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Abstract

Low dimensional magnetism

by

Jonas Alexander Kjäll
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Magnetism is a subject that has fascinated mankind for countless generations. With the
development of quantum mechanics around a century ago a fundamental understanding
of many of the underlying causes of magnetism were obtained. However, the long range
interaction combined with the complex systems magnetism appears in makes it very hard
to investigate it. In our days this research area is more active than ever, mainly due to
future demand of the electronic industry for components engineered down to the atomic
level. Quantum effects gets more important at short scales, especially in lower dimensional
materials like sheets and wires. The rapidly increasing amount of computational power
available makes the numerical techniques a more important part of the research effort. Many
of these are especially well suited to analyze lower dimensional quantum problems. Three
of the most important techniques, (classical) Monte Carlo, Exact Diagonalization (ED) and
matrix product states (MPS) based techniques, like density renormalization group (DMRG)
and time evolving block decimation (TEBD) will be described in some detail and put to use
later in this dissertation.

With the rapid development of experimental techniques for ultracold gases in optical traps
a new approach to investigate magnetic properties that are hard achieve or control in the solid
state has emerged. We first study the ground-state phase diagram of a spin-1 condensate
trapped in an optical trap when the magnetic dipole interaction between the atoms is taken
into account along with confinement and spin precession. The boundaries between the
regions of ferromagnetic and polar phases move as the dipole strength is varied and the
ferromagnetic phases can be modulated. The magnetization of the ferromagnetic phase
perpendicular to the field becomes modulated as a helix winding around the magnetic field
direction, with a wavelength inversely proportional to the dipole strength. This modulation
should be observable for current experimental parameters in 87Rb. Hence the much-sought
supersolid state, with broken continuous translation invariance in one direction and broken
global U(1) invariance, occurs generically as a metastable state in this system as a result of
dipole interaction. The ferromagnetic state parallel to the applied magnetic field becomes
striped in a finite system at strong dipolar coupling.
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The development of artificial gauge fields, that can mimic magnetic fields, in ultracold
gases suggests that atomic realization of fractional quantum Hall physics will become exper-
imentally practical in the near future. While it is known that bosons on lattices can support
quantum Hall states, the universal edge excitations that provide the most likely experimental
probe of the topological order have not been obtained. We find that the edge excitations of
an interacting boson lattice model are surprisingly sensitive to interedge hybridization and
edge-bulk mixing for some confining potentials. With properly chosen potentials and fluxes,
the edge spectrum is surprisingly clear even for small systems with strong lattice effects such
as bandwidth. Various fractional quantum Hall phases for bosons can be obtained, and the
phases ν = 1/2 and ν = 2/3 have the edge spectra predicted by the chiral Luttinger liquid
theory.

Also, some of the traditional experimental techniques for detecting magnetic order and
dynamics in solid state materials, like neutron scattering has had somewhat of a renaissance
lately. In a recent experiment on CoNb2O6, Coldea et al. [1] found for the first time exper-
imental evidence of the exceptional Lie algebra E8. The emergence of this symmetry was
theoretically predicted long ago for the transverse quantum Ising chain in the presence of a
weak longitudinal field. We consider an accurate microscopic model of CoNb2O6 incorporat-
ing additional couplings and calculate numerically the dynamical structure function using a
recently developed matrix-product-state method. The excitation spectra show bound states
characteristic of the weakly broken E8 symmetry. We compare the observed bound state
signatures in this model to those found in the transverse Ising chain in a longitudinal field
and to experimental data.

Finally, we investigate the ground state phase diagram of a related quantum spin chain,
the S = 2 XXZ chain with single-ion anisotropy. The interest in this system comes mainly
from connecting the highly quantum mechanical spin-1 phase diagram with the classical S=∞
phase diagram. While most of these questions where believed to have been satisfactorily
answered mainly with DMRG, some recent studies have questioned some of the conclusions.
We use several of the recent advances within DMRG and perform a detailed analysis of the
whole phase diagram. We extend the phase diagram by considering different types of single
ion anisotropies which help us to answer two important questions: First we show that one can
adiabatically move from the isotropic Heisenberg point to the so-called large-D phase with
a continuous change of the Hamiltonian. Second, we can tune the model into a predicted
intermediate phase which is equivalent to the topologically non-trivial spin-1 Haldane phase.
Furthermore, we study the spin-3 XXZ chain to help explaining the development of the
classical phase diagram.
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Chapter 1

Brief introduction to magnetism

Magnetism is a property of a system, describing its response to external magnetic fields.
It is one of the oldest mysteries of solids and remains a very active research area. Mag-
netic materials have been known to mankind for thousands of years around the world. The
earliest known discussions about it can be traced back to the ancient Greeks and Chinese
about 2500 years ago. Perhaps, its most famous use, as an instrument to determine the
cardinal directions in navigation, or in short a compass, started to spread around China
and Europe almost a thousand years ago. However, the underlying cause of the magnetic
properties of these materials, remained a mystery up to about a hundred years ago with the
formulation of quantum mechanics. Magnetic properties of solids are quantum mechanically
in nature and classic physics can not fully explain them. Magnetic fields can arise from two
different fundamental sources; moving electric charges and the intrinsic magnetic moment
of particles. While Maxwell s classic electromagnetism describe the fields that arises from
electrical currents, the currents producing the magnetic behavior of materials comes from the
motion of the electrons. Both electrons orbiting the atomic nucleus and unbound electrons
moving around in a system require a quantum mechanical description to explain the origin
of magnetism. While the underlying mechanisms of magnetism by now is well studied and
understood, many interesting questions remain. The magnetic interaction is long ranged
and materials consists of a huge amount of particles ∼ 1023, making a complete treatment
of those systems impossible. However, much progress has been made both in experimental
and theoretical condensed matter physics where various successful approximations have been
develop. Many important questions have been answered, but also many remain, including
some of the simpler to state.

With the recent progress in engineering materials down to the atomic level, lower dimen-
sional materials like sheets and wires are becoming increasingly more common and important.
The push for smaller and smaller components in the electronic industry is the main driving
force behind this. Quantum mechanical effects becomes more prominent as the dimension of
the system is decreased. This introductory chapter will first summarize the basic known facts
of magnetism and then briefly introduce some interesting research areas with magnetism in
1-D and 2-D systems. The main part of this dissertation will present some recent research
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done within this field.

1.1 Classic magnetism

In Maxwell s classic theory of electromagnetism [2], no magnetic monopoles exist

∇ ·B(x) = 0, (1.1)

where B(x) is the magnetic field at position x. Instead, the sources to steady magnetic fields
are charge currents

∇×B(x) =
4πj(x)

c
+

1

c

∂E(x)

∂t
, (1.2)

where j(x) is the current at x and c is the speed of light. The last term in Eq. 1.2 couples
a rapidly varying electric field E(x) to a rapidly varying magnetic field, through a similar
equation for the electric field leading to electromagnetic waves.

The macroscopic description of a material has a density of magnetic moments M(x),
from current loops jmag = ∇ ×M(x) within it [3, 4]. The magnetic field within a sample
created from external sources are hence

H(x) = B(x)− 4πM(x). (1.3)

The response of a material in terms of its internal magnetic moments to an external magnetic
field is

χab =
∂Ma

∂Hb

, (1.4)

where χab are the tensor components of the magnetic susceptibility. For a linear isotropic
media χ is a scalar. A material with χ > 0 is paramagnetic, it strengthens the magnetic field
within the material with a general alignment of the magnetic moments with the external
field. Materials with χ < 0 are named diamagnetic. As the temperature is lowered, many
materials develops a spontaneous magnetic order. Above the transition temperature they
normally are paramagnets with

χ =
1

T −Θ
, (1.5)

where T is the temperature and Θ the Curie-Weiss temperature, which normally do not
coincide with the transition temperature Tc. Some material like iron have a surprisingly
large transition temperature T Fec = 1042 K.

An isolated current distribution has a magnetic dipole moment

m =

∫
d3x

1

2c
x× j(x) (1.6)

The total Lorentz force on a current distribution is then

F =
1

c

∫
d3xj(x)×B(x) = ... = ∇(m ·B), (1.7)
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where the current distribution is assumed to vanish outside some small area. The magnetic
field is roughly constant within that area and can be Taylor expanded around its central
value B(x) = B(0) + (x · ∇)B(0) + .... Hence, the potential energy of a dipole in a magnetic
field is

U = −m ·B, (1.8)

indicating that dipoles want to align with the magnetic field and are paramagnetic. However,
this assumes that the current is constant while the dipole align itself with the field. A free
charge q, experiencing the force F = qv × B, creates a magnetic moment in the opposite
direction of the field and is hence diamagnetic. The actual motion of charged particles in
material are governed by quantum mechanics and together with the pure quantum mechan-
ical intrinsic magnetic moment of particles will be the focus when quantum magnetism are
described in the next two sections.

1.2 Atomic Magnetism

Before one can start to understand the origin of magnetism in materials, it is important
to understand it in an atom [3, 4]. The Hamiltonian governing an atoms interaction with an
external magnetic field is

H =
1

2m

∑
i

(pi + eA(ri))
2 + µBB(ri)S

z
i , (1.9)

where the sum goes over all the electrons in the atom. The ith electron has a momentum pi at
position ri. Electrons are elementary particles and are indistinguishable. They have exactly
the same properties, mass m, charge q = −e, where e is the fundamental unit of charge,
and spin (or intrinsic angular momentum) s = 1/2, which is related to its magnetic moment
me ≈ −2µB

√
s(s+ 1). The first term in Eq. 1.9 describes the orbital motions interaction

with the magnetic field and the second the spins interaction with the magnetic field. The
electromagnetic vector potential A(r) is related to the magnetic field B(r) = ∇×A(r). The
dominant magnetic energy contribution after performing perturbation theory wants to align
the moments with the field, a paramagnetic contribution,

∆E1 = µBB(Lz + 2Sz) + ..., (1.10)

unless the outer shell is filled or one electron short of half full in which case it vanishes. In
second order of the magnetic field there is a diamagnetic contribution,

∆Ed
2 =

e2B2

12m
r2, (1.11)

competing with another paramagnetic term. The diamagnetic contribution comes from
the last part of the first term and is easiest derived in the symmetric gauge A(r) =
1/2(−By,Bx, 0), using x2 + y2 ≈ 2/3(x2 + y2 + z2) = r2.
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Electrons are fermions, since they have half integer spin, and follow Fermi-Dirac statistics
and obey the Pauli exclusion principle [5]. That is, only one particle can occupy a particular
quantum state at a specific time. In a finite quantum system, the conserved quantities can
only take on discrete values, called quantum numbers. For example, the electrons in an
atoms electrostatic field can be well approximated by a central potential. In such a system
the atomic orbitals can be described by the quantum numbers for the shell n, the angular
momentum l and ml and the spin s = 1/2 and ms. The quantum numbers for the ith electron
are closely related to the corresponding physical observables, obtained in the bra-ket notation
of quantum mechanics when the operators act on the eigenstates, labeled by the quantum
numbers; the angular momentum

L2
i |li〉 = li(li + 1)~2/(4π)2|li〉, (1.12)

spin angular momentum
S2
i |s〉 = s(s+ 1)~2|s〉, (1.13)

and their projection along a specified axis in the atom

Lzi |mli〉 = mli~|mli〉 and Szi |msi〉 = msi~|msi〉. (1.14)

In the ground state, the electrons start to fill the innermost shells, which has 2n2 positions
for n = 1, 2, 3, ., since l = n− 1, n− 2, ..., 0, ml = −l,−l + 1, ..., l and ms = −1/2, 1/2. The
total angular momentum J = L + S =

∑N
i=1 Li +

∑N
i=1 Si, where the sum is over all the

electrons, is defined in the same way as for L and S, with

J2|J〉 = J(J + 1)~2|J〉 and Jz|mJ〉 = mJ~|mJ〉. (1.15)

All filled shells have zero total angular momentum J = 0 (and also S = 0 and L = 0).
The magnetic moment of an atom is related to its angular momentum through the relation
mATOM = gJµBJ. Hund’s rules describe in which order the atomic orbitals inside each shell
gets occupied.

1. The electrons occupy the orbitals with the largest total spin angular momentum Sz.

2. Given 1., the electrons occupation maximize Lz.

3. Given 1 and 2, for a less than a half full shell, the total angular momentum Jz is
minimized. If more than half full, Jz is maximized.

Also, the jthh nucleon has an intrinsic angular momentum or spin Ij and a corresponding
magnetic moment. The magnetic moment of the electron is about 105 times larger than the
nucleons and the latter can hence often be neglected. However, in atomic experiments, the
precision of the electromagnetic fields are high enough to resolve the hyperfine splitting of
the energy levels from the nucleons magnetic moment in an external magnetic field. In Ch. 4
that analyze an ultracold atomic experiment the nuclear magnetic moment also needs to be
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taken into account. The total atomic angular momentum is F = I + J, where I is the total
intrinsic nuclear angular momentum of the atom. The orbitals of the nucleons do also form
a shell like structure, with I = 0 for a filled shell. Without going into details about how this
is built up and the order the nucleons fill those orbitals, the quantum number of the total
nuclear angular momentum I is a multiple of 1/2 times a small integer.

1.3 Magnetism in condensed matter

Condensed matter physics deals with condensed phases of matters, primarily solids and
liquids. It is many body systems, normally with huge number of particles. Often, the
interactions between the particles are weak and all the interactions a particle experience
can be approximated with an average interaction with its surrounding. The effective single
particle problem that arises through this approximation is easier to analyze and normally
gives good predictions. However, for certain systems it can not explain all observations and
a multi-particle approach is necessary. These systems are called strongly correlated. In this
dissertation we will primarily investigate these kind of systems, see Ch. 5, 6 and 7. However,
we will also investigate one system where the interparticle interactions can be approximated
with an effective interaction, see Ch. 4.

In the very simplest model of a metal, the electrons move around freely without inter-
acting with the other electrons or the ions [3, 4]. Let us begin with briefly discuss how
this system responds to an external magnetic field. First we consider the intrinsic magnetic
moment of the electrons. Without a magnetic field there is an equal distribution of spin
up and down electrons. With a magnetic field, the interaction with the spins −2µBBS

z

raises the Fermi level for spins pointing in the opposite direction to the spins and lower it for
the opposite spins, creating an unequal spin distribution. Electrons are negatively charged
particles, so the magnetization points in the opposite directions to the spins, resulting in a
magnetic susceptibility

χ =
4πµ2

BkFm

π2~2
(1.16)

that is paramagnetic. However, as was noted in the previous section the motion of a free
charge has a diamagnetic contribution. As an example, the orbiting motion of free electrons
in a 2-D structure will be discussed in more detail in Sec. 1.7. Here we just state the result,
that the diamagnetic contribution from the electrons motion is one third of the paramagnetic

χ = −4πµ2
BkFm

3π2~2
. (1.17)

However, for a more accurate treatment of magnetism in materials the interactions between
the particles need to be considered. A magnetic dipole m1 creates a magnetic field

B =
3r̂(m1 · r̂)−m1

r3
, (1.18)
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a distance r away from it. Another dipole m2 a distance r12 away from the first dipole will
have a potential energy in its magnetic field

Vd = −m2 ·B =
m1 ·m2 − 3(m2 · r̂12)(m1 · r̂)

r3
12

(1.19)

The maximum energy decrease in a dipole field is obtained when the dipoles are aligned
along the line separating them. This energy decrease is only 1 · 10−3 eV for a typical inter
atomic spacing ∼ 1 Å in solids, which corresponds to a temperature of about 1 K. However,
magnetism can be detected in many materials up to about 1000 K, well above where it would
have been expected to vanish from the above calculation. Instead, the correct explanation
for magnetism in material is, like in the atom, about finding certain quantum spin states that
minimizes the coulomb interaction between the electrons, while obeying the Pauli exclusion
statistics, similar to Hund’s rules for atoms.

Let us consider the hydrogen molecule H2 as an example for how an effective spin Hamil-
tonian can be derived from a Hamiltonian without any spin terms [6]. H2 has two protons
on sites R1,2 and two electrons at positions r1,2 occupying the atomic wave functions φ1,2.
The Hamiltonian is

H =
2∑
i=1

Hi + ∆H, (1.20)

where

Hi =
~2

2m
∇2
i −

e2

|ri −Ri|
(1.21)

is the isolated atomic Hamiltonian with ground state energy ε. The interaction between the
two parts is

∆H = − e2

|r1 −R2|
− e2

|r2 −R1|
+

e2

|r1 − r2|
+

e2

|R1 −R2|
(1.22)

Minimizing the energy E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉, with respect to the constants ca,b in the total
wavefunction Ψ = (caφ1(r1)φ2(r2) + cbφ1(r2)φ2(r1))χ, where χ is the spin part, leads to the
matrix equation [(

Vd Vo
V ∗o Vd

)
− (E − 2ε)

(
1 λ2

λ2 1

)](
ca
cb

)
= 0, (1.23)

with

λ =

∫
d3rφ∗1(r)φ2(r), (1.24)

Ud =

∫
d3r1d

3r2∆H|φ1(r1)φ2(r2)|2 (1.25)

and

Uo =

∫
d3r1d

3r2∆H(φ1(r1)φ2(r2))∗φ
(
1r2)φ2(r1). (1.26)
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The solution of Eq. 1.23 is

E± = 2ε+
Vd ± Vo
1± λ2

(1.27)

for the wavefunctions

Ψ± =
1

2
[φ1(r1)φ2(r2)∓ φ1(r2)φ2(r1)][χ↑(r1)χ↓(r2)± χ↑(r2)χ↓(r1)], (1.28)

which are antisymmetric as they have to be for fermions. For the hydrogen molecule

E+ − E− = 2
Vdλ

2 − Uo
1− λ4

= J > 0, (1.29)

the wavefunction with the antisymmetric spin part has the lower energy and an effective
Hamiltonian can be constructed

H = JS1 · S2 (1.30)

where the S1,2 is the spin-1/2 operator acting on the atomic orbital on site 1, 2. This
Hamiltonian has an energy −3/4J if acting on a spin singlet Stot = 0 which is antisymmetric
and 1/4J if acting on a spin triplet Stot = 1 which is symmetric. Even if the original
Hamiltonian has no spin-dependent terms through the Fermi statistics the energy difference
arising from the Coulomb interaction and the kinetic energy can instead be attributed to
the spin configuration.

Using other atomic orbitals than the Hydrogen s in the above calculation will give other
values for J . Spatially separated orbitals, but not orthogonal, normally give rise to an
antiferromagnetic interaction J > 0, while orthogonal orbitals that occupy the same region
in space normally give a ferromagnetic interaction J < 0 in accordance with Hund’s rules.
For many electrons occupying many orbitals it can be even more complicated. In some
systems an exact spin model can be derived, but many times a spin model that gives an
approximate description of the system is used. Many spin models have also been studied
that does not yet have a known realization in any material. Those models could be either for
future use or for investigation of interesting properties where the solution can be beneficial
in understanding other systems. In this dissertation we will investigate an Ising like spin
chain in Ch. 6 that is a good model for CoNb2O6 and compare to some experimental results.
We discuss briefly why the particular spin model we are using describe this material well. In
Ch. 7 we study a spin-2 model, which has no known physical realization, but gives insight
in how highly quantum mechanical systems with low spins are related to the classical limit
S →∞.

1.4 Quantum phases and phase transitions

In the previous section we argued that the interactions between the electrons in a system
could lead to an effective Heisenberg model, Eq. 1.30) with either FM (J < 0) or AFM
(J > 0) interactions. A simple picture of a FM groundstate has all the spins pointing in the
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same direction, and an AFM groundstate neighboring spins pointing in opposite directions.
The question arises, is it possible to move smoothly without closing the gap between these
two ground states by modifying the Hamiltonian. The answer is no, since the two states
belong to different phases [4, 6–8]. Traditionally, Landau’s symmetry breaking theory was
believed to explain all different phases. A phase is simply defined as a region in phase space
where the ground state wavefunctions have the same symmetries.

At sufficiently high temperature any system turns into a gaseous phase, which is com-
pletely disordered. Acting on a state in this phase with any symmetry operator will leave
its expectation values unchanged. Upon lowering the temperature many systems condense
into some kind of phase with more order, like a solid. The continuous translational and
rotational symmetries are broken down to some discrete version. Apart from various lattice
structures, also metallic, semiconducting, superconducting, superfluid, and magnetic phases
among others can be explained with Landau’s symmetry breaking theory.

Many phase transitions are driven by thermal fluctuations and more ordered phases with
less symmetry appears as the temperature is lowered. However, even at zero temperature
there are fluctuations, quantum fluctuations. By varying some physical parameter, like J in
Eq. 1.30, a quantum phase transition can occur, driven by quantum fluctuations. For low
temperatures, both thermal and quantum fluctuation are important and needs to be consid-
ered. In this dissertation we will mainly deal with systems at zero temperature, which are a
good approximation to any system at very low temperature where the quantum fluctuations
dominate.

To understand phase transition, an important concept is correlations. The correlation
function measures how correlated one point is with another point a distance x away. It is
defined as

Γ(x) = 〈O(x)O(0)〉 − 〈O(x)〉〈O(0)〉, (1.31)

where O(x) is the order parameter or some other operator for a quantum system one is
interested in the correlations of and 〈〉 is the thermal statistical average in a classical system
or the expectation value in a quantum system. A rapid decay in Γ(x) shows that fluctuations
at one point does not affect the system far away. Instead it is the local interactions that
dominate the physics of the system. A slow decay on the other hand means that fluctuations
have a large effect on points far away and the system can get organized in larger structures
not directly obvious from the local Hamiltonian. Close to a critical point the correlation
function normally gets a form like

Γ(x)→ x−qe−x/ξ, (1.32)

where ξ is the correlation length. It measure over what distance fluctuations are important
or correlated. The correlation lengths diverge at many critical points. In fact, different types
of critical points are divided into different classes;

• First order phase transition: Some properties, like the order parameter shift discon-
tinuously, a (normally large) amount of latent heat is released or absorbed if it is a
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temperature driven transition. No divergence in the correlation lengths

• Second order phase transition: The order parameter of one phase change continuously
to zero at the transition to the other phase. Diverging correlation lengths and some
other physical observables like susceptibility and entanglement entropy in quantum
systems at the transition.

• Infinite order phase transitions: A phase transition between a gapped phase and a
critical or gapless phase. The order parameter of the gapped phase also change contin-
uously to zero at the transition to the gapless phase. The correlation length and other
physical observable diverge at the transition to the gapped phase and remains infinite
inside the gapless phase.

More detailed discussion of different types of phase transitions with several examples will
be presented in Ch. 7. Ch. 4 and Ch. 5 also investigate different phases and some interesting
observations are made about the transitions betweem them in those chapters as well.

With the discovery of the fractional quantum hall (FQH) phases in 1982, it was realized
that there exist different quantum phases that have the same symmetry [8, 9]. This goes
beyond Landau’s symmetry breaking theory and a new theory had to be developed to explain
these phases. These quantum phases are named topological phases if they are gapped. They
can not be described by a local order parameter, long range correlations or as mentioned
some broken symmetry. Instead, they can have different ground state degeneracy on different
manifolds, in the thermodynamic limit, quasiparticle statistics and edge spectra. The first
two of these do not uniquely define a topological phase, but the edge spectra is believed to
do it. In Ch. 5 we will study the edge spectra of topological FQH phases in optical lattice
and argue that it is the best way to experimentally detect these phases in ultracold gases.

The above definition of a topological phase is somewhat restrictive and does not incorpo-
rate some 1-D phases that can not be described by a local order parameter. An example is
the Haldane phase around the Heisenberg point in a S = 1 chain, which will be discussed in
detail in Ch. 7. This phase has no ground state degeneracy in a periodic system, but instead
in an open system. The decomposed S = 1/2 edge spin is completly free. It has no exotic
quasi-particle statistic, since it is a 1-D system. It also has long range correlations close to
the phase transitions. This phase needs certain symmetries to remain stable and not turn
into the trivial phase, and is normally called a symmetry-protected topological phase.

1.5 Spin chains

One of the easiest type of models to investigate quantum phase transitions in are quantum
spin chains [6, 7]. From a theoretical point of view systems are generally easier to analyze
as the interaction gets shorter and the dimension of the system lower.

Earlier we argued that the electron interaction could create an effective Heisenberg spin
interaction, see Eq. 1.30. In many materials there are several different types of atoms that
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can make the distance to the magnetic ions different in different directions. Since atomic
interactions fall off very fast with distance, many material can hence to a good descripton be
described by a 1-D or 2-D spin structure. Also, the spins in themselves can have a preferred
component, so an anisotropy parameter ∆ is introduced, that takes the system away from
the Heisenberg point ∆ = 1. The Hamiltonian for the infinite quantum XXZ spin chain is

HXXZ =
∑
n

(SxnS
x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1), (1.33)

where Sαn (α = x, y, z) is the α-component of the spin-S operator at the nth site and ∆ is
the XXZ anisotropy parameter. For S = 1/2 there are three phases; FM, XY and AFM for
increasing ∆. At the Heisenberg point, this Hamiltonian has a SU(2) spin symmetry, which
it is invariant under. Away from the Heisenberg point a U(1) symmetry in the xy-spin plane
remains and a Z2-symmetry in the z-component Sz → −Sz. The magnetized phases breaks
the Z2 symmetry. In the FM phase all spins can be either up or down and in the AFM the up
spin can be on either the odd or even sites. The order parameter for the magnetized phases
is |〈Szn〉|. An example of the continuous decrease of this order parameter as ∆ is varied can
be seen in Fig. 1.33. This example is an infinite order phase transition, at ∆ = 1, between
a gapped AFM phase and a critical gapless XY phase. Other types of phase transitions are
normally easier to locate. More details about various phase transitions will be presented in
Ch. 7.

Quantum mechanical effects are stronger the lower S. In the limit S → ∞ the spins
behave classically. But already for small S the interaction is predominantly classic and a
classic analyze can often be done to obtain most of the information about a system. In Ch. 7,
the focus is on integer spin XXZ-chains with onsite anisotropies, especially the S = 2 case
and we also investigate how the classic limit develops as S increase.

As the spin anisotropy ∆ gets stronger, another perhaps even more famous model appear.
In the limit ∆ → ∞, while J → 0 so that ∆J = 1 remains constant the Ising spin chain
emerges

HIsing =
∑
n

SznS
z
n+1. (1.34)

This is deep inside the AFM phase (or the FM phase if the other limit is taken). Normally
a transverse field hx is added, so this model can be tuned through a phase transition to the
trivial paramagnetic phase. This phase is also gapped, but has not broken any symmetry of
the Hamiltonian, it is hence the same phase as would appear if the temperature was raised
past a thermal phase transition. In Chap. 6 we will discuss a material that is close to the
Ising limit, and with some other weak interactions present as well.

Spin models are many times good approximation to solid state systems, but it can be
hard to exactly tune them in the desired way. In the last decade advances in ultracold gases
has opened up for experimental investigation of spin models with a previously unprecedented
control. Atoms with the desired spin are placed in optical lattices and their interaction can
be easily tuned by external fields. Sec. 1.8 will give a brief introduction to ultracold gas
experiments.
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Figure 1.1: An example of the continuous vanishing of an order parameter through a phase
transition. The higher χ is, the more accurate is the numerical simulation. The exact
meaning of χ will be explained in Ch. 3.

1.6 Bose-Hubbard model

Another very important model within strongly correlated physics is the Hubbard model [7].
It was originally developed as a model describing the transition between an insulating phase
and a conducting phase. It is an improved tight binding model where an electron can interact
with another electron at the same site in a different atomic orbital in addition to their hop-
ping between different atomic orbitals located on different lattice sites. In its original form,
two s-orbitals are located on every lattice site, one for ms = 1/2 and one for ms = −1/2.

A similar model can also be constructed for bosons, it is then called the Bose-Hubbard
model. It has been realized with ultracold gases and has been a great system to study
quantum phases and phase transitions in. Since several bosons can occupy the same orbital,
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only one orbital per lattice site is normally used leading to the Hamiltonian

H = −J
∑
〈i,j〉

â†i âj + â†j âi +
U

2

∑
i

n̂i(n̂i − 1), (1.35)

where 〈i, j〉 is the sum over nearest neighbor sites, J is the hopping amplitude, U the onsite
repulsion, â†i and âi are the boson creation and annihilation operator and n̂i counts the
number of bosons on site i. In the Hubbard model, the boson operators in the hopping term
in the Bose-Hubbard model are replaced by the fermion creation and annihilation operators
ĉ†i and ĉi and the interaction term reads U

∑
i n̂i,↑n̂i,↓, only a contribution when both orbitals

on site i are occupied. The Bose-Hubbard model is superfluid (SF) for large J and turns
into a Mott insulating (MI) phase at some lower J depending on the filling fraction. Similar
to filled atomic shells, each filled layer of bosons, where the number of bosons is a multiplet
of the number of sites have little effect on the systems, leading to the so called Mott lobes.

1.6.1 Hofstadter’s Butterfly

Non-interacting bosons U = 0 is a simple model to solve, since it is a single particle
model. However, adding a magnetic field on a square lattice creates a very interesting
structure, called the Hofstadter’s Butterfly after its discoverer [10]. The magnetic field is
easiest added as a phase change in the hopping amplitude, that corresponds to the phase
α = 2πnφ a particle gains when it moves around the flux nφ. Using the Landau gauge, the
Hamiltonian reads

H = −J
∑
~r

â†~r+x̂â~re
−iαy + â†~r+ŷâ~r + h.c., (1.36)

where the sites are at ~r = (x, y). Simulating for α = (0.0 : 0.001 : 1.0) on up to a 2 × 1000
site lattice leads to a fractal image, when the energy spectrum is plotted as function of α,
see Fig. 1.2.

In Ch. 5 we combine these two models Eq. 1.35 and Eq 1.36, interacting Bosons in a
magnetic field. We focus on the limit U →∞, since it is slightly easier to analyze with the

decrease in Hilbert space from D =

(
M +N − 1

N

)
to D =

(
M
N

)
, where M is the number

of sites and N the number of bosons. Also, as we will show in Ch. 5, as long as no phase
transition occurs out of the phase, a change in U has a marginal impact on the result.

1.7 Quantum Hall

An unexpected response to an external magnetic field was observed in an experiment by
von Klitzing, Dorda and Pepper in 1980 [11]. In a Hall measurement, a steady current jx, is
flowing in the x̂ direction in perpendicular magnetic Bz and electric Ey fields, whose forces



Section 1.7. Quantum Hall 14

Figure 1.2: The fractal structure called Hofstadter’s butterfly; the energy spectra as a func-
tion of magnetic field for a non-interacting (single) particle on a 2-D square lattice.

on the moving charges cancel qEy = qvxBz. The measured conductivity tensor σ is defined
as j = σE. Its transverse conductivity element

σclassic
xy =

jx
Ey

=
nce

Bz

(1.37)

is expected to be proportionell to 1/Bz. This has been a very reliable method to measure
the charge density nc in a sample. However, they observed an exact quantization of σxy at
low temperature in a 2-D electron gas in a strong magnetic field

σquantum
xy =

ν

h/e2
, (1.38)

where ν are integers. That is, σxy is constant for some range of Bz , before rapidly decreas-
ing to the next quantized value for another range of Bz. A quantization of a macroscopic
observable, the conductivity, in a macroscopic sample was very unexpected. A lot of exper-
imental and theoretical work followed on this discovery and it was soon realized that the
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quantization was very accurate, to about 1 part in a billion [12]. Nowadays the standard for
resistance is defined from the basic quantum of resistance RK = h/e2. Measurements of the
longitudinal conductivity σxx is zero where σxy is constant.

Treating the conduction electrons as free particles moving in the xy-plane in an external
perpendicular magnetic field Bz, it is straightforward to see that they are quantized in certain
energy levels, called Landau levels [4, 9]. The Hamiltonian for such a particle is

H =
1

2m

(
p +

e

c
A(r)

)2

. (1.39)

Choosing Landau gauge A = (0, Bx, 0), we see that the operator p̂y commutes with the
Hamiltonian and can be replaced with its eigenvalue ~ky. The resulting Hamiltonian is a
1-D Harmonic oscillator

H =
p̂2
x

2m
+

1

2
mω2

c

(
x̂+

~ky
mωc

)2

(1.40)

shifted in coordinate space and with energy eigenvalues En = ~ωc(n + 1/2), where ωc =
eB/mc is the cyclotron frequency and n an integer quantum number. The Landau levels En
are degenerate since the quantum number in the y-direction ky does not affect the energy.
In a periodic sample with length Ly it can take on the values ky = 2πN/Ly, where N is
a positive integer such that the center of the Harmonic oscillator stays within the sample
~ky
mωc

< Ly, or N < mωcLxLy
2π~ . The number of electronic orbitals in the lowest Landau level is

hence

Ne =
BLxLy
hc/e

=
Φ

Φ0

= Nφ, (1.41)

which is the same as the number of flux quanta Φ0 = hc/e trough the system. For none
polarized electrons (both spin up and down) there are twice as many electronic orbitals.
Each flux penetrate an area 2πlB, where lB =

√
h/eB is called the magnetic length.

In a perfect sample, in an increasing external magnetic field, the next Landau level would
start to fill immediately after the previous is completly filled, so why can a quantized con-
ductivity be measured? The answer is maybe a bit surprisingly due to impurities. Impurities
create localized states around them and some of those will be in the energy gap between
the extended states of adjacent Landau levels. It is very hard to make a “perfekt” mate-
rial without any impurities and often they can partly obscure the effect that one wants to
measure, but for the IQH they do not, in fact they are essential for the quantization.

In 1992, only two years after the discovery of the IQH effect, quantized conductivity
was measured at fractional fillings ν = p/q, with p and q integers, by Tsui et. al. [13].
To have incompressible phases at partly filled Landau levels require interactions between
the electrons, since otherwise there would be a huge ground state degeneracy ∼ Nφ!

N !(Nφ−N)!
,

where N is the number of electrons. Consequently a completely different theory needed to
be developed. The wavefunction for a single particle in a magnetic field, the solution to
Eq. 1.40 is Ψ0 = f(z)e−|z|

2/4/l2B , where f(z) is an analytic function. Laughlin constructed
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the following wavefunction to explain the fillings at ν = 1/m with m an integer

Ψ1/m(zi) =
∏
i<j

(zi − zj)me
−
∑
i

|zi|2/4l2B
, (1.42)

where z = x + iy is a function of the 2-D coordinates (x, y). This wavefunction describes
fermions for odd m, for which it is totally antisymmetric. The wavefunction has an m-order
zero, which describe the strong electron repulsion well. It is an incompressible state with
uniform density within a disc.

The model we presented in the previous section, interacting bosons on a lattice in a
magnetic field can be in FQH phases [14]. In Ch. 5 we will investigate how these phases can
be detected and also see the transitions between some of them.

1.8 Experimental techniques

Most of the research presented in this dissertation has a close connection to experiments.
In this section we give a quick introduction to two selected experimental techniques that
are relevant to the research presented in this dissertation; ultracold gases that can be used
to investigate magnetism in a very controlled setting and neutron scattering that is used to
map out the magnetic structure and excitations in the solid state.

1.8.1 Ultracold gases

A Bose-Einstein condensate (BEC) in a dilute quantum gas was obtained for the first time
in 1995 by Wiemann and Cornell’s group at Jila and Ketterle’s group at MIT [15, 16]. They
managed to trap a gas of alkali atoms 87Rb and 23Na respectively and cool it to a sufficiently
low temperature for the gas to Bose-Einstein condense. Since this original achievement, the
field has experienced a rapid development. Notable achievements include, the tuning of the
interactions through a Feshbach resonance, trapping in an optical trap where the spin degrees
are free, different trapping potentials including lattices and lower dimensional condensates
as well as a multitude of detection techniques.

Each research group has their own slightly different way of creating a BEC, although
most of the general features remain the same. Here I will give a very brief summary of
the experiment I am most familiar with, the “Spinor Rubidium BEC” in Stamper-Kurns
group at UC Berkeley. For more information about the experiment, see one of the excellent
Ph. D.-dissertations written by the former graduate students in that group [17–19].

Liquid Rb in equilibrium with its vapor is kept in an oven with a small opening through
which the Rb-gas can move towards the experimental chamber. The flux of Rb out from the
oven is determined by the gas pressure through the temperature. At a typical temperature
of 100◦C about 1016 atoms/s leave the oven. However of these atoms in thermal equilibrium
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only about 1/60000 leaves the oven in the right direction and continue into the Zeeman
slower.

Inside the Zeeman slower is a counter propagating laser beam that slows down the atoms
through scattering. The Zeeman slower creates a magnetic field that keep the majority of the
atoms in resonance with the laser beam as their velocity is decreasing. Exiting the Zeeman
slower, the majority of the atoms have a velocity 20 m/s, down from the thermal average
velocity of 300 m/s they had when they entered.

This is low enough to be efficiently trapped in the magneto-optical trap. About 5 · 109

atoms are trapped during the 10 second and then compressed and cooled in several steps to
60 − 70 µK. The atoms are then transferred to a magnetic trap where they are evaporated
cooled through a radio-frequency laser that changes the magnetic quantum number. They
can be expelled from the trap by the magnetic field, leading to a lower average temperature,
around the transition temperature to a Bose-Einstein condensate. Finally, the condensate
is loaded into the optical dipole trap. Without a magnetic trapping field the spins of the
atoms can move freely. A spatially varying Stark shift creates an attractive force directed
towards the center of the trap. Using different frequencies in the different directions leads
to a condensate with different extensions in those directions.

Two of the main detection techniques used to probe ultracold gases are time of flight and
in-situ. In time of flight, the condensate is released from the trap and allowed to expand.
No further interactions between the atoms are assumed to take place. The atoms position
after a long enough time, will be related to the momentum distribution that was present in
the trap just before they were released. An experiment normally takes a couple of seconds
and many are performed under the same conditions to create good statistics. In an in-
situ measurement the condensate interact directly with an electromagnetic wave, that is
assumed to give continuous information about the condensate without affecting it. Due to
the smallness of the condensate a high resolution imaging technique is essential, on the order
of µm or better.

Today there are ultracold gas experiments operating all over the world and new ones are
cosntructed continiously. This subsection is way to short to give it any kind of justification
to all the experiments and what they have measured and plan to measure. For the interested
readers one of the reviews of the field is a good start. A fairly general one is Ref. [20] by
Bloch, Dalibard and Zwerger. More specific ones, one related to the work presented in Ch. 4
is Ref. [21] by Stamper-Kurn and Ueda, and another related to the work in Ch. 5 is Ref. [22]
by Cooper. These review articles should be a good starting point to other review articles as
well as original work in the field.

1.8.2 Neutron scattering

Neutrons are a very important probe in the investigation of the structure and dynamics
of materials [23]. They are charge less and can hence penetrate deeper into solids than
what charged particles can. Their magnetic moment makes them well suited to investigate
magnetic properties. Their wavelength at room temperature λ ≈ 1.8 Å is one the same
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order as the typical interatomic distance in solids, so interference effects can be used to get
information about the structure. Cold neutrons ∼ 0.1−100 meV, can be used to investigate
elementary excitations. One of the biggest challenges with neutron scattering is two have
a reliable neutron source with large enough flux of neutrons. There are two main types of
neutron sources, reactor and spallation. The emerging neutrons are very energetic and needs
to be slowed down in a moderator to be useful. Their magnetic moment are unpolarized
and for magnetic measurements it can be useful to polarize them. The differential scattering
cross section for a neutron ki scattering into kf , where k is the momentum, is

(
dσ

dΩ
)ki→kf =

1

N

k1

k0

(
m

2π~2
)2
∑
λ0σi

pλ0pσi
∑
λ1σf

|〈kfσfλ1|V |kiσiλ0〉|2δ(E + Eλ0 − Eλ1), (1.43)

where we average over all initial states λ0 of the sample occuring with probability pλ0 and
the initial polarization of the neutrons σi with probability pσi . We sum over all the final
state of the sample λ1 and of the outgoing polarization of the neutron σf .

To investigate magnetic excitations in a solid, the lattice structure and the dynamics of
the spins needs to be taken into account

d2σ

dΩdE
=

1

Nm

k1

k0

(γr0)2

2π~
∑
αβ

(δαβ − q̂αq̂β)
∑
ii′

f ∗i (q)fi′(q)

×
∫
〈µiα(0)µi′β(t)〉〈e−qRi(0)e−qRi′ (t)〉e−iEt/~dt,

(1.44)

where Nm is the number of magnetic ions, r0 = e2/mec
2 the classical radius of the electron,

q = ki−k0 and fi(q) is the atomic form factor for an atom localized on lattice site Ri. The
magnetic moment of the neutron is µn = −γµNσ.
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Chapter 2

Overview of dissertation

The dissertation is divided into three parts. In Part II we give an overview of the main
numerical techniques used in the dissertation; classical Monte Carlo, exact diagonalization
and matrix product state based techniques. In Part III we analyze two different experiments
with ultracold gases that investigate phases for trapped bosons in an external magnetic field.
In Part IV we investigate some quantum spin chains. One of them was initiated by results
from a remarkable neutron scattering experiment.

Part II has only one chapter.

• Ch. 3, “Simulating quantum systems,” gives a quick introduction to some different
techniques used to simulate quantum systems. We start with a quick overview of the
classical Monte Carlo algorithm, using a spin-1 model on a square lattice as an example.
Next, we discuss exact diagonalization, using a hard-core Bose-Hubbard model on a
square lattice as an example. We show how to use the translational symmetry to
speed up the calculations and get the energy as a function of momentum. Finally,
we discuss the matrix product state based techniques; density matrix renormalization
group and time evolving block decimation. We consider both ground state calculations
and dynamics after a quench.

Part III consists of two chapters.

• Ch. 4, “Magnetic phase diagram of a 2D S=1 condensate,” examines the phase diagram
of a 2D spin-1 condensate trapped in an elliptical potential when the dipole-dipole
interaction is taken into account. Non-trivial order develops in both ferromagnetic
phases, with magnetic domains respectively a helical structure. The transition between
the two phases with vortex development is also studied. The work was completed in
collaboration with Andrew M. Essin and Joel E. Moore, published at Ref. [24].

• Ch. 5, “Detecting fractional quantum Hall phases in optical lattices,” investigates the
edge spectra for bosonic fractional quantum Hall phases in an optical lattice. Differ-
ent phases are found and their stability and the phase transition between them are
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investigated, We show that the edge spectra is a good way to experimentally detect
the different phases. The work was completed in collaboration with Joel E. Moore,
published at Ref. [25].

Part IV consists of two chapters.

• Ch. 6, “E8 symmetry effects in perturbed quantum Ising chains ,” was motivated by
an experiment on CoNb2O6, a material that closely resembles a quantum Ising chain,
when it was tuned close to the QCP. Signature of the expected Lie algebra E8 was
seen in the excitation spectra. We investigate an accurate model of CoNb2O6 close to
the QCP, taking into account interactions not previously investigated. The signatures
of the weakly broken E8 symmetry remains and are clearer than expected. The work
was completed in collaboration with Frank Pollmann and Joel E. Moore, published at
Ref. [26].

• Ch. 7, “Quantum phases for anisotropic XXZ-chains,” investigates the development of
the classical limit from a quantum XXZ spin-chain with onsite anisotropies, focusing
on the S = 2 phase diagram. An almost classical phase diagram is found in the basic
plane, but it is proven that a narrow region still connects the Heisenberg point with
the trivial phase. The symmetry protected topological phase in the S = 1 phase
diagram around the Heisenberg point can be reached for a wide range of certain onsite
anisotropies. The work was done in collaboration with Michael Zaletel, Roger Mong,
Jens H. Bárðarson and Frank Pollmann, to be published.
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Part II

Numerical Techniques
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Chapter 3

Simulating quantum systems

In this chapter we will briefly discuss the numerical techniques used later in this disserta-
tion. The first section is about the Monte Carlo technique that is used in Ch. 4. The second
section introduce exact diagonalization used in Ch. 5. The last section presents the matrix
product state based techniques, with focus on time evolving block decimation used in Ch. 6
and density matrix renormalization group used in Ch. 7.

3.1 Monte Carlo

The Monte Carlo algorithms are a family of computational algorithms relying on repeated
random numbers. Probably the most commonly used in condensed matter physics is the
quantum Monte Carlo algorithm. The one we will discuss in this section is a classical Monte
Carlo algorithm [27], that will be used later, see Ch. 4. The first step is to generate a starting
configuration. It can be a random configuration or an ordered one. Each step of the main
algorithm follow the same procedure. First, the old state is saved. A new state is randomly
chosen from some distribution that contains all realizable numbers. In our case we have a
spin-1 condensate, discretized on a 2-D Mx×My lattice. At each lattice point a 3-component
complex vector √

n2D(r, s)ψ(r, s) =

a(r, s) + ib(r, s)
c(r, s) + id(r, s)
e(r, s) + if(r, s)

 (3.1)

is defined, where r and s are integers between 1 ≤ r, s ≤ Mx,My. To create a new state we
first pick a random lattice site (r, s) followed by picking a random component a, b, c, d, e, or
f of the vector at that site (r, s). A new value for that component is then randomly obtained
from a Gaussian distribution. Note, that the vector

√
n2D(r, s)ψ(r, s) is not normalized and

each component can in principle take on any value independent of the others. To keep the
total particle number around the desired value, a chemical potential µ

∑Mx,My

r,s=1 n2D(r, s) is
added to the Hamiltonian in the code. The mean of the Gaussian distribution is chosen
so that the correct particle number from the chemical potential is a likely outcome and its
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deviation is chosen as a compromise between easy exploration of the whole phase space and
good convergence.

Lastly the energy of the new configuration is calculated. If it is lower than the previous,
the new state is kept. If it is higher, the new state is kept if

e−δE/kBTMC ≤ ζ, (3.2)

where ζ is a randomly picked number ζ ∈ [0, 1), otherwise not. This process is repeated
many times, normally & 106, until the total energy reaches a minimum. Depending on the
symmetry of the phase one might need to be aware of local minima. Some local minima
can be possible to get out from by modifying TMC . Others could require different starting
conditions. Multiple simulations are then performed and the one with the lowest final energy
is the ground state.

The parameter TMC is called the Monte Carlo temperature and it controls the dynamics
of the simulation. It is not directly related to the physical temperature of the system and
the dynamics is not necessarily the physical dynamics either, although it can normally give
good insight into it. The best use of the algorithm is that it normally can find the ground
state of the system in an efficient way. The Monte Carlo temperature TMC used is like the
Gaussian deviation also decided from simulation optimization. In the end it is confirmed
that the final result is independent of these parameters for a wide range of values.

3.2 Exact Diagonalization

Exact diagonalization (ED) is in principle a very simple and powerful technique. Diago-
nalizing matrices, that is finding its eigenvalues and its eigenvectors, is a common mathemat-
ical problem that appears in many fields. Consequently, there are efficient codes available
for all major coding languages. In quantum mechanics the Hamiltonian is defined in matrix
form and the exact energy eigenvalues En and energy eigenkets |n〉 are obtained

H|n〉 = En|n〉. (3.3)

Knowing the full energy eigenspectra with all associated eigenstates of a system, it is straight
forward to calculate the interesting properties of the system including dynamical ones.

However, for quantum problems there is a major limitation associated with this approach,
the rapid growth of the Hilbert space. As an example, consider the S = 1/2 chain. It is a
discrete quantum system with a local Hilbert space dimension d = 2S + 1 = 2. However
the global Hilbert space dim(H) = dn grows exponentially with the number of sites n. For
example, a system with only n = 10 sites has a Hilbert space with dimension 210 = 1024
and requires the diagonalization of a 1024 × 1024 matrix. Luckily, many of the physical
Hamiltonians are sparse, that is most entries are zero, and a lot of memory can often be
saved if only the value and the position in the matrix of the non-zero elements are stored.
Many times one is not interested in the full eigenvalue spectra of a huge matrix, but only a
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handful of the lowest energy eigenvalues. For sparse matrices there are codes that do this
very efficiently. Depending on the particular matrix, today a regular laptop can normally
calculate eigenvalues of Hilbert space on the order of millions of states.

What has been described so far is simple and straight forward to implement. However,
it is possible to exactly solve somewhat larger systems by taking advantage of the symme-
tries present in the Hamiltonian. Doing this, the matrix will be put into block diagonal
form, where all the nonzero matrix elements are collected into blocks along the diagonal.
The blocks corresponds to a conserved quantity, conjugate to the symmetry variable. For
example in a Hamiltonian with translational symmetry, blocks corresponding to a certain
linear momentum can be created. Implementing the symmetries of the Hamiltonian normally
requires a fair amount of work.

In the rest of this section I will explain the ED code I wrote for bosons in optical lattices,
see Ch. 5. It is a problem closely related to the Bose-Hubbard model on a square lattice
introduced in Ch. 1. We write down the Hamiltonian, Eq. 1.35, again for convenience

H = −J
∑
r

â†r+x̂âr + â†r+ŷâr + h.c.+
U

2

∑
i

n̂i(n̂i − 1), (3.4)

where J is the hopping amplitude, â†r creates a boson on site r = (x, y) and n̂r = â†râr gives
the number of particles on site r.

We start with writing an algorithm that defines all the quantum states of the problem.
Since the Hamiltonian acts on the real space, we define them in terms of site occupation.
When the onsite interaction goes to infinity U →∞, see Ch. 1, only one particle can occupy
every site and the last term in Eq. 3.4 can be ignored. The dimension of the Hilbert space

reduces to D =

(
M
N

)
, where N is the number of particles and M the number of sites. The

states are saved in a D×N matrix V , where the ith row correspond to the ith state. The first
multiparticle state we define is one particle on each of the sites V (1, :) = (1, 2, .., N), where
the lattice sites can be numbered in some convenient way. The next state is created by moving
the last particle one site V (2, :) = (1, 2, .., N−1, N+1). This is repeated until the last particle
is at the last site V (M−N+1, :) = (1, 2, ..,M). Then, the second to the last particle is moved
one site and the last particle is placed just after it V (M−N+2, :) = (1, 2, .., N−2, N,N+1).
Then the last particle is moved one site at a time until it reaches site M. Whenever the last
particle can not be moved anymore, one checks if the second to last particle can move one
site, if it can not, then the third to the last is checked, then the next and so on until a particle
is found that can move. Once that particle is found, all particles at higher site numbers are
moved as close to it as is possible on the higher side. This is done until no more particles
can move V (D, :) = (M −N + 1, ...,M). All possible D states are now defined.

To be able to find the states quickly if we are given a random state it is important to
have an easily calculated label for each. This can be done by defining the labels

v(i) =
N∑
j=1

V (i, j) ·M (j−1). (3.5)



Section 3.2. Exact Diagonalization 25

To quicker find the state in V corresponding to v(i), we sort v from the lowest to the highest
value. The same reshuffling is done for the rows in V .

After these preliminary steps, it is time to calculate the values of the matrix elements.
This is done by looping through all the D quantum states in V . For each quantum state
V (i, :), we act with the Hamiltonian on it. If it only contains nearest neighbor interactions
on a square lattice, the J-terms in Eq. 3.4, it will give us four other quantum states in V

H|i〉 = −J |i(1)〉 − J |i(2)〉 − J |i(3)〉 − J |i(4)〉. (3.6)

Depending on the boundary conditions used, some of these might not be allowed and needs to
be discarded. Having obtained these new quantum states, we calculate their labels {v(i(a))},
as in Eq. 3.5, to find out which quantum states {V (i(a), :)} they correspond to. In the Hamil-
tonian we save the matrix elements −J on sites {(i, i(a))}. Since we know the Hamiltonian is
Hermitian, only the quantum states i(a) ≤ i needs to be calculated by this procedure. When
the full Hamiltonian is obtained it is diagonalized with a sparse eigensolver to obtain the n
lowest energy eigenvaules and eigenstates.

Adding a magnetic field will change some of the matrix elements to −Je−iφ for some
value φ. More importantly, it will destroy some translational symmetry depending on the
gauge and the boundary conditions. We implemented two different conserved quantities in
two separate pieces of code for the simulations presented in Ch. 5, from the translational
symmetry that remains around a cylinder (and a torus) in Landau gauge and from the
rotational symmetry that remains on a square in symmetric gauge.

Here we briefly describe how the translational symmetry was implemented. Consider
a cylinder with Mx sites around it. We start out obtaining all quantum states as above,
however we also need to know which states are related by translational symmetry. For every
state we translate the whole state m = 1, 2, ... and Mx − 1 sites, for example

(1, 2, .., N)→ sort((1 +m, 2 +m, .., N +m) mod M), (3.7)

to create Mx states {V (i(b), :)} related by the symmetry. Before proceeding, we check if
all the states related by the translational symmetry are different or if they have a higher
translational symmetry Mx/I, where I is an integer. For example the two particle state
(1,Mx/2 + 1) has a Mx/2-site translation symmetry and only the first Mx/2 states are kept.
For each set of states related by symmetry, one state V (i(b

′), :) is picked as the basic state, the
one with lowest value on its label v(i(b

′)). For each state in this set we save the translational
symmetry of the set Mx/I(i) and the label v(i(b

′)) of the basic state. The basic quantum
states are also saved separately in a matrix Ṽ (i(b

′), :).
To create the nonzero entries of the matrix we loop through the basic quantum states

Ṽ (:, :) and act with the Hamiltonian on them as in Eq. 3.6. For the states {V (i(a), :)} obtained
in this way we check which is theirs basic quantum states {Ṽ (i(a

′), :)} . A matrix Ai(b′),i(a′)

with dimension Mx/I(i(b
′)) ×Mx/I(i(a

′)) from the two basic quantum states is constructed
with elements corresponding to all the translated states from these two basic quantum states.
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Due to the translational symmetry of the Hamiltonian, the non-zero matrix elements should
be the same on all diagonals wrapping around the matrix;

Ai(b′),i(a′) =


a b 0 0
0 a b 0
0 0 a b
b 0 0 a

 . (3.8)

Note, if acting with the Hamiltonian creates two different quantum states that belongs to
the same basic quantum states they need to be treated together. This matrix is then Fourier
transformed with a discrete Fourier transform

Ãi(b′),i(a′)(kx, kx′) =

Mx/I(i(b
′))∑

x=0

Mx/I(i(a
′))∑

x′=0

Ai(b′),i(a′)(x, x
′)e−2πi(kx·x/(Mx/I(i(b

′))+kx′ ·x′/(Mx/I(i(a
′)))),

(3.9)
both along the rows and the columns. If necessary additional rows and or columns with
zeros are inserted to make the final matrix a Mx ×Mx matrix. For example if I(i(a

′)) = 2,
the additional columns 2, 4, ...,Mx needs to be inserted. From the resulting diagonal matrix,
the non-zero diagonal elements are stored at site (i(b

′), i(a
′)) in Mx matrices corresponding

to each of the conserved quantities kx = 0, 2π/Mx, .., 2π(Mx − 1)/Mx. These Mx matrices
are then diagonalized as above with a sparse matrix eigenvalue solver to find the n lowest
eigenvalues and eigenstates for each momentum kx = 0, 2π/Mx, .., 2π(Mx − 1)/Mx.

3.3 Matrix Product State based methods

Density matrix renormalization group (DMRG) was invented by Steve White in 1992 [28?
]. Initially it was a method to mainly calculate the ground state of finite discrete 1-D
quantum many-body systems. In 2003 Guifré Vidal invented another method, time evolving
block decimation (TEBD), that in addition also could simulate real time evolution for the
same type of systems [29]. A few years later this method was extended to infinite systems
infinite TEBD (iTEBD) [30]. Altough DMRG was formulated with matrix product states
(MPS) fairly early [31, 32], it took several years, until TEBD was developed, for the wider
community to recognize its usefulness. Soon it was realized that DMRG and TEBD are very
similar and could calculate the same things. Today they are the most powerful methods for
simulating 1-D strongly correlated quantum systems and are used by many research groups.
The development of the algorithms continue and an exiting direction is to adapt them to
quasi 2-D and 2-D systems.

In the first section we will discuss the physical foundation of these methods, the concept
of entanglement. Then we discuss the main idea behind the ground state and time evolution
calculations, focusing on the TEBD method. Finally we write the wave functions with MPS
and explain why this is an efficient formulation for these methods.
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3.3.1 Entanglement

To understand how much information is needed to describe a multi-particle quantum
states, it is important to understand the concept of entanglement. Consider a quantum
system with Hilbert space H. Divide the system into two parts A and B, with Hilbert
spaces whose product is the full Hilbert space

H = HA ⊗HB. (3.10)

The simplest non-trivial case is a system where both subsystems consists of 2 quantum states,
for example | ↑〉 and | ↓〉. The wavefunction for the whole system H can be either a product
state |ψ〉 = |ψ〉A|ψ〉B like,

| ↑〉A + | ↓〉A√
2

⊗ | ↑〉B, (3.11)

or an entangled states |ψ〉 6= |ψ〉A|ψ〉B like,

| ↑〉A| ↓〉B + | ↓〉A| ↑〉B√
2

. (3.12)

A product state is easy to describe since the state of one subsystem is independent of the
other. However, for an the entangled state, a measurement on one subsystem will affect
the other as well. For larger systems with NA quantum states in the HA subspace and NB

quantum states in the HB subspace, it is important to be able to quantify the entanglement
between them. The total wave function can be written in a more compact form if states
|φα〉A and |φα〉B are used instead of the obvious ones |i〉A and |i〉B as

|ψ〉 =

NA∑
i=1

NB∑
j=1

Cij|i〉A|j〉B =

N=min(NA,NB)∑
α=1

λα|φα〉A|φα〉B, (3.13)

where Cij and λα are constants. The states in the smallest subspace can be taken as the
same |φα〉A ≡ |i〉A and as an example for the larger subspace, consider our previous discussed
system with 2 states |φα〉B = (Cα1|1〉B + Cα2|2〉B)/λα. For a normalized wave function
|ψ|2 = 1, the λ’s satisfy λα ≥ 0 and

∑
α λ

2
α = 1. The entanglement entropy S between the

two subsystems (or the entanglement between subsystem A or B and the rest of the system,
SA or SB) is

S = SA = SB = −
∑
α

λ2
αlog(λ2

α). (3.14)

The quantum states |φα〉(A,B) are ordered in decreasing λα order such that λ1 ≥ λ2 ≥ ... ≥
λN . The entanglement entropy for a product state is zero and small for a weakly entangled
states λ1 ≈ 1. The maximal entanglement entropy Smax = log(N) is obtained for a maximal
entangled state λ1 = λ2 = ... = λN = 1/

√
N . Most multi-particle quantum state are only

slightly entangled and can be well described by a small subset of the basis states |φα〉A,B

|ψ〉 =
N∑
α=1

λα|φα〉A|φα〉B ≈
χ∑
α=1

λα|φα〉A|φα〉B, (3.15)
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where χ� N . As an example consider the entanglement spectra λ2
α at a split at a random

bond for the ground state of the infinite spin-1 AFM Heisenberg chain, see Fig. 3.1. The two-
fold symmetry in the spectra is due to symmetries present in this phase, see Ch. 7 for more
information, and not something that always occurs. The rapid decrease in λ2

α is common for
quantum states away from criticality. At or close to criticality a more involved approach is
necessary, again see Ch. 7 for more details. As can be seen, the value falls off much faster
than α, so almost all the information of this multi-particle quantum state with an infinite
Hilbert space is contained in the first ∼ 30 quantum states on each side.

0 10 20 30 40 50

−10^10

−10^5

0

λ
α2

α

Figure 3.1: The entanglement spectra for a infinite spin-1 AFM Heisenberg chain.

To summarize, away from criticality a huge reduction in the amount of information needed
to describe a multi-particle quantum state is possible, with χ � min(NA, NB). However,
in this section we have only shown that this is possible when the full wave function |ψ〉 is
known. In the following sections we discuss how to approximate |ψ〉 with a wavefunction
|ψ̃〉 that never has more than χ basis states. We drop the tilde immediately and all wave
functions below are built up from χ basis states.

3.3.2 Time Evolving Block Decimation

Before describing in details how a MPS description of a wave function can be obtained, let
us go through the main idea about the operations we perform on these wave function to get
the desired results. DMRG is normally slightly more efficient when calculating ground states
while TEBD is more efficient at dynamics. Several great reviews has been written about the
methods, see for example Ref. [33]. Instead of repeating everything here for both methods,
we will briefly sketch one of the methods, TEBD where both ground state calculations and
dynamics can be described at the same time. Given an initial quantum state |ψ(0)〉 it evolves
into a state

|ψ(t)〉 = e−iHt|ψ(0)〉 (3.16)
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after a time t, if the Hamiltonian is independent of time. The ground state of a Hamiltonian
|ψ0〉 can be obtained starting from a random initial state |ψi〉, with nonzero overlap with the
ground state 〈ψ0|ψi〉 6= 0, by time evolution in imaginary time

|ψ0〉 = lim
τ→∞

e−Hτ |ψi〉
||e−Hτ |ψi〉||

. (3.17)

A Hamiltonian with only local interactions, for example only nearest neighbor interactions
H =

∑
r h

[r,r+1], is decomposed into parts that commutes with themselves

H = F +G =
∑
even r

h[r,r+1] +
∑
odd r

h[r,r+1], (3.18)

where [h[r,r+1], h[r′,r′+1]] = 0 if |r − r′| 6= 1. The real or imaginary time evolution operator
can then be approximated with a Suzuki-Trotter decomposition of order p

e−i(F+G)δt ≈ fp(e
−iFδt, e−iGδt), (3.19)

with f1(x, y) = xy, f2(x, y) = x1/2yx1/2, etc. This approximation gets better the larger p is
and the smaller the time interval δt is. For the real dynamics we present in Ch. 6, we found
it more advantageous from a computational point of view to decrease δt while keeping p low
(we used p = 2). Every time we act with the time evolution operator on our state, the state
grows and we need to truncate it. To be able to explain this, we need to describe in detail
how quantum states are stored.

3.3.3 Matrix product states

Let us go back and discuss in more detail how the MPS description of a quantum state
can be obtained [33, 34]. The wave function of a discrete chain with d quantum states on
each of the L sites can be written as

|ψ〉 =
d∑

j1,...,jL

Cj1,...,jL|j1〉...|jL〉 ≈
d∑

j1,...,jL

BTAj1 . . . AjLB|j1, . . . , jL〉, (3.20)

where Ajn are χ× χ matrices (for jn = 1, ..., d), and |jn〉 represents the local state at site n.
The χ×1 vector B determines the boundary conditions. In this dissertation we will consider
the case of infinite chains and the boundary matrices can be ignored. For translational
invariant infinite chains with nearest neighbor interaction only matrices at two neighboring
sites need to be stored Ajn+1 and Ajn+2 . Note, that one site is not enough, since the operators
F and G, from the previous subsection, act on two sites simultaneously. These 2d A-matrices
are written as a product of 2d χ × χ complex matrices ΓA,Bj,αβ and 2 positive, real, diagonal

matrices ΛA,B
β , see Fig. 3.2 for a diagrammatic representation. In the figure is also shown how

repeated use of a unitary operator like time-evolution can act on the state in a computational
efficient way.
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Figure 3.2: Top; diagrammatic representation of an iMPS formed by the tensors Γ and Λ.
The horizontal line represents the bond indexes αA,B = 1, . . . , χ and the vertical lines the
physical indexes DA,B = 1, . . . , d. Unitary operators acts on the physical indexes. Only
operators that commutes with each other acts simultaneously as described in the previ-
ous section. Repeated use according to a Suzuki-Trotter decomposition leads to a real (or
imaginary) time evolution for a time t (τ).

We are now ready to explain how the time evolution operator acts on the wave func-
tion and what is done to prevent the amount of information from growing. The main
idea is presented schematically in Fig. 3.3. In the first step (i) → (ii), F (or G) acts
on ΛB

αΓAj,αβΛA
βΓBj,βα′Λ

B
α′ (or ΛA

αΓBj,αβΛB
β ΓAj,βα′Λ

A
α′) to form the tensor Θαα′jj′ with dimensions

(χ, χ, d, d). This is rewritten as a (χd, χd)-matrix Θ̃(αj),(α′j′). Singular value decomposition
(SVD) is performed on this matrix ((ii)→ (iii)). The middle diagonal matrix becomes the
new ΛA

β -matrix (or ΛB
β ). Its elements are ordered in descending order and only the χ largest

of its χd elements are kept. The corresponding columns of X and rows of Y are also removed.
The new Γ-matrices are obtained through division by the old ΛB (or ΛA), which is saved
since this matrix is not updated in this sequence and the remaining χd index is split up in its
χ and d part. This process is repeated with F and G the number of times the Suzuki-Trotter
decomposition prescribes, see Eq. 3.19 for every time step δt.

In ground state simulations with imaginary time evolution, various conditions can be
used to check when a good enough approximation to the ground state is obtained. One
of the simplest, yet an efficient check is when the energy difference δE(τ) = E(τ + δτ) −
E(τ) between two time steps is smaller than some predetermined value δE(τ) ≤ Nτ , which
normally is Nτ ≈ 10−8 − 10−12. A similar check could also be applied to the entanglement
entropy δS(τ) = S(τ + δτ)−S(τ) ≤ NS. This normally converges a lot slower with common
values NS ≈ 10−4 − 10−6. To assure convergence in both quantities, multiple convergence
criteria can be required for the simulation.

In real time evolution from a state that is not the ground state (the ground state is
invariant under time evolution), the entanglement entropy normally increases rapidly with
t, making it increasingly hard to store all the information needed to accurately describe the
quantum state. The time evolution we perform in Ch. 6 starts out from a local quench on
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Figure 3.3: Update scheme for unitary two-site transformations of an MPS in the canonical
form (see text for details).

the ground state Syn|ψo〉. The entanglement increase from this spreads out with constant
velocity as can be seen in Fig.3.4. After the initial increase at a given site, the entanglement
remains fairly constant.

Bonds with larger entanglement entropy, needs a larger χ on it to describe it accurately.
However, the main increase in information that needs to be stored comes from all the addi-
tional Λ’s (and ∆’s), since the quench brakes the translational symmetry previously present
in |ψ0〉. More sites need to be added the longer one wants to time evolve the system. A
slightly more advanced algorithm will add sites as the entanglement starts to increase on
nearby sites.

The velocity with which the entanglement increase moves out from the local quench
increases the closer to a critical point the initial ground state is. Since ground states already
are more entangled close to criticality, it is very hard to do dynamics close to critical points.

To be able to evolve all these matrices long enough, a lot of computations need to be
done. To make it manageable, we do not require the same precision as we normally do for
ground state calculations and χ is decreased as much as possible. However, to avoid any
artifacts to appear in our wave functions we need to be very careful. A good approach is
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Figure 3.4: (Figure layout to be updated) Entanglment (color coded) after a local pertur-
bation on site k = 64 as a function of bond the cut is made at (x-axis) and time (y-axis) in
Jt.

to do simulations with various values for the parameters χ, δt and tfinal and see when they
start to differ more than desired. As an example, see Fig. 3.5, that shows the correlation
function simulated for different χ

C(0, t) = 〈ψ0|S−n (t)S+
n (0)|ψ0〉 (3.21)

simulated for different χ as a function of time t on the site where the local quench were
performed at t = 0.
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Figure 3.5: (Figure layout to be updated) Time evolution of the correlation function as a
function of Jt for χ = 10(green), χ = 15(blue), χ = 20(red) and χ = 25(black) on the site
the spin was flipped on at t = 0.
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Part III

Magnetism in Ultracold Gases
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Chapter 4

Magnetic phase diagram of a 2D S=1
condensate

4.1 Introduction

Bose condensates of atoms with nonzero total spin F ≥ 1 show various phases combining
magnetic and superfluid order. When the magnetic symmetry is broken spontaneously, as
can occur when the atoms are confined in a spin-independent optical trap, condensates are
classified as “polar” (for antiferromagnetic interactions) or “ferromagnetic”. Most theoretical
studies of these spinor Bose condensates neglect the long-range interaction between atomic
magnetic moments, and this neglect is justified for many experimental conditions. However,
recent experiments [35–37] investigating ordering in a nearly two-dimensional condensate
have shown complex magnetic behavior in the ferromagnetically interacting F = 1 spinor
Bose gas of 87Rb.

The most surprising feature of these experiments, which image the spin distribution in
real space, is a long-lived phase that appears to have the broken global U(1) invariance of a
superfluid along with possible breaking of the continuous translational symmetry in one or
two directions, i.e., with stripe-like or checkerboard-like order. A possible supersolid phase
has recently also been suggested in the superfluid of 4He. [38] Many theoretical papers have
been written about the properties of 4He and whether a supersolid phase can exist in the
absence of disorder. Only recently have theoretical studies been done to explain the observed
supersolid-like behavior in a 87Rb spinor condensate. [39] The earlier studies of 87Rb con-
centrated on magnetic properties arising from the weak spin-dependent local interaction and
the quadratic Zeeman shift. More recent experiments [36, 37] indicates that the long range
dipole interaction also plays an important role in the formation of the magnetic phases in
spatially large systems and with this addition a supersolid state might be possible.

Most previous studies of this system concern dynamical properties: the leading instabil-
ity when the Hamiltonian is changed to favor ferromagnetic order can be stripe-like or
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checkerboard-like depending on parameters. [39–41] In this chapter, our goal is to determine
the static ground-state phase diagram. We start from the phases that are well established at
low temperatures [42–45] for a spin-1 gas with no dipole interaction and quadratic Zeeman
effect. (Low temperatures mean below the superfluid and magnetic transitions, where all
the studies in this chapter will take place.) We then add the dipole interaction to see how
it changes the phases as well as the location of the boundary between them. We do this
in a quasi-two-dimensional geometry as in the experiments. [35–37] We investigate both an
infinite and a finite square planar geometry. After observing the formation of two kinds of
stripe order in a Monte Carlo simulation, we developed an analytical approach to explain
the results, based upon smallness of the dipolar coupling at short distances. That analytical
approach is presented first in order to prepare the groundwork for the simulation results.

We show that all boundaries in the phase diagram, except between the two polar phases,
are moved when the dipole interaction is added, some in a non-intuitive way. The magnetic
dipole interaction prefers a ferromagnetic state, but the confinement makes a ferromagnetic
state out of the plane energetically unfavorable. Moreover, the spin precession make the in-
plane perpendicular ferromagnetic state unfavorable, since the spin rotates out of the plane.
Both ferromagnetic phases can get modulated in one direction. The phase parallel to the
external fields needs a strong dipole interaction or a system much wider than its length to
become modulated. This modulation appears as fully magnetized stripes with sharp domain
walls between them. The phase perpendicular to the external fields gets modulated, from the
very lowest dipole strengths, into a helical configuration around the field. The wavelength of
the helix is inversely proportional to the dipole strength. For 87Rb the wavelength is ∼ 80µm
and should be observable in experiments.

The outline of this chapter is as follows. In the following section, we review the basic
physics of spinor condensates without the dipole interaction. In Sec. 4.3 we introduce the
dipole interaction and put it into a form that is convenient for numerical simulations. Sec. 4.4
presents analytical results in the limit of weak dipole interaction, and Sec. 4.5 contains the
results of our Monte Carlo simulations of the problem. The final section summarizes the
relationship between our results and those of other theoretical papers and suggests how future
experiments could be designed to observe clearly the metastable supersolid phase found in
our simulations.

4.2 Review of spinor condensate without magnetic dipole

interaction

Well below the Bose-Einstein condensation (BEC) temperature most bosons occupy the
same quantum state. We write the total wavefunction as a product of single particle wave-
functions

ΨN(x1,x2, ...,xN) = Ψ(x1)Ψ(x2)...Ψ(xN), (4.1)
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where ~rn is the coordinate of the nth boson. A good approximation for the interactions
between the bosons in a dilute gas is a spherical scattering potential. The Hamiltonian for
a BEC with only this type of interaction between the bosons without and external field is

H =
N∑
i=1

(
− ~2

2m
∇2
i + V (xi) +

∑
i<j

2f∑
F=0

gFPF δ(xi − xj)

)
, (4.2)

where f is the spin of the bosons (integer), gf is a constant, and PF a projector that projects
the total spin onto a state with spin-F . The total wavefunction in two particle scattering must
have an even integer combined spin F = 0, 2, ..., which gives a symmetric spin wavefunction,
since the total wavefunction for bosons has to be symmetric and the spatial part is symmetric.
Isolating the single-particle part of the Hamiltonian and integrating out

∫
dV |Ψ| = N leads

to the Gross-Pitaevski equation(
− ~2

2m
∇2 + V (x) +

2f∑
F=0

gFPF )|Ψ(x)|2
)

Ψ(x) = µΨ(x). (4.3)

This is a single particle description of the condensate normalized to give the correct particle
number, so we can use a simpler single particle Hamiltonian. A single particle Hamiltonian
is also much easier to analyze numerical and we will use the classical Monte Carlo technique
described in Ch. ??. Before writing down the Hamiltonian we will work with, let us determine
the precise form of the interaction. Alkali atoms that have a I = 3/2 nuclear spin, like 87Rb,

have a total spin f = 1 in the ground state per atom, since ~F = ~I + ~S with one electron in
the outer shell s = 1/2. For f = 1 the projectos are g0P0 + g2P2 = c0 + c2

~F1 · ~F2 [42]. A
Bose-Einstein condensate of spin f = 1 atoms is described by a three-component complex
order parameter

Ψ(x) =
√
n3D(x)ψ(x) =

√
n3D(x)

 ψ+1(x)
ψ0(x)
ψ−1(x)

 , (4.4)

where the spinor ψ(x) is normalized as ψ†ψ = 1 and the subscripts label the spin eigenvalue
with respect to an arbitrarily chosen quantization direction. In the absence of external fields
and neglecting the dipole interaction, the Hamiltonian governing the condensate is[42, 43]

H0 =

∫
d3x

[
}2

2m
|∇Ψ|2 +

c0

2
n2

3D +
c2

2
n2

3DM
2

]
, (4.5)
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where m is the atomic mass, M(x) = ψ†(x)Fψ(x) is the dimensionless magnetization (|M| ≤
1), and {F i} are the three generators of SU(2) in the spin-1 representation

F x =
1√
2

0 1 0
1 0 1
0 1 0

, F y =
1√
2

0 −i 0
i 0 −i
0 i 0

 ,

F z =

1 0 0
0 0 0
0 0 −1

 . (4.6)

The first term in the Hamiltonian is the kinetic energy for bosons with mass m. The next
two terms are the spin-independent and spin-dependent contact interactions, respectively.
The coefficients are given by c0 = (4π}2/3m)(2a2 + a0) and c2 = (4π}2/3m)(a2 − a0), with
{a0, a2} the s-wave scattering lengths in the channel with total angular momentum {0, 2}.

When c2 < 0 (“ferromagnetic”) it is energetically favorable for this system to magnetize,
M 6= 0, while c2 > 0 favors a “polar” state with M = 0. The scattering lengths for 87Rb are
a0 = 101.8aB and a2 = 100.4aB, [46] where aB is the Bohr radius, so c2 is negative and its
condensate will be ferromagnetic in the absence of external fields (still neglecting the dipole
interaction). However, the condensate of 23Na will be in a polar state. [42]

The external fields normally applied to a spinor condensate consist of an optical trap and
a uniform magnetic field described by the following addition to the Hamiltonian

Hef =

∫
d3x

[
U + qψ†(B̂ · F)2ψ

]
n3D, (4.7)

The trapping potential U(x) confines the condensate spatially; for our purposes, its main
effect will be to produce a quasi-two-dimensional geometry. The quadratic Zeeman shift q
can be tuned independently of B with microwave radiation, q = qB + qEM . [47] We take the
two sources as coaxial along ẑ, so we can use Eq. (4.7). This is also the axis we quantize the
spinor along. The magnetic field also creates a linear Zeeman term B·

∫
d3xn3Dµ, that favors

an uniformly magnetized condensate. However, experiments on 87Rb have not observed any
tendency toward such relaxation over the accessible time scales of several seconds, [47] making
the longitudinal component of magnetization conserved. (This assumption does not apply
in condensates of higher spin, such as chromium. [48]) Normally, this component is chosen
to vanish initially and can hence be ignored for the purpose of energetics. However, the
magnetic field also causes Larmor precession of the magnetization perpendicular to it. This
is an important effect that needs to be taken into account as it modifies the nature of the
magnetic interaction on time scales longer than the precession time.

The spin state of the condensate is governed by the parameters c2 and q, as in Fig. 4.2. [49]
There are two different kinds of polar states (c2 > 0), one that minimizes 〈(F z)2〉 = 0 and
one that maximizes 〈(F z)2〉 = 1 the impact of the quadratic Zeeman term. Respectively,

ψP‖ (φ) = eiφ

0
1
0

 , ψP⊥(φ, θ) =
eiφ√

2

−e−iθ0
eiθ

 . (4.8)
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Figure 4.1: (Color online) Examples of possible spin configurations in the plane. The external
fields are along the horizontal axis, Mz(x, z) is plotted on the horizontal axis, Mx(x, z) is on
the vertical for every plaquette and My(x, z) is not shown. (a) Uniform fully magnetized F‖,
(b) striped fully magnetized F‖, (c) uniform partly magnetized F⊥/P‖ state, (d) helical fully
magnetized F⊥ .

Consequently, does the phase P‖, with order-parameter manifold U(1), appears at q >
0, while the phase P⊥ appears when q < 0. Note that the range of θ is only [0, π), or
alternatively that the order-parameter manifold for this phase is U(1)×U(1)/Z2. [50] When
c2 < 0 and q < 0, both energies are minimized by ferromagnetic states

ψF‖,↑(φ) = eiφ

1
0
0

 , ψF‖,↓(φ) = eiφ

0
0
1

 , (4.9)

giving a manifold U(1) × Z2 (recall that we exclude the linear Zeeman energy from ener-
getic considerations), see Fig. 4.1. In the final quadrant of the phase diagram, however,
no ferromagnetic state minimizes the quadratic Zeeman energy. The smallest impact of a
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ferromagnetic state on the quadratic Zeeman term is 〈(F z)2〉 = 1/2 for

ψF⊥(φ, ξ) =
eiφ

2

e−iξ√2
eiξ

 , (4.10)

Consequently, for q < qc = 2|c2|n3D the state will be a linear combination of ψP‖ and ψF⊥ with

magnetization Mx + iMy =
√

1− (q/qc)2 eiξ and manifold U(1)× U(1), see Fig. 4.1. Above
qc, the state will be the pure polar state P‖.

Figure 4.2: (Color online) Ground state phase diagram of a spin-1 condensate without dipolar
interaction; from Mukerjee et al.. [49]

Typical experimental values for 87Rb [35–37] include a peak density of n0 = 2.5 ×
1014 cm−3, giving the interaction strengths c0n0 = 1.9 kHz and c2n0 = −9 Hz, while qB ≈
1.6Hz and qEM can be tuned from roughly −50 Hz to 50 Hz and is normally taken coaxial to
qB. [47]

4.2.1 Confinement

The optical trap in the experiment makes the gas effectively two dimensional, with a
Thomas-Fermi radius rTF ≈ 1.5µm along the direction of tightest confinement. [35–37]
Since this is smaller than the spin healing length ξ =

√
~2/(2m|c2|n3D) ≈ 2.5µm, we take

the confinement to be along the ŷ direction and treat the gas as frozen along this direction;
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that is, we take
Ψ(x) =

√
n2D(x, z)ρ(y)ψ(x, z), (4.11)

where we assume
∫
dy ρ(y) = 1. In the following we will consider one of two profiles ρ(y) as

convenient, a boxcar profile and a Gaussian,

ρ1(y) =
1

K
Θ(K/2− y)Θ(K/2 + y), ρ2(y) =

1

σy

√
2

π
e
− 2y2

σ2y , (4.12)

where Θ(x) is the Heaviside step function. We introduce a common notation for the con-
densate thickness T and a 3-dimensional density n̄3D(x, z) without y-dependence

1

T
= 〈ρ〉 =

∫
dy ρ(y)2, n̄3D(x, z) =

n2D(x, z)

T
(4.13)

for the boxcar profile and for the gaussian profile, to be able to treat both profiles simulta-
neously in section 4.4. In most of our analysis these densities are also independent of (x, z),
except where we use a nonzero trapping potential U(x, z) in the plane.

4.2.2 Precession

Atoms with magnetic moment µ⊥ = gFµBM⊥ perpendicular to the field precess at
frequency |γ|B0 = |gF |µBB0 around the fields. As usual, µB is the Bohr magneton and gF
is Lande’s g-factor. For 87Rb, gF = −1/2 and a field of B0 = 150 mG produces a Larmor
precession at 110 kHz, a scale orders of magnitude larger than the contact interactions or
the quadratic Zeeman energy.

The Hamiltonian considered so far is invariant under the spin rotation

ψk(x, z)→ Ukl(t)ψl(x, z), U(t) = e−iγB0B̂·Ft (4.14)

and is hence unaffected by the rapid Larmor precession. Therefore, adding precession does
not affect the phase diagram in the problem with only local interactions. [42, 43] However
when we include the dipole interaction in the next section, both confinement and spin pre-
cession become important.

4.3 Magnetic dipole interaction

The interactions considered thus far for a spin-1 condensate are all local. However, the
moments µ will interact through the long-ranged dipole interaction. The dipolar energy of
a magnetized fluid with magnetization M(x) is

Edip =
µ0

8π

∫
dxdx′

[
M ·M′ − 3(M · r̂)(M′ · r̂)

r3
−8π

3
M2δ(3)(r)

]
, (4.15)
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where r = x − x′ and M′ = M(x′). The last term, or “s-wave” part, contributes to the
contact interaction c2 in the BEC Hamiltonian, and so should not be treated independently.
In this chapter we take the first, “d-wave” part to be the full dipolar interaction. This is weak
for 87Rb relative to most other energies in the system, but since it is long ranged it will have
an important impact on the magnetic phases. The initial studies of the spin-1 condensate
ignored this term, [42, 49] but some recent works have included it along with the effects
of quasi-two-dimensional confinement and rapid Larmor precession. [39, 40] Among other
results, it was shown that dipolar interaction renders the Larmor precession unstable, [40]
and we return to this point in the concluding section. Until then we follow previous authors
and assume that this instability has significant effects only at late times, and so neglect
it. Cherng and Demler examined the instability spectrum of a uniform ferromagnetic state
within a mean field and collective mode analysis. We will use the same physical model but
instead look at the ground state phase diagram and consider a wider range of parameters
c2, q, and cd (see Eq. (4.16) below) with analytical and Monte Carlo calculations.

The total Hamiltonian we work with is

H = H0 +Hef +Hdip (4.16)

where

Hdip =
cd
2

∫
d3xd3x′n3D(x)Mi(x)n3D(x′)Mj(x

′)

[
∇i∇′j

1

|x− x′|
− 4π

3
δijδ

(3)(x− x′)

]
.

(4.17)
This is the same as the more usual expression with (δij − 3r̂ir̂j)/r

3, but split it into a part
that is positive-(semi-)definite and a part that simply shifts the parameter c2 → c2−4πcd/3.
This decomposition is convenient for numerical work that searches for energy minima. With
two integrations by parts the first term becomes the Coulomb interaction for a charge density
∇·(n3DM). We will typically mean just this term when referring to “the dipole interaction,”
since it is the difficult part.

For both analytical and numerical work we need the dimensionally reduced form of the
Coulomb part expressed in a rotating frame. Ignoring the contact term in Hdip and perform-
ing two partial integrations we find

EC
dip =

cd
2

∫
d3xd3x′

∇ · (n3DM(x))∇′ · (n3DM(x′))

|x− x′|
=
cd
2

∫
d2xd2x′σ(x, z)σ′(x′, z′)·∫

dydy′
ρ(y)ρ(y′)

|x− x′|
+
cd
2

∫
d2xd2x′n2DMy(x, z)n2DMy(x

′, z′)

∫
dydy′

[∂yρ(y)][∂y′ρ(y′)]

|x− x′|
(4.18)

where σ(x, z) ≡ ∂x(n2DMx(x, z)) + ∂z(n2DMz(x, z)) is an effective surface charge density.
The density n2D has only a (x, z) dependence for a nonzero trapping potential U(x, z). The
integrals over y can be performed explicitly for either Gaussian or boxcar profiles ρ; we
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choose the Gaussian form for the purposes of numerics. Then

ρ(y)ρ(y′) =
2

πσ2
y

e−(y2++y2−)/σ2
y

[∂yρ(y)][∂y′ρ(y′)] =
8(y2

+ − y2
−)

πσ6
y

e−(y2++y2−)/σ2
y (4.19)

with y± = y ± y′. The integrals over y+ are simple, and the integrals over y− can be

put in terms of special functions with help of the identities
∫
dx e−x

2

√
c2+x2

= e
c2

2 K0( c
2

2
) and∫

dx x2e−x
2

√
c2+x2

=
√
π

2
U(1

2
, 0, c2). Here K0 is a modified Bessel function and U is a confluent

hypergeometric function.
The strength of the dipole term is given by cd = µ0g

2
Fµ

2
B/4π, where µ0 is the vacuum

permeability, giving a value of cdn0 = 0.8 Hz for 87Rb. The effect of confinement is less trivial
for this term then for the others, and transforming to a rotating frame is also nontrivial
since the interaction couples spin directions to spatial directions. See Appendix ?? for a full
treatment of these effects. In the following section, we discuss how the dipole interaction is
expected to modify the phase diagram when it is sufficiently weak that the Hdip = 0 ground
states can be used as a starting point.

4.4 Analytical Results

Adding the dipole interaction Eq. (4.17) will change the phase diagram Fig. 4.2. The
term that looks like the spin dependent interaction will just move the whole phasediagram
up along c2 with 4πcd

3
. The energy from the Coulomb part of the dipole interaction is always

positive, hence this parts prefers a polar state with zero magnetization M = 0. Consequently,
regions of Fig. 4.2 with polar states above c2 = 4πcd

3
will not change if we add the dipole-

dipole coupling. However, the rest of the phase diagram may be affected and the phase
boundaries will depend on cd, as we now discuss in some detail.

4.4.1 Weak dipole interaction

Adding a weak dipole term (weak compared to the kinetic energy term) will only change
the phase diagram slightly. We start out by ignoring any new phases and investigate how
a weak dipole interaction will move the boundaries between the existing phases. The three
magnetic terms in the Hamiltonian are the spin-dependent contact interaction, the quadratic
Zeeman and the dipole term. By comparing the energy contributions from these three for
simple Ansätze we can locate the boundaries between different minima, in a system with L
the extent along z and W the extent along x.

The polar phases are, of course, the simplest (see Eq. (4.8))

EP‖ = 0, EP⊥ = qn̄3DLWT. (4.20)
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Consider next the phase F‖, which appeared at q, c2 < 0 in the system without dipolar energy.
The two terms previously treated are easily kept exact, while the dipole term requires more
treatment.

For a uniform condensate with maximal magnetization, aligned parallel to the magnetic
field, the only contribution to the dipole energy comes from the quasi 1-dimensional lines of
charge of length W located at the edges at z = ±L/2. The second term in Eq. (4.18) does
not contribute and only the edges of the first

EC
dip =

cdn
2
2D

2

∫ W/2

−W/2
dxdx′

∫ ∞
−∞

dydy′ρ(y)ρ(y′)× 2

[
1√

x2
− + y2

−
− 1√

x2
− + y2

− + L2

]
(4.21)

In the limit L� W � T , the leading contribution to the energy comes solely from the first
term, which describes the self energy of two quasi-one-dimensional lines of charge. Indeed,
it becomes just

EC
dip = 2cdn

2
2D

∫ W

dx−(W − x−)/x−

= 2cdn
2
2DW lnW/T +O(W ) (4.22)

asymptotically, where the lower cutoff T has been chosen for convenience.
The energy for the uniform out-of-plane configuration is

EC
dip =

cd
2
n2

2D

∫
d3xd3x′

[∂yρ(y)][∂y′ρ(y′)]

|x− x′|
. (4.23)

Since there will be a term extensive in the planar size, it is simplest to ignore the effects of
boundaries and work with a surface energy density

η =
cd
2
n2

2D2π

∫
dydy′

∫ R

0

dr
r [∂yρ(y)][∂y′ρ(y′)]√

r2 + y2
−

= 2πcdn
2
2D

∫
dydy′ρ(y)ρ(y′)δ(y − y′) +O(1/R)

= 2πcdn
2
2D

1

T
(4.24)

after integrating over the radial coordinate r followed by partial integration in y and y′.
Keeping terms of order A2 and A lnA where A = L,W , (see Eq. (4.9))

EF‖ =
c̃2

2
n̄2

3DLWT + qn̄3DLWT,+2cdn̄
2
3DWT 2 lnW/T (4.25)

with c̃2 = c2 − 4πcd/3.
The transition in the left half-plane betwen the states F‖ and P⊥, see Fig. 4.3, will hence

be moved up from c2 = 0 for a system without dipole interaction to

c2c ≡ 4cd

(π
3
− εL

)
, (4.26)
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Figure 4.3: (Color online) Ground state phase diagram for a spin-1 condensate with dipole
interaction and external fields, that introduces a quadratic Zeeman term and rapid spin
precession. Both polar and ferromagnetic phases appear, perpendicular as well as parallel
to the field.

where εL = lnW/T
L/T

will vanish in the large-system limit.
The region of the phase diagram with q > 0 and c2 < 0, is the most interesting, due

to the rapid precession of the perpendicular magnetization about the magnetic field, and
the high dipolar energy cost of spins pointing out of the plane. Consequently, the region of
F⊥/P‖ in the phase diagram will shrink and the regions of P‖ and F‖ grow, with the latter
extending to positive values of q. For a uniform condensate with spins out of the plane,
the Coulomb energy is equivalent to that of a parallel-plate capacitor, giving an energy
2πcd(n̄3M)2T 2LW/T to leading order, i.e., neglecting fringing fields, see Appendix ??.

Because of the precession, the spins will effectively average the out-of-plane and in-plane
interaction energies with equal weights. Consequently, the dipole energy for magnetization
perpendicular to the external fields is cd(n̄3M)2(πW + T lnL/T )LT . To find the energy
for the F⊥/P‖ state, we first have to find M , since this state is not completly magnetized.

Consider a spinor ψT = (a, b, a) with a =
√

(1− b2)/2 (1/
√

2 < b < 1), which represents a
superposition of ψP‖ and ψF⊥ (see Eqs. (4.8) and (4.10)). Its magnetization is Mx = 2b

√
1− b2.

Putting it all together,

EF⊥/P‖ = 4b2(1− b2)(
c̃2

2
W + cd(πW + T lnW/T ))n̄3DLT

+ qn̄3D(1− b2)LWT. (4.27)
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The energy for this state is minimized at

b2 =
1

2

(
1 +

q

qc

)
. (4.28)

As the notation suggests, the transition between the phases P‖ and F⊥/P‖ occurs at q = qc,
where EF⊥/P‖ = EP‖ = 0 and M = 0

qc ≡ 2|c2|n̄3D − 4cdn̄3D

(π
3

+ εW

)
, (4.29)

where εW = lnL/T
W/T

will vanish in the large system limit. As can be seen in Eqs. (4.28), (4.29)

and (4.30), the value of the magnetization and hence the order parameter for the F⊥/P‖
state decreases continuously and is zero at the phase transition to the P‖ state.

M0 = |〈F⊥/P‖〉| =
√

1− (q/qc)2 (4.30)

This is exactly the same equation as for a system without dipole interaction, except that qc
now is given by Eq. (4.29).

Plugging the form for b, Eq. (4.28) and (4.29), back in also allow us to locate the transition
between F⊥/P‖ and F‖, where EF⊥/P‖ = EF‖ , which will occur at

qc2 ≡
√
qc

(
2|c2|n̄3D + 8cdn̄3D

(π
3
− 2εL

))
− qc. (4.31)

Finally, the transition between F‖ and P‖ will take place when EF‖ = EP‖ = 0, at

qc3 ≡
|c2|n̄3D

2
+ 2cdn̄3D

(π
3
− εL

)
. (4.32)

The three transition lines (qc, qc2 and qc3) separating the three phases in the lower right
quadrant meet at the point

(q, c2) = 4cd

(
n̄3D

(π
3

+ εW − 2εL

)
,
(π

3
+ 2εW − εL

))
. (4.33)

To finish the phase diagram, we see that the transition line in Eq. (4.32), that separates F‖
and P‖, can be extended to the region q, c2 > 0, with the substitution |c2| → −c2 and that
it will intersect with the transition line in Eq. (4.26) at the point (q, c2) = (0, c2c).

4.4.2 Magnetic plaquettes

The dipolar energy favors spatially modulated ferromagnetic states, which screen the
long-ranged interaction, over uniform states. Consider the state F‖. We can adapt a classic
argument of Kittel concerning the formation of magnetic domains to the present quasi-
two-dimensional geometry. [3] The boundary energy 2cdn̄

2
3DWT 2 lnW/T from before will
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become 2cdn̄
2
3DWT 2 ln d/T if the uniform state breaks up into Ising-like domains of width d

and length L that alternate between Mz = 1 and Mz = −1, keeping the total magnetization
M0 = 1 everywhere, see Fig. 4.1. There will be a cost in kinetic energy at the domain walls,
and the competition between these two effects sets the domain size.

We can estimate an upper bound for the domain wall energy by assuming its width is
the spin-healing length ξS. The energy will scale with the area of the wall ∼ LT , and the
surface density will be σW ∼ }2n̄3D/2mξS. With the number of domains given by W/d, the
energy is

E = σW
LWT

d
+ 2cdn̄

2
3DWT 2 ln d/T , (4.34)

which gives

d‖ =
σW

cdn̄2
3DT

L. (4.35)

The resulting domains have a width proportional to the length of the system, and are very
large when the dipolar coupling is weak. In 87Rb with the experimental parameters given
in section 4.2.1, σW ∼ 104 Hzµm−1 and d‖ ∼ 20L, which could be difficult to achieve
experimentally.

For a rectangular sample (L > W ) in the F‖ state, with a constraint of zero total
longitudinal magnetization (

∫
dxn3D(x)M z(x)) = 0), it can be more energetically favorable

to split up into two domains perpendicular to the field. The energy for this configuration
is E = 2σWWT + 3cdn̄

2
3DWT 2 lnW/T to leading order and if this is lower than the energy

in Eq. (4.31) it will occur. However, this is only due to the constraint; a domain-free
configuration has lower energy and a configuration with several domain walls perpendicular
to the field will not be favorable for any values in the phase diagram.

4.4.3 Magnetic helix

For the F⊥ state, a different modulation will appear. In particular, since the state is XY-
like (the rapid Larmor precession gives the same energy for all perpendicular spin directions),
it can adopt a smoothly varying magnetization texture. The smoothest form will be a helix,
with wave vector along the magnetic field, see Fig. 4.1.

We can obtain a simple estimate of the wavelength of the transverse helical state to leading
order in the strength of the dipole coupling by assuming a fully polarized time evolving state
ψF⊥(0, kzz − γB0t), Eq. (4.10), with magnetization

Mx + iMy = n2Dρ(y)ei(kzz−γB0t). (4.36)

Fourier transforming the kinetic and the dipole energy term, keeping only contributions that
scale with the area of the two-dimensional system, the (areal) energy density of this state is

energy

area
= n2D

}2

2m

k2
z

2
+
cd
2

n2
2D

2

∫
dky
2π

4π

k2
y + k2

z

k2
y|ρ̃(ky)|2 (4.37)
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plus kz-independent terms. In the kinetic term, there is a factor of 1/2 because only half
the atoms are in the mz = ±1 states that carry kinetic energy. In the dipole term, the
only extensive contribution to the energy comes from the out-of-plane component My, which
gives a factor 1/2 there as well. Notice also that the time dependence is gone. With
k2
y/(k

2
y + k2

z) = 1− k2
z/(k

2
y + k2

z), the relevant terms are

n2D
}2

2m

k2
z

2
− cd

2

n2
2D

2
|kz|

∫
du

2π

4π

1 + u2
|ρ̃(|kz|u)|2, (4.38)

and to lowest order in kz we just need ρ̃(0) =
∫
dy ρ(y) = 1 to arrive at

n2D
}2

2m

k2
z

2
− πcd

2
n2

2D|kz|, (4.39)

which takes its minimum at
kz = ±π

2

n2Dcd
}2/2m

. (4.40)

At leading order in the dipole strength, then,

λ⊥z ∼
}2/2m

cdn̄3DT
(4.41)

with λ⊥z the wavelength of the helical modulation.
In other words, as shown in Fig. 4.4, the magnetization will adopt a configuration like

Mx(z) = sin (kzz) and My(z) = sin (kzz + π
2
) at any instant of time. The kinetic energy of

such a state goes as k2
z , while the dipole energy turns out to decrease as kz for small kz.

In 87Rb with experimentally accessibly densities the wavelength is approximately 80µm
and should be observable. Note that the scales for the two textures are related by d‖ ∼
λ⊥z (L/ξS).

Since the modulations of F‖ and F⊥ decrease the total energy of those states, their regions
of the phase diagram, Fig. 4.3, will be larger than predicted in the previous subsection.
However, the dipole strength must be large to introduce domains into the F‖ state; and the
energy gain in a helical texture relative to a uniform F⊥ is small; so the phase boundaries will
not change significantly at weak or moderate dipole strengths when we take these textures
into account.

4.5 Numerical Results

We investigate numerically the ground state phase diagram of a spin-1 condensate in ex-
ternal fields that give rise to a quadratic Zeeman shift and Larmor precession. The Metropolis
algorithm [27], discussed in Ch. 3, allows us to efficiently locate minima of a given energy
functional. We discretize the system on a lattice, and for the fundamental move we draw
random deviations in the six real components of the field Ψ from a normal distribution at
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Figure 4.4: (Color online) Transverse magnetization as a function of z, from numerical
simulation. Orange: magnitude of total magnetization M0, blue: transverse magnetization
in plane Mx and black: transverse magnetization out of plane My. A helical modulation with
wavelength λ ≈ 85 µm is clearly visible. Simulation values: |c̃2|n̄3D = 320 Hz, cdn̄3D = 0.8
Hz and q = 100 Hz (edges removed).

a lattice site. The initial state is similarly generated from random normally distributed
variables.

A wide variety of simulation parameters (N , a, σy, TMC , T cMF , µ, c0, see below), for
example 1 × 1 < N < 50 × 50, have been used to investigate the phase diagram(c2, q,
cd). Energies have been calculated in Hz and the lengths have been inserted in µm. Unless
otherwise noted, numerical results presented here use lattice constant a = 4µm, thickness
σy = 2µm, and a system size of N = 30× 30 plaquettes. We also add a chemical potential
to the energy, µ = 1202 Hzµm−2, in order to reproduce the experimental density for c0 =
1.9kHz. Finally, we set TMC = 23 nK in the Metropolis weight e−〈H〉/kTMC , which strikes
a good balance between reducing fluctuations and achieving convergence in a reasonable
computation time and use a critical mean field temperature T cMF = 100TMC .

The phase diagram we have mapped out numerically agrees well with the results presented
so far. In particular, we have confirmed that the ferromagnetic states develop modulations
governed by the strength of the dipole interaction.

The algorithm described above tends to get trapped in local energy minima with varying
densities of domain walls in the F‖ region of the phase diagram. We can, however, locate the
global minimum fairly confidently by starting the system in a variety of modulated states
(striped or checkerboard) and comparing the final energies. The existence of metastable
states as a consequence of dipolar interactions has been discussed before for spinor conden-
sates in an optical lattice [51]. We have not observed any tendencies for the simulation in
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the F⊥/P‖ region of the phase diagram to be trapped in a local energy minima, regardless
of the initial configuration. This is as expected, since any possible local ground state config-
uration (Eq. (4.10)) can smoothly turn into another, unlike in the F‖ case (Eq. (4.9)). This
symmetry between the two transverse components of the magnetization is present in the
Hamiltonian without the dipole interaction, removed by the dipole interaction, and finally
restored by the rapid Larmor precession. However, even if the relaxational dynamics of the
Metropolis algorithm used here does not apparently get trapped in a local minimum in this
phase, the actual dynamics of the experimental system is primarily precessional rather than
relaxational, which could lead to metastable states.

4.5.1 Numerical treatment of the dipole term

For the numerics, discretize the integrals in Eq. 4.18 as follows. Divide the 2-dimensional
area into rectangular plaquettes and set the density n2D and magnetization M constant on
each plaquette,

M (x, z)→M (a(r +
1

2
), a(s+

1

2
)), (4.42)

where a is the lattice constant and r, s are integers. Then do several variable substitutions.
Going to variables x± and z± and scaling the coordinates by a allows us to replace∫

d2xd2x′ →
∫ p+1

p−1

dx−

∫ q+1

q−1

dz−(1− |x− − p|)(1− |z− − q|) (4.43)

since the integrands depend only on x−, z−. Here p = r′ − r and q = s′ − s.
The integrals can then be computed numerically for 0 ≤ p, q <

√
N . The final step is

to time-average the fields to take into account the rapid Larmor precession. This effectively
means replacing

σ(p, q)σ(p′, q′)→ ∂z(n2DMz(p, q))∂z′(n2DMz(p
′, q′))

+
1

2
∂x(n2DMx(p, q))∂x′(n2DMx(p

′, q′))

+
1

2
∂x(n2DMy(p, q))∂x′(n2DMy(p

′, q′))

(4.44)

and

My(p, q)My(p
′, q′)→ 1

2
Mx(p, q)Mx(p

′, q′) +
1

2
My(p, q)My(p

′, q′) (4.45)

in Eq. (4.18), since the transverse components rotate into each other but the longitudinal
component is unaffected.

4.5.2 Domain walls in F‖

Near the transition qc2(c2, cd), Eq. (4.31), magnetization vortices with unit spin winding
develop all the way along all domain walls, see Fig. 4.5. The vortices are alternating ellip-
tical and hyperbolic Mermin-Ho vortices, with ferromagnetic cores. [42, 52] The density of
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vortices increases with increasing dipole interaction, i.e. more domain walls appear and the
longitudinal length of each vortex decreases. The transverse length of the vortices increases
with increasing quadratic Zeeman strength up to the transition line, which can be seen in
the Fourier transform of the magnetization

Mz(kx) =
∑
r,s

e−irkxMz(r, s), (4.46)

as a rise in My(k
max
z ); see Fig. 4.5 on the F ‖ side of the transition. The transition at qc2

itself remains sharp, and no vortices are observed for q > qc2. At a given instant in time
does the perpendicular magnetization in all vortices in a domain boundary point in a specific
direction. The correlations between the direction of the transverse magnetization of vortices
in different domain walls are however weaker.

4.5.3 Boundaries and trapping potential

Finite size effects and the details of the trapping potential seem to have little impact on
our results. The only finite size effect observed with hard-wall boundaries is a decrease in
magnetization at the z = ±L/2 boundaries in the transition from F‖ to P⊥, as shown in
Fig. 4.6. The approximative location of this transition line from the analytical calculation,
Eq. (4.26), is |c̃2c|n̄3D = 3.4Hz.

We have also carried out simulations with an elliptical trap potential of the form U(x) =
U(vz(

z
a
)2 + vx(

x
a
)2), typically with U = 625 Hzµm−2 and vz, vx = 1 − 10 to more closely

model experimental conditions. [35–37] These simulations have shown no effect other than a
decrease in the density and thereby related effects, as in the original paper of Ho on spinor
condensates in optical traps. [42] For example, the wavelength of the helical modulation in
F⊥/P‖ is inversely proportional to the density, see Fig. 4.7 which shows a change in wave-
length through the condensate as the density changes. In particular, we have not seen the
effect reported by Vengalattore et al. [37] in which the modulation wave vector is not aligned
with the applied magnetic field but is instead influenced by the orientation of the trap.

4.6 Discussion

We have mapped out the complete phase diagram for the model we have considered.
Although the region occupied by the phase F⊥/P‖ moves and shrinks with the introduction
of the dipole interaction, we find that it remains accessible at physical values of |c2| and
cd in 87Rb, for some values of the quadratic Zeeman shift q. Hence, by tuning q for 87Rb
appropriately, the three phases F‖, F⊥/P‖ and P‖ should be observable in experiments. We
also find that a spatial modulations should be seen in at least the second of those phases.

There are some disagreements between our result and other results obtained theoretically
and more important experimentally. The length scale in the experiment is smaller than
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Figure 4.5: (Color online) Transition to F⊥/P‖ from F‖. (a) For q slightly smaller than qc2,
large Mermin-Ho vortices appear between the stripes (plaquette size a = 4 µm). Mz(x, z)
is plotted on the horizontal axis, Mx(x, z) on the vertical axis and My(x, z) ≈ 0 for the
whole region shown at this instant. (b) Consequently, the maximum value of the Fourier
transform of the magnetization out of plane Mx(k

max
z ), see Eq. (4.46), increase before the

phase transition. Simulation variables: |c̃2|n̄3D = 450 Hz, cdn̄3D = 7.2 Hz and q = 35 Hz
(a), q = 30− 39 Hz (b).
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Figure 4.6: (Color online) Transition to P⊥ from F‖. The parallel magnetization Mz(z/a) is
plotted for different values of |c̃2|n̄3D = 2.4− 4.8 Hz as a function of z/a. The magnetization
is lowered at the boundaries around the transition point for a finite system. Simulation
values: N = 20× 20, cdn̄3D = 5.7 Hz and q = −4 Hz.
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Figure 4.7: (Color online) Simulation of a helical modulated magnetized condensate in an
elliptical trap. n̄3D(x, z)Mz(x, z) is plotted on the horizontal axis, n̄3D(x, z)Mx(x, z) on the
vertical axis, and My(x, z) is a quarter of a wavelength ahead of Mx(x, z) as in Fig. 4.4,
but is not shown. The wavelength λ(z) of the helical modulation increases with decreasing
density along the longitudinal axis. The distance between two neighbouring nodes is shown;
the node to the left of them is outside the graph. Simulation parameters: vz = 1, vx = 10,
|c2|n̄3D = 540 Hz, cdn̄3D = 1.6 Hz and q = 120 Hz.
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the pitch of the helical modulation we describe above by a factor 10, roughly, for typical
parameters. Cherng and Demler [39] find a dynamical instability at a scale nearer that seen
in experiment. That picture would suggest that even if the phase diagram obtained here
describes the system at long times, the experimental system might instead reach a long-lived
metastable state. As explained in section V above, while we do see metastable states in
some parts of the phase diagram, we do not see metastable checkerboard states in the region
probed by current experiments, but this could be because the Metropolis dynamics of our
simulation is not the actual dynamics of the condensate, even if their thermodynamics are
the same.

One challenge for this dynamical scenario is that in experiments, an imposed helical
configuration with pitch λ = 50 − 150µm [36] quickly evolves into a state modulated at
a smaller scale, again roughly ten times smaller than the stable, or at least metastable,
supersolid state we predict. [36, 37] This suggests that effects we have not taken into account
prevent the current experimental system from finding this minimum. As an example, it
is known that the dipole interaction makes the Larmor precession unstable, according to
Lamacraft [40]; as a result, the Larmor-averaged energy that is the main focus of the present
work might not be an accurate description for long times.

In order to observe the predicted supersolid clearly, our results suggest that the key is
to suppress this Larmor instability while at the same time preserving the conservation of
total magnetization in the field direction. The Larmor instability [40] grows exponentially
from thermal excitation of an initial perturbation at the Larmor frequency ωL. Hence the
time scale to reach a fixed final size of the instability is proportional to ~ωL/(kBT ) and
can be increased either by increasing the magnetic field or decreasing the temperature. At
the same time, an experiment should be designed to preserve the magnetization along the
field direction for as long as possible, which requires a high degree of trap uniformity. One
motivation for continued exploration of this system is that our results show that the Larmor-
averaged system does have a supersolid ground state for a wide range of parameters.

Note added: As this work was being prepared for submission, two e-prints appeared inves-
tigating the same experiment by slightly different approaches. [52, 53] The first, by J. Zhang
and T.-L. Ho, also investigates the static properties of 87Rb using a deterministic numerical
method and also gets the F‖ state and a modulated F⊥ state. The main difference between
their results and ours appears to be that they find a stripe phase rather than a helix for
the phase with spins perpendicular to the applied magnetic field. They find arrays of el-
liptical and hyperbolic Mermin-Ho vortices, as a meta-stable dynamical state, between the
stripes for the F‖ state for all q. However, they are smaller than the spin healing length and
hence unobservable in our simulation, although we do see them close to the transition to the
F⊥/P‖ state. The second, by Y. Kawaguchi et al., finds a doubly periodic (checkerboard)
spin pattern as a long-lived intermediate state through a combination of mean-field theory
and numerical simulation of precession-averaged equations of motion. By adding energy
dissipation to the dynamics, they reach a stationary state similar to ours.



Section 4.6. Discussion 55

Acknowledgments

The authors thank Subroto Mukerjee, Dan Stamper-Kurn, Mukund Vengalattore, Kater
Murch, Jennie Guzman, Andre Wenz, Ari Turner, and Ashvin Vishwanath for useful com-
ments and acknowledge support from ARO through the OLE program (J. K., J. E. M), Knut
and Alice Wallenberg foundation (J. K.) and WIN (A. E.).



56

Chapter 5

Detecting fractional quantum Hall
phases in optical lattices

5.1 Introduction

Fractional quantum Hall (FQH) phases [13, 54] contain a wide variety of interesting
physics, including topologically degenerate ground states, fractional bulk excitations, and
gapless chiral edge excitations. They arise at low temperatures when strong magnetic fields
are applied to high-quality two-dimensional electron gases with low carrier concentration.
Ultracold gases of neutral atoms are being used to investigate several properties of materials
which can be hard to control precisely in the solid state. As these systems are charge-neutral,
an ordinary magnetic field cannot be used to create the Lorentz force. A synthetic magnetic
field can be created by rotation, but technical issues appear to limit this approach to lower
field strengths than are necessary for FQH [55], with the exception of a recent experiment
with few trapped particles [56]. Much theoretical work has been done for these systems, for
a review see [22], including edge spectrum calculations [57].

Recently, several theoretical [14, 58, 59] and experimental [55, 60] proposals have been
made for stronger synthetic magnetic fields for ultracold neutral atoms. All of them can be
used with optical lattices which enhance interaction effects and give a larger energy gap above
the FQH ground state. Theoretical work on lattice systems with an effective magnetic field
goes back at least to Hofstader’s work [10] on non-interacting particles; the FQH phases
are strongly interacting, and Sørensen et al. [14] showed that in the low flux limit and
strong interactions the system could be well described by Laughlin’s wavefunction [61]. In
subsequent work Hafezi et al. [62] concluded that this could be extended to larger fluxes per
unit cell by investigating the topological structure of the ground state.

The goal of this work is to understand practical experimental conditions for observa-
tion of edge states in bosonic lattice FQH systems and compare numerical results for edge
excitations in hierarchy states to the prediction of chiral Luttinger liquid theory [9]. Con-
vincing observation of bosonic FQH states will depend on an experimentally viable probe
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of the topological order; while many multi-particle quantities have been used to diagnose
the topological state in past theoretical work, such as ground state degeneracy, bulk energy
gap, wavefunction overlap, band flatness, band Chern number and entanglement spectra,
these are not yet experimentally accessible. Our focus will be on edge excitations, whose
“universal” aspects contain information about the topological order of the system, although
a good understanding of the “non-universal” effects of the lattice and trap is crucial for these
excitations to provide a clear signal that a FQH phase has been obtained.

5.2 The model

We investigate bosonic FQH phases in the simplest lattice system, hard-core bosons on a
square lattice in a uniform magnetic field with equivalent Landau level filling ν = N/Nφ. N
is the number of bosons and Nφ is the number of fluxes in the system, measured in units of
the magnetic flux quantum Φ0 = hc/q, for particles of charge q. The modified Bose-Hubbard
Hamiltonian is,

H = −J
∑
~r

â†~r+x̂â~re
−iαxy + â†~r+ŷâ~re

iαyx + h.c., (5.1)

where J is the hopping amplitude, â†~r creates a boson on site ~r = (x, y). We use two different
gauges for the phases ~α =(αx, αy), Landau gauge ~α = (α, 0) on cylinders to keep explicit
translational symmetry around their circumferences, and symmetric gauge, ~α = (α/2, α/2)
on squares to keep explicit Z4 rotational symmetry. The flux through a plaquette nφ = α/2π

is defined modulo 1 and can be expressed as an artificial magnetic field ~B∗ = nφΦ0/a
2n̂,

where a is the lattice spacing and n̂ the vector normal to the lattice plane. At low flux
nφ � 1, a continuum description can be used and the system is effectively in the flat
band limit [63]. We focus on larger fluxes where the lattice is important. The magnetic
length lB is of the same order as the lattice spacing for the fluxes we are interested in,
lB =

√
~c/(qB∗) = a/

√
2πnφ ∼ a.

The spectrum of the Hamiltonian (5.1) is computed with exact diagonalization. A section
of the system is shown schematically in Fig. 5.1(a). The edge excitations in an infinite system
are gapless, but become gapped in a finite system. To clearly see them, it is desirable to
have a large bulk gap ∆EB

ν /J ≡ (EB
ν − EGS

ν )/J , where EB
ν is the energy of the lowest bulk

excitation and EGS
ν the ground state energy in the ν phase. The bulk gap on cylinders at

ν = 1/2, in flat infinite wells where edge modes do not exist, are shown in Fig. 5.1(b). The
ground state is non-degenerate and the gaps to all excited states are comparable to those
reported for a torus [14]. To get edge excitations in the spectra, more sites outside the
ground-state droplet need to be added where the edge waves can propagate. A trapping
potential is then essential to confine the condensate.

The optical trapping potential Vtrap(x, y), provides the equivalent of the electric field con-
finement in semiconductors. In this chapter, we use harmonic traps Vtrap(x, y) = Vxx

2/a2 +
Vyy

2/a2 to get one edge on squares and two edges on cylinders, with Vx = 0 in the peri-
odic direction of the cylinder. The velocity of a non-interacting particle near the edge is
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Figure 5.1: (Color online) (a) Part of the square lattice in the symmetric gauge with the
phases gained when hopping in the direction of the arrows. When hopping in the opposite
direction, the phases are the complex conjugate of those shown. (b) The bulk gap in the
ν = 1/2 phase on a cylinder as a function of flux per plaquette, for N = 4− 6 particles. The
large red cross is from a clearly different spectrum, indicating that it might not be in a FQH
phase.

v = |∇Vtrap(rc)|/(nφhc/a2), where rc is the radius of the ground state droplet. The edge ex-
citations of FQH phases form chiral Luttinger liquids. In the hydrodynamical approach [9],
the Hamiltonian of the edge waves in the Laughlin phases ν = 1/m, with m = 2, 4, 6, ... for
bosons, is

H1/m = 2π
v

ν

∑
k>0

ρ−kρk, (5.2)

with [ρk, ρk′ ] = ν
2π
kδk+k′ where ρk = L

−1/2
e

∫
dθeikθ/~ρ(θ), k = ph/Le with ρ(θ) the one-

dimensional density along the edge, p ∈ N and Le is the length of the edge. This is the U(1)
Kac-Moody algebra, describing a set of k uncoupled harmonic oscillators with energy

∑
p lpvk

and momentum
∑

p lpk, where lp ∈ N counts the number of excitations in each mode. For a
single edge, the degeneracies of the edge spectrum are 1, 1, 2, 3, 5, 7, 11, 15, 22, ..., see Tab. 5.1
for a labeling of the different states. On a cylinder, there are two edges with momentum
in different directions, right moving (R) and left moving (L). The degeneracies of this edge
spectrum are 1, 2, 5, 10, 20, ... or (1), (1, 1), (2, 1, 2), (3, 2, 2, 3), (5, 3, 4, 3, 5), ... if momentum is
also resolved (Tab. 5.1). The wavefunctions in the microscopic theory of edge states for the
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One edge Two edges
E p= ELehv p= 0 p= 1 p= 2 p= 3 p= 4
0 GS GS

hv/Le 1 1R
2hv/Le 2 2R

11 1R1L 11R
3hv/Le 3 3R

21 2R1L 21R
111 11R1L 111R

4hv/Le 4 4R
31 3R1L 31R
22 2R2L 22R
211 2R11L+11R2L 21R1L 211R
1111 11R11L 111R1L 1111R

Table 5.1: Labeling of the edge spectra for one and two edges: 2 ≡ {l2 = 1, li = 0 if i 6= 2},
111 ≡ {l1 = 3, li = 0 if i 6= 1} and so on. All edge levels with energy E ≤4hv/Le and positive
momentum p ≥ 0 are shown. For two edges, the levels with p < 0 are equivalent to those
with p > 0, with L and R exchanged.

Laughlin phases are

Ψ1/m(zi) = P (zi)
∏
i<j

(zi − zj)me
−
∑
i

|zi|2/4l2B
, (5.3)

where P (zi) =
∑

p(
∑

i z
p
i )
lp . This is the form of all zero energy wavefunctions without a

trap. For a small number of particles, the edge excitations consisting of a few single particle
modes np =

∑
p lp extends a distance ∆r . nplB outside the ground state droplet.

5.3 Circular trapping potential

First, we consider the circular harmonic trap on a square lattice. With an appropriate
construction of the Z4 symmetric Hamiltonian, a Fourier transform will turn the Hamilto-
nian into block diagonal form with each block corresponding to a certain angular momentum
L/~ = 0, 1, 2, 3, ... mod 4. These momenta kc = ∆L/rc, with ∆L ≡ L − LGS, are the same
as in the Kac-Moody algebra k = ph/(2πrc). The analytic edge spectrum for the ν = 1/2
phase is shown in Fig. 5.2(a). In a system with finite number of particles N , we only expect
excitations consisting of np ≤ N single modes. The energy is proportional to the angular
momentum for the trapped phase, indicated by the straight dotted line. With only N = 4
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anal\num GS 1 2 11
GS 0.978 3 · 10−24 1 · 10−26 7 · 10−28

1 3 · 10−24 0.974 3 · 10−27 1 · 10−26

2 1 · 10−26 2 · 10−27 0.971 6 · 10−4

11 2 · 10−27 4 · 10−25 0.041 0.934

Table 5.2: Overlap between the calculated wavefunctions corresponding to the four lowest
energy levels in Fig. 5.2(b) and the first four zero-energy wavefunctions in Eq. 5.3, labeled
as in Tab. 5.1.

particles on a 11× 11 site lattice in a trap ca/J = 0.02, we get remarkably good edge spec-
tra. At nφ = 1/5, the filling fraction of the ground state is ν = 1/2. The degeneracies
1, 1, 2, 3, 5, 6, 9, 11, 15, ... in the edge spectrum, agreeing with np ≤ N for ν = 1/2, is clearly
visible, see Fig. 5.2(b). A straight line is a good fit to the lowest excitation at each mo-
menta. The small energy splitting is due to finite size effects, most noticable in the states
that extends furthest in the trap. Note that all of these state appear to be edge states;
there are no bulk excitations for ∆E1/2/J ≡ (Eν − EGS

1/2) . 0.35, where Eν is the energy

of a state in the ν phase, much larger than the anticipated gap ∆EB
1/2/J ≈ 0.23. The nu-

merical wavefunctions Ψnum
1/2 ({lp}) of these edge excitations have a highly non-trivial overlap

O({lp}, {l′p′}) = |〈Ψnum
1/2 ({lp})|Ψanal

1/2 ({l′p′})〉|2 with the normalized microscopic wavefunctions

Ψanal
1/2 ({lp}) in Eq. 5.3, discretized on a lattice, see Tab. 5.2 for a few examples. The overlaps

are also insensitive to the trap potential used Vr, confirming the incompressibility of the
states.

Possibly the easiest way to experimentally measure the edge spectra is with stimulated
two-photon Bragg scattering [64]. The probe light is scattered when the energy and momen-
tum difference between the two beams is resonant with an excitation level in the FQH system.
Inserting typical experimental values J = ~/τtunnel, with a tunneling time τtunnel = 0.2 ms
and a = 400 nm gives an edge velocity v = ∆Eν/(∆L/rc) ≈ 0.2 mm/s. Resolving the closest
energy excitations at the same angular momenta might initially be challenging. However,
the linear relation v should be well within experimental reach with a long pulse duration
δt ∼ 10 ms in the Bragg spectroscopy during which the condensate has to remain stable.
Modulation of the trapping potential is another commonly used technique to produce small
energy excitations [65]. Detecting edge excitations could potentially also be done by map-
ping out the in-situ density profile of the condensate and an excited state, to observe the
propagating edge mode, or performing the analog to tunneling interferometry in condensed
matter, either between the edges of two condensates trapped next to each other [66] or by
outcoupling atoms from opposite points of the con- densate.

There are several states [Fig. 5.2(b)] that do not belong to the ν = 1/2 edge spectrum.
The lowest of those states has a ν = 2/3 filling factor. The ν = 2/3 FQH phase has a
3-fold degeneracy on a torus and Möller et al. [67] showed it has a good average overlap with
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Figure 5.2: (Color online) (a) Analytic edge spectrum at ν = 1/2 in a trap as a function
of angular momenta. Degenerate lines are drawn slightly apart for clarity. The solid lines
corresponds to excitations consisting of four single particle modes or less. The dashed dotted
lines are the additional excitations appearing for additional modes. (b)-(d) Edge excitations
for N = 4 particles on a 11 × 11 square lattice in a circular harmonic trap, ν = 1/2 black
solid lines, ν = 2/3 blue dashed lines and the possible Read-Rezayi (RR?) phase, red dashed
dotted lines. (b) Edge spectrum at nφ = 1/5 as a function of angular momentum. (c) Energy
gap to the ν = 1/2 ground state for: ground states (◦), 1 states (4), 2 states (×) and 3
states (•), labeled as in Tab. 5.1, as a function of flux per plaquette. (d) Edge spectrum at
nφ = 1/8 as a function of angular momentum.
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the composite-fermion wavefunction for nφ . 0.3 on a lattice. Varying the magnetic flux
slightly, states in the same phase change their energy in a similar manner, see Fig. 5.2(c)
for some examples. At small flux per plaquette, our system can become too small for some
of the excited states of ν = 1/2 to exist. Upon decreasing the flux further, other phases
appear with larger ground state filling factors, consistent with some of the phases in the
Read-Rezayi sequence for bosons ν = g/2, where g ∈ N [68]. Whether these phases actually
are FQH phases are left for future studies. Again, around nφ ≈ 0.3, the edge spectrum break
down and it is unclear what phases exist for nφ & 0.3.

The ν = 2/3 hierarchical state [69], consists of two condensates with comoving edge
modes at different radii. This spectrum has the same degeneracies as two edges on a cylin-
der 1, (1, 1), (2, 1, 2), (3, 2, 2, 3), ..., but states within each set () now have the same angular
momentum, not energy. The edge spectra in Fig. 5.2(d) is at nφ = 1/8, where the ground
state energy for ν = 2/3 is slightly lower than for ν = 1/2. The ν = 1/2 edge excitations are
spaced further apart, but the states with degeneracies 1, 1, 2, 3, 5 can still be clearly distin-
guished. The two U(1) branches of ν = 2/3 have very different velocitiess, but the structure
1, 2, 5 can easily be seen under the dotted line corresponding to the lowest energy for the
higher angular momentum states.

5.4 Elliptical trapping potential

Next, we consider a square lattice on a finite cylinder with a harmonic trap in the non-
periodic direction, which should be a good approximation to an elliptical elongated trap.
The cylindrical system in Landau gauge has a ZLx symmetry along the circumference of the
cylinder, when αx = 2π/Lx. With an appropriate construction of the Hamiltonian, a Fourier
transform will turn the Hamiltonian into block diagonal form with each block corresponding
to a certain momentum kx = pxh/Lx = ...,−h/Lx, 0, h/Lx, ... mod h along the circumference
of the cylinder. These are the same momenta as in the Kac-Moody algebra with kx = k.

The edge spectrum on a cylinder in a 1-D harmonic trap cy/J = 0.004, is shown in
Fig. 5.3(a). Three additional rows are required outside the ground state droplet on both edges
to get all edge excitations with |px| ≤ N . No edge excitations with |px| > N are found on any
cylinder. The edge states 111R1L, 1R111L, 1111R and 1111L are higher up in the spectrum
and not shown. The discrepancy from the analytical spectrum, shown in Fig. 5.3(b), can
be explained by two types of finite size effects. The lower-than-expected energy of the
high momentum single particle modes depends on their overlap with the opposite edge, the
increase is again from finite size effects especially in the furthest extending states. Bulk
excitations are shown with red lines. The bulk gap ∆EB

1/2/J ≈ 0.12 is again larger than

anticipated, ∆EB
1/2/J ≈ 0.08 in Fig. 5.1(b).
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Figure 5.3: (Color online) (a) Edge spectrum for N = 4 particles at ν = 1/2 on a 9 × 15
site cylinder in a harmonic trap as a function of momenta. Apart from the expected edge
spectrum (black solid lines), bulk excitations (red dash-dotted lines) and edge excitations
from translated ν = 1/2 phases (blue dashed and magenta dashed-dotted lines, where the
former are aliased to a lower momenta) are mixed in. Two-fold degenerate states are marked
with longer lines. (b) Analytic edge spectrum at ν = 1/2 for a large system. Degenerate
lines are drawn slightly apart for clarity.
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5.5 Discussion

We briefly discuss finite size effects, the influence of the trap and other possible FQH
phases that could be observed. The number of particles we can use in our edge states
calculations, is restricted by the large Hilbert space (> 8 · 106 for the data presented here).
It grows fast, mainly due to two reason; no projection to the lowest Landau level and the
additional sites outside the GS droplet required for the higher edge excitations. Still, the
diameter of the GS droplet dGS is substantially larger than the magnetic length (which
is comparable to the correlation length); dGS/lB =

√
8N/ν. The good agreement with

analytical edge excitation results and calculations with N = 3 and N = 5 (only for certain
system sizes), make us believe that signs of the topological order can be seen already in these
limited systems. Experimental systems will be larger, but trying to increase the system size
further is likely not the the most important modification for observing a FQH phase. Apart
from some finite size effects seen in our results, from N and the lattice which we have tried to
comment about, the interesting experimental tuning parameters are the flux per plaquette
and the trap. The GS droplet can cover any area, since nφ can take on any value, not just
fractional. Increasing the trapping potential Vr favors denser phases and the transitions
to FQH phases with higher filling fractions ν will hence occur at larger fluxes nφ. It also
increases the spacing ∆Eν ∝ Vr/J , between edge excitations with different L, for reasonable
trap strengths, making them easier to observe experimentally. Replacing the harmonic trap
with another trap shape can change the spectra completely in circular traps Vtrap = Vrr

b.
The system shows a FQH edge for 1.5 . b . 2.5 with the best spectra at b = 2. However,
the edge spectra does not change much with b on a cylinder. Hence, this might be a finite
size effect, larger systems can have FQH phases for a larger range in b. Still a harmonic
trapping potential is likely the best for experiments, especially for smaller systems.

Lastly, we discuss which other FQH phases in optical lattices that potentially can be de-
tected with our method. The other phases in the bosonic Laughlin sequence ν = 1/4, 1/6, ...
cannot be the ground state without longer range repulsions in a trap [62]. In a trap, their
ground state energies are higher than the energies presented here. With decreasing magnetic
field, we do not observe the higher order hierarchical states at ν = 3/4, 4/5, .... But, we
believe this is an artifact of the small systems studied. The non-abelian phases in the Read-
Rezayi sequence ν = 1, 3/2, 2, 5/2, ... [68] are believed to be the ground state for bosons in a
trap under certain conditions [70, 71]. The ν = 3/2 phase is the simplest bosonic FQH phase
that could be used for quantum computing [72]. In the other limit, at large flux per plaque-
tte nφ ≈ 1/2 (1/3), are the lattice specific FQH phases believed to appear [63, 67, 73]. We
considered lattices with uniform flux; recent work has shown convincingly that non-uniform
magnetic fields can create the same FQH phases without Landau levels [74–79]. The lessons
in this work for trapping potentials and geometries apply also to these more complex situa-
tions. For completeness we mention a few recent proposals, see Refs. [80–83] , for detecting
quantum Hall physics in ultracold gases in other ways than measuring the edge excitations.
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5.6 Conclusions

The main result of this work is that hard-core repulsion in a small simple lattice system
of approximately square or circular geometry is sufficient to generate clearly resolved edge
excitations for the bosonic FQH states at filling ν = 1/2 and ν = 2/3, provided that the
conditions described above on flux per site and harmonic trap strength can be achieved;
engineering flat or nearly flat bands is unnecessary. In the cylindrical case, the edges are
strongly interacting with each other and the edge excitations are much harder to distinguish,
which suggests counterintuitively that increasing system size by going to an elongated trap
may not be necessary or even desirable. Observation of the bosonic FQH states discussed
here would be a logical first step toward even more exciting new states that can be studied
by similar methods.
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Part IV

Quantum Spin Chains
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Chapter 6

E8 symmetry effects in perturbed
quantum Ising chains

6.1 Perturbed quantum Ising chains

The one-dimensional (1D) quantum Ising model in transverse and longitudinal fields is
one of the most studied theoretical models in condensed matter physics. It is a relatively
simple model that contains very rich physics; for example, it contains a quantum critical point
(QCP) at zero longitudinal field related to the 2D classical Ising model. A remarkable fact
is that the integrability present at the critical point remains under addition of a longitudinal
field as a mass-generating perturbation. Zamolodchikov conjectured in 1989 an S-matrix
describing eight emergent particles whose mass ratios are connected to the roots of the
Lie algebra E8 [84, 85]. Recently, Coldea et al. performed neutron scattering experiments
on CoNb2O6 (cobalt niobate), a material that to a good approximation can be described
by a quantum Ising chain. At low temperatures and in the presence of a strong external
transverse magnetic field which tunes the system to near criticality, the observed spectrum
shows characteristic excitations of the E8 symmetry [1].

However, a serious problem in comparing theory and experiment is that the real material
has additional couplings that strictly speaking invalidate the exact solution, and until re-
cently it was impractical to extend the theory non-perturbatively to include these couplings.
In this Letter, we study a theoretical model for CoNb2O6 which includes in addition to the
Ising interaction other interactions arising from the lattice structure and the weak coupling
between the chains. Using this model, we calculate the dynamical spectral function and
compare the results to the observed spectra. Close to the QCP, the model retains features
expected from the quantum Ising model, in particular the characteristic particles of the E8

symmetry.
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6.2 Theoretichal model of CoNb2O6

We begin by deriving the theoretical model used to describe the low-energy physics of
CoNb2O6. The spin lattice structure consists of chains of easy axis spins, realizing a two
level system, on the Co2+ ions coupled by a ferromagnetic Ising interaction along the chain
direction, see Fig. 6.1A. We thus start from the quantum Ising chain, described by the
Hamiltonian

H = −J
∑
n

SznS
z
n+1 − hx

∑
n

Sxn (6.1)

where J > 0 favors a ferromagnetic state (| ↑↑ ... ↑〉 or | ↓↓ ... ↓〉). When the transverse
field is increased past the QCP |hxc | = J/2, the system undergoes a phase transition into
a paramagnetic state | →→ ... →〉. This model is exactly solvable using a Jordan-Wigner
transformation which transforms the spins into non-interacting fermions [7].

The lowest lying excitation energy is similar on both sides of the QCP due to the self-
duality of the model and goes to zero, that is, the gap closes, at the QCP. However, the double
degeneracy of the ferromagnetic ground state leads to a fractionalization of the experimental
excitation, a spin flip, into two freely moving domain walls or kinks. We now take into
account terms which result from the three-dimensional (3D) lattice structure of CoNb2O6. A
recent theoretical study by Lee et al. investigates a three-dimensional model of CoNb2O6 [86].
They show that the plane perpendicular to the chain, a weakly coupled triangular lattice, see
Fig. 6.1A, has ferrimagnetic order to transverse field strengths well passed hxc . The interchain
couplings in a 3D magnetic ordered material at low temperature can be well approximated
by a chain in a local effective longitudinal field hz =

∑
δ Jδ〈Sz〉 with the sum over all nearest

interchain bonds [87]. This field favors the ferromagnetic phase, breaks its two-fold symmetry
and moves the system away from the QCP. It also splits up the continuum into bound states
by confining the kinks. At low transverse field and small bound state momentum, this can be
described by a one-dimensional Schrödinger equation with a linear confining potential with
the energy levels given by the negative zeros of the Airy function, see Fig. 6.1B [88]. This
solution has later been extended to all possible bound state momenta [89]. Close to the QCP
(hx = hxc , |hz| � |hxc |), the eight massive particles described by the E8 symmetry can be seen
either as asymptotic states or as bound states of a pair of particles of this theory [84, 85].

Although CoNb2O6 to a good approximation can be described by a quantum Ising chain,
a realistic model must contain more interactions [90]. It has a strong easy axis character,
but a weak XX part is still present. The chains have a zig-zag structure, making the next-
nearest neighbor (nnn) interaction important as well, see Fig. 6.1A. The measured Ising
exchange energy J is unusually low, likely due to a competition from an antiferromagnetic
nnn interaction. Taking into account all terms, the resulting Hamiltonian reads

H = −J ′
∑
n

SznS
z
n+1 − hx

∑
n

Sxn − hz
∑
n

Szn (6.2)

− Jp
∑
n

(
SxnS

x
n+1 + SynS

y
n+1

)
+ JB

∑
n

SznS
z
n+2.
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The numerical values for the coupling constants to describe CoNb2O6 are obtained by match-
ing the experimental neutron scattering intensity at zero applied transverse field with our
numerical calculations. We compare the dynamical structure function Sy(k, ω), the Fourier
transform of the dynamic two-point correlations

Cy(n, t) = 〈ψ0|Syn(t)Sy0 (0)|ψ0〉. (6.3)

6.3 Time evolution

For the numerical calculations, we use the time evolving block decimation (TEBD) [29, 30]
method which provides an efficient method to perform a time evolution of quantum states in
one-dimensional systems. The evolution of a random state of an infinite chain in imaginary
time is used to calculate the ground state |ψ0〉 and an evolution in real time allows us to
calculate the dynamic two-point correlations directly. The TEBD algorithm can be seen as
a descendant of the density matrix renormalization group [91] method and is based on a
matrix product state (MPS) representation [92? ] of the wavefunctions. Algorithms of this
type are efficient because they exploit the fact that the ground-state wave functions are only
slightly entangled, especially away from criticality [93]. As the entanglement grows linearly
as a function of time, the simulations of long time evolutions is numerically very difficult.
To be able to simulate long enough times and thus to get sufficiently good energy resolution
in the calculated spectral functions, we use a number of methods to accelerate the time
evolution. We use linear predictions to extrapolate the dynamical correlation functions to
very long times [94, 95] and take advantage of the “light-cone” like spread of the entanglement
by adding more sites to the chain as time increases. As the calculation of the correlation
functions Cy(n, t) is numerically very expensive, we calculate it only for certain time steps
and then interpolate its values. In order to estimate the errors of our simulations, we calculate
the truncation error, i.e., the truncated weight of the wave function at a time step, which
gives an upper bound for the truncation effects on local expectation values (. 10−6 for all
simulations presented in this chapter). In addition we also checked the dependence of the
measured observables on the matrix dimension χ per site and the time steps ∆t, settling for
χ = 45 and ∆t = 0.04 meV−1 for the simulations presented in this chapter.

The numbers we use are J ′ = J + JB = 2.43 meV, hx = 0.354 meV, hz = 0.035 meV,
Jp = 0.52 meV and JB = 0.60 meV, see Fig. 6.1C and compare it to Fig. 3 in Ref. [1].
A cross-section with the bound state “masses” (i.e., the energies of the bound states at
zero momentum) is presented in Fig. 6.1D with the experimentally measured masses and
Rutkevich’s exact solution of Coldea et al. first order model for reference in Fig. 6.1D [1,
96]. Note that our full Hamiltonian agrees to first order in perturbation theory with the
phenomenological model used there, although the coupling constant for that model is slightly
larger than ours [90].
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Figure 6.1: (Color online) (A) Ising spins on the Co2+ ions are strongly coupled in 1D along
zig-zag chains. The Co2+ ions are ordered in a weakly coupled triangular lattice in the plane
perpendicular to the chain direction, with a, b and c orthogonal unit vectors. (B) Confine-
ment of kinks: the potential energy between kinks increase linearly, along the z coordinate in
the c direction, as more interchain bonds turn energetically unfavorable. The energy levels
are given by the negative zeros of the Airy function. (C-D) The full Hamiltonian describing
CoNb2O6 at no external magnetic field. (C) The dynamical structure function. (D) The
cross section of (C) at zero momentum showing the masses of the first five bound states.
A comparison of these masses from our MPS calculations (pluses) with the experimental
results (circles) and the exact solution of the proposed first order phenomenological model
(crosses).
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Figure 6.2: (Color online) Ising chain in a transverse and a longitudinal field. (A) The
dynamical structure function at hx = hxc and hz = 0.035 meV. (B) The cross section of
(A) at zero momentum. The five lowest bound states and two bound state pairs can be
distunguished. (C) (hx = hxc ) The mass of the four lowest bound states and an asymptotic
expansion for m1 from hz → 0 as a function of the longitudinal field. (D) (hx = hxc ) Relative
mass of the lowest bound states compared to the analytical predicted values at hz → 0. (E)
(hz = 0.035 meV) The bound state masses as a function of the transverse field (hx). The
energy gap is smallest around hx = 1.10 meV, however the minimum in the higher bound
states occurs for lower fields. (F) (hz = 0.035 meV) The relative masses for the bound states
increases roughly linear as a function of the field (hx) and passes the analytical calculated
values at hxc .
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6.4 Excitation spectra for a quantum Ising chain

Before investigating this model near the QCP, we start with a pure quantum Ising chain
where the E8 symmetry is expected to be present [84]. The dynamical structure function is
calculated over the whole Brillouin zone (for various parameters J = 1.83 meV, hx, hz), see
Fig. 6.2A for an example and we focus on the cross section at zero momentum where some
comparison with earlier work can be done. Fig. 6.2B is an example of these cross sections at
hx = hxc with hz = 0.035 meV. The lowest four bound states can be easily detected and one
or two more can be distinguished. Bound state pairs m1 + m1 (overlapping with m3) and
m1+m2 have similar intensity to the nearby bound states, making both types simultaneously
observable. They are created in a “spinon jet”, where the two kinks (also known as spinons)
in a bound state have been stretched far enough apart to make it energetically favorable to
flip a spin between them to form two more kinks that each form an independent low energy
bound state with one of the original kinks. The independent motion of these two bound pairs
appears as a continuum in the dynamical structure function. This process is reminiscent of
quark dynamics, where the quarks are confined and cannot be isolated singularly. Finding
condensed matter analogues of confinement effects known from high energy physics might
help us to improve our understanding of underlying mechanisms; see e.g. Lake et al. [97].

The weight of the continuum decreases with increasing longitudinal field; this is also the
case for the weight of the higher bound states but to a lesser extent. The gap and the
spacing between the bound states increase with increasing longitudinal field; see Fig. 6.2C
where data from more simulations are presented, together with an asymptotic expansion
from the exact analytical limit (hx = hxc , h

z → 0) of the lowest bound state. The analytical
expression for the gap is m1 ≈ CJ/4(2hz/J)8/15, with C = 4.40490858/0.7833, showing good
agreement with our results to high longitudinal field strengths [84, 98]. (The spin is rescaled
Szlat(x) = 0.783(3)Szcont(x) from the continuum to the lattice model [99, 100].) The relative
mass of these bound states related by the E8 symmetry at hxc , are presented in Fig. 6.2D,
again with good agreement in the analytically exact limit, see Tab. 6.1 [84].

m2/m1 m3/m1 m4/m1 m5/m1 m6/m1 m7/m1 m8/m1

1.618 1.989 2.405 2.956 3.218 3.891 4.783

Table 6.1: Analytically predicted mass ratios from Ref. [84]. These numbers result from eval-
uation of simple trigonometric expressions (e.g., m2/m1 = 2 cos π/5) that arise as eigenvalues
of a matrix constructed from roots of the Lie algebra E8.

The deviation of the asymptotic expansion is slightly larger for higher bound states.
However, the deviation for large longitudinal fields (hz . hxc ) is fairly small, indicating
influence of criticality up to very strong longitudinal fields. Note also that the uncertainty of
our results increase with decreasing longitudinal field strength when the bound state masses
move closer, due to our fixed energy resolution. For future reference we also present results
as a function of the transverse field at longitudinal field hz = 0.035 meV present in CoNb2O6
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around hx = hxc , see Fig. 6.2E. Good agreement for the energies of the bound states are
obtained with earlier numerical work using the Truncated Free Fermion Space Approach, cf.
Fig. 5 of Ref. [101]. Stronger longitudinal field will increase the minimum gap and move
it to stronger transverse fields, but the gap increases slower away from its minimum value.
Also note that the minimum for higher bound state masses occurs for a lower transverse
field. The relative masses increase linearly around hxc , see Fig. 6.2F, with a steeper slope for
higher bound state masses and lower longitudinal fields.

6.5 Excitation spectra for CoNb2O6

Finally we turn to the more accurate microscopic model of CoNb2O6 Eq. (6.2) with
values of the coupling constants presented above. The QCP at zero longitudinal field for
this model is moved to a slightly weaker field hxc ≈ 0.814 meV, see Fig. 6.3A from ground
state simulations with TEBD, due to the addition of the ferromagnetic XX-term. The
longitudinal field strength from weakly coupled chains hz(〈Sz〉) is to a good approximation
constant past hxc , see Fig. 6.3A. At vanishing magnetization this is not true, but here the
1D approximation of the 3D material is breaking down anyway. The dynamical structure
function at hxc , not presented here, shows a flattening of the kinetic bound state and a more
prominent lowest bound state dispersion. The cross section at zero momentum, see Fig. 6.3B,
has the same characteristics as the one for the quantum Ising chain, with fairly unaltered
spectral weights. The relative weight of the bound state continuum is still largest around
hxc , making this region even more interesting for experiments. A more careful analysis of
the bound state masses, see Fig. 6.3C, reveals a small rescaling of both axes to around 90%
of their previous values. This overall scaling does not affect the mass ratios, see Fig. 6.3D.
Again they follow straight lines, see Fig. 6.3D, and pass the analytical values at hxc , exactly
as they do for the quantum Ising chain, rather than approaching it by bending as suggested
by the extrapolation of the experimental data in Ref. [1]. Additional interactions irrelevant
at low field and not treated here might explain the bending if it is confirmed by higher
resolution data, but our results suggest higher resolution data will show that the mass ratios
indeed go through the analytical values at the critical field if the model used here (and
previously [1, 86]) is a good one for CoNb2O6 past hxc .

6.6 Conclusions

To conclude, we have investigated the effects of integrability near the Ising QCP and
evaluated how far away the features extend and how robust they are to additional interac-
tions. We have shown that the bound state continuum should carry comparable spectral
weight to the higher bound states. The microscopic 1D model of CoNb2O6 treated here is
able to reproduce the experimental data far away from criticality well. When moved close
to the QCP, the model still has the characteristics of the E8 symmetry, with the mass ratios
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following straight lines through the analytical values, even better than the extrapolated ex-
perimental data suggests. Future experiments with improved resolution on CoNb2O6 should
detect higher bound state signatures to confirm the effects of integrability and the bound
state continuum modeling confinement dynamics around the 1D QCP.
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Figure 6.3: (Color online) The full Hamiltonian describing CoNb2O6. (A) Magnetization
comparison between weakly coupled chains and chains in different constant longitudinal
field. (B) The cross section of the dynamical structure function for hxc at zero momentum
showing the masses of the first five bound states and two bound state pairs. (C) The bound
state masses as a function of hx. The minimum gap is above hxc and the bound state mass
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Chapter 7

Quantum phases for anisotropic
XXZ-chains

7.1 Introduction

Quantum spin chains are a very exciting playground to study strongly correlated quantum
systems. Many different types of phases and phase transition can be understood by studying
relatively simple spin-chain model Hamiltonians. A prime example is the Heisenberg chain
which has a gap above the ground state in the case of integer spins while the half-integer spin
chains are gapless.[102, 103] Gapped integer spin chains do not break any symmetry and can
thus not be characterized by any local order parameter. It has recently been shown that the
spin-1 Heisenberg chain is a symmetry protected topological phase. This type of phase can
be understood in terms of fractionalization of symmetry operations at the edges. In other
words, the phases are characterized by projective representations of the symmetries present.
Using this insight, it becomes clear that there is a fundamental difference between odd and
even integer spin chains. In the case of of odd integer spin chains, the spin fractionalizes
into two half-integer edge spins which are protected by the symmetry of the Hamiltonian.
In the case of even integer, the fractionalized integer spins are not-protected.

Given the above reasoning, it is now interesting to discuss the phase diagram around
the antiferromagnetic (AFM) Heisenberg point for increasing integer spins. Interestingly,
bozonization predicts a similar phase diagram for all integer spin chains.[104] Another early
proposal, contained a succession of intermediate phases corresponding to all the Haldane
phases for lower spin chains.[105] On the other hand, early DMRG studies showed more
or less a classical phase diagram for S ≥ 2.[106]. A recent level spectroscopy (LS) study
[107–110] show a phase diagram for S = 2 somewhere between the two previous proposals.

Apart from the large Hilbert space, the presence of the critical XY phase makes this a
hard problem to understand. This phase has infinite correlation lengths, making it difficult
to compute properties inside it and more importantly close to it. The transition into this
phase is a Berzinski-Kosterlitz-Thouless (BKT) transition, which gets harder to locate the
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slower the gap in the adjacent phase opens up.
In this chapter we present results of infinite system density-matrix-renormalization-group

(iDMRG) calculations which allows us to capture the long correlation lengths. We study the
phase diagram in detail and discuss the different phases we find in context of the previous
results. Although the used iDMRG algorithm has been discussed in the literature before, we
find it useful to give a pedagogical explanation of the algorithm and show how to implement
U(1) symmetries into the code.

This chapter is organized as follows: We first briefly present the model we are investigating
and the challenges it contains in Sec. 7.2. In Sec. 7.3 we discuss the various phases and phase
transitions present and how they can be detected with our data. In Sec. 7.4 we present our
main result, the phase diagrams with focus on the two Haldane phases. In Sec. 7.5 we
present some results for the S = 3 XXZ-chain to confirm the belief on the ceveelopment of
the classical phase diagram. We conclude with a discussion in Sec. 7.6.

7.2 The model

The XXZ quantum spin chain was introduced in Ch. 1 in Eq. 1.33. We write down the
Hamiltonian again here for convenience

HXXZ =
∑
n

(SxnS
x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1), (7.1)

where Sαn (α = x, y, z) is the α-component of the spin-S operator at the nth site and ∆ is
the XXZ anisotropy parameter. As ∆ is tuned from −∞ to∞, the following phases appear;
Ferromagnetic (FM), XY, (Haldane) and AFM.[102, 103] The Haldane phase does not appear
for half-integer spins including S =∞. The transition from the FM to the XY phase occurs
at the FM Heisenberg point ∆ = −1 for all S. The transition from XY to Haldane occurs at
∆ = 0 for S = 1 [111] and approaches rapidly the AFM Heisenberg point for larger integer
spins. The same is true for the transition between the Haldane phase and the AFM phase
that also approaches ∆ = 1 rapidly for increasing integer S, but from the opposite direction
(transition at ∆ = 1.19 for S = 1). This makes it hard to resolve the Haldane phase already
for S = 2, where the phase extends about δ∆ ∼ 0.04. For all half-integer spins the XY to
AFM transition is at the AFM Heisenberg point ∆ = 1 [102, 103].

With the addition of an on-site interaction, various local quantum states can be favored
or disfavored. We will study the S = 2 Hamiltonian H = Hxxz + HD, where the on-site
interaction has the form

HD =
∑
n

D2(Szn)2 +D4(Szn)4. (7.2)

A general form for the on-site anisotropy in a spin-S chain is
∑2S

p=1 Dp(S
z
n)p, where Dp are

constants. The odd terms in p favors a FM phase and are hence not very interesting. The
even p terms can give rise to interesting phases. The phase diagram (∆,D2) for S = 1 is very
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well understood. Also the phase diagram for S = 2 with the p = 2 term has been extensively
studied [106–108, 112]. However, these studies have presented some contradictory results.
No previous work has taken the p = 4 term into account for a S = 2 chain.

The Haldane phases contain the AKLT point, which appear when the spins are projected
into a valence bond solid ground state [113]. This state can be described in terms of 2S spin-
1/2 at each site, forming S valence bonds with each of the two neighboring sites. Increasing
D2 from the AFM Heisenberg point in integer spin chains, a supposedly new phase appears,
previously named the Large-D (LD) phase. This phase is unmagnetized and has mn = 0
in the limit D2 → ∞. In S ≥ 2 integer spin chains this phase is separated from the AFM
Heisenberg point by the XY phase along the D2 line, and hence initially believed to be a
different phase. However, some recent work proposed that only two distinct Haldane phases
exist using symmetry arguments [114]. All the even S Haldane (EH) phases are argued to
be the same phase and all the odd S Haldane (OH) phases as well. They also pointed out
the similarities between the EH phase and the LD phase [114]. In fact, the LD phase can
be thought of as the spin-0 Haldane phase. The main results in this chapter is; with the
D4 term, the OH is easily accessible, extending to D4 & 0 for some (∆,D2) and the spin-2
Haldane phase is indeed adiabatically connected to LD phase, strengthening the claim of
only two distinct Haldane phases; OH and EH.

7.3 Quantum phase transitions

Quantum phase transitions are transitions between various quantum phases. They occur
at zero temperature when some physical parameter is varied. Spin chains are great systems
to analyze various quantum phase transitions in. They can be analyzed with a wide variety of
methods, ranging from analytical, like bosonization and conformal field theory (CFT), that
can give exact solutions under certain conditions, to numerical like exact diagonlization, that
also is exact but limited to small system sizes and iDMRG. Since iDMRG, does not give
an exact solution, especially close to critically, care most be taken in interpreting the data.
Various observables can be used. In this section, we will begin with a brief discussion of the
phases present in our Hamiltonian Hxxz +HD and how they are classified. Then we consider
the three different quantum phase transitions, first order, second order and BKT, that occur.

7.3.1 Quantum phases

Before we investigate the phase diagram, we summarize the characteristics of the different
phases. The two magnetically ordered phases are easiest to distinguish. They have a non-
zero magnetization site expectation value |〈Szn〉| 6= 0, with the FM phase having a non-zero
total magnetization 〈Szn〉 = 〈Szn+1〉, while the AFM phase has zero total magnetization
〈Szn〉 = −〈Szn+1〉. All the other phases are unmagnetized 〈Szn〉 = 0. The XY-phase is the only
gapless phase, it has exponentially decaying 〈SzmSzn〉 correlations and power law decaying
〈S+

mS
−
n 〉 correlations [106]. The hidden non-local order of the OH phase can be described
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with a string order (SO) parameter,

SO(m,n) = 〈Szmeiπ
∑n
p=m+1 S

z
pSzn〉, (7.3)

that approaches a finite value in the thermodynamic limit n−m→∞.

7.3.2 First order transition

The transition between the AFM and EH phases is a first order transition for large ∆,
as expected in the limit ∆→∞. In the D4 = 0 plane it turns into a first order transition at
∆ ≈ 3.8. This type of transition is easiest located by observing the change in the ground state
energy slope as a function of the physical parameter across the transition, see Fig. 7.1(a).
This comes from the crossing of two different energy levels that are continued with red dashed
lined where it is not the ground state energy anymore. The energy is well converged as a
function of χ. Both the entanglement entropy S and the correlation length ξ has a smooth
behavior across this transition.

7.3.3 Second order transition

Closer to the AFM Heisenberg point (∆ . 3.8) does the transition between the AFM
and the EH phase turn into a second order phase transition. It is easy to locate the mag-
netized phase everywhere with its local order parameter, the local magnetization |〈Szn〉|. It
vanishes at the phase transition, see Fig. 7.1(b) for an example along the line ∆ = 1, where
the transition is at Dc1

2 (∆ = 1) = −0.004. Characteristics of a second order phase transi-
tion are diverging entanglement entropy S and SzmS

z
n-correlation length ξ0 from both side,

see Fig. 7.1(c)-(d). The entanglement entropy in Fig. 7.1(c) has a distinguishable peak at
Dc1

2 (∆ = 1) for large enough χ. The peak in the ξ0 correlation length in Fig. 7.1(d) is clearer,
again at Dc1

2 (∆ = 1) for large enough χ. Due to the narrowness of the EH phase δD2 ≈ 0.05,
these observables of the transition can be hard to distinguish for small χ’s.

7.3.4 BKT transition

The other transition in Fig. 7.1(b)-(d) is a BKT transition, to the critical phase. This
is the hardest transition to locate and the one we have focused our efforts on. The entan-
glement entropy in this phase is infinite. However, finite matrices can only contain a finite
amount of entanglement entropy S ≤ log(χ). Moreover, even at criticality with DMRG the
entanglement eigenvalue distribution does not maximize the entanglement. This makes it
hard to see exactly where the transition is, see Fig. 7.1(c), where the entanglement entropy
increases continuously across the phase transition to the critical phase. The correlation
lengths, ξ0 in Fig. 7.1(d) and ξ2, the S+

mS
−
n -correlation length, have similar behaviors and

they are not very useful either for pin-pointing the transitIon.
A scaling from finite χ up to χ = ∞ tend to overestimate the critical region, since the

correlation lengths do not behave monotonically with χ. As long as χ is small enough, the
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Figure 7.1: Examples of how to locate phase transitions with iDMRG data. (a) First order
transition; Energy level crossing in the ground state. Red dashed line indicates the continu-
ation of the energy level where it is not the ground state anymore. Note also that the energy
is well converged in χ in iDMRG. (b)-(d) Second order transition. (b) Transition from a
magnetized to a non-magnetized phase. (c)-(d) The entanglement entropy and correlation
length go to infinity S → ∞ and ξ0 → ∞ as χ → ∞ at the transition point. (c)-(d) BKT
transition; Hard to locate in these diagrams. The critical phase is the region where the
entanglement entropy and correlation length go to infinity S →∞ and ξ0 →∞ as χ→∞.
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ground state is influenced by the critical region and scales similar as within it. However, once
χ is large enough to describe the gapped phase, the physical properties converge fast. The
same problem appeared when we tried scaling of other observables that have been used to
locate a BKT transition, like closing of energy gap [106, 112] and fidelity susceptibility [115,
116]. The first one of these is similar to correlation scaling, since ∆E ∝ 1/ξ. The second
has proven to be more accurate for some models, but we did not find any improvement for
our model.

However, there is another method that can localize the BKT transition much better in
this model. As was shown by Calabrese and Cardy [117], close to criticality in 1-D there is
a relation between the entanglement entropy and the correlation length,

S = S0 +
c

6
log(ξ), (7.4)

where S0 is a constant that varies over the phase diagram and c is the central charge. The
value of the central charge is one in the XY-phase and zero outside. In our model, at finite
χ, we find that c = 1 inside the critical phase and c < 1 outside the critical phase, already
for small χ. For more details on the central charge calculation, see Sec. 7.3.5.

7.3.5 Central charge

The entanglement eigenvalue distribution at finite χ at criticality is similar to at infinite
χ slightly away from criticality [118, 119]. Hence, at criticality, the relation Eq. 7.4 can be
obtained by variation of χ and c is then obtained from the slope by a linear fit, see Fig 7.2.

Simulating to very high precession (truncation error ≤ 10−13), the data converges well
outside the critical phase, making it possible to determine the slope to very high accu-
racy and hence where in the phase diagram it starts to deviate from 1/6. Outside the
critical phase it deviates from 1/6 already for small χ and the deviation increase with
increasing χ. Inside the critical phase, the data slightly fluctuates more. Hence, averag-
ing over many data points is desirable. However, the error does not appear to be com-
pletely independent of χ, so we also want to use χ’s far apart. We simulate for χ =
25, 35, 50, 70, 100, 140, 200, 280, 400, 560, 800, 1120 and average for various subsections of these,
see Fig. 7.2(b). Note, that the transition to the critical phase with this method does not
appear to scale much with χ. The noise in the data is almost as big as the difference in
transition between the lowest and highest χ’s. This makes it hard to do scaling, but on
the other hand it is not really necessary when the data is almost converged. Also the noise
decrease with increasing χ and we mainly use the largest χ’s to determine the transition
point. However, we plot some lower χ data as well mainly to show how well the data is
converged and how noisy it is.

The transition to the XY phase close to the AFM Heisenberg point, shown in Fig. 7.2(b)-
(d) is with this method Dc2

2 (∆ = 1) ≈ 0.044, see Fig. 7.2(b), where these averages almost
converge and reaches c = 1 for the largest χ. This in very good agreement with LS+ED
study which has the transition at Dc2

2 (∆ = 1) = 0.043, scaled from finite chains up to 12
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Figure 7.2: (a) S as a function of log(ξ) for χ = 25, 35, 50, 70, 100, 140, 200, 280, 400,
560, 800, 1120, black circles. Close to a QCP there is a linear relation between them, red
dashed line. The system moves away from criticality with increasing χ. A linear fit to the
data from the three largest χ gives a different slope, black line. (b) Linear fit of the data
at three different χ to the Eq. 7.4. The red dashed line shows the transition to the critical
phase with c = 1.

sites [107]. The data inside the critical phase appears surprisingly to initially overshoot
c = 1 slightly. On the other side of the critical phase, the transition is not as ditinct. As an
example, we find the transition at (∆ = 0,D4 = 0) to be at Dc3

2 (∆ = 0) ≈ 2.82(not shown).
This is in good agreement with the best LS+DMRG data Dc3

2 (∆ = 0) = 2.796 [108].
With the data presented in this way in Fig. 7.2(b) it is hard to see what c is outside the

critical phase as χ → ∞, but that is not very interesting anyway. Well outside the critical
phase it is clear that this data has very little noise as c gets smaller the larger log χ is.
Closer to the transition it starts to get more noisy and surprisingly appears to initially go
slightly past 1. Further inside the critical phase does it approach 1. The reason for this
initial overshoot is unclear, but we believe it occurs in the less understood critical phase and
we take the initial crossing of 1 as our phase transition point.

The LS method scales much better at this transition then any of the other methods that
use scaling, that is the transition point does not change very much with system size. Tzeng
uses DMRG to calculate the energy spectrum and goes to very high χ so he can neglect
the scaling in χ and only have to scale in system size. At this transition point he calculate
systems up to 60 sites.
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7.4 Phase diagrams

The S = 2 phase diagram as a function of Jz and D2 (at D4 = 0) has previously been
studied, however as we already have mentioned there have been disagreements [106, 107].
The two most debated issues are whether there exist an OH phase for the spin-2 system and
whether the Hesienberg point and the phase at large D2 belong to the same phase, the EH
phase.

7.4.1 Phase Diagram (∆,D2)

In this section we investigate the upper right corner (∆ ≥ 0,D2 ≥ 0) of the D4 = 0 phase
diagram focusing on these two issues. The three large color coded phases in Fig. 7.3 shows
our result for the (∆,D2) phase diagram. The transition to the AFM phase is easy to locate
from the local magnetic order parameter |〈Szn〉|, for an example see Fig. 7.1(a). The hardest
phase transition to locate is the BKT transition. We located it by calculating the central
charge c up to at least χ = 1120 states per site in infinite chains, see Sec. 7.3 for details. At
some interesting points we also used χ = 1600 and χ = 2240. No sign of the OH was seen in
any of the points analyzed in this phase diagram. Previous DMRG results for the transition
to the XY phase is shown with a red dashed line [106]. Recent LS+ED result for the BKT
transition is shown with the red line and for the OH phase with the tiny blue region [107].
The new LS+DMRG results, that appeared when this chapter was being finalized, conclude
that the OH phase is even smaller, but still existing [108].

Our results are a big improvement from the old DMRG results [106] in the upper right
corner. However, as can be seen in Fig. 7.4, where c has been calculated along the lines
∆ = 2.3, 2.6,3.3, 4.0 (other lines not shown) in Fig. 7.3, it is really hard to determine exactly
where the phase transition is in this part of the phase diagram. The simulation time for a
given χ is longest here and the data noisier than anywhere else. The correlation length is
huge, likely tens of thousands of sites, although it gets even larger for smaller ∆ along the
upper part of the critical phase. Again, the critical phase is where c = 1 for an extended
region.

It is clear that the critical region is much smaller here than concluded in the earlier
DMRG study by Aschauer et. al. [106]. Simulating to larger χ, a smaller XY-phase can
not be excluded, but lit is likely larger than concluded in the recent LS studies [107, 108].
Regardless, it is definitely small enough that no direct transition from the XY to the AFM
phase occur in this part of the phase diagram. In Sec. 7.4.4 we will argue in more detail that
the AFM Heisenberg point and the a point at large D2 belongs to the same phase and in
Sec. 7.4.3 we will show that the OH phase does not appear in this phase diagram.

7.4.2 Phase digram (D2,D4)

Even if we can not determine, whether the OH phase exist in the D4 = 0 phase diagram,
it should be much easier to determine whether it exists with other anisotropic on-site inter-
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Figure 7.3: Phase diagram for S = 2 as a function of ∆ and on-site anisotropy D2. The
phases detected with iDMRG are the large colored regions; AFM, XY and EH phases. Red
dashed line show the previous calculated XY phase boundary with DMRG [106]. Solid red
line, the calculated XY phase boundary with ED+LS [107]. Solid blue line, the calculated
Oh phase boundary with ED+LS [107].

actions. The AFM Heisenberg point in the spin-1 chain belongs to the OH phase. In this
case the possible onsite states are mz = 0,±1, so starting from the spin-2 AFM Heisenberg
point and projecting out the mz = ±2 onsite states should give an OH phase. This is done
by taking D2 = −D4, as D4 →∞. This does not favor any of the mz = 0,±1 states over the
other. The phase diagram around the AFM Heisenberg point for various on-site anisotropies
D2 and D4 are shown in Fig. 7.5. This phase diagram is simulated with χ ≤ 400 and the
phase transitions are slightly less accurate than for the (∆,D2)-phase diagram. The OH
phase is the ground state for a wide range of on-site anisotropies and it appears roughly
where it was expected, along lines D2 = −D4 + DS=1

2 , where DS=1
2 is the values where the

OH phase appears at ∆ = 1 in the S = 1 phase diagram. As D4 → ∞ the S = 1 phase
diagram for ∆ = 1 translated by −D4 indeed appears (not shown).
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Figure 7.4: Central charge calculations to find the critical phase as in Fig. 7.2, along different
vertical lines in the phase diagram Fig. 7.3. The critical phase is where c = 1 extends over
a finite range, like in (a) and likely (b), marked with vertical red dashed lines.
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Figure 7.5: Phase diagram for S = 2 as a function of the on-site anisotropies D2 and D4 at
∆ = 1. The phases detected with iDMRG are the colored regions; AFM, XY, EH and OH
phases.

7.4.3 Odd Haldane phase

It was already established in Sec. 7.4.2 that an OH phase exist in the S = 2 XXZ-
chain with on-site anisotropic interactions. However, no sign of the OH phase was seen in
the D4 = 0 phase diagram. In this subsection we will investigate how close to this phase
diagram it exist. Tonegawa et. al. [107] found a very small and narrow OH phase in this
phase diagram, for example the point (∆ = 2.6,D2 = 2.155) is proposed to be inside this
phase and about as far away from the critical phase as possible. Starting from this point
and going along the line

D2 = −D4 + 2.155 (7.5)

for increasing D4, it is obvious that the phase is a OH phase. Well inside the phase, the
entanglement entropy and the correlation lengths are well converged as a function of χ and
the SO is non-zero and the entanglement spectra is two-fold degenerate. As long as χ is
smaller than the correlation length ξ2, the string order decrease roughly linearly with 1/χ.
Once χ is large enough to describe the phase accurately, the correct SO can be obtained. For
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Figure 7.6: String order calculations for different χ’s and scaled to χ→∞ (solid line) along
the line (Eq. 7.5). Smaller χ gives a larger SO. The SO vanish at D4 ≈= 0.1. At D4 = 0 it
has vanished for all χ’s.

the lower D4 this happens for larger and larger χ as criticality is approached, but a scaling
in χ is still expected to give a reasonable result.

Fig. 7.6 shows the SO for various χs and scaled to χ =∞ as a function of D4 along this
line. Central charge calculations give a similar transition point into a critical phase, just
outside the D4 = 0 plane. The SO approaches zero exponentially as the BKT transition
is approached in a similar fashion as in the S = 1 phase diagram. The scaling appears to
overestimate the value of the SO slightly close to the transition. Also based from experience
with the OH phase in a S = 1 system, we know that a finite χ overestimate the size of the
OH phase. In Fig. 7.6 the SO= 0 for all χ simulated at D4 = 0 and this point should hence
be clearly outside the OH phase.

We did simulations for many lines out from the D4 = 0 plane around the line D2 =
−D4 + 2.155 at ∆ = 2.6, but none are significantly closer to the OH phase. The region the
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OH phase was proposed to occupy by Tonegawa et. al. is close to the OH phase, as are
points for higher ∆ along an extension of that region, close to the AFM phase. These points
coincide with the points with largest c in Fig. 7.4(c)-(d) and the proximity to the transition
into the OH phase, which also has a central charge c = 1, is likely the reason why c ≈ 1
there.

7.4.4 Even Haldane phase

The (∆,D2) phase diagram at D4 = 0 in Fig. 7.3 has the AFM Heisenberg point and a
point at large D2 in the same EH phase. In this subsection we will discuss our data in more
detail and explain why it is possible to move adiabatically between these two points without
going through a phase transition. We made similar simulations as in Fig. 7.1(b)-(d) along
lines out from the AFM phase as a function of D2 for fixed ∆ = 1.0 : 0.1 : 4.0, all having
the same characteristics up to the change in phase transition from second to first order at
∆ ≈ 3.8 . The bottom of the ξ0 valley, see Fig. 7.1(d) for an example, is well converged in χ
and roughly constant for all these lines up to the change in phase transition type, showing
no sign of a transition into the critical phase.

However, the correlation length remains much larger than what is possible to reach with
numerics outside the valley on the opposite side from the AFM phase well passed the change
in phase transition type. The influence of the critical phase and more importantly the
proximity to the transition to the OH phase at small D4 s what has previously made it so
hard to locate how far the XY phase extends. A phase transition with c = 1 between a
phase around the AFM Heisenberg point and a trivial phase extending to large D2 is hard
to completely exclude from our data. For really large ∆ & 3.8 it is obvious that there
is no transition with c = 1 along D2 lines. The simulations converge faster and the data
is also less noisy than for lower values of ∆ in Fig. 7.4(a). Also c is clearly below 1 and
decrease faster with χ, about as fast as for comparable points (same c value for a given χ)
just outside the XY phase in Fig. 7.4(a)-(b) and Fig. 7.2(b). A phase transition that ends
where the transition out of the AFM phase change from 2nd to 1st order could also be a
possible. However, on closer examination, although the valley discussed above where the
correlation length is converged in numerical reachable chis is gone, c << 1 in a small region
close to the AFM phase all the way past the change in transition type. From these results
and symmetry argument between the phases at the AFM Heisenberg point and a point at
large D2 we conclude that they are in the same phase, the EH phase.

From the (D2,D4) phase diagram at ∆ = 1 in Fig. 7.5 it also looks possible to move
adiabatically from the AFM Heisenberg point to a large D2 point in this phase diagram
without closing the gap. At D2 → ∞, the EH phase has mz

n = 0. Projecting out the
mz = ±1,±2 states from the AFM Heisenberg point could give a EH phase. These are
projected out equally for D4 = −1/4D2 as D2 → ∞. Consequently, it appears likely that
the line D4 = −1/4D2 from the AFM Heisenberg point for increasing D2 will stay in the
EH phase. This line follow close to the AFM transition. Again there is a narrow EH
phase that has a second order transition to the AFM phase. The valley in ξ0 extends to
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about D4 ≈ −1.0. However, the critical phase extends further to D4 ≈ −1.4. Without a
narrow phase with a comparable short correlation length between the two phase transitions,
a solid conclusion is hard to make. Central charge calculations in this area indicate a direct
transition between the AFM and the XY phase here.

7.5 S = 3 XXZ-chain

We conclude this chapter with investigating a related problem, the S = 3 XXZ-chain. We
compare the results to the S = 1, 2 cases and discuss the implications in the development of
the classical limit S → ∞. In 1983 Haldane conjunctured that the AFM Hesienberg point
for all even S belonged to a gapped phase between the XY and the AFM phase and showed
that the gap at this point had the asymptotic expansion δES ≈ S2e−πS as S →∞ [102, 103].

The S = 1, 2 chains have been extensively studied and agree with Haldanes conjuncture,
although the actual values needs to be calculated numerically. The value of the spin wave
velocity c = δEsξ = 2S as S →∞ relates the correlation length and the gap. The correlation
length increases rapidly from ξS=1

0 = 5.828(1) to ξS=2
0 = 47.2(1), however it is a bit slower

than the asymptotic expansion suggests. Moreover, with the differences between the EH
and OH phases, a different approach of the S → ∞ limit for odd and even integer spin
chains can not be excluded. The expected long correlation length will make the simulations
challenging, but the possible shrinking of the OH will likely make it even more so.

Indeed simulating at the AFM Heisenberg point for S = 3, the OH phase appears first
for χ & 800. That the AFM phase extends further into the Haldane phase the smaller the
χ used is, have also been observed for S = 1, 2, see Fig. 7.1(b) for a related S = 2 example.
Locating this transition for various χ ≤ 1120, we can do a finite χ scaling, see Fig. 7.7(a),
where we see a transition at ∆S=3 = 1.000045(5). Consequently, this transition approaches
∆S=∞
c2−3 = 1 exponentially, but faster than the gap closes at S → ∞, since ∆S=1

c3 = 1.19(1)
and ∆S=2

c3 = 1.005(1).
The transition from the XY phase to the Haldane is from the S = 1, 2 cases expected to

be slightly further away from the AFM Heisenberg point and not to change as much with χ.
Still, χ & 400 is required to see the OH phase clearly. Fig. 7.7(b) shows the correlation for
χ = 400, 560, 800, 1120 across these two transitions. The peak from the 2nd-order transition
between the OH and the AFM phase is where the local magnetization | < Szn > | disappears.
The transition between the AFM and the OH phase is harder to see, in fact it is not even
clear there is a gapped OH phase from this graph. However, calculating the central charge,
see Fig. 7.7(c), we see a clear transition at ∆S=3

c2 = 0.99970(5). Exactly as for S = 2 we see
an initial overshoot of c = 1, although it is larger for S = 3, just inside the critical phase
and approaching c = 1 (not shown) further into the phase. This transition also approaches
∆S=∞
c2−3 = 1 exponentially, but faster than the gap closing would suggest, since ∆S=1

c2 = 0.0 and
∆S=2
c2 = 0.962(1). To calculate the SO in the thermodynamic limit at the AFM Heisenberg

point we need to scale from the data inside the OH phase (χ & 800), see Fig. 7.7(d), where
χ = 800, 1120, 1340, 1600 are used in the finite-χ scaling to get SOS=3

∆=1 = 0.161(1). The SO
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Figure 7.7: Phase transitions in the S = 3 XXZ-chain. (a) The vanishing of the magne-
tization order parameter |〈Szn〉| as a function of 1/χ, black circles and scaled to the limit
χ → ∞, red dashed line. (b) The peak in the correlation length ξ0 indicated the transition
between the FM and the OH phase. (c) Central charge calculations gives the transition to
the critical phase, red dashed line. (d) String order calculations at the AFM Heisenberg
point. For small χ it is in the AFM phase, for χ & 800 it is in the OH phase and it scales
linear with χ, red dashed line.



Section 7.6. Discussion 91

inside the AFM phase falls off in similar fashion as | < Szn > | as can be seen for χ . 800.
Inside the OH phase does the SO fall off exponentially with ∆ as the XY transition is
approached, in a similar fashion as for S = 1, 2 and vanishes at ∆S=3 = 0.99965(5). Again
it appears like the SO slightly overestimate the size of the OH phase when χ→∞.

We also calculate the correlation length ξS=3
0 = 520(5) at the AFM Heisenberg point

with a finite-χ scaling (not shown). Also the correlation length increases exponentially, but
slower than what it will in the semi-classical limit. We conclude that there is no difference
in how the EH and OH phases at the AFM Heisenberg point approaches the classical limit
→∞.

7.6 Discussion

Of the many different methods used to locate the BKT transition, like vanishing energy
gap, fidelity susceptibility, central charge calculation and level spectroscopy, the last two
converge much faster in χ respectively system size than the others. Along most of the
transition line they also agree well on the location of the transition. However, in the upper
right corner of D4 = 0 phase diagram, where the OH is proposed to be close to the XY
phase, there are some disagreements. The central charge calculations are noisiest inside the
XY phase close to a BKT transition and this region is largest in this corner. We argued in
Sec. 7.3.5 that this region belongs to the critical phase.

Also scaling with the LS method can have some problems as pointed out by Tzeng [108],
since the location of the transition can behave non-monotonically with system size. Even
when the location of the transition appears well converged, like in Fig. 5(a) in Tzeng’s [108]
paper, max(∆E) appear not to be. In fact max(∆E) might even reach negative values for
large systems, that is no OH phase along this line either, opening up for an even smaller (or
maybe vanishing) OH phase than proposed by Tzeng.

The value of the SO increase with decreasing χ and the calculations of the SO from well
inside the OH phase suggest that it does not extend all the way to the D4 = 0 plane. From
the S = 1 chain, we know that signs of the OH phase appear to extend into the XY phase
for finite χ, but for S = 2 at D4 = 0, non of these signs can be seen for finite χ, indicating
that the D4 = 0 plane is well outside the OH phase. The final conclusion whether the OH
phase exist at D4 = 0 will be left for future studies that can simulate larger systems. The
correlation length is likely tens of thousands of site in this region so it might take some years
before a definite conclusion can be made. Regardless, it will be a tiny area of the phase
diagram and will likely of little use. However, with a D4 interaction the OH phase is easily
reachable.

We finish, by mention a recent study [120] on a related model, which showed that the OH
phase also appear in a spin-2 chain if one starts from the SO(5) symmetric point, obtained

by tuning JD when H =
∑

n

∑4
p=2 Jp(

~Sn ~Sn+1)p is added to the Hamiltonian at Jz = 1 and
D4 = 0.
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