Land processes: soil vegetation atmosphere transfer

2 Infiltration and Runoff Generation Mechanisms

Land processes: soil vegetation atmosphere transfer

(2) Infiltration and Runoff Generation Mechanisms

Mass conservation: P = I + E + ET + F + R

Infiltration \rightarrow Runoff Generation

Land processes: soil vegetation atmosphere transfer

(2) Infiltration and Runoff Generation Mechanisms

Lecture content

- Infiltration
 - relevance of the process
 - influencing factors (soil characteristics)
 - measurement
 - infiltration vs soil water content
 - infiltration and runoff generation mechanisms
 - mathematical models of infiltration
 - physically based vs empirical/conceptual

2.3.2 2.3.4 (including sub-sections)

Skript: Ch. IV.5

Ch. VI § 2.3

Infiltration

Definition:

Infiltration is the process of water penetrating from the ground surface into and through the soil

it depends on properties of the medium where it takes place, which are

- static/intrinsic
 - └ Iand/ground cover
 - *└*→ *soil properties*
- or time variable
 - └→ soil water content

Infiltration is a flux (per unit area) \rightarrow [L][T]⁻¹ \rightarrow [mm/h], [cm/s], ...

infiltration rate $\leftarrow \rightarrow$ infiltration capacity

Relevance of infiltration in the transformation of rainfall into runoff

Infiltration controlling factors

land/ground cover controls the **permeability** *at the ground surface and below (effects of roots)*

- i.e. controls the *ability of the soil to let water infiltrate e.g.:*
 - rock \rightarrow impermeable (unless fractured) -

 bare soil → permeability depends on soil material (sand/lime/clay), generally does NOT favour infiltration

- vegetated cover (grassland, forest,...)
 - \rightarrow permeable, favours infiltration

Infiltration controlling factors

soil properties control the **permeability and the hydraulic properties** of the porous medium, through which water flows:

Measurement vs estimation of infiltration

Direct *measurement* of *infiltration* rate is carried out by means of

- └→ infiltrometers
- └→ Iysimeters (water bal.)
- *└*→ *experimental plot* (water bal.)

Infiltration rate is *estimated* by equations, which express its temporal dynamics

soil water content

http://en.wikipedia.org/wiki/File:Double_ring.JPG

measurement (gravimetric sampling, tensiometers, neutron probes, time domain reflectometers)

5

Measurement of infiltration - Infiltrometers

Measuring principle:

lowering of head in infiltrometer

or

E

ring

ETH zürich

Land Processes (Infiltration) – Autumn Semester 2017

Measurement of soil water content – gravimetric sampling

Measuring technique:

- extraction of soil carrot in the field
- lab analysis
 - wet weighing
 - drying in oven
 - dry weighing

dry weight fraction $M_{dry} = \frac{\text{weight of water expelled at 105°C}}{\text{overdry weight of soil}}$

moisture volume fraction

$$MVF = \frac{\text{volume of water expelled at 105°C}}{\text{volume of soil before drying}}$$

Measurement of soil water content – tensiometer

Measurement of soil water content – neutron probe

Measuring technique:

• attenuation of flux (or velocity) of radioactive neutrons

collision with hydrogen nuclei contained in soil water molecules

- non disturbing measurements
- more accurate than tensiometers

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Measurement of soil water content – TDR

TDR = Time Domain Reflectometry

Measuring principle:

velocity of propagation of a high-frequency signal

computation of the dielectric constant of the soil, which is related to its water content

water dielectric constant ≈80, solid soil components ≈227

$$K_{ab} = \left(c/v\right)^2 = \left(c \cdot t / 2 \cdot L\right)^2$$

- K_{ab} = soil bulk dielectric constant
- c = velocity of electromagnetic waves in vacuum (3·10⁸ m/s)
- t = time required by the wave to travel from a to b and return (distance 2L)

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Infiltration models – theoretical framework

WATER TABLE

 θ = soil water content q = flow

- 1D flow
- continuity equation

$$\frac{\partial \theta}{\partial t} + \frac{\partial q}{\partial z} = 0$$

momentum equation

$$q = -\left(K + D\frac{\partial\theta}{\partial z}\right)$$

Richards' equation

where:

K = hydraulic conductivity [L][T]⁻¹

water

zoom

• Ψ = suction head [L]

SUBSURFACE OUTFLOW

SUBSURFACE FLOW

GROUNDWATER OUTFLOW

GROUNDWATER

FLOW

soil

particles

voids

• $D = soil water diffusivity = K \cdot d\Psi/d\theta$ [L]²[T]⁻¹

Given governing equation for 1D unsteady unsaturated flow in a porous medium [Richards, 1931]

control volume

Infiltration models – runoff generation mechanisms

Hortonian mechanism

\rightarrow infiltration excess

 runoff generation occurs when the *rainfall rate exceeds* the *infiltration capacity* (rate)

more frequent

- in arid and semiarid environments
- where vegetation coverage is limited

INFIL TRATION [Horton, 1933]

• Dunnian mechanism

\rightarrow saturation excess

 runoff generation occurs when the unsaturated zone becomes saturated and the soil does not allow any infiltration

more frequent

- in humid environments
- where vegetation coverage is rich

Infiltration models – infiltration excess vs saturation excess

18

Infiltration models – physically based vs empirical/conceptual models

Physically based models

Richards' equation

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(D \frac{\partial \theta}{\partial z} + K \right)$$

numerical solution only

where:

• $K = K(\Theta), D = D(\Theta)$

<i>simplified physically based models</i> → K , D = constant		ightarrow Green-Ampt model (1911)
(analytical solutions)	\rightarrow K = constant, D = D(θ)	→ Philip's model (1957, 1969)

Empirical / conceptual models

- derived from empirical investigations (e.g. Horton equation)
- based on conceptualisation
 - e.g. storage + infiltration excess \rightarrow CN method
 - e.g. constant infiltration rate $\rightarrow \phi$ index
 - e.g. infiltration rate variable and proportional to rainfall rate \rightarrow percentage method

Infiltration models – Horton's equation

Horton's equation was developed in the 1930's from repeated observation of infiltrometer tests

Its shape reflects essentially the experimental breakthrough curve

Can be obtained integrating Richards' equation for z= surface and K, D = constant

Infiltration models – Soil Conservation Service Curve Number (SCS-CN)

Conceptual model combining infiltration and saturation excess

Hypothesis: the ratio between *actual, F,* and *potential, S, soil water content* is equal to the ratio between *actual, P_e*, and *potential, P, runoff*

• if no infiltration is possible \Rightarrow runoff = gross rainfall • with infiltration \Rightarrow runoff = net rainfall • with infiltration \Rightarrow runoff = net rainfall • with infiltration \Rightarrow runoff = net rainfall • with infiltrated \Rightarrow net rainfall $I_a = initial \ abstraction \Rightarrow$ water stored in depression storages

Infiltration models – Soil Conservation Service Curve Number (SCS-CN)

S is *parameterised* through the *Curve Number, CN*

$$S = S_0 \left(\frac{100}{CN} - 1 \right) \quad \text{(1)} \quad S_o = 254 \rightarrow S \text{ [mm]}$$

CN is **function of**

- hydrologic soil type
- land cover

TABLE 5.5.2	
Runoff curve numbers for selected agricultural, suburban, and urban	land
uses (antecedent moisture condition II, $L_{a} = 0.2S$)	

	Land Use Description		Hyd	lrologic	Soil Gr	oup
			A	B	С	D
takes minimum value = 0	Cultivated land1: without conservation treatment		72	81	88	91
for CN = 100	with conservation treatment		62	71	78	81
takes max. theoretical value = ∞ for CN = 0	Pasture or range land: poor condition		68	79	86	89
	good condition		39	61	74	80
	Meadow: good condition		30	58	71	78
	Wood or forest land: thin stand, poor cover, no mul	ch	45	66	77	83
mple:	good cover2		25	55	70	77
and use	··· ··· ··· ··· ··· ···				Į	L

- **Example:**
- Land use
 - meadow

- Hydrologic Soil Type
 - moderatly permeable $\rightarrow C$

	•		I	1	1
Streets and roads:					
paved with curbs and storm sewers ⁵		98	98	98	98
gravel		76	85	89	91
dirt		72	82	87	89

Infiltration models – SCS-CN hydrologic soil types and AMC

Hydrologic Soil Type	Description	Permeability
A	Deep sand, deep loess, aggregated silts	very high
В	Shallow loess, sandy loam	high
C	Clay loams, shallow sandy loam, soils low in organic content, and soils usually high in clay	moderate
D	Soils that swell significantly when wet, heavy plastic clays, and certain saline soils	low

Infiltration models – SCS-CN and AMC

AMC = Antecedent Moisture Conditions

To account for the **temporal variability of the storage** due to the temporal dynamics of the soil water content (effect of drainage and ET), the table values of CN can be **converted** to two **ANTECEDENT MOISTURE CONDITIONS**

normal conditions (AMC II) \rightarrow tables

dry conditions (AMC I)
$$\rightarrow CN_{II} = \frac{4.2CN_{II}}{10 - 0.058CN_{II}}$$

wet conditions (AMC III) $\rightarrow CN_{III} = \frac{23CN_{II}}{10 + 0.13CN_{II}}$

AMC conditions are classified on the basis of the vegetation activity

E S		TOTAL 5-DAY ANTECEDENT RAINFALL, P [mm]		
	AMC GROUP	dormant season	growing season	
	I	< 12.7	< 35.6	
	П	$12.7 \le P \le 27.9$	$35.6 \le P \le 53.3$	
	III	> 27.9	> 53.3	

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Infiltration models – P_e vs P template for I_a = 0.1 S and AMC II

ĊΝ_{//} Ρ 1.0 - 10 Р 15 0.9 20 25 8.0 - 30 Φ , Runoff Coefficient [-] S 0.7 - 35 Idecreasing -40 0.6 -45 50 0.5 55 60 0.4 65 0.3 70 -75 0.2 80 85 0.1 90 95 0.0 100 200 300 400 500 600 0 P, Rainfall Volume [mm]

ETH zürich

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Infiltration models – **Φ**-index method

*****Q* INDEX = AVERAGE RAINFALL INTENSITY FOR WHICH RAINFALL EXCESS EQUALS SURFACE RUNDEFF

Infiltration models – Percentage method

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Ponding time (1)

The infiltration rate provided by Horton's equation (and by some other equations derived from Richards' eq.) is a *potential infiltration rate* \rightarrow i.e. considering that water is continuously available at the surface \rightarrow all water available for infiltration infiltrates.

We have to account for this condition when applying the model to determine rainfall excess (net rainfall) \rightarrow ponding time, t_p = elapsed time between the beginning of rainfall and the instant that water begins to pond on the soil surface, i.e. ponding begins

 $rightarrow t < t_p \rightarrow i < f(t) \rightarrow$ no rainfall excess; $t = t_p \rightarrow i = f(t) \rightarrow$ ponding; $t > t_p \rightarrow i > f(t) \rightarrow$ rainfall excess

→ Horton's infiltration curve needs to be corrected for ponding The correction is obtained by shifting the (potential) infiltration curve by a time t_0 which is computed such that $P = \int_{0}^{t_p} i(t) dt = \int_{t_0}^{t_p} f(t-t_0) dt = F$ $P = \text{cum. rainfall, } F_p = \text{cum. infiltration}$

ETH zürich

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Ponding time (2)

To shift the curve by t_o :

1) compute ponding under potential infiltration conditions

 $i = f(t_c)$ \bigcirc \rightarrow compute t_c

 \hookrightarrow compute $F(t_s)$ = cumulated amount of infiltrated water that would lead to ponding under potential infiltration conditions

2) compute the actual ponding time by imposing $i \cdot t_p = F_p$

$$F(t_s) = F_p = i \cdot t_p \rightarrow t_p = \dots$$

$$F(t_s) = F_p = i \cdot t_p \rightarrow t_p = \dots$$

3) shift the curve to account for $t_p > t_s$ using the condition

$$rightarrow t_p - t_0 = t_s - 0 \rightarrow t_0 = t_p - t_s$$
 with t_s computed from step 1)

For constant rainfall rate:

ETH zürich

 $ightarrow F_p = F(t_s)$ Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Horton's equation (summary + ponding)

Equation	Variable calculated	Horton's equation
(1)	Potential infil- tration rate as a function of time	$f = f_c + (f_0 - f_c)e^{-kt}$
(2)	Potential cumu- lative infiltra- tion as a func- tion of time	$F = f_c t + \frac{f_0 - f_c}{k} \left(1 - e^{-kt}\right)$
(3)	Ponding time under con- stant rainfall intensity i	$t_p = \frac{1}{ik} \left[f_0 - i + f_c \ln \left(\frac{f_0 - f_c}{i - f_c} \right) \right]$ $(f_c < i < f_0)$
(4)	Equivalent time origin for poten- tial infiltra- tion after pond- ing	$t_0 = t_p - \frac{1}{k} \ln \left(\frac{f_0 - f_c}{i - f_c} \right)$
(5)	Cumulative infil- tration after ponding	Substitute $(t - t_0)$ for t in (2).
(6)	Infiltration rate after ponding	Substitute $(t - t_0)$ for t in (1).

ETH zürich

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017

Infiltration *example of application of knowledge*

Engineering Problem:

 b Design of flood protection structure → estimate the amount of surface runoff generated by a given area/catchment to determine the flood volume to be stored by an artificial polder

Solution

 └→ Compute the rainfall excess volume for the design rainfall event (e.g. obtained from a DDF for the design return period and rainfall duration)

Method

Hydrology – Land Processes (Infiltration) – Autumn Semester 2017