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Abstract

Previously measured uncertainty shocks using the U.S. data show a hump-shape time path:

Uncertainty rises for two years before its decline. Current literature on the effects uncertainty

on macroeconomics, including housing, has not accounted for this observation. Consequently,

the literature on uncertainty and macroeconomics is divided on the effects and the propagation

mechanism of uncertainty on aggregate fluctuations. This paper shows that when uncertainty rises

and falls over time, then the output displays hump-shape with short expansions that are followed

by longer and persistent contractions. And because of these longer and persistent contractions in

output, uncertainty is, on average, counter-cyclical. Our model builds on the literature combining

uncertainty and financial constraints. We model the time path of uncertainty shocks to match

empirical evidence in terms of shape, duration and magnitude. In our calibrated models, agents

anticipate this hump-shape uncertainty time-path once a shock has occurred. Thereby, agents

respond immediately by increasing investment (i.e. pre-cautionary savings), but face a substantial

drop in investment, consumption and output as more uncertain times lie ahead. With persistent

uncertain periods, both risk premia and bankruptcies increase which cause a further deterioration in

investment opportunities. Besides, we show that accounting for hump-shape uncertainty measures

can result in a large quantitative effect of uncertainty shock relative to previous literature.

Keywords: agency costs; credit channel; hump-shaped uncertainty shocks; time-varying uncer-

tainty.
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1 Introduction

This paper combines uncertainty shocks that rise and fall over time with an agency cost model to

provide a further explanation for the observed cyclical fluctuations in output and consumption in the

U.S. We model uncertainty (i.e. risk) shocks, changes in the standard deviation around a constant

mean, corresponding to the empirical work of Jurado, Ludvigson and Ng (2015) (Macro Uncertainty)

and Ludvigson, Ma and Ng (2016) (Financial Uncertainty): We model the time path of uncertainty

shocks to match empirical evidence in terms of shape, duration and magnitude. These previously

measured uncertainty shocks using the U.S. data show a hump-shape time path: Uncertainty rises for

two years before its decline. Current literature on the effects uncertainty on macroeconomics, including

housing, has not accounted for this observation. Consequently, the literature on uncertainty and

macroeconomics is divided on the effects and the propagation mechanism of uncertainty on aggregate

fluctuations. The models examining the effects of uncertainty in the presence of financial constraints,

such as Dorofeenko, Lee and Salyer (2008, henceforth DLS), Chugh (2016), Dmitriev and Hoddenbagh

(2015) and Bachmann and Bayer (2013) find uncertainty shock plays quantitatively small role in

explaining aggregate fluctuations. Whereas Christiano, Motto and Rostagno (2014), however, find the

effect of uncertainty shock on aggregate variables is quantitatively large.1 A common theme on all

of these aforementioned literature on uncertainty, however, is that a risk shock is characterized by an

immediate one time peak after the innovation (i.e. non-hump shape).

This paper shows that when uncertainty rises and falls over time, then the output displays hump-

shape with short expansions that are followed by longer and persistent contractions. And because of

these longer and persistent contractions in output, uncertainty is, on average, countercyclical. Our

model builds on the literature combining uncertainty and financial constraints as in DLS and Bansal

and Yaron (2004). Our first calibration exercise builds on DLS as a benchmark, and incorporates

a modified Bansal and Yaron (2004) uncertainty structure while the second calibration exercise in-

cludes the preferences due to Greenwood, Hercovwitz and Huffman (1988). Our model’s uncertainty

propagation mechanism is, however, different from other models examining the effects of uncertainty

in the presence of financial constraints. Unlike other studies that find immediate adverse effects of

uncertainty on investment and output following uncertainty shocks that peak immediately after the

innovation, we examine the impact of an unexpected shock that does not peak immediately but rises

before it falls. In our calibrated models, agents anticipate this hump-shape uncertainty time-path

1Some other works that find a large uncertainty effect are Bloom (2009), Bloom, Alfaro and Lin (2016) and Bloom,
Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012), and Leduc and Liu (2015). There are other works that find a
mixed results such as Gilchrist, Sim, and Zakrajsek (2014), who find a small impact on output and consumption but a
large impact on investment.
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once a shock has occurred. Thereby, agents respond immediately by increasing investment (i.e. pre-

cautionary savings), but then substantially reduce investment and consumption (and thus output) as

more uncertain times lie ahead. With persistent uncertain periods, both risk premia and bankruptcies

increase which cause a further deterioration in investment opportunities. A hump shape time-varying

uncertainty accounts for the majority of the variation in the credit channel variables, although the

results are sensitive to the presence and the magnitude of agency costs. In the absence of agency costs,

uncertainty shocks cause expansions because there are no adverse effects for households. However,

in this case, the shocks do not explain any variation in real (<1% in output and consumption) and

financial (<3.5% in the risk premium, the bankruptcy rate and the relative price of capital) variables.

Conversely, the more severe the agency friction, i.e. the higher the monitoring costs associated with

the friction, the more important uncertainty shocks are. We also show that accounting for hump-shape

uncertainty measures can result in a large quantitative effect of uncertainty shock relative to previous

literature. We find hump-shaped risk shocks account for 5% of the variation in output and 10% and

16% of the variation in consumption and investment, respectively. Finally, we also analyze the role of

the relative risk aversion parameter and uncertainty. We find the relation between explained variation

in output and consumption and uncertainty is monotonic - a higher coefficient of relative risk aversion

is associated with higher precautionary savings, the associated initial expansion in output is greater

and the subsequent contraction is not as severe.

2 Motivation

2.1 Data

Figure 1 shows the Financial Uncertainty and Macro Uncertainty measures proposed by Jurado et al.

(2015) and Ludvigson et al. (2016) from the period 1960 to 2015.

Uncertainty shocks as defined by Jurado et al. (2015) and Ludvigson et al. (2016) (i) raise between

30% and 73% relative to the median, (ii) exhibit a constant long-run mean and (iii) rise and fall over

time with persistence. For example, during the Great Recession period, the Financial Uncertainty

measure peaks after rising for 22 months (2006:12 - 2008:10) and peaks after rising for 11 months

(2007:11 - 2008:10) after reaching the median during the great recession period. Other uncertainty

shocks indicated by Ludvigson et al. (2015) peak after rising for 21 months in the late 1960s (relative

to the median, from 1968:7 to the peak in 1970:4); for 26 months in the mid 1970s (1972:11 - 1975:1);

for 23 months in the late 1970s (1978:4 - 1980:3); for 10 months in the mid 1980s (1986:3 - 1987:1) and
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Figure 1: Financial Uncertainty and Macro Uncertainty measures from 1960 to 2015, expressed as percent deviation
relative to the median.
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Source: Jurado et al. (2015) and Ludvigson et al. (2016).

for 8 months in the early 1990s (1989:12 - 1990:8).2 The Macro Uncertainty proxy rose (relative to the

median) for 26 months (1972:10 - 1974:12), for 18 months (1978:11 - 1980:5) and for 17 months (2007:5

- 2008:10, with 2007:5, with the trough before the peak slightly above the median). Consequently, the

Financial Uncertainty and Macro Uncertainty measures, depicted in Figure 1, strongly suggest that

uncertainty is not characterized by jumps as in Bloom (2009) but these measured uncertainty shocks

show a hump-shape time path.

2.2 Empirical Evidence

To show corresponding hump-shapes for output, consumption and investment, we take a simplistic

approach to examining the impact of uncertainty on these real variables, while avoiding a contem-

poraneous jump in uncertainty. We examine the impact of a shock to future uncertainty on today’s

2On average, uncertainty peaks for these six shocks after increasing by 48.42%.

3



output, consumption, investment in a vector autoregression (VAR) model. In doing so, we thus ask,

what is the impact on the variables of interest if the anticipated uncertainty is high in the future. We

estimate the baseline specification of the VAR using data from 1960Q3 to 2013Q4 with two lags and

the cyclical components of output, consumption and investment. Uncertainty is not HP-filtered and

expressed as percentage deviation from the median. The results are highly similar if we use the cyclical

component of HP-filtered uncertainty or the Macro Uncertainty measure. The vector of variables in-

cluded in the VAR is given by
[
Uncertaintyt+k GDPt Consumptiont Investmentt

]′
with k = 2

in the baseline specification. Figure 2 shows the orthogonalized impulse response functions using this

specification.

Figure 2: Impulse Response Functions of the VAR
[
Uncertaintyt+2 GDPt Consumptiont Investmentt

]′
with

two lags.

-.004

-.002

0

.002

-5

0

5

10

-.004

-.002

0

.002

-.02

-.01

0

.01

0 10 20 30 40 0 10 20 30 40

0 10 20 30 40 0 10 20 30 40

qtr_fin, F2.Uncertainty, Consumption qtr_fin, F2.Uncertainty, F2.Uncertainty

qtr_fin, F2.Uncertainty, GDP qtr_fin, F2.Uncertainty, Investment

Impulse Response Functions

Note: Quarterly HP-filtered data from 1960 to 2015. Source: FRED and Ludvigson et al. (2016).

Financial Uncertainty induces hump-shaped responses in output, consumption and investment.

However, as opposed to previous analyses, there are no immediate adverse effects if uncertainty is

not restricted to jump unexpectedly from one period to another. Instead, a hump-shaped expansion

precedes a pronounced contraction. These results are highly robust to different specifications and
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different orderings - as long as 2 ≥ k ≥ 8, i.e. if uncertainty is high in the more distant future. If

k < 2, the impulse responses show contractions in output, consumption and investment - in line with

previous work that analyzes contemporaneous jumps in uncertainty.3

3 Model

Carlstrom and Fuerst (1997, henceforth CF) include capital-producing entrepreneurs, who default

if they are not productive enough, into a real business cycles (RBC) model. In the CF framework,

households and final-goods producing firms are identical and perfectly competitive. Households save by

investing in a risk-neutral financial intermediary that extends loans to entrepreneurs. Entrepreneurs

are heterogeneous produce capital using an idiosyncratic and stochastic technology with constant

volatility. Unlike CF, DLS introduce stochastic shocks to the volatility (uncertainty shocks) of en-

trepreneurs’ technology, such that uncertainty jumps to its peak and converges back to its steady

state. While this approach remedies the procyclical bankruptcy rates following TFP shocks it intro-

duces countercyclical bankruptcy rates, DLS is at odds with the measures from Jurado et al. (2015)

and Ludvigson et al. (2016). In this paper, we alter the time path and the magnitude of the shocks

introduced in DLS, such that they correspond more closely to the Macro Uncertainty and Financial

Uncertainty measures. Following these changes, the model displays procyclical consumption, precau-

tionary savings and an increase in output following an initial drop. Our model therefore explains the

puzzling absence of precautionary savings following uncertainty shocks in the literature, as raised by

Bloom (2014).

In the CF framework, the conversion of investment to capital is not one-to-one because hetero-

geneous entrepreneurs produce capital using idiosyncratic and stochastic technology. If a capital-

producing firm realizes a low technology shock, it declares bankruptcy and the financial intermediary

takes over production after paying monitoring costs. The timing of events in the model is as follows:

1. The exogenous state vector of technology and uncertainty shocks, denoted (At, σω,t), is realized.

2. Firms hire inputs of labor and capital from households and entrepreneurs and produce the final

good output via a Cobb-Douglas production function.

3. Households make their labor, consumption, and investment decisions. For each unit of invest-

ment, the household transfers qt units of the consumption goods to the banking sector.

3These results are robust to different lag lengths of the VAR. In a second specification, we also include lagged
delinquency rates on business loans as a proxy for bankruptcies. The impulse response function of delinquencies is
hump-shaped while the responses of output consumption and investment are highly similar for the second specification.
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4. With the savings resources from households, the banking sector provide loans to entrepreneurs

via the optimal financial contract (described below). The contract is defined by the size of the

loan, it, and a cutoff level of productivity for the entrepreneurs’ technology shock, ω̄t.

5. Entrepreneurs use their net worth and loans from the banking sector to purchase the factors for

capital production. The quantity of investment is determined and paid for before the idiosyn-

cratic technology shock is known.

6. The idiosyncratic technology shock of each entrepreneur ωj,t is realized. If ωj,t ≥ ω̄t the en-

trepreneur is solvent and the loan from the bank is repaid; otherwise the entrepreneur declares

bankruptcy and production is monitored by the bank at a cost proportional to the input, µit.

7. Solvent entrepreneur’s sell their remaining capital output to the bank sector and use this income

to purchase consumption cet and (entrepreneurial) capital zt. The latter will in part determine

their net worth nt in the following period.

3.1 The Impact of Uncertainty Shocks: Partial Equilibrium

The optimal contract is given by the combination of it and ω̄t that maximizes entrepreneurs’ return

subject to participating intermediaries. Financial intermediaries make zero profits due to free entry

max
it,ω̄t

qtitf(ω̄t;σω,t) (1)

subject to

qtitg(ω̄t;σω,t) ≥ it − nt. (2)

Net worth is defined as

nt = wet + zt(rt + qt(1− δ(ut))), (3)

Entrepreneurs’ share of the expected net capital output is

f(ω̄t;σω,t) =

∫ ∞
ω̄t

ωφ̃(ω̄t;σω,t)dω − [1− Φ̃(ω̄t;σω,t)]ω̄t (4)

and the lenders’ share of expected net capital output

g(ω̄t;σω,t) =

∫ ω̄t

0
ωφ̃(ω̄t;σω,t)dω + [1− Φ̃(ω̄t;σω,t)]ω̄t − Φ̃(ω̄t;σω,t)µ. (5)

To understand the impact of an uncertainty shock, consider the uncertainty shock in partial equi-

6



librium. For this analysis, q and n are assumed to be fixed while i and ω are chosen. In this setting,

uncertainty shocks adversely affect the supply of investment as follows. As σω increases, the default

threshold ω and lenders’ expected return fall. From the incentive compatibility constraint of en-

trepreneurs’ problem (1), it can be seen that investment has to fall. The effect of an uncertainty shock

is summarized graphically, and contrasted with an aggregate technology shock, in Figure 3 (taken

from DLS).

Figure 3: The partial equilibrium impact of an uncertainty shock.

Note: Uncertainty adversely affects capital supply, in contrast to TFP shocks that affect capital demand. Source: DLS.

Whether these results carry over in general equilibrium depends on how the shock is modeled. They

are not overturned following a jump in uncertainty, as analyzed in DLS, or if uncertainty reaches its

peak quickly. In this case, bankruptcies, the associated agency costs, the risk premium and the price

of capital increase. The return to investing falls, saving/investing is less attractive, so investment and

output drop while households substitute into consumption. These results are overturned, however,

following a shock that is hump-shaped if the peak is sufficiently far in the future.
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3.2 Modeling Hump-Shaped Uncertainty Shocks

We allow for humps in uncertainty by modifying a subset of equations due to Bansal and Yaron (2004),

such that a latent xt variable affects σω,t:

log(σω,t+1) = (1− ρσω) log(σ̄ω) + ρσω log(σω,t) + ε̃t+1 (6)

ε̃t+1 = ϕσεσ,t+1 + xt+1 (7)

xt+1 = ρxxt + ϕxεx,t+1 (8)

εx,t, εσ,t
i.i.d.∼ N(0, 1), ρσ, ρx ∈ [0, 1). (9)

ε̃t+1 is a composite term that enables uncertainty to jump (innovations in the first term ϕσ,t+1εσ,t+1),

as in DLS, or increase over time corresponding to the empirical proxies (innovations via the la-

tent variable xt+1). Figure 4 plots the time series of σω,t using different persistence parameters

ρx = [0, 0.5, 0.94, 0.96]. The horizontal axis measures time in monthly periods, while the vertical axis

shows the percentage deviation from the steady state. Setting ρx = 0 induces a jump in uncertainty,

as analyzed in DLS. The larger ρx, the more pronounced the hump in σω,t and the longer uncertainty

rises before it peaks.

In the benchmark case with ρx = .96, uncertainty peaks after rising for 25 months, corresponding to

the empirical evidence. We match the innovation relative to the steady state using the average increase

of an uncertainty shock relative to the long-run mean: We set ϕx = 0.048 such that σω,t increases by

48% relative to the steady state. Our 48% relative increase compares with previous papers as follows.

In Bloom (2009) and Bloom, Alfaro and Lin (2016), who use two-state Markov chains to examine

the impact of uncertainty, σω increases by 100%; in Bloom, Floetotto, Jaimovich, Saporta-Eksten

and Terry (2012), σω increases between 91% and 330%. Leduc and Liu (2015) introduce an increase

of 39.2% relative to the steady state. Christiano, Motto and Rostagno (2014), use a combination

of un- and anticipated innovations over a sequence of eight quarters, and their magnitude of these

innovations is between 2.83% and 10% per period. DLS use a 1% innovation, Chugh (2016) and

Bachmann and Bayer (2013) examine increases of about 4%, while Dmitriev and Hoddenbagh (2015)

use a 3% innovation. These differences are partially driven by differences in measurement; see also

Strobel (2015). Not surprisingly, greater innovations in uncertainty are associated with a greater role

of uncertainty in terms of variation explained. One special case is the model of Christiano et al. (2014)

who introduce a news component to their shocks: Sims (2015) points out potential issues in using

news and variance decompositions. Lee, Salyer and Strobel (2016) show that the news component

plays a prominent role regarding the importance of uncertainty.
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Figure 4: Modeling Uncertainty Shocks using different persistence parameters.

Note: The horizontal axis shows monthly periods, while the vertical axis shows the percentage deviation from the steady
state. The case with ρx = 0 corresponds to a jump in uncertainty as analyzed in DLS. The higher ρx, the more pronounced
the hump in uncertainty. In the benchmark case with ρx = .96, σω peaks after rising 25 months, corresponding to the
empirical evidence. ρσω is set to 0.91/3.

3.3 The Impact of Uncertainty Shocks: General Equilibrium

In order to unambiguously identify the change in the impact of a risk shock that is due to its hump-

shape, we insert the shock described in the previous section in a framework identical to DLS. For this

reason, the model’s exposition is confined to the agents’ optimization problems. The representative

household’s objective is to maximize expected utility by choosing consumption ct, labor ht and savings

kt+1, i.e.

max
{ct,kt+1,ht}∞0

E0

∞∑
t=0

βt
[

ln(ct) + ν(1− ht)
]

(10)

subject to

wtht + rtkt ≥ ct + qtit (11)

kt+1 = (1− δ)kt + it (12)
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with wt the wage and rt the rental rate of capital. These are equal to their marginal products, as the

representative final-good’s producing firm faces a standard, static profit maximization problem4

max
Kt,Ht,He

t

AtKt
αKHαH

t (He
t )1−αK−αH − rtKt − wtHt − wetHe

t , (13)

with Kt = kt/η and Ht = (1− η)ht, where η represents the fraction of entrepreneurs in the economy.

Total Factor Productivity (TFP) At follows an autoregressive process of order one in logs,

log(At+1) = ρA log(At) + ϕAεA,t+1 (14)

with εA,t
i.i.d.∼ N(0, 1). The problem of entrepreneurs is given by

max
{cet ,zt+1}∞0

E0

∞∑
t=0

(γβ)tcet (15)

subject to

nt = wet + zt(rt + qt(1− δ)) (16)

zt+1 = nt[
f(ω̄t, σω,t)

1− qtg(ω̄t, σω,t)
]− cet

qt
. (17)

The entrepeurs are risk neutral and supply one unit of labor inelastically. Their net worth is

defined by sum of labor income wet , the income from capital ztrt plus the remaining capital ztqt(1−δ).

At the end of a period, entrepreneurial consumption is financed out of the returns from the investment

project, which implies the law of motion (17). As the equilibrium conditions are described in DLS,

we will not list them in this section.

3.4 Calibration

We calibrate the model for the monthly frequency. Otherwise, the frequency of uncertainty would be

too low relative to the empirical counterparts. Table 1 shows the benchmark calibration of the key

parameters. The household’s monthly discount rate of 0.9975 implies an annual risk free rate of about

3%. Following DLS, we set σω = 0.207, which implies an annual risk premium of 1.98%. The slight

increase in the risk premium, which is 1.87% in DLS, is due to changes associated with the monthly

calibration. The default threshold $ targets an annual bankruptcy rate of 3.90%, as in DLS.

4When solving the model, we follow DLS and assume the share of entrepreneurs labor (1−αK−αH) is approximately
zero.
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Table 1: Benchmark calibration for the monthly frequency.

Parameter Function Value Rationale / Source (see also discussion in the text)

β Discount rate 0.9975 Monthly calibration

α Capital’s share of production 0.36 DLS

µ Monitoring costs 0.25 DLS

δ Depreciation rate 0.2/3 DLS

σω Steady state uncertainty 0.207 Steady State Risk Premium

ρσω Persistence parameter uncertainty 0.91/3 DLS

ρx Persistence parameter hump component 0.96 Jurado et al (2015), Ludvigson et al (2016)

ϕσ Innovation in uncertainty (jump) 0.01 DLS

ϕx Innovation in uncertainty (hump) 0.048 Jurado et al (2015), Ludvigson et al (2016)

$ Steady state default threshold 0.557 Steady State Bankruptcy Rate

3.5 Cyclical Behaviour

Because of the assumption on entrepreneurs’ productivity, first order approximation of the equilibrium

conditions does not impose certainty equivalence. Instead, uncertainty (time-varying second moment)

appears in the policy function as a state variable. Figures 5 and 6 show the impulse response functions

following jumps and humps in uncertainty, i.e. the impulse response function for different values of

ρx = [0, 0.5, 0.94, 0.96].

If ρx = 0, uncertainty jumps to its peak and an immediate drop in investment and output ensues,

which is expected from the partial equilibrium analysis. Household consumption counterfactually in-

creases as households substitute into consumption. The larger ρx, the longer the shock takes to peak.

Interestingly, there is a threshold value of ρx that is necessary to induce prevautionary savings. For

instance, ρx = 0.5 is insufficient to overcome the partial equilibrium results and to induce precau-

tionary savings. However, values of ρx corresponding to the uncertainty proxies overturn the partial

equilibrium results: An uncertainty shocks is followed by an increase in investment and a hump-shape

response of output following the initial drop. Moreover, in line with the data, consumption is pro-

cyclical. The intuition is that immediately after the shock, agency costs are still moderate relative to

future periods so investment demand increases, which raises output following the initial drop. While

households also substitute into consumption, entrepreneurs greatly reduce consumption after an un-

certainty shock because of the increase probability of default and because the higher price of capital

results in an increase in investment. The intuition of the model can also be seen in the context of the

agency friction. Figure 7 shows the impulse responses for different values of µ.

Without agency friction, µ = 0 (actually, for computational reasons, µ = 0.0001), the relative
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Figure 5: Impulse responses of output, household consumption and investment following an uncertainty shock for different
persistence parameters, ρx = [0, 0.5, 0.96, 0.979].

Note: The horizontal axis shows monthly periods, the vertical axis shows the percentage deviation from the steady state.

Figure 6: Impulse responses of the risk premium, the bankruptcy rate, return to investment and the relative price of
capital following an uncertainty shock for different persistence parameters, ρx = [0, 0.5, 0.96, 0.979].

Note: The horizontal axis shows monthly periods, the vertical axis shows the percentage deviation from the steady state,
unless indicated otherwise.
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Figure 7: Impulse responses of output, consumption and investment following an uncertainty shock for different magni-
tudes of monitoring costs, µ=[0, 0.125, 0.2, 0.25].

Note: The horizontal axis shows monthly periods, the vertical axis shows the percentage deviation from the steady state.

price of capital qt is unity. An uncertainty shock, then, induces an expansion in output, consumption

and investment because there are no adverse effects for households. Although the bankruptcy rate

increases, there are no adverse effects. Instead, households benefit from a more productive investment

opportunity. If there are agency costs (µ > 0), the relative price of capital qt increases, as well as risk

premia and bankruptcy rates. In this case, households incur adverse effects of bankruptcies because

of the monitoring costs Φ̃(µω, σω)µ. Unlike shocks that jump, however, hump-shaped shocks increase

investment by around 1.7% relative to the steady state, despite the price-increase associated with the

agency friction - overturning the partial equilibrium effects. Since expectations are rational, households

know that uncertain times of relatively poor investment opportunities are ahead, so they substantially

increase saving as soon as they learn about the shock. As shown in Figure 7, the magnitude of the

initial increase is inversely related to the size of µ - the higher the monitoring costs, the more capital is

destroyed. Without agency friction, consumption does not increase by much in order to invest more.

With agency friction and adverse effects of uncertainty for the households, consumption increases the

more the greater µ. The initial increase in investment leads to an expansion in output. However, the

subsequent deterioration of conditions in the credit channel leads to a drop in investment and to a

contraction in output.

Table 2 presents the model’s correlation coefficients. The model produces procyclical consumption

13



Table 2: Correlation coefficients of consumption, investment, bankruptcy rate and uncertainty with output.

Correlation with y
Uncertainty Shock c i BR σω

Jump -0.72 0.95 -0.99 -0.69
Hump 0.19 0.88 -0.97 -0.95

Note: BR refers to the bankruptcy rate. The autocorrelation coefficient of uncertainty is ρσω = 0.91/3, as in DLS, while
uncertainty peaks after rising for 25 months, i.e. ρx = 0.96.

and investment if uncertainty is not restricted to jump; the degree of procyclicality of consumption

depends on the persistence of the latent variable, i.e. on how long the shock takes to peak. The

bankruptcy rate and uncertainty are strongly countercyclical for both types of risk shocks.

4 GHH Preferences and Variable Capital Utilization

The previous section uses the framework of DLS to emphasize the impact of hump-shaped uncertainty

shocks: precautionary savings, a hump-shape response of output with a short expansion that is followed

by a longer and persistent contraction as well as mildly procyclical consumption. However, the initial

drop in output that precedes the short expansion is much stronger compared to the VAR evidence,

while the procyclicality of consumption is senstive to the persistence parameter of the latent variable.

To remedy these features, we modify the model by using the preferences due to Greenwood, Hercowitz

and Huffman (1988), to eliminate effects of labor supply due to changes in consumption, and allow

for variable capital utilization. The representative household thus chooses the capital utilization rate

ut, which is impacts the depretation rate δ(ut), with δ′(ut), δ
′′(ut) > 0. The problem is given by

max
{ct,kt+1,ut,ht}∞0

E0

∞∑
t=0

βt(1− ι)−1
[
ct − χ

h1+θ
t

(1 + θ)

]1−ι
(18)

subject to

wtht + rt(utkt) ≥ ct + qtit (19)

kt+1 = (1− δ(ut))kt + it (20)

δ(ut) = δ0 + δ1(ut − 1) +
δ2

2
(ut − 1)2. (21)

The coefficient of relative risk aversion is given by ι, while 1/θ corresponds to the intertemporal

elasticity of substitution in labor supply. χ is the relative importance of leisure. The problem of the
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Table 3: Benchmark calibration for the monthly frequency with GHH preferences and variable capital utilization.

Parameter Function Value Rationale / Source (see also discussion in the text)

ι Coefficient of relative risk aversion 1 Greenwood et al. (1988)

1/θ Intertemporal elasticity of substitution in labor supply 0.8 Greenwood et al. (1988)

χ Relative importance of leisure 9.8930 Household works 1/3 of his time

δ0 Steady state rate of capital depreciation 0.02/3 DLS

δ1 Normalize steady state capital utilization 0.0108 Capital utilization is unity in steady state

δ2 Sensitivity of capital utilization 0.2 Schmitt-Grohe and Uribe (2008)*

∗Schmitt-Grohe and Uribe (2008) estimate δ2 = 0.11 but with a relatively large standard error of 0.26. We set δ2 slightly
higher to restrict capital utilization a bit more given the monthly calibration.

final-goods’ producing firms is given by

max
utKt,Ht,He

t

At(utKt)
αKHαH

t (He
t )1−αK−αH − rt(utKt)− wtHt − wetHe

t . (22)

The problem of the entrepreneurs and the optimal contract remain unchanged for the most part,

except for the depreciation rate, δ(ut). The calibration of the additional parameters is standard and

displayed in Table 3. The set of equations determining the equilibrium properties are displayed in the

Appendix.

4.1 Cyclical Behaviour

While the previous section examined an identical economy as DLS, we now consider the impact of the

different types of uncertainty shock using the preferences due to Greenwood et al. (1988) to remedy

the shortcomings discussed above. We examine the impact on output, investment and household

consumption following an innovation that is comparable in magnitude (a 48% innovation). Consider

first the impact of the hump-shaped shock displayed in Figure 8. The results are quite robust, although

the initial adverse impact on output is much smaller while the brief ensuing expansion is (relative to

the DLS framework) more pronounced and persistent. However, as shown in Table 4 below, the

procyclicality of consumption is not senstive anymore to uncertainty’s time to peak. In contrast,

the results change following a jump in uncertainty. Most notably, while output drops as expected,

investment increases in the first period, mitigating the drop in output, but then drops persistently

below its steady state and output falls again. This is not due to precautionary savings, however. If

there is a jump in uncertainty, the amount of capital destroyed immediately after the shock is much

larger compared to a hump-shaped shock (total costs of default following a jump are more than twice as

large after the first two years, which also shows in the bankruptcy rate in Figure 9).5 Labor, however,

5Not surprisingly, the marginal product of capital increases following a jump while it initially drops (and is positive
only in later periods) following a hump.
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is not substituted for capital (labor perfectly comoves with output given the GHH preferences) but

the capital stock is simply replaced. This is also reflected by the marginal product of capital, which

increases following a jump in uncertainty whereas it falls following a hump in uncertainty.

Figure 8: Impulse responses of output, household consumption and investment following a shock (jump and hump) to
uncertainty.

Note: Uncertainty increases by 48% for both types of uncertainty shock. The horizontal axis shows monthly periods,
the vertical axis shows the percentage deviation from the steady state.

Table 4 presents a further analysis of the equilibrium characteristics. The model produces pro-

cyclical consumption and investment for TFP and risk shocks. As discussed above, this is partially

due to the GHH preferences, which are also the reason for perfect comovement of labor and output.

As opposed to Carlstrom and Fuerst (1997), the bankruptcy rate is countercyclical for both types of

uncertainty shocks. This similarity conceals the fact that following a hump-shaped uncertainty shock,

the bankruptcy rate is initially procyclical and becomes countercyclical only later on. The reason

is that uncertainty starts to rise while output still expands due to the initial increase in investment.

While uncertainty rises, investment and output decrease. In contrast, if uncertainty jumps to its peak,

output immediately decreases.6 Similary, although the correlation between output and uncertainty

for the two shocks is not that different, the dynamics are following a shock are.

The correlation of the bankruptcy rate and output implied by the model is considerably higher

6Note also that the hump-shaped movements in bankruptcy rates observed in the data are absent if uncertainty moves
from steady state to peak from one period to another - simply because of the time path of σω,t and the log-normality
assumption of entrepreneurs’ productivity. Conversely, they are, to a large extent, present by construction following a
hump-shaped shock.
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Figure 9: Lending channel variables following a shock (jump and hump) to uncertainty.

Note: Uncertainty increases by 48% for both types of uncertainty shock. The horizontal axis shows monthly periods,
the vertical axis shows the percentage deviation from the steady state, unless indicated otherwise.

compared to the data, while the correlation between output and consumption is fairly close to the data

for hump-shaped uncertainty shocks. The correlation between output and investment is considerably

lower compared to the data because investment is the main driver of the dynamics and leads output.

The relative volatilities implied by both types of uncertainty shock are too high for consumption,

investment and uncertainty and much lower for hours and bankruptcies, compared to the data. Thus,

even though uncertainty, in this model, accounts for the majority of the variation in bankruptcies,

uncertainty shocks are not sufficient to explain the observed relative variation. Considering the sim-

plicity of the model and that uncertainty on its own is an unlikely source of bankruptcies, this finding

is not too surprising.

Table 5 shows the relation between the coefficient of relative risk aversion ι and the role of uncer-

tainty, which is (inversely) monotonically related. The higher ι,the more agents save as a precaution.

The associated initial expansion in output is therefore also greater the higher ι, and the subsequent

contraction is not as severe; the volatility of consumption is much smaller the higher ι, and for very

high values of ι consumption negatively deviates from the steady state. For this reason, the (uncon-

ditional) variation in output, consumption and investment due to the hump-shape shock is the lower

the more risk-averse households are - the initial impact is larger but subsequently the overall variation

is diminished.

Finally, to assess the relative importance of TFP and uncertainty in the context of the agency
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Table 4: Business Cycle Characteristics.

Volatility relative to σ(y) Correlation with y
Shock σ(y) c i BR σω c i BR σω
TFP 0.20 0.65 4.66 0.003 - 0.96 0.93 0.23 -

Risk Jump 0.00046 1.48 11.60 0.42 15.12 0.55 0.40 -0.13 -0.33
Risk Hump 0.038 0.98 10.66 0.14 17.65 0.89 0.46 -0.27 -0.28

U.S. Data 2.04 0.47 4.03 14.08 7.36 0.78 0.87 -0.81 -0.09∗

Note: BR refers to the bankruptcy rate. For this analysis, the innovations to the shocks are such that uncertainty jumps
by 1%, as in DLS, and increases over time up to 48% as suggested by the empricial evidence. TFP is highly persistent
with an autocorrelation coefficient of 0.91/3, and subject to an innovation of 1%. Although the model is calibrated and
simulated for 10,000 months, we present quarterly statistics by computing the three month averages. The U.S. Figures
for output, consumption, investment and labor are from Dorofeenko et al. (2016). The statistics for bankruptcies and
uncertainty are based on own calculations. For the bankruptcy rate, we use use quarterly data from 1987Q1 to 2013Q4
and the delinquency rate as a proxy. For uncertainty, we use the Financial Uncertainty measure from 1960 until 2015.
∗The correlation between output and Macro Uncertainty from 1960Q3 to 2014Q2 is -0.21. Source: FRED, Jurado et al.
(2015) and Ludvigson et al. (2016).

Table 5: Variance Decomposition: Hump-shaped uncertainty shocks, TFP shocks and the coefficient of relative risk
aversion ι.

y c i
ι TFP Hump TFP Hump TFP Hump

1 94.92 5.08 89.16 10.84 82.40 17.60
2 96.27 3.73 93.31 6.69 87.03 12.97
10 96.88 3.12 95.93 4.07 91.96 8.04
20 96.67 3.33 96.06 3.94 93.27 6.73

Note: Hump refers to uncertainty shocks that are hump-shaped. For emphasis, this analysis omits jumping uncertainty
shocks.
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friction, Table 6 shows the variance decomposition based on different values of µ. Without agency

friction, neither type of uncertainty shock matters. Introducing the friction and setting µ = 0.125,

uncertainty overall plays a small role for output (1.7%), a non-negligible role for consumption (7%)

and it quantitatively matters for investment (20%). Lending-channel variables, in turn, are much

more strongly affected, with productivity shocks accounting for less than one percent of the variation

in risk premium and bankruptcy rates. Unsurprisingly, the importance of uncertainty for financial

variables remains high as monitoring costs (µ = 0.25) double. However, in terms of real variables,

uncertainty accounts for 7% of the variation in output, 20% and 25% of the variation in consumption

and investment, respectively. In comparison to each other, hump-shaped shaped uncertainty accounts

for the lion’s share in real variables, explaining 5%, 10% and 16% of the total variation in output,

consumption and investment, respectively. The lending-channel variables are more strongly affected

by unexpected changes in uncertainty, with 85% of the variation in bankruptcy rates and 60% of the

variation in the risk premium due to shocks that jump.

5 Conclusion

We model uncertainty shocks that rise and fall over time. This approach to modeling uncertainty

shocks is based on empirical evidence due to Jurado et al. (2015) and Ludvigson et al. (2016).

Hump-shaped uncertainty shocks result in a different propagation mechanism compared to previous

work combining uncertainty and financial accelerator models. The model’s propagation mechanism

resembels business cycles if uncertainty is combined with an agency friction. Changes in the invest-

ment supply drive these dynamics. We find that uncertainty shocks, calibrated corresponding to the

data, play a non-negligible role for the variation in real and financial variables. Using a conservative

calibration, they explain 5% of the variation in output, 10% of the variation in consumption and 16%

in investment. However, the relative volatility and the correlation in the data suggest that uncer-

tainty is not sufficient to explain the variation in bankruptcy rates. Nevertheless, the contraction and

subsequent sluggish recovery due to hump-shaped uncertainty shocks resemble features observed in

the recent crisis: there is an expansion, followed by a contraction and a sluggish recovery. We foresee

further research in the following line. First, agents in the model anticipate the time path of uncertainty

after a shock has occurred. Thus, replacing rational expectations with a learning mechanism could

be an interesting extension. Moreover, examining the impact of uncertainty shocks in the context of

both equity and debt finance, as in Covas and den Haan (2012), might provide further insights into

the choice between different sources of external finance.
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A Appendix

A.1 Optimality Conditions

The final goods’ production firm’s production function is given by

yt = At(ktut)
α((1− η)ht)

1−α (23)

The aggregate resource constraint is

yt = (1− η)ct + ηcet + ηit (24)

The aggregate law of motion is given by

Kt+1 = (1− δ(ut))Kt + ηit(1− Φ̃µ) (25)

which is equivalent to

kt+1 = (1− δ(ut))kt + it(1− Φ̃µ) (26)

with

δ(ut) = δ0 + δ1(ut − 1) +
δ2

2
(ut − 1)2 (27)

The household’s problem is described in the text. The intertemporal optimality conditions of the

household are as follows:

• Intratemporal optimality

χhθt = At(1− α)(ktut)
α((1− η)ht)

−α (28)

• Intertemporal optimality
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qt(ct − χh1+θ
t /(1 + θ))−ι =

βE{(ct+1 − χh1+θ
t+1/(1 + θ))−ι(At+1α(kt+1ut+1)α−1((1− η)ht+1)1−αut+1 + qt+1(1− δ(ut+1)))}

(29)

• The stochastic discount factor is given by

mt,t+1 = E{β
(ct+1 − χh1+θ

t+1/(1 + θ))−ι

(ct − χh1+θ
t /(1 + θ))−ι

} (30)

• The return on investment is

Rkt,t+1 =
(At+1α(kt+1ut+1)α−1((1− η)ht+1)1−αut+1 + qt+1(1− δ(ut+1)))

qt
(31)

• The optimal level of capital utilization is

ut = 1 + (
Atα(ktut)

α−1((1− η)ht)
1−α

qt
− δ1)/δ2 (32)

• The risk premium is

riskpr = qRkt,t+1 − 1 = q
ω̄t

1− (1− qg(ω̄t, σω,t))
− 1 =

ω̄t
g(ω̄t, σω,t)

− 1 (33)

The optimal contract, the solution to the problem (1) subject to participating lenders, determines

investment and the default threshold. Entrepreneurs with nt > 0 borrow it−nt units of consumption

and pay back (1+rk)(it−nt)
it

≡ ω̄t which is possible if ωt ≥ ω̄t. The first order necessary conditions are

given by

qt =
1

(1− Φ̃(ω̄t;σω,t))µ+ φ̃(ω̄t;σω,t)µf(ω̄t, σω,t)/
∂f(ω̄t,σω,t)

∂ω̄t

(34)

which governs the default threshold ω̄ as a function of q as well as the leverage ratio

it =
1

1− qtg(ω̄t, σω,t)
nt (35)

which determines investment i(ω̄(q), q, n) and ensures incentive compatibility.
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Entrepreneurs’ intertemporal efficiency results from maximizing entrepreneurial consumption, which

is linear in cet .

qt = βγEt[qt+1(1− δ(ut+1)) +At+1α(ut+1kt+1)α−1((1− η)ht+1)1−α(
qt+1f(ω̄t+1, σω,t+1)

1− qt+1g(ω̄t+1, σω,t+1)
)] (36)

The law of motion of entrepreneurs’ capital zt+1 is given by the equations

ηnt = zt[qt(1− δ(ut)) +Atα(utkt)
α−1((1− η)ht)

1−α] (37)

zt+1 = ηnt[
f(ω̄t, σω,t)

1− qtg(ω̄t, σω,t)
]− η c

e
t

qt
(38)

A.2 Computation of the Steady State

In order to solve the model, I set the steady state default threshold as the inverse of the log-normal

distribution for a given target default, which is 0.039/12

$ = Φ̃−1(0.039/12, σω) (39)

Given $, the steady state bankruptcy rate is the log-normal distribution with µω = −σ2
ω/2.

Entrepreneurs’ share of net capital output is the partial expectation of a log-normally distributed

variable

f($;σω) = Φ(
− log($)− σ2

ω/2 + σ2
ω

σω
)− (1− Φ̃($;σω))$ (40)

where Φ denotes the normal distribution.

The lenders’ share is

g($;σω) = 1− f($;σω)− Φ̃($;σω)µ (41)

The steady state relative price of capital is

q =
1

1− Φ̃($;σω)µ+ φ̃($;σω)µf($;σω)/(Φ̃($;σω)− 1)
(42)

which in turn determines γ, which prevents self-financing entrepreneurs
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γ =
1− qg($;σω)

qf($;σω)
(43)

and steady state risk premium

riskpr =
$

g($;σω)
− 1 (44)
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