178
p2907 (O-W)	Hiddensee	18.09.2007	0,220	0,155	4571736 / 6047186	4571582 / 6047223
p3007 (SO-NW)	Hiddensee	18.09.2007	0,095	0,072	4571582 / 6047225	4571547 / 6047298
p507 (SO-NW)	Hiddensee	19.09.2007	0,290	0,280	4571171 / 6045602	4570943 / 6045778
p607 (W-O)	Hiddensee	19.09.2007	0,925	0,760	4570671 / 6045563	4571502 / 6045229
p707 (N-S)	Hiddensee	19.09.2007	0,765	0,750	4570425 / 6045481	4570338 / 6044733
p807 (W-O)	Hiddensee	19.09.2007	0,740	0,760	4570432 / 6045058	4571134 / 6045177
p3107 (NO-SW)	Hiddensee	19.09.2007	0,360	0,350	4571045 / 6045852	4570852 /6045564
p3207 (SW-NO)	Hiddensee	19.09.2007	0,530	0,350	4570855 / 6045567	4571330 / 6045794
p3307 (NO-SW)	Hiddensee	19.09.2007	0,350	0,310	4570943 / 6045778	4570670 / 6045564
p3407 (NO-SW)	Hiddensee	19.09.2007	0,315	0,300	4570671 / 6045571	4570425 / 6045479
p6071 (O-W)	Hiddensee	19.09.2007	1,050	0,380 (gesperrt)	4571505 / 6045225	4570545 / 6045389
p60722 (W-O)	Hiddensee	19.09.2007	0,313	0,250	4570731 / 6045457	4571040 / 6045506
p60723 (O-W)	Hiddensee	19.09.2007	0,240	0,240	4571039 / 6045506	4570809 / 6045437
p60724 (SW-NO)	Hiddensee	19.09.2007	0,150	0,160	4570806 / 6045434	4570916 / 6045531
p60725 (NO-SW)	Hiddensee	19.09.2007	0,125	0,110	4570968 / 6045523	4570882 / 6045441
p60726 (SO-NW)	Hiddensee	19.09.2007	0,160	0,155	4570882 / 6045440	4570752 / 6045537

Anhang C - Laborergebnisse

Korngrößenverteilungen, Glühverlust

Prob- Nr.	Bohrung [AKBEZ]	Teufe [m GOK]	Fazies	GV [Gew-%]	T [Gew-%]	U [Gew-%]	S [Gew-%]	fS [Gew-%]	mS [Gew-%]	gS [Gew-%]	G [Gew-%]	Md [mm]	So
14	Zi-9	0,50 - 0,60	Flachw	0,41	1,02	2,72	96,26	76,36	19,3	0,6	0	0,147	1,282
15	Zi-9	1,50 - 1,60	Flachw	0,87	1,42	9,75	88,83	76,35	12,32	0,16	0	0,129	1,330
16	Zi-9	2,00 - 2,10	Flachw	0,37	0,91	1,54	97,55	66,5	30,39	0,66	0	0,167	1,286
17	Zi-9	2,30 - 2,40	Flachw	0,49	1,13	2,76	96,11	84,35	11,64	0,12	0	0,134	1,263
18	ZI-9 Zi 0	2,60 - 2,70	Stillw	0,7	1,37	8,35	90,28	83,99	6,23	0,06	0	0,115	1,297
20	ZI-9 Zi-9	3,50 - 3,60	Stillw	3 44	2,34	20,90 54 41	42 95	41 95	5,91	0	0	0,069	1,300
21	Zi-9	5.30 - 5.40	Stillw	5.1	1.8	22.45	75.75	59.32	16.43	0	0	0,000	1.617
23	Zi-9	6,00 - 6,10	glazi-limn. /fluv.	0,6	2,42	19,12	78,46	61,51	16,72	0,23	0	0,115	1,552
47	Zi-16	4,50 - 4,60	glazi-limn. /fluv.	0,59	1	1,98	97,02	63,89	32,06	1,07	0	0,163	1,381
48	Zi-16	6,00 - 6,10	glazi-limn. /fluv.	0,42	1,15	5,13	93,72	65,54	27,6	0,58	0	0,153	1,382
135	Zi-OW-4	8,00 - 8,10	glazi-limn. /fluv.	0,51	1,86	3,38	94,76	68,01	26,05	0,7	0	0,155	1,329
136	Zi-OW-4	8,70 - 8,80	glazi-limn. /fluv.	1,8	3,79	76,09	20,12	20,12	0	0	0	0,031	1,764
137	ZI-OVV-4	8,90 - 9,00	glazi-limnisch	2,59	6,98	89,6	3,42	3,42	70.0	16.26	0	0,017	1,764
173	Werl-1	0,20 - 0,35	Strand	0,4	0,32	0.08	90,04	2 42	88.34	9.08	0 08	0,301	1 214
175	Werl-1	1.50 - 1.60	Strand	0,01	0	0,00	99.61	14.21	75.49	9,00	0,00	0.384	1,466
176	Werl-1	1,70 - 1,80	Strand	0,33	0	0,1	99,9	3,03	91,56	5,31	0	0,448	1,284
177	Werl-1	2,20 - 2,30	Strand	0,33	0	0	99,6	1,59	80,85	17,16	0,4	0,396	1,405
178	Werl-1	2,50 - 2,60	Strand	0,34	0	0	87,68	1,25	48,96	37,47	12,32	0,629	1,400
179	Werl-1	3,50 - 3,60	Strand	0,27	0	0,13	85,03	3,1	46,1	35,83	14,84	0,636	1,517
180	Werl-1	3,70 - 3,80	Flachw	0,31	0,2	0,26	99,54	0,4	62,7	36,44	0	0,550	1,299
181	VVerI-1	4,00 - 4,10	Flachw	1,25	0,92	9,1	89,98	53,38	25,18	11,42	0	0,151	1,762
182	Werl 1	4,20 - 4,30	FIACRW Stillw	0,67	1,03	2,87	96,1	63,34 57 64	31,45	1,31	0	0,165	1,343
184	Werl-1	4,40 - 4,30 5 60 - 5 70	Flachw	2,9	2,13	30,97 11 04	87.64	65.54	4,29 21 QQ	0 11	0	0,076	1 490
185	Werl-1	5.80 - 5.90	Flachw	0.65	0.87	0.35	98.78	61.58	36.29	0.91	0	0,178	1,276
186	Werl-1	7,50 - 7,60	Stillw	1,36	2,02	30,94	67,04	61,37	4,99	0,68	0	0,081	1,479
187	Werl-1	9,10 - 9,20	Flachw	1,35	2	27,73	70,27	64,05	5,42	0,8	0	0,087	1,475
188	Werl-1	9,65 - 9,75	Torf	28,59	4,59	68,62	26,79	19,09	7,7	0	0	0,025	2,353
189	Werl-1	10,30 - 10,40	glazi-limn. /fluv.	0,56	1,76	16,07	82,17	72,21	9,72	0,24	0	0,106	1,414
190	Werl-1	11,50 - 11,60	glazi-limn. /fluv.	0,52	1,68	15,82	82,5	80,06	2,44	0	0	0,094	1,316
555	Zi-OS-30	0,85 - 0,95	Stillw	7,93	6,11	80,85	13,04	13,04	0	0	0	0,024	1,819
556	ZI-OS-30	1,10 - 1,15	Stillw	11,44	7,04	92,86	0,1	0,1	0	0	0	0,018	1,732
557	ZI-08-30 Zi-08-30	2,15 - 2,25	StillW glazi-limn /fluv	12,39	0,69	93,31	0 01 52	53.05	32.4	6.07	0	0,016	1,732
560	Zi-08-30	3 30 - 3 40	glazi-limn. /fluv.	1,00	4 21	68.03	27 76	27 76	02,4	0,07	0	0,170	1,773
562	Zi-OS-31	0,70 - 0,75	Stillw	9,81	5,92	90,8	3,28	3,28	0	0	0	0,021	1,732
564	Zi-OS-31	2,10 - 2,15	Stillw	8,55	4,56	85,05	10,39	10,39	0	0	0	0,023	1,732
566	Zi-OS-31	3,3	Stillw	15,69	7,28	92,63	0,09	0,09	0	0	0	0,018	1,732
567	Zi-OS-32	0,30 - 0,35	Stillw	10,11	4,97	95,03	0	0	0	0	0	0,019	1,567
568	Zi-OS-32	1,55 - 1,60	Stillw	17,09	5,05	94,95	0	0	0	0	0	0,017	1,768
616	Da-07	3.50 - 3.60	glazi-limn. /fluv.	0,75	1,13	8,33	90,54	68,35	21,55	0,64	0	0,147	1,340
621	Da-07	7.40 - 7.30	glazi limn /fluv	0,05	1,37	15.02	83.5	76.27	7 14	0.00	0	0,103	1,300
626	Da-01	0 72-0 78	Flachw	2 25	0.68	4 23	95.09	25.22	61.61	8.26	0	0,107	1,501
627	Da-01	1.50-1.60	Flachw	1,37	1,02	3,12	95,86	70,59	23,58	1,69	0	0,146	1,371
628	Da-01	2.50-2.60	Flachw	0,66	1,06	1,8	97,14	65,68	30,46	1	0	0,165	1,312
629	Da-01	3.50-3.60	Flachw	1,07	1,25	7,61	91,14	78,23	12,63	0,28	0	0,125	1,343
630	Da-01	4.20-4.30	Stillw	54,13	6,43	89,88	3,69	3,69	0	0	0	0,018	1,904
631	Da-01	4.50-4.60	Torf	85,86	9,75	90,21	0,04	0,04	0	0	0	0,012	1,826
632	Da-01	4.75-4.85	IOIT Elachw	9,2	1,38	6,92	91,7	46,66	43,37	1,67	0	0,189	1,403
634	Da-01	5.70-5.80	Flachw	0,38	1,02	2 36	96 52	59 47	-+0,21 35.0	1 15	0 0	0,104	1,309
635	Da-01	8.60-8.70	Flachw	1.2	0.8	1.06	98.14	50.29	45.85	2	0	0.196	1.335
664	Zi-32	6.30-6.40	glazi-limn. /fluv.	0,25	0,91	0,73	98,36	59,79	36,97	1,6	0	0,179	1,305
665	Zi-32	6.80-6.90	glazi-limn. /fluv.	1,14	0,96	1,63	97,41	66,56	29,9	0,95	0	0,165	1,304
667	Zi-34	7.00-7.10	glazi-limn. /fluv.	0,44	1,19	2,87	95,94	81,73	13,8	0,41	0	0,137	1,272
668	Zi-34	7.30-7.40	glazi-limn. /fluv.	0,38	1,27	4,37	94,36	78,58	15,49	0,29	0	0,142	1,270
731	Kirr-1/08	4,10 - 4,30	glazi-limn. /fluv.	0,74	1,28	5,66	93,06	60,46	31,37	1,23	0	0,161	1,396
733	KIIT-1/08	0,50 - 6,70	glazi-limn. /fluv.	0,39	0,89	0,8	98,31	65,53	31,67	1,11	0	0,167	1,319
730	Kirr-1/08	<u>9,70 - 9,90</u> 10.00 - 10.20	glazi-limn /fluv	0,30	1 02	2.86	90,49 96 12	63 15	31.72	2,48	0	0.163	1,303
766	Oje-2/08	0.50 - 0.60	Flachw	0,34	1,02	2,00	96.3	73 64	21 87	0 79	0	0.143	1.353
767	Oie-2/08	1,50 - 1,70	Flachw	1,31	1,28	4,78	93,94	76,58	16,56	0,8	0	0,131	1,355
770	Oie-2/08	4,50 - 4,70	glazi-limn. /fluv.	0,5	1,29	6,85	91,86	79,99	11,51	0,36	0	0,119	1,348
771	Oie-2/08	5,50 - 5,70	glazi-limn. /fluv.	0,56	1,08	2,29	96,63	70,43	24,99	1,21	0	0,153	1,326
799	Zi-OS-36/08	2,10-2,20	Flachw	0,84	0,41	0,02	99,57	30,45	54,47	14,65	0	0,282	1,647
801	Zi-OS-36/08	2,50-2,60	Flachw	0,94	0,81	0,41	98,78	64,38	33,19	1,21	0	0,172	1,293
802	∠i-OS-38/08	0,52 - 0,73	glazi-limnisch	0,99	3,25	69,42	27,33	27,33	0	0	0	0,045	1,524
805	ZI-US-38/08	3,60 - 3,73	glazi-limnisch	3,52	11,39	88,61	0	0	0	0	0	0,010	2,062
029 830	ZI-US-40/08	1,30 - 1,40	Strand	0,71	1,13	0,63	90,24 00.49	20,00	27,93	2,23	0.35	0,101	1,325
832	Zi-OS-46/08	2.60 - 2.70	glazi-limn. /fluv	0.3	0.71	1.41	97.88	40.76	55.07	2.05	0,33	0,213	1,063
834	Zi-OS-46/08	3,40 - 3,50	glazi-limn. /fluv.	0,42	0,72	0,02	99,26	44,59	52,62	2,05	0	0,209	1,175

Prob- Nr.	Bohrung	Teufe [m GOK]	Fazies	GV [Gew-%]	T [Gew-%]	U [Gew-%]	S [Gew-%]	fS [Gew-%]	mS [Gew-%]	gS [Gew-%]	G [Gew-%]	Md [mm]	So
	[/ it is EE]	[in cond		[0011 /0]	[0011 /0]	[0011 /0]	[0011 /0]	[0011 /0]	[0011 /0]	[0011 /0]	[0011)0]	[]	
870	Zi-OS-54/08	0,50 - 0,60	Flachw	0,71	0,82	1,66	97,52	87,8	9,48	0,24	0	0,135	1,223
871	Zi-OS-54/08	1,25 - 1,30	Flachw	0,91	1,86	11,89	86,25	84,79	1,45	0,01	0	0,099	1,274
872	Zi-OS-54/08	1,90 - 2,05	Flachw	1,58	2,77	35,47	61,76	61,76	0	0	0	0,074	1,483
873	Zi-OS-54/08	2,45 - 2,55	Strand	1,07	0	2,34	78,13	55,16	16,09	6,88	19,53	0,166	2,669
874	Zi-OS-54/08	2,60 - 2,70	glazi-limn. /fluv.	0,36	1,14	1,8	97,06	71,61	23,19	2,26	0	0,149	1,331
875	Zi-OS-54/08	2,70 - 2,80	glazi-limn. /fluv.	0,39	1,02	1,45	97,53	65,22	27,68	4,63	0	0,159	1,396
876	Zi-OS-54/08	2,80 - 2,90	glazi-limn. /fluv.	0,47	1,09	1,5	97,41	68,12	24,45	4,84	0	0,154	1,368
877	Zi-OS-54/08	2,93 - 3,10	glazi-limnisch	2,5	14,73	85,27	0	0	0	0	0	0,007	2,082
879	Zi-OS-54/08	3,10 - 3,60	glazi-limnisch	1,76	3,47	26,88	69,65	16,32	33,43	19,9	0	0,236	3,982

Korngrößenverteilungen, Glühverlust Fortsetzung

Wassergehalt

Prob- Nr.	Bohrung [AKBEZ]	Teufe [m GOK]	Fazies	GV [Gew-%]	Wasser- gehalt [Gew-%]
555	Zi-OS-30	0,85 - 0,95	Stillw	7,93	15,13
556	Zi-OS-30	1,10 - 1,15	Stillw	11,44	18,84
557	Zi-OS-30	2,15 - 2,25	Stillw	12,39	17,17
562	Zi-OS-31	0,70 - 0,75	Stillw	9,81	15,79
564	Zi-OS-31	2,10 - 2,15	Stillw	8,55	15,97
566	Zi-OS-31	3,3	Stillw	15,69	17,11
567	Zi-OS-32	0,30 - 0,35	Stillw	10,11	16,49
568	Zi-OS-32	1,55 - 1,60	Stillw	17,09	18,56

Paläomilieuanalysen der Makro- und Meiofauna

Prob- Nr.	Bohrung [AKBEZ]	Teufe [m GOK]	Fazies	Makro- & Meiofauna: Art / Abundanz / Zerstörungsgrad der Schalen / Salinitätsbereich (Abundanz: 1-sehr wenig, 2-wenig, 3-mittel, 4-viel, 5-sehr viel)	Milieu
18	Zi-9	2,60 - 2,70	Stillwasser	Cerastoderma edule / 2 / kleine Bruchstücke / >5 PSU	brackisch - marin
23	Zi-9	6,00 - 6,10	glazi-limn. /fluv.	stark vereinzelt kleine Bruchstücke (Bryozoen?) – nicht bestimmbar	fluviatil - limnisch
555	Zi-OS-30	0,85 - 0,95	Stillwasser	Cerastoderma edule / 5 / Bruchstücke - doppelklappig/ >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 3 / Bruchstücke - ungebrochen / >4 PSU; Scrobicularia plana / 1 / Bruchstücke / >8 PSU; Cyprideis torosa / 2 / einzelne Klappen - doppelklappig / 8 - 9 PSU Cerastoderma edule / 3 / Bruchstücke / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 3 / Bruchstücke / >4 PSU; Scrobicularia plana / 1 / kleine Bruchstücke / >8 PSU; Cyprideis torosa / 3 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
557	7: 00 20	0.45 0.05	Ctilluceser	Cerastoderma edule / 4 / Bruchstücke - einzelne Klappen / >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 4 / Bruchstücke - ungebrochen / >4 PSU; Scrobicularia plana / 2 / Bruchstücke / >8 PSU; Cyprideis torosa / 2 / einzelne Klappen	brookisch marin
557	ZI-OS-30	2,15 - 2,25	Stillwasser	- doppeikiappig 78-9PSU	brackisch - marin
559	ZI-OS-30	3,10 - 3,20	glazi-limn. /fluv.	keine	fluviatii - limnisch
560	Zi-OS-30 Zi-OS-31	0,70 - 0,75	glazi-limn. /fluv.	keine Cerastoderma edule / 5 / Bruchstücke - häufig einzelne Klappen oder doppelklappig / >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 1 / Bruchstücke / >4 PSU; Cyprideis torosa / 1 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
564	Zi-OS-31	2,10 - 2,15	Stillwasser	Cerastoderma edule / 3 / Bruchstücke - einzelne Klappen / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 1 / kleine Bruchstücke / >4 PSU; Cyprideis torosa / 2 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
566	Zi-OS-31	3,3	Stillwasser	Cerastoderma edule / 3 / Bruchstücke - doppelklappig / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 2 / kleine Bruchstücke / >4 PSU; Littorina littorea / 1 / Bruchstücke / >9 PSU; Cyprideis torosa / 2 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
567	Zi-OS-32	0,30 - 0,35	Stillwasser	Cerastoderma edule / 4 / Bruchstücke - einzelne Klappen / >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 1 / Bruchstücke / >4 PSU; Cyprideis torosa / 2 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
568	Zi-OS-32	1,55 - 1,60	Stillwasser	Cerastoderma edule / 3 / Bruchstücke / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU; Hydrobia ulvae / 2 / Bruchstücke / >4 PSU; Scrobicularia plana / 1 / Bruchstücke / >8 PSU; Cyprideis torosa / 1 / einzelne Klappen - doppelklappig / 8 - 9 PSU	brackisch - marin
630	Da-01	4.20-4.30	Stillwasser	Cerastoderma edule / 3 / kleine Bruchstücke / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU	brackisch - marin
633	Da-01	4.90-5.00	glazi-limn. /fluv.	keine	fluviatil - limnisch
634	Da-01	5.70-5.80	glazi-limn. /fluv.	keine	fluviatil - limnisch
799	Zi-OS-36/08	2,10-2,20	Flachwasser	Cerastoderma edule / 3 / Bruchstücke / >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Mya arenaria / 2 / Bruchstücke / >6 PSU; Hydrobia ulvae / 1 / kleine Bruchstücke / >4 PSU	brackisch - marin
870	Zi-OS-54/08	0,50 - 0,60	Flachwasser	Cerastoderma edule / 3 / Bruchstücke / >5 PSU; Mytilus edulis / 4 / kleine Bruchstücke / 15 - 40 PSU; Mya arenaria / 2 / Bruchstücke / >6 PSU; Hydrobia ulvae / 2 / kleine Bruchstücke / >4 PSU	brackisch - marin
				Cerastoderma edule / 4 / Bruchstücke - einzelne Klappen / >5 PSU; Mytilus edulis / 4 / Bruchstücke / 15 - 40 PSU; Mya arenaria / 2 / Bruchstücke / >6 PSU; Macoma balthica / 1 / Bruchstücke & einzelne Klappen / >2 PSU; Hydrobia ulvae / 2 / kleine	
871	Zi-OS-54/08	1,25 - 1,30	Flachwasser	Bruchstücke / >4 PSU	brackisch - marin
872	Zi-OS-54/08	1,90 - 2,05	Flachwasser	Cerastoderma edule / 2 / Bruchstücke - einzelne Klappen / >5 PSU; Mytilus edulis / 3 / kleine Bruchstücke / 15 - 40 PSU; Mya arenaria / 1 / kleine Bruchstücke / >6 PSU; / >2 PSU; Hydrobia ulvae / 1 / kleine Bruchstücke / >4 PSU	brackisch - marin
873	Zi-OS-54/08	2,45 - 2,55	Strand	Cerastoderma edule / 2 / Bruchstücke / >5 PSU; Mytilus edulis / 3 / kleine Bruchstücke / 15 – 40 PSU; Hydrobia ulvae / 1 / Bruchstücke / >4 PSU	brackisch - marin
874	Zi-OS-54/08	2,60 - 2,70	glazi-limn. /fluv.	keine	limnisch - fluviatil
875	Zi-OS-54/08	2,70 - 2,80	glazi-limn. /fluv.	keine	limnisch - fluviatil
876	Zi-OS-54/08	2,80 - 2,90	glazi-limn. /fluv.	keine	limnisch - fluviatil
877	Zi-OS-54/08	2,93 - 3,10	glazi-limnisch	vereinzelt kleine Bruchstücke (Bryozoen?) – nicht bestimmbar	limnisch

							_					_			-			
Bewertung Prof. W. Janke	ohne best. Diatomeen, Probe für Diatomeenerhaltung zu grob	Süßwasser, kühlgemäßigtes bis subarktisches Klima (Fragilaria lapponica)	sehr wenig Diatomeen, verschleppt?	sehr wenig Diatomeen, verschleppt?	marin-brackisch	marin-brackisch	marin-brackisch	marin-brackisch	marin-brackisch	frei von Diatomeen	sehr wenig Diatomeen, verschleppt?	marin-brackisch	Süßwasser ?, Zuordnung sehr unsicher, nur 2 Arten	marin-brackisch	sehr wenig Diatomeen, verschleppt?	brackisch, nur diese Probe epiphytisch, stärker lagunär geprägt	marin-brackisch, Paralia sulcata, Rhabd. arcuatum -> zeigen höchste Salinität an	marin-brackisch
Nachgewiesene Diatomeenarten, Notizen		nur vereinzelt Fragilaria lapponica	Campylodiscus clypeus, Grammatophora oceanica, Paralia sulcata, Actinocyclus octanarius	Grammatophora oceanica, Paralia sulcata, Achnanthes brevipes, Diploneis interrupta, Fragilaria construens v. venter, Eunotia praerupta (Moosstandorte)	Campylodiscus clypeus. Grammatophora oceanica. Ardissonea_ crystallina. Epithemia turgida, Actinocyclus octonarius. Hyalodiscus scoticus, Paralia sulcata, Rhabdonema minutum, Diploneis interrupta, Pinnularia sp.	Paralia sulcata, Grammatophora oceanica, Campylodiscus clypeus, Diploneis interrupta + didyma, Achnanthes brevipes	Ardissonea crystallina, Epithemia turgida, Cocconeis scutellum	Campylodiscus cypeus. Grammatophora oceanica. Ardissonea crystallina. Elathemia utuglad. Campylodiscus schniesi. Archinocyclus octomatius. Hyatodiscus scoticus. Paralia sulcata. Rhabdonema minutum, Cocconeis scutellum, Diploneis didyma, Diploneis interrupta, Diploneis smithii. Rhopalodia acuminata	Campylodiscus clypeus, Grammatophora oceanica, Cocconeis scutellum, Diploneis didyma, Diploneis interrupta, Diploneis smithii, Campylodiscus echineis, Nitzschia scalaris, Epithemia adnata, Fragilaria pinnata		Campylodiscus echineis, Rhabdonema minutum + arcuatum, Paralia sulcata, Grammatophora oceanica, Diploneis didyma, Diploneis interrupta, Fragilaria brevistriata-Kette	mehrfach Campylodiscus clypeus, Nitzschia scalaris	Cymbella aspera, Ketten von Fragilaria brevistriata-Typ	Campylodiscus clypeus, Paralia sulcata, Grammatophora oceanica, Diploneis didyma, Ardissonea crystallina, Fragilaria construens f. subsalina, Epithemia turgida	Campylodiscus clypeus, Cyclotella meneghiniana, Fragilaria brevistriata- Ketten	Cocconeis scutellum, Cyclotella radiosa, Fragilaria brevistriata, Epithemia turgida	Paralia sulcata, Rhabdonema arcuatum, Grammatophora oceanica, Cocconeis scutellum, Campylodiscus clypeus, Diploneis didyma + interrupta, Hyalodiscus scoticus, Navicula pusilla, Epithemia turgida, Fragilaria ulna	Rhabdonema arcuatum, Grammatophora oceanica, Cocconeis scutellum, Campylodiscus clypeus, Diploneis didyma + interrupta, Epithemia turgida
Merkmale: Fs = Feinschill, Ftr = Feintrübe/ Feinkrissel, Sn = Schw.naedeln, min = sandig, sl, D = reichilch Diatomeen, D- ± diat.frei, Ro = Rostverfärbung, A = schwarze Aggr.	min, zu grob., 2* Sn	min, Ftr, Fs, Sn, Ro	min, Ro, A, kaum Fs+Sn	min, Ro, A, kaum Fs+Sn, nur Einzelexemplare	Fs mit D, Sn, Ftr, A	Ro+Ftr, min, vereinz. Sn+Diat reste	Ro+Ftr, min	0+Fs	Ftr, Ro, verbr. Sn, D-	min, Ftr, A, Ro, 1Sn, D	min, Ro, A, kaum Sn, D-	min, Ro	min, Ro, schwa. Aggr.	min, Ftr, vereinz. Sn, zu dünn	min, Ro, A, kaum Sn, D-	min, Ftr, Ro, vereinz. Fs+Sn	min, rostfleckig, wenig Fs+Sn	Ftr, wenig Fs+Sn
Präparat- auszähl- barkeit (* =kalk- haltig)	I	I	*,	*,	+			+	+I	,	*		-	1	*		+I	
Milieu- gruppe *	Gr. 4	Gr. 3	Gr. 5	Gr. 5	G. 1	Gr. 1	Gr. 1	Gr. 1	G. 1	Gr. 4	Gr. 5	Gr. 1	Gr. 3 ?	Gr. 1	Gr. 5	Gr. 1, Bodden	G. 1	Gr. 1
GV [Gew-%]	0,56	0,66	0'63	0,43	1,44	0,55	0,33	0,57	0,35	0,25	0,32	0,38	0,40	0,40	1,48	0,48	0,39	0,42
Teufe [m GOK]	7.40 - 7.50	7.70 - 7.80	7,40 - 7,50	7,60 - 7,80	3,35 - 3,45	4,50 - 4,60	6,00 - 6,10	1,80 - 1,90	2,90 - 3,00	3,50 - 3,60	4,50 - 4,60	7.00-7.10	7.30-7.40	8,00 - 8,10	8,70 - 8,80	4,10 - 4,30	9,70 - 9,90	10,00 - 10,20
Bohrung	Da-07	Da-07	Zi-6	Zi-6	Zi-16	Zi-16	Zi-16	Zi-19	Zi-19	Zi-19	Zi-19	Zi-34	Zi-34	Zi-OW-4	Zi-OW-4	Kirr-1/08	Kirr-1/08	Kirr-1/08
Prob- Nr.	620	621	ς Γ	4	45	47	48	62	64	65	99	667	668	135	136	731	736	737

Diatomeenanalysen - Ergebnisse Prof. W. Janke

* Milieugruppe: Gr. 1 - Marine Proben, Gr. 2 - Proben mit Mischflora (Überflutungswiesen, erhöhte Wasserspiegelschwankungen), Gr. 3 - Süßwasserproben, Gr. 4 - Proben ohne bestimmbare Diatomeen, Gr. 5 - Proben mit sehr wenigen Diatomeen (quantitativ nicht auszählbar, schnelle Sedimentmassentransporte?, Verschleppung?)

Milieugruppe: Gr. 1 - Marine Proben, Gr. 2 - Proben mit Mischflora (Überflutungswiesen, erhöhte Wasserspiegelschwankungen), Gr. 3 - Süßwasserproben, Gr. 4 - Proben ohne bestimmbare Diatomeen,
 Gr. 5 - Proben mit sehr wenigen Diatomeen (quantitativ nicht auszählbar, schnelle Sedimentmassentransporte?, Verschleppung?)

Π		Π												ס_
869	697	2 969	694	771 (770 0	768 (766 (764 (763 (754 H	743 H	742 H	739	Nr. Nr.
Zi-OS-1/08	zi-OS-1/08	Zi-OS-1/08	Zi-OS-1/08	Die-2/08	Die-2/08	Die-2/08	Die-2/08	Die-1/08	Die-1/08	<irr-3 08<="" td=""><td><irr-2 08<="" td=""><td><irr-2 08<="" td=""><td>Kirr-2/08</td><td>Bohrung</td></irr-2></td></irr-2></td></irr-3>	<irr-2 08<="" td=""><td><irr-2 08<="" td=""><td>Kirr-2/08</td><td>Bohrung</td></irr-2></td></irr-2>	<irr-2 08<="" td=""><td>Kirr-2/08</td><td>Bohrung</td></irr-2>	Kirr-2/08	Bohrung
4,20 - 4,30	4,10 - 4,20	3,85 - 3,95	3,60 - 3,80	5,50 - 5,70	4,50 - 4,70	2,50 - 2,70	0,50 - 0,60	7,10 - 7,30	6,50 - 6,70	7,60 - 7,80	4,50 - 4,70	3,50 - 3,70	1,50 - 1,70	Teufe [m GOK]
0,41	0,46	2,59	1,10	0,36	0,46	0,43	0,90	0,29	0,38	0,35	0,25	0,46	1,55	Ge w-%]
Gr. 5	Gr. 5	Gr. 4	Gr. 1	Gr. 1	Gr. 1	Gr. 2	Gr. 2	Gr. 3	Gr. 3	Gr. 1	Gr. 5	Gr. 5	Gr. 2	Milieu- gruppe *
			+		+	+	+	+ *	+	+			+	Präparat- auszähl- barkeit (* =kalk- haltig)
Ftr, Ro, A,kaum Sn, D-	min, Ftr, kaum Sn, D-	massenh. Ro, vereinz. Sn, D	Fs, Ro, A, Sn+D	min, Ftr, Fs, Sn	min, Ftr, Fs, Sn	Ftr, Ro, A, D, wenig Sn	massenh. Ro, D, wenig Sn	zu dünn, vereinz. Sn+Diat.	Ftr, Ro, A, kaum Sn, D-	Ro, A, D, kaum Sn	min, Ro, Sn selten, D-	Ftr, Ro, A, kaum Sn, D-	massenh. Ro, wenig Sn, D	Merkmale: Fs = Feinschill, Ftr = Feintrübe/ Feinkrissel, Sn = Schw.nadeln, min = sandig, sl, D = reichlich Diatomeen, D- = wenig Diatomeen, D- ± diat.frei, Ro = Rostverfärbung, A = schwarze Aggr.
je 1* Campylodiscus echineis, Campylodiscus clypeus	4* Campylodiscus echineis, je 1* Campylodiscus clypeus und Diploneis interrupta		Campylodiscus echineis, Rhabdonema minutum, Grammatophora oceanica, Hyalodiscus scoticus, Paralia sulcata, Ardissonea crystallina, Fragilaria pinnata, Achnanthes brevipes, Cocconeis scutellum, Epithemia turgida	Campylodiscus clypeus, Diploneis interrupta + didyma + smithtii, Cocconeis scutellum, Navicula pusilla, Epithemia turgida	Cocconeis scutellum, Grammatophora oceanica, Campylodiscus echeneis, Achnanthes brevipes, Diploneis didyma + interrupta, Epithemia Turgida, Navicula Pusilla	Diplonels interrupta-Dominanz, Navicula pussila + peregrina, Fragilaria brevistriata-Kette, Fragilaria pinnata, Epithemia turgida + adnata, Pinnularia viridis, Diploneis didyma + smithii, Campytodiscus echineis, selten Campytodiscus ctypeus und Cocconeis scutellum = wahrscheinlich Überflutungsmilleu	<u>Diploneis interrupta</u> -Dominanz, Navicula pusilla + peregrina, Epithemia turgida, Diploneis smithii, 1* Ardissonea crystallina = Überflutungsmilieu	Stellt wohl Süßwasserstandort dar, wobei 1* Grammatophora oceanica als verschleppt aufzufassen ist; Fragilaria brevistriata-Ketten, Fragilaria pinnata, Fragilaria construens v. venter, Pinnularia viridis, Cymbella silesiaca, Epithemia turgida + frickei + adnata. Präparat zu dünn	Dominanz oligohalober Klein-Fragilarien, sonst nur 1-3 Exemplare; Fragilaria brevistriata-Ketten, Fragilaria pinnata, Fragilaria constuens v. venter, Epithemia turgida, Ardissonea crystallina, Diploneis smithii, Rhabdonema arcuatum. Die drei letztgenannten Arten sind Meso- u. Polyhalobier (umgelagert?, dann elektrolytreiches flaches Süßwasser möglich)	Coccoreis scutellum, Ardissonea crystallina, Grammatophora oceanica, Diploneis didyma, Rhabdonema minutum + arcuatum, Paralia sulcata, Melosira monifirormis, Achnanthes longipes, Hyalodiscus scoticus, Rhopalodia acuminata, Fragilaria fasciculata, Ellerbeckia arenaria; relativ nohe Salinität	je 1* Diploneis interrupta, Diploneis didyma sowie Rhabdonema arcuatum	Campylodiscus echineis + clypeus, Diploneis interrupta + didyma, Cocconeis scutellum	Diploneis interrupta, Navicula pusilla, Pinnularia sp., Grammatophora oceanica, Epithemia adnata, Ardissonea crystallina, Eunotia praerupta var.	Nachgewiesene Diatomeenarten, Notizen
Diatomeen verschleppt	Diatomeen verschleppt	frei von Diatomeen	marin-brackisch	marin-brackisch	marin-brackisch	Salzwiesen, rst-Schwankungen, wahrscheinlich Überflutungsmilieu	Salzwiesen, rsl-Schwankungen, Überflutungsstandort	Süßwasser, stellt wohl Süßwasserstandort dar, wobei 1* Grammatophora oceanica als verschleppt aufzufassen ist; Präparat zu dünn	Süßwasser, Die drei letztgenannten Arten sind Meso- u. Polyhalobier (umgelagert?, dann elektrolytreiches flaches Süßwasser möglich)	marin-brackisch, relativ hohe Salinität	sehr wenig Diatomeen, verschleppt?	sehr wenig Diatomeen, verschleppt?	Salzwiesen, rsI-Schwankungen, Überflutungsstandort	Bewertung Prof. W. Janke

- Ergebnisbewertung	
Diatomeenanalysen	

Prob. Bohung Funde Factor from the entitional properties State and the entitional properties Properise Proproperise Properise Proproperis	Ergebnisbewertung M. Naumann	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, ggf. plausibel	nicht quantitativ auszählbar, ggf. plausibel	plausibel	nicht quantitativ auszählbar, nicht plausibel (hangend Bodenbildung, Torf, autochthon)	nicht quantitativ auszählbar, nicht plausibel (hangend Bodenbildung, Torf, autochthon)	plausibel	plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, nicht plausibel (hangend Torf)	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, nicht plausibel (hangend Bodenbildung, Torf, autochthon)	nicht quantitativ auszählbar, ggf. plausibel	nicht quantitativ auszählbar, nicht plausibel (hangend Bodenbildung)	nicht plausibel	nicht quantitativ auszählbar, nicht plausibel (hangend Bodenbildung)			nicht quantitativ auszählbar, ggf. plausibel	nicht plausibel (hoher Kalkgehalt)	plausibel	plausibel	plausibel	plausibel ? (gleiches Sediment wie liegend, fehlende andere Parameter) schnelle Umlagerung, kurzer Transportweg?	nicht plausibel (gleiches Sediment wie liegend, fehlende andere Parameter) schnelle Umlagerung, kurzer Transportweg?	nicht quantitativ auszählbar, nicht plausibel (hoher Kalkgehatt) schnelle Umlagerung, kurzer Transportweg?	plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, plausibel	nicht quantitativ auszählbar, plausibel	ben. Gr. 4 - Proben ohne bestimmbare Diatomeen.
Prob. Bohrung Index Tade (in conserporate) (in A/GET) Genitames portie (in A/GET) Reality (interpret) (in A/GET) Genitames portie (in A/GET) Reality (interpret) (in A/GET) Tade : To conserporate) (in A/GET) Tade : To conserporate Genitames portie (in A/GEN) Reality (interpret) (in GON) Tade : To conserporate Genitames portie (in GEN) Participation (in GEN) Reality (interpret) (in GEN) Reality (interpre) (in GEN) <thre< th=""><th>Einschätzung Prof. W. Janke</th><th>ohne best. Diatomeen</th><th>Süßwasser</th><th>sehr wenig Diatomeen, verschleppt?</th><th>sehr wenig Diatomeen, verschleppt?</th><th>marin-brackisch</th><th>marin-brackisch</th><th>marin-brackisch</th><th>marin-brackisch</th><th>marin-brackisch</th><th>frei von Diatomeen</th><th>sehr wenig Diatomeen, verschleppt?</th><th>marin-brackisch</th><th>Süßwasser ?</th><th>marin-brackisch</th><th>sehr wenig Diatomeen, verschleppt?</th><th>brackisch</th><th>marin-brackisch</th><th>marin-brackisch</th><th>plausibel</th><th>nicht quantitativ auszählbar, plausibel</th><th>sehr wenig Diatomeen, verschleppt?</th><th>marin-brackisch</th><th>Süßwasser</th><th>Süßwasser</th><th>Salzwiesen, rsl-Schwankungen</th><th>Salzwiesen, rsl-Schwankungen</th><th>marin-brackisch</th><th>marin-brackisch</th><th>marin-brackisch</th><th>frei von Diatomeen</th><th>Diatomeen verschleppt</th><th>Diatomeen verschleppt</th><th>frei von Diatomeen</th><th>chwankungen). Gr. 3 - Sijßwasserprol</th></thre<>	Einschätzung Prof. W. Janke	ohne best. Diatomeen	Süßwasser	sehr wenig Diatomeen, verschleppt?	sehr wenig Diatomeen, verschleppt?	marin-brackisch	marin-brackisch	marin-brackisch	marin-brackisch	marin-brackisch	frei von Diatomeen	sehr wenig Diatomeen, verschleppt?	marin-brackisch	Süßwasser ?	marin-brackisch	sehr wenig Diatomeen, verschleppt?	brackisch	marin-brackisch	marin-brackisch	plausibel	nicht quantitativ auszählbar, plausibel	sehr wenig Diatomeen, verschleppt?	marin-brackisch	Süßwasser	Süßwasser	Salzwiesen, rsl-Schwankungen	Salzwiesen, rsl-Schwankungen	marin-brackisch	marin-brackisch	marin-brackisch	frei von Diatomeen	Diatomeen verschleppt	Diatomeen verschleppt	frei von Diatomeen	chwankungen). Gr. 3 - Sijßwasserprol
Prob. Bohrung Iv/ABCPI IVABCPI IVABCPI IVABCPI SIGNIG Coldindensprache: Fettographic / Fache Rollogin / Fachers Statigraphic Fettographic / Fachers Praparature Rollogin / Fachers Praparature Rollogin / Fachers 21 0.0V1 7.40 - 7.50 15.97 / H 0.0V1	Milieu- gruppe *	Gr. 4	Gr. 3	Gr. 5	Gr. 5	Gr. 1	Gr. 1	Gr. 1	Gr. 1	Gr. 1	Gr. 4	Gr. 5	Gr. 1	Gr. 3 ?	Gr. 1	Gr. 5	Gr. 1	Gr. 1	Gr. 1	Gr. 2	Gr. 5	Gr. 5	Gr. 1	Gr. 3	Gr. 3	Gr. 2	Gr. 2	Gr. 1	Gr. 1	Gr. 1	Gr. 4	Gr. 5	Gr. 5	Gr. 4	Isniegelsc
Prob. Bohrung Bohrung Teufe Galadeanerschei Kakgehalt Strafgrahb mat. Resignant R2 Da-07 7.40-7.50 fs/gr/M periographis/factor Jone of Kakgehalt Jone of Ka	Präparataus- zählbarkeit [* =kalkhaltig]		I	* '	* '	+	I	1	‡	+	,	* '	,	1	1	* '	1	+ı	-	+		-	+	Ŧ	* +	+	+	Ŧ	I	+		-		-	thöhte Wasse
Problem Bohung Teufe Tendeonsprache: Statidansprache Nr. [AKBEZ] GOKJ Perrographie / Faber Statidansprache 820 Da-07 7.40 - 7.50 [S / gr / kr qp / glaz-limn, fluv 821 Da-07 7.40 - 7.50 [S / gr / kr qp / glaz-limn, fluv 821 Da-07 7.40 - 7.50 [S / gr / kr qp / glaz-limn, fluv 821 Da-07 7.70 - 7.80 [S / gr / kr qp / glaz-limn, fluv 821 Z-16 3.35 - 3.45 [S / J / kr qp / glaz-limn, fluv 825 Z-19 S / gr / kr qp / glaz-limn, fluv 826 Z-19 S / gr / kr qp / glaz-limn, fluv 826 Z-19 S / gr / kr qp / glaz-limn, fluv 826 Z-19 S / gr / kr qp / glaz-limn, fluv 826 Z-19 S / gr / kr qp / glaz-limn, fluv 826 Z-19 S / gr / kr qp / glaz-limn, fluv 827 Z-19 S / gr / kr qp / glaz-limn, fluv 826 <th>mar. Basis [m GOK]</th> <td>-2,55</td> <td>-2,55</td> <td>-4,75</td> <td>-4,75</td> <td>-3,58</td> <td>-3,58</td> <td>-3,58</td> <td>-3,00</td> <td>-3,00</td> <td>-3,00</td> <td>-3,00</td> <td>-3,40</td> <td>-3,40</td> <td>-7,75</td> <td>-7,75</td> <td>-3,50</td> <td>-3,50</td> <td>-3,50</td> <td>-3,70</td> <td>-3,70</td> <td>-3,70</td> <td>-7,60</td> <td>-3,12</td> <td>-3,12</td> <td>-1,00</td> <td>-1,00</td> <td>-1,00</td> <td>-1,00</td> <td>-3,85</td> <td>-3,85</td> <td>-3,85</td> <td>-3,85</td> <td>-3,85</td> <td>swiesen.</td>	mar. Basis [m GOK]	-2,55	-2,55	-4,75	-4,75	-3,58	-3,58	-3,58	-3,00	-3,00	-3,00	-3,00	-3,40	-3,40	-7,75	-7,75	-3,50	-3,50	-3,50	-3,70	-3,70	-3,70	-7,60	-3,12	-3,12	-1,00	-1,00	-1,00	-1,00	-3,85	-3,85	-3,85	-3,85	-3,85	swiesen.
Prob. Bohrung IAKIBZZ Turde Got Turde Falladensprache: Fallagehalt 620 Da-07 7.40 - 7.50 fS/gr / kf 621 Da-07 7.40 - 7.50 fS/gr / kf 7.40 7.50 - 7.80 fS/gr / kf fS/gr / kf 4 Z-16 4.50 - 4.60 fS/gr / kf 7.80 T.90 - 7.80 fS/gr / kf fS/gr / kf 48 Z-19 2.9-6 fS/gr / kf 68 Z-19 S.90 - 3.60 fS/gr / kf 66 Z-19 S.90 - 3.60 fS/gr / kf 66 Z-19 S.90 - 3.60 fS/gr / kf 66 Z-19 S.90 - 3.60 fS/gr / kf 73 Kin-1/08 10,00 fS/gr / kf 73 Kin-1/08 10,00 fS/gr / kf 73 Kin-1/08 10,00 fS/gr / kf	Stratigraphie /Genese	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qh / Flachwasser	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qh / Flachwasser	qh / Flachwasser	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qh / Flachwasser	qh / Flachwasser	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qh / Flachwasser	qp / glazi-limn., fluv.?	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qh / Flachwasser	qp / Bodenbildung	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	qp / glazi-limn., fluv.	ischflora (Uberflutung
Prob- Bohrung Teufe Im RC05- Ba-07 7.40 - 7.50 GO(1) 620 Da-07 7.40 - 7.50 GO(1) 621 Da-07 7.40 - 7.50 GO(1) 621 Da-07 7.40 - 7.50 GO(1) 4 Zi-6 7.60 - 7.80 GO(1) 42 Zi-16 3.56 - 3.45 GO(1) 48 Zi-19 1.80 - 1.90 GO(2) 66 Zi-19 2.50 - 3.60 GO(2) 66 Zi-19 2.50 - 3.60 GO(2) 66 Zi-19 2.60 - 6.10 GO(2) 66 Zi-19 2.60 - 7.80 GO(2) 66 Zi-19 2.60 - 7.40 GO(2) 731 Kirr-108 4.10 - 4.0 GO(2) 733 Kirr-108 1.00 - 0.10 GO(2) 733 Kirr-208 7.60 - 7.80 GO(2) 733 Kirr-208 7.60 - 7.80 GO(2) 744 B.70 - 8.80 10.20 <	Geländeansprache: Petrographie / Farbe / Kalkgehalt	fS / gr / kf	fS / gr / k+	fS, org, zg4 / bn / k+	fS / gr / k+	fS-U, un, fs, mol / gr-d,gr	fS / gr-bl / kf	fS / gr-bl / k++	fS, u / gr	fS / gr	fS / gr-bl / kf	fS / gr-bl / k+	fS / gr / kf	fS / gr / kalkhaltig	fS / gr-bl / kalkfrei	fS-U / gr-bl / k++	fS / gr-bl / kf	fS / gr-bl / kf	fS / gr-bl / k++	fS, voe, pfh, ob, Schilfreste / gr	fS / gr / kf	fS / gr-bl / kf	fS / gr / k++	fS / gr / kf	fS / gr / k++	fS, Schilfreste / gr, rostfarben	fS / gr / kf	fS / gr / kf	fS / gr / k++	U, fs, mol / d,gr	fS, org / bn	fS / gr-bl / kf	fS / gr-bl / k+	fS / gr-bl / k++	² roben. Gr. 2 - Proben mit M
Prob- Bohung Nr. [AKBEZ] 620 Da-07 621 Da-07 62 Z1-16 43 Z1-16 64 Z1-19 65 Z1-19 667 Z1-19 667 Z1-19 667 Z1-19 667 Z1-19 731 Kirr-108 733 Kirr-108 733 Kirr-108 733 Kirr-108 734 Kirr-208 735 Kirr-108 754 Kirr-308 753 Kirr-308 764 Oie-108 764 Oie-208 770 Oie-208 770 Oie-208 771 Oie-208	Teufe [m GOK]	7.40 - 7.50	7.70 - 7.80	7,40 - 7,50	7,60 - 7,80	3,35 - 3,45	4,50 - 4,60	6,00 - 6,10	1,80 - 1,90	2,90 - 3,00	3,50 - 3,60	4,50 - 4,60	7.00-7.10	7.30-7.40	8,00 - 8,10	8,70 - 8,80	4,10 - 4,30	9,70 - 9,90	10,00 - 10,20	1,50 - 1,70	3,50 - 3,70	4,50 - 4,70	7,60 - 7,80	6,50 - 6,70	7,10 - 7,30	0,50 - 0,60	2,50 - 2,70	4,50 - 4,70	5,50 - 5,70	3,60 - 3,80	3,85 - 3,95	4,10 - 4,20	4,20 - 4,30	5,60 - 5,70	1 - Marine F
Prob- R:. B:: B:: <th>Bohrung [AKBEZ]</th> <td>Ja-07</td> <td>Ja-07</td> <td>Zi-6</td> <td>21-6</td> <td>Zi-16</td> <td>zi-16</td> <td>zi-16</td> <td><u>7</u>-19</td> <td>5-19</td> <td>21-19</td> <td>21-19</td> <td>2-34</td> <td>21-34</td> <td>Zi-OW-4</td> <td>7-0W-4</td> <td><irr-1 08<="" td=""><td><irr-1 08<="" td=""><td>Kirr-1/08</td><td><irr-2 08<="" td=""><td><irr-2 08<="" td=""><td><pre><irr-2 08<="" pre=""></irr-2></pre></td><td><irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3></td></irr-2></td></irr-2></td></irr-1></td></irr-1></td>	Bohrung [AKBEZ]	Ja-07	Ja-07	Zi-6	21-6	Zi-16	zi-16	zi-16	<u>7</u> -19	5-19	21-19	21-19	2-34	21-34	Zi-OW-4	7-0W-4	<irr-1 08<="" td=""><td><irr-1 08<="" td=""><td>Kirr-1/08</td><td><irr-2 08<="" td=""><td><irr-2 08<="" td=""><td><pre><irr-2 08<="" pre=""></irr-2></pre></td><td><irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3></td></irr-2></td></irr-2></td></irr-1></td></irr-1>	<irr-1 08<="" td=""><td>Kirr-1/08</td><td><irr-2 08<="" td=""><td><irr-2 08<="" td=""><td><pre><irr-2 08<="" pre=""></irr-2></pre></td><td><irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3></td></irr-2></td></irr-2></td></irr-1>	Kirr-1/08	<irr-2 08<="" td=""><td><irr-2 08<="" td=""><td><pre><irr-2 08<="" pre=""></irr-2></pre></td><td><irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3></td></irr-2></td></irr-2>	<irr-2 08<="" td=""><td><pre><irr-2 08<="" pre=""></irr-2></pre></td><td><irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3></td></irr-2>	<pre><irr-2 08<="" pre=""></irr-2></pre>	<irr-3 08<="" td=""><td>Die-1/08</td><td>Die-1/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Die-2/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>Zi-OS-1/08</td><td>ruppe: Gr</td></irr-3>	Die-1/08	Die-1/08	Die-2/08	Die-2/08	Die-2/08	Die-2/08	Zi-OS-1/08	Zi-OS-1/08	Zi-OS-1/08	Zi-OS-1/08	Zi-OS-1/08	ruppe: Gr
	Prob- Nr.	620 [621 [3 2	4 2	42 2	47	48	62 2	64 2	65 2	7 99	299	668 2	135	136 2	731	136	737	1 667	742 F	743 1	754 F	763 (764 (200	768	220	127	694 2	? 969	269	698 <u>z</u>	669	* Milieue

Ĵ, ך ר ĥ ugruppe: Of: 1 - Marine Froven, Or. 2 - Froven mu Mussumora (Obernumugawiesen, enrome wasseispregensermansent, Or. 3 - Junawas Gr. 5 - Proben mit sehr wenigen Diatomeen (quantitativ nicht auszählbar, schnelle Sedimentmassentransporte?, Verschleppung?)

Radiako	ohlenstoff-Datierung								
ID Lokation	Bohrung /Schurf [AKBEZ]	Probenbez. Labor	Labor	Alter, kalibriert	Radiokarbon- alter	Methode	Teufe [m GOK]	Teufe (TK10,Lot) [m NHN]	Material
Z-8	Zi-2	KIA 35275	Leibniz Labor Universität Kiel	8008 ± 30 cal. BP	7195 ± 40 a BP	¹⁴ C Datierung, AMS	7,07 - 7,15	-7,32	Torf, Oberkante
Z-7	Zi-9	KIA 35276	Leibniz Labor Universität Kiel	7878 ± 42 cal. BP	7020 ± 30 a BP	¹⁴ C Datierung, AMS	5,50 - 5,54	-5,02	Torf, Oberkante
Z-5	Zi-OW-2	KIA 35277	Leibniz Labor Universität Kiel	7858 ± 56 cal. BP	7005 ± 40 a BP	¹⁴ C Datierung, AMS	6,48 - 6,55	-5,82	Torf, Holzreste, Oberkante
W-2	Werl-3	KIA 35278	Leibniz Labor Universität Kiel	144 ± 114 cal. BP	160 ± 30 a BP	¹⁴ C Datierung, AMS	0,33 - 0,36	-0,35	Torf, Unterkante
H-6	Hi-7/07	KIA 35279	Leibniz Labor Universität Kiel	8404 ± 16 cal. BP	7600 ± 35 a BP	¹⁴ C Datierung, AMS	10,70- 10,75	-9,42	Torf, Unterkante
Z-2	Zi-S3	KIA 35280	Leibniz Labor Universität Kiel		>1954 A.D.*	¹⁴ C Datierung, AMS	0,3	0,40	Torf, Unterkante (Schurf Osterwald)
<u>-</u> 1	Zi-OS-12	KIA 35281	Leibniz Labor Universität Kiel	10588 ± 56 cal. BP	9355 ± 40 a BP	¹⁴ C Datierung, AMS	0,08 - 0,10	-7,79	Torf, Holzreste, Oberkante
0-2	Zi-OS-15	KIA 35282	Leibniz Labor Universität Kiel	8245 ± 53 cal. BP	7395 ± 40 a BP	¹⁴ C Datierung, AMS	2,83 - 2,90	-9,57	Torf, Oberkante
O-3	Zi-OS-27	KIA 35283	Leibniz Labor Universität Kiel	13470 ± 114 cal. BP	11590 ± 55 a BP	¹⁴ C Datierung, AMS	3,34 - 3,35	-10,45	Torf, Oberkante
0-4	Zi-OS-31	KIA 35284	Leibniz Labor Universität Kiel	4957 ± 62 cal. BP	4385 +/- 35 a BP	¹⁴ C Datierung, AMS	0,35	-6,65	Muscheln, U (Mudde), Oberkante
0-4	Zi-OS-31	KIA 35285	Leibniz Labor Universität Kiel	7404 ± 55 cal. BP	6500 +/- 50 a BP	¹⁴ C Datierung, AMS	3,2	-9,50	Muscheln, U (Mudde), Unterkante
0-5	Zi-OS-33	KIA 35286	Leibniz Labor Universität Kiel	5123 ± 119 cal. BP	4455 +/- 35 a BP	¹⁴ C Datierung, AMS	0,50 - 0,55	-8,52	Muscheln, U (Mudde), Oberkante
0-5	Zi-OS-33	KIA 35287	Leibniz Labor Universität Kiel	8060 ± 68 cal. BP	7220 + 55/-50 a BP	¹⁴ C Datierung, AMS	1,2	-9,20	A-Horizont, Wurzelreste, Oberkante
ባ	Gra-11	KIA 35288	Leibniz Labor Universität Kiel	7924 ± 39 cal. BP	7100 ± 35 a BP	¹⁴ C Datierung, AMS	3,30 - 3,32	-6,81	Holz, (Rinde), an Torfoberkante
GW-2	GrWi-1	KIA 35289	Leibniz Labor Universität Kiel	7484 ± 28 cal. BP	6585 ± 30 a BP	¹⁴ C Datierung, AMS	4,02 - 4,04	-3,63	Torf, Oberkante
GW-1	GrWi-8	KIA 35290	Leibniz Labor Universität Kiel	4688 ± 94 cal. BP	4125 ± 30 a BP	¹⁴ C Datierung, AMS	1,70 - 1,75	-1,32	Torf - Schilftorf, Oberkante
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-A	LIAG Hannover	2500 ± 160 cal. BP	2400 ± 50 a BP	¹⁴ C Datierung, konv.	2,08-2,18	-2,13	Mudde
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-B	LIAG Hannover	6780 ± 110 cal. BP	5970 ± 90 a BP	¹⁴ C Datierung, konv.	3,95-4,05	-4,00	Torf
Z-1	71-43 (RKS -> 71-42)	WIZZIC	IIAG Hannover	13150 ± 60 cal. BP	11270 ± 60 a BP	¹⁴ C Datierung, konv.	4,70-4,80	-4,75	Torf

Datierung
Lumineszenz
stimulierte
ptisch

₽	Bohrung /Schurf [AKBEZ]	Probenbez.	Labor	Alter. kalibriert	Methode	Teufe	Teufe	Material
Lokation		Labor				[m GOK]	(TK10,Lot) [m NHN]	
H-5	Hi-OSL-1	MN 338	Universität Bern	205 ± 15 a	OSL, SAR-Protokoll	1,55	1,95	Feinsand, Quartzfraktion
H-1	Hi-OSL-3	MN 340	Universität Bern	265 ± 25 a	OSL, SAR-Protokoll	0,2	0,8	Feinsand, Quartzfraktion
H-1	Hi-OSL-4	MN 341	Universität Bern	450 ± 30 a	OSL, SAR-Protokoll	0,45	0,55	Feinsand, Quartzfraktion
H-2	Hi-OSL-5	MN 342	Universität Bern	1850 ± 80 a	OSL, SAR-Protokoll	0,4	1,9	Feinsand, Quartzfraktion
H-2	Hi-OSL-6	MN 343	Universität Bern	1710 ± 90 a	OSL, SAR-Protokoll	L I	1,3	Feinsand, Quartzfraktion
Н-7	Hi-OSL-7	MN 344	Universität Bern	1150 ± 50 a	OSL, SAR-Protokoll	0,4	0,4	Feinsand, Quartzfraktion
H-3	Hi-OSL-8	MN 345	Universität Bern	1980 ± 110 a	OSL, SAR-Protokoll	0,25	1,25	Feinsand, Quartzfraktion
H-3	Hi-OSL-9	MN 346	Universität Bern	2080 ± 120 a	OSL, SAR-Protokoll	+	0,5	Feinsand, Quartzfraktion
Z-2	ZI-S3	MN 353	Universität Bern	1610 ± 80 a	OSL, SAR-Protokoll	0'2	0,2	Feinsand, Quartzfraktion
Z-6	Zi-S4	MN 354	Universität Bern	1550 ± 70 a	OSL, SAR-Protokoll	0,45	0,55	Feinsand, Quartzfraktion
H-4	Hi-OSL-2	MN 585	Universität Bern	1290 ± 80 a	OSL, SAR-Protokoll	6,0	0	Feinsand, Quartzfraktion
H-4	Hi-OSL-2	MN 586	Universität Bern	2120 ± 140 a	OSL, SAR-Protokoll	+	-0,7	Feinsand, Quartzfraktion
Z-9	Zi-HD-2 (RKS -> Zi-HD-1)	MN 587	Universität Bern	210 ± 20 a	OSL, SAR-Protokoll	0,25	0,75	Feinsand, Quartzfraktion
Z-9	Zi-HD-2 (RKS -> Zi-HD-1)	MN 588	Universität Bern	190 ± 15 a	OSL, SAR-Protokoll	0,65	0,35	Feinsand, Quartzfraktion
Z-9	Zi-HD-2 (RKS -> Zi-HD-1)	MN 589	Universität Bern	230 ± 20 a	OSL, SAR-Protokoll	1,05	-0,05	Feinsand, Quartzfraktion
Z-9	Zi-HD-2 (RKS -> Zi-HD-1)	MN 590	Universität Bern	310 ± 20 a	OSL, SAR-Protokoll	1,5	-0,5	Feinsand, Quartzfraktion
Z-9	Zi-HD-2 (RKS -> Zi-HD-1)	MN 591	Universität Bern	600 ± 30 a	OSL, SAR-Protokoll	1,9	-0,9	Feinsand, Quartzfraktion
Z-3	Zi-S1	Zi-01	LIAG Hannover	1540 ± 90 a	OSL, SAR-Protokoll	0,35	0,65	Feinsand, Quartzfraktion
Z-3	Zi-S1	Zi-02	LIAG Hannover	1710 ± 110 a	OSL, SAR-Protokoll	0,55	0,45	Feinsand, Quartzfraktion
Z-4	Zi-S2	Zi-O3	LIAG Hannover	1680 ± 100 a	OSL, SAR-Protokoll	0,45	0,55	Feinsand, Quartzfraktion
Z-4	Zi-S2	Zi-04	LIAG Hannover	1790 ± 100 a	OSL, SAR-Protokoll	0,65	0,35	Feinsand, Quartzfraktion
Z-2	Zi-S3	Zi-05	LIAG Hannover	1730 ± 100 a	OSL, SAR-Protokoll	0,45	0,25	Feinsand, Quartzfraktion
Z-2	Zi-S3	Zi-O6	LIAG Hannover	1700 ± 100 a	OSL, SAR-Protokoll	2'0	0	Feinsand, Quartzfraktion
W-1	Werl-2 (RKS -> Werl-1)	Zi-W1	LIAG Hannover	280 ± 20 a	OSL, SAR-Protokoll	0,56	1,44	Feinsand, Quartzfraktion
W-1	Werl-2 (RKS -> Werl-1)	Zi-W2	LIAG Hannover	890 ± 60 a	OSL, SAR-Protokoll	1,03	0,97	Feinsand, Quartzfraktion
W-2	Werl-4 (RKS -> Werl-3)	Zi-W3	LIAG Hannover	500 ± 40 a	OSL, SAR-Protokoll	2'0	-0,7	Feinsand, Quartzfraktion
W-3	Werl-5 (RKS -> Werl-6	Zi-W4	LIAG Hannover	290 ± 30 a	OSL, SAR-Protokoll	0,81	-0,81	Feinsand, Quartzfraktion
W-4	Werl-8 (RKS -> Werl-7)	Zi-W5	LIAG Hannover	220 ± 20 a	OSL, SAR-Protokoll	0,34	-0,34	Feinsand, Quartzfraktion
W-4	Werl-8 (RKS -> Werl-7)	Zi-W6	LIAG Hannover	470 ± 30 a	OSL, SAR-Protokoll	0,87	-0,87	Feinsand, Quartzfraktion
W-5	Bock-3 (RKS -> Bock-2)	Zi-W7	LIAG Hannover	40 ± 5 a	OSL, SAR-Protokoll	0,32	-0,32	Feinsand, Quartzfraktion
W-5	Bock-3 (RKS -> Bock-2)	Zi-W8	LIAG Hannover	290 ± 30 a	OSL, SAR-Protokoll	0,84	-0,84	Feinsand, Quartzfraktion
M-6	Bock-4-OS	6M-iZ	LIAG Hannover	500 ± 30 a	OSL, SAR-Protokoll	0,78	-0,78	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-1	LIAG Hannover	690 ± 50 a	OSL, SAR-Protokoll	0,95	-0,95	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-2	LIAG Hannover	680 ± 70 a	OSL, SAR-Protokoll	1,25	-1,25	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-3	LIAG Hannover	2690 ± 100 a	OSL, SAR-Protokoll	2,7	-2,7	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-4	LIAG Hannover	3180 ± 140 a	OSL, SAR-Protokoll	3,45	-3,45	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-5	LIAG Hannover	3270 ± 240 a	OSL, SAR-Protokoll	4,3	-4,3	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-6	LIAG Hannover	13690 ± 780 a	OSL, SAR-Protokoll	4,95	-4,95	Feinsand, Quartzfraktion
Z-1	Zi-43 (RKS -> Zi-42)	W-Zi-7	LIAG Hannover	13650 ± 800 a	OSL. SAR-Protokoll	5.05	-5.05	Feinsand. Quartzfraktion

Lfdнw Daten AKBEZ [GK4] Rechte /Datenverwaltung Nr. [GK4] typ Datenquelle SINCOS-II Datenerhebung Ahoop-1 4528107 6028591 Schurf M.Naumann /Prof. R. Lampe 1 2 Da-1 /08 4540486 6033272 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 3 Da-2 /08 4540290 6032507 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe M.Naumann /Prof. R. Lampe 4 Da-3 /08 4539932 6031916 RKS SINCOS-II Datenerhebung 5 Da-4 /08 4539777 6032525 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 6 Da-5 /08 4539877 6033450 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 7 Da-6 /08 4539163 6032001 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 8 Da-7 /08 4538915 6033033 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 9 Da-8 /08 4538698 6034131 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 10 Da-9 /08 4538358 6034734 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 11 Da-10 /08 4537401 6033952 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4554438 6034355 RKS 12 Zi-1 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 13 Zi-2 4554425 6034133 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 14 Zi-3 4554405 6033893 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 15 Zi-4 4554346 6033586 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4554323 6033281 RKS 16 Zi-5 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 17 Zi-6 4554299 6033046 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 18 Zi-7 4553513 6034291 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 19 Zi-8 4553838 6033711 RKS M.Naumann /Prof. R. Lampe 20 Zi-9 4553827 6033485 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 21 Zi-10 4553856 6033229 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 22 Zi-11 4553513 6033509 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4553373 6033261 RKS 23 Zi-12 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe M.Naumann /Prof. R. Lampe 24 Zi-13 4552121 6031784 RKS SINCOS-II Datenerhebung 25 Zi-14 4549680 6032086 RKS SINCOS-II Datenerhebund M.Naumann /Prof. R. Lampe 4548905 6032256 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 26 Zi-15 27 Zi-16 4548303 6032702 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 28 Zi-17 4547845 6033522 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4548283 6033491 RKS 29 Zi-18 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe M.Naumann /Prof. R. Lampe 30 Zi-19 4547993 6033585 RKS SINCOS-II Datenerhebung 31 Zi-20 M.Naumann /Prof. R. Lampe 4547284 6034391 RKS SINCOS-II Datenerhebung 4547225 6033970 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 32 Zi-21 4546522 6034723 RKS 33 Zi-22 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 34 Zi-23 4546128 6033772 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 35 Zi-24 /08 4542560 6034840 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 36 Zi-25 /08 4543203 6032648 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 37 Zi-26 4543277 6031124 RKS M.Naumann /Prof. R. Lampe 4542178 6033190 RKS 38 Zi-27 /08 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 39 Zi-28 /08 4540426 6034214 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 40 Zi-29 /08 4540239 6035411 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 41 Zi-30 /08 M.Naumann /Prof. R. Lampe 4539077 6035599 RKS SINCOS-II Datenerhebung 4543125 6031913 RKS 42 Zi-31 /08 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4542779 6034149 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 43 Zi-32 /08 44 Zi-33 /08 4542330 6031992 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 45 Zi-34 /08 4542383 6034073 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 46 Zi-35 /08 4541639 6034947 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 47 Zi-36 /08 M.Naumann /Prof. R. Lampe 4541301 6033965 Line SINCOS-II Datenerhebung 48 Zi-37 /08 M.Naumann /Prof. R. Lampe 4540708 6034672 RKS SINCOS-II Datenerhebung 49 Zi-38 /08 4539947 6035112 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 50 Zi-39 /08 4539119 6035327 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 51 Zi-40 /08 4537998 6035331 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 52 Zi-41 /08 4541182 6034035 RKS M.Naumann /Prof. R. Lampe 53 Zi-42/08 4541301 6033965 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 54 Zi-HD-1 4558658 6035151 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 55 ZiOw-1 4550010 6034795 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 56 ZiOw-2 4549889 6034240 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 4549771 6033686 RKS 57 ZiOw-3 SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe M.Naumann /Prof. R. Lampe 58 4549662 6033217 RKS SINCOS-II Datenerhebung ZiOw-4 M.Naumann /Prof. R. Lampe 59 ZiOw-5 4549568 6032780 RKS SINCOS-II Datenerhebung 60 ZiOw-6 4549459 6032298 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 61 ZiOw-7 4547876 6034784 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 62 ZiOw-8 4549000 6034774 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe M.Naumann /Prof. R. Lampe 63 ZiOw-9 4550948 6034715 RKS SINCOS-II Datenerhebung 4551775 6032903 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 64 ZiOw-10 65 ZiOw-11 4551974 6034625 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 66 Werl-1 4560948 6034717 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 67 Werl-3 4560928 6034758 RKS M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 68 Werl-6 4560921 6035155 RKS M.Naumann /Prof. R. Lampe 69 Werl-7-OS 4560874 6035579 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 70 Werl-9 4562436 6034859 RKS 4563104 6034867 RKS SINCOS-II Datenerhebung 71 Werl-12 M.Naumann /Prof. R. Lampe 4561579 6033053 Liner 72 Werl-13-OS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 73 Werl-14-OS 4561476 6033774 Liner M.Naumann /Prof. R. Lampe SINCOS-II Datenerhebung 74 Werl-15-OS 4561137 6034275 Liner SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe 75 Bock-1 4564898 6035091 RKS SINCOS-II Datenerhebung M.Naumann /Prof. R. Lampe

Anhang D - Datenbasis der Modellierung

Lfd-		RW	HW	Daten-	Datangualla	Boohto (Datonyomyoltung
Nr. 76	Bock-2	[GK4] 4564695	[GK4] 6035600	RKS	SINCOS-II Datenerbebung	M Naumann /Prof. R. Lampe
77	Bock-5	4568106	6035666	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
78	Ki-1 /08	4546908	6031925	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
79	Ki-2 /08	4545546	6032429	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
80	Ki-3 /08	4544647	6032077	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
81	Oie-1 /08	4547421	6031036	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
82	Oie-2 /08	4546793	6031070	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
83	Kb-1 /08	4545978	6030875	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
84	Gra-1	4554303	6032726	Liner	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe
86	Gra-3	4554238	6032378	Liner	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
87	Gra-4	4554212	6032196	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
88	Gra-5	4554191	6032019	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
89	Gra-6	4554148	6031812	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
90	Gra-7	4554102	6031584	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
91	Gra-8	4553898	6030549	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
92	Gra-9	4553804	6029882	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
93	Gra-10 Cra-11	4553370	6029196	Liner	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe
94	Gra-12	4552184	6028463	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
96	Gra-12 Gra-13	4551976	6028266	Liner	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
97	Gra-14	4551784	6028178	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
98	Gra-15	4551598	6028077	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
99	Gra-16	4551413	6027965	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
100	Gra-17	4552721	6030577	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
101	Gra-18	4557397	6028772	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
102	GrWi-1	4551138	6027793	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
103	GrWi-2 GrWi 3	4551105	6027600	RKS	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe
104	GrWi-4	4551070	6027226	RKS	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
106	GrWi-5	4551003	6027090	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
107	GrWi-6	4551088	6027522	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
108	GrWi-7	4551046	6027348	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
109	GrWi-8	4551030	6027289	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
110	GrWi-9	4550971	6026932	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
111	GrWi-10	4550962	6026776	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
112	GrWi-12	4551030	6027279	Liner	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
114	GrWi-12 GrWi-13	4551030	6027279	Liner	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
115	GrWi-14	4550888	6027304	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
116	GrWi-15	4550930	6027300	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
117	GrWi-16	4551400	6027280	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
118	Kbh-1/08	4561921	6031984	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
120	ZI-OS-1/08	4554168	6035250	RKS	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
120	Zi-OS-3/08	4554224	6035487	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
122	Zi-OS-4/08	4554193	6035754	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
123	Zi-OS-5/08	4554168	6036071	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
124	Zi-OS-6/08	4561251	6036220	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
125	Zi-OS-7/07	4545372	6036366	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
126	Zi-OS-8/07	4547445	6038958	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
127	ZI-US-9/07	4554621	604027F	VKG	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe /IOW
120	Zi-OS-10/07	4563011	6040576	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
130	Zi-OS-12/07	4545514	6036070	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
131	Zi-OS-13/07	4547060	6036473	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
132	Zi-OS-14/07	4547447	6039035	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
133	Zi-OS-15/07	4562555	6041581	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
134	Zi-OS-16/07	4555379	6044722	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
135	ZI-US-17/07	4550518	6046435	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
130	ZI-US-18/07 ZI-US-18/07	4547478	6030826	VKG	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
138	Zi-OS-20/07	4547435	6041597	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
139	Zi-OS-21/07	4542412	6041525	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
140	Zi-OS-22/07	4539841	6036671	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
141	Zi-OS-23/07	4564068	6046034	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
142	Zi-OS-24/07	4561122	6049920	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
143	Zi-OS-25/07	4555318	6052513	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
144	ZI-US-26/07	4569445	6044981	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
145	ZI-US-21/U/ ZI-US-28/07	4560782	6046303	VKG		M Naumann /Prof. R. Lampe /IOW
140	Zi-03-20/07	4570012	6047005	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe //OW
148	Zi-OS-30/07	4570460	6048339	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
149	Zi-OS-31/07	4570570	6048891	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
150	Zi-OS-32/07	4570697	6049716	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW

Lfd-	AKRE7	RW	HW [GK4]	Daten-	Datenquello	Rechte /Datenverwaltung
151	Zi-OS-33/07	4569689	6049868	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
152	Zi-OS-34/08	4532750	6041197	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
153	Zi-OS-35/08	4534251	6041123	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
154	Zi-OS-36/08	4538359	6041106	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
155	Zi-OS-37/08	4536386	6038977	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
156	Zi-OS-38/08	4545051	6038407	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
157	ZI-OS-39/08	4550399	6038424	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
158	ZI-OS-40/08	4562369	6038487	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
159	Zi-OS-47/08	4553090	6040450	VKG	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
161	Zi-OS-43/08	4554817	6042719	VKG	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe /IOW
162	Zi-OS-44/08	4555335	6052183	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
163	Zi-OS-45/08	4562912	6044375	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
164	Zi-OS-46/08	4565111	6048525	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
165	Zi-OS-47/08	4566743	6048481	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
166	Zi-OS-48/08	4567603	6048439	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
167	Zi-OS-49/08	4568875	6048370	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
168	ZI-OS-50/08	4568338	6043670	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
169	ZI-US-51/08	4568448	6050279	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
170	ZI-OS-52/08	4567421	6054283	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
172	Zi-OS-54/08	4544197	6045758	VKG	SINCOS-II Datenerhebung	M Naumann /Prof R Lampe /IOW
173	Zi-OS-55/08	4536780	6045808	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
174	Zi-OS-56/08	4559084	6040520	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
175	Li-1/08	4576280	6052276	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
176	Li-2/08	4577207	6052936	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
177	Li-3/08	4577610	6053281	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
178	Li-4/08	4576099	6056701	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
179	Li-5/08	4576251	6053957	VKG	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe /IOW
180	RS-1/08	4577848	6049966	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
181	RS-2/08	4578254	6049622	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
102	K3-4/08	4571615	6049703	Liner	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe
184	Hi-SchaBo-2/07	4572671	6045288	Liner	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
185	Hi-1/07	4571693	6047198	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
186	Hi-2/07	4571454	6047094	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
187	Hi-3/07	4570991	6046717	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
188	Hi-4/07	4570787	6046419	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
189	Hi-5/07	4571006	6047034	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
190	Hi-6/07	4571118	6047615	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
191	Hi-7/07	4571430	6047940	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
192	HI-8/07	45/10/0	6047880	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
193	Hi-9/07	4572179	6047000	RKS	SINCOS-II Datenerhebung	M Naumann /Prof. R. Lampe
195	Hi-11/07	4571561	6046328	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
196	Hi-12/07	4571504	6046185	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
197	Hi-13/07	4571326	6045908	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
198	Hi-13a/07	4570508	6045525	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
199	Hi-14/07	4571451	6045256	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
200	Hi-15/07	4571166	6045191	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
201	Hi-16/07	4571121	6045642	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
202	Hi-17/07	4570975	6045202	RKS	SINCOS-II Datenerhebung	M.Naumann /Prof. R. Lampe
203	HI-18/07	4570530	6044036	DKG	SINCOS II Datenerhebung	M.Naumann /Prof. R. Lampe
204	Mbl. 1542 /2. Straminke 20	4546199	6034699	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
206	Mbl. 1542 /2, Straminke 21	4546450	6034699	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
207	Mbl. 1542 /3, Müggenburg	4547974	6032249	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
208	1/98	4526969	6025958	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
209	5/98	4527307	6027313	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
210	7/98	4527733	6027631	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
211	8/98	4527473	6027630	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
212	9/98	4527873	6027277	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
213	90/6002	4543750	6024464	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
∠14 215	Mbl 1542 /2 Premort 24	4520123	6033800	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
216	1/55	4544372	6034709	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
217	98/3041	4536916	6030274	Bohruna	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
218	S1/90	4537785	6034664	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
219	B1/77, Ingenieurhochschule	4525470	6024179	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
220	Mbl. 1542 /2, Kirr 26	4545639	6034529	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
221	Mbl. 1543 /1, Kbh 15	4560099	6032280	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
222	Mbl. 1543 /1, Kbh 16	4560159	6032099	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
223	Mbl. 1542 /2, Kavelhaken 22	4552399	6031699	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
224	1/95, Flugplatz Barth 1/9	4546821	6023146	Bonrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
225	o/95, Flugplatz Barth 6/9	4546811	0023141	вопrung	AG Priys. Geogr., Uni Greifswald	PIUL R. Lampe

Lfd-		RW	HW	Daten-		
Nr.		[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
220	1/61 Mar Observatorium	4527900	6034405	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
228	1/94, Meiningenbruecke	4543416	6031066	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
229	B11/64, Meiningenbrücke	4543435	6031102	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
230	9/72, Milchviehanlage Planitz	4543744	6025487	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
231	2/96 & 15/73, Darsser Ort	4534144	6038151	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
232	Mbl. 1543 /1, Pramort 10	4559949	6033844	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
233	RKS 1/99 Regenwasserleitung	4559532	6027516	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
235	1/65. Saegewerk Zingst	4543900	6034394	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
236	11/92, Saegewerk Zingst	4544266	6034960	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
237	5/55, Seedeich Ahrenshoop	4530475	6028679	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
238	Mbl. 1542 /2, Sund. Wiese 23	4553199	6033299	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
239	Mbl. 1542 /3, Sund. Wiese 31	4552305	6032087	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
240	1/89, VEB Fischverarbeitung	4547498	6034730	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
241	71	4552441	6034002	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
243	Z10	4557749	6034955	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
244	Z11	4557865	6034176	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
245	Z12	4559432	6034712	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
246	Z13	4559507	6033977	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
247	Z14	4559728	6033907	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
248	215	4558990	6033740	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
249	718	4557658	6033816	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
251	Z19	4557144	6033767	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
252	Z2	4552183	6033999	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
253	Z21	4556274	6033743	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
254	Z22	4557052	6033429	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
255	Z23	4557076	6033423	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
256	Z25	4557132	6034692	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
258	727	4554759	6033850	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
259	Z28	4555257	6033806	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
260	Z3	4552679	6033998	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
261	Ζ4	4552694	6034062	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
262	Z5	4552849	6034149	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
263	26	4552919	6034365	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
265	20	4553904	6033895	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
266	2/75. Zentrag-Ferienheim	4525989	6024200	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
267	Mbl. 1542 /2, Zingst 25	4545659	6034209	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
268	Mbl. 1542 /2, Zingst 27	4544699	6034149	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
269	Mbl. 1542 /2, Zingst 28	4544499	6034299	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
270	Mbl. 1542 /1, Zi Strom 15	4543619	6032400	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
271	MDI. 1542 /3, ZI Strom 32	4546479	6034600	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
273	Hi 1 /64	4571924	6051181	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
274	Hi 2/64	4571948	6051197	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
275	Hi B 1/00	4572071	6051142	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
276	Hi B 2/00	4572093	6051098	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
277	Hi B 3/00	4572048	6051101	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
270	HIRKS 2/00	4572107	6051008	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof R Lampe
280	Hi RKS 13/00	4572036	6051141	Bohruna	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
281	Hi 1b/78	4572464	6051074	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
282	Hi 4b/78	4572452	6051013	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
283	Hi 51/86	4572100	6050190	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
284	Hi AM 1/94	4571450	6049860	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
285	Hi AM 2/94	4571460	6049850	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
286	пі 29/0 Ні 2/94	45/1510	6049500	Bobrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
288	Hi 50/82	4571350	6049100	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
289	Hi Boddendeich 01	4571700	6049320	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
290	Hi Boddendeich 03	4571720	6049300	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
291	Hi Boddendeich 09	4571900	6049000	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
292	Hi 27/63	4571374	6048358	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
293	HI VO 1/94	4571380	6048780	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
294	Hi 14/71	45/1948	6049341	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
296	Hi 15/71	4571898	6049338	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
297	Hi 17/71	4571862	6049362	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
298	Hi 26/71	4571848	6049326	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
299	Hi 28/71	4571836	6049371	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
300	Hi 29/71	4571870	6049397	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe

Lfd-		RW	HW	Daten-		
Nr.	AKBEZ	[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
301	HI 2/73	45/1/50	6049387	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
302	Hi 10/73	4571775	6049313	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
304	Hi BA 1/96	4570380	6045320	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
305	Hi B 3/00	4572048	6051101	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
306	Libben 41	4577924	6053327	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
307	Libben 45	4576701	6053335	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
308	Libben 46	4577801	6054771	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
309	Libben 57	4576439	6055339	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
310	Libben 59	4576842	6055626	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
311	BOCK 2/76	4568172	6035689	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
312	HU 2/52	4571900	6045900	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof T Hurtig /Prof R Lampe
314	HU 3/52	4569400	6041875	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof T Hurtig /Prof R Lampe
315	HU 4/53	4569500	6039400	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. T. Hurtig /Prof. R. Lampe
316	HU 5/52	4574200	6050200	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. T. Hurtig /Prof. R. Lampe
317	Hi 05/1	4570680	6045585	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
318	Hi 05/3	4571223	6046140	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
319	Hi 05/5	4571428	6046619	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
320	Hi 05/8	4571603	6047479	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
321	Hi 05/9	4571603	6047744	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
322	Hi 05/10	4570626	6046053	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
323	Hi 05/12	4570869	6046248	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
325	Hi 1	4571185	6047051	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
326	Hi 2	4574125	6050029	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
327	Hi 3	4572686	6051379	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
328	Hi 4	4570824	6044124	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
329	Hi 5	4570404	6043996	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
330	Hi 6	4572654	6047099	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
331	Hi 7	4572743	6046542	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
332	Hi 8	4569190	6036923	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
334	HI 9 Hi 10	4509297	6030060	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
335	Hi 10 Hi 11	4570219	6045199	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A Barthel /Prof R Lampe
336	Hi 12	4570049	6042830	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
337	Hi 13	4571920	6048574	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
338	Hi 14	4571405	6050448	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
339	Hi 15	4573935	6051427	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
340	Hi 16	4571734	6046489	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
341	Hi 19	4572572	6044924	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
342	Hi 20	4573353	6041961	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
343	Hi 21	45/1//8	6037833	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
344	Hi 22 Hi 24	457 1155	6041764	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A Barthel /Prof R Lampe
346	Hi 31	4571519	6039264	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
347	Hi 32	4572998	6045232	Bohrung	Diplomarbeit A. Barthel, Uni Greifswald	A. Barthel /Prof. R. Lampe
348	Karkensee	4569579	6041764	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
349	108/RKS8-92	4537113	6036393	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
350	1541/15 Leuchtturm	4532782	6038200	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
351	1541/12	4536953	6035093	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
352	P8-11	4538813	6035693	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Harks /LUNG /Prof. R. Lampe
353	1541/10	4534491	6036042	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
355	1541/8	4533703	6033114	Bohrung	Diplomarbeit H Tiarks, Uni Greifswald	H Tiarks / UNG /Prof R Lampe
356	1541/9	4534303	6033444	Bohruna	Diplomarbeit H. Tiarks. Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
357	1541/63	4535833	6035049	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
358	1541/59 GLA06	4537593	6035274	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
359	Försterei Prerow	4535491	6034846	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /LUNG /Prof. R. Lampe
360	DSF 3300/12	4530269	6041302	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
361	DSF 3100	4532593	6044073	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
362	FRA 6750/04	4542516	6041409	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
363	0/50/02a DSE3250/31	4544568	6041145	Bobrung	Diplomarbeit H. Tiarks, Uni Greifswald	H Tiarks /IOW /Prof. R. Lampe
365	DSF 3230/31	4520052	6041140	Bohrung	Diplomatheit H. Tiarks, Uni Greifewald	H Tiarks /IOW /Prof P Lampa
366	DSF3500/17a	4529307	6037731	Bohruna	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
367	DSF 3700/21a	4528142	6034342	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
368	DSF3750/13a	4527280	6033815	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
369	DSF3900/31a	4526101	6031768	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /IOW /Prof. R. Lampe
370	B3 W-Strand	4531174	6034943	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /Prof. R. Lampe
371	B4 W-Strand	4531833	6036373	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /Prof. R. Lampe
372	B6 Nothaten	4533624	6037633	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Harks /Prot. R. Lampe
3/3	Bo K-Gestell Bo Müllergraben	4532903	6033312	Bohrung	Diplomarbeit H. Harks, Uni Greifswald	H Tiarks /Prof. R. Lampe
375	B10 E-Gestell	4532784	6037243	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks / Prof. R. Lampe

Lfd-	AKBEZ	RW	HW	Daten-	Datangualla	Pachta /Datanyanyaltung
Nr. 376	B11Regenbogen	4534953	6036863	Bohrung	Diplomarbeit H Tiarks Uni Greifswald	H Tiarks /Prof R Lampe
377	Theerbrenner Weg	4534823	6035693	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /Prof. R. Lampe
378	B1 W-Strand	4530264	6032304	Bohrung	Diplomarbeit H. Tiarks, Uni Greifswald	H. Tiarks /Prof. R. Lampe
379	ADO 1	4534350	6030450	Bohrung	Artikel Kaiser et al. 2006	Dr. K. Kaiser
380	ADO 7	4534750	6029575	Bohrung	Artikel Kaiser et al. 2007	Dr. K. Kaiser
381	ADO 31	4534825	6031125	Bohrung	Artikel Kaiser et al. 2008	Dr. K. Kaiser
382	ADO 39	4534200	6030100	Bohrung	Artikel Kaiser et al. 2009	Dr. K. Kaiser
384	ADO 40 ADO 42	4534625	6031675	Bohrung	Artikel Kaiser et al. 2010	Dr. K. Kaiser
385	D1	4527711	6025055	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
386	E1	4528009	6026004	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
387	E2	4528780	6025240	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
388	A6	4530131	6023899	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
389	F1	4537597	6025857	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
390	G1	4538258	6030338	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
391	FZ H1	4530000	6027987	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
393	H2	4541018	6030672	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
394	11	4544766	6028065	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
395	12	4545157	6029214	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
396	13	4545157	6030179	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
397	J1	4547340	6027689	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
398	L2	4548311	6030715	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
399	L1	4549142	6029771	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
400	K1	4549370	6027676	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
401	M2	4550653	6020850	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
402	N2	4550623	6020055	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof. R. Lampe
404	N1	4553160	6026698	Bohrung	AG Phys. Geogr. Uni Greifswald	Prof R Lampe
405	03	4553852	6031826	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
406	02	4554260	6030460	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
407	01	4554720	6028774	Bohrung	AG Phys. Geogr., Uni Greifswald	Prof. R. Lampe
408	lg KrfSs -/908	4566650	6035840	Bohrung		LUNG
409	Kb KHdd 1/963	4571970	6051585	Bohrung	VEB Spezialbau Magdeburg	LUNG
410	Kb Pmo 1/960	4565055	6034409	Bohrung	VEB Geologische Bohrungen Gommern	LUNG
411	Hy HodfSs -/-	4563540	6030300	Bohrung		LUNG
412	Es Pew 1/007	4537568	6035261	Bohrung	Bonr- u. Brunnenbau Panitz, Lubbenau	LUNG
413	Hy Krm 2/995	4568670	6024350	Bohrung		
415	Hy Krm 3/995	4568580	6024950	Bohrung		LUNG
416	Hy Krm 4/995	4568200	6024450	Bohrung		LUNG
417	Hy Krm 1/995	4568440	6024350	Bohrung		LUNG
418	Es WouRD 1-6/005	4525624	6024262	Bohrung	Schacht Brunnenbau	LUNG
419	Hy Krm 1/970	4567490	6023600	Bohrung	E. Wahl, Stralsund	LUNG
420	Hy KrfSs -/908	4565250	6034350	Bohrung	Brunnenbau Wahl - Stralsund	LUNG
421	Hy KrfSs -/957	4566650	6033850	Bohrung		LUNG
422	Hy KrtSs -/957	4565800	6031100	Bohrung	Brunnenbau Müller, Stralsund	LUNG
423	Hy KHdd (960	4571700	6051380	Bohrung	PGH Bruppenbau Stralsund	
424	Hy KHdd -/960	4571990	6051300	Bohrung	Fa Wahl Stralsund	
426	lg Hdd 2/971	4571760	6049230	Bohruna	Baugrund Stralsund	LUNG
427	lg Zng 7/964	4543550	6031080	Bohrung	PGH Brunnenbau Stralsund	LUNG
428	lg Zng 13/964	4543460	6031310	Bohrung	PGH Brunnenbau Stralsund	LUNG
429	lg Zng 10/964	4543600	6031160	Bohrung	PGH Brunnenbau Stralsund	LUNG
430	lg Zng -/955	4545650	6034550	Bohrung	Bau-Union Rostock VEB	LUNG
431	Hy Zng 6/938	4545390	6034430	Bohrung	Wasserversorgung AG Grünberg	LUNG
432	E PEW 4/966	4543801	6034276	Bohrung	VEB Erdol-Erdgas Grimmen	
433		4040304	6025576	Bohrung	Fa Amtshera Neuenkirchen	
435	Hy Barth 1/977	4545400	6027200	Bohrung	VEB Bau Greifswald	
436	Hy Barth 3/977	4545510	6027140	Bohruna	VEB Bau Greifswald	LUNG
437	Hy Barth 7/971	4545200	6026900	Bohrung	VEB Bau Greifswald	LUNG
438	Hy Hdd 1/974	4573305	6052310	Bohrung	Fa. Amtsberg Neuenkirchen	LUNG
439	Hy Barth 1/979	4548588	6025746	Bohrung	VEB Bau Greifswald	LUNG
440	Hy Hdd 1/982	4571350	6049100	Bohrung	WBK Rostock, BT Bau Bergen	LUNG
441	Hy Hdd 1/987	4572420	6051280	Bohrung	VEB Bau Bergen	LUNG
442	Hy Hdd 1/988	4572510	6051440	Bohrung	VEB Bau Bergen	LUNG
443		4572380	6051250	Bohrung	PCH Pruppophau Strelaund	
444	Hy Barth 2/981	4572380	6025487	Bohrung	VEB Grundwasserabsenkung Greifsweld	
446	Hy KHdd -/960	4574140	6050050	Bohrung	Fa Wahl Stralsund	LUNG
447	Hy KHdd -/951	4571490	6051410	Bohruna	Fa. Wahl, Stralsund	LUNG
448	Hy KHdd -/959	4572270	6051180	Bohrung	Fa. Wahl Stralsund	LUNG
449	Hy Hdd 2/974	4573200	6052220	Bohrung	Fa. Amtsberg Neuenkirchen	LUNG
450	Hy Hdd 2/987	4573300	6052300	Bohrung	VEB Bau Bergen	LUNG

Lfd-		RW	HW	Daten-	Determuslis	Dealate (Determinations
451	ANDEZ Hv Hdd 2/988	[GK4] 4572700	[GK4] 6051810	Bohrung	VEB Bau Bergen	
452	Hy Hdd 2/995	4572850	6051900	Bohrung		LUNG
453	Hy Hdd 3/966	4573390	6052320	Bohrung	VEB Bau Bergen	LUNG
454	Hy Hdd 3/974	4573395	6052405	Bohrung	Fa. Amtsberg Neuenkirchen	LUNG
455	Hy Hdd 3/995	4573330	6052270	Bohrung		LUNG
456	Hy Hdd 4/966	4573020	6052575	Bohrung	VEB Bau Bergen	LUNG
457	Hy Hdd 4/995	4573370	6052240	Bohrung		LUNG
458	Hy KHdd -/-	4571300	6051200	Bohrung		LUNG
459	Hy KHdd -/904	4571320	6025275	Bohrung	Fa. Wani, Straisund	
461	F Ss 1/964	4565824	6032140	Bohrung		
462	Hy Div 3/966	4545500	6022940	Bohrung	VEB Tiefbau Teterow	LUNG
463	Hy Barth 9/961	4548885	6026630	Bohrung	Fa. Klopsch, Tribsees	LUNG
464	Hy Div 2/966	4545500	6022880	Bohrung	VEB Tiefbau, Teterow	LUNG
465	Hy Barth 2/966	4548450	6025350	Bohrung	VEB Tiefbau Teterow	LUNG
466	Hy Barth 2/967	4546819	6025473	Bohrung	Fa. Klopsch, Tribsees	LUNG
467	Hy Barth 1/966	4548300	6025270	Bohrung	VEB Lietbau leterow	LUNG
468	Hy Barth 11/969	4546714	6026000	Bohrung	IBK Greifswald	
403	Hy Pub 1/970	4543840	6027900	Bohrung	Fa Wahl Stralsund	
471	Hy Barth 5/970	4545340	6026960	Bohruna	IBK Greifswald	LUNG
472	Hy Barth 5/971	4548520	6025700	Bohrung	Fa. Oevermann, Neukalen	LUNG
473	Hy Barth 1/973	4549460	6026850	Bohrung	Fa. Knull, Zingst	LUNG
474	Hy Barth 2/975	4547280	6025110	Bohrung	VEB Tiefbau Neukalen	LUNG
475	Hy Ss 3/962	4566660	6027400	Bohrung	H. Klopsch KG, Tribsees	LUNG
476	Hy Ss 5/962	4566480	6027860	Bohrung	H. Klopsch KG, Tribsees	LUNG
477	Hy GrKan 9/966	4567960	6026040	Bohrung	VEB Tiefbau Neubrandenburg	
470	Hy GrKdb 28/966	4568570	6023720	Bohrung	VEB Tiefbau Neubrandenburg	
480	Hy GrKdh 30/966	4567200	6023750	Bohrung	VEB Tiefbau Neubrandenburg	LUNG
481	Hy Scsh 8/966	4567460	6025000	Bohrung	PGH "Quelle", Loitz	LUNG
482	Hy Sof -/965	4565160	6026650	Bohrung		LUNG
483	Hy Ss 2/962	4566400	6027300	Bohrung	H. Klopsch KG, Tribsees	LUNG
484	Hy Ss 4/961	4569600	6027260	Bohrung		LUNG
485	Hy Ss -/950	4570350	6026830	Bohrung	LL Klanach KC. Tribagag	LUNG
400	Hy Ss -/961	4560540	6025220	Bohrung	H. Klopsch KG, Hibsees	
488	Hy Barth 2/992	4541240	6024330	Bohrung		LUNG
489	Hy HodfSs 1/000	4563703	6031395	Bohrung	Vormann und Partner Stralsund	LUNG
490	Hy HodfSs 2/000	4563612	6031356	Bohrung	Vormann und Partner Stralsund	LUNG
491	Hy HodfSs 3/001	4563519	6031317	Bohrung	Vormann und Partner Stralsund	LUNG
492	Hy HodfSs 1/998	4563606	6031358	Bohrung	Vormann und Partner Stralsund	LUNG
493	Hy HodiSs 1/001	4503518	6031319	Bohrung	Fa Opvormann KC, Noukolon	
494	Hy Ss 15/909 Hy Ss 17/969	4567480	6024090	Bohrung	Fa. Oevermann KG, Neukalen	
496	Hy Ss 13/969	4569160	6023380	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
497	Hy Prohn 1/973	4566440	6027860	Bohrung	VEB Tiefbohrungen u. Brunnenbau Neukalen	LUNG
498	Hy Prohn 2/977	4566380	6027800	Bohrung	VEB Bau Rügen	LUNG
499	Hy Ss 1/982	4569060	6023300	Bohrung		LUNG
500	Hy Ss 14/969	4568735	6023670	Bohrung	Fa. Oevermann KG, Neukalen	
507	iy Daitti 2/909 Ia Barth 12/971	4546030	6026920	Bohrung	Baugrund Stralsund	
502	la FDZ 18b/954	4559533	6033697	Bohruna		LUNG
504	Hy GrMr 2/989	4563740	6030660	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
505	Hy GrMr 1/989	4563750	6030660	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
506	Hy GrMr 1/981	4564130	6030720	Bohrung		LUNG
507	Hy NuRD 3/973	4535280	6023540	Bohrung	VEB Geophysik, Rostock	LUNG
508	Hy Zng 1/966	4543730	6034290	Bohrung	Fa. Kensbock, Miltzow	LUNG
509	Hy Zng 1/969	4553680	6033740	Bohrung	Knull, Ribnitz-Damgarten	
510	Hy 7ng 18a/954	4559535	6033694	Bohrung	Fa. Walii Straisuliu Fa. Buske Finsterwalde	
512	Hy Zng 18/954	4559950	6033845	Bohrung	Fa. Buske, Finsterwalde	LUNG
513	Hy WuoRD -/932	4525550	6024150	Bohrung	Fa. Niemann Rostock	LUNG
514	Hy WuoRD -/954	4526200	6024470	Bohrung	Fa. Oevermann Neukalen	LUNG
515	Hy WuoRD 3/954	4526640	6027050	Bohrung	Fa. Oevermann, Neukalen	LUNG
516	Hy WuoRD 4/957	4526760	6026850	Bohrung	Fa. Klopsch, Tribsees	LUNG
517	Hy WUORD -/959	4525560	6024130	Bohrung	Brunnenbau Bonke, Kibnitz	
519	Hy WuoRD 1/968	4525640	6024180	Bohrung	PGH "Brunnenbau" Stralsund	LUNG
520	Hy WuoRD 2/968	4525580	6024130	Bohrung	PGH Brunnenbau Stralsund	LUNG
521	Hy Aeo 5/970	4526560	6025690	Bohrung	Brunnenbau Böckler Wismar	LUNG
522	Hy Aeo 1/970	4526420	6025530	Bohrung	Brunnenbau Böckler Wismar	LUNG
523	Hy Aeo 7/970	4526650	6025570	Bohrung	Brunnenbau Böckler Wismar	LUNG
524	Hy WuoRD 1/970	4525000	6023180	Bohrung	Brunnenbau Kensbock Miltzow	LUNG
020	,	1020000	0020100	Somung		

Lfd-		RW	нพ	Daten-		
Nr.	AKBEZ	[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
526	Hy WuoRD 1/983	4525580	6024140	Bohrung	Brunnenbau Knull, Zingst	LUNG
527	Hy Lrh 1/963	4542110	6023470	Bohrung	Brunnenbau Klopsch Tribsees	LUNG
520	Hy Lth /065	4534460	6029220	Bohrung	Bruhnenbau Bockler, Wisman	
530	Hy BornD -/965	4534260	6028050	Bohrung	PGH Bauhandwerk, Born	
531	Hy BornD 3/966	4534200	6028180	Bohrung	PGH "Darß". Born	LUNG
532	Hy Ss 1/977	4567420	6023970	Bohrung	· · · · · · · · · · · · · · · · · · ·	LUNG
533	Hy Ss -/965	4566260	6024910	Bohrung	Ernst Wahl, Stralsund	LUNG
534	Hy Scsh 7/966	4565910	6024750	Bohrung	Fa. Klopsch KG, Tribsees	LUNG
535	Hy Zng 16/954	4552306	6032087	Bohrung	Brunnenbau Buske, Finsterwalde	LUNG
536	Hy Zng -/958	4543700	6030800	Bohrung	Fa. Wahl, Stralsund	LUNG
537	Hy Zng -/965	4545820	6034040	Bohrung	Krull, Ribnitz-Damgarten	LUNG
538	Hy Zng 1/965	4545880	6034370	Bohrung	PGH Stralsund	LUNG
540	Hy Kriss -/959	4573700	6037660	Bohrung	Gebr. Brandenburg Bergen	
541	Hy Umm 3/970	4574700	6039000	Bohrung	Gebr. Brandenburg Bergen	
542	Hy Umm 2/971	4573740	6037320	Bohrung	Gebr. Brandenburg Bergen	LUNG
543	Hy KrfSs 1/979	4566670	6034200	Bohrung	Brunnenbau Amtsberg Neuenkirchen	LUNG
544	Hy SthSs 115/985	4565081	6030778	Bohrung	VEB Brunnen- und Rohrleitungsbau Wismar	LUNG
545	Hy BornD 5/966	4533800	6027960	Bohrung	PGH "Darß", Born	LUNG
546	Hy BornD 2/967	4534430	6028280	Bohrung	Brunnenbau Döring Neuhof/Usedom	LUNG
547	Hy Barth 2/987	4542860	6022880	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
548	Hy Barth 1/989	4542720	6023120	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
549	Hy Ahag 1/000	4526509	6026386	Bohrung		
550	пу Аео 1/986	4526800	6026850	Bohrung	Brunnenbau Amtsberg, Neuenkirchen	
552	Hy Aeu 2/960 Kh Barth 10/065	4520600	6030888	Bohrung	VEB Geol Erk Nord	
553	Kb DaOt 1/960	4536742	6034772	Bohrung	VEB Geologische Bohrungen	
554	Hy Barth 3/981	4548812	6025495	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
555	Hy Div 1/982	4545000	6023120	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
556	Hy Div 2/982	4544820	6023060	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
557	Hy Div 2/983	4545700	6023170	Bohrung	VEB Brunnenbau Wismar	LUNG
558	Hy Div 1/983	4545363	6023111	Bohrung	VEB Brunnenbau Wismar	LUNG
559	Hy Barth 4/983	4546945	6025525	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
560	Hy Barth 2/983	4545840	6025040	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
561	Hy Barth 1/983	4548650	6025650	Bonrung	BMK, BT Greifswald	LUNG
562	Hy Barth 3/960	4547300	6024060	Bohrung	PCH "Bruppenbau" Straleund	
564	Hy Ss 19/969	4563810	6024000	Bohrung	Fa Oevermann KG Neukalen	
565	Hy Ss 20/969	4563260	6023300	Bohrung	Fa. Overmann KG. Neukalen	LUNG
566	Hy Ss 24/969	4562310	6023495	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
567	Hy Ss 21/969	4562610	6023405	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
568	Hy Ss 22/969	4564345	6024805	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
569	Hy Pree 1/971	4563730	6025060	Bohrung	S. Kensbock, Miltzow	LUNG
570	Hy Pree 1/979	4563140	6024720	Bohrung	ZBO Greifswald	LUNG
571	Hy Pree 2/979	4563200	6024720	Bohrung	ZBO Greifswald	LUNG
572	Hy Nps -/960	4558360	6024260	Bohrung	V. u. D. Franzburg	LUNG
573	Hy Pronn 1/961	4564500	6027320	Bohrung	E. Wahl, Straisund	
575	Hy Nps -/962	4559190	6022980	Bohrung	PGH Brunnenbau Stralsund	
576	Hy Olo 4E/966	4563120	6024730	Bohrung	Klopsch, KG, Tribsees	LUNG
577	Hy Duvk 2/966	4560490	6023250	Bohrung	PGH" Quelle", Loitz	LUNG
578	Hy Olo 5/966	4563380	6024200	Bohrung	Fa.Klopsch KG, Tribsess	LUNG
579	Hy Pree 29/966	4564340	6024860	Bohrung	VEB Tiefbau Neubrandenburg	LUNG
580	Hy Duvk 3/966	4561900	6023620	Bohrung	PGH "Quelle", Loitz	LUNG
581	Hy GrMr 1/977	4563870	6030670	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
582	Hy SthSs 111/986	4562952	6030579	Bohrung	VEB Geothermie Neubrandenburg	LUNG
583	Hy Nps 2/966	4503310	6029700	Bohrung	PCH Bruppenbau Stralaund	
585	Hy Nps -/965	4554780	6024280	Bohrung	F Wahl Brunnenbau Stralsund	
586	Hy Scsh 10/966	4564940	6023680	Bohrung	Fa. Klopsch KG. Tribsees	LUNG
587	Hy Aep -/955	4562380	6025740	Bohrung	VEB Spezialbau Magdeburg	LUNG
588	Hy Aep 4/957	4562360	6025320	Bohrung	E. Wahl , Brunnenbau Stralsund	LUNG
589	Hy NuRD 1/973	4534670	6022900	Bohrung	VEB Geophysik, Rostock	LUNG
590	Hy Pew 1/919	4535500	6034800	Bohrung	Fa. Wahl, Stralsund	LUNG
591	Hy Pew -/-	4536350	6036050	Bohrung		LUNG
592	Ig Pew -/951	4534300	6033450	Bohrung		LUNG
593	IG FDZ 7/954	4532779	6038207	Bohrung	Fa. Buske, Finsterwalde	LUNG
594	Hy WID 6/975	4534710	6031480	Bohrung	Brunnenhau Amtshera, Nauenkirahan	
506		4526020	6024360	Bohrung	VEB Wassenwirtschaft Postock	
597	Hy WuoRD -/919	4528400	6028840	Bohruna	Fa. Niemann Rostock	LUNG
598	Hy Saal 1/987	4534750	6022840	Bohruna	Fa. Amtsberg, Neuenkirchen	LUNG
599	Hy Saal 1/984	4534840	6022980	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
600	Hy GrKd 1/995	4553903	6023774	Bohrung	GFE GmbH Schwerin	LUNG

Lfd- Nr	AKBEZ	RW	HW IGK41	Daten-	Datenquelle	Rechte /Datenverwaltung
601	la Barth 6/955	4547000	6026560	Bohruna	VEB Wasserwirtschaft Rostock	LUNG
602	lg Barth 1/954	4545510	6026660	Bohrung	VEB Bau-Union Rostock	LUNG
603	lg Zipke 1/992	4551090	6023780	Bohrung	Baugrund Stralsund	LUNG
604	Hy Div 2/984	4545700	6024330	Bohrung	BMK, BT Greifswald	LUNG
605	Hy Div 5/961	4545504	6022825	Bohrung		LUNG
606	Hy Div 1/984	4545580	6023050	Bohrung	BMK, BT Greifswald	LUNG
607	Hy Barth 4/971	4547050	6025580	Bohrung	IBK Greifswald	LUNG
608	Hy Barth 2/977	4545460	6027100	Bohrung	VEB Bau Greifswald	LUNG
610	Hy Barth 1/	4550190	6026210	Bohrung	VEB Brunnenbau Wismar	
611	Hy Barth 1/954	4548550	6025720	Bohrung	Fa Schönwetter Schwedt	
612	la Prohn 15/972	4567840	6027900	Bohrung	VEB Baugrund Berlin, PS Stralsund	LUNG
613	lg Prohn 25/972	4568020	6028280	Bohrung	VEB BAugrund Berlin, PS Stralsund	LUNG
614	lg Prohn 1/972	4566970	6027700	Bohrung	VEB Baugrund Berlin, PS Stralsund	LUNG
615	Hy Pree 1/986	4563200	6024660	Bohrung	Brunnenbaubetrieb Amtsberg, Neuenkirchen	LUNG
616	Hy Olo 4/966	4563130	6024710	Bohrung	Klopsch, KG. Tribsees	LUNG
617	Ig Prohn 33/972	4567050	6028070	Bohrung	Fa.E.Wahl, Stralsund	LUNG
618	Hy Nps 3/977	4564460	6027510	Bohrung		LUNG
619	Hy Nps 1/9/7	4564390	6027390	Bonrung		LUNG
621	Hy NPS -/- Hy GrMr 2/981	4563260	0024080 6030050	Bohrung		
622	Hy Aep 1/988	4560480	6024860	Bohrung	Fa. Kensbock . Miltzow	LUNG
623	lq Ss 4/964	4566625	6027245	Bohruna	VEB Tiefbau-Union Rostock	LUNG
624	E Ss 4/966	4564973	6024045	Bohrung		LUNG
625	E Pree 1/971	4563647	6025101	Bohrung		LUNG
626	Hy KrfSs 2/971	4566780	6034180	Bohrung	PGH Brunnenbau Stralsund	LUNG
627	Es Puh 1-6/007	4542832	6027031	Bohrung	Bohr- u. Brunnenbau Panitz Lübbenau	LUNG
628	Hy Ss 101/991	4565935	6024286	Bohrung	Ivers Bohrtechnik GmbH Grimmen	LUNG
629	Hy Ss 102/991	4566313	6024182	Bohrung	Ivers Bohrtechnik GmbH Grimmen	LUNG
630	Hy Ss 103/991	4566715	6023822	Bohrung	Ivers Bohrtechnik GmbH Grimmen	LUNG
631	Hy Pree 1/968	4564060	6023900	Bohrung	H. Klopsch, Tribsees	
633	Hy Olo 4P4e/966	4563080	6029400	Bohrung		
634	Hy Hdd 12/005	4572270	6051290	Bohrung	Vormann und Partner mbH Stralsund	LUNG
635	Hy Hdd 13/005	4572500	6051400	Bohrung	Vormann und Partner mbH Stralsund	LUNG
636	Hy GrMr 1/988	4563900	6030680	Bohrung	Fa. Amtsberg, Neuenkirchen	LUNG
637	Hy Barth 4/002	4545845	6024673	Bohrung	Brunnenbau Zelck	LUNG
638	Kb Barth 5/964	4568384	6027600	Bohrung		LUNG
639	Kb SsAf 7/962	4569474	6025168	Bohrung		LUNG
640	Hy Aep 2/957	4561500	6025440	Bohrung	E. Wahl , Brunnenbau Stralsund	LUNG
641	Hy GrMr 3/958	4561820	6029460	Bohrung	E. Wahl, Stralsund	LUNG
642 643	Hy Barth /964	4547 140	6025640	Bohrung	Ea Klonsch Triebsees	
644	Hy Barth 1/002	4545874	6024995	Bohrung	Brunnenbau Zelck	
645	Hy Barth 1/960	4547860	6025340	Bohrung	Fa. Wahl. Stralsund	LUNG
646	Hy Barth 10/961	4549180	6026580	Bohrung	Fa.Klopsch, Tribsees	LUNG
647	Hy Barth 2/002	4545873	6024990	Bohrung	Brunnenbau Zelck	LUNG
648	Hy Barth 3/002	4545879	6024887	Bohrung	Brunnenbau Zelck	LUNG
649	Hy Barth 5/002	4545899	6025111	Bohrung	Brunnenbau Zelck	LUNG
650	Hy Barth 6/002	4546240	6024839	Bohrung	Brunnenbau Zelck	LUNG
651	Hy Barth III/957	4548700	6025600	Bohrung	Fa. Schönwetter, Schwedt	
653	Hy Pub 9/970	4000480	6027020	Bohrung	Fa Wahl Stralsunf	
654	Hy Nps -/955	4562000	6029420	Bohrung	VEB Spezialbau Magdeburg	LUNG
655	Kb Barth 4/965	4557942	6028801	Bohrung	VVB Feste Minerale Berlin	LUNG
656	Hy BornD 3/983	4533750	6029250	Bohrung	VEB Brunnenbau Wismar	LUNG
657	Hy Zng 14/954	4546250	6034790	Bohrung	Brunnenbau Buske, Finsterwalde	LUNG
658	lg Zng 12/964	4543500	6031250	Bohrung	PGH Brunnenbau Stralsund	LUNG
659	Hy Zng 2/938	4545640	6034530	Bohrung	Fuhrmann, Greifswald	LUNG
660	Kb DaOt 2/962	4547975	6033250	Bohrung	VEB Geolog. Erkundung Nord	LUNG
661	Hy Zng 12/938	4545705	6033950	Bohrung	Wasserversorgung AG Grünberg/Schlesien	LUNG
662	пу Zng 10/938	454/940	0033580	Bohrung	Wasserversorgung AG. Grünberg, Schlesien	
664	ny ∠ng 4/930 Hy Zng 1/899	4543700	6034700	Bohrung	wasserversorgung AG Grunderg, Schleslen Brundenbau Tischler Berlin	
665	F Ss 3/964	4561438	6031100	Bohrung		LUNG
666	Ig Barth 17/-	4547402	6027274	Bohrung	HSW	LUNG
667	Hy KnNSs 1/996	4569579	6024145	Bohrung		LUNG
668	Hy Pew 4/962	4534680	6032120	Bohrung	Fa. Klopsch, Tribsees	LUNG
669	Hy WiD 1/965	4537700	6031160	Bohrung	PGH Bauhandwerk Born	LUNG
670	Hy WiD 1/966	4538250	6031310	Bohrung	PGH "Darß" Born	LUNG
671	Hy WiD 3/966	4537960	6031260	Bohrung	PGH "Darß" Born	LUNG
672	Hy WID 1/968	4538420	6031240	Bohrung	PGH "Darls" Born	
674	пу вопо 0/908 Ну WiD 1/975	4537040	6031340	Bohrung	E Fa Krull Zingst	
675	Hy Pew 1/978	4537590	6035280	Bohrung	VEB Brunnen- u. Rohrleitunoshau Wismar	LUNG

Lfd- Nr.	AKBEZ	RW [GK4]	HW [GK4]	Daten- typ	Datenquelle	Rechte /Datenverwaltung
676	Hy BornD 3/980	4534120	6031590	Bohrung	VEB Brunne- u. Rohrleitungsbau Wismar	LUNG
677	Hy BornD 3/981	4534860	6032380	Bohrung	VEB Brunnen- u. Rohrleitungsbau Wismar	LUNG
678	Hy BornD 12/982	4534310	6030780	Bohrung	VEB Brunnen- u. Rohrleitungsbau Wismar	LUNG
680	Hy DVB 8/955 Hy V/tte 1/004	4534080	6048700	Bohrung	Vormann und Partner mbH Stralsund	
681	Hy Ss 1/960	4566520	6027560	Bohrung	H Klopsch KG Tribsees	
682	Hy Ss 6/963	4565920	6028210	Bohrung	Klopsch KG, Tribsees	LUNG
683	Hy Pmo 1/964	4563620	6030600	Bohrung	PGH Brunnenbau Stralsund	LUNG
684	Hy GrMr 1/970	4563680	6030600	Bohrung	PGH Brunnenbau Stralsund	LUNG
685	Hy GrMr 1/973	4562970	6030470	Bohrung	VEB Brunnenbau Neukalen	LUNG
686	Hy Ss 4/962	4566360	6027620	Bohrung	H. Klopsch KG, Tribsees	LUNG
687	Hy Pun 2/970	4543420	6027790	Bohrung	Fa. Wani, Straisund	
680	Hy DIV 1/976 Kh KHdd 2/963	4545020	6048358	Bohrung	VEB Spezialbau Maddeburg	
690	Hy Hdd 5/966	4572495	6051310	Bohrung	VEB Bau Bergen	LUNG
691	Ki Ss 6/989	4563623	6030890	Bohrung	Baugrund Stralsund	LUNG
692	lg Hdd 7/966	4572240	6052340	Bohrung	VEB Bau Rügen	LUNG
693	Hy BornD 6/969	4534580	6031550	Bohrung	PGH Brunnenbau Stralsund	LUNG
694	Hy BornD 7/969	4534540	6031400	Bohrung	PGH Brunnenbau Stralsund	LUNG
695	Hy BornD 11/982	4534420	6030750	Bohrung	VEB Brunnen- u. Rohrleitungsbau Wismar	LUNG
696	Hy Zng 17/954	4554108	6031470	Bohrung	Fa. Buske Finsterwalde	
698	Hy WiD 5/975	4534230	6031760	Bohrung	Brunnenbau Amtsberg Neuenkirchen	LUNG
699	Hy WuoRD -/960	4526320	6024480	Bohrung	Fa. Oevermann. Neukalen	LUNG
700	Hy WuoRD -/964	4526120	6024560	Bohrung	Fa. Knull, Ribnitz-Damgarten	LUNG
701	Hy WuoRD 2/970	4525900	6024550	Bohrung	Brunnenbau Kensbock, Miltzow	LUNG
702	Hy Ss 16/969	4568040	6024435	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
703	Hy Ss 18/969	4566880	6024820	Bohrung	Fa. Oevermann KG, Neukalen	LUNG
704	Hy Ss 1/969	4563390	6024150	Bohrung	Fa. Klopsch KG, Tribsees	LUNG
705	Hy Lrh 2/964	4542750	6023140	Bohrung	Brunnenbau Klopsch, Tribsees	LUNG
706	Hy Saal 1/983	4534800	6022970	Bohrung	BMK, BT Greifswald	LUNG
707	Hy App 4/970	4547260	6025570	Bohrung	Fa. Wani, Straisund Brunnenhau Böckler Wismar	
709	Hy Aco 9/970	4526100	6025600	Bohrung	Brunnenbau Böckler Wismar	
710	Hy Barth 2/954	4548550	6025720	Bohrung	Fa. Schönwetter Schwedt	LUNG
711	Sd Rubi 15/994	4548690	6023690	Bohrung	Fa. Vormann, Stralsund	LUNG
712	Sd Rubi 17/994	4548830	6023130	Bohrung	Fa. Vormann, Stralsund	LUNG
713	Hy Barth 2/980	4548578	6025569	Bohrung	VEB Grundwasserabsenkung Greifswald	LUNG
714	Hy BornD 14/969	4534520	6031320	Bohrung	PGH Brunnenbau Stralsund	LUNG
715	Hy BornD 13/969	4534500	6031240	Bohrung	PGH Brunnenbau Stralsund	LUNG
716	Hy Nps -/958	4561820	6029300	Bohrung	Ernst Wani, Brunnenbau Straisund	LUNG
718	Hy GINI 1/900 Hy Nos 3/083	4560400	6023200	Bohrung	Masserbau Weimar, BT Stralsund	
719	Hy GrMr 5/958	4562100	6029300	Bohrung	F Wahl Stralsund	
720	Es WiD 1-6/008	4537980	6032400	Bohrung	BBF Th. Ilchmann, Perleberg	LUNG
721	Es KrfSs 1-2/008	4565892	6031553	Bohrung	Bohr- u. Brunnenbau Panitz, Lübbenau	LUNG
722	Hy DepHdd 5/991	4573605	6052845	Bohrung	Wastra Plan	LUNG
723	lg Barth 13/985	4547270	6026987	Bohrung	SBK Wasserbau Weimar, PB Stralsund	LUNG
724	Ig Barth 01-04/006	4547169	6027078	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
725	Ig Barth 01-10/005	4547825	6026885	Bohrung	Vormann & Partner mbH Stralsund	LUNG
720	ig Bartii 02-10/005 Sd Rubi 1/004	4548142	0020964	Bohrung	Vormann & Partner Bohrgesellschaft mbH	
728	Sd Rubi 5/994	4548245	6023714	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
729	Sd Rubi 8/994	4548435	6022896	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
730	Sd Rubi 9/994	4548419	6023626	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
731	Sd Rubi 13/994	4548648	6023243	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
732	Sd Rubi 14/994	4548720	6022973	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
733	Sd Rubi 18/994	4548171	6023421	Bohrung	Vormann & Partner Bohrgesellschaft mbH	LUNG
734	Es WouRD 1-2/007	4526093	6024290	Bohrung	Bohr- u. Brunnenbau Panitz, Lübbenau	LUNG
735	ES WID 1-2/007	453/970	6025974	Bohrung	Boni-u. Brunnenbau Panitz Lubbenau	
737	Fs WouRD 1-2/008	4526160	6024394	Bohrung	Rohrunternehmen Kerst Bölsdorf	LUNG
738	BS 33 (ls)	4547893	6034982	Bohrung	STAUN 0244/1 P	STAUN
739	BS 33 (ws)	4547906	6035030	Bohrung	STAUN 0244/1 P	STAUN
740	BS 35 (ls)	4547984	6034992	Bohrung	STAUN 0244/1 P	STAUN
741	BS 35 (ws)	4547966	6035029	Bohrung	STAUN 0244/1 P	STAUN
742	BS 36 (ls)	4548028	6034990	Bohrung	STAUN 0244/1 P	STAUN
743	BS 37 (ls)	4548073	6034987	Bohrung	STAUN 0244/1 P	STAUN
744	BS 37 (ws)	4548095	6035033	Bohrung	SIAUN 0244/1 P	STAUN
745	DO 4U (IS)	4548214	6034985	Bohrung		STAUN
740	BS 42 (IS)	40400/0	6034992	Bohrung	STAUN 0244/1 P STALIN 0244/1 P	STAUN
748	BS 43 (Is)	4548786	6034990	Bohrung	STAUN 0244/1 P	STAUN
749	BS 45 (ls)	4548876	6034987	Bohruna	STAUN 0244/1 P	STAUN
750	BS 46 (ls)	4548910	6034990	Bohrung	STAUN 0244/1 P	STAUN

Lfd- Nr.	AKBEZ	RW [GK4]	HW [GK4]	Daten- typ	Datenquelle	Rechte /Datenverwaltung
751	BS 49 (ws)	4549070	6035038	Bohrung	STAUN 0244/1 P	STAUN
752	BS 51 (ws)	4549133	6035035	Bohrung	STAUN 0244/1 P	STAUN
753	BS 53 (ls)	4549207	6034987	Bohrung	STAUN 0244/1 P	STAUN
754	BS 54 (IS) BS 56 (Is)	4549257	6034987	Bohrung	STAUN 0244/1 P	STAUN
756	BS 59 (ws)	4549705	6035037	Bohrung	STAUN 0244/1 P	STAUN
757	1759	4558915	6051175	Bohrung	STAUN 0983 G (Fugro)	STAUN
758	1760	4558750	6051250	Bohrung	STAUN 0983 G (Fugro)	STAUN
759	1763	4558680	6051390	Bohrung	STAUN 0983 G (Fugro)	STAUN
760	1765	4558675	6049750	Bohrung	STAUN 0983 G (Fugro)	STAUN
761	1767	4558685	6050030	Bohrung	STAUN 0983 G (Fugro)	STAUN
762	1768	4558800	6050180	Bohrung	STAUN 0983 G (Fugro)	STAUN
763	1770	4559020	6050560	Bohrung	STAUN 0983 G (Fugro)	STAUN
765	1772	4558825	6050300	Bohrung	STAUN 0983 G (Fugro)	STAUN
766	1774	4559180	6050675	Bohrung	STAUN 0983 G (Fugro)	STAUN
767	1775	4558485	6050375	Bohrung	STAUN 0983 G (Fugro)	STAUN
768	1777	4558800	6050680	Bohrung	STAUN 0983 G (Fugro)	STAUN
769	1778	4558490	6050755	Bohrung	STAUN 0983 G (Fugro)	STAUN
770	1781	4558480	6051175	Bohrung	STAUN 0983 G (Fugro)	STAUN
771	1786	4558910	6050995	Bohrung	STAUN 0983 G (Fugro)	STAUN
772	1/8/	4558820	6051200	Bohrung	STAUN 0983 G (Fugro)	STAUN
774	1788	4559090	6051180	Bohrung	STAUN 0983 G (Fugro)	STAUN
775	1809	4559900	6052180	Bohrung	STAUN 0983 G (Fugro)	STAUN
776	1810	4559875	6052200	Bohrung	STAUN 0983 G (Fugro)	STAUN
777	1814	4560100	6052125	Bohrung	STAUN 0983 G (Fugro)	STAUN
778	1816	4560000	6052420	Bohrung	STAUN 0983 G (Fugro)	STAUN
779	1817	4559850	6051890	Bohrung	STAUN 0983 G (Fugro)	STAUN
780	1820	4559755	6052125	Bohrung	STAUN 0983 G (Fugro)	STAUN
781	1823	4559350	6051255	Bohrung	STAUN 0983 G (Fugro)	STAUN
782	SEL-1	4547294	6043312	SEL-Profil	ZI_S-N_1-07/SINCOS-II Datenemebung	M.Naumann /IOW
784	SEL-2	4560656	6042203	SEL-Profil	Zi_NW-SE_2-07 /SINCOS-II Datenerhebung	M Naumann /IOW
785	SEL-4	4558643	6043247	SEL-Profil	Zi NW-SE 2-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
786	SEL-5	4557577	6043410	SEL-Profil	Zi_NW-SE_2-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
787	SEL-6	4547253	6047500	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
788	SEL-7	4546552	6046621	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
789	SEL-8	4545866	6045739	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
790	SEL-9	4545200	6044917	SEL-Profil	ZI_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
791	SEL-10 SEL-11	4544333	6043674	SEL-PIOIII	ZI_NE-SW_3-07 /SINCOS-II Datenerhebung	M Naumann /IOW
793	SEL-12	4543067	6042318	SEL-Profil	Zi NE-SW 3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
794	SEL-13	4542616	6041763	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
795	SEL-14	4541789	6040518	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
796	SEL-15	4541388	6039729	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
797	SEL-16	4541058	6039077	SEL-Profil	Zi_NE-SW_3-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
798	SEL-17	4540072	6036575	SEL-Profil	ZI_W-E_4-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
800	SEL-10 SEL-19	4541201	6036407	SEL-PIUTII SEL-Profil		M Naumann /IOW
801	SEL-20	4543328	6036265	SEL-Profil	Zi W-E 4-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
802	SEL-21	4548994	6036512	SEL-Profil	Zi_W-E_4-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
803	SEL-22	4552230	6036756	SEL-Profil	Zi_W-E_4-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
804	SEL-23	4554129	6036908	SEL-Profil	Zi_W-E_4-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
805	SEL-24	4554472	6037405	SEL-Profil	Zi_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
806	SEL-25	4554466	6038116	SEL-Profil	ZI_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
802	SEL-20 SEL-27	4554550	6040862	SEL-Profil	ZI_3-IN_3-U/ /SINCOS-II Datenerhebung	M Naumann /IOW
809	SEL-28	4555216	6045761	SEL-Profil	Zi S-N 5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
810	SEL-29	4555224	6046957	SEL-Profil	Zi S-N 5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
811	SEL-30	4555231	6047996	SEL-Profil	Zi_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
812	SEL-31	4555226	6048750	SEL-Profil	Zi_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
813	SEL-32	4555225	6049403	SEL-Profil	Zi_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
814	SEL-33	4555210	6050282	SEL-Profil	Zi_S-N_5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
815	SEL-34	4555201	6051269	SEL-Profil	ZI S-N 5-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
817	SEL-30	4000298	6052055	SEL-PIOIII		
818	SEL-37	4556115	6053000	SEL-Profil	Zi W-E 6-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
819	SEL-38	4556864	6053048	SEL-Profil	Zi_W-E_6-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
820	SEL-39	4557771	6053091	SEL-Profil	Zi_W-E_6-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
821	SEL-40	4558365	6053106	SEL-Profil	Zi_W-E_6-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
822	SEL-41	4558815	6052635	SEL-Profil	Zi_NW-SE_7-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
823	SEL-42	4559393	6051863	SEL-Profil	ZI_NW-SE_7-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
0∠4 825	SEL-43	45560104	6050780	SEL-PIOTII	Zi_NW-SE_7-07 /SINCOS-II Datenerhebung	M Naumann /IOW
		100010-1	0000100			
Lfd-		RW	HW	Daten-		
------------	--------------------	---------	---------	--------------------------	---	-------------------------
Nr.		[GK4]	[GK4]	typ		Rechte /Datenverwaltung
820	SEL-45	4560731	6050078	SEL-Profil	ZI_NW-SE_7-07/SINCOS-II Datenernebung	M.Naumann /IOW
828	SEL-40	4562103	6048261	SEL-Profil	Zi_NW-SE_7-07 /SINCOS-II Datenerhebung	M Naumann /IOW
829	SEL-48	4562646	6047530	SEL-Profil	Zi NW-SE 7-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
830	SEL-49	4563157	6046845	SEL-Profil	Zi NW-SE 7-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
831	SEL-50	4563863	6045939	SEL-Profil	Zi_NW-SE_7-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
832	SEL-51	4559198	6053119	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
833	SEL-52	4559778	6053132	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
834	SEL-53	4559996	6053135	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
835	SEL-54	4560287	6053137	SEL-Profil	ZI_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
837	SEL-00 SEL-56	4562069	6053181	SEL-PIOIII SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M Naumann /IOW
838	SEL-57	4563107	6053195	SEL-Profil	Zi W-O 10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
839	SEL-58	4564298	6053216	SEL-Profil	Zi W-O 10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
840	SEL-59	4565373	6053233	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
841	SEL-60	4566305	6053258	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
842	SEL-61	4567343	6053267	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
843	SEL-62	4568267	6053296	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
844	SEL-63	4569079	6053292	SEL-Profil	ZI_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
846	SEL-04 SEL-65	4570120	6052813	SEL-PIOIII SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
847	SEL-66	4570302	6051822	SEL-Profil	Zi N-S 11-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
848	SEL-67	4570332	6051240	SEL-Profil	Zi_N-S_11-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
849	SEL-68	4570409	6050510	SEL-Profil	Zi_N-S_11-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
850	SEL-69	4570585	6049905	SEL-Profil	Zi_N-S_11-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
851	SEL-70	4538772	6038256	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
852	SEL-71	4539670	6038260	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
853	SEL-72	4540488	6038282	SEL-Profil	ZI_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
855	SEL-75 SEL-74	4544500	6038273	SEL-PIOIII	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M Naumann /IOW
856	SEL-75	4545651	6038277	SEL-Profil	Zi W-E 3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
857	SEL-76	4546950	6038275	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
858	SEL-77	4548335	6038284	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
859	SEL-78	4549574	6038282	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
860	SEL-79	4551107	6038273	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
867	SEL-80	4551247	6038303	SEL-Profil	ZI_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
863	SEL-82	4561247	6038309	SEL-Profil	Zi W-E 3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
864	SEL-83	4562064	6038318	SEL-Profil	Zi_W-E_3-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
865	SEL-84	4562311	6040414	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
866	SEL-85	4561686	6040367	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
867	SEL-86	4560625	6040362	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
860	SEL-07	4556893	6040364	SEL-PIOIII SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
870	SEL-89	4556419	6040345	SEL-Profil	Zi E-W 5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
871	SEL-90	4555510	6040330	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
872	SEL-91	4554217	6040302	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
873	SEL-92	4552269	6040294	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
874	SEL-93	4551056	6040247	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
875	SEL-94	4549525	6040202	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
0/0 877	SEL-90	4547509	6040205	SEL-PROTIL	ZI_E-W_3-00 / SINCOS-II Datenerhebung	M Naumann /IOW
878	SEL-97	4542814	6040147	SEL-Profil	Zi E-W 5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
879	SEL-98	4541923	6040150	SEL-Profil	Zi_E-W_5-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
880	SEL-99	4558772	6053115	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
881	SEL-100	4560757	6053147	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
882	SEL-101	4561704	6053172	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
883	SEL-102	4562604	6053190	SEL-Profil	ZI_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
884	SEL-103	4563702	6053207	SEL-Profil	ZI_W-O_10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
886	SEL-104	4565892	6053224	SEL-Profil	Zi_W-O_10-07 /SINCOS-II Datenerhebung	M Naumann /IOW
887	SEL-106	4566862	6053264	SEL-Profil	Zi W-O 10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
888	SEL-107	4567850	6053279	SEL-Profil	Zi W-O 10-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
889	SEL-108	4560794	6049808	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
890	SEL-109	4560491	6049941	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
891	SEL-110	4560098	6050116	SEL-Profil	ZI_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
892	SEL-111 SEL-112	4559703	6050533	SEL-Profil	ZI ESE-WNW 8-07 /SINCOS-II Datenerhebung	M Naumann /IOW
894	SEL-113	4558823	6050682	SEL-Profil	Zi ESE-WNW 8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
895	SEL-114	4558427	6050858	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
896	SEL-115	4558166	6050974	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
897	SEL-116	4557769	6051149	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
898	SEL-117	4557350	6051338	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
900	SEL-110 SEL-119	4556681	6051641	SEL-Profil	Zi_LSE-WNWV_0-07 /SINCOS-II Datenerhebung	
000	0 110	1000001	0001071			

Lfd- Nr	AKBEZ	RW	HW IGK41	Daten-	Datenquelle	Rechte /Datenverwaltung
901	SEL-120	4555966	6051970	SEL-Profil	Zi ESE-WNW 8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
902	SEL-121	4555426	6052223	SEL-Profil	Zi_ESE-WNW_8-07 /SINCOS-II Datenerhebung	M.Naumann /IOW
903	SEL-122	4541414	6041401	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
904	SEL-123	4542012	6041388	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
905	SEL-124	4543075	6041357	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
906	SEL-125	4543611	6041340	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
907	SEL-126	4544142	6041327	SEL-Profil	ZI_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
908	SEL-127 SEL-128	4544015	6041313	SEL-PIOIII	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
910	SEL-129	4545640	6041328	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M Naumann /IOW
911	SEL-130	4546148	6041337	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
912	SEL-131	4546670	6041363	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
913	SEL-132	4547205	6041381	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
914	SEL-133	4548358	6041399	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
915	SEL-134	4548924	6041405	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
916	SEL-135	4549477	6041439	SEL-Profil	ZI_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
917	SEL-130	4550052	6041428	SEL-Profil	ZI_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
910	SEL-137 SEL-138	4551273	6041437	SEL-Profil	Zi_W-E_7-08/SINCOS-II Datenerhebung	M Naumann /IOW
920	SEL-139	4552190	6041449	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
921	SEL-140	4552716	6041462	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
922	SEL-141	4553252	6041472	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
923	SEL-142	4555583	6041468	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
924	SEL-143	4556148	6041468	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
925	SEL-144	4557223	6041479	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
926	SEL-145	4557740	6041492	SEL-Profil	ZI_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
927	SEL-140	4006242	6041496	SEL-PIOIII	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M Naumann /IOW
920	SEL-147	4559195	6041523	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M Naumann /IOW
930	SEL-149	4559615	6041521	SEL-Profil	Zi W-E 7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
931	SEL-150	4560063	6041531	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
932	SEL-151	4560507	6041516	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
933	SEL-152	4560953	6041520	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
934	SEL-153	4560513	6041520	SEL-Profil	Zi_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
935	SEL-154	4561805	6041541	SEL-Profil	ZI_W-E_7-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
930	SEL-155	4563608	6045852	SEL-Profil	Zi_W-E_1-08/SINCOS-II Datenerhebung	M Naumann /IOW
938	SEL-157	4563188	6045842	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
939	SEL-158	4562730	6045832	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
940	SEL-159	4562314	6045817	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
941	SEL-160	4561886	6045806	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
942	SEL-161	4561311	6045802	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
943 044	SEL-102 SEL-163	4560611	6045790	SEL-PIOIII SEL-Profil	Zi_E-W_17-08/SINCOS-II Datenerhebung	M.Naumann /IOW
945	SEL-164	4559681	6045784	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
946	SEL-165	4558500	6045755	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
947	SEL-166	4557349	6045754	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
948	SEL-167	4556748	6045741	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
949	SEL-168	4556151	6045722	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
950	SEL-169	4555638	6045716	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
951	SEL-1/U SEL 171	4555092	6045717	SEL-Profil		M Naumann /IOW
953	SEL-171	4554033	6045702	SEL-FIOIII	Zi E-W 17-08 /SINCOS-II Datenerhebung	M Naumann /IOW
954	SEL-173	4553511	6045700	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
955	SEL-174	4552893	6045700	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
956	SEL-175	4552258	6045694	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
957	SEL-176	4551585	6045690	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
958	SEL-177	4551064	6045684	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
959	SEL-178	4550548	6045684	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
900	SEL-179 SEL-180	4046289	6045620	SEL-PROTI	ZI_E-W_17-06/SINCOS-II Datenerhebung	M Naumann /IOW
962	SEL-181	4547422	6045602	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
963	SEL-182	4546966	6045590	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
964	SEL-183	4546512	6045580	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
965	SEL-184	4546120	6045572	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
966	SEL-185	4545668	6045577	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
967	SEL-186	4545184	6045581	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
968	SEL-18/	4544694	6045582	SEL-Protil	ZI_E-W_17-08 /SINCOS-II Datenerhebung	IVI.INaumann /IOW
909 970	SEL-100 SEL-189	4543153	6045614	SEL-Profil	Zi_E-vv_17-06/SINCOS-II Datenerhebung	M Naumann /IOW
971	SEL-190	4542639	6045605	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
972	SEL-191	4542065	6045600	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
973	SEL-192	4541520	6045598	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
974	SEL-193	4540783	6045605	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
975	SEL-194	4540181	6045655	SEL-Profil	Zi E-W 17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW

Lfd- Nr.	AKBEZ	RW [GK4]	HW [GK4]	Daten- typ	Datenquelle	Rechte /Datenverwaltung
976	SEL-195	4539608	6045593	SEL-Profil	Zi_E-W_17-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
977	SEL-196	4562780	6042022	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
978	SEL-197	4562767	6042512	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
979	SEL-198	4562759	6042922	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
980	SEL-199	4562760	6043063	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
981	SEL-200	4562761	6043601	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
982	SEL-201	4562821	6044943	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
983	SEL-202	4562864	6045294	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
984	SEL-203	4562909	6045660	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenernebung	M.Naumann /IOW
985	SEL-204	4562021	6047104	SEL-Profil		M.Naumann /IOW
900	SEL-205	4562027	6047751	SEL-FIUII	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M Naumann /IOW
988	SEL-200	4562940	6048197	SEL-Profil	Zi_S-N_8-08 /SINCOS-II Datenerhebung	M Naumann /IOW
989	SEL-208	4563052	6048504	SEL-Profil	Zi S-N 8-08 /SINCOS-II Datenerhebung	M.Naumann /IOW
990	Geol Karte-1	4571266	6050968	geol. Karte	M. Naumann 2009	M.Naumann
991	Geol Karte-2	4571215	6051089	geol. Karte	M. Naumann 2009	M.Naumann
992	Geol_Karte-3	4571273	6051331	geol. Karte	M. Naumann 2009	M.Naumann
993	Geol_Karte-4	4571313	6051422	geol. Karte	M. Naumann 2009	M.Naumann
994	Geol_Karte-5	4571203	6051496	geol. Karte	M. Naumann 2009	M.Naumann
995	Geol_Karte-6	4571211	6051603	geol. Karte	M. Naumann 2009	M.Naumann
996	Geol_Karte-7	4571073	6051617	geol. Karte	M. Naumann 2009	M.Naumann
997	Geol_Karte-8	4571070	6051713	geol. Karte	M. Naumann 2009	M.Naumann
998	Geol_Karte-9	4571044	6051849	geol. Karte	M. Naumann 2009	M.Naumann
999	Geol_Karte-10	4571185	6051852	geol. Karte	M. Naumann 2009	M.Naumann
1000	Geol_Karte-11	4571212	6051958	geol. Karte	M. Naumann 2009	M.Naumann
1001	Geol_Karte-12	45/1336	6050400	geol. Karte	IVI. Naumann 2009	M Noumann
1002	Geol_Karte-13	4571335	6052102	geol. Karte	M. Naumann 2009	M.Naumann
1003	Geol_Karte 15	4571470	6052231	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1004	Geol Karte-16	4571501	6052245	geol. Karte	M. Naumann 2009	M Naumann
1005	Geol Karte-17	4571599	6052352	geol. Karte	M. Naumann 2009	M Naumann
1000	Geol Karte-18	4571694	6052386	geol. Karte	M. Naumann 2009	M.Naumann
1008	Geol Karte-19	4571721	6052498	geol. Karte	M. Naumann 2009	M.Naumann
1009	Geol Karte-20	4571840	6052513	geol. Karte	M. Naumann 2009	M.Naumann
1010	Geol Karte-21	4571878	6052618	geol. Karte	M. Naumann 2009	M.Naumann
1011	Geol_Karte-22	4571979	6052652	geol. Karte	M. Naumann 2009	M.Naumann
1012	Geol_Karte-23	4571994	6052777	geol. Karte	M. Naumann 2009	M.Naumann
1013	Geol_Karte-24	4572136	6052785	geol. Karte	M. Naumann 2009	M.Naumann
1014	Geol_Karte-25	4572111	6052915	geol. Karte	M. Naumann 2009	M.Naumann
1015	Geol_Karte-26	4572209	6052954	geol. Karte	M. Naumann 2009	M.Naumann
1016	Geol_Karte-27	4572224	6053032	geol. Karte	M. Naumann 2009	M.Naumann
1017	Geol_Karte-28	4572330	6053065	geol. Karte	M. Naumann 2009	M.Naumann
1018	Geol_Karte-29	4572380	6053240	geol. Karte	M. Naumann 2009	M.Naumann
1019	Geol_Karte 31	4572500	6052250	geol. Karte	M. Naumann 2009	M.Naumann
1020	Geol Karte 32	4572712	6053108	geol Karte	M. Naumann 2009	M Naumann
1021	Geol Karte-33	4572757	6053332	geol. Karte	M. Naumann 2009	M Naumann
1022	Geol Karte-34	4572917	6053301	geol. Karte	M Naumann 2009	M Naumann
1024	Geol Karte-35	4572969	6053436	geol. Karte	M. Naumann 2009	M.Naumann
1025	Geol Karte-36	4573088	6053392	geol. Karte	M. Naumann 2009	M.Naumann
1026	Geol_Karte-37	4573179	6053514	geol. Karte	M. Naumann 2009	M.Naumann
1027	Geol_Karte-38	4573288	6053428	geol. Karte	M. Naumann 2009	M.Naumann
1028	Geol_Karte-39	4573414	6053542	geol. Karte	M. Naumann 2009	M.Naumann
1029	Geol_Karte-40	4573482	6053404	geol. Karte	M. Naumann 2009	M.Naumann
1030	Geol_Karte-41	4573629	6053465	geol. Karte	M. Naumann 2009	M.Naumann
1031	Geol_Karte-42	4573639	6053326	geol. Karte	M. Naumann 2009	M.Naumann
1032	Geol_Karte-43	4573752	6053445	geol. Karte	M. Naumann 2009	M.Naumann
1033	Geol_Karte-44	4573821	6053330	geol. Karte	M. Naumann 2009	M.Naumann
1034	Geol_Karte-45	4573958	6053405	geol. Karte	M. Naumann 2009	M.Naumann
1035	Geol_Karte-46	4574008	6053312	geol. Karte	M. Naumann 2009	M.Naumann
1036	Geol_Karte-47	45/4191	6053267	geol. Karte	IVI. INAUMANN 2009	M Noumann
1037	Geol Karte 40	45/4100	6052500	geol. Karte	M Naumann 2009	M Naumann
1038	Geol Karte-50	4573615	6052404	geol Karte	M Naumann 2009	
1039	Geol Karte-51	4573576	6052391	geol Karta	M. Naumann 2009	M Naumann
1040	Geol Karte-52	4573510	6052278	geol. Karte	M. Naumann 2009	M.Naumann
1042	Geol Karte-53	4565425	6034619	geol, Karte	M. Naumann 2009	M.Naumann
1043	Geol Karte-54	4565524	6034724	geol. Karte	M. Naumann 2009	M.Naumann
1044	Geol_Karte-55	4565655	6034710	geol. Karte	M. Naumann 2009	M.Naumann
1045	Geol_Karte-56	4565789	6034797	geol. Karte	M. Naumann 2009	M.Naumann
1046	Geol_Karte-57	4565964	6034752	geol. Karte	M. Naumann 2009	M.Naumann
1047	Geol_Karte-58	4566134	6034843	geol. Karte	M. Naumann 2009	M.Naumann
1048	Geol_Karte-59	4566267	6034704	geol. Karte	M. Naumann 2009	M.Naumann
1049	Geol_Karte-60	4566476	6034704	geol. Karte	M. Naumann 2009	M.Naumann
1050	Geol_Karte-61	4566606	6034558	geol. Karte	M. Naumann 2009	M.Naumann

Lfd-		RW	HW	Daten-		
Nr.	AKBEZ	[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
1051	Geol_Karte-62	4566810	6034523	geol. Karte	M. Naumann 2009	M.Naumann
1052	Geol_Karte 64	4567036	6033959	geol. Karte	M. Naumann 2009	M.Naumann
1053	Geol Karte-65	4567109	6033595	geol Karte	M. Naumann 2009	M.Naumann
1055	Geol Karte-66	4567266	6033362	geol. Karte	M. Naumann 2009	M.Naumann
1056	Geol_Karte-67	4567012	6033226	geol. Karte	M. Naumann 2009	M.Naumann
1057	Geol_Karte-68	4566889	6033050	geol. Karte	M. Naumann 2009	M.Naumann
1058	Geol_Karte-69	4566655	6033026	geol. Karte	M. Naumann 2009	M.Naumann
1059	Geol_Karte-70	4566628	6032843	geol. Karte	M. Naumann 2009	M.Naumann
1060	Geol_Karte-71	4566444	6032777	geol. Karte	M. Naumann 2009	M.Naumann
1061	Geol_Karte-72	4566537	6032584	geol. Karte	M. Naumann 2009	M.Naumann
1062	Geol Karte-73	4566464	6032087	geol Karte	M. Naumann 2009	M.Naumann
1064	Geol Karte-75	4566238	6031940	geol. Karte	M. Naumann 2009	M.Naumann
1065	Geol Karte-76	4565204	6034602	geol. Karte	M. Naumann 2009	M.Naumann
1066	Geol_Karte-77	4564871	6034261	geol. Karte	M. Naumann 2009	M.Naumann
1067	Geol_Karte-78	4564868	6034013	geol. Karte	M. Naumann 2009	M.Naumann
1068	Geol_Karte-79	4564714	6033765	geol. Karte	M. Naumann 2009	M.Naumann
1069	Geol_Karte-80	4564595	6033522	geol. Karte	M. Naumann 2009	M.Naumann
1070	Geol Karte 82	4564306	6032214	geol. Karte	IVI. Naumann 2009	
1071		4563714	6033257	geol Karte	M Naumann 2009	M Naumann
1073	Geol Karte-84	4563341	6033101	geol, Karte	M. Naumann 2009	M.Naumann
1074	Geol_Karte-85	4562869	6032991	geol. Karte	M. Naumann 2009	M.Naumann
1075	Geol_Karte-86	4562439	6033040	geol. Karte	M. Naumann 2009	M.Naumann
1076	Geol_Karte-87	4562675	6032901	geol. Karte	M. Naumann 2009	M.Naumann
1077	Geol_Karte-88	4563093	6033092	geol. Karte	M. Naumann 2009	M.Naumann
1078	Geol_Karte-89	4563511	6033177	geol. Karte	M. Naumann 2009	M.Naumann
1079	Geol_Karte-90	4562227	6032917	geol. Karte	M. Naumann 2009	M.Naumann
1080	Geol_Karte 91	4562096	6032565	geol. Karte	M. Naumann 2009	M.Naumann M.Naumann
1082	Geol_Karte-93	4562061	6032400	geol. Karte	M. Naumann 2009	M Naumann
1083	Geol Karte-94	4561985	6032269	geol. Karte	M. Naumann 2009	M.Naumann
1084	Geol_Karte-95	4561833	6032300	geol. Karte	M. Naumann 2009	M.Naumann
1085	Geol_Karte-96	4561639	6032220	geol. Karte	M. Naumann 2009	M.Naumann
1086	Geol_Karte-97	4561464	6032246	geol. Karte	M. Naumann 2009	M.Naumann
1087	Geol_Karte-98	4561306	6032087	geol. Karte	M. Naumann 2009	M.Naumann
1088	Geol_Karte-99	4561137	6032136	geol. Karte	M. Naumann 2009	M.Naumann
1009	Geol_Karte-100	4560797	6032002	geol. Karte	M. Naumann 2009	M Naumann
1091	Geol Karte-102	4560579	6031978	geol. Karte	M. Naumann 2009	M.Naumann
1092	Geol_Karte-103	4560405	6032046	geol. Karte	M. Naumann 2009	M.Naumann
1093	Geol_Karte-104	4560264	6031935	geol. Karte	M. Naumann 2009	M.Naumann
1094	Geol_Karte-105	4560103	6031879	geol. Karte	M. Naumann 2009	M.Naumann
1095	Geol_Karte-106	4560010	6031729	geol. Karte	M. Naumann 2009	M.Naumann
1096	Geol_Karte-107	4559850	6031659	geol. Karte	M. Naumann 2009	M.Naumann M.Naumann
1097	Geol_Karte-109	4559643	6031376	geol. Karte	M. Naumann 2009	M Naumann
1099	Geol Karte-110	4557872	6028949	geol. Karte	M. Naumann 2009	M.Naumann
1100	Geol_Karte-111	4559531	6031172	geol. Karte	M. Naumann 2009	M.Naumann
1101	Geol_Karte-112	4559320	6031091	geol. Karte	M. Naumann 2009	M.Naumann
1102	Geol_Karte-113	4559126	6030942	geol. Karte	M. Naumann 2009	M.Naumann
1103	Geol_Karte-114	4558915	6030867	geol. Karte	M. Naumann 2009	M.Naumann
1104	Geol Karte-116	4008/56	6030642	geol Karte	IVI. INAUMANN 2009 M. Naumann 2009	M Naumann
1106	Geol Karte-117	4558447	6030518	geol. Karte	M. Naumann 2009	M.Naumann
1107	Geol_Karte-118	4558283	6030306	geol. Karte	M. Naumann 2009	M.Naumann
1108	Geol_Karte-119	4558380	6030064	geol. Karte	M. Naumann 2009	M.Naumann
1109	Geol_Karte-120	4558283	6029850	geol. Karte	M. Naumann 2009	M.Naumann
1110	Geol_Karte-121	4558326	6029652	geol. Karte	M. Naumann 2009	M.Naumann
1111	Geol_Karte-122	4558137	6029533	geol. Karte	M. Naumann 2009	M.Naumann
1112	Geol_Karte-123	4558029	6029258	geol. Karte	M. Noumann 2009	M Neumann
1113	Geol Karte-124	4557675	6028814	geol Karte	M Naumann 2009	M Naumann
1115	Geol Karte-126	4557635	6028568	geol. Karte	M. Naumann 2009	M.Naumann
1116	Geol_Karte-127	4552244	6027065	geol. Karte	M. Naumann 2009	M.Naumann
1117	Geol_Karte-128	4552247	6027256	geol. Karte	M. Naumann 2009	M.Naumann
1118	Geol_Karte-129	4552111	6027332	geol. Karte	M. Naumann 2009	M.Naumann
1119	Geol_Karte-130	4552089	6027498	geol. Karte	M. Naumann 2009	M.Naumann
1120	Geol_Karte-131	4551959	6027625	geol. Karte	IVI. Naumann 2009	M.Neumann
1121	Geol Karte-132	4001839	6027435	geol Karte	M. Naumann 2009	M Naumann
1123	Geol Karte-134	4551778	6027338	geol Karte	M. Naumann 2009	M.Naumann
1124	Geol_Karte-135	4551697	6027252	geol. Karte	M. Naumann 2009	M.Naumann
1125	Geol_Karte-136	4551693	6027126	geol. Karte	M. Naumann 2009	M.Naumann

Lfd-		RW	HW	Daten-	D <i>i</i> u	
Nr.	AKBEZ	[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
1126	Geol_Karte-137	4551538	6027062	geol. Karte	M. Naumann 2009	M.Naumann
1127	Geol_Karte 138	4551445	6026896	geol. Karte	M. Naumann 2009	M.Naumann
1120	Geol Karte-140	4551269	6026653	geol Karte	M. Naumann 2009	M.Naumann
1120	Geol Karte-141	4551103	6026677	geol Karte	M. Naumann 2009	M Naumann
1131	Geol Karte-142	4551015	6026526	geol, Karte	M. Naumann 2009	M.Naumann
1132	Geol Karte-143	4550906	6026544	geol. Karte	M. Naumann 2009	M.Naumann
1133	Geol_Karte-144	4550809	6026435	geol. Karte	M. Naumann 2009	M.Naumann
1134	Geol_Karte-145	4550797	6026587	geol. Karte	M. Naumann 2009	M.Naumann
1135	Geol_Karte-146	4550840	6026703	geol. Karte	M. Naumann 2009	M.Naumann
1136	Geol_Karte-147	4550736	6026787	geol. Karte	M. Naumann 2009	M.Naumann
1137	Geol_Karte-148	4550815	6026944	geol. Karte	M. Naumann 2009	M.Naumann
1138	Geol_Karte-149	4550718	6027059	geol. Karte	M. Naumann 2009	M.Naumann
1140	Geol Karte-151	4550742	6027326	geol Karte	M. Naumann 2009	M.Naumann
1140	Geol Karte-152	4550853	6027441	geol. Karte	M. Naumann 2009	M.Naumann
1142	Geol Karte-153	4550797	6027592	geol. Karte	M. Naumann 2009	M.Naumann
1143	Geol_Karte-154	4550877	6027738	geol. Karte	M. Naumann 2009	M.Naumann
1144	Geol_Karte-155	4550845	6027841	geol. Karte	M. Naumann 2009	M.Naumann
1145	Geol_Karte-156	4550939	6027919	geol. Karte	M. Naumann 2009	M.Naumann
1146	Geol_Karte-157	4550906	6028089	geol. Karte	M. Naumann 2009	M.Naumann
1147	Geol_Karte-158	4550999	6028210	geol. Karte	M. Naumann 2009	M.Naumann
1148	Geol_Karte-159	4550960	6028356	geol. Karte	M. Naumann 2009	M.Naumann
1149	Geol Karte 161	4551012	6028502	geol Karte	M. Naumann 2009	M Naumann
1150	Geol Karte-162	4550900	6028784	geol Karte	M. Naumann 2009	M Naumann
1152	Geol Karte-163	4550863	6028792	geol Karte	M Naumann 2009	M Naumann
1153	Geol Karte-164	4550677	6028801	geol, Karte	M. Naumann 2009	M.Naumann
1154	Geol Karte-165	4550621	6028695	geol. Karte	M. Naumann 2009	M.Naumann
1155	Geol_Karte-166	4550525	6028692	geol. Karte	M. Naumann 2009	M.Naumann
1156	Geol_Karte-167	4550482	6028543	geol. Karte	M. Naumann 2009	M.Naumann
1157	Geol_Karte-168	4550383	6028403	geol. Karte	M. Naumann 2009	M.Naumann
1158	Geol_Karte-169	4550421	6028265	geol. Karte	M. Naumann 2009	M.Naumann
1159	Geol_Karte-170	4550352	6028203	geol. Karte	M. Naumann 2009	M.Naumann
1160	Geol_Karte-171	4550355	60277561	geol. Karte	M. Naumann 2009	M.Naumann
1162	Geol_Karte 173	4000200	6027405	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1163	Geol Karte-174	4550183	6027343	geol Karte	M. Naumann 2009	M Naumann
1164	Geol Karte-175	4525156	6024642	geol, Karte	M. Naumann 2009	M.Naumann
1165	Geol Karte-176	4525136	6024793	geol. Karte	M. Naumann 2009	M.Naumann
1166	Geol_Karte-177	4525265	6024885	geol. Karte	M. Naumann 2009	M.Naumann
1167	Geol_Karte-178	4525268	6025040	geol. Karte	M. Naumann 2009	M.Naumann
1168	Geol_Karte-179	4525422	6025109	geol. Karte	M. Naumann 2009	M.Naumann
1169	Geol_Karte-180	4525457	6025300	geol. Karte	M. Naumann 2009	M.Naumann
1170	Geol_Karte-181	4525622	6025418	geol. Karte	M. Naumann 2009	M.Naumann
1172	Geol_Karte 183	4525708	6025751	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1172	Geol Karte-184	4525910	6026228	geol Karte	M. Naumann 2009	M Naumann
1174	Geol Karte-185	4526065	6026447	geol, Karte	M. Naumann 2009	M.Naumann
1175	Geol Karte-186	4526127	6026683	geol. Karte	M. Naumann 2009	M.Naumann
1176	Geol_Karte-187	4526240	6026823	geol. Karte	M. Naumann 2009	M.Naumann
1177	Geol_Karte-188	4526311	6026996	geol. Karte	M. Naumann 2009	M.Naumann
1178	Geol_Karte-189	4526446	6027138	geol. Karte	M. Naumann 2009	M.Naumann
1179	Geol_Karte-190	4526462	6027374	geol. Karte	M. Naumann 2009	M.Naumann
1180	Geol_Karte-191	4526628	6027514	geol. Karte	M. Naumann 2009	M.Naumann
1101	Geol Karte-192	4526055	6027810	geol Karte	M. Naumann 2009	M Naumann
1183	Geol Karte-194	4527087	6028018	geol Karte	M. Naumann 2009	M Naumann
1184	Geol Karte-195	4527355	6028150	geol. Karte	M. Naumann 2009	M.Naumann
1185	Geol Karte-196	4527462	6028322	geol. Karte	M. Naumann 2009	M.Naumann
1186	Geol_Karte-197	4527639	6028422	geol. Karte	M. Naumann 2009	M.Naumann
1187	Geol_Karte-198	4527762	6028600	geol. Karte	M. Naumann 2009	M.Naumann
1188	Geol_Karte-199	4532536	6032565	geol. Karte	M. Naumann 2009	M.Naumann
1189	Geol_Karte-200	4532802	6032681	geol. Karte	M. Naumann 2009	M.Naumann
1190	Geol_Karte-201	4533100	6032705	geol. Karte	M. Naumann 2009	M.Naumann
1191	Geol_Karte-202	4533385	6032830	geol. Karte	M. Naumann 2009	M.Naumann
1192	Geol Karte-203	4533692	6032019	geol Karte	IVI. INAUMANN 2009 M. Naumann 2009	M Naumann
110/	Geol Karte-204	4534348	6033000	geol Karte	M. Naumann 2009	M Naumann
1195	Geol Karte-206	4534651	6033169	geol. Karte	M. Naumann 2009	M.Naumann
1196	Geol Karte-207	4534972	6033260	geol. Karte	M. Naumann 2009	M.Naumann
1197	Geol_Karte-208	4551943	6026995	geol. Karte	M. Naumann 2009	M.Naumann
1198	Geol_Karte-209	4527312	6024631	geol. Karte	M. Naumann 2009	M.Naumann
1199	Geol_Karte-210	4527426	6024596	geol. Karte	M. Naumann 2009	M.Naumann
1200	Geol Karte-211	4532441	6032199	neol Karte	M Naumann 2009	M Naumann

Lfd- Nr.	AKBEZ	RW [GK4]	HW [GK4]	Daten- typ	Datenquelle	Rechte /Datenverwaltung
1201	Geol_Karte-212	4532339	6031691	geol. Karte	M. Naumann 2009	M.Naumann
1202	Geol_Karte-213	4529374	6026370	geol. Karte	M. Naumann 2009	M.Naumann
1203	Geol_Karte-214	4531431	6026511	geol. Karte	M. Naumann 2009	M.Naumann
1204	Geol_Karte-215	4533114	6024267	geol. Karte	M. Naumann 2009	M.Naumann
1205	Geol_Karte-216	4535218	6027399	geol. Karte	M. Naumann 2009	M.Naumann
1206	Geol_Karte-217	4537135	6028007	geol. Karte	M. Naumann 2009	M.Naumann
1207	Geol_Karte-218	4542090	6029222	geol. Karte	M. Naumann 2009	M.Naumann
1208	Geol_Karte-219	4547700	6029456	geol. Karte	M. Naumann 2009	M.Naumann
1209	Geol_Karte 220	4556162	6029503	geol. Karte	M. Naumann 2009	M.Naumann
1210	Geol Karte 222	4000000	6025006	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1212	Geol Karte-223	4567850	6033804	geol. Karte	M. Naumann 2009	M Naumann
1212	Geol Karte-224	4567055	6032354	geol. Karte	M. Naumann 2009	M.Naumann
1214	Geol Karte-225	4538673	6028986	geol, Karte	M. Naumann 2009	M.Naumann
1215	Geol Karte-226	4533310	6022770	geol. Karte	M. Naumann 2009	M.Naumann
1216	Geol_Karte-227	4533771	6022780	geol. Karte	M. Naumann 2009	M.Naumann
1217	Geol_Karte-228	4535330	6024858	geol. Karte	M. Naumann 2009	M.Naumann
1218	Geol_Karte-229	4535693	6025084	geol. Karte	M. Naumann 2009	M.Naumann
1219	Geol_Karte-230	4535938	6025564	geol. Karte	M. Naumann 2009	M.Naumann
1220	Geol_Karte-231	4537898	6024397	geol. Karte	M. Naumann 2009	M.Naumann
1221	Geol_Karte-232	4534957	6026466	geol. Karte	M. Naumann 2009	M.Naumann
1222	Geol_Karte-233	4535800	6026907	geol. Karte	M. Naumann 2009	IVI.INaumann
1223	Geol_Karte-234	4536918	6025240	geol. Karte	IVI. Naumann 2009	IVI.INAUMANN
1224	Geol Karte 235	4536085	6027025	geol Karta	M Naumann 2009	
1220	Geol Karte-230	4539940	6028153	geol Karte	M Naumann 2009	M Naumann
1220	Geol Karte-238	4543046	6028917	deol Karte	M. Naumann 2009	M Naumann
1228	Geol Karte-239	4552213	6026731	geol, Karte	M. Naumann 2009	M.Naumann
1229	Geol Karte-240	4552419	6026672	geol. Karte	M. Naumann 2009	M.Naumann
1230	Geol Karte-241	4552017	6026162	geol. Karte	M. Naumann 2009	M.Naumann
1231	Geol_Karte-242	4552487	6025898	geol. Karte	M. Naumann 2009	M.Naumann
1232	Geol_Karte-243	4552262	6026211	geol. Karte	M. Naumann 2009	M.Naumann
1233	Geol_Karte-244	4552713	6025407	geol. Karte	M. Naumann 2009	M.Naumann
1234	Geol_Karte-245	4552801	6024603	geol. Karte	M. Naumann 2009	M.Naumann
1235	Geol_Karte-246	4552527	6024182	geol. Karte	M. Naumann 2009	M.Naumann
1236	Geol_Karte-247	4553399	6025054	geol. Karte	M. Naumann 2009	M.Naumann
1237	Geol_Karte-248	4553517	6024829	geol. Karte	M. Naumann 2009	M.Naumann
1238	Geol_Karte-249	4554311	6025045	geol. Karte	M. Naumann 2009	M.Naumann
1239	Geol_Karte 250	4554380	6024829	geol. Karte	M. Naumann 2009	M.Naumann
1240	Geol Karte-252	4554078	6024820	geol Karte	M. Naumann 2009	M.Naumann
1241	Geol Karte-253	4555419	6025182	geol Karte	M. Naumann 2009	M Naumann
1243	Geol Karte-254	4555703	6025054	geol, Karte	M. Naumann 2009	M.Naumann
1244	Geol Karte-255	4555566	6025437	geol. Karte	M. Naumann 2009	M.Naumann
1245	Geol_Karte-256	4555880	6025309	geol. Karte	M. Naumann 2009	M.Naumann
1246	Geol_Karte-257	4555948	6025809	geol. Karte	M. Naumann 2009	M.Naumann
1247	Geol_Karte-258	4556184	6025711	geol. Karte	M. Naumann 2009	M.Naumann
1248	Geol_Karte-259	4556350	6026319	geol. Karte	M. Naumann 2009	M.Naumann
1249	Geol_Karte-260	4556586	6025986	geol. Karte	M. Naumann 2009	M.Naumann
1250	Geol_Karte-261	4558684	6027368	geol. Karte	M. Naumann 2009	M.Naumann
1251	Geol_Karte-262	4557360	6027721	geol. Karte	M. Naumann 2009	M.Naumann
1252	Geol Karte 264	455/801	6027422	geol. Karte	IVI. INAUMANN 2009	
1253	Geol Karte-204	4557674	6026642	geol Karto	M Naumann 2009	M Naumann
1255	Geol Karte-266	4525751	6023182	geol. Karte	M. Naumann 2009	M.Naumann
1256	Geol Karte-267	4527349	6022986	geol. Karte	M. Naumann 2009	M.Naumann
1257	Geol Karte-268	4571233	6052820	geol. Karte	M. Naumann 2009	M.Naumann
1258	Geol_Karte-269	4571772	6052958	geol. Karte	M. Naumann 2009	M.Naumann
1259	Geol_Karte-270	4570959	6053428	geol. Karte	M. Naumann 2009	M.Naumann
1260	Geol_Karte-271	4571753	6053771	geol. Karte	M. Naumann 2009	M.Naumann
1261	Geol_Karte-272	4572498	6054056	geol. Karte	M. Naumann 2009	M.Naumann
1262	Geol_Karte-273	4573380	6053997	geol. Karte	M. Naumann 2009	M.Naumann
1263	Geol_Karte-274	4573949	6053663	geol. Karte	M. Naumann 2009	M.Naumann
1264	Geol_Karte-275	4574312	6053487	geol. Karte	M. Naumann 2009	M.Naumann
1265	Geol_Karte-276	4570880	6052252	geol. Karte	M. Naumann 2009	M.Naumann
1266	Geol_Karte-2/7	45/1027	6054438	geol. Karte	M. Neumann 2009	M.Neumann
1267	Geol Karte-270	4572951	6054507	geol, Karte	IVI. INAUMANN 2009 M. Naumann 2009	M Naumann
1200	Geol Karte-219	457/537	6054634	geor. rudite	M. Naumann 2009	M Naumann
1209	Geol Karte-281	4571782	6053350	geol. Karte	M. Naumann 2009	M.Naumann
1271	Geol Karte-282	4572253	6053575	geol. Karte	M. Naumann 2009	M.Naumann
1272	Geol_Karte-283	4572772	6053693	geol. Karte	M. Naumann 2009	M.Naumann
1273	Geol_Karte-284	4573988	6054036	geol. Karte	M. Naumann 2009	M.Naumann
1274	Geol_Karte-285	4574675	6054026	geol. Karte	M. Naumann 2009	M.Naumann
1275	Geol Karte-286	4571429	6052585	geol. Karte	M. Naumann 2009	M.Naumann

Lfd-		RW	нw	Daten-		
Nr.	AKBEZ	[GK4]	[GK4]	typ	Datenquelle	Rechte /Datenverwaltung
1276	Geol_Karte-287	4528186	6026725	geol. Karte	M. Naumann 2009	M.Naumann
1277	Geol_Karte-288	4529009	6027136	geol. Karte	M. Naumann 2009	M.Naumann
1278	Geol_Karte-289	4529982	6027323	geol. Karte	M. Naumann 2009	M.Naumann
1279	Geol Karte-290	4532001	6027585	geol Karte	M. Naumann 2009	M Naumann
1281	Geol Karte-292	4532637	6027436	geol. Karte	M. Naumann 2009	M.Naumann
1282	Geol_Karte-293	4533161	6026837	geol. Karte	M. Naumann 2009	M.Naumann
1283	Geol_Karte-294	4533497	6026127	geol. Karte	M. Naumann 2009	M.Naumann
1284	Geol_Karte-295	4533572	6025266	geol. Karte	M. Naumann 2009	M.Naumann
1285	Geol_Karte-296	4533909	6024593	geol. Karte	M. Naumann 2009	M.Naumann
1286	Geol_Karte-297	4533909	6023695	geol. Karte	M. Naumann 2009	M.Naumann
1207	Geol Karte-290	4531590	6023030	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1289	Geol Karte-300	4530543	6025304	geol. Karte	M. Naumann 2009	M.Naumann
1290	Geol Karte-301	4529645	6025416	geol. Karte	M. Naumann 2009	M.Naumann
1291	Geol_Karte-302	4532039	6025640	geol. Karte	M. Naumann 2009	M.Naumann
1292	Geol_Karte-303	4531590	6024518	geol. Karte	M. Naumann 2009	M.Naumann
1293	Geol_Karte-304	4534357	6027548	geol. Karte	M. Naumann 2009	M.Naumann
1294	Geol_Karte-305	4534881	6027810	geol. Karte	M. Naumann 2009	M.Naumann
1295	Geol Karte-306	4535293	6028632	geol, Karte	IVI. INAUMANN 2009 M. Naumann 2009	M Naumann
1290	Geol_Karte-308	4536564	6028632	geol. Karte	M. Naumann 2009	M Naumann
1298	Geol Karte-309	4537050	6028632	geol. Karte	M. Naumann 2009	M.Naumann
1299	Geol_Karte-310	4537761	6028483	geol. Karte	M. Naumann 2009	M.Naumann
1300	Geol_Karte-311	4538397	6028445	geol. Karte	M. Naumann 2009	M.Naumann
1301	Geol_Karte-312	4538210	6026538	geol. Karte	M. Naumann 2009	M.Naumann
1302	Geol_Karte-313	4535143	6026949	geol. Karte	M. Naumann 2009	M.Naumann
1303	Geol_Karte-314	4537424	6027473	geol. Karte	M. Naumann 2009	M.Naumann
1304	Geol Karte-315	4530040	6028408	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1306	Geol Karte-317	4539332	6028932	geol. Karte	M. Naumann 2009	M.Naumann
1307	Geol Karte-318	4538546	6029792	geol. Karte	M. Naumann 2009	M.Naumann
1308	Geol_Karte-319	4539369	6030577	geol. Karte	M. Naumann 2009	M.Naumann
1309	Geol_Karte-320	4540678	6031512	geol. Karte	M. Naumann 2009	M.Naumann
1310	Geol_Karte-321	4542025	6031213	geol. Karte	M. Naumann 2009	M.Naumann
1311	Geol_Karte-322	4539818	6029867	geol. Karte	M. Naumann 2009	M.Naumann
1312	Geol_Karte-323	4540903	6028632	geol Karte	M. Naumann 2009	M.Naumann
1313	Geol_Karte-325	4541351	6028894	geol. Karte	M. Naumann 2009	M Naumann
1315	Geol Karte-326	4541912	6030054	geol. Karte	M. Naumann 2009	M.Naumann
1316	Geol_Karte-327	4542212	6028595	geol. Karte	M. Naumann 2009	M.Naumann
1317	Geol_Karte-328	4541015	6028221	geol. Karte	M. Naumann 2009	M.Naumann
1318	Geol_Karte-329	4542698	6029268	geol. Karte	M. Naumann 2009	M.Naumann
1319	Geol_Karte-330	4543334	6029530	geol. Karte	M. Naumann 2009	M.Naumann
1320	Geol Karte-332	4546420	6028595	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1322	Geol Karte-333	4550215	6029605	geol. Karte	M. Naumann 2009	M.Naumann
1323	Geol_Karte-334	4549580	6030951	geol. Karte	M. Naumann 2009	M.Naumann
1324	Geol_Karte-335	4551524	6030502	geol. Karte	M. Naumann 2009	M.Naumann
1325	Geol_Karte-336	4552983	6025902	geol. Karte	M. Naumann 2009	M.Naumann
1326	Geol_Karte-337	4552969	6025386	geol. Karte	M. Naumann 2009	M.Naumann
1327	Geol_Karte-338	4552950	6024927	geol. Karte	M. Naumann 2009	M.Naumann
1320	Geol Karte-339	4552074	6025635	geol Karte	M. Naumann 2009	M.Naumann M.Naumann
1330	Geol Karte-341	4554693	6025616	geol. Karte	M. Naumann 2009	M.Naumann
1331	Geol_Karte-342	4555325	6026095	geol. Karte	M. Naumann 2009	M.Naumann
1332	Geol_Karte-343	4555899	6026727	geol. Karte	M. Naumann 2009	M.Naumann
1333	Geol_Karte-344	4556359	6027225	geol. Karte	M. Naumann 2009	M.Naumann
1334	Geol_Karte-345	4554214	6026995	geol. Karte	M. Naumann 2009	M.Naumann
1335	Geol_Karte-346	4553276	6027895	geol. Karte	M. Naumann 2009	M.Naumann
1330	Geol Karte-348	4002000	6028048	geol Karte	M Naumann 2009	M Naumann
1338	Geol Karte-349	4556263	6028278	geol. Karte	M. Naumann 2009	M.Naumann
1339	Geol_Karte-350	4557259	6030059	geol. Karte	M. Naumann 2009	M.Naumann
1340	Geol_Karte-351	4556723	6026823	geol. Karte	M. Naumann 2009	M.Naumann
1341	Geol_Karte-352	4553793	6026306	geol. Karte	M. Naumann 2009	M.Naumann
1342	Geol_Karte-353	4554980	6026880	geol. Karte	M. Naumann 2009	M.Naumann
1343	Geol_Karte-354	4547052	6028852	geol. Karte	M. Naumann 2009	M.Naumann

Anhang E - Eidesstattliche Erklärung

Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde. Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel und Hilfen benutzt und keine Textabschnitte eines Dritten ohne Kennzeichnung übernommen habe.

.....